
ISORA-015.I

@

c
~. “; ..

: @ 199S TSI Press
.,,, . ..’.,. A,, o- Albuquerque j NM LJSA

ROBOT MOTION PLANNING BASED ON
WHOLE TRAJECTORY MODIFICATION

B. Baginski
Munich University of Technology, Germany
e-mail: baginski@i.nf orxnatik. tu-xnuenchen. de

ABSTRACT

We present a novel approach to motion planning for robot manipulators in
known environments. The key concept h to evaluate coz.qdefe trajectories
between start and goal in the workspace and to reshape them incre-
mentally. The evaluation is based on virtual modifications of the geometry
model of the robot. An initially colliding trajectory is bended in space to be
improved with respect to the evaluation.

KEYWORDS: robotics, motion planning, computational geometry

INTRODUCTION
A very important low-level ptanner for an autonomous robot system is a motion planner
that enables the robot to move between arbitrary positions without colliding with work
space obstacles or with itself. We address this problem for manipulators in the case of
known obstacles.

A manipulate is an open kinematic chain of n+l links (0... n), conneeted with n joints,
so n is the number of degrees of freedom (DOF). The first link (base) is fixed in the
workspace. The last link carries the tool (e.g. gripper and load). Industrial manipulators
usually have the minimum number of 6 joints. For more complex manipulation tasks,
robots with more joints (called redundant or hyperredundant manipulators) are required.

The position of a joint i, i=l...n, is denoted with ~. The possible values of a joint are
limited in the interval [qi~, qi~u]. The possible values within these intervals ar;
assumed to be steady. The position of a robot is described by the veetor q=(ql, qn) .
All possible robot positions span an n-dimensional bounded space, the configuration
space [c-space) C A point in c-space describes a posture of the robot in its work space.
The set of all positions in C that result in a collision of any part of the robot with an
obstacle are denoted with CA all other positions are collision free and lie in Cb. For
illustration see Fig. 1.

We only consider the case of a moving robot in a static environment (static for one
task at least), thus CCOII is constant. Planning means to find a collision free path between a
start position q~w and a goal position qgoi+ A valid solution is any steady curve in C~
connecting q,~ and qgo~. planning takes place in the search space C thus it is (at l-t)
an n-dimensional planning problem.

Related Work
For an overview see e.g. Latombe [8] and Hwang and Ahuja [6]. A very rough classi-

fication of motion pIanning approaches is the following:
Explicit or approximative modelling of the complete c-space. All attempts to build

up complete maps of the c-spwe fail for more than 4-5 DOF due to exponential
complexity (in computational time and memory). An upper bound for these approaches
are 5 DOF (see e.g. Ralli [11]). The necessary discretization has a negative effect on the
planning, as it implies a lower limit for the resolution of the robot’s movements.

ISORA-015.2

Fig. 1. An example for a two-joint robot [left]. ‘l%e robot in a demonstration workspace with an example
task (solid position: start, wired position: goal) [center). A map of the respective c-space (black CWM,

white C&) with the the same task (solid Point start, empty point: goal) (right].

Random modelling of the c-space. Another approach is to build up a randomized
graph within CfM, see e.g. Kavraki and Latombe [7]. Subgoals are placed randomly and
connected by simple local search strategies. Thus the topoiogy of CfM can possibly be
covered without exponential complexity. The required preprocessing may take very long
for complex environments. The preprocessed c-space map gets invalid if the environment
changes, and every object that is moved yields a modification.

Local Planning for positions in work space. The idea is to move from the start
position towards the goal, and to pass obstacles along the way, see e.g. the potential field
principle in Latombe [8]. The major drawback of these methods is to get stuck in local
minima, thus requiring random escape or random exploration techniques to avoid the
complexity of global search (e.g. Barraquand and Latombe [3] or Baginski [1]). Local
planning for positions is powerfid for simple environments. It gets expensive in complex
environments, where local minima has to be escaped.

