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Abstract

This paper describes ViSMI, a software distributed
shared memory system for cluster systems connected via
InfiniBand. ViSMI implements a kind of home-based lazy
release consistency protocol, which uses a multiple-writer
coherence scheme to alleviate the traffic introduced by false
sharing. For further performance gain, InfiniBand features
and optimized page invalidation mechanisms are applied in
order to reduce synchronization overhead. First experimen-
tal results show that ViSMI introduces good performance
comparable to similar software DSMs.

1. Introduction

Parallel architectures develop in two main directions:
Tightly-coupled systems with processors connected via a
local bus and loosely-coupled machines with processors
interconnected through a high-speed local area network.
The former architecture maintains a hardware-based global
shared memory and thereby allows for programming the
machines using parallel models semantically similar to se-
rial programming languages but is restricted to small sys-
tems. The latter, in contrast, enables to build larger, scal-
able systems but usually deploys explicit communication
paradigms in source code.

The advantages of both categories could be com-
bined forming parallel platforms with scalability and cost-
efficiency, which at the same time can use shared mem-
ory models. This requires to establish distributed shared
memory (DSM) on top of cluster systems, which supports
a global memory abstraction visible to all processor nodes
in the cluster. This can be implemented by hardware, but

mostly has to rely on software methodology.
This paper describes a software-based distributed shared

memory called ViSMI (Virtual Shared Memory for Infini-
Band clusters). A critical issue concerning DSM are the
consistency protocols that guarantee coherence between
replicas of shared data. Among those various schemes,
Home-based Lazy Release Consistency (HLRC) uses a
multiple-writer scheme to alleviate the traffic caused by
false sharing. ViSMI implements such an HLRC protocol
and establishes a virtual global memory space for shared
memory programming. ViSMI is built on top of a cluster
connected via InfiniBand [5], a high-performance intercon-
nect technology. Besides its low latency and high band-
width, InfiniBand supports Remote Data Memory Access
(RDMA), allowing to access remote memory locations via
the network without any involvement of the receiver.

This work is based on an existing implementation of
HLRC [14], which has been developed on top of the Vir-
tual Interface Architecture (VIA) [1], a user-level memory-
mapped communication model with low overhead that ex-
cludes the operating system kernel from the communica-
tion path. We have replaced the VIA-related operations
within this HLRC implementation with the corresponding
functions provided by VAPI [12], a VIA-like communica-
tion interface for InfiniBand. In addition, we have extended
HLRC to allow for optimizations for both system and pro-
grammers.

We make the following contributions:

• We implement ViSMI, an implementation of the
HLRC protocol on clusters connected via InfiniBand, a
reliable interconnection technology that supports inter-
process communication at the network hardware level.

• We develop mechanisms for full use of InfiniBand fea-



tures, e.g. RDMA and hardware supported multicast,
and mechanisms for less inter-node traffic.

• We evaluate ViSMI with standard benchmark applica-
tions and compare the performance with similar work
in this area. Initial experimental results have shown the
feasibility of ViSMI.

Currently, an SPMD model is supported, which applies
ANL-like M4 macros to express parallelism in applications.
We are working on OpenMP [3], a standardized, portable
shared memory programming model, and expecting to en-
able the parallel execution of OpenMP programs on ViSMI
in the near future.

The remainder of this paper is structured as follows: Sec-
tions 2 and 3 introduce the InfiniBand network architecture
and the target system. This is followed by a brief descrip-
tion of consistency models on software distributed shared
memory systems and related work in Section 4. Section 5
gives details on ViSMI, including implementation and opti-
mization techniques. This is followed by the initial exper-
imental results in Section 6. The paper concludes with a
short summary and some future directions in Section 7.

2. InfiniBand Network Architecture

InfiniBand [5] is a point-to-point, switched I/O intercon-
nect architecture with low latency and high bandwidth. Its
first specification was completed in 2000 by an association
of larger and smaller IT companies. This architecture de-
fines a System Area Network (SAN) that connects process-
ing nodes and I/O nodes. Processing nodes are attached
to the network via Host Channel Adapters (HCA), while
I/O nodes are connected to the fabric via Target Channel
Adapters (TCA). Channel adapters are either connected di-
rectly or through switches. The basic InfiniBand connec-
tions are serial at data rates of 2.5 Gbps with low latency.
Four or twelve of these serial point to point connections can
be bundled, creating 4X connections at 10 Gbps or 12X con-
nections at 30 Gbps, respectively. With its high bandwidth
and low latency, the InfiniBand architecture is an outstand-
ing interconnect for high performance clusters.

