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Abstract 
 

We present a neural architecture for sentence representation. Sentences are represented in 
terms of word representations as constituents. A word representation consists of a neural 
assembly distributed over the brain. Sentence representation does not result from 
associations between neural word assemblies. Instead, word assemblies are embedded in 
a neural architecture, in which the structural (thematic) relations between words can be 
represented. Arbitrary thematic relations between arguments and verbs can be 
represented. Arguments can consist of nouns and phrases, as in sentences with relative 
clauses. A number of sentences can be stored simultaneously in this architecture. We 
simulate how probe questions about thematic relations can be answered. We discuss how 
differences in sentence complexity, such as the difference between subject-extracted 
versus object-extracted relative clauses and the difference between right-branching versus 
center-embedded structures, can be related to the underlying neural dynamics of the 
model. Finally, we illustrate how memory capacity for sentence representation can be 
related to the nature of reverberating neural activity, which is used to store information 
temporarily in this architecture.  
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Introduction 
To understand how the brain enables the mind, processes at the neural level have to be 
related with processes at the cognitive level. This entails an implementation of cognitive 
processes in terms of neural computations. Successful implementations of this kind have 
been produced for processes in visual perception (e.g., Grossberg, 2000), working 
memory (e.g., Amit & Brunel, 1997; Wang, 2001), and visual attention (e.g., Usher & 
Niebur, 1996; Itty & Koch, 2001; Van der Velde & de Kamps, 2001). However, neural 
implementations of language processes have been hard to come by. It is not difficult to 
see why. On the one hand, linguistic expressions are highly structured and language 
processes depend on complex and often recursive forms of information processing (e.g., 
Jackendoff, 1999). On the other hand, a direct animal model of language processing is 
lacking, which precludes a systematic analysis of language processes at the neural level.  

Yet, the overall structure of the cortex is highly uniform (e.g., Calvin, 1995; 
Mountcastle, 1998), which suggests that forms of neural representation and processing 
found in perception or attention could play an important role in other cognitive processes 
as well. This notion can be combined with the detailed knowledge about language 
representation and processing obtained by linguistics and psycholinguistics over the last 
decades. Thus, knowledge about language representation and processing can be used as a 
guiding principle in an implementation of (aspects of) language processing in terms of 
established forms of neural representation and processing. In this article, we will explore 
the possibility of a neural implementation of language processing. In particular, we will 
focus on three fundamental aspects of such an implementation: combinatorial 
productivity, retrieval of information and performance effects.  

First, a neural implementation of language processing should satisfy the 
combinatorial productivity of language. Words can be combined arbitrarily to form 
sentences, in such a way that the relations between the words are determined by the 
syntactic structure of the sentence. For instance, the sentence The mouse chases the cat 
expresses a relation between the words mouse, chases and cat, determined by the 
syntactic structure of the sentence. In this case it is clear that the mouse initiates an action 
(chasing), which is directed at the cat. Relations of this kind can be described in terms of 
the argument structure of a verb, which is determined by the thematic roles that the verb 
permits or requires. In this example, mouse is the agent of the verb chases and cat is the 
theme (or patient) of this verb. Thus, in the representation of this sentence, the arguments 
mouse and cat have to be related (or bound) correctly to the thematic roles of agent and 
theme of the verb chases. The combinatorial productivity of language entails that a neural 
implementation of language processing must be able to represent the binding of arbitrary 
arguments (e.g., nouns and clauses) to the thematic roles of arbitrary verbs. We will 
describe a model that implements arbitrary verb-argument binding in terms of neural 
assemblies embedded in a neural architecture.  

Second, a neural implementation of language processing must allow the retrieval 
of information (e.g., the thematic relations) expressed in a sentence. Given that the main 
purpose of language is to provide information about 'who does what to whom' (e.g., 
Pinker, 1994; Calvin & Bickerton, 2000), a neural implementation of language 
processing should be able to produce answers to 'who does what to whom' questions. 
These probe questions can be called 'binding' questions, because their answers depend on 
the correct representation of the thematic relations (verb-argument binding) expressed in 
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a sentence. The ability to reproduce or recognize the thematic relations expressed in a 
sentence is a crucial aspect of language comprehension. As such it has been used (in a 
non-verbal manner) as a test for language comprehension in aphasic stroke patients (e.g., 
Caplan, Baker & Dehaut, 1985; Grodzinsky, 2000). Thus, in case of the sentence The 
mouse chases the cat, it should be possible to retrieve information that answers questions 
like "Who chases the cat" or "Whom does the mouse chase?". We will discuss and 
simulate how information related to verb-argument binding can be retrieved in the model 
presented here. 

Third, a neural implementation of language processing should account for the 
performance effects observed in human sentence processing. We will discuss 
performance effects related with sentence complexity in terms of the structure and 
dynamics of the model presented here. In particular, we will discuss the difference 
between subject-extracted relative clauses (The mouse that sees the dog chases the cat) 
versus object-extracted relative clauses (The mouse that the dog sees chases the cat), and 
the difference between right-branching and center-embedded structures. Finally, we will 
discuss memory capacity for sentence representation in terms of the dynamics of the 
model presented here. 
 

Representation and architecture 
The model presented here is based on the assumption that information in the brain is 
represented by means of neural cell assemblies, as proposed by Hebb (1949). A neural 
assembly consists of an interconnected group of neurons, which is generally distributed 
over the brain. In the case of language, Hebb's proposal suggests that words are 
represented by means of neural assemblies (or word assemblies, for short). Evidence for 
the existence of word assemblies is presented by Pulvermüller (1999, 2001). One 
example concerns the difference in neurophysiological responses (ERP and MEG) 
generated by action verbs versus visually related nouns. In terms of these measures, a 
difference in activation between fronto-central action-related areas (resulting from action 
verbs) and occipital visual areas (resulting from visually related nouns) was found. 
Differences in brain activation were also found between action-related nouns and visually 
related nouns, and between action verbs related with leg actions ('walking') versus action 
verbs related with face actions ('talking'). Furthermore, an fMRI study showed a 
difference in location of activation between arm-related action verbs and leg-related 
action verbs, in line with the difference in location of activation found with arm 
movements versus leg movements. On the basis of such evidence, Pulvermüller (1999, 
2001) argued that word representations consist of neural assemblies, distributed over 
different parts in the brain. The word assemblies will develop as a result of associations 
with representations (such as action representations or visual object representations) that 
constitute the referential meaning of the words, as illustrated in figure 1.  
 Figure 2 (left) illustrates the word assemblies for chases, mouse and cat that 
would be activated with the sentence The mouse chases the cat. Figure 2 (right) illustrates 
that the same word assemblies would be activated with the sentence The cat chases the 
mouse. The fact that two different sentences can result in the activation of the same word 
assemblies raises the question of how sentences are represented in the brain. A sentence 
representation would have to consist of a form of binding between the arguments (e.g., 
nouns) and the verb in a manner that satisfies the structure of the sentence (e.g., the 
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thematic relations expressed in the sentence). However, the binding of arguments to a 
verb cannot consist of (temporary) associations between word assemblies. For instance, 
as illustrated in figure 2, associations between chases, mouse and cat do not distinguish 
between The mouse chases the cat and The cat chases the mouse, because these word 
assemblies are active in each of these two sentences. 

To further illustrate the issues involved, consider the sentence The mouse that 
sees the dog chases the cat. In the sentence The mouse chases the cat, the agent argument 
of chases is the mouse, but in this sentence the whole phrase the mouse that sees the dog 
is the agent of the verb. In linguistic terms this entails that a representation of the mouse 
that sees the dog is copied into the open (agent) argument slot of the verb chases (Pinker, 
1989). The fact that representations can be copied in linguistic expressions is also clear in 
a simultaneous representation of the sentences The mouse chases the cat and The cat 
chases the mouse, which consists of two copies of the verb chases, each with different 
arguments (given by copies of mouse and cat) in the argument slots. Copying 
representations is a natural operation in digital computers, but it is questionable whether 
this occurs in the brain. Instead, if words are represented in the brain by means of neural 
assemblies distributed over different parts of the brain, as illustrated in figure 1, it is 
difficult to see how such an assembly could be copied and represented elsewhere. 
Furthermore, an attempt to copy a part of an assembly would disrupt its connection 
structure. For instance, if the lexical entry of a word is represented by a part of the overall 
assembly, then the associations in the overall assembly would be broken when that part 
of the word assembly is copied and represented elsewhere. In this way, (part of) the 
meaning of the word would be lost in the copied assembly. For these reasons, the word 
assemblies in the model presented here are not copied. Instead, the word assemblies are 
embedded in a neural architecture in which they are bound temporarily in a manner that 
preserves the relations between the words expressed in the sentence.  
 
