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The paper presents a Galerkin approach for the solution of the nonlinear beam equations. Nonlinear
beam analysis is required when analyzing helicopter blades1 or high-aspect-ratio wings.2 The present analysis
improves on earlier solution techniques based on nonlinear finite element approach used in Refs. 1 and 2,
and is the ideal choice for beam-like structures undergoing large motion. Furthermore, the approach leads
to an nonlinear, order-reduction technique which can be applied to the Galerkin equations as well as a
finite-element equations.

I. Nonlinear, Intrinsic Beam Equations

The nonlinear, intrinsic, mixed equations for the dynamics of a general (non-uniform, twisted, curved,
anisotropic) beam undergoing small strains and large deformation are given below,

F ′ + (k̃+ κ̃)F + f = Ṗ + Ω̃P (1)

M ′ + (k̃+ κ̃)M + (ẽ1 + γ̃)F + m = Ḣ + Ω̃H + Ṽ P (2)

V ′ + (k̃+ κ̃)V + (ẽ1 + γ̃)Ω = γ̇ (3)

Ω′ + (k̃+ κ̃)Ω = κ̇ (4)

where ( )′ denotes the derivative with respect to the undeformed beam reference line and ˙( ) denotes the
absolute time derivative. F (x, t) and M(x, t) are the measure numbers of the internal force and moment
vector (generalized forces), P (x, t) and H(x, t) are the measure numbers of the linear and angular momentum
vector (generalized momenta), γ(x, t) and κ(x, t) are the beam strains and curvatures (generalized strains),
V (x, t) and Ω(x, t) are the linear and angular velocity measures (generalized velocities), and f(x, t) and
m(x, t) are the external force and moment measures. All measure numbers are calculated in the B–frame,
i.e., deformed cross-sectional frame. k(x) = bk1(x) k2(x) k3(x)c is the initial twist/curvature of the beam,
e1 = b1 0 0cT .

The first two equations in the above set are the equations of motion3 while the latter two are the
intrinsic kinematical equations4 derived from the generalized strain-displacement and generalized velocity-
displacement equations.

The generalized forces are related to the generalized strains via the cross-sectional beam stiffnesses/flexibilities.
These cross-sectional properties can be calculated using an analytical thin-walled theory5 or computational
FEM analysis6 for general configuration. Such an analysis gives the following, linear constitutive law,{

γ

κ

}
=

[
R S

ST T

] {
F

M

}
(5)

where, R(x), S(x), T(x), are the cross-sectional flexibilities of the beam. Being linear, the present material
law is only valid for small local strains, which can, however, lead to large global deformations.
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The generalized momenta are related to the generalized velocities via the cross-sectional beam inertia,{
P

H

}
=

[
µ∆ −µξ̃

µξ̃ I

] {
V

Ω

}
=

[
G K

KT I

] {
V

Ω

}
(6)

where, µ(x), ξ(x), I(x) are the mass per unit length, mass center offset (vector in the cross-section from
the beam reference axis to the cross-sectional mass center), and mass moment of inertia per unit length
respectively.

Usually, the constitutive laws are used to replace some of the variable in terms of other. Here we decided
to replace the generalized strains in terms of generalized forces (thus allowing easy specification of zero
flexibility) and to replace the generalized momenta by generalized speeds (thus allowing easy specification
of zero inertia).

Finally the boundary conditions need to be specified. For the given beam of length L, there will be two
boundary conditions at each end:

V (0, t) = V
0 OR F (0, t) = F

0 (7)

Ω(0, t) = 

0 OR M(0, t) = M

0 (8)

V (L, t) = V
L OR F (L, t) = F

L (9)

Ω(L, t) = 

L OR M(L, t) = M

L (10)

For the formulation presented we are going to assume a cantilevered beam so as to make it easier to
present. It should be noted that the formulation as well as the conclusions that would be presented are
general enough to be applicable to all possible BC combinations. Thus, the BC are:

V (0, t) = V
0 (11)

Ω(0, t) = 

0 (12)

F (L, t) = F
L (13)