For communication operations, the InfiniBand architec-
ture provides both channel and memory semantics. While
the former refers to traditional send/receive operations,the
latter allows the user to directly read or write data ele-
ments from or to the virtual memory space of a remote node
without involving the remote host processor. This scenario
is generally referred to as Remote Direct Memory Access
(RDMA). Semantics of various operations are defined via
InfiniBandverbs, and the Mellanox implementation of the
InfiniBand verbs API, called VAPI [12], is usually deployed
to support both the classic communication model and the
RDMA operations.

3. Reference Cluster

For the evaluation of the work described in this paper, the
InfiniBand research cluster1 installed at Technische Uni-
versität München (TUM) has been used (see Figure 1). The
configuration data of its key components are listed in Table
1.

The cluster has 6 Xeon nodes which are used partly for
interactive tasks and partly for computation. Each of the
nodes has two 32-Bit Intel Xeon DP processors running at
2.4 GHz and 4 GBytes of main memory. The mainboard
of the nodes is a Super P4DPi–G2 from SuperMicro Com-
puter Co. with an Intel E7500 chipset and two Gigabit Eth-
ernet ports. Each node has a local IDE disk for booting
and local files. In addition, file systems of the nodes are
mounted on all other nodes in order to provide a common
home directory and other common files. An MTPB23108
Host Channel Adapter card from Mellanox Technologies is
plugged into the 133 MHz PCI-X slot of the mainboard and
provides two 4X InfiniBand ports.

In addition, the cluster has 4 Itanium 2 (Madison) nodes
which are primarily used for computation. Each of these
nodes has four 64-Bit Intel Itanium 2 processors running at
1.3 GHz and 8 GBytes of main memory. The chipset on the
Itanium boards is an Intel 8870. Each Itanium 2 node has a
fast local SCSI disk for booting and local file storage, and a
Gigabit Ethernet port. As for the Xeon based nodes, a Mel-
lanox MTPB23108 Host Channel Adapter card is connected
via a 133 MHz PCI-X slot of the mainboard and provides
two 4X InfiniBand ports.

An InfiniBand switch MTEK43132 from Mellanox
Technologies is the core of the InfiniBand fabric. The
switch which currently has 24 ports can be upgraded to 96
ports. All InfiniBand connections are 4X with a theoretical
peak bandwidth of 10 Gbps.

A file server with a RAID disk system provides a com-
mon home directory and other common files. A dedicated
login node serves as a gateway to the University Ethernet
network. The six Xeon nodes, the four Itanium2 nodes, the
file server, and the login node are connected through a pri-
vate Ethernet (which is currently limited by a 100 Mbit/sec
Ethernet switch).

The operating system on all nodes is Red Hat Linux re-
lease 7.3 currently running kernel version 2.4.21. The com-
pilers available are gcc version 2.96, PGI Fortran release
4.0-3, and Intel C++ and Fortran 7.0. All cluster–wide ad-
ministrative data is maintained via the Lightweight Direc-
tory Access Protocol (LDAP)2.

Currently, we have established a message passing envi-
ronment on top of the cluster, and also designed an infras-
tructure for shared memory programming. As a first step

1http://infiniband.cs.tum.edu/
2http://www.ldap.org/



Figure 1. The InfiniBand cluster setup at TUM in a lab environm ent.