Association versus structural representation 
As discussed above, the structural relations between the words in a sentence cannot be 
represented with direct associations between word assemblies, as illustrated in figure 2. 
Therefore, in the model presented here, word assemblies are embedded in a neural 
architecture in which structural relations can be formed between the word assemblies. 
Information that is sensitive to the structural relations between the words in a sentence 
can be represented and retrieved in this way. The neural architecture is implemented by 
means of ‘structure’ assemblies that interact with the word assemblies. The structure 
assemblies provide the possibility to represent different tokens of the same word 
assembly, and they are used to represent elements of syntactic structures. For instance, 
there are structure assemblies used in the representation of syntactic structures such as 
Noun Phrases (NPs) and Verb Phrases (VPs). 
  Figure 3 presents the representation of the sentence The mouse chases the cat in 
the architecture discussed here. The sentence is represented by means of assemblies that 
represent words (word assemblies, see figure 2), assemblies that are used to represent the 
structure of the sentence (structure assemblies), gating circuits that are used to control the 
process of sentence representation, and memory circuits that are used to bind different 
word and structure assemblies into a (temporal) representation of the overall sentence. 



 

 5

The figure illustrates how the word assemblies for mouse, chases and cat are bound to 
different structure assemblies, which in turn are bound to represent the overall sentence.  

The structure assemblies possess an internal structure, composed of a main 
assembly (Ni for NP assemblies and Vi for VP assemblies) and an unspecified number of 
subassemblies. Figure 3 shows the subassemblies for the thematic roles of agent (a) and 
theme (t). The subassemblies are connected to the main assembly by gating circuits, 
which can be activated when certain structural control conditions are met. During 
syntactic processing, word and structure assemblies are bound to one another by 
activating memory circuits that connect the assemblies. The intermediary binding to VP 
and NP assemblies is necessary to avoid the ‘binding problems’ that often occur in forms 
of neural representation (Van der Velde, 2001). Assemblies like VPs and NPs also play 
an important role in the representation of the structural relations expressed in the 
sentence. That is, they can bind word assemblies in a manner that preserves the relations 
between the words in the sentence. Before describing this architecture further, we will 
first describe the gating and memory circuits. 
 
Gating and Memory Circuits  
Figure 4 illustrates the gating circuit. The overall circuit is in fact a combination of two 
gating circuits, one for each direction. Each gating circuit is a disinhibition circuit that 
controls the flow of activation between two assemblies (X and Y in figure 4) by means of 
an external control signal. Disinhibition circuits have been found in the visual cortex  
(Gonchar & Burkhalter, 1999), and they have been used to model object-based attention 
in the visual cortex (Van der Velde, 1997; Van der Velde & de Kamps, 2001). The gating 
circuit that controls the flow of activation from X to Y operates in the following manner. 
If the assembly X is active, it activates an inhibition neuron (or group of neurons) ix, 
which inhibits the flow of activation from X to Xout. When ix is inhibited by another 
inhibition neuron (Ix) that is activated by an external ‘control signal’, X activates Xout. In 
turn, Xout activates Y. The gating circuit from Y to X operates in a similar manner. In 
figure 3, the combination of both gating circuits between X and Y is represented with one 
symbol, also illustrated in figure 4. Notice, however, that the flow of activation in each 
gating circuit can be controlled with a separate control signal.  

The memory circuit is presented in figure 5 (left). It also consists of two gating 
circuits that control the flow of activation from X to Y and vice versa, as in figure 4. In 
this case, however, the control signal in both gating circuits results from a ‘delay 
assembly’. The delay assembly is activated when X and Y are active simultaneously 
(figure 5, right). The delay assembly then remains active due to the reverberating activity 
in this assembly. Reverberating activity in the cortex has been found with memory tasks, 
such as delayed response tasks in which a response can only by given after a waiting 
period (e.g., Fuster, 1973). The reverberating activity retains the response related 
information during the memory period. Thus, reverberating activity constitutes a form of 
working memory (e.g., Amit, 1995, Wang, 2001). Here, the delay activity in a memory 
circuit constitutes a memory of the fact that the two assemblies connected by the circuit 
have been simultaneously active at a certain time, e.g., in the course of syntactic 
processing. When the memory circuit is active, it allows activation to flow between the 
assemblies it connects. In this way, the memory circuit produces a binding between these 
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assemblies. As a result, the memory (gating) circuit can be in two different states, 
inactive and active, as illustrated with the symbols presented in figure 5. 
 
Overview of the Architecture  
Figure 6 presents an overview of a neural architecture for sentence representation (in 
particular for verb-argument binding). Each assembly that represents a noun is connected 
to the main assembly of each NP assembly by means of a memory circuit, which is 
initially inactive. In the same manner, each assembly that represents a verb is connected 
to the main assembly of each VP assembly by means of an (initially inactive) memory 
circuit. The main assembly of each NP or VP assembly is connected to an (unspecified) 
number of subassemblies by means of gating circuits (i.e., each NP or VP assembly has 
its own set of subassemblies, as illustrated with V1 in figure 3). Main assemblies are also 
delay assemblies, in the sense that they can remain active on their own. Subassemblies 
are used to represent thematic roles, such as agent or theme, as shown in figure 6. They 
can also be used to represent syntactic structures such as complements or relative clauses 
(as discussed later on). Subassemblies can be used to represent thematic roles or syntactic 
structures, because they are used to connect the NP and VP assemblies. Thus, all agent 
subassemblies of the NP assemblies are connected to all agent subassemblies of the VP 
assemblies, by means of (initially inactive) memory circuits. Likewise for the other kinds 
of subassemblies. 

There is also an interaction between the VP assemblies, as illustrated in Figure 7. 
The VP assemblies activate a population of inhibitory neurons, which in turn inhibits 
each of the VP main assemblies. In this way, the VP assemblies mutually interact in an 
inhibitory manner, which results in a competition between the VP assemblies, as 
indicated in figure 6. However, the population of inhibitory neurons itself can also be 
inhibited. This provides a dynamic control over the competition between the VP 
assemblies. The ability to retrieve information from this architecture critically depends on 
this competition and the possibility to control it.  

Figure 3 shows the memory circuits that are active in the representation of the 
sentence The mouse chases the cat. It is assumed that, when a sentence is processed, one 
of the NP assemblies is activated whenever a word assembly representing a noun is 
activated. It is arbitrary which NP assembly is activated, provided it is ‘free’, that is, not 
already bound to a noun. The distinction between free and 'bound' NP assemblies can be 
made in terms of the activity in the memory circuits connected to the bound NP 
assemblies. On the basis of this activity, the activation of the bound NP assemblies can be 
suppressed during the processing of a sentence (a form of 'inhibition of return' between 
structure assemblies). The active NP assembly will remain active until a new NP 
assembly is activated by the occurrence of a new noun in the sentence. (E.g., the 
occurrence of a new noun could result in the inhibition of the active NP assembly before 
a new NP assembly is generated.) The selection of a VP assembly proceeds in the same 
manner. 

Thus when the assembly for mouse is activated, a NP assembly is activated as 
well. As a result, the assembly for mouse is bound to the main assembly of this NP 
assembly, because the memory circuit between these assemblies is activated (see figure 
5). In the same manner, the assembly for chases is bound to a VP assembly. To achieve 
the binding of mouse and chases, a binding has to occur between the NP and VP 
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assemblies to which mouse and chases are bound. Figure 6 shows that a binding between 
NP and VP assemblies can only occur by means of the subassemblies of the same kind. 
In this case, a binding should occur between the agent subassembly of the NP assembly 
for mouse and the agent subassembly of the VP assembly for chases (figure 3). This 
binding does indeed occur because the gating circuits between the main assemblies of the 
structure assemblies and their agent subassemblies are activated in a selective manner by 
neural control circuits. For instance, a neural control circuit can identify the noun as the 
agent of the verb in the sequence noun-verb (given by mouse chases). It can then produce 
a control signal that activates the gating circuits for the agent subassemblies. This will 
result in the activation of the agent subassemblies that belong to the NP assembly for 
mouse and the VP assembly for chases, because they are the only NP and VP assemblies 
that are active at that moment. As a consequence, these assemblies will be bound in the 
manner illustrated in figure 5. The binding of chases and cat proceeds in a similar 
manner.  
 
Multiple instantiation and compositional representation 
Figure 8 shows the simultaneous representation of the sentences The mouse chases the 
cat, The cat chases the mouse and The mouse sees the dog in the architecture presented in 
figure 6. The neural assembly representation of The mouse chases the cat in figure 8 is 
the same as in figure 3. However, sentence presentation is simplified in figure 8. In 
particular, the gating and memory circuits are omitted in figure 8 (but they are implied). 
Thus, mouse is still connected to N1 by means of an active memory circuit (likewise for 
the other word assemblies). Furthermore, a subassembly in figure 8 now represents the 
two corresponding subassemblies of a NP and a VP assembly and the active memory 
circuit that connects them (as in figure 3).  