M(L, t) = M
L (14)

II. Energy consistent weighting

Now consider the following weighting of all the equations (equations of motion, kinematic equations as
well as the boundary conditions). Note that the constitutive equations are not included as these equations
are satisfied exactly. ∫

L

0

{
V T

[
Ṗ + Ω̃P − F ′ − (k̃+ κ̃)F − f

]
+ ΩT

[
Ḣ + Ω̃H + Ṽ P −M ′ − (k̃+ κ̃)M − (ẽ1 + γ̃)F − m

]
+ FT

[
γ̇ − V ′ − (k̃+ κ̃)V − (ẽ1 + γ̃)Ω

]
+ MT

[
κ̇− Ω′ − (k̃+ κ̃)Ω

]}
dx

− F (0, t)T
[
V (0, t)− V

0
]
−M(0, t)T

[
Ω(0, t)− 


0
]

+ V (L, t)T
[
F (L, t)− F

L
]
+ Ω(L, t)T

[
M(L, t)− M

L
]

= 0

(15)

Integrating by parts and then simplifying the expression we have:∫
L

0

[
V T Ṗ + ΩT Ḣ

]
dx +

∫
L

0

[
FT γ̇ + MT κ̇

]
dx

=
∫

L

0

[
V T

f+ ΩT
m

]
dx +

[
V (L, t)T

F
L + Ω(L, t)T

M
L − F (0, t)T

V
0 −M(0, t)T



0
]

= 0 (16)

The first term above is the rate of change of kinetic energy, the second term is the rate of change of potential
energy, the third term is the rate of work done (power) due to applied forces in the interior of the beam and
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the fourth term is the power due to applied forces at the boundaries. The equations states that the rate of
change of energy of the beam is equal to the rate of work done on the beam. Thus, the above equations is
an energy balance equations. We are going to use the above equation to derive a Galerkin approach to solve
the equations.

III. Galerkin approximation

Now let us assume that the primary variables can be written as a linear combination of a set of trial
functions. 

V (x, t)
Ω(x, t)
F (x, t)
M(x, t)

 =


V 1(x) V 2(x) · · · V n(x)
Ω1(x) Ω2(x) · · · Ωn(x)
F 1(x) F 2(x) · · · Fn(x)
M1(x) M2(x) · · · Mn(x)




q1(t)
q2(t)

...
qn(t)

 (17)

The above expansion is an approximation to the exact solution and, assuming that the set of trial functions
is complete, will approach the exact solution as n → ∞. Now as presented above, the trial functions are
coupled, i.e., a given trial function is in general comprised of 12 functions of x for the 12 variables so as to
keep the presentation general. One of the first sets of trial functions that is presented next will be a set of
independent trial functions for each variable.

The secondary variables (P , H, γ, κ) are linearly related to the primary variables using the constitutive
laws, which are exactly satisfied. {

γi

κi

}
=

[
R S

ST T

] {
F i

M i

}
(18)

{
P i

Hi

}
=

[
G K

KT I

] {
V i

Ωi

}
(19)

Now we need n equations which could be used to solve for the n generalized coordinates. These equations
come from the above energy balance equation.∫

L

0

{
V jT

[
P iq̇i + Ω̃kqkP iqi − F i′qi − (k̃+ κ̃kqk)F iqi − f

]
+ ΩjT

[
Hiq̇i + Ω̃kqkHiqi + Ṽ kqkP iqi −M i′qi − (k̃+ κ̃kqk)M iqi − (ẽ1 + γ̃kqk)F iqi − m

]
+ F jT

[
γiq̇i − V i′qi − (k̃+ κ̃kqk)V iqi − (ẽ1 + γ̃kqk)Ωiqi

]
+ M jT

[
κiq̇i − Ωi′qi − (k̃+ κ̃kqk)Ωiqi

]}
dx

− F j(0)
T [

V i(0)qi − V
0
]
−M j(0)

T [
Ωi(0)qi − 


0
]

+ V j(L)
T [

F i(L)qi − F
L
]
+ Ωj(L)

T [
M i(L)qi − M

L
]

= 0

(20)

For each j = 1, 2, · · · , n we have one equations. The energy equation defined in the earlier section is a linear
combination of the above equations. Thus if the n equations defined above are satisfied then the energy
balance equation is automatically satisfied.

