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Abstract— Currently there are different approaches to develop
fault-tolerant embedded software: implementing the system from
scratch or using libraries respectively specialized hardware.
By implementing from scratch the developer has all options
concerning system design, the used programming language and
hardware. But on the other hand the implementation is error-
prone and time- and cost-intensive.
The usage of libraries or specialized hardware reduces the
design possibilities, while increasing the quality of the developed
system and accelerating the development. We present a new
technique for developing fault-tolerant systems that combines the
advantages of these approaches. We suggest the implementation
of reusable templates that solve different aspects of fault-tolerant
systems, for example temporal synchronization. In addition we
introduce a code generator that realizes a mapping of these
templates into application-dependent source code.

I. INTRODUCTION

The development processes for classical software and fault-
tolerant software differ significantly. Fault-tolerant software
is typically embedded within a distributed system consisting
of different hardware and the software has to deal with
diverse sensors and actuators. In many cases even different
operating systems are applied within the embedded system.
This heterogeneity leads to the fact that classical approaches
of software engineering can not be applied [1]. Especially
tools that allow an automatic code generation or are based on
libraries are typically not suited for this heterogeneity. Instead
they are typically designed only for a limited number of
platforms. To our understanding a platform as the combination
of hardware, operating system and programming language.
On the other hand there is a great need for exactly this kind
of code generation. Since safety-critical software typically
encapsulates domain expertise the software is often designed
by engineers who are experts in the application domain and
not in the domain of safety critical software and real-time
systems. Therefore tools that help to generate automatically
large parts of the system are desirable.
One important aspect of fault-tolerant software that strengthens
this demand is the fact, that many components of the software
are needed to solve recurring problems. Examples are the fault-
tolerance mechanisms itself (e.g. voting), process management
(scheduling, inter process communication), the communication
in distributed systems and the temporal synchronization of the

units within the distributed system. But due to the heterogene-
ity of the platform and different application requirements the
components can rarely be reused. Hence many approaches in
the area of developing fault-tolerant applications are restricted
to specific platforms. In section II two of these approaches are
discussed.
By taking a closer look to the problem introduced by hetero-
geneity, a solution can be found. In many cases a component
solving one problem for a platform can be transformed to
another platform with some minor changes. One example is
the usage of another operating system. In case only standard
system calls are used within the component, the changes are
restricted to the renaming of the system calls. This fact is used
within our approach, called template-based development that
is described in section III. Application-independent templates
that solve different aspects of fault-tolerant embedded software
are offered. The developer can change these templates and also
implement own ones in case the provided templates do not
satisfy the application requirements. The transformation of the
application-independent templates into application-dependent
source code is performed by automatic code generation based
on a system model analog to model-driven development [2].
The possibility to add new or change existing templates leads
to a maximum of flexibility and simultaneously allows a
maximum rate of automatic code generation. By generating
source code rather than machine code a possible certification
of the applications is simplified. Following the certification
guide lines, like DO-178B [3], a code generator has to be
certified to avoid the certification of the generated code.
Since a certification of machine code is very complex, such a
certification should be avoided. By generating source code the
certification becomes much easier. The mapping to machine
code can be done by the use of existing certified compilers.
The results of a first realization of our approach is described in
the sections IV,V. Within the Zerberus project a time-critical
control application was implemented based on a TMR-system.
With only 100 lines of code the developer was able to develop
a fault-tolerant control application with control response times
of one millisecond. The paper is summarized in section VI and
future work is described.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00  © 2006