The words mouse and chases occur in more than one sentence in figure 8, and, in 
the case of mouse, in more than one thematic role. This creates the problem of the 
multiple instantiation of the representations for mouse and chases. Multiple instantiation 
of representations is a difficult problem for neural or connectionist systems (e.g., Sougné, 
1998). Figure 8 illustrates how the problem of multiple instantiation is solved in the 
architecture presented in figure 6. Each word in a sentence is represented by binding its 
word assembly to a unique structure assembly. For instance, the word assembly for 
mouse is bound the NP assemblies N1, N4 and N5 in figure 8. These different NP 
assemblies represent mouse in the different sentences involved. In this way, mouse can be 
represented as agent in one sentence (by N1 or N5 ) and as theme in another (by N4). Thus, 
the different NP assemblies represent mouse as different tokens of the same type. 
Similarly, the different VP assemblies (V1 and V2) represent chases as different tokens of 
the same type. Token representation is important for the generation of a compositional 
form of representation (e.g., Fodor & Pylyshyn, 1988). In turn, a compositional form of 
representation is important to provide for the productivity of language, as illustrated in 
Figure 8.  

As noted above, the sentences presented in figure 8 cannot be represented in terms 
of direct associations between the word (noun and verb) assemblies. For instance, the 
association of mouse-chases-cat does not distinguish between the sentences The mouse 
chases the cat and The cat chases the mouse, because mouse and cat are not represented 
as agent or theme in these associations. Even with separate representations for noun-
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agent and noun-theme (e.g., mouse-agent and mouse-theme) confusions would arise if 
sentences were represented in terms of direct associations between these representations. 
For instance, in the simultaneous representation of The mouse chases the cat and The cat 
chases the mouse, the verb chases would be associated with mouse-agent, cat-theme, cat-
agent and mouse-theme. But the same associations would be formed with the sentences 
The mouse chases the mouse and The cat chases the cat. In contrast, in the architecture 
illustrated in figure 6, the sentences in figure 8 can be represented using the 
representations for mouse, cat, dog, chases and sees as constituent representations. In this 
case, the sentences The mouse chases the cat and The cat chases the mouse can be 
distinguished because they are represented with different NP and VP assemblies. As a 
result, mouse-N1 and cat-N2 are the agent and theme of chases-V1, whereas cat-N3 and 
mouse-N4 are the agent and theme of chases-V2.  

The internal structure of the NP and VP assemblies, given by the gating circuits, 
is of crucial importance in this respect. Without this internal structure, the representations 
presented in figure 8 would also consist of direct associations between neural assemblies, 
which would create the same problems as described above, such as the failure to 
distinguish between The mouse chases the cat and The cat chases the mouse. With the 
control of activation provided by gating circuits, the representations of these two 
sentences can be selectively (re)activated. We will illustrate this in the next section. In 
particular, we will investigate how information can be retrieved (i.e., answers to binding 
questions can be produced) in the architecture presented in figure 6, even with multiple 
instantiation of representations as illustrated in figure 8.  
 

Retrieving information from the architecture 
We will illustrate the ability to retrieve information from this architecture by analyzing 
and simulating the production of the answer to the question “Whom does the mouse 
chase?”, when the sentences presented in figure 8 are stored simultaneously. The 
assemblies were simulated as populations of spiking neurons, in terms of the average 
firing rate of the neurons in the population. Details of the dynamical equations are given 
in the Appendix. The simulations are illustrated in the figures 9 and 10. Figure 9 shows 
the activation of the word assemblies mouse, chases and cat, and the subassemblies for 
N1-agent and V1-theme. Figure 10 shows the activation of the NP main assemblies (left) 
and the VP main assemblies (right) used in the sentence representations in figure 8. 
Figure 10 (right) also shows two ‘free’ VP main assemblies (V4 and V5), to compare the 
activation of free assemblies with bound assemblies in this process. The vertical lines in 
the figures are used to compare the timing of events. The simulations start at t = 0 ms. 
Before that time, the only active assemblies are the delay assemblies in the memory 
circuits.  

The question “Whom does the mouse chase?” provides information that mouse is 
the agent of chases and it asks for the theme of the sentence mouse chases x. The 
production of the answer consists of the selective activation of the word assembly for cat 
(figure 8). Backtracking, one can see (figures 3 and 8) that this requires the selective 
activation of the main assembly N2, the theme subassemblies for N2 and V1, and the main 
assembly V1 (in reversed order). This process proceeds as follows. First, we assume that 
the question temporarily activates the representations for mouse and chases and produces 
the control signal that activates the gating circuits for the agent subassemblies of the NP 
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assemblies. Figure 9 shows the activation of the assemblies for mouse and chases 
(beginning at t = 0 ms). To produce the selective activation of the word assembly for cat 
later on, other word assemblies cannot be active at that moment. Therefore, it is assumed 
that the word assemblies are inhibited after a certain time, and remain inhibited until cat 
is to be activated. The horizontal bar in figure 9 indicates the time interval in which the 
word assemblies (mouse and chases) are active. The end of the interval (at t = 400 ms) is 
marked by a vertical line.  

As indicated in figure 8, the activation of mouse will result in the activation of the 
NP assemblies N1, N4, and N5, and the activation of chases will result in the activation of 
the VP assemblies V1 and V2. Figure 10 shows that these assemblies are indeed activated 
as a result of the activation of mouse and chases in figure 9. As indicated with the vertical 
line in figure 10, the NP main assemblies N1, N4, and N5 remain active when mouse is 
inhibited. This results from the reverberating (‘delay’) properties of main assemblies (see 
the Appendix for details). As long as V1 and V2 are both active, the question “Whom 
does the mouse chase?” cannot be answered. To produce the answer, the gating circuits 
for the theme VP subassemblies have to be activated, because the question asks for the 
theme of mouse chases x. However, when both V1 and V2 are active, this will result in the 
activation of the theme subassemblies for V1 and V2, and, in turn, of cat and mouse (via 
N2 and N4). To prevent this, a competition between V1 and V2 has to occur, with V1 as 
the winner.  

The competition process between the VP assemblies proceeds as follows. Figure 7 
shows that VP assemblies are connected to a population of inhibitory neurons. When this 
population is not inhibited (via ‘dynamic control’) it sends inhibitory activation to the VP 
assemblies. In figure 10 (right) the horizontal bar indicates the time interval in which the 
competition occurs (i.e., in which the inhibition population in figure 7 is not inhibited by 
dynamic control). The competition starts at t = 0 ms, thus at the moment when chases is 
activated (figure 9). In comparison with the NP assemblies activated by mouse (figure 10 
left), the activity of V1 and V2, initiated by chases, is reduced due to the competition 
between the VP assemblies. The competition can be decided by activating the gating 
circuits for the agent subassemblies (in the direction from NP to VP). The activation of 
the gating circuits for the agent subassemblies results in the activation of the agent 
subassemblies for N1, N4 and N5, because they are the active NP assemblies (figure 10, 
left). The activation of the N1 agent subassembly is illustrated in figure 9. The horizontal 
bar here indicates the time interval in which the gating circuits are activated (from t = 150 
ms to t = 400 ms). The beginning of this interval is indicated by the asterix in figure 10 
(right). The active agent subassemblies N1 and N5 are bound to the VP assemblies V1 and 
V3 respectively (see figure 8). Thus, the VP assemblies V1 and V3 receive activation from 
the active NP assemblies when the ‘agent’ gating circuits are activated. (The agent 
subassembly of N4 is not bound to a VP assembly, because N4 is bound to a VP assembly 
with its theme subassembly, see figure 8). As a result, V1 wins the competition between 
the VP assemblies, because V1 receives activation from chases and N1, whereas V2 only 
receives activation from chases, and V3 only receives activation from N5. Figure 10 
(right) shows that V1 is the only active VP assembly after this competition process. The 
activation of V2 and V3 is reduced to the level of the ‘free’ assemblies V4 and V5. When 
the competition has ended, the inhibition from the inhibitory population (figure 7) is not 
effective anymore (it can only result in a reduction of the activity of V1). Therefore, this 



 

 10

inhibition is ended by means of 'dynamic control' (figure 7), as indicated by the 
horizontal bar in figure 10 (right). 
 When V1 remains as the only active VP assembly, the answer cat can be produced 
by activating the theme subassemblies in the direction from VP to NP. This will produce 
the selective activation of N2, which is the NP assembly bound to cat in figure 8, 
provided that the active NP main assemblies (N1, N4 and N5 in figure 10) are inhibited 
first. The horizontal bar in figure 10 (left) illustrates the time interval of this inhibition 
(from t = 600 ms to t = 650 ms). After the inhibition of the active NP assemblies, the 
theme subassemblies in the direction from VP to NP can be activated. The horizontal bar 
in figure 9 (V1-theme) illustrates the time interval in which the gating circuits for the 
theme subassemblies are activated (from t = 700 ms to t = 800 ms). The onset of this 
event is also illustrated by the dashed vertical line in figures 9 and 10. Figure 9 shows 
that, as a result, the theme subassembly of V1 is activated. Figure 10 (left) shows that N2 
is now selectively activated as well. As a result, the word assembly for cat can be 
activated. Thus, the answer to the question “Whom does the mouse chase?” is produced 
because the information given in the question was used to bias the competition between 
the VP assemblies. V1 wins the competition between the VP assemblies, because V1 was 
bound to mouse (via N1) during the processing of The mouse chases the cat.  
 
