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Abstract

Traditional Meta-Learning requires long training times, and is often focused
on optimizing performance quality, neglecting computational complexity. Algo-
rithm Portfolios are more robust, but present similar limitations. We reformulate
algorithm selection as atime allocationproblem: all candidate algorithms are run
in parallel, and their relative priorities are continually updated based on runtime
information, with the aim of minimizing the time to reach a desired performance
level. Each algorithm’s priority is set based on its current time to solution, esti-
mated according to a parametric model that is trainedand used while solving a
sequence of problems, gradually increasing its impact on the priority attribution.
The use ofcensored samplingallows to train the model efficiently.

1 Motivation

Most solvable AI problems can be addressed by more than one algorithm; most AI
algorithms feature a number of parameters that have to be set. Both choices can dra-
matically affect the quality of the obtained solution, and the time spent obtaining it.
Algorithm Selection, orMeta-Learning, techniques [1, 2] typically address these ques-
tions by solving a large number of problems with each of the available algorithms,
in order to learn a mapping from (problem,algorithm) pairs to expected performance.
The obtained mapping is later used to select and run, for eachnew problem, only the
algorithm that is expected to give the best results.

This approach, tough being preferable to the far more popular “trial and error”,
poses a number of problems. It presumes that such a mapping can be learned at all,
i.e., that the actual algorithm performance on a given problem will be predictable with
enough precision before even starting the algorithm — oftennot the case with stochas-
tic algorithms, whose performance can exhibit large fluctuations among different runs.
It also assumes problem instances met during the training phase to be statistically rep-
resentative of successive ones. For these reasons, there usually is no way to detect
a relevant discrepancy between expected and actual performance of the chosen algo-
rithm. It also neglects computational complexity issues: ranking between algorithms
is often based solely on the expectedquality of the performance, and the time spent
during the training phase is not even considered, although it can be large enough to
cancel any practical advantage of algorithm selection.

An alternative, inspired by theAlgorithm Portfolioparadigm [3], could consist in
selecting asubsetof the available algorithms, to be run in parallel, with the same pri-
ority, until the fastest one solves the problem. This simplescheme would be more
robust, as it is less likely that performance estimates would be wrong for all selected
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algorithms, but it would also involve an additional overhead, due to the “brute force”
parallel execution of all candidate solvers.

In our view, a crucial weakness of these approaches is that they don’t exploit any
feedback from the actual execution of the chosen algorithms. We try to move a step
in this direction, introducingDynamic Algorithm Portfolios. Instead offirst choosing
a portfolio then running it, we iterativelyallocatea time slice, sharing it among all
the available algorithms, andupdate the relative prioritiesof the algorithms, based
on their current state, in order to favor the most promising ones. Instead of basing
the priority attribution only on performance quality, we fixa target performance, and
try to minimize the time to reach it. To this aim, we search fora mapping from
(problem,algorithm,current algorithm state) triples toexpected timeto reach the de-
sired performance quality. To further reduce computational complexity, we focus on
lifelong-learningtechniques that drop the artificial boundary between training and us-
age, exploiting the mapping during training, and includingtraining time in performance
evaluation. In [4] we termed this approachAdaptive Online Time Allocation(AOTA),
and introduced an example of a fixed heuristic mapping; in [5]we proposed a method
to learn a probabilistic mapping while solving a problem sequence. In the following
we briefly present some related work (Sect. 2); describe the AOTA framework (Sect. 3)
and its current instantiations (Sect. 4). Sect. 5 reports new experimental results of a
comparison with a static approach. Sect. 6 concludes the article with directions for
future work.

2 Previous work

A number of interesting “dynamic” exceptions to the static algorithm selection paradigm
can be found in literature (see the tech report version of [4]for a more exhaustive bibli-
ography). In [6], algorithm recommendation is based on the performance of the candi-
date algorithms during a predefined amount of time, called the observational horizon.
In anytime algorithm monitoring[7], the dynamic performance profileof a planning
technique is updated according to its performance, in orderto stop the planning phase
when further improvements in the actions planned are not worth the time spent in eval-
uating them. The “Parameterless GA” [8] is a fixed heuristic time allocation technique
for Genetic Algorithms. In [9], a system solves function inversion and time-limited op-
timization problems by searching in a space of problem solving techniques, allocating
time to them according to their probabilities, and updatingthe probabilities according
to positive and negative results on a sequence of problems. In a Reinforcement Learn-
ing [10] setting, algorithm selection can be formulated as aMarkov Decision Process:
in [11], the algorithm set includes sequences of recursive algorithms, formed dynami-
cally at run-time solving a sequential decision problem, and a variation of Q-learning
is used to find an online algorithm selection policy; in [12],a set of deterministic
algorithms is considered, and, under some limitations, static and dynamic algorithm
selection techniques based on dynamic programming are presented. Success Story al-
gorithms [13] can undo policy modifications that did not improve the reward rate.

