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Abstract— This paper presents a method for learning and
generating rhythmic movement patterns based on a simple
central oscillator. It can be used to generate cyclic movements
for a robot system which has to solve complex tasks. The
system is laid out in such a way that multiple motion dimen-
sions, or degrees of freedom of the robot, are represented
independent of each other; therefore, an extension to higher-
dimensional problems is easily possible. Guiding the robot by
holding its end-effector, the user teaches simple movement
primitives forming the basis for a more complex task. Each
movement primitive is represented in the system using an
oscillator combined with a learned nonlinear mapping. These
primitives are then optimally combined to a complete solution
to the posed problem. Said optimality is obtained using
simulated annealing with the A∗ global search algorithm. Our
approach is demonstrated on the problem of wiping a table,
but can be used for many typical problems in service and
household robotics.

I. I NTRODUCTION

While most present-day applications of robots are still
restricted to industrial environments, the field of service
robotics has a huge potential for growth. The development
of lightweight arms and hands as well as the progress in
robot navigation systems (mobile platforms) on one side,
and the development of advanced humanoid robots on the
other, provide the hardware premises for a break-through
in this field. Increased sensor feedback capabilities (force-
torque, visual, tactile, etc.), and the growth of comput-
ing power give the possibility to react more flexibly on
changing environments. But providing the robots with an
appropriate degree of autonomy which makes them able
to use these basic reactive features, as well as providing
a simple and efficient human user interface, are still very
challenging research topics. Especially the robot program-
ming task, done by the—often technically unskilled—user,
has to be as simple as possible. In this concept, program-
ming by demonstration is a widely accepted paradigm.
The usual approach, in which the human demonstrates a
complete task and the recorded trajectory is followed by the
robot, would certainly lack the flexibility needed to survive
in common household environments. These environments
have a continuously changing, complex structure.

A possible solution is the use of small motion primitives
which the user teaches to the robot. Equipped with the
appropriate algorithms, the robot uses these primitives in
combination with sensory input to accomplish a family
of complex tasks. In this paper, we demonstrate such

algorithms which may be generally useful in this context.
We demonstrate our approach in an application which
consists of wiping surfaces which are previously specified
by a user or detected by a vision system. Only a “wiping
style” has to be taught by the user, in the form of a primitive
movement pattern.

The solution presented in this paper is focused on the
following topics:

• teaching and learning phase of the primitive move-
ment using a torque-controlled manipulator;

• providing a trajectory generator (as an alternative to
usual trajectory interpolation), which can combine
these primitive movements to a smooth trajectory and
which reacts adequately to external disturbances. Such
disturbances could be obstacles or humans which may
interact with the robot during execution;

• developing an algorithm which allows automatic
movement generation from the taught primitives;

• execution of the entire task in a realistic environment,
using the same manipulator, in order to validate the
approach and test the required robustness and reactiv-
ity.

Most of the previous work on this topic tries to solve
only small portions of the overall problem. In [3] the
focus is on the combination of primitive tasks, yet no
learning or autonomous problem-solving is available. Work
on learning focuses mainly on learning a subtask or on
how to decide which part of the demonstrated information
is relevant or how to construct a neural oscillator [4], [6],
[14], but no autonomous task-solving has been applied.
[8]–[10] Present a more complete solution for learning a
point-to-point or repetitive movement and generating it in
a very flexible way. However, primitive movements are not
combined in order to solve complex tasks. In [11] a similar
system (with neural oscillators) is used to generate biped
walking patterns. Another problem of programming by
demonstration is presented in [5]—the demonstrated task
has to be analysed for its relevant actions and segmented
accordingly to ensure a general knowledge of how to solve
such a task. Yet this is a quite different problem from
the one presented in this paper, where the intention is to
combine rhythmic movements to a task more complex than
pick-and-place operations. In [2] movement primitives are
used to navigate a marble through a Marble Maze. Focus
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lies on learning the combination of movement primitives
(such as “move marble away from wall”) to successfully
navigating the marble to its goal. No unforeseen external
interaction occurs.