The effect of event timing 
The competition between the VP assemblies, illustrated in figure 10, produced V1 as the 
only active VP assembly. However, the process described above shows that the relative 
timing of the events that determine the competition process is very important. We will 
illustrate this in more detail with the relative timing between the inhibition of the word 
assemblies (like chases) and the ending of the competition process, initiated by the 
‘dynamic control’ in figure 7. For example, if the word assembly for chases is still active 
when the competition between the VP assemblies has ended, the assembly V2 will be 
reactivated, because it is (also) bound to chases (figure 8). Thus, the selective activation 
of V1, needed to produce the answer cat, depends on the fact that the assembly for chases 
is inhibited before the end of the VP competition, as indicated by the vertical (solid) line 
in figure 10 (right).  

However, even when the competition between the VP assemblies ends after the 
inhibition of chases, there is still a possibility for interference, as illustrated in figure 11. 
Figure 11 (right) shows what happens if the competition between the VP assemblies is 
ended too soon after the inhibition of the word assemblies. Initially, the competition 
between the VP assemblies has resulted in the selective activation of V1, as in figure 10 
(right). But when the competition ends, V2 and V3 are reactivated. This results from the 
gradual decay of the word assembly for chases and the ‘delay’ properties of the VP main 
assemblies. A ‘delay’ population can maintain an elevated activation without external 
activation, due to the reverberating activity within the population. The elevated activation 
of a delay population is in fact an ‘attractor’ state (Amit, 1989). This means that the 
population can reproduce the elevated activation when a fluctuation in activation has 
occurred (as long as the fluctuation remain within the ‘attractor’ limits). Thus, when the 
activation of a delay population is reduced due to inhibition, it will reproduce the 
elevated activation when the inhibition stops, provided the level of activation of the 
population is still within the ‘attractor’ limits. This is what happens with the V2 and V3 
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assemblies in figure 11 (right). V2 was activated by chases and V3 was activated by N5 
(through the activation of the agent subassemblies described above). Due to the 
competition between the VP assemblies, the activation in V2 and V3 is reduced, but when 
the competition ends, V2 and V3 are still active within their ‘attractor’ limits. As a result, 
the elevated activation in V2 and V3 recovers after the end of the competition between the 
VP assemblies (see the Appendix).  

The consequence of renewed activation of V2 and V3 is illustrated in figure 11 
(left), which shows the activation of the NP assemblies in this case. After the inhibition 
of the NP assemblies, as in figure 10 (left), and the activation of the theme subassemblies 
(illustrated in figure 9, for V1-theme), the NP assemblies N2, N4, and N6 are now 
activated, because they are connected by means of theme subassemblies to the VP 
assemblies V1, V2 and V3 respectively (see figure 8). In turn, this results in the incorrect 
activation of cat, mouse and dog as the answer to the question “Whom does the mouse 
chase?”. 
 

Structural and dynamic control 
The process of answering the question “Whom does the mouse chase?” described above 
was regulated by two forms of control: structural and dynamic. An example of structural 
control consists of the activation of the gating circuits for the agent subassemblies by 
which the competition between the VP assemblies is decided. This is a form of structural 
control because it depends on the structural information, given by the question, that 
mouse is the agent of chases. Likewise, the question asks for the theme of the relation 
mouse chases x, which results in the activation of the gating circuits for the theme 
subassemblies after the competition between the VP assemblies has ended. Dynamic 
control is found in the inhibition of the word assemblies and NP assemblies, which is 
needed to produce the activation of the correct NP assembly and word assembly to 
answer the question. This form of control does not depend on specific information 
provided by the question, but it is needed to regulate the dynamics of the neural 
assemblies in the production of the answer, as illustrated in figure 10. Likewise, the event 
timing discussed above is a form of dynamic control, as illustrated in figure 11. Dynamic 
control in this model in effect resembles motor control, which also depends on a 
sequential pattern of activation and inhibition of neurons and neural populations.  

Structural and dynamic forms of control are also needed to regulate the process of 
binding word assemblies into the representation of a sentence, as illustrated in figures 3 
and 6. Structural control is needed, for example, for a correct binding between mouse, 
chases and cat in the sentence representation illustrated in figure 3. To achieve this 
binding, mouse has to be interpreted as the agent and cat as the theme of chases in the 
sentence The mouse chases the cat. In this way, the gating circuits for the agent 
subassemblies can be activated so that mouse is bound as the agent of chases (i.e., N1 and 
V1 are bound by their agent subassemblies). Likewise, the gating circuits for the theme 
subassemblies have to be activated to bind cat as the theme of chases (i.e., binding V1 
and N2 by their theme subassemblies). Again, dynamic control is needed to regulate the 
dynamics of this binding process. For example, to achieve binding between a VP and a 
NP assembly, both assemblies have to be active simultaneously, to allow the selective 
activation of their corresponding subassemblies (e.g., those for theme), selected by the 
activation of the corresponding gating circuit. This process will be disrupted if, for 
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instance, two NP assemblies are active at the same moment, because this will result in the 
binding of two NPs as the theme of a verb. Thus, when cat is bound as the theme of 
chases (figure 3), N2 has to be active and N1 has to be inhibited.  

The combination of structural and dynamic control is a direct consequence of the 
fact that language processing in the brain depends on both linguistic and neurodynamic 
constraints. The linguistic constraints result from the linguistic structure of language. The 
dynamic constraints result from the neural dynamics in the underlying neural structures 
that produce language processing. The importance of structural and dynamic control 
raises the question of how these forms of control are implemented in the brain. At this 
point, we can only describe some general features of how this might occur. We assume 
that control of the binding process in the architecture presented here will result from 
'neural control circuits' that represent particular conjunctions of features. When activated, 
these control circuits will in turn activate gating circuits or initiate the activation or 
inhibition of assemblies (e.g., the structure assemblies). For instance, a control circuit 
could activate the gating circuits for the agent subassemblies in figure 3, because it 
detected the conjunction noun-verb in the sentence The mouse chases the cat, and 
interpreted this conjunction in terms of the noun as the agent of the verb. Likewise, a 
control circuit could activate the theme subassemblies for cat and chases, after the 
detection of the conjunction noun-verb-noun in the sentence. These control circuits would 
thus form (partial) representations of abstract (syntactic) rules. Neurons that represent 
abstract rules (conjunctions) have been found the (monkey) prefrontal cortex (Miller, 
2000).  
 It is not difficult to implement a neural circuit that detects a specific conjunction 
like noun-verb-noun and activates agent and theme subassemblies. However, it is 
unlikely that there will be neural circuits that form conjunctive representations for each of 
the specific sentence types that can occur in language. It is more likely that neural control 
circuits will represent (and detect) specific 'local' conjunctions of syntactic features in 
sentences. For instance, the neural assembly for the verb chase could be associated with a 
neural circuit that represents the fact that the verb requires an agent and a theme, as 
illustrated in figure 3. Each verb could be associated with a neural circuit that specifies 
the arguments or thematic relations that the verb requires or allows in a given sentence.  
 Arguments can be described on different levels of abstraction (Van Valin, 2001). 
On the lowest level, one can have arguments like giver, runner and speaker and the like. 
On a more abstract level, one can have arguments like agent, experiencer, recipient, 
theme or patient. However, these arguments can be described in terms of the 'semantic 
macro roles' of actor (e.g., agent, experiencer, recipient) and undergoer (e.g, experiencer, 
recipient, theme, patient). The argument labels (agent, theme) that we have used should 
be understood as arguments on this level. We have simply used these labels because they 
are more familiar than actor and undergoer (or X and Y, cf., Pinker, 1989). Thus, in 
linguistic terms a verb (i.e., its lexical entry) is associated with (at least) one argument 
structure that specifies the arguments that the verb will have in a given syntactic context. 
In terms of the model presented here, such an argument structure would be implemented 
in a neural circuit that controls the binding process illustrated in figures 3 and 8. Figure 
12 illustrates two examples in which a verb is associated with only one argument. Thus, 
The cat eats could be interpreted in terms of cat as the agent of eats, which activates the 
gating circuits for the agent subassemblies. In contrast, The glass breaks could be 
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interpreted in terms of glass as the theme of breaks, which activates the gating circuits for 
the theme subassemblies.  
 A neural control circuit associated with a verb is an example of a 'lexical frame'. 
In general, a lexical frame is the syntactic information that is associated with the lexical 
entry of a word. Lexical frames play an important role in modern theories of grammar 
(e.g., Pinker, 1989; Webelhuth, 1995; Jackendoff, 1999; Sag & Wasow, 1999). Evidence 
for a relation between grammatical and lexical processing is found in studies of language 
performance (e.g., MacDonald, Perlmutter & Seidenberg, 1994; Bates & Goodman, 
1997) and functional neuroimaging (Keller, Carpenter & Just, 2001).   