Local Planning for whole trajectories in the workspace. The local approach
described here is to take a complete initial path (with collisions), and to modify it in a
way to get it collision free. Therefore, a measure of coUision depth or badness for a
whole trajectory must be developed. Buckley [4] and Ong/Gilbert [9] use minimal
directed distances and the penetration growth distance respectively, both rather
expensive to calculate, and were not able to apply their evaluation to high DOF robot
planning in realistic environments. Improvements of these calculations (reported by
Cameron [5]) were not yet applied to path planning. Quinkm [10] needs a co~lision free
trajectory to be reshaped under artificial forces, thus the path planning problem needs to
be solved beforehand. The approach described in the following is a continuation of [2].

LOCAL PLANNING FOR WHOLE TRAJECTORIES
Local planning for whole trajectories can be seen from two points of view. One possi-
bility is to look at a curve in c-space, the other possibility is to consider the volume taken
by the robot’s motion in the workspace.

Planning principle in the c-space. All possible trajectories (ignoring the obstacles)
between q,m and q~~ can be considred as a bundle of curves, occupying the complete c-
space. Some of these trajectories pass through obstacles, some are collision free. As we
cannot explicitly construct a representation of the complete c-space, we cannot construct
all trajectories as well. But we can select any one trajectory and examine it, this is a local
operation, as we just examine a one-dimensional subspace of the c-space. We now
modify the trajectory - again a local operation - to a neighboring trajectory in the bundle
of all possible trajectories, in away that the new trajectory is better than the old one. This
requires a measure of badness to evaluate the trajectory.

ISORA-015.3

The evaluation function has to fulfill several conditions. It
has to be unique and it should be strictly monotone (at least
locally) to make any planning possible. We do some trial
modifications of the trajectory and take a better one if it is
found. If there is no local minimum in the evaluation
function, the trajectory is pushed out of the c-space-obstacles
into the free c-space. We start with an initial trajectory, and
within the whole planning process, start and goal are actually
connected. We just remove the budness by gradually
reshaping the trajectory, until the whole trajectory is good, i.e.
free of collisions. The success depends on the evaluation
function. But lookhg at the c-space with its counterintuitively
shaped obstacles - even in the two dimensional case - no
useful evahtation function comes to mind. This changes, if we
look at the . . .

I
Fig. 2. Planning for a whole
trajectory seen in the c-space.
The trajectory is modified
until it is free of collision.

Planning principle in the work space. q,~ and q~~ describe two postures of the
robot in work space. Any trajectory between these postures sweeps out a certain volume.
If the trajectory is colliding, a part of the volume is occupied by the obstacles, Modi&ing
the trajectory to make it better now gets a more obvious meaning. If the trajectory can be
reshaped in a way that it intersects less with the workspace obstacles, it is most certainly
closer to a feasible trajectory than before. So the planning process in the workspace is to
push the swept volume of the whole trajectory out of the obstacles into the free space, see
Fig. 3. The evaluation function thus needs to measure the degree of intersection,

Fig. 3. Modification of the trajectory as it appears in the workspace (same example as in Fig. 2).

IMPLEMENTATION
Based on the ideas described above, we implemented a prototype planner that is able to
do local planning for whole trajectories.

Shrink Measure
Evacuating positions. A manipulator is modeled as a chain of bodies (the links),

connected with joints. To assign a unique shrink measure to a position, we check the
bodies of the chain individually for collision with the environment, beginning at the base
of the robot. If all links are free of collision, the shrink measure of this position is set to 1.
If a link i collides (and the algorithm finds the first colliding link), its size is reduced with
respect to the origin of its local coordinate system, located on the joint axis of the link
and on the surface of the previous link. A precondition for this shrinking process to yield
a unique result is that the link is convex (or at least star-shuped with respect to its local
origin, the shrink center).

The shrink factor si of link i is defined as the largest value between O and 1 that allows
the link to remain free of collisions with the environment. It is calculated approximately
with a depth-limited bisection, checking for collision with si=O.5 at the beginning (we

ISORA-015.4

know that the link coliides for ~l=l.O and that it does not collide for %=0.0, as the
previous link is free of collision). If it collides, we check again for ~i=0.2.5, else we check
~l=O. 75 and so on. We limit the number of tests to a user specified precision.

