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Abstract
Traditional Support Vector Machines (SVMs) need pre-wiredfinite time windows to predict and clas-

sify time series. They do not have an internal state necessary to deal with sequences involving arbitrary
long-term dependencies. Here we introduce a new class of recurrent, truly sequential SVM-like devices
with internal adaptive states, trained by a novel method called EVOlution of systems with KErnel-based
outputs (Evoke), an instance of the recent Evolino class of methods [1, 2]. Evoke evolves recurrent neu-
ral networks to detect and represent temporal dependencieswhile using quadratic programming/support
vector regression to produce precise outputs, in contrast to our recent work [1, 2] which instead uses pseu-
doinverse regression. Evoke is the first SVM-based mechanism learning to classify a context-sensitive
language. It also outperforms recent state-of-the-art gradient-based recurrent neural networks (RNNs)
on various time series prediction tasks.

1 Introduction

Support Vector Machines (SVMs) [3] are powerful regressorsand classifiers that make predictions based
on a linear combination of kernel basis functions. The kernel maps the input feature space to a higher
dimensional space where the data is linearly separable (in classification), or can be approximated well with
a hyperplane (in regression). A limited way of applying existing SVMs to sequence prediction [4, 5] or
classification [6] is to build a training set either by transforming the sequential input into some static domain
(e.g., a frequency and phase representation, a Hidden Markov model (HMM) [7, 8], a simple frequency
count of symbols or substrings [9]), or by considering restricted, fixed time windows ofm sequential input
values. One alternative presented in [10] is to average kernel distance between elements of input sequences
aligned tom points. Such window-based approaches are obviously bound to fail if there are temporal
dependencies exceedingm steps; while HMMs present numerous local minima when trained with long
sequences [11, 12]. In a more sophisticated approach by Suykens and Vandewalle [13], a window ofm

previous output values is fed back as input to a recurrent model with a fixed kernel. So far, however, there
has not been any recurrent SVM thatlearnsto create internal state representations for sequence learning
tasks involving time lags of arbitrary length between important input events. For example, consider the
task of correctly classifying arbitrary instances of the context-free languageanbn (n a’s followed byn b’s,
for arbitrary integersn > 0).

Our novel algorithm, EVOlution of systems with KErnel-based outputs (Evoke), addresses such prob-
lems. It evolves a recurrent neural network (RNN) as a preprocessor for a standard SVM kernel. The
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combination of both can be viewed as an adaptive kernel learning a task-specific distance measure between
pairs of input sequences. Although Evoke uses SVM methods, it can solve several tasks that traditional
SVMs cannot even solve in principle.

Evoke is a special instance of a recent, broader algorithmicframework for supervised sequence learn-
ing called Evolino: EVolution of recurrent systems with Optimal LINear Output [1, 2]. Evolino combines
neuroevolution (i.e. the artificial evolution of neural networks) and analytical linear methods that are opti-
mal according to various criteria. The underlying idea of Evolino is that often a linear model can account
for a large number of properties of a sequence learning problem. Non-linear properties unpredictable by
the linear model are then dealt with by more general evolutionary optimization processes. Recent work has
focused on the traditional problem of minimizing mean squared error (MSE) summed over all time steps
of a time series to be predicted. An optimal linear mapping from hidden nodes to output nodes was ob-
tained through the Moore-Penrose pseudoinverse method (i.e. PI-Evolino), which is both fast and optimal
in the sense that it minimizes MSE [14]. The weights of the more complex, nonlinear hidden units were
found through evolution, where the the fitness function was the residual error on a validation set, given the
training-set-optimal linear mapping from hidden to outputnodes.

In the present work we use a different optimality criterion,namely, the maximum margin criterion of
SVMs [3]. Hence the optimal linear output weights are evaluated using quadratic programming, as in
traditional SVMs, the difference here being the evolutionary RNN preprocessing of the input.

The resulting Evoke system not only learns to solve tasks unsolvable by any traditional SVM, but also
outperforms recent state-of-the-art RNNs on certain tasks, including Echo State Networks (ESNs) [15] and
previous gradient descent RNNs [16, 17, 18, 19, 20, 21].

