
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Sajjad Taheritanjani, Stephan Krusche, Bernd
Bruegge

TUM-I1630

A Comparison between Commercial and
Open Source Reference
Implementations for the Rugby Process
Model

1

A Comparison between Commercial and Open Source Reference

Implementations for the Rugby Process Model

Sajjad Taheritanjani Stephan Krusche Bernd Brügge
TU München TU München TU München

Munich, Germany Munich, Germany Munich, Germany

sajjad.taheri@tum.de krusche@in.tum.de bruegge@in.tum.de

Abstract: Rugby is a process model for continuous

software engineering which allows developers to contin-

uously deliver prototypes and obtain feedback support-

ing software evolution. There is a reference implementa-

tion of Rugby with commercial enterprise tools used in

university capstone courses. However, since these tools

are expensive, there is a need to study less expensive al-

ternatives which are available on the market to evaluate

whether they can be used in Rugby. In this research, we

compare a second reference implementation with the ex-

isting one, focusing on the core use cases and non-

functional requirements of Rugby.

key words: Agile, Scrum, Rugby, Coninuous Software

Engineering, Issue Tracking, Version Control System,

Continuous Integration, Continuous Delivery

1 INTRODUCTION

Increasingly dynamic environments lead to shorter

development cycles [FS14]. Continuous software en-

gineering (CSE) refers to the organizational capability

to develop, release, and learn from software in rapid

cycles [Bo14] providing the capability for software

evolution [HF10]. Rugby is a process models that pro-

poses a development lifecycle for CSE [KAB+14]. It

combines elements of Scrum [Sc04] and the Unified

Process [JBR+99] with additional workflows to sup-

port CSE and software evolution: review management,

release management and feedback management

[KAB+14]. Developers work in a project-based organ-

ization with multiple projects to deliver executable

prototypes and to obtain feedback. Bruegge et al. de-

veloped a reference implementation of Rugby that is

applied in university capstone courses using commer-

cial enterprise tools: JIRA, Bitbucket Server, Bamboo

and HockeyApp [BKA15].

However, Rugby is not limited to these commercial

tools. Expensive tools can not easily be used by indi-

viduals and organizations, e.g. open source projects or

young startups. The existing reference implementation

also poses challenges, e.g. in terms of usability, be-

cause the tools have a high learning curve. Therefore,

we investigate Rugby’s use cases for its three addi-

tional workflows and one Scrum core workflows: issue

management. Considering the tight collaboration be-

tween these categories in Rugby, we decided to choose

the GitHub Issues as issue tracker, GitHub as version

control system (VCS) and Travis as continuous inte-

gration (CI) server, all from GitHub to ensure their ef-

ficient integration. We also chose Jenkins as CI server,

because it is open source and used in many projects.

Both, GitHub and Travis are cloud-based platforms,

that can be used for free in open source projects. Since

there is no open source alternative for continuous de-

livery (CD), we chose Crashlytics, which made all its

services free after the acquisition by Twitter. As

knowledge management using a Wiki is not included

in Rugby’s continuous workflow (see section 2), we

decided to exclude it from our comparison list.

In this research, we compare the tools in each cate-

gory with respect to the most important Rugby use

cases for developers, managers, users and also with

regards to configurability and flexibility. At the end,

using GitHub tools, Jenkins and Crashlytics, which all

target on the open source projects, we create a second

reference implementation to compare and evaluate the

differences of how the main use cases are implement-

ed. We also give recommendations which reference

implementation can be used.

2 BACKGROUND

2.1 AGILE METHODOLOGIES

Agile software development refers to some of soft-

ware methodologies which are based on iterative devel-

opment, where requirements and solutions evolve

through collaboration between self-organizing cross-

2

functional teams. Agile methods or Agile processes gen-

erally promote a disciplined project management process

that encourages frequent inspection and adaptation, a

leadership philosophy that encourages teamwork, self-

organization and accountability, a set of engineering best

practices intended to allow for rapid delivery of high-

quality software, and a business approach that aligns

development wit customer needs and company goals.

Agile development refers to any development process

that is aligned with the concepts of the Agile Manifesto.

The Manifesto was developed by a group fourteen lead-

ing figures in the software industry, and reflects their

experience of what approaches do and do not work for

software development.

2.2 SCRUM

Scrum is an Agile method. It is a lightweight process

framework for agile development, and the most widely

used one. A “process framework” is a particular set of

practices that must be followed in order for a process to

be consistent with the framework. For example, the

Scrum process framework requires the use of develop-

ment cycles called Sprints. In addition, “Lightweight”

simply means that the overhead of the process is kept as

small as possible, to maximize the amount of productive

time available for getting useful work done [Sc04].