A parsing model that is based on lexical frames is the Unification Space (U-
space) model of Vosse and Kempen (2000). The U-space model is a hybrid model, based 
on both symbolic and dynamic principles. The symbolic part consists of a lexicalist 
grammar in which syntactic information is represented by lexical frames. Each word in 
the lexicon is connected to a small structure (frame) of nodes that specifies the nature of 
the word and the ‘syntactic environment’ that the word can have in a sentence. The U-
space model uses these frames to build a structural representation of a sentence. When a 
new word in a sentence is processed, the lexical frame of that word will be retrieved from 
the lexicon. This lexical frame is then copied into a ‘unification space’. When more 
lexical frames enter the unification space, a process of unification starts in which lexical 
frames are unified by establishing a connection between corresponding nodes. The 
unification process consists of a dynamic competition between the lexical frames which 
continues until all lexical frames in the unification space are unified. Various phenomena 
found in human language processing can be simulated adequately with this model.  

In line with this model, we assume that each word is associated with a lexical 
frame, in the form of a neural control circuit that represents the 'syntactic environment' in 
which the word can occur. The representation of a sentence will result from an interaction 
between these circuits and the architecture for sentence representation illustrated in figure 
6. In the next section we will describe in general terms how such an interaction could 
result in the representation of more complex sentences, and how this interaction can 
result in performance effects related to sentence complexity.   
 

Representation and complexity 
Figure 13 shows the representation of the sentence The mouse that sees the dog chases 
the cat in terms of the architecture illustrated in figure 6. The phrase the mouse that sees 
the dog, which contains a (subject-extracted) relative clause, is the agent of the verb 
chases in this sentence. Two extensions of the architecture presented in figure 6 have to 
be introduced to represent a sentence like this one. The first extension is the introduction 
of a new subassembly connected to each NP and VP assembly. This subassembly is 
labeled as a ‘relative clause’ (rc) subassembly, because it is used to represent a relative 
clause, as illustrated in figure 13. Thus, when the conjunction noun-that(comp)-verb is 
detected, the gating circuits for the rc subassemblies can be activated, which binds the 
active NP and VP assemblies (N1 and V1 in figure 13) by means of their rc 
subassemblies. The rc subassemblies provide a site to bind sees dog to the NP assembly 
for mouse, which allows the production of answers to specific questions like “Which 
mouse chases the cat?”. This would not be possible with the agent or theme 
subassemblies. Instead, they can be used to bind mouse to the main clause of the 
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sentence. The binding of mouse to the rc subassembly of V1 provides information that 
mouse it the (extracted) subject of sees (via that). The next noun (dog) can then be bound 
as the theme of this verb.  

The next verb (chases) can be interpreted as the verb of the main clause (e.g., due 
to the conjunction verb-noun-verb), which has to be bound to mouse, with mouse as the 
agent. However, the dynamic constraint that only one NP assembly can be active at the 
same time presents a difficulty. The active NP assembly at this moment is N2 for dog, 
which is bound to V1 by the theme subassemblies. But dog is not the agent of the main 
clause. To bind mouse as the agent of the main clause, N2 has to be inhibited and N1 has 
to be reactivated. To allow the reactivation of N1, this assembly was bound to an 
assembly S, connected to all the NP assemblies (by initially inactive memory circuits). 
The assembly S belongs to the control circuits, and is used to identify the ‘external 
argument’ of the verb of the main clause (mouse in this case) during sentence processing. 
Due to this binding, N1 can be reactivated after the binding of sees dog as the relative 
clause. In this way, mouse can be bound as the agent of chases, and cat as its theme, just 
as in the sentence The mouse chases the cat illustrated in figure 3.  
 Figure 14 illustrates the representation of the sentence The mouse that the dog 
sees chases the cat in terms of the architecture illustrated in figure 6. In this sentence the 
object-extracted relative clause the mouse that the dog sees is the agent of the verb of the 
main clause. In terms of the architecture presented in figure 6, the object-extracted 
relative clause in the sentence illustrated in figure 14 imposes a difficulty that results 
from the sequence noun-comp-noun (mouse that dog) in this sentence. The sequence 
noun-comp-noun results in the activation of two NP assemblies, N1 and N2, which both 
have to be bound to the VP assembly (V1) of the first verb (sees) that follows after the 
two nouns. However, N1 and N2 cannot be simultaneously active. If they were, they 
would bind in the same manner to V1, because the activation of the gating circuits (e.g., 
for the rc or agent subassemblies) operates for all active NP assemblies.  

The difficulty can be resolved by introducing a new kind of structure assembly, 
labeled T1 in figure 14. The Ti assemblies are structure assemblies like the NP and VP 
assemblies, but they do not bind directly to word assemblies. Instead, they only bind to 
NP and VP assemblies by means of corresponding subassemblies. In linguistic terms, a T 
assembly acts like a trace (e.g., Caplan, 1995), in the sense that it replaces a NP assembly 
at an extracted site. Because T assemblies are different from NP assemblies, the gating 
circuits for the T assemblies can be controlled separately from the gating circuits of the 
NP assemblies. Thus, in figure 14, N1 is first bound to T1, by means of their rc 
subassemblies, before it is inhibited. This process also requires a form of dynamic control 
because N2 can only be activated, and dog can only be bound to N2, after this process has 
been completed. Then N2 can be bound as the agent to V1 and T1 can be bound to V1 as 
the theme of this verb. After that, the process of representing the sentence proceeds in the 
same manner as with the sentence presented in figure 13.  
 It is clear that the representation of the sentence with the object-extracted relative 
clause illustrated in figure 14 is dynamically more complex than the representation of the 
sentence with the subject-extracted relative clause illustrated in figure 13. The increased 
complexity in representing sentences with object-extracted relative clauses is in line with 
performance measures on complexity. Sentences with object-extracted relative clauses 
are more complex than sentences with subject-extracted relative clauses, which follows 
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from measures like online lexical decision, reading times and response accuracy to probe 
questions (e.g., see Gibson, 1998). Imaging research has shown an increase in blood flow 
in language areas with object-extracted relative clauses versus subject-extracted relative 
clauses (Stromswold, Caplan, Alpert & Rauch, 1996; Just, Carpenter, Keller, Eddy & 
Thulborn, 1996). In terms of the architecture discussed here, this would result from the 
additional activation of the T1 assembly (and the related gating circuits) in figure 14. 
Furthermore, aphasics have great difficulty in comprehending sentences with object-
extracted relative clauses, even when they can comprehend sentences with subject-
extracted relative clauses (Caramazza & Zurif, 1976; Caplan & Futter, 1986; Hickok, 
Zurif & Canseco-Gonzalez, 1993; Grodzinsky & Finkel, 1998). In terms of the 
architecture discussed here, this could result from the inability to activate and bind T 
assemblies (Grodzinsky, 2000). 
 
Recursive productivity and complexity 
Further effects of sentence complexity on comprehension result from the recursive 
occurrence of syntactic structures in sentences. Two examples are illustrated in figures 15 
and 16. Figure 15 illustrates the representation of the sentence The mouse that sees the 
dog that likes the boy chases the cat in terms of the architecture discussed here. As with 
the sentence illustrated in figure 13, this sentence contains a subject-extracted relative 
clause. In this case, however, the relative clause itself contains a subject-relative clause, 
which results in the phrase the mouse that sees the dog that likes the boy as the agent of 
the verb chases of the main clause. Figure 15 illustrates that the recursive use of a 
subject-relative clause can be represented in a straightforward manner in terms of the 
architecture presented here. The representation of The mouse that sees the dog proceeds 
in the same manner as in figure 13. After that, the conjunction noun-comp-verb (dog that 
likes) is detected for the second time. As before, this will result in the activation of the 
gating circuits for the rc subassemblies, which binds the currently active NP and VP 
assemblies by means of their rc subassemblies. The currently active NP and VP 
assemblies in this case are N2 (dog) and V2 (likes). The binding of likes and boy proceeds 
in the same manner as the binding of sees and dog. Likewise, the binding of mouse, 
chases and cat proceeds in the same manner as with the sentence illustrated in figure 13.  