II. RELATED WORK

Different research projects focus on the issue of modeling
and design of embedded fault-tolerant software. Unfortunatly
most of these projects are restricted to a specific platform and
therefore the application range is limited [4].
One of the most successful projects in the domain of fault-
tolerant applications is TTA [5]. TTA is a framework for the
design and implementation of distributed fault-tolerant appli-
cations with a focus on the automotive and aviation industry.
TTA provides different services like predictable communica-
tion with small latency, clock synchronization and membership
service [6]. The approach is based on a hardware solution,
so-called TTP/C controller [7] running the TTP protocol that
realize time-triggered communication on redundant communi-
cation channels. Because TTA concentrates only on a fault-
tolerant communication, the implementation of mechanisms
for the toleration of other error sources has to be done by the
developer itself. Another disadvantage of TTA is the restriction
on specialized hardware. This constraints the application area.
Another approach is to use libraries that provide functions
to solve recurring problems in the domain of fault-tolerant
computing, like synchronization and voting. One representa-
tive of this approach is Erlang [8]. Erlang is a programming
language designed for programming real-time control systems.
The language offers many features that are more commonly
associated with an operating system than a programming
language like concurrent process, scheduling or garbage col-
lection. Fault-tolerance, fail-over, take-over is built right into
the platform and concurrent processing is one of its strengths.
A disadvantage of Erlang is the necessity to use Erlang as pro-
gramming languages. Like other approaches based on libraries
the restriction on a specific programming languages reduce
the options for the implementation. Another big disadvantage
of libraries are problems concerning a certification. For the
certification process the source code of the libraries must either
be available or the libraries must be already certified. But
since the requirements regarding the certification differs for
each application area [9], the existence of a certification in
the specific application area is very unlikely.
The issues of certification are not considered in most ap-
proaches based on code generation. A certification of the code
generator is desirable since this would limit the certification
effort to a certification based on the model and the application
functionality. Unfortunatly the code generators are typically
very complex systems that are very hard to verify. Within
our approach the code generation functionality lies within the
templates, while the code generator itself does only perform
simple adaptations. Thus a certification of the code generator
becomes easier and the code generation ability can be easily
expanded by introducing new templates.

III. TEMPLATE-BASED DEVELOPMENT

As already mentioned in the preceding section there are
many recurring problems in the context of fault-tolerant
embedded software like process management, scheduling,
communication or fault-tolerance mechanisms. Solutions

for these problems already exist but the heterogeneity of
embedded systems contradict the request to reuse components
solving these probems.
In this paper we present a solution to this issue, called
template-based development. Instead of generating machine
code directly from an application model like other
approaches, we use application-independent templates
that are automatically adapted to the application requirements
on the base of the model. The big advantage of this approach
is the flexibility regarding the code generation since the
generation ability can be extended very easily by new
templates. In case a new platform should be supported,
existing templates can be adopted to this platform very often
with little effort. For example in case a new operating system
needs to be supported, the changes are typically restricted to
the adaptation of the system calls. A simple example for such
a template is depicted and explained in section V-A.
Templates are already used in many other areas of
development processes: one example is the development of
graphical user interfaces. State-of-the-art development tools
allow a graphical design (model) of the GUI. The developer
can modify the design by drag-and-drop functionality and
specify the actions, e.g. the effect when a button is pressed.
Subsequent the development tool can automatically generate
source code out of the graphical design/model that the
developer can modify to adopt to specific application-
dependent problems. Another example is the generation of
class templates out of UML class models.
In comparison to other approaches template-based
development has the advantages that is is not restricted
on a specific platform, that all recurring problems within the
domain of fault-tolerant embedded software can be addressed
and that there are in principle no constraints regarding the
application area.

IV. A CASE STUDY

Within the Zerberus project [10] we have developed soft-
ware engineering tools that exemplifies the realization of
our approach. As hardware architecture we have chosen a
triple-modular-redundancy (TMR) system built with standard
components. This architecture allows the appliance of voting
and failure masking as fault-tolerance mechanisms. The main
advantage of these mechanisms is the possibility to implement
them in an nearly application-independent way. In addition
all error types can be covered if N-Version programming
techniques and hardware diversity are applied [11].
The intended applications are simple control applications with
real-time constraints, that could be implemented in a non-fault-
tolerant way on a standard computer. Applications we have in
mind are for example the control of wind mills, of industrial
robots or control applications in the medical domain.
The main goal of Zerberus is to reduce the development effort
to the implementation of the pure application functionality.
The realization of the fault-tolerance mechanisms, as well as
the process management (timing, scheduling) and the commu-
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nication between processes, is realized automatically by pre-
implemented templates (run-time systems) that are adopted to
the application by the Zerberus code generator.
The adaptation is based on a functional model that must be
described by the application developer. The functional model
contains in Zerberus the specification of the application tasks,
the interaction between these tasks, the I/O of the system,
as well as the timing constraints. Zerberus provides with
the Zerberus Language [12] a possibility to describe that
functional model.
In the next two subsections we give a short introduction
into the Zerberus Language and we explain the applied fault-
tolerance mechanisms.