A Scrum process is distinguished from other agile

processes by specific concepts and practices, divided

into the three categories of Roles, Artifacts, and Time

Boxes.

Scrum is most often used to manage complex soft-

ware and product development, using iterative and in-

cremental practices. It significantly increases productivi-

ty and reduces time to benefits relative to classic “water-

fall” processes. Scrum processes enable organizations to

adjust smoothly to rapidly changing requirements, and

produce a product that meets evolving business goals.

An agile Scrum process benefits the organization by

helping it to increase the quality of the deliverables, cope

better with change (and expect the changes), provide

better estimates while spending less time creating them,

and be more in control of the project schedule and state.

2.3 CONTINUOUS SOFTWARE ENGINEERING

Continuous software engineering refers to the organi-

zational capability to develop, release and learn from

software in very short rapid cycles, typically hours, days

or very small numbers of weeks [FS14]. This requires not

only agile processes in teams but in the complete re-

search and development organization. Additionally, the

technology used in the different development phases,

like requirements engineering and system integration,

must support the quick development cycles. This in-

cludes determining new functionality to build, prioritiz-

ing the most important functionality, evolving and refac-

toring the architecture, developing the functionality, val-

idating it, releasing it to customers and collecting exper-

imental feedback from the customers to inform the next

cycle of development. Finally, automatic live experi-

mentation for different system alternatives enables fast

gathering of required data for decision-making [FS14].

2.4 Rugby

Rugby is a process model that includes workflows for

CD. It allows part timers to work in a project-based or-

ganization with multiple projects for the rapid delivery

of prototypes and products. Using CD improves the de-

velopment process in two ways: First, Rugby improves

the interaction between developers and customers with a

continuous feedback mechanism. Second, Rugby im-

proves the coordination and communication with stake-

holders and across multiple teams in project-based or-

ganizations with event based releases [KAB+14].

2.4.1 Rugby Environment

Rugby is designed to be used in project-based organi-

zations with multiple projects. A typical project team in

Rugby consists of up to eight developers, a team leader

and a project leader. The project team is self-organizing,

cross-functional and therefore responsible for all aspects

of development and delivery of software.

The project leader and the team leader fulfill a role

similar to a scrum master while being in a master-

apprentice relationship. While the project manager is

already experienced, the team leader is an experienced

developer. Thus, he is familiar with the infrastructure

and the organizational aspects of Rugby. One task of the

team leader is to organize the first team meeting and to

ensure that the team organizes all following team meet-

ings in a structured way. In the first team meeting, he

takes the role of the primary facilitator and introduces

the other two important roles in a meeting, the minute

taker and the timekeeper. In the following meetings,

these roles rotate between the developers so that they

also take responsibility in the meeting organization. The

job of the team leader is then to make sure, that the de-

velopers organize the team meetings appropriately. If

e.g. the timekeeper does not interrupt, if the team mem-

bers discuss too long on an unimportant point of the

agenda, the team leader need to interfere and remind the

timekeeper about his job. During the project, the team

3

leaders learn essential management skills by observing

the behavior and actions taken by the project leader. An-

other important task of the team leader is problem solv-

ing and the communication of problems to the project

leader and the program management. The customer has a

similar role as the product owner. Typically, there are

different types of customers in software engineering pro-

jects. If the customer of a project does not have enough

knowledge in the application domain or is not able to

make decisions, the project leader helps him. In addition,

if the customer is not available due to time reasons or a

large physical distance, the project leader takes the role

of a proxy customer [KAB+14].

Figure 1: Sprint in Scrum

The eco-system of Rugby is divided into five envi-

ronments. A developer interacts with the collaboration,

development, integration and delivery environment, a

user interacts with the collaboration, delivery and target

environment. The focus in Rugby is particularly on the

collaboration and delivery environments because they

bridge the communication gap between developers and

users. A user is notified from the delivery environment if

a new release is available and can then use the software

in his target environment. Feedback of the user is stored

in the delivery environment and then forwarded into the

collaboration environment, e.g. as feature request. A user

can also vote certain features in the collaboration

environment.

Figure 2: Project-based Organization of Rugby

The figure shows the project-based organization of

Rugby. Each development team is represented as a verti-

cal bar, e.g. Project 1. Additionally, multiple cross-

project teams are formed in Rugby to further support

certain expertise in the development teams. One of these

teams is led by the release coordinator, who is responsi-

ble for release and feedback management of all projects.