To calculate the shrink me~ure s(q) fo~ the whole robot model in a certain posture q,
each link of the robot 1s assigned a partial interval between 0 and 1, these parts are
ordered in the order of the kinematic chain and together they cover the interval between O
and 1. Now the local shrink factor ~i of the shrunk link is projected in its partial interval.
Only the first colliding link of a robot is taken into account for the shrink measure
calculation. All outer links are ignored, they can be interpreted as shrunk to zero size. The
resulting measure is unique and in the interval [0,11. The calculation of the shrink
measure is illustrated in Fig, 4.

,0 0.68

Fig. 4. Illustration of the shrink measure calculation. The size of the fust colliding body in the kinematic
chain is reduced until it does not collide with the obstacle. The overall shrink measure is calculated by

mapping the link’s shrink factor into the interval [0, 21 for the complete manipulator.

Evaluating trajectories. We define the minimum shrink measure along a path as the
shrink measure of the whole path. For the calculation, the path is discretized to a
sequence of single positions. This allows a very cheap computation of the shrink
measure, as the collision detection and the bisection can be executed for all discretization
points simultaneously. If a link collides for several of the discretization points, all of the
collision free discretization points need no further consideration, as we seek just the
smallest value. This exclusion continues within the bisection, thus reducing the number
of required collision detections drastically.
Planning Algorithm

Trajectory modelling. To simplify the handling of a trajectory, we model it as a
sequence of connected linear segments. The supporting points are the connection points
of the linear segments.

Initialization. Given a start and a goal position, the linear connection is discretized
and examined by calculating the shrink value for each discretization point. This is just
done once, resulting in a ‘shrink profile’ of the ~inem connection between qsti and qgo~. E
no collision occurs, a solution is found. If there are collisions, initial supporting points
are placed at the positions of minimal shrink measure within each collision interval, and
in the center of collision free intervals, if there was more than one collision interval
detected. All resulting path segments are attributed with their shrink measure, i.e. the
minimum value of all their discretization points.

Iterative modi13cation. The main loop of the algorithm tries to move the supporting
points adjacent to the segment(s) with the minimal shrink value. To move the supporting
point away from the trajectory, we calculate a hyperplane in the c-space, orthogonal to
the linear connection between the two adjacent nodes. The hyperplane is build in the i
lower dimensions of the c-space only, as a movement of the upper joints will not improve
the placement of the colliding link.

ISORA-015.5

The restriction to orthogonal directions in an &
dimensional subspace is a limitation for the spatial
adaption of the trajectory, but it still leaves i-l base
vectors and their respective reverse vectors as test
directions. The step length is calculated as a quarter
of the linear distance between the two adjacent
nodes, a heuristic that creates steps in relation to
the ‘granularity’ of the trajectory that is modeled
through the supporting points.

The test positions are evaluated by recalculating
the shrink measure for the two adjacent linear
segments, and the best possible position is taken as
the new position for the supporting point. We
demand that the shrink measure of at least one of
the adjacent line segments is increased. If no point
can be found, the step size is cut by half, this may
even be repeated. The maximum number of tests
executed to improve one supporting point is 6(i-1).

Insertion of additional supporting points. If,
within one iteration, the linear segment with the
minimum shrink value cannot be improved (neither
of its adjacent supporting points were moved), a

Fig. 5. Vkualization of planning for the
task from Fig. 1. The brightness of the c-
space obstacles reflect the local shrink
measure. As darker a region is, as smaller
the robot has to be to not collide. The
algorithm moves the supporting points out
of the obstacles, inserts new ones if
necessary and removes nodes if possible.

new supfiorting po;~t is in;e-tied in the center to ‘allow a better adaption to the topology of
the obstacles. If the distance between two supporting points falls below the discretization
distance, the planner terminates with failure.

On-line optimization. To achieve trajectories with few bends, we included art on-line
optimization. At the end of each iteration the direct connection between the two adjacent
supporting points is evaluated for all unmoved supporting points. If the shrink measure is
above the shrink measure of the two segments in between, the node is removed.

Fig. 6. The stages of planning shown in Fig. 5 visualized in the workspace.

The main loop of modification, insertion and optimization is iteratively repeated. The
planner terminates with success, if all linear segments of the trajectory have a shrink
measure of 1, else it terminates with failure. The planning process for the sample task is
visualized in Fig. 5 and Fig. 6.