A. Zerberus Language

The Zerberus Language allows a simple specification of
the functional model. For an appropriateness for the use with
failure masking and voting several requirements are posed on
the language. First of all the language must be suited for
replica determinism. This is a non-trivial issue since different
platforms and implementations of the application can be used
within one system. To achieve replica determinism neverthe-
less, the Zerberus Language is based upon the time-triggered
paradigm [5]. Our approach resembles Giotto [13], a time-
triggered language used for the specification of distributed
real-time systems. In contrast to our approach applications in
Giotto are interpreted on two virtual machines: the embedded
and the scheduling machine, while in Zerberus executable
code is generated. Another difference is the focus of the two
projects: Giotto concentrates on distributed systems, while we
are focussing on fault-tolerant applications. Due to this differ-
ences an automatic generation of fault-tolerance mechanisms
is not foreseen within the context of Giotto.
Using the time-triggered approach, replica determinism can be
achieved by using the knowledge about the execution times
[14] : at specific points in time a deterministic behavior of
the system is guaranteed, while between these points in time
the process execution and scheduling can be carried out in
different ways on the individual units.
The time-triggered paradigm has also the advantage that there
are previously known points in time when the execution of
voting and temporal synchronization algorithms have to be
performed. This is the prerequisite for a successful application
of distributed voting and synchronization algorithms.
The second requirement on the language is the support of
an automatic state synchronization and voting. This state
synchronization is necessary to allow a repaired unit to rein-
tegrate into the system during system execution. Zerberus
supports the state synchronization and voting by separating
the functionality of the application from the application’s state.
Thus these states can be simply compared during voting, while
an integration is possibly by copying the state of a fault-free
unit to the integrating unit.
To support simplicity and a fast learning process, the language
consists of only seven different objects that are explained in
the following (a comprehensive description can be found in

Fig. 1. The functional model of a PID controller: a graphical notation

[12]):
Tasks represent the application functionality, e.g. a control
function, and consist of sequential code that is executed in a
time-triggered manner. All tasks are executed periodically and
the developer can specify the logical start and end time. At
the logical start the tasks reads the inputs and at the end of the
logical execution the results are output. The actual execution
of the task on the CPU is scheduled by the Zerberus run-
time system and is transparent to the developer. The input and
output of the tasks is performed by using ports. A port is a
global variable that can be accessed in time-triggered manner.
The values of the ports represent the application state and can
be therefore used for voting and integration.
The interaction of the system with the environment is also
performed via ports. While sensors are functions to read inputs
from the environment and store these in ports, actors are
functions to output values of ports to the environment. Both
sensors and actors are also executed time-triggered.
To allow also an adaptation of the applications behaviour to the
applications mode, modes, modechanges and guards can be
specified. Using these mechanisms the execution of the tasks,
sensors and actors can be steered.
Example: functional model for a PID-controller For
illustration purpose we use the functional model of a PID
controller, see fig. 1. The PID controller uses the results of
a sensor that is invoked every millisecond and that stores the
result in the sensor result port. In addition the PID controller
uses the values of two ports to calculate the differential
part and the integral part. The results of the PID controller
execution are written to the result port as well as to the ports
used for the integral and differential part. Within this example
we assume that the set point is constant and can be therefore
stored within the controller function. In case the developer
also wants to have the possibility to change this set point, he
would have to use one additional port. The real Zerberus code
is depicted in figure 2.

B. Fault-Tolerance Mechanisms

Based on the TMR architecture, Zerberus realizes fault-
tolerance mechanisms like failure masking and voting. The
hardware redundancy allows the toleration of one arbitrary
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Fig. 2. The functional model coded in the Zerberus Language

failure within one of the redundant units. Design errors within
the software can be tolerated if N-Version programming is
applied. Although N-version programming is typically not
applied due to the high development costs, the restriction to
the implementation of only the application-dependent code
by using Zerberus makes N-Version programming a matter
of choice. In case the output is performed by only one unit
at a time, errors within the actuator can not be tolerated.
We assume within our application that the actuator meets
the safety requirements, but nevertheless we have realized a
functionality to supervise the output, so that at least reactions
to output errors by the system are possible.
The realization of the fault-tolerance mechanisms is based on
well-known algorithms and we realized functions for voting,
exclusion of erroneous units, reintegration of repaired units as
well as temporal synchronization.
The voting is performed at least everytime before the system
performs an output, but the developer can also specify a higher
voting frequency. The voting itself is executed in two rounds to
allow the usage of unreliable communication channels: in the
first round each computer sends the state information (values
of the ports, the current mode and the mode unit) to the other
computers. To limit the network traffic the developer has also
the chance to restrict the number of transmitted ports. The
received state information of the other redundant units are
compared with the own state. Due to timing differences within
the allowed temporal synchronization interval and to measure-
ment errors the values of the ports may not be deterministic.
To handle this issue, Zerberus also supports interval voting
for ports. In case interval voting is applied, the developer has
to specify the valid bounds for a specific port. The results of
the voting are transmitted to the other units within the second