Literature on algorithm portfolios is usually focused on choice criteria for building
the set of candidate solvers such that their areas of good performance don’t overlap.
The portfolio is then executed in parallel [3] or used as a pool for algorithm selection
[14]. Other interesting research areas that can be related to “static” algorithm selection
include landmarking [15], anytime algorithm scheduling [16], time limited planning
[17], bandit problem solving [18], racing [19], search in program space [20].
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3 AOTA framework

Consider asequenceB of m problem instancesb1, b2, . . . , bm, roughly sorted in in-
creasing order of difficulty, and featuring precise stopping criteria (e.g., search prob-
lems in which the solution is known to exist and can be recognized; optimization prob-
lems in which a reachable target value for performance is given); and a setA of n
algorithmsa1, a2, . . . , an, that can be applied to the solution of the problems inB,
paused and resumed at any time, and queried, at a negligible cost, for state information
d ∈

�d related to their progress in solving the current instance. We aim at mini-
mizing the time to solve the whole problem sequenceB. To describe the state of a
Dynamic Algorithm Portfolio (DAP), letti be the time already spent onai, τi the cur-
rentestimateof the time still needed byai to solve the current problem,xi a feature
vector, possibly including information about the current problem instance, the algo-
rithm ai itself (e.g., its kind, the values of its parameters), and its current statedi;
Hi = {(x

(r)
i , t

(r)
i ), r = 0, . . . , hi} a set of collected samples of these pairs,fτ a model

that maps historiesHi to estimatedτi.
If the modelfτ was precise enough, we would not need to run more than one al-

gorithm, theai that is mapped to a lowerτ before its start (ti = 0): it is instead
more realistic to assume that the model’s estimates are rough, but can be improved by
collecting more data inHi, i.e., by getting more run-time feedback on the actual per-
formance ofai on current problem instance. We then introduce a set of nonnegative
scalarsPA = {p1, .., pn}, pi ≥ 0,

∑n
i=1 pi = 1, that represent the currentbiasof the

portfolio, slice machine time with a small interval∆t, and iteratively share each time
slice between the algorithms proportionally to the currentbias. Before each iteration,
the bias is updated according to a functionfP of {τi}, that should obviously give more
time to expected fasterai (i.e., the ones with a lowτi); after a sharepi∆t has ex-
pired,τi is updated based on currentHi.In intra-problemAOTA, the predictive model
fτ is fixed; in inter-problemAOTA, fτ itself is adaptive, and gets updated after each
problem’s solution.

Figure 1: A pseudocode for inter-problem AOTA

For each problem bk

initialize {τi}
While (bk not solved)

update PA = fP ({τi})
For each algorithm ai

run ai for pi∆t

update Hi = Hi ∪ (xi, ti)
update τi = fτ (Hi)

End

End
update fτ = F{Hi}

End

Figure1 displays pseudocode for the AOTA framework: example instantiations for
fτ , fP andF are given in the next section.
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4 Example AOTAs

In [4] we presented a fixed heuristicfτ . We considered algorithms with a scalar state
x, that had to reach a target value:Hi in this case is a simplelearning curve. Through
a shifting window linear regression, we extrapolated for each i the timeti,sol at which
the current learning curveHi would reach the target value, in order to estimate the time
to solutionτi = ti,sol − ti. Even though the estimates were obviously optimistic, they
were updated so often that the overall performance of the intra-problem AOTA was
remarkably good; its obvious limitations were that it required some prior knowledge
about the algorithms, and a simple relationship between thelearning curve and the time
to solution.

What if we instead want tolearn a potentially complex mappingfτ from scratch?
For a successful algorithmai that solved the problem at timet(hi)

i , we cana posteriori

evaluate the correctτ (r)
i = t

(hi)
i −t

(r)
i for each pair(x(r)

i , t
(r)
i ) in Hi. In a first tentative

experiment, that led to poor results, these values were usedas targets to learn a regres-
sion from pairs(x, t) to residual time valuesτ . The main problem with this approach
is whichτ values to choose as targets for theunsuccessfulalgorithms. Assigning them
heuristically would penalize with highτ values algorithms that were stopped on the
point of solving the task, or give incorrectly low values to algorithms that cannot solve
it; obtaining more exact targetsτ by running more algorithms until the end, and “cap-
ping” runs of unsuccessful or poorly performing algorithmsto high time values, as in
[14], would allow to obtain more precise models, but at the expense of increasing the
overhead of training it.