The first part of our paper (section II), which handles
learning the movement primitives and the trajectory gen-
eration, is based on the results from [8]–[10]. Herein, a
novel approach for learning and generation of rhythmic
movement patterns is presented. In contrast to this ap-
proach, however, we have reduced the complexity while
maintaining its flexibility. Learning is achieved by using a
sum of weighted Gauss kernels which maps a centralised
oscillator signal to the desired movement. To increase the
required robustness of execution, the difference between
desired and actual robot position is used to slow down
the oscillator and hereby delay further generation of the
trajectory. Thus the system is able to cope with external
disturbances or slows down if the robot cannot follow the
trajectory with the desired velocity.

The second part of the paper (section III) presents a
method to autonomously combine the learnt movement
primitives in order to solve the given task. An algorithm
to cover the entire surface by primitive movements is pre-
sented in section III-A, while finding an optimal execution
order of this movements is addressed in section III-B.
Finally, experimental results are presented and discussed.

II. L EARNING AND GENERATING RHYTHMIC

MOVEMENTS

In this section we present the structure of the trajectory
generator for the entire movement, as well as how the
movement primitives are represented in the system.

The trajectory generator should reproduce the recorded
trajectory with the desired degree of flexibility and be
able to combine these primitives to a smooth movement.
Therefore it should have following features:

• it should be possible to stop the generation at any
point of movement;

• the learnt movement should be smooth in order to
appear more natural;

• to enhance smoothness between transitions from one
primitive movement to another, a dynamic interpolator
to a moving goal is needed. This is also useful if
the robot is displaced by external forces from the
trajectory (e.g., by a human pushing it away), and has
to return smoothly on the path after the disturbance
disappears;

• the speed of the movement must be adjustable (e.g.,
to cope with dynamic constraints of the robot).

Most of these demands are met by the system developed
in [8]–[10]. There, an oscillator that can be slowed down
by an input signal is used as a control policy. This control
policy allows the generation of the desired movement that
is time-invariant, and also allows a rudimentary reaction
on disturbances. The oscillator signal is used as a driving
signal for the weighted sum of Gauss kernels in order
to generate the basic movement, which in turn can be

modified (e.g., scaled, translated, or rotated) without dis-
turbing the stability of the whole system. To ensure a
smooth trajectory, a first-order filter is used. The difference
between the desired and the actual robot position slows
down the oscillator, and therefore the generated movement
is slowed down in turn.

However, the presented system has some disadvantages.
In the following we will describe the system taken from
[9] and introduce some our modifications to solve these
disadvantages.

A. The oscillator

For determining the progress of the learnt movement
primitive, [9] suggests the following nonlinear oscillator:

ż = − µ

E0
(E − E0)z − k2u, (1)

u̇ = z
[
1 + αu(ỹ − y)2

]
−1, (2)

with E(u, z) = z2

2 + k2u2

2 as the actual energy of the
oscillator, E0 the desired energy,µ the desired conver-
gence rate, andk as the desired frequency.ỹ Denotes the
measured andy the ordered robot position.z, u ∈ < Are
state variables.αu Is a scaling factor for the position error
feedback. High values forαu or high position errors(ỹ−y)
draw u̇ towards zero and therefore stop the oscillator. For
α = 0, Eqs. (1)–(2) reduce to a second order system with
the variable dampingd = µ(E/E0 − 1). It follows that
d < 0 inside the limit cycle andd > 0 outside, so that the
circle E = E0 becomes an attractor. Fig. 1 illustrates the
convergence to the limit cycle of the proposed oscillator.
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Fig. 1. The oscillator proposed in [9]. It can be clearly seen that the
circular limit cycle is an attractor. The plot is drawn forỹ − y = 0,

E0 = 0.5, k = 2π, µ = 10, andαu = 200.

The driving signalφ for the learning function in sec-
tion II-B is generated by using atan2:

φ = atan2(z, ku). (3)

This converts the oscillator statesu andz into a toothsaw-
shaped signal. However, this oscillator is not able to stop
equally distributed over the interval defined by the driving
signal. Since onlẏu is driven to zero by the position error,
the oscillator will continue to move until̇z is also zero.



This means that up to a half rotation may be performed
beforeż reaches 0 andφ ceases to change.