round, thus enabling the reconstruction of missing messages.
The results of the voting are the partition of the redundant
units into correct and erroneous units, as well as the selection
of the unit that has to perform the output, in case only one unit
should perform the output. A unit is classified as erroneous
in case it does not agree with the majority of votes. In this
case this unit is excluded from the execution and can perform
application-dependent error recovery algorithms.
After a successful completion the repaired units can reintegrate
into the running system. The reintegration can take place in
the next voting round at the earliest by listening to the voting
messages and adopting the current application state. In case
not all port values are submitted in the voting messages, the
integrating unit can also send a request for transmission of the
remaining port values. An integration is only allowed if the
unit receives consistent states of the majority of units. Since
the system state is influenced by the values of the ports and by
the results of running tasks, a reintegration is only allowed in
case no task is currently running. This is true at the beginning
of a new mode round. Both algorithms, the voting and the
integration, are based on algorithms suggested in [11].
The temporal synchronization at system start is similar to the
algorithm used in TTP [7]. During system execution the voting
messages are also used for the synchronization algorithm: by
means of the expected and the actual arrival time of the voting
messages a logical global clock can be computed [15], [16].
The precision of the temporal synchronization is limited by
the maximal network message delay and by the precision
of the system clock. Within our tests we achieved maximal
synchronization errors below 200 µs.

V. RUN-TIME SYSTEM

Instead of providing multiple templates that solve parts
of the system we developed a combined run-time system
template. We currently offer two such run-time systems for
the programming languages C and C++ both using Vx-
Works. These templates can be transformed into application-
dependent code during the code generation process. In the first
subsection we describe the mechanism we are using to realize
this application-independent implementation of these run-time
systems. The second subsection proceeds with a description
of the mapping of the templates into application-dependent
source code. By describing the architecture of the C++ run-
time system template a possible implementation is presented.
At the end of this section an application is described that was
used to test Zerberus.

A. Zerberus Tags

We use a technique similar to preprocessor macros to allow
the implementation of application-independent templates. All
application-dependent data is replaced by so-called Zerberus
Tags. There are two different types of tags: simple tags and
control flow tags. While simple tags can be replaced directly
by application-dependent data, control flow tags manipulate a
code range. Two different control loop tag types are offered:
for-each tags and if tags.
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Fig. 3. Zerberus tags and the generated code

Thus a templates consists of source code augmented with
Zerberus tags. These tags are replaced with application specific
content during code generation. Because the usage of the
Zerberus tags is very hard to depict within one simple figure
using source code, we use a simple example based on natural
language illustrated in figure 3. The use of natural language
demonstrates the fact that the tags are not based on a certain
programming language, which is also necessary in the context
of comments or documentation.
In our example we want to enumerate the different tasks
with their ports: by using the <$FOR EACH TASK$> tag,
the code until the corresponding <$END FOR$> tag is
written into the output file for each task available. The
effect of tags is always context related: the succeeding
<$FOR EACH INPORT$> tag is interpreted in the context
of the current task.

B. Transformation of the Functional Model into Code

The transformation of the concepts of the Zerberus language
in C++ is rather simple. Each object of the Zerberus language
except ports has a counterpart object within the run-time sys-
tem: classes for tasks, sensors, actors and so on are provided.
The individual elements of an application are implemented
as subclasses. In our PID example there exists a subclass
PIDController of the class Task, a subclass Sense of Sensor
and so on. The code generator provides the class structure for
all such subclasses, so that the developer has to implement
only the pure functionality. Subclasses of tasks for example
need to have a function with the function name as specified
in the functional model. In our example the PIDController
has a function control(). In addition the subclasses for the
individual sensors, actors and tasks each inherit an init() and a
close() function. These functions can be used by the developer
to implement some initialization or closing functionality, for
example to initialize an hardware device.