The double right-branching sentence The mouse chases the cat that sees the dog 
that likes the boy can be represented in a similar manner as the sentence illustrated in 
figure 14, by binding the VP assembly of sees (V1) to the NP assembly of cat (N4) by 
means of their rc subassemblies. Thus, the recursive use of right-branching can be 
represented in the architecture discussed here. However, this is not the case for the 
recursive use of center-embedding. Figure 16 illustrates the representation of the sentence 
The mouse that the dog that the boy likes sees chases the cat in terms of the architecture 
discussed here. As with the sentence illustrated in figure 14, this sentence contains an 
object-extracted relative clause (The mouse that the dog ... sees) as the agent of the verb 
chases of the main clause. In this case, however, the relative clause itself contains an 
object-extracted relative clause (the dog that the boy likes), which is the agent of the verb 
sees. The result is a sentence with a double center-embedding.  

Sentences with double center-embeddings of the kind illustrated in figure 16 are 
so complex that they are unacceptable for most people (e.g., Gibson, 1998). This 
processing difficulty is reflected in the representation illustrated in figure 16. The 
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processing of The mouse that the dog proceeds in the same manner as illustrated in figure 
14, including the activation of T1 (for mouse) and N2 (for dog). In figure 14, the 
occurrence of the verb sees resulted in the binding of N2 (dog) as the agent of sees and T1 
(mouse) as the theme of sees. In this case, however, the noun phrase the boy is processed 
before N2 and T1 can be bound to sees. As before, a new noun activates a new NP 
assembly, which results in the inhibition of the previously active NP assembly. In this 
case, this will result in the activation of N3 and the inhibition of N2. A similar process 
occurred with the phrase the mouse that the dog, which resulted in the activation of N2 
(dog) and the inhibition of N1 (mouse). Because mouse was not yet bound to sees, the 
assembly T1 was activated and bound to the rc subassembly of N1. In a similar manner, 
the activation of N3 will result in the inhibition of N2 and the activation of the assembly 
T2. As with T1 and N1, T2 should be bound to the rc subassembly of N2. However, this 
can only occur if T1 is inhibited at this moment, otherwise T1 will also be bound to the rc 
subassembly of N2.  

Furthermore, N1 is bound to the assembly S in figures 14 and 16, which enables 
the reactivation of N1 when the processing of the relative clause is completed. N1 was 
bound to S because mouse was interpreted as the external argument of the sentence. 
However, the binding of N1 to S prohibits the binding of N2 to S, because a sentence has 
only one external argument. Or else, when both N1 and N2 are bound to S, an ambiguity 
will arise about the external argument of the sentence. Thus, when N2 is inhibited, it 
cannot be reactivated again (without creating an ambiguity). Likewise, T1 cannot be 
reactivated again. Basically, this results from the fact that the phrases the mouse that the 
dog and the dog that the boy are syntactically similar structures. As a result, T1 and T2 
play structurally similar roles in the process of sentence representation. This entails that 
only one of them can be active at the same moment, or else a conflict between the roles 
of T1 and T2 will occur.  

When T1 (and N2) are inhibited, the occurrence of the verb likes in the sentence 
will result in the binding of N3 (boy) as the agent of likes and T2 (dog) as the theme of 
likes. However, the occurrence of the second verb sees in the sentence creates a 
fundamental difficulty. It should be bound to N2 and T1 as indicated with the dashed lines 
in figure 16. However, binding in this model can only occur between active assemblies, 
but N2 and T1 have already been inhibited, and, as argued above, they cannot be 
reactivated in an unambiguous manner. As a result, the representation of the sentence will 
fail.  

Following the processing illustrated in figure 14, the verb sees could in fact 
reactivate N1, to initiate the representation of the main clause of the sentence. In that case, 
mouse would be bound as the agent to sees, and sees would be interpreted as the verb of 
the main clause. However, this creates a conflict with the third verb chases that occurs in 
the sentence. In fact, the representation scheme illustrated in figure 16 would predict that 
it is easier to process the incorrect sentence The mouse that the dog that the boy likes sees 
the cat (or The mouse that the dog that the boy likes chases the cat). This would result in 
the representation of the phrases the mouse sees the cat (or the mouse chases the cat) and 
the dog that the boy likes, leaving the relation between both phrases undetermined. The 
fact that these ungrammatical sentences are more acceptable has been observed in the 
literature (e.g., Gibson, 1998). 
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 Pinker (1994) argued that the processing difficulty of structures like double 
center-embeddings results from the difficulty of keeping track of more than one 
incomplete phrase of the same kind. A similar argument is based on the incomplete 
dependency hypothesis (e.g., Lewis, 1996; Stabler, 1994), which holds that processing 
complexity is related to the presence of multiple incomplete syntactic dependencies (e.g., 
between agent and verb) of the same kind. In the sentence illustrated in figure 16, the 
phrases the mouse that the dog and the dog that the boy are two incomplete phrases of the 
same kind. To complete both phrases, they have to be bound in the manner illustrated in 
figure 16. However, binding in this model can only occur between active assemblies. As 
a result, ambiguities will arise when the assemblies of both the mouse that the dog and 
the dog that the boy remain active at the same time, as described above.  
 

Memory and capacity 
Just and Carpenter (1992) modeled the effect of differences in memory capacity on 
sentence comprehension. Sentence comprehension in their model is based on symbolic 
processing (production systems), with activation values assigned to each of the 
representational elements in the model. When the maximum of activation that can be 
distributed over these elements is about to be exceeded, a decline of activation of the 
elements will occur. In turn, this will (eventually) result in a loss of information stored in 
memory. Individual differences in capacity are related with differences in the maximum 
of activation that can be assigned in the comprehension process.  
 Sentence representation in the model discussed here consists of a temporary 
binding between word assemblies by means of the memory circuits presented in figure 5. 
A sentence representation remains intact as long as each of the delay assemblies in the 
representation remains active. Thus, the capacity of sentence representation in this model 
is related to the sustained activation in the delay assemblies. In a similar manner, 
comprehension performance in this model will be related to the sustained activation in 
the delay assemblies (and to the information retained in the neural control circuits, which 
also depends on sustained activation).  

Delay assemblies remain active due to the reverberating nature of the activation in 
the assembly (e.g., Amit & Brunel, 1997; Wang, 2001). However, over time a 
reverberating assembly will become unstable, losing its ability to sustain activation 
without external stimulation (e.g., Brunel, 2000; Koulakov, 2001). The conditions under 
which this decay of activation occurs are not yet fully known. Therefore, we will model 
the effect of activation decay on the capacity of sentence representation in a qualitative 
manner. We assume that a delay assembly loses its sustained activation with a probability 
p that increases linearly with time t, thus p = αt (for as long as αt < 1). The probability 
that the assembly remains active is then given by 1 – αt. For simplicity, we divide time t 
in discrete intervals tn, and we assume that in each new interval a new delay assembly is 
activated in the process of sentence representation. In this way, the probability that the 
first activated delay assembly is still active after n intervals is given by 1 – αn. Likewise, 
the probability that the second activated delay assembly is still active after n intervals is 
given by 1 – α(n-1). Continuing in this manner, the probability that the last (nth) activated 
assembly is still active is given by 1 – α. The probability P that all n assemblies are still 
active after n intervals is then given by the joint probability P = (1 – αn) ( 1 – α(n-1)) ... ( 
1 – 2α) ( 1 – α). 
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In figure 17 we plot this probability for different values of n. It is clear that P 
gradually declines with time (given by n), which means that information will be lost over 
time. Even without the oversimplified assumption that assemblies are activated one by 
one in discrete time intervals in the process of sentence representation, it is clear that 
sentence representation (comprehension) is a sequential process, which will result in a 
sequential activation of delay assemblies in this model. Figure 17 shows in a qualitative 
manner that the probability that a number of n assemblies can be active declines with n. 
This result can be interpreted in two ways. First, it shows that the number of sentence 
representations that can remain active is limited. Second, it shows that it is more difficult 
to retain or even produce a representation of a more complex sentence, because sentence 
complexity is related with the number of active delay assemblies in this model (e.g., see 
figure 13 and 14). The rate with which P declines depends on α. In figure 17, we plot P 
for three values of α. Figure 17 shows that differences in memory capacity (e.g., low 
versus high capacity readers, Just & Carpenter, 1992) result from different values of α in 
this model. 