Release management includes all activities concerning

version control, continuous integration and continuous

delivery. The release management team is shown as hor-

izontal box in fig. 3 and consists of one team member of

each development team, the release manager [KAB+14].

Cross-project teams meet weekly or biweekly to

build up and share knowledge, to synchronize their un-

derstanding about tools and workflows and to resolve

potential issues. While the cross-project teams are the

main resource for team members to gain knowledge on

e.g. continuous delivery practices, there should also be

other resources like workshops or tutorials to learn the

most important aspects about release and feedback man-

agement. In the beginning of the project, tailored tutori-

als show the developers how to use the tools. During the

projects, team members reflect over the actual tool usage

in retrospective meetings to improve upon common mis-

takes and to build best practices. With these experiential

learning techniques, a culture of continuous improve-

ments and continuous learning within the teams should

be established.

4

2.4.2 RUGBY’S WORK FLOW

Figure 3 shows the integrated continuous workflow

together with its tools and transitions. The workflow

starts each time a developer commits source code to the

version control server, leading to a new build on the con-

tinuous integration server. If the build was built success-

fully and if it passed all test stages, the team can decide

to upload it to the delivery server, which then notifies

users about a new release. Each release includes release

notes, which are collected automatically by the continu-

ous integration server and can be edited in the manual

release step if necessary. The user can download the re-

lease and recognize easily, which features and bugs were

resolved in the release. He can use an embedded mecha-

nism to give feedback in a structured way. This feedback

is collected on the delivery server and forwarded to the

issue tracker [KA14].

SE and software evolution with one Scrum core

workflow together with three additional workflows: (1)

issue management needs an issue tracker, (2) review

management needs a VCS, (3) release management

needs a CI and a CD server, (4) feedback management

needs a CD server and an issue tracker [KAB+14].

3 COMPARISON

In this section, first we introduce the tools, both the

commercial and open source ones, and their features.

Then, we compare the tools in each of the Rugby’s

important workflows and Scrum core workflow.

3.1 DESCRIBING THE TOOLS AND

RESPECTIVE FEATURES

There are four main subsystems which Rugby uses them

in its continuous workflow: Issue Tracking, Version

Control System, Continuous Integration, and Continuous

Delivery. For each of these subsystems, we analyze

commercial and open source tools, and extract their

workflow and object analysis model diagrams to show

similarities and differences among the tools.

3.1.1 Issue Tracking; JIRA vs. GitHub Issues

Issue tracking is a software tool that enables the de-

velopers to record and track the status of all issues as-

sociated with each configuration object in the project

[Pr05]. In this section, we compare two systems, JIRA

by Atlassian Tools and GitHub Issues. Both these tools

offer project environments, in which the team members

can define issues, assign them to team members, track

its state and close the issues. Considering their work-

flows, their functionality is similar:

Figure 4: Jira Workflow

Figure 3: Rugby's continuous workflow with abstract tools and transitions [KAB+14]

5

Figure 5: GitHub Issues Workflow

However, there are a couple of different features

which are available in JIRA and not in GitHub, or

GitHub implements them differently.

Before starting with JIRA, it is important to know the

concept of analysis object model. Analysis object model,

or class diagram, captures the concepts that exist in the

domain, and their relationships. It illustrates the concepts

in the real-world problem domain and only shows essen-

tial attributes, relationships and operations. Therefore,

using analysis object model, the main concepts and their

relationships of JIRA are shown in Figure 6:

Issue (the abstract superclass) is the main concept.

Apart from typical attributes like name, summary, diffi-

culty, priority, and so on, when you create an issue, it

needs many other considerations as well. An issue can

be a User Story, Task, Epic, Bug or Impediment. It

should be assigned to one Role (like Developer). Each

issue can be part of a sprint and belongs to one project

(the current project that you are working on) and one

backlog (either the Product Backlog or a Sprint Back-

log). It can be part of a component and a version. A

component is a unit of composition with contractually

specified interfaces and explicit context dependencies

only. It can be deployed independently and is subject to

third-party composition. A version is a way to categorize

the unique states of system as it is developed and re-

leased. Each issue can have multiple comments from

different authors (usually from other developers).

Therefore, JIRA can fully support Rugby in the pro-

jects. If we look at GitHub’s analysis object model, we

can see that some of JIRA’s concepts are not available

in GitHub or you have to deal with them differently. In

GitHub, an Issue can have multiple Labels, assignees,

Comments and Milestones. GitHub does not provide

special features to deal with the concept of sprints,

backlogs, versions and components. However, we can

deal with them by using labels. Unlike JIRA, there are

not different types for issues in GitHub, but using labels

they can also be categorized using labels.