C. System functionality

During execution the run-time system has two different
tasks to perform: on the one hand the functional model must
be executed, on the other hand the fault-tolerance mechanisms
have to be performed. The run-time system is implemented in
different layers as illustrated in figure 4.
Control layer: The task of the control layer is to realize the

Fig. 4. Software architecture of the run-time system

reaction to observed errors. Since in most time the reactions
to errors are application-dependent, Zerberus offers the pos-
sibility for developers to implement own reactions. Thus the
run-time system provides a class listing the different errors
(voting disagreement, temporal violations and so on) and the
related reactions that can be altered by the users according
to application needs. The default reactions offered by the
system are limited to the shut down of the application and
a succeeding restart or a reboot of the whole unit.
System layer: The system layer is responsible for the execu-
tion of the functional model and of the fault-detection and syn-
chronization mechanisms. According to the timing constraints
tasks are logically started (by copying the appropriate port
values and unblocking the according thread) and passed to the
scheduling layer or stopped. Sensor and actor functions are
executed within the context of the system layer. In addition
modechange and guard functions are evaluated. Within the
context of the system layer also voting and temporal synchro-
nization algorithms are executed. If errors are discovered they
are passed to the control layer.
At unit start-up the system layer performs the initialization of
the application and the temporal synchronization with the other
units. If the system is already running integration algorithms
are performed.
Scheduling layer: The scheduling layer realizes the actual
scheduling of the application tasks. Based on the scheduling
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Fig. 5. Rod controlled by switched solenoids

algorithms offered by the operating system, the scheduling
layer realizes an EDF scheduling of the ready tasks. Since
the deadlines are discrete in time and of limited number, the
scheduler can be implemented very efficient in constant time
by using semaphores to start tasks and message queues for the
administration of the ready tasks. In addition the scheduling
layer uses the possibility to alter the task priority to guarantee
the preference of tasks with earlier deadlines.
Task layer: The task layer consists of one thread for each ap-
plication task. As already implied in section V-B the developer
has to implement the task functionality for each task specified
in the functional model.
OS layer: As operating system we are currently using Vx-
Works 5.5. Due to the compatibility to the POSIX standard
a transformation of the run-time system to another operating
system can be realized with little effort.

D. Simple Control Application Example

We have tested the run-time system in the context of a
simple control example: the control of a rod by switched
solenoids, see in figure 5. This rather simple application
demonstrates the advantages of our approach. The whole code
including the functional model as depicted in figure 2 that
had to be implemented by the developer consists of less than
100 lines of code. We achieved control response times of
1MHz with our setup (AMD Athlon processors,ethernet). To
achieve better control response times a faster communication
medium and a better clock resolution, for example by the use
of external timers, would be necessary.
We also used different run-time systems written in C and C++
to demonstrate the possibility to use N-Version programming
techniques within Zerberus. The integration was performed
smoothly due to the strict adherence of the protocols offered
by Zerberus.

VI. CONCLUSIONS AND FURTHER RESEARCH

Classical software engineering tools based on code gener-
ation, middleware approaches or libraries can not be applied
within the context of safety critical embedded software or are
limited to only a specific application domain due to inflexibil-
ity. The requirements in the context of fault-tolerant systems
like generality concerning the usable platforms, automatic
code generation of standard system functionality, flexibility

in the sense that the system can be adopted to application
requirements in all phases of the engineering process and
support concerning certification issues are not satisfied by
existing tools.
Within this paper we presented an approach to fulfill these
requirements. The use of application-independent templates
that are mapped automatically to directly compilable source
code offers diverse advantages. The templates can be easily
adopted and extended or new templates can be implemented
to extend the application area. The automatic code generation
reliefs the developer of implementing great parts of the system.
Certification issues are mitigated since all source code is
available to the developer.
A first realization of our approach was done with Zerberus.
Based on the simple case of TMR-systems the advantages
of our approach could be shown. The next steps within our
research will be the extension of our approach to arbitrary
distributed system architectures, the modularization of the
Zerberus run-time systems and the support of further fault-
tolerance mechanisms that are not based on TMR-systems. We
are also planning to apply our approach within real industrial
projects to point out the feasability.
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