IA-32 Nodes IA-64 Nodes
Number of nodes 6 4
Processor Intel Xeon DP 2.4 GHz Intel Itanium2 QP 1.3 GHz
Number of Processors per node 2 4
L1 data cache size (line size) 8 Kbyte (32 bytes) 16 Kbyte (64 bytes)
L2 cache size (line size) 512 Kbyte (32 bytes) 256 Kbyte (128 bytes)
L3 cache size (line size) N/A 3 Mbyte (128 bytes)
Processor system bus 64 bit, 400 MHz data rate 128 bit, 400 MHz data rate
Main memory 4096 MBytes 8192 MBytes
Memory bus 128 bit, 200 MHz data rate 256 bit, 200 MHz data rate
Chipset Intel E7500 Intel 8870
Disk subsystem single IDE disk single SCSI disk
Network 4X INFINIBAND & FE 4X INFINIBAND & FE
LINUX kernel version 2.4.21 SMP i686 2.4.21 SMP ia64
MPI software MPICH MPICH

Table 1. Configuration data of both types of nodes



towards this infrastructure, we have implemented ViSMI,
our software-based distributed shared memory system. De-
tails of this implementation will be presented in Section 5.

4. Software Distributed Shared Memory

The basic idea behind software DSMs is to provide pro-
grammers with a virtually global address space on cluster
architectures. This idea was first proposed by Kai Li [10]
and implemented in IVY [11]. As memory is actually dis-
tributed across the cluster, the required data could be located
on a remote node, and multiple copies of shared data could
exist. The latter leads to consistency issues, where a write
operation on shared data must be visible to other proces-
sors. In order to deal with this problem, software DSMs
usually rely on the page fault handler of the operating sys-
tem to support page protection mechanisms that implement
invalidation-based consistency models.

The concept of memory consistency models is to pre-
cisely characterize the behavior of the respective memory
system by clearly defining the order in which memory op-
erations are performed. This has lead to a large amount of
work in this area, and as a result various consistency models
have been implemented using both hardware and software
approaches. These include the strict Sequential Consistency
and several relaxed consistency models.

Sequential Consistency was first defined by Lamport [9]
as: “A multiprocessor system is sequentially consistent if
the result of any execution is the same as if the operations
of all the processors were executed in some sequential or-
der, and the operations of each individual processor appear
in this sequence in the order specified by its programmers”.
This provides an intuitive and easy-to-follow memory be-
havior, however, the strict ordering requires the memory
system to propagate updates early and prohibits optimiza-
tions in both hardware and compilers. Hence, other models
have been proposed to relax the constraints of Sequential
Consistency with the goal of improving the overall perfor-
mance.

Relaxed consistency models [2, 4, 7, 8] define a mem-
ory model for programmers to use explicit synchronization.
Synchronizing memory accesses are divided intoAcquires
andReleases, where anAquireallows the access to shared
data and ensures that the data is up-to-date, whileRelease
relinquishes this access right and ensures that all mem-
ory updates have been properly propagated. By separating
the synchronization in this way, invalidations are only per-
formed by a synchronization operation, therefore reducing
the unnecessary invalidations caused by an early coherence
operation.

A well-known relaxed consistency model is Lazy Re-
lease Consistency (LRC) [8] in which the invalidations are
propagated at the acquisition. This allows to perform any

communication of write updates only when the data is actu-
ally needed. To reduce the communications caused by false
sharing where multiple unrelated shared data locate on the
same page, LRC protocols usually support a multiple-writer
scheme. Within this scheme, multiple writable copies of the
same page are allowed, and a clean copy is generated af-
ter an invalidation. Home-based Lazy Release Consistency
(HLRC) [14], for example, implements such a multiple-
writer scheme by specifying a home for each page. All
updates to a page are propagated to the home node at syn-
chronization points such as lock release and barrier. Hence,
the page copy on home is up-to-date.

In the area of software distributed shared memory, a sig-
nificant amount of work has been carried out since it was
first proposed: The related system with Sequential Consis-
tency was implemented in [11]. Quarks [16] is an exam-
ple using relaxed consistency. This is a system aiming at
providing a lean implementation of DSM to avoid complex
high-overhead protocols. Treadmarks [7] was the first im-
plementation of shared virtual memory using the LRC pro-
tocol on a network of stock computers. Shasta [15] is an-
other example that uses LRC to achieve a distributed shared
memory on clusters. For the HLRC protocol, represen-
tative work includes Rangarajan and Iftode’s HLRC-VIA
[14] for a GigaNet VIA-based network and VIACOMM [6],
which implements a multithreaded HLRC also over VIA.
We choose the former as the basis of a software DSM for
InfiniBand clusters due to its simplicity and the similar com-
munication abstractions between VIA and InfiniBand.