To enable a immediate stop at any point of the move-
ment, we introduce a simpler oscillator that directly gen-
erates a toothsaw-shaped signal:

φ′
i = φi +

m

1 + (αφ|f̃ − ỹ|)kφ
, (4)

φi+1 =
{

φ′
i, if φ′

i < 1,
φ′

i − 1, else,
(5)

where f̃ is the desired1 and ỹ the measured position.αφ

And kφ are fine-tuning constants;αφ defines a low reaction
zone andkφ > 1 the order of the braking effect. The
slopes of the oscillator signal are in the range[0,m).
By design, this simpler oscillator has no problems with
slowing down; Fig. 2 shows a direct comparison of the
breaking performance of the both oscillators.
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Fig. 2. Breaking performance. Both oscillators (a is the original one as
proposed in [9] and b is our) get a complete stopping signal

(|f̃− ỹ| = ∞) at time 0. As can be clearly seen, the signal of b halts
immediately, while the original oscillator a may need some time to react.

Notice that the convergence property of the oscillator of
Eqs. (1) and (2), which is not present in Eqs. (4) and (5),
is not truly exploited in [9]. The smooth convergence to
the desired trajectory is obtained instead by a linear filter,
similar to the one mentioned in section II-B.

B. Learning a primitive movement

We approximate the movement by a sum of Gauss
kernels for each degree of freedom independently:

f =
N∑

i=1

wi exp
[
−1

2
(ci − hiφ)2

]
. (6)

The parameterswi, ci, and hi have to be determined
to optimally fit the movement. Many methods exist; we
have chosen to use the Fletcher-Reeves-Conjugate-Gradient
optimisation methods, since it exhibits excellent results
after only few iterations.

The parameterisation of the primitive movements inwi,
ci, and hi can, at a later stage, be used to classify such
primitives [10].

1We have chosen the desired positionf̃ instead of the ordered position
y, to ensure a trajectory as near as possible to the planned.

C. Finalisation

The function f computed in Eq. (6) describes the
generated position, which still has to be transformed (i.e.,
translated, rotated, and scaled):

f̃ = H f, (7)

with H being a homogeneous transformation matrix.
Thereforef̃ denotes the desired position.

To ensure a smooth trajectory, a second-order filter is
applied:

ÿ + αy ẏ + βy(y − f̃) = 0, (8)

where
αy =

d

m
, βy =

k

m
, (9)

with d as damping,m as mass andk as spring constant. By
using a filter instead of an extra trajectory interpolator (e.g.,
Bézier splines) our system includes the possibility to move
towards a moving goal, while with an extra interpolator this
would be difficult to achieve.

An additional feature of the presented system, which
generates rhythmic movements, is the fact that it works
for an arbitrary number of degrees of freedom (DOF). The
oscillator acts as a centralised control policy to synchronise
the different DOFs, while every DOF is handled separately
thereafter, by having one approximator (6) per DOF. Our
table wiping scenario requires only 2 DOFs, as the region
is planar and we are using Cartesian impedance control for
the robot.

Fig. 3 shows the structure for multiple DOFs.
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Fig. 3. How to enhance the presented system to multiple DOFs.

Our system, adapted from [8]–[10], demonstrates an
exceptional robustness. The generated movement can be
disturbed in any way, which results in the oscillator stop-
ping for the duration of the disturbance—without losing
significant parts of the desired movement. Even if the
trajectory cannot be followed by the physical robot (e.g.,
the robot is too slow or there are obstacles in its way), our
system adopts quickly to this constraint and changes the
path-generation accordingly.

III. B UILDING A COMPLEX TASK FROM LEARNT

MOVEMENT PRIMITIVES

In the previous section we have introduced a system to
learn and represent primitive movements which are taught
by demonstration. We will now show how we can com-
bine such primitives to autonomously construct a complex
movement, e.g., in order to wipe a complete table. Contrary
to approaches where the whole task is taught, our two-stage



approach allows us to solve various different tasks without
requiring further operator interaction. For instance, we can
wipe any area of the table, as dirt is detected by a camera,
or clean windows or arbitrary surfaces.

