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Abstract

Traditional Meta-Learning requires long training times, and is often fedus
on optimizing performance quality, neglecting computational complexity.0Alg
rithm Portfolios are more robust, but present similar limitations. We refitata
algorithm selection as @me allocationproblem: all candidate algorithms are run
in parallel, and their relative priorities are continually updated based dimmen
information, with the aim of minimizing the time to reach a desired performance
level. Each algorithm’s priority is set based on its current time to solutidi, es
mated according to a parametric model that is traiaed used while solving a
sequence of problems, gradually increasing its impact on the priorityttnib
The use otensored samplingllows to train the model efficiently.

1 Motivation

Most solvable Al problems can be addressed by more than gueithin; most Al
algorithms feature a number of parameters that have to beBséh choices can dra-
matically affect the quality of the obtained solution, ahé time spent obtaining it.
Algorithm Selection, oMeta-Learning techniques [1, 2] typically address these ques-
tions by solving a large number of problems with each of thailakile algorithms,

in order to learn a mapping fronpioblemalgorithm) pairs to expected performance.
The obtained mapping is later used to select and run, for eaatproblem, only the
algorithm that is expected to give the best results.

This approach, tough being preferable to the far more poptial and error”,
poses a number of problems. It presumes that such a mappinigeckearned at all,
i.e., that the actual algorithm performance on a given gmoblill be predictable with
enough precision before even starting the algorithm — aftarihe case with stochas-
tic algorithms, whose performance can exhibit large fluibbina among different runs.
It also assumes problem instances met during the trainiagepto be statistically rep-
resentative of successive ones. For these reasons, thealyls no way to detect
a relevant discrepancy between expected and actual penfiaerof the chosen algo-
rithm. It also neglects computational complexity issuesiking between algorithms
is often based solely on the expecigahlity of the performance, and the time spent
during the training phase is not even considered, althotughan be large enough to
cancel any practical advantage of algorithm selection.

An alternative, inspired by thalgorithm Portfolioparadigm [3], could consist in
selecting asubsetof the available algorithms, to be run in parallel, with tlzene pri-
ority, until the fastest one solves the problem. This sing@beme would be more
robust, as it is less likely that performance estimates d/teal wrong for all selected



algorithms, but it would also involve an additional overtiedue to the “brute force”
parallel execution of all candidate solvers.

In our view, a crucial weakness of these approaches is thgtdbn't exploit any
feedback from the actual execution of the chosen algorithivis try to move a step
in this direction, introducingdynamic Algorithm Portfolios Instead offirst choosing
a portfolio thenrunning it, we iterativelyallocate a time slice, sharing it among alll
the available algorithms, andpdate the relative prioritie®f the algorithms, based
on their current state, in order to favor the most promisingso Instead of basing
the priority attribution only on performance quality, we fixarget performance, and
try to minimize the time to reach it. To this aim, we search iomapping from
(problemalgorithmcurrent algorithm statetriples toexpected timeéo reach the de-
sired performance quality. To further reduce computaticoanplexity, we focus on
lifelong-learningtechniques that drop the artificial boundary between tngiaind us-
age, exploiting the mapping during training, and includiragning time in performance
evaluation. In [4] we termed this approasldaptive Online Time Allocatio(AOTA),
and introduced an example of a fixed heuristic mapping; imf&proposed a method
to learn a probabilistic mapping while solving a problemwsatte. In the following
we briefly present some related work (Sect. 2); describe @&Mframework (Sect. 3)
and its current instantiations (Sect. 4). Sect. 5 reponts @erimental results of a
comparison with a static approach. Sect. 6 concludes tideawtith directions for
future work.

2 Previouswork

A number of interesting “dynamic” exceptions to the stalipaithm selection paradigm
can be found in literature (see the tech report version dijjld more exhaustive bibli-
ography). In [6], algorithm recommendation is based on #régpmance of the candi-
date algorithms during a predefined amount of time, calledbservational horizon
In anytime algorithm monitoring7], the dynamic performance profilef a planning
technique is updated according to its performance, in dalstop the planning phase
when further improvements in the actions planned are nothabe time spent in eval-
uating them. The “Parameterless GA’ [8] is a fixed heurigtitetallocation technique
for Genetic Algorithms. In [9], a system solves functiongrsion and time-limited op-
timization problems by searching in a space of problem sgltechniques, allocating
time to them according to their probabilities, and updathmg probabilities according
to positive and negative results on a sequence of problemesRleinforcement Learn-
ing [10] setting, algorithm selection can be formulated &4askov Decision Process:
in [11], the algorithm set includes sequences of recurdiyerghms, formed dynami-
cally at run-time solving a sequential decision problend arvariation of Q-learning
is used to find an online algorithm selection policy; in [18]set of deterministic
algorithms is considered, and, under some limitationgicstand dynamic algorithm
selection techniques based on dynamic programming aremgest Success Story al-
gorithms [13] can undo policy modifications that did not iy the reward rate.