2 The Evoke Algorithm

Evolino systems are based on two cascaded modules: (1) a recurrent neural network that receives the
sequence of external inputs, and (2) a parametric function that maps the internal activations of the first
module to a set of outputs. In particular, an Evoke network (Figure 1a) is governed by the following
formulas:

φ(t) = f(W,u(t),u(t − 1), . . . ,u(0)), (1)

y(t) = w0 +

k∑

i=1

li∑

j=0

wijK(φ(t), φi(j)), (2)

whereφ(t) ∈ R
n is the activation at timet of then units of the RNN,f(·), given the sequence of input

vectorsu(0)..u(t), and weight matrixW. Note that, because the networks are recurrent,f(·) is a function
of the entire input history. The outputy(t)∈R of the combined system can be interpreted as a class label,
in classification tasks, or as a prediction of the next inputu(t + 1), in time-series prediction. To compute
y(t) we take the weighted sum of the kernel distanceK(·, ·) betweenφ(t) and each activation vectorφi(j)
obtained by first running the training set of sequences through the network (see below).

In order to find aW that minimizes the error betweeny(t) and the correct output, we use artificial evo-
lution [22, 23, 24]. Starting with random population of real-numbered strings orchromosomesrepresenting
candidate weight matrices, we evaluate each candidate through the following two-phase procedure.

In the first phase, the aforementioned training set of sequence pairs,{ui, di}, i = 1..k, each of length
li, is presented to the network. For each input sequenceu

i, starting at timet = 0, each patternui(t) is



Technical Report No. IDSIA-19-05 (version 2.0) 3

SVM

output

Recurrent 

Neural Network

4 nφ3

uu (t)

1φ

u (t)1 2 3 4 n(t)(t) u (t)u

φ2 φ φ

(a)

ΣΣ

oo

I

S S

G

G

I

G

G

FGF

G

OO

(b)

Figure 1: (a)Evoke network. An RNN receives sequential inputsu(t) and produces neural activation
vectorsφ1 . . . φn at every time stept. These values are fed as input to a Support Vector Machine, which
outputs a scalary(t). While the RNN is evolved, the weights of the SVM module are computed with
support vector regression/classification. (b)Long Short-Term Memory. The figure shows the LSTM
architecture that we use for the RNN module. This example network has one input (lower-most circle),
and twomemory cells(two triangular regions). Each cell has an internal stateS together with a Forget
gate (GF ) that determines how much the state is attenuated at each time step. The Input gate (GI ) controls
access to the cell by the external inputs that are summed intoeachΣ unit, and the Output gate (GO) controls
when and how much the cell’s output unit (O) fires. Small dark nodes represent the multiplication function.

successively propagated through the RNN to produce a vectorof activationsφi(t) that is stored as a row
in a n ×

∑k

i li matrix Φ. Associated with each input sequence is atarget row vectordi in D containing
the correct output values for each time step. Once allk sequences have been seen, the weightswij of the
kernel model (equation 2) are computed using support vectorregression/classification fromΦ to D, with
{φi, di} as training set.

In the second phase, a validation set is presented to the network, but now the inputs are propagated
through the RNNandthe newly computed output connections to producey(t). The error in the classifica-
tion/prediction or theresidual error, possibly combined with the error on the training set, is then used as
the fitness measure to be minimized by evolution. By measuring error on the validation set rather that just
the training set, RNNs will receive better fitness for being able to generalize.

Those RNNs that are most fit are then selected for reproduction where new candidate RNNs are created
by exchanging elements between chromosomes and an possiblymutating them. New individuals replace
the worst old ones and the cycle repeats until a sufficiently good solution is found.

This idea of evolving neural networks using artificial evolution or neuroevolution[25] is normally
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applied to reinforcement learning tasks where correct network outputs (i.e. targets) are not knowna priori.
However, Evolino/Evoke uses it for supervised learning with feedback based on a validation set (as opposed
to the traditional training set). Instead of trying to evolve an RNN that makes predictions directly, we use
an RNN to perform a non-linear transformation from the arbitrary-dimensional space of sequences to the
finite-dimensional space of neural activations, where the SVM can operate. This way we can exploit the
powerful generalization capability of SVMs, in the contextof sequential data.