IV. Independent, orthogonal polynomial trial functions

Let all the 12 variables be represented in terms of independent generalized coordinates. Thus:

V (x, t) =
[
Φ1(x) Φ2(x) · · · Φν(x)

]


v1(t)
v2(t)

...
vν(t)

 (21)
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Ω(x, t) =
[
Φ1(x) Φ2(x) · · · Φν(x)

]


ω1(t)
ω2(t)

...
ων(t)

 (22)

F (x, t) =
[
Φ1(x) Φ2(x) · · · Φν(x)

]


f1(t)
f2(t)

...
fν(t)

 (23)

M(x, t) =
[
Φ1(x) Φ2(x) · · · Φν(x)

]


m1(t)
m2(t)

...
mν(t)

 (24)

where,

Φi(x) =

Pi−1(x̄) 0 0
0 Pi−1(x̄) 0
0 0 Pi−1(x̄)

 (25)

with
x̄ =

x

L
(26)

and

vi(t) =


vi
1(t)

vi
2(t)

vi
3(t)

 ωi(t) =


ωi

1(t)
ωi

2(t)
ωi

3(t)

 f i(t) =


f i
1(t)

f i
2(t)

f i
3(t)

 mi(t) =


mi

1(t)
mi

2(t)
mi

3(t)

 (27)

The independent trial functions used are the shifted Legendre functions.7 The Legendre functions are a
complete set of orthogonal polynomials. The shifted Legendre functions are orthogonal over the shifted (0 -
1) interval as shown below: ∫ 1

0

Pi(x̄)Pj(x̄)dx̄ = δij
1

2i + 1
(28)

The polynomials can be iteratively derived as:

P0(x̄) = 1 P1(x̄) = 2x̄− 1 (29)

Pi+1(x̄) =
(2i + 1)(2x̄− 1)Pi(x̄)− iPi−1(x̄)

i + 1
(30)

The Galerkin equations can be derived as:∫
L

0

Φj
[
(GΦiv̇i + KΦiω̇i) + Φ̃kωk(GΦivi + KΦiωi)− Φi′f i − (k̃+ ˜ST Φkfk + T̃Φkmk)Φif i − f

]
dx

+Φj(L)
[
Φi(L)f i − F

L
]

= 0
(31)

∫
L

0

Φj
[
(KT Φiv̇i + IΦiω̇i) + Φ̃kωk(KT Φivi + IΦiωi) + Φ̃kvk(GΦivi + KΦiωi)− Φi′mi

−(k̃+ ˜ST Φkfk + T̃Φkmk)Φimi − (ẽ1 + R̃Φkfk + S̃Φkmk)Φif i − m

]
dx + Φj(L)

[
Φi(L)mi − M

L
]

= 0
(32)

∫
L

0

Φj
[
(RΦkḟk + SΦkṁk)− Φi′vi − (k̃+ ˜ST Φkfk + T̃Φkmk)Φivi − (ẽ1 + R̃Φkfk + S̃Φkmk)Φiωi

]
dx

−Φj(0)
[
Φi(0)vi − V 0

]
= 0

(33)

∫
L

0

Φj
[
(ST Φkḟk + TΦkṁk)− Φi′ωi − (k̃+ ˜ST Φkfk + T̃Φkmk)Φiωi

]
dx− Φj(0)

[
Φi(0)ωi − 
̂

0

]
= 0 (34)
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where, i, j, k = 1, 2, · · · , ν, and n = 12× ν and the generalized coordinates can be represented as:


q1(t)
q2(t)

...
qn(t)

 =



v1(t)
ω1(t)
f1(t)
m1(t)

...