Literature on algorithm portfolios is usually focused omide criteria for building
the set of candidate solvers such that their areas of goddrpemce don'’t overlap.
The portfolio is then executed in parallel [3] or used as al fmoalgorithm selection
[14]. Other interesting research areas that can be relatettic” algorithm selection
include landmarking [15], anytime algorithm schedulin@]jltime limited planning
[17], bandit problem solving [18], racing [19], search ibgram space [20].



3 AOTA framework

Consider asequence3 of m problem instances, , b,, ..., b,,, roughly sorted in in-
creasing order of difficulty, and featuring precise stogpiniteria (e.g., search prob-
lems in which the solution is known to exist and can be reczaghioptimization prob-
lems in which a reachable target value for performance isrmgivand a sefl of n
algorithmsay, as, . . ., a,, that can be applied to the solution of the problemsin
paused and resumed at any time, and queried, at a negligitiefar state information
d € R? related to their progress in solving the current instances aivh at mini-
mizing the time to solve the whole problem sequeiteTo describe the state of a
Dynamic Algorithm Portfolio (DAP), let; be the time already spent an, 7; the cur-
rent estimateof the time still needed by; to solve the current problenx,; a feature
vector, possibly including information about the curremlgem instance, the algo-
rithm q; itself (e.g., its kind, the values of its parameters), asdciirrent statel;;
H, = {(xg’"), tgr)), r=0,...,h;} asetof collected samples of these pafrsa model
that maps historie#/; to estimated;.

If the model f. was precise enough, we would not need to run more than one al-
gorithm, thea; that is mapped to a lower before its start#; = 0): it is instead
more realistic to assume that the model’'s estimates arénrduug can be improved by
collecting more data iti;, i.e., by getting more run-time feedback on the actual per-
formance ofa; on current problem instance. We then introduce a set of rgative
scalarsPa = {p1,...pn}.pi > 0,> :, p; = 1, that represent the currebias of the
portfolio, slice machine time with a small intervAlt, and iteratively share each time
slice between the algorithms proportionally to the curt@as. Before each iteration,
the bias is updated according to a functjfpnof {r; }, that should obviously give more
time to expected faster; (i.e., the ones with a low;); after a sharey; At has ex-
pired, ; is updated based on currefit.In intra-problemAOTA, the predictive model
f- is fixed; ininter-problemAQOTA, f. itself is adaptive, and gets updated after each
problem’s solution.

Figure 1: A pseudocode for inter-problem AOTA

For each probl em b
initialize {r}
Wil e (b, not sol ved)
update Pa= fp({n})
For each al gorithm q;
run a; for p;At
update H; = H; U (x;,t:)
update 7, = f-(H;)
End
End
update f, =F{H;}
End

Figurel displays pseudocode for the AOTA framework: example irtgtons for
f-» fp andF are given in the next section.



4 Example AOTAs

In [4] we presented a fixed heuristfc. We considered algorithms with a scalar state
x, that had to reach a target valug; in this case is a simplearning curve Through

a shifting window linear regression, we extrapolated fateahe timet; ,,; at which

the current learning curvE; would reach the target value, in order to estimate the time
to solutionr; = t; 5o, — t;. Even though the estimates were obviously optimistic, they
were updated so often that the overall performance of thra-prtoblem AOTA was
remarkably good; its obvious limitations were that it regdi some prior knowledge
about the algorithms, and a simple relationship betweeletraing curve and the time

to solution.

What if we instead want ttearn a potentially complex mappingi- from scratch?
For a successful algorithm that solved the problem at timéh”, we cana posteriori
evaluate the correef” = ") —¢{") for each pairx", ¢{")) in H;. In afirst tentative
experiment, that led to poor results, these values wereastatgets to learn a regres-
sion from pairs(x, t) to residual time values. The main problem with this approach
is which values to choose as targets for tiresuccessfudlgorithms. Assigning them
heuristically would penalize with high values algorithms that were stopped on the
point of solving the task, or give incorrectly low values tgaithms that cannot solve
it; obtaining more exact targetsby running more algorithms until the end, and “cap-
ping” runs of unsuccessful or poorly performing algorithtasigh time values, as in
[14], would allow to obtain more precise models, but at theesse of increasing the
overhead of training it.