In this study, Evoke is instantiated using Enforced SubPopulations (ESP; [26]) to evolve Long Short-
Term Memory (LSTM; [21]) networks. We combine these two particular methods because both have
routinely outperformed previous methods in their domains [27, 28, 21, 29, 30, 31, 32, 33, 34].

ESP differs from standard neuroevolution methods in that, instead of evolving complete networks, it
coevolvesseparate subpopulations of network components orneurons. If the performance of ESP does not
improve for a predetermined number of generations, a technique calledburst mutation[26, 1] is used, to
inject diversity into the subpopulations.

LSTM is an RNN purposely designed to learn long-term dependencies via gradient descent. The unique
feature of the LSTM architecture is thememory cellthat is capable of maintaining its activation indefinitely
(figure 1b). Memory cells consist of a linear unit which holdsthestateof the cell, and three gates that can
open or close over time. The Input gate “protects” a neuron from its input: only when the gate is open, can
inputs affect the internal state of the neuron. The Output gate lets the internal state out to other parts of the
network, and the Forget gate enables the state to “leak” activity when it is no longer useful. The gates also
receive inputs from neurons, and a function over their input(usually the sigmoid function) decides whether
they open or close. [21, 29, 30, 31, 32, 33, 34]. Hereafter, the term gradient-based LSTM (G-LSTM) will
be used to refer to LSTM when it is trained in the conventionalway using gradient-descent.

ESP and LSTM are combined by coevolving subpopulations of memory cells instead of standard re-
current neurons. Each chromosome is a string containing theexternal input weights and the Input, Output,
and Forget gate weights, for a total of4 ∗ (I + H) weights in each memory cell chromosome, whereI is
the number of external inputs andH is the number of memory cells in the network. There are four sets
of I + H weights because the three gates and the cell itself receive input from outside the cell and the
other cells. ESP normally uses crossover to recombine neurons. However, for Evoke, where fine local
search is desirable, ESP uses only mutation. The top quarterof the chromosomes in each subpopulation
are duplicated and the copies are mutated by adding Cauchy distributed noise to all of their weight values.

The support vector method used to compute the weights (wij in equation 2) is a large scale approxima-
tion of the quadratic constrained optimization, as implemented in [35].

For continuous function generation,backprojection(or teacher forcingin standard RNN terminology)
is used, where the predicted outputs are fed back as inputs inthe next time step:

φ(t) = f(u(t), y(t − 1),u(t − 1), . . . , y(0),u(0)).

During training and validation, the correct target values are backprojected, in effect “clamping” the net-
work’s outputs to the right values. During testing, the network backprojects its own predictions.

3 Experimental Results

Experiments were carried out on two test problems: context-sensitive languages, and multiple superim-
posed out-of-phase sine waves. These tasks were chosen to highlight Evoke’s ability to perform well in
both discrete and continuous domains. The first task is of thetype standard SVMs cannot deal with at all;
the second is of the type even the recent ESNs [15] cannot dealwith.
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Training data G-LSTM PI-Evolino Evoke

1..10 1..29 1..53 1..257
1..20 1..67 1..95 1..374

Table 1:Generalization results for the anbncn language. Since traditional SVMs cannot solve this task at
all, the table compares Evoke to gradient-based LSTM (G-LSTM), the only pre-2005 subsymbolic method
that has reliably learnt this problem, and pseudoinverse-based Evolino (PI-Evolino). The left column shows
the set of legal strings used to train each method. The other columns show the set of strings that each
method was able to accept after training. The results for G-LSTM are from [30], and for Evolino from
[1, 2]. Average of 20 runs.

3.1 Context-Sensitive Grammars

Standard SVMs, or any approach based on a fixed time window, cannot learn to recognize context-sensitive
languages where the length of the input sequence is arbitrary and unknown in advance. For this reason we
focus on the simplest such language, namely,anbncnT (i.e. strings ofn as, followed byn bs, followed by
n cs, and ending with the termination symbolT ). Classifying exemplars of this language entails counting
symbols and remembering counts until the whole string has been read. Since traditional SVMs cannot solve
this task at all, we compare Evoke to the pseudoinverse-based Evolino, and the only pre-2005 subsymbolic
learning machine that has satisfactorily solved this problem, namely, gradient-based LSTM [30].