The presented system has been implemented and tested
on the Light-Weight-Robot II (LWR-II), a 7-DOF robot
arm developed at the Institute of Robotics and Mechatron-
ics of the German Aerospace Centre (DLR). In this partic-
ular approach, the LWR-II runs with Cartesian impedance-
control [1], which allows us to interact with the robot arm
by grasping and holding it during motion. In the teaching
phase, the Cartesian stiffness for translational directions is
set to zero, while the orientations are kept stiff. During
the execution phase, all Cartesian stiffness values are high,
except for the normal direction to the surface. This value
is zero and the robot is commanded to exert a constant
desired force in this normal direction. Since the impedance
controller is implemented based on measurements of joint
torque sensors, every collision along the structure of the
robot, not only at the tip, is detected and slows down or
even stops the movement.

In order to solve the given task, we define the following
sub-tasks to wipe a table from recorded motion primitives:

A fill the wiping region with primitives, according to
several optimality constraints;

B compute an optimal path;
C execute the plan.

A. Filling the wiping region

In order to wipe the whole table, the primitive wipe
operation must be distributed over the area with as little
overlap as possible, while not leaving out any part of
the wipeable region. This planning problem has some
similarities to cutting or packing problems (e.g., [12]).
The fundamental difference, however, is that in our case
minimal overlap is allowed (and even required), whereas
leaving out parts is strongly penalized.

For reasons of simplicity we assume that the whole area
that is described by the convex hull around the primitive
wipe operation is also covered by that operation. Thus
this region can be exhaustively described by the polygon
described by it. The whole table can then be considered to
be wiped when the primitive wipe polygons are optimally
distributed on the table.

Finding the optimal distribution of primitive wipe poly-
gons on the table is an NP-problem, meaning that finding a
solution to this problem grows non-polynomially with the
number of polygons. Rather than following this path, in
order to find a solution in a reasonable amount of time we
follow the following heuristic. We rasterise the wipeable
region in, e.g., 100×100 segments orpixels. The primitive
wiping polygons are drawn on this region using standard
drawing algorithms (c.q. the Bresenham line draw and line
scan fill), while it is counted inpi,j how often a segment
at location (i, j) is drawn into. We can thus define the

following error:

erri,j =

 d1, if pi,j = 0 andR
d2(pi,j − 1), if pi,j > 0 andR
d3 · pi,j , if R̄

(10)

with R denoting the inside of the wiping region and̄R its
outside. We have empirically chosen the constantsd1 = 20,
d2 = 1, andd3 = 5. The sum over all these per pixel-error
values defines the following global error function:

ERR=
∑
i,j

erri,j . (11)

A perfectly filled region has the error value of ERR= 0,
and the value of ERR increases with more overlap and
unfilled areas. The cost to compute ERR isO(m n2),
with m being the number of wiping movements andn
the segmentation in each of the two possible directions.

Every primitive wipe polygon is determined by its po-
sition (x, y) in the wipe region, its rotation angle, and its
scaling factor (which was typically chosen between 0.9 and
1.3). A further free parameter of the system is the number
N of polygons used.

We use simulated annealing with a linear cooling scheme
to find an optimal solution within the4N + 1 parameters.
The quality of the resultant solution depends on the fine-
ness of rasterisation as well as the cooling scheme; the
slower the system is cooled, the lower the energy of the
found solution is expected to be. Both factors are limited by
the available computing time; a wiping robot taking longer
than a few minutes to compute its solution is hardly useful.

B. Optimising the movement plan

To ensure an acceptable wiping-time and a naturally
looking wiping movement, we use a heuristic to search a
short path over the centres of the wiping-movements. This
is similar to the Traveling-Salesman problem, and many
viable algorithms exist. Since this particular task is not very
complex and the number of polygons in a wipe region is
limited, we decided to use the A∗-algorithm.

A∗ (e.g., [13]) is a modified breadth-first search (BFS)
that utilizes a heuristic to estimate the distance from
the current to the goal state. Using a greedy approach,
only the shortest path is expanded at any time. As long
as the heuristic underestimates the real distances, A∗ is
guaranteed to find the shortest path, as BFS would.

For the heuristich we choose:

h = γ |O|, (12)

with |O| as the number of open nodes andγ as a distance
estimator that has to be set accordingly. One problem with
A∗ is that it requires a large amount of memory (up to
O(N !) for a badly chosenγ ≈ 0, whereN denotes the
number of nodes), but overestimating the distance (and
hence turning A∗ into an A) results into a sufficient short
path while memory usage is cut down significantly.