The alternative we presented in [5] is inspireddgnsored samplinépr lifetime
distribution estimation [21], and consists in learning egpaetric model(7|x;, t;; w)
of the conditional probability density function (pdf) ofahesidual time-. To see how
the model can be trained, imagine we continue running thegbiorfor a while after
the first algorithm solves the current task, such that we gntlaving one or more
successful algorithms;, for whose H; the correct targetsi(r) can be evaluated as
above. Assuming ead)(”) to be the outcome of an independent experiment, including

t in x to ease notation, iH(x) is the (unknown) pdf of thecg") we can write the
likelihood of H; as

hifl
Sauce(Hy) = T 97 x"sw)p(x") (1)
r=0

For the unsuccessful algorithms, the final time va@ﬁé) recorded inf; is a lower
bound on the unknown, and possibly infinite, time to solveptablem, and so are the
r(’”), so to obtain the likelihood we have to integrate (1)

7

h;—1
Lpa(H) = [ 1= G w)lp(x") )
r=0

where G(7|x;w) = [ g(¢|x;w)d¢ is the conditional cumulative distribution
function (cdf) corresponding tg.

We can then search the value wfthat maximizes€(H) = [[, £(H;), or, in a
Bayesian approach, maximize the posteyiow|H) « £(H|w)p(w). Note that in
both cases the logarithm of these quantities can be maxiérel terms not irv can
be dropped.



To prevent overfitting, and force the model to have a realistiape, we can use
some known parametric lifetime model, such as an Extremeeudistribution
g(l|x, t;w) = %e{[(l‘")/ﬂ—e(“")/s} on the logarithni = log  of time values [21] and
express the dependency grandw in its two parameterg = n(x; w), § = §(x; w):
these can in turn be the two outputs of a more complex paranmetdel, with input
x, and parametew, whose value can be optimized by gradient descent, mimgizi
the negative logarithm of the resulti®f /), in a fashion that is common for modeling
conditional distributions (see, e.g., [22], par 6.4).

One advantage of this approach is that it fully exploits tlageshistory information
gathered, as it allows to learn from the unsuccessful alyos as well.

For fp, one reasonable heuristic, that gave good results, censiassigningl /2
of the current time slice to the expected fastest algorithen, the one with lowest;),
1/4 to the second fastest, and so on. This heuristic cannot betl§impplied to inter-
problem AOTA, though, as the model would obviously be uatgé during the first
problems of the sequence. In this case it would be betteatbtse problem sequence
with a “brute force”fp (p; = 1/n), and vary it gradually towards the above described
“ranking” fp (p; = 27", r; being the current rank ef; based o ;}).

5 Experiments

We present experimental results with the safnand B as in [5]: A a set of76 sim-
ple generational Genetic Algorithms [23], differing in pdation size 2¢,i = 1..19),
mutation rate { or 0.7/L, L being the genome length) and crossover operator (uni-
form or one-point, with rat@.5 in both cases)B a sequencel of artificial deceptive
problems, such as the “trap” described in [8], consisting abpies of ann-bit trap
function: eachm-bit block of a bitstring of lengtlum gives a fithess contribution of,
if all its bits arel, and ofm — ¢ if ¢ < m bits arel. The genome length varies from
30 to 96 and the sizen of the deceptive block from to 4. The problems were sorted
based on a rough estimate of their difficulty, framblocks of size2 to 24 blocks of
size4. The feature vectors included two problem features (genome length and block
size), the algorithm parameters, the current best andgeditaess values and the time
spent, together with their last variations, for a total bfinputs.

To modelg we used an Extreme Value distribution on the logarithmsmoétivalues
with parameterg(x; w) andd(x; w) being quadratic expansionsxbf the formwg +
Do wi; + Zi,j w; jT;x5. The weights were obtained by maximizing the Bayesian
posterior described in sect. 4, using a Cauchy distribytion) = 1/(1 + w)? as a
prior.

As for fp, p; was set proportionally t¢2 — %)*“, r; being the current
rank of a; in order of increasing;, j the index of current tasky the total number
of tasks. In this way the distribution of time is uniform dugithe first task (when
the model is still untrained), and tends through the taskeece to the “ranking’fp
described in Sect. 4 = 27"4), in which the expected fastest solver gets half of the
current time slice. After the solution of each task, a furtinaction of the time spent
is allocated to the remaining algorithms, gathering mota datheir histories in order
to improve the model: this fraction is also varied during thgk sequence, fromhto
0, linearly. Results were similar to the ones obtained in [Bhva slightly different
AOTA, employing a Neural Network as parametric model.