The alternative we presented in [5] is inspired bycensored samplingfor lifetime
distribution estimation [21], and consists in learning a parametric modelg(τ |xi, ti;w)
of the conditional probability density function (pdf) of the residual timeτ . To see how
the model can be trained, imagine we continue running the portfolio for a while after
the first algorithm solves the current task, such that we end up having one or more
successful algorithmsai, for whoseHi the correct targetsτ (r)

i can be evaluated as

above. Assuming eachτ (r)
i to be the outcome of an independent experiment, including

t in x to ease notation, ifp(x) is the (unknown) pdf of thex(r)
i we can write the

likelihood ofHi as

Lsucc(Hi) =

hi−1∏

r=0

g(τ
(r)
i |x

(r)
i ;w)p(x

(r)
i ) (1)

For the unsuccessful algorithms, the final time valuet
(hi)
i recorded inHi is a lower

bound on the unknown, and possibly infinite, time to solve theproblem, and so are the
τ

(r)
i , so to obtain the likelihood we have to integrate (1)

Lfail(Hi) =

hi−1∏

r=0

[1 − G(τ
(r)
i |x

(r)
i ;w)]p(x

(r)
i ) (2)

whereG(τ |x;w) =
∫ τ

0
g(ξ|x;w)dξ is the conditional cumulative distribution

function (cdf) corresponding tog.
We can then search the value ofw that maximizesL(H) =

∏
i L(Hi), or, in a

Bayesian approach, maximize the posteriorp(w|H) ∝ L(H|w)p(w). Note that in
both cases the logarithm of these quantities can be maximized, and terms not inw can
be dropped.

4



To prevent overfitting, and force the model to have a realistic shape, we can use
some known parametric lifetime model, such as an Extreme Value distribution
g(l|x, t;w) = 1

δ e{[(l−η)/δ]−e(l−η)/δ} on the logarithml = log τ of time values [21] and
express the dependency onx andw in its two parametersη = η(x;w), δ = δ(x;w):
these can in turn be the two outputs of a more complex parametric model, with input
x, and parameterw, whose value can be optimized by gradient descent, minimizing
the negative logarithm of the resultingL(H), in a fashion that is common for modeling
conditional distributions (see, e.g., [22], par 6.4).

One advantage of this approach is that it fully exploits the state history information
gathered, as it allows to learn from the unsuccessful algorithms as well.

For fP , one reasonable heuristic, that gave good results, consists in assigning1/2
of the current time slice to the expected fastest algorithm (i.e., the one with lowestτi),
1/4 to the second fastest, and so on. This heuristic cannot be directly applied to inter-
problem AOTA, though, as the model would obviously be unreliable during the first
problems of the sequence. In this case it would be better to start the problem sequence
with a “brute force”fP (pi = 1/n), and vary it gradually towards the above described
“ranking” fP (pi = 2−ri , ri being the current rank ofai based on{τi}).

5 Experiments

We present experimental results with the sameA andB as in [5]: A a set of76 sim-
ple generational Genetic Algorithms [23], differing in population size (2i, i = 1..19),
mutation rate (0 or 0.7/L, L being the genome length) and crossover operator (uni-
form or one-point, with rate0.5 in both cases);B a sequence21 of artificial deceptive
problems, such as the “trap” described in [8], consisting ofn copies of anm-bit trap
function: eachm-bit block of a bitstring of lengthnm gives a fitness contribution ofm
if all its bits are1, and ofm − q if q < m bits are1. The genome length varies from
30 to 96 and the sizem of the deceptive block from2 to 4. The problems were sorted
based on a rough estimate of their difficulty, from15 blocks of size2 to 24 blocks of
size4. The feature vectorsx included two problem features (genome length and block
size), the algorithm parameters, the current best and average fitness values and the time
spent, together with their last variations, for a total of11 inputs.

To modelg we used an Extreme Value distribution on the logarithms of time values
with parametersη(x;w) andδ(x;w) being quadratic expansions ofx of the formw0+∑

i wixi +
∑

i,j wi,jxixj . The weights were obtained by maximizing the Bayesian
posterior described in sect. 4, using a Cauchy distributionp(w) = 1/(1 + w)2 as a
prior.