Figure 17 illustrates that effect of memory capacity on sentence representation 
(and comprehension) in this model does not result from a maximum of activation, but 
instead results from the neural dynamics of reverberating (sustained) activity. However, 
the overall amount of activation in the language areas of the brain could influence the 
dynamics of reverberating activity, for instance, due to an increase of noise activity in the 
delay assemblies (e.g., see Brunel, 2000).  Likewise, attention could have an effect on 
sustained activation, as observed in the visual cortex. The incorporation of these factors 
would provide a more elaborate model of the influence of neural dynamics on memory 
capacity and sentence comprehension, compared to the effect illustrated in figure 17.  
 

Discussion 
In this article we discussed a neural implementation of basic aspects of language 
processing. In particular, we concentrated on the question of how sentence structure can 
be represented in terms of neural assemblies, and how information can be retrieved from 
that representation.  

A fundamental aspect of sentence representation is the combinatorial productivity 
that underlies this form of representation. The magnitude of the lexicon of a native 
language user is in the order of 105 (e.g., Bloom, 2000). However, the number of 
sentences that can be formed in a natural language exceeds this magnitude by far. 
Linguistic theories typically assert the infinite productivity of language, which means that 
an unlimited number of different sentences can be formed in a natural language (e.g., 
Pinker, 1989; Webelhuth, 1995; Jackendoff, 1999; Sag & Wasow, 1999; Chomsky, 
2000). However, even if the number of words in a sentence is limited, the number of 
sentences that can be produced is enormous. For instance, the set of sentences that can be 
formed with a sentence length of 20 words is in the order of 1020 Pinker (1998). Any 
model of language processing has to account for the ability to represent any sentence 
from a set of sentences of this magnitude. This is not a great problem for symbolic 
processing models (and linguistic theories). These models and theories represent 
sentences in terms of individual words as constituents. A sentence is represented by a 
representation of the sentence structure, with copies of word representations inserted in 
the appropriate 'slots'. In a similar manner, to achieve combinatorial productivity of 
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sentence representation, activation models of language processing have relied on hybrid 
architectures, in which symbolic representations and processes are combined with 
activation processes or resources (e.g., Just & Carpenter, 1992; Miikkulainen, 1996; 
Vosse & Kempen, 2000).  

In contrast, productivity of sentence representation is a much harder problem for 
neural models of language processing. For instance, McClelland and Kawamoto (1986) 
presented a neural model of thematic role assignment in sentence processing. However, 
this model was restricted to only one sentence structure. Furthermore, the model could 
not represent different tokens of the same type, such as dogagent and dogtheme in dog chases 
dog. The Simple Recurrent Network (SRN) models of sentence representation (e.g., 
Elman, 1991; Christiansen & Chater 1999) are more flexible in this respect. However, 
SRNs generate sentence representations on the basis of a statistical average of the set of 
sentences they are trained with. As a result, SRNs are limited in their productivity of 
sentence representation, because they have to be trained with a substantial amount (in the 
order of 10%) of the set of sentences that they can represent (e.g., see Van der Velde, 
Van der Kleij van der Voort & de Kamps, subm). Furthermore, SRNs can only predict 
the category of a word that would follow in a sentence context. Thus, they can predict 
that a noun is likely to follow after The mouse chases (…) or The cat chases (…). 
However, they cannot answer specific probe (or 'binding') questions, which means that 
they cannot distinguish between The mouse chases the cat and The cat chases the mouse.  

The neural architecture that we have presented in this article can represent 
different sentence structures in a productive manner. Furthermore, it can answer specific 
questions about the thematic relations expressed in the sentence. Productivity of sentence 
representation is achieved because the model uses word representations as constituents in 
the representation of a sentence. Words are represented by means of neural assemblies 
(Hebb, 1949), in line with recent proposals of word representation in the brain 
(Pulvermüller, 1999; 2000). Sentence structure is represented by first binding words 
temporarily to structural assemblies, which are then bound temporarily to one another in 
a manner that preserves the thematic relations between the words. This two-step 
representation process solves the problems associated with the neural implementation of 
productive sentence representation (Van der Velde, 1995). First, it allows the 
representation of different tokens (copies) of the same word, because each token is bound 
to a different structure assembly. Second, it allows the representation of sentence 
structure. The difference between The mouse chases the cat and The cat chases the mouse 
cannot be represented on the basis of associations between the word assemblies for 
mouse, cat and chases. But when the word assemblies are first bound to structure 
assemblies, the two sentences can be distinguished by means of different bindings 
between the structure assemblies. Third, the two-step representation process results in 
combinatorial productivity of sentence representation. Sentence structure is represented 
on the level of the structure assemblies. Individual words only need to be bound to the 
appropriate structure assemblies to represent a particular sentence. In this way, arbitrary 
thematic relations can be expressed between arbitrary words (e.g., The chair chases the 
table). 

By straightforward extensions of the basic representational architecture, more 
complex sentence structures, including ones with relative clauses, can be represented as 
well, again in a productive manner. The information (thematic relations) stored in the 
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architecture can be retrieved by asking probe or binding questions. These questions 
provide the information that can be used to reactivate the overall structure of the sentence 
that is stored in the architecture. Using this reactivated structure, the answer to the 
question can be produced.  
 Temporal binding between two assemblies in this model is achieved by means of 
reverberating activity in a delay assembly in the memory circuit that connects the 
assemblies. Reverberating activity is used in the brain to retain information temporarily 
(e.g., Fuster, 1973; Wang, 2001). To activate the delay assembly in the memory circuit, 
the two assemblies connected by the circuit have to be active simultaneously at a given 
time. As we showed, this requirement has consequences for the way in which sentences 
are processed, which can be related with the difficulty of processing certain sentence 
structures (like sentences with double-embeddings) observed in human language 
performance. Hence, differences in sentence complexity can be related to the dynamics of 
the architecture presented here. Finally, capacity for sentence representation in the 
architecture presented here can be related to the way in which reverberating activity will 
decay over time (e.g., Brunel, 2000; Koulakov, 2001).  
 Obviously, the architecture we presented here is only a first step towards a theory 
of language processing in the brain. In particular, we have only described the process of 
sentence representation in general terms. In line with the notion of lexicalist parsing (e.g., 
Jackendoff, 1999; Vosse & Kempen, 2000), we assume that a word will activate a neural 
circuit that represents information about the nature of the word (e.g., whether it is a noun 
or a verb) and the structural relations that the word can have with other words in the 
sentence. Interactions between these neural circuits will then result in the activation of 
selective gating circuits (e.g., those for 'agent or 'theme'). In turn, the activated gating 
circuits enable the binding of active structure assemblies in relation with the thematic 
relations between the words in the sentence. In this way, a representation of a sentence 
unfolds in time, in line with the incremental way in which a sentence representation is 
generated in human language processing (e.g., Gibson, 1998). A fully developed theory 
of language processing in the brain will have to describe these neural circuits and their 
interactions in an explicit manner.  
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Figure 1. Illustration of the neural assemblies, distributed over the brain, that could 

represent action words (left) or visually related words (right).  
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Figure 2. Illustration of the word assemblies for mouse, cat and chases that will be 

activated with the sentence The mouse chases the cat (left) and The cat chases the mouse 

(right).  
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Figure 3. The representation of the sentence The mouse chases the cat with the word 

assemblies illustrated in figure 2 and the structure assemblies for 'noun-phrases' (Ni) and 

'verb-phrases' (Vi). Assemblies are connected with gating or memory circuits. A structure 

assembly consists of a main assembly (Ni or Vi) and subassemblies for agent (a) and 

theme (t).  
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Figure 4. A bi-directional gating circuit, based on disinhibition. X, Y, Xout, and Yout are 

populations of excitatory neurons. Ix, Iy, ix and iy are inhibitory neurons. The gating 

circuit can be activated with the control signals controlXtoY and controlYtoX, which derive 

from excitatory populations outside the circuit.  
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Figure 5. Memory circuit (left). A memory circuit consists of a gating circuit presented in 

figure 4, in which the control signals derive from a delay assembly. A delay assembly is 

activated by a disinhibition circuit (right).  
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Figure 6. Architecture for sentence representation with neural assemblies. Verb 

assemblies are connected to verb-phrase assemblies (Vi) by means of (initially inactive) 

memory circuits. Likewise, noun assemblies are connected to noun-phrase assemblies 