...
vν(t)
ων(t)
fν(t)
mν(t)



(35)

V. Special case: constant cross-section, curvature and loading

To obtain the above equations in a form suitable for solution, we need to calculate the integrals. For
demonstration, we will assume a constant cross-section (R, S, T, G, K, I are all constants), constant curvature
(k is constant) and constant distributed loading (f, m are constants). Furthermore we will assume that the
boundary conditions (FL or VL, ML or 
L, V0 or F0, 
0 or M0) are given. With the above assumptions, the
equations become:

Aji
L(Gv̇i + Kω̇i) + Cjik

Lω̃k(Gvi + Kωi)− Bjif i

−Aji
Lk̃f i − Cjik

L(S̃T fk + T̃mk)f i −Dj
Lf+ Pj(1)Pi(1)f i − Pj(1)FL = 0 (36)

Aji
L(KT v̇i + Iω̇i) + Cjik

Lω̃k(KT vi + Iωi) + Cjik
Lṽk(Gvi + Kωi)

−Bjimi −AjiLk̃m
i − Cjik

L(S̃T fk + T̃mk)mi −Aji
Lẽ1f

i

−Cjik
L(R̃fk + S̃mk)f i −Dj

Lm+ Pj(1)Pi(1)mi − Pj(1)ML = 0
(37)

Aji
L(Rḟk + Sṁk)− Bjivi −Aji

Lk̃vi − Cjik
L(S̃T fk + T̃mk)vi

−Aji
Lẽ1ω

i − Cjik
L(R̃fk + S̃mk)ωi − Pj(0)Pi(0)vi + Pj(0)V0 = 0 (38)

Aji
L(ST ḟk + Tṁk)− Bjiωi −Aji

Lk̃ωi − Cjik
L(S̃T fk + T̃mk)ωidx

−Pj(0)Pi(0)ωi + Pj(0)
0 = 0
(39)

Summation is implied over indices i and k. And Aji, Bji, Cjik and Dj are non-dimensional integrals as given
below:

Aji =
∫ 1

0

Pj(x̄)Pi(x̄)dx̄ (40)

Bji =
∫ 1

0

Pj(x̄)
(
Pi(x̄)

)′
dx̄ (41)

Cjik =
∫ 1

0

Pj(x̄)Pi(x̄)Pk(x̄)dx̄ (42)

Dj =
∫ 1

0

Pj(x̄)dx̄ (43)

(44)

The above set of equations can be written in the following form:

Ajiq̇i + Bjiqi + Cjikqiqk + Dj = 0 (45)
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VI. Solution

Given the above set of nonlinear equations for the dynamics of beam, we can have the following solutions:

• Nonlinear steady-state solution

• Linear dynamic perturbation solution about the nonlinear steady state

• Nonlinear dynamic solution

A. Nonlinear steady-state solution

The linear steady state solution is calculated by solving:

Bjiqi + Cjikqiqk + Dj = 0 (46)

where, q refers to steady-state solution due to steady-state forcing calculated in D. The solution is calculated
using Newton-Raphson iterations. The Jacobian required for the iteration can be easily calculated as:

J (q) = Bji + Cjikqk + Cjkiqk (47)

Since the highest order of nonlinearity is second, the Newton-Raphson method leads to converged solution.

B. Nonlinear equations at the steady-state

Now, let the total applied force be given by:

D = D + D̂(t) (48)

and the corresponding solution be:
q = q + q̂(t) (49)

Substituting it in the equations of motion we have the equations with respect to the steady-state solution
as:

Âji
˙̂qi + B̂jiq̂i + Ĉjikq̂iq̂k + D̂j = 0 (50)

where,

Âji = Aji (51)

B̂ji = Bji + Cjikqk + Cjkiqk (52)

Ĉjik = Cjik (53)

The above equation are completely nonlinear with the origin at the steady-state.