Some Experimental Results
We have used the planner in scenarios from 2 to 16 DOF, and in general it is very

successful for all kinds of different tasks. The planning time is mostly dependent on the
complexity of the geometry models of the robot and the environment. All randomly
created tasks in the two dimensional example of the previous chapters are solved without
failure and within .1 to 4 sec. Examples for an 8 DOF and a 16 DOF robot are shown in
Fig. 7. All calculation times refer to simulations on a standard HP Unix workstation,

ISORA-015.6

Fig. 7. This solution for an 8 DOF robot (5 rotational and 3 translational joints) is planned in less than 15
seconds. The resulting trajectory consiststs of 5 linear segments [left]. A very complex task for a 16 DOF

robot. A solution is found in about 5 seconds, consisting of 7 linear segments [right].

The examples show that the planner successfully fulfills its objectives. The trajectories
consist out of very few linear segment (in c-space). Even very small passages are passed
with long straight motions, a unique capability for a local planner.

The success rate of our planner is very high, compared to other local planning
algorithms. For robots with a higher number of DOF, especially for hyperredundant
robots, the situations of failure are rare and the critical obstacle configurations are not
obvious. In most cases, the failure appears not to be a consequence of the principle itself,
but of the heuristics used for the step size and the step directions.

CONCLUSION
The use of a virtual value, the shrink measure, is the new quality of our concept, because
it is cheap to calculate and gives us a matter to manipulate complete trajectories, that are,
in the real work space, just colliding. For two fixed, collision free postures of the robot,
the planning system incrementally decreases the degree of collision in between. The
planning is local and of linear complexity in the number of degrees of freedom. The
system draws all its information from the evaluated paths, it never tries to examine the
whole high dimensional space.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.
9.

10.
11.

Baginski, Boris (1996a). The Z3-Method for Fast Patfr Planning in Dynamic Environments. In: Proceedings of IASTED
Conference on Applications of Control and Robotics. Orlando, January 1996, pp. 47-52.
Baginski, Boris (1996b). Led Motion Planning for Manipulators Based on Shrinking and Growing Geometry Models. h
Proceedings of the fEEE International Conference on Robotics and Automation, WmeapOliS, April 1996, pp. 3303-3308.
Barmquand, J. and Latombe, Jean-Claude (1990). A Monte-Carlo Algortbm for Path Planning with Many Degrees of Freedom.
k proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, May 1990, pp. 1712-1717.
Buckley, C. E. {1989). A Foundation for the ,,Flexible-Trajectory” Approach to Numeric Path Planning. Im The Jntemational
Journrd of Robotics Research, Vol. 8, No. 3, June 1989, pp. 44-64.
Cameron, Stephen (1997). Enhancing GJK Computing Minimum and Penetration DIstances between Convex Polyhedra. In:
Proceedings of tJre IEEE International Conference on Robotics and Automation, Albuquerque, April 1997, pp. 3112-3117.
Hwang, Yong K and Ahuja Narendra (1992) Gross Motion Planning - A Suryey. fn: ACM Computing Smweys, Volume 4,
Number 23, September 1992, pp. 219-291.
Kavraki, Lydia and Latombe, Jean-Claude (1994). Randomized Preprocessing of Configuration Space for Fast Motion Planning.
k Pmceediigs of the IEEE International Conference on Robotics and Automation. San Diego, May 1994, pp. 2138-2145.
Latomtw, Jerm-Ctaude (1991). Robot Motion Planning. Kfuver Academic publishers.
Ong, Chong Jin and Gilbert, Ehnar G. (1994). Robot Path Pkmning with Penetration Growth Distance. fn: Proceedings of the
IEEE International Conf. on Robotics and Automation, San Diego, May 1994, pp. 2146-2152.
Quinfan, Sean (1994). Reaf-Time Modification of Collision-Free Paths. Ph.D. Thesis, Stanford Univemity, December 1994.
Rrdli, E. and Htinger, G. (1996). A Global and Resolution Complete Path Planner for Up to 6 DOF Robot Manipulators. In:
Proceedings of the IEEE International Conference on Robotics and Automation, Mimeapolis, April 1996, pp. 3295-3302.