(Ni) by means of (initially inactive) memory circuits. The verb-phrase and noun-phrase 

assemblies are connected through their subassemblies for agent (a) and theme (t), by 

means of (initially inactive) memory circuits. 
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Figure 7. Competition between verb-phrase assemblies (Vi) by means of a population of 

inhibitory neurons. This population can itself be inhibited by means of 'dynamic control'.  
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Figure 8. Simultaneous representation of The mouse chases the cat, The cat chases the 

mouse and The mouse sees the dog in the architecture illustrated in figure 6. Ni and Vi are 

noun-phrase and verb-phrase assemblies, respectively, with subassemblies for agent (a) 

and theme (t).  
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Figure 9. Simulated activations for the word assemblies for mouse, chases and cat, and 

the subassemblies for N1-agent and V1-theme. The simulations result from the production 

of the answer to the question "Whom does the mouse chase?" when the sentences 

illustrated in figure 8 are represented simultaneously. The question initiates the activation 

of mouse, chases and the gating circuits for 'agent'. After a competition process, the 

assembly for cat is activated as answer to the question. Horizontal bars and vertical lines 

indicate the timing of particular events (see text for explanation).  
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Figure 10. Activations for the noun-phrase assemblies N1, N2, N3, N4, N5 and N6 (left) 

and the verb-phrase assemblies V1, V2, V3. V4 and V5 (right), during the competition 

process between the verb-phrase assemblies that results in the activation of cat in figure 

9. Horizontal bars, the asterisk and vertical lines indicate the timing of particular events, 

in relation with figure 9 (see text for explanation).  
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Figure 11. Activations of the assemblies illustrated in figure 10 when the competition 

process between the verb-phrase assemblies fails as a result of a different timing of 

events. Horizontal bars, the asterisk and vertical lines indicate the timing of particular 

events, in relation with figure 9 (see text for explanation).  
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Figure 12. Representation of the sentences The cat eats and The glass breaks in the 

architecture illustrated in figure 6.  
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Figure 13. Representation of the sentence The mouse that sees the dog chases the cat in 

the architecture illustrated in figure 6.  
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Figure 14. Representation of the sentence The mouse that the dog sees chases the cat in 

the architecture illustrated in figure 6.  
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Figure 15. Representation of the sentence The mouse that sees the dog that likes the boy 

chases the cat in the architecture illustrated in figure 6.  
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Figure 16. Representation of the sentence The mouse that the dog that the boy likes sees 

chases the cat in the architecture illustrated in figure 6. Dashed lines indicate bindings 

that result in ambiguities during the processing of this sentence (see text for explanation). 
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Figure 17. Memory capacity in the architecture illustrated in figure 6. The probability that 

n delay assemblies can remain active declines with n. Different capacities result from 

different values of α (with α = 0.01, α = 0.02 and α = 0.05 for 'high', 'medium' and 'low' 

capacity). 



Appendix

The simulations are based on a network of excitatory and inhibitory popu-

lations. The activation of population i is modeled with the population rate

Ai, which is de�ned as the fraction of neurons which �re during a time inter-

val [t; t+ dt], divided by dt (Wilson and Cowan, 1972; Gerstner 1995). The

population rate Ai is given by (with � = E for excitatory populations and

� = I for inhibitory populations):

��
dAi

dt
= (�Ax + F (�jwijAij)) +AiInoise (1)

�E (�I) is the time constant for an excitatory (inhibitory) population. We

took �E = 10 ms and �I = 5 ms, reecting the fact that inhibitory neurons

operate faster than excitatory neurons. Population time constants are be-

lieved to be dominated by synaptic time constants (Gerstner, 2000) and the

values we chose are of that order of magnitude. The wij (or wj!i) are the ef-

�cacies from population j onto population i. We respect Dale's law (Abeles,

1991): wij is negative if and only if j is an inhibitory population. Every 1

ms a noise current, given by the fraction Inoise of the population activation,

is injected into each population with � = 0; � = 0:02.

For F (x) we took:

F (x) =
fmax

(1 + e��(x��))
(2)

with fmax = 30 Hz, � = 1 and � = 3.

Populations are grouped in a hierachy of circuits. The lowest level consists

of the bidrectional gating circuits (�gure 4) and the memory gating circuits

(�gure 5). Each of these circuits consist of 8 populations, as given by the

circuit in �gure 4: X, Y , Xout, Yout, ix, iy, Ix, and Iy. X or Y may be part

of two circuits (i.e., a gating and a memory circuit). The circuit in �gure 4

1



is described by the following equations:

�E
dX

dt
= �X + F (inputX + wYout!XYout) +XInoise (3)

�E
dY

dt
= �Y + F (inputY + wXout!YXout) + Y Inoise

�E
dXout

dt
= �Xout + F (wX!Xout

X � wix!Xout
ix) +XoutInoise

�E
dYout

dt
= �Yout + F (wY!YoutY � wiy!Yout iy) + YoutInoise

�I
dix

dt
= �ix + F (wX!ixX � wIx!ixIx) + ixInoise

�I
diy

dt
= �iy + F (wY!iyY � wIy!iyIy) + iyInoise

�I
dIx

dt
= �Ix + F (controlXtoY ) + IxInoise

�I
dIy

dt
= �Iy + F (controlY toX) + IyInoise

Here, inputX (inputY ) is the external input (i.e., from outside the circuit) on

X (Y ). We took wX!Xout
= wY!Yout = wX!ix = wY!iy = 0:25 and wix!Xout

= wiy!Yout = wIx!ix = wIy!iy = 1. We took wYout!X = wXout!Y = 0:1.

The gating circuit can be activated by the control signals controlXtoY and

controlY toX. These control signals derive from two populations outside the

circuit: IXtoY and IY toX respectively. Their activation is given by fmax. They

act on IX and IY respectively with e�cacy wcontrol = 0:2.

A memory circuit is a gating circuit in which the control signal is given

by activation of a delay assembly. In our simulation, the memory circuits

were simulated as gating circuits, in which the control signal was either 0

(`memory o�') or fmax (`memory on'). The e�cacies in the memory circuit

are the same as in the gating circuit, except wYout!X = wXout!Y = 0:2 in the

memory circuit.

Besides the excitatory and inhibitory populations described above, we also

2



used delay populations in the simulations, in particular for the main assem-

blies of the structure assemblies. A delay population retains a high level of

activity in absence of external stimulation, once the activation is raised be-

yond a certain level. Such populations have been investigated in great detail

by Amit and Brunel (1997), Compte et al. (2000) and others. Based on

these studies we assume the following properties for a delay population:

� A delay population is active once its input has been above a threshold

�delay in the past and it has not been deactivated since.

� A delay population is deactivated once the net a�erents to the assembly

passes a certain negative threshold �deact (i.e., there is net inhibition).

� If a delay population is inactive, it functions as an ordinary population

of excitatory neurons.

The use of inhibition to reset the network is studied in Compte et al., (2000).

The assumption of the existence of �deact is justi�ed by the need for such an

population to be stable under small noise uctuations. To be able to treat

these populations as part of the network, we assume that:

� If the activity of the delay population is above threshold �delay and

net input is excitatory, then the time constant of the population is

�delay = �E.

� If the activity of the delay population is above threshold �delay but

decreasing, while net input is above �deact, the time constant is very

large: �inf .

� If net input is below �deact the time constant is reset to �E and, since

net input is negative, memory activity will decay within approximately

�E ms.

We took �deact = �0:2, �delay = 4 and �delay = 10000 ms.
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A structure assembly consists of a main assembly and subassemblies (e.g.,

for agent and theme). The main assembly is a delay population. The exter-

nal input on the main assemblies derives from the word assemblies. Word

assemblies are active with activation given by fmax and fraction Inoise of the

population activation. Word assemblies act on their stucture assemblies with

e�cacy winput = 0:2. The subassemblies are excitatory populations, which

are connected to their main assembly with gating circuits.

The VP structure assemblies (�ve in the simulations) are connected with

a central inhibitory pool (see �gure 7). The inhibitory pool acts on the

VP assemblies with e�cacy wpool!V P = 0:03. The inhibitory pool receives

input from the VP assemblies with e�cacy wV P!pool = 0:03. The central

inhibitory pool creates competition between the VP assemblies. In that

case, the competition is `on'. However, the central inhibitory pool can itself

be inhibited. In that case, the competition is `of'.

The connection structure of the model at the highest level is as follows. Each

agent subassembly of the NP assemblies is connected with each agent sub-

assembly of the VP assemblies, by means of a memory circuit. These connec-

tions constitute a matrix of memory circuits between the agent subassemblies

of the NP and VP assemblies. Likewise a matrix of memory circuits exist

between the theme subassemblies of the NP and VP assemblies. In all, the

simulated model consisted of 624 populations. Integration of the system of

equations (1) evolved simultaneously for the entire model, using fourth-order

Runge-Kutta integration with an integration time step h = 0:01 ms.
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