C. Linearized equations at the steady-state

The linearized system is given by:
Âji

˙̂qi + B̂jiq̂i + D̂j = 0 (54)

The linear modes at the steady-state are calculated using the linearized eigenvalue problem at the steady-
state:

Âji
˙̂qi + B̂jiq̂i = 0 (55)
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VII. Modal transformation and reduction

Now consider representing the variables in terms of the modal co-ordinates:

q̂i = Uilξl (56)

where, Ui1, Ui2, · · · are the modes of linearized system (Eq. 55). If the length of ξ is less then the length of
q̂ then we have reduction in the number of states of the system. The reduced order system can be written
as:

Âr
mlξ̇l + B̂r

mlξl + Ĉr
mlnξlξn + D̂r

m = 0 (57)

where,

Âr
ml = ÂjiUjmUil (58)

B̂r
ml = B̂jiUjmUil (59)

Ĉr
mln = ĈjikUjmUilUkn (60)

D̂r
m = D̂jUjm (61)

There are two points to be noted. Firstly, the simple form of the modal transformation equation (Eq. 61)
is possible due to the specific order of the equations, i.e., the equations are ordered so that the corresponding
weighing functions are in the same order as the variables in the generalized coordinate vector.

Secondly, it should be noted that the system equations are in state-space form. Thus, the eigenvalues
and eigenvectors of the system will be, in general, complex. Each vibration mode will be represented by
two eigenvalues which are complex conjugates and the corresponding eigenvectors which are also complex
conjugates. To avoid complex modal coordinates the pair of complex conjugate eigenvectors is represented
by two real vectors made up of the real and imaginary parts.8

VIII. Results

The equations (full set) were solved for a simple prismatic beam case presented in Table 1. Table 2
lists the calculated frequencies and compares the results with exact results9 as well as FEM solution.1 The
frequency predictions of a non-rotating as well as rotating beam using the present approach with 10 assumed
modes per variable (120 states) are exact to three significant digits. On the other hand, FEM solution with
10 nodes (120 states), is not very accurate leading to errors greater than 10% for the third bending mode.

Fig 1 shows the convergence of the Galerkin approach and compares it to the convergence of the FEM
approach. The Galerkin approximation is very accurate and the error decreases sharply with increasing
modes. Using around 8 trial functions per variable (less than 100 total variables), we reach the minimum
error limit for double precision calculations. The FEM approach has a smooth second-order convergence
which means one would require over a million finite elements to get to the error limit.

Fig 2 shows the change in frequency of the beam with applied vertical load. The beam deforms due to the
load and the large deformation leads to coupling between the horizontal bending and torsion modes. This is
a nonlinear coupling and can be captured by a model with correct nonlinear terms. We retained 4 vertical
bending, 2 torsion and 2 horizontal bending modes of the unloaded model in the reduced order model. Thus,
the frequencies of the linearized system is exact for no load. As we load the beam the deformation induces
nonlinear coupling which is captured by the reduced order model. One could improve on these results by
adding perturbation modes10 or with nonlinear normal modes analysis.11
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Table 1. Beam data (for model validation purpose)

Span 16 m
Chord 1 m

Mass per unit length 0.75 kg/m
Mom. Inertia (50% chord) 0.1 kg m

Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2× 104 N m2

Torsional rigidity 1× 104 N m2

Bending rigidity (chordwise) 4× 106 N m2

Shear/Extensional rigidity ∞

Table 2. Beam structural frequencies (for model validation purpose)

Mode (rad/s) Exact Present FEM
10 modes 10 nodes

Cantilevered Blade: ω = 0 & v = 0
1st bending 2.243 2.243 2.252
2nd bending 14.06 14.06 14.74
3rd bending 39.36 39.36 44.94
1st torsion 31.05 31.05 31.12
2nd torsion 93.14 93.14 95.32

Rotating Cantilevered Blade: ω = 3.189 rad/s & v = 0
1st bending 4.114 4.114 4.110
2nd bending 16.23 16.23 16.88
3rd bending 41.59 41.59 47.12
Rotating Cantilevered Blade with Offset: ω = 3.189 rad/s & v = 51.03 m/s

1st bending 5.703 5.703 5.696
2nd bending 18.72 18.72 19.35
3rd bending 44.50 44.50 49.97
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Figure 1. Accuracy of the Galerkin approach
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Figure 2. Efficacy of the reduced-order model in capturing nonlinearities
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