Symbol strings were presented to the networks, one symbol ata time. The networks had 4 input units,
one for each possible symbol:S for start,a, b, andc. An input is set to 1.0 when the corresponding symbol
is observed, and -1.0 when it is not present. The network state was fed as input to four distinct SVM
classifiers, and each was trained to predict one of the possible following symbolsa, b, c andT .

Two sets of 20 simulations were run each using a different training set of legal strings,{anbncn}, n =
1..N , whereN was 10 and 20. The second half of each set was used for validation, and the fitness of each
individual was evaluated as the sum of training and validation error, to be minimized by evolution.

LSTM networks with 5 memory cells were evolved, with random initial values for the weights between
−5.0 and5.0. The Cauchy noise parameterα for both mutation and burst mutation was set to0.1, i.e.
50% of the mutations is kept within this bound. In keeping with the setup in [30], we added a bias unit to
the Forget gates and Output gates with values of+1.5 and−1.5, respectively. The SVM parameters were
chosen heuristically: a Gaussian kernel with standard deviation 2.0 and capacity100.0. Evolution was
terminated after 50 generations, after which the best network in each simulation was tested. The results are
summarized in Table 3.1.

Evoke learns in approximately 6 minutes on average (on a3 GHz desktop) but, more importantly, it is
able to generalize far better than G-LSTM—the only gradient-based RNN so far that has achieved good
generalization on such tasks [29, 30, 32, 33].

While being superior forN = 10 andN = 20, the performance of Evoke degraded for larger values of
N , for which both PI-Evolino and G-LSTM achieved better results.

3.2 Multiple Superimposed Sine Waves

In [36], the author reports that Echo State Networks [15] areunable to learn functions composed of multiple
superimposed oscillators. Specifically, functions likesin(0.2x) + sin(0.311x), in which the individual
sines have the same amplitude but their frequencies are not multiples of each other. G-LSTM also has
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Figure 2: Performance of Evoke on the double superimposed sine wave task. The plot shows the
generated output (continuous line) of a typical network produced after 50 generations (3000 evaluations),
compared with the test set (dashed line with crosses).

difficulties in solving such tasks quickly.
For this task, networks with 10 memory cells were evolved for50 generations to predict400 time steps

of the above function, excluding the first100 as washout time; fitness was evaluated summing the error
over the training set (points101..400) and a validation set (points401..700), and then tested on another set
of data points from time-steps701..1000. This time the weight range was set to[−1.0, 1.0], and a Gaussian
kernel with standard deviation2.0 and capacity10.0 was used for the SVM.

On 20 runs with different random seeds, the average summed squared error over the test set (300
points) was0.021. On the same problem, though, pseudoinverse-based Evolinoreached a much better
value of0.003. Experiments with three superimposed waves, as in [1, 2], gave unsatisfactory results.

Figure 3.2 shows the behavior of one of the double sine wave Evoke networks on the test set.
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4 Conclusion

We introduced the first kernel-adapting, truly sequential SVM-based classifiers and predictors. They are
trained by the Evoke algorithm: EVOlution of systems with KErnel-based outputs. Evoke is a special case
of the recent Evolino class of algorithms [1, 2] in which a supervised learning module (SVM in this case) is
employed to assign fitness to the evolving recurrent systemsthat pre-process inputs. Our particular Evoke
implementation uses the ESP algorithm to coevolve the hidden nodes of an LSTM RNN.

This versatile method can deal with long time lags between discrete events as well as with continuous
time-series prediction. It is able to solve a context-sensitive grammar task that standard SVMs cannot
solve even in principle. It also outperforms ESNs and previous state-of-the-art RNN algorithms for such
tasks (G-LSTM) in terms of generalization. Finally, Evoke also quickly solves a task involving multiple
superimposed sine waves on which ESNs fail, and where G-LSTMis slow.

The present work represents a pilot study of evolutionary recurrent SVMs. As for its performance,
Evoke was generally better than gradient-based LSTM, but worse than the pseudoinverse-based Evolino
[1, 2]. One possible reason for this could be that the kernel mapping of the SVM component induces a more
rugged fitness landscape that makes evolutionary search harder. Future work will further explore Evoke’s
limitations, and ways to circumvent them, including the co-evolution of SVM kernel parameters.
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