When we finished this work, we found out that the
Network-Based Computing research group at Ohio State
University had implemented an InfiniBand-based software
DSM called NEWGENDSM [13]. It is also built on top of
HLRC-VIA, and with InfiniBand features considered. In
Section 6 we compare its performance to that of ViSMI.

5. ViSMI: Implementing a software DSM for
InfiniBand

ViSMI implements a Home-based Lazy Release Consis-
tency protocol on top of our InfiniBand cluster. As men-
tioned before, this work is based on an existing implemen-
tation of HLRC over VIA [14], the HLRC-VIA. Besides the
modification relating to the different interface specification
of both VIA and InfiniBand, we have taken into account the
specific feature of InfiniBand for benefiting from its hard-
ware support in interprocess communication. In addition,
we have implemented optimizations in order to further alle-
viate the inter-node traffic and the overhead caused by page
fault handling.

Overview. The protocol is actually based on a re-
quest/reply model, where requests are issued synchronously
and received asynchronously. Hence, each node main-



tains an additional thread, besides the application thread,
to handle the incoming communication. This communica-
tion thread is only active when a request occurs. We use the
event notification scheme of InfiniBand to achieve this.

Another important issue with HLRC is to propagate the
updates to a page that could have multiple writable copies.
Within ViSMI, this is implemented using adiff-based mech-
anism, where the difference (diffs) between each dirty copy
and the clean copy, which is created before the first write, is
computed and propagated using hardware-based multicast
provided by InfiniBand.

HLRC Implementation. The goal of a software DSM is
to realize a shared virtual space accessible to all processors
on a cluster. This shared space is organized at page gran-
ularity and allocated at the runtime. HLRC manages this
space by specifying a home node for each shared page, and
all page requests and runtime updates have to be sent to the
home node. Figure 2 illustrates this relationship.

Process1 
on node l

Process 2
on node k

Process 3
on node h (home)

page request

response
page request

response

invalidation diffs

page request

response

Figure 2. Communication between pro-
cesses.

To access a remote page, an application sends a request
to its home and waits for an acknowledgment that also con-
tains the data. Both request and acknowledgment are sent
using RDMA Write operations. After that, the application is
allowed to modify the page copy located on the local node.
This continues until a synchronization point (lock release,
barrier) is reached, where the updates are sent to their home
node to form a clean page, and all dirty copies have to be
invalidated. For this, each node stores the modifications be-
tween two synchronization events. For further accesses to
the page, a new page request is required.

For page management, each node maintains a data struc-
ture for storing information about a shared page, e.g status

and the home node. A negative status on the home node
indicates that the page is invalid and a page fault signal is
issued. The result is the merging of all updates to the page.

Optimizations. As described above, HLRC defines an
invalidation policy, where page updates are merged on the
home node and all other copies have to be invalidated. As
this results to new page requests and transfer of the whole
page, we implemented an optimized scheme, in which up-
dates are sent to all nodes and each node writes the updates
to its local copy. In this way, the local copies need not be
invalidated prohibiting the requirements to fetch the same
page again. This can lead to a significant reduction of the
overhead caused by frequent page fetching.

Programming Model. ViSMI currently supports an
SPMD model for parallelizing sequential codes. This
model applies the ANL-like M4 macros, those used in the
SPLASH-II Benchmarks suite [17], to define operations
with respect to parallel execution, such as environment ini-
tialization, process creation, synchronization, and memory
allocation. To implement this model, all these macros are
substituted with the corresponding functions provided by
our HLRC implementation.

6. Performance Evaluation

ViSMI has been evaluated on our InfiniBand cluster us-
ing a standard benchmark suite. We measured both the
speedup and the execution time breakdown, and compared
these experimental results with HLRC-VIA [14], the basis
of this work, and NEWGENDSM[13], the sole implemen-
tation of software DSM on InfiniBand clusters.

Experimental Setup. The hardware environment is the
cluster described in Section 3. Since ViSMI is currently
based on a 32-bit address space, only the six nodes with
32 bit Xeon DP processors could be applied in the experi-
ments. However, for some applications, e.g. FFT, the num-
ber of processor has to be a power of 2. Hence, we used 4
processors to perform the experiments.