To compare with a more traditional algorithm selection téghe, analogous to,
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Figure 2: The cumulative time, i.e., the time spent so far, on the sequence of gamsks

by the adaptivef, method, labeled L2-AOTA, compared with the static algorithm selection AS,
which requires solving each problem with every algorithm; the best algoiithhe set (BEST),
and the brute-force approach (BRUTE). Time is measured in fithestidn evaluations, values
shown are uppe®5% confidence limits calculated a0 runs. A logarithmic scale is used on
time values.

e.g., [14], we also trained a static model of algorithm perfance, gathering runtime
data for all76 algorithms on the first8 problems: this data was then used to perform
a simple linear regression from a quadratic expansion dflpro and algorithm fea-
tures to the logarithm of runtime values, capping runs ofuhsuccessful algorithms.
Dynamic features related to the state of the algorithms wbwously not considered
in this case. The obtained model was then used to select aragingle algorithm for
each of the remaining problems.

Figure 2 compares training time of this static approacheled AS, with the one
of the adaptivef,. approach, labeled L2-AOTA,; we also display the performasfdae
(usually different at each run) fastest solver of the séklied BEST, which would be
the performance of an ideal algorithm selection with “faghg’ of the correctr; values
att; = 0; and the estimated performance of a brute force appro&chitinning all the
algorithms in parallel until one solves the problem. Notat this latter is much more
effective than the training of 'AS’, which requires solvirgch problem with every
algorithm.

Figure 3 plots the performance on the three remaining pnaflevith deceptive
block sizes of2,3 and 4 respectively. Learning was turned off it — AOT A to
allow a comparison wittAS. The latter had a better performance on tagkand21,
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Figure 3: The times spent on the last three tasks of the sequence, and their sarovérall
performance of the dynamic approach is better, notwithstanding addifferof three orders of
magnitude in training time.

but much worse on tasko, for which the algorithm runtimes were apparently more
difficult to predict, so the overall performance b2 — AOT A was better, even though
its training time was more than three orders of magnitudefas

6 Conclusionsand future work

The main novelties of our method consist in the “lifelong#leing” approach to algo-
rithm selection, and in the use of censored sampling to emparametric conditional
distribution of algorithm runtime. The particular bias apel strategyfr adopted al-
lowed to use the modethile training it, gradually increasing its impact on the time
allocation as more problems were solved, and more histatia gathered, and prac-
tically saving computation time by limiting the learningopess to “interesting” parts
of the training space; The idea of performing some sort obritlgm selection based
on runtime interaction with the algorithms is not complgtetw (see Sect), but we
consider it as an interesting line of research.

We advocate online time allocation with sets of computatiignexpensive algo-
rithms, whose performance is not easily predictable. Fstefaalgorithms, a more
refined approach should also take into account the cost @tingdthe model; for do-
mains in which algorithm performance can be easily predicteditional “offline”
algorithm selection techniques can be sufficient, evenghdhe “online” approach
can still be useful to reduce training time.



At the moment, the main limitations of our approach, thdt ptevent its use in
more challenging situations, are the use of “batch” leayror training the model,
which should be replaced by an online technique, as it olslyolimits the number
of problems; and the need of sorting the problems by difficulthis latter can be
relaxed, e.g., by performing a round robin on the availaédd, trying to solve each
of them for some amount of time, until the easiest one is sbhyebrute force, after
which the model is first updated, and so on. Other prior kndgée is required for the
choice of the algorithms idl and of the features to include #1 The parametric model
employed can give predictions also before starting thergihgos (i.e., fort; = 0),
so it could in principle be used to adapt a redundant algoriset A to the current
problem, guiding the choice of a set of promising points irepzeter space, or even to
pick a single algorithm when the selection is easy enotghture selectiotechniques
could also help automate the procedure. Another limitaisathat the user has to set
a target performance quality for each problem. While thishilme natural for certain
problems, in many cases it would be preferable to set instggtameter quantifying
how much extra time should be spent relative to the improveiinethe solution. This
would require learning a more complex modepeaiformance profileas in [7].

In future work we plan to address these limitations; ongaigparch is focussed
on online training techniques, in order to allow for larggperiments with different
algorithm set/problem sequence combinations.
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