Future work will include an optimisation over the start-
ing and end points of the movement primitives, perhaps
even the directions of the starting and end points will be



Fig. 4. Example for a short path over the centres of the primitive
wiping movements (displayed by their convex hull).
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Fig. 5. Recorded movements (middle) from an example run with
roundish movements (top). Especially interesting is the breaking factor

(see Eq. (4)) as the spikes are indicating the switching to a new
transformation MatrixH. It is evident that the roundish movement

primitive can be easily followed by the robot.

included in the evaluation, to achieve an even more natural
impression.

C. Executing the movement plan

The filling (see section III-A) and the sequencing (see
section III-B) together define thewiping plan which, in
turn, is executed by the system described above.

The execution of the movement plan is straightforward.
Since the repetitive generation of the primitive movement
is generated by the system described in section II, only a
new movement transformation matrixH has to be used in
Eq. (7) whenever the oscillator (Eqs. (4) and (5)) takes its
backward step. Smoothness of the trajectory is still guar-
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Fig. 6. Recorded movements (middle) from an example run with
zigzag movements (top). In contrast to the roundish movement (see

Fig. 5) the breaking factor indicates that the impedance controlled robot
has quite a problem to follow the zigzag movement with the given

speed. Yet the wiping plan is executed satisfactorily.

anteed by the second-order filter. Additionally the maximal
velocity is limited. The positional error(αφ|f̃ − ỹ|)kφ (see
Eq. (4)) stops the oscillator whenever external influences
cause the robot to do so, so that no significant part of the
next movement primitive is lost. It can be clearly seen from
Fig. 5 that the breaking factor slows down the trajectory
generation whenever a new transformation MatrixH is
applied.

The roundish movement is no problem for the impedance
controlled robot to follow—in contrast to the zigzag-
movement shown in Fig. 6. Although there the oscillator
is almost always slowed down, the actual trajectory of the
robot is still similar to the desired one, so the wiping action
is accurately executed.

To demonstrate a momentary external disturbance, the
LWR-II was simply gripped and moved away from its
ordered position while executing a movement plan similar
to Fig. 5. Fig. 7 presents a part of the movement recordings.
As demanded, the further generation of the trajectory
ceases as long as the disturbance lasts.

IV. FUTURE WORK

Further improvements would include an evaluation of
genetic algorithms (GA) for optimising the wiping layout,
since GAs should be able to evaluateO(n3) layouts per
evaluation-step (n denotes the size of a generation, see [7])
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Fig. 7. x andy recordings of a roundish movement with a momentary
disturbance around time 80 – 100. Clearly you can see how the further

trajectory-generation ceases for the duration of the disturbance.

in contrast to Simulated Annealing which can evaluate only
one per step.

Furthermore different path optimising algorithms will
be evaluated, especially randomised ones, as they allow
suboptimal solutions to be generated. In a demonstration
scenario computing time is always short, so it is more
important to find a quite good, yet suboptimal solution
than waiting for ever for the perfect solution. Randomised
Algorithms (such as GA) are able to deliver this—like our
A∗ by decreasingγ. Also path optimisation should also
consider the start- and end-points of the wiping primitive
and preferably also the directions of these. Randomised
algorithms should also be able to cope with this matter.

Another interesting aspect would be the extraction of
one primitive wiping movement out of a continuously
demonstrated wiping action, as we (humans) are better able
to generate a sequence of rhythmic movements rather than
just exactly one—so this is an ergonomic issue.

Eventually the robot will be enhanced to 10 DOFs
(LWR-II on a moving platform) so the area it can reach
will be greatly enhanced. Furthermore, the system must be
enhanced such that non-wipe zones are taking into account
in the planning phase.

V. CONCLUSION

An approach for teaching and solving complex tasks in
a service robotics scenario has been proposed. The human
teacher demonstrates simple movement primitives by guid-
ing the robot by the hand. The system first learns these
movement primitives, then combines them autonomously
to a complex movement plan. The idea is exemplified in an
application in which the robot has to wipe a surface which
is specified online. A major advantage of the proposed
approach is the ability to cope with temporary disturbances
and to adapt to robot limitations.
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