Benchmark Applications. We use the SPLASH-2
Benchmarks suite [17] to verify the efficiency of ViSMI.
The applications chosen are Barnes, FFT, LU, and Radix.
They represent the different access pattern of applications.
A short description, the working set size, and the shared
memory size of these applications are shown in Table 2.

Experimental Results.First, we measured both sequen-
tial and parallel execution time. We then calculated speedup
and efficiency, where efficiency is obtained by dividing the
speedup by the number of processors. Since the other sys-
tems to be compared use a different number of processors to
perform the experiments, it is not possible to directly com-
pare the speedup. Table 3 illustrates the results.

This table contains two blocks of data. The first block
shows the performance of applications with ViSMI, and the



Applications Description Working set size Shared memory size
Barnes N-body problem 32768 bodies 40MB
FFT Fast Fourier Transformations 2**20 data points 49MB
LU LU-decomposition for dense matrices 2048×2048 matrix 33MB
Radix Integer radix sort 8M keys 66MB

Table 2. Description of selected applications.

ViSMI Performance Comparison of Scaling Efficiency
Serial time Parallel time Speedup ViSMI HLRC-VIA NEWGENDSM

Barnes 5.54s 1.68s 3.3 0.82 0.788 0.806
FFT 2.78s 1.07s 2.6 0.65 0.725 –
LU 315.12s 80.8s 3.9 0.975 0.925 –

Radix 2.22 1.01s 2.2 0.55 0.538 0.288

Table 3. Execution time, speedup, and efficiency of applicat ions.

second block shows the comparison of efficiency with the
other two systems. In terms of performance of ViSMI, it can
be observed that the speedup varies between applications.

Examining the concrete data, it can be seen that LU per-
forms better than the other applications. This is caused by
its feature of intensive computation and coarse-grain paral-
lelism. Radix behaves poorly due to its fine-grain access
pattern. However, the same behavior has also been pre-
sented with other systems, where NEWGENDSM shows an
efficiency of only 0.288 with radix. Other performance data
in the second block of Table 3 also shows that ViSMI be-
haves so well as or even better than the other DSMs3.

Overall, the various behavior of applications is caused by
their diverse parallel nature and thereby resulted different
number of page fetching and overhead of synchronization
operations. This can be observed in Figure 3 which shows
the normalized breakdown of the execution time.

In Figure 3,Computationdenotes the time for actually
executing the application,Page Fetchdenotes the time for
fetching pages,Lockdenotes the time for performing locks,
Barrier denotes the time for barrier operations,Handlerde-
notes the time needed by the communication thread, and
Overheaddenotes the time for other protocol activities. It
can be seen that LU shows the highest proportion in com-
putation time, hence the best speedup that has been seen in
Table 3.

Figure 3 also shows a general case where page fetch-
ing and barrier operations introduce most overheads. This
could be improved by appropriate home assignment and op-
timized barrier. While the former aims at placing the pages
on the node that dominantly accesses them to reduce the
requirement for page fetching, the latter has the goal of de-
creasing the time needed by processes to wait for the com-

3NEWGENDSM has only data about Barnes and Radix

pletion of others by barriers. Currently, we are working on
these optimizations, and a significant performance gain for
the applications with poorer behavior is expected.

7. Conclusions

Over the last years, shared memory models have been
increasingly used for programming cluster systems. A pre-
requisite for this, however, is a shared memory abstraction
visible to all processor nodes in the cluster. In order to in-
vestigate shared memory computing on InfiniBand-based
clusters, we have implemented such a distributed shared
memory called ViSMI. ViSMI implements a home-based
lazy release consistency protocol and is built on top of an
existing system with adaptation to the InfiniBand architec-
ture and optimizations.

ViSMI is the first step towards our goal: efficient cluster
computing based on InfiniBand. On top of ViSMI, an exe-
cution environment for OpenMP will be established in the
next phase of this research work. In addition, the current
version of ViSMI will be extended. This includes to enable
64-bit address space as well as further optimizations with
respect to data locality and barrier operations.
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