As for fP , pi was set proportionally to(2 − log(m+1−j)
log(m) )−ri , ri being the current

rank of ai in order of increasingτi, j the index of current task,m the total number
of tasks. In this way the distribution of time is uniform during the first task (when
the model is still untrained), and tends through the task sequence to the “ranking”fP

described in Sect. 4 (pi = 2−ri ), in which the expected fastest solver gets half of the
current time slice. After the solution of each task, a further fraction of the time spent
is allocated to the remaining algorithms, gathering more data in their histories in order
to improve the model: this fraction is also varied during thetask sequence, from1 to
0, linearly. Results were similar to the ones obtained in [5] with a slightly different
AOTA, employing a Neural Network as parametric model.

To compare with a more traditional algorithm selection technique, analogous to,
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Figure 2: The cumulative time, i.e., the time spent so far, on the sequence of training tasks
by the adaptivefτ method, labeled L2-AOTA, compared with the static algorithm selection AS,
which requires solving each problem with every algorithm; the best algorithm in the set (BEST),
and the brute-force approach (BRUTE). Time is measured in fitness function evaluations, values
shown are upper95% confidence limits calculated on20 runs. A logarithmic scale is used on
time values.

e.g., [14], we also trained a static model of algorithm performance, gathering runtime
data for all76 algorithms on the first18 problems: this data was then used to perform
a simple linear regression from a quadratic expansion of problem and algorithm fea-
tures to the logarithm of runtime values, capping runs of theunsuccessful algorithms.
Dynamic features related to the state of the algorithms wereobviously not considered
in this case. The obtained model was then used to select and run a single algorithm for
each of the remaining3 problems.

Figure 2 compares training time of this static approach, labeled AS, with the one
of the adaptivefτ approach, labeled L2-AOTA; we also display the performanceof the
(usually different at each run) fastest solver of the set, labeled BEST, which would be
the performance of an ideal algorithm selection with “foresight” of the correctτi values
at ti = 0; and the estimated performance of a brute force approach, i.e., running all the
algorithms in parallel until one solves the problem. Note that this latter is much more
effective than the training of ’AS’, which requires solvingeach problem with every
algorithm.

Figure 3 plots the performance on the three remaining problems, with deceptive
block sizes of2,3 and 4 respectively. Learning was turned off inL2 − AOTA to
allow a comparison withAS. The latter had a better performance on tasks19 and21,
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Figure 3: The times spent on the last three tasks of the sequence, and their sum. The overall
performance of the dynamic approach is better, notwithstanding a difference of three orders of
magnitude in training time.

but much worse on task20, for which the algorithm runtimes were apparently more
difficult to predict, so the overall performance ofL2−AOTA was better, even though
its training time was more than three orders of magnitude faster.

6 Conclusions and future work

The main novelties of our method consist in the “lifelong-learning” approach to algo-
rithm selection, and in the use of censored sampling to update a parametric conditional
distribution of algorithm runtime. The particular bias update strategyfP adopted al-
lowed to use the modelwhile training it, gradually increasing its impact on the time
allocation as more problems were solved, and more historic data gathered, and prac-
tically saving computation time by limiting the learning process to “interesting” parts
of the training space; The idea of performing some sort of algorithm selection based
on runtime interaction with the algorithms is not completely new (see Sect.2), but we
consider it as an interesting line of research.

We advocate online time allocation with sets of computationally expensive algo-
rithms, whose performance is not easily predictable. For faster algorithms, a more
refined approach should also take into account the cost of updating the model; for do-
mains in which algorithm performance can be easily predicted, traditional “offline”
algorithm selection techniques can be sufficient, even though the “online” approach
can still be useful to reduce training time.
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At the moment, the main limitations of our approach, that still prevent its use in
more challenging situations, are the use of “batch” learning for training the model,
which should be replaced by an online technique, as it obviously limits the number
of problems; and the need of sorting the problems by difficulty. This latter can be
relaxed, e.g., by performing a round robin on the available tasks, trying to solve each
of them for some amount of time, until the easiest one is solved by brute force, after
which the model is first updated, and so on. Other prior knowledge, is required for the
choice of the algorithms inA and of the features to include inx. The parametric model
employed can give predictions also before starting the algorithms (i.e., forti = 0),
so it could in principle be used to adapt a redundant algorithm setA to the current
problem, guiding the choice of a set of promising points in parameter space, or even to
pick a single algorithm when the selection is easy enough.Feature selectiontechniques
could also help automate the procedure. Another limitationis that the user has to set
a target performance quality for each problem. While this might be natural for certain
problems, in many cases it would be preferable to set insteada parameter quantifying
how much extra time should be spent relative to the improvement in the solution. This
would require learning a more complex model ofperformance profile, as in [7].

In future work we plan to address these limitations; ongoingresearch is focussed
on online training techniques, in order to allow for larger experiments with different
algorithm set/problem sequence combinations.
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