Figure 7: Analysis Object Model describing the main concepts

of GitHub Issues

Figure 6: Analysis Object Model describing the main concepts of JIRA

6

Hence, in the first comparison, JIRA has more spe-

cial features rather than GitHub. Features like sprint,

version, etc. Nevertheless, all of them to some extent

can be done differently in GitHub as well using the la-

bels. For instance, we can set a label with “Sprint 2” for

an issue which simply means that this label belongs to

the second sprint.

3.1.2 Version Control Server; Bitbucket Server vs.

GitHub

VCS is a system that keeps track of files and their

history and have a model for concurrent access [Ot09].

Two common tools that are used by developers for ver-

sion control are Bitbucket Server, formerly known as

Stash from Atlassian Tools, and GitHub. In this section,

we are going to compare them in the matter of features

and functionalities that they each have.

The workflow for both Bitbucket and GitHub is the

same:

Figure 8: Bitbucket and GitHub Workflows

After commit and merge request, the system checks

some test cases on the integrated code. Then it delivers

or notifies the developer when the test cases pass or fail

respectively. However, there is one important difference

between these two tools: when we want to see the

changes in the code before merging the new code, before

merge request. GitHub retrieves the current system from

master branch or Development branch directly after get-

ting the diff request. It is a one-time process and the de-

veloper can see the differences between the committed

sources with the current one. In a real project, the master

branch will notably diverge from any given feature

branch. That means other developers will be working on

their own branches and merging them in to master con-

tinuously. Once master has progressed, a simple git diff

command from the feature branch point back to its

merge base is no longer adequate to show the real differ-

ences between the two branches. We only see the differ-

ence between the branch tip and some older version of

master.

Figure 9: GitHub git diff overview [adopted from Pe15]

Bitbucket shows different versions of the Develop-

ment branch or master branch to the user when merge

conflict happens:

Figure 10: Bitbucket git diff overview [adopted from Pe15]

In fact, each time someone pushes to or merges a

branch into master or our feature branch, Bitbucket is

potentially going to need to calculate a new merge in

order to show us an accurate diff.

The analysis object model for GitHub shows differ-

ent components that GitHub uses to do version control:

Figure 11: Analysis Object Model describing the main con-

cepts of GitHub

7

The model consists of two main components, Git

and GitHub. Git is the core concept in version control

systems and GitHub uses Git to control the versions in

the project. GitHub has a PullRequest which uses the

Git Branch for controlling the versions. PullRequest

consists of many Tasks and maybe different Comments

and each Comment has its own Contributor, which

means the one who wrote this comment.

After the PullRequest, GitHub extracts the data like

Branch type (which can be Master, Development or

Feature) and different branch-related data like Commits

and the Branch’s Repository. A Commit has different

Files and each File has many LineOfCode. A

LineOfCode can be a ModifiedLineOfCode which

should be merged to the Repository.

Figure 12 shows Bitbucket analysis object model.

We see that exactly like GitHub, Bitbucket uses the Git

as the core for controlling the versions in the projects.

The concepts in Bitbucket and GitHub look like the

same. PullRequest uses Branch as source and destina-

tion for the merged code. In Bitbucket, each PullRe-

quest has one Review. Review is done for all the merge

requests and the aim is to resolve merge conflicts after

occurring or even in advance. Each Review has one or

more Reviewer and the Reviewer is a Role.

Therefore, in the second comparison, we see that

both Bitbucket and GitHub are equally the same in the

matter of functionalities, but there are two more fea-

tures in Bitbucket. In Bitbucket, each merge request has

to have a review. It also shows us what the resultant

merge actually look like during viewing the merge re-

quest. It is done by creating a merge commit behind the

scenes and showing us the difference between it and the

tip of the target branch.

3.1.3 Continuous Integration; Bamboo vs. Travis CI

vs. Jenkins

Continuous Integration (CI) is a software develop-

ment practice where developers integrate their work fre-

quently, which leads to multiple integrations per day.

Each integration is verified by an automated build, in-

cluding test, to detect integration errors as quickly as

possible [FF06]. In other words, CI is the process of au-

tomatically building and running tests whenever a

change is committed.
In this section, we will compare three CI solutions:

Bamboo from Atlassian Tools, Travis CI from GitHub

and Jenkins. All these three tools are commonly use by

developers in different projects. The basic principle

behind all of them is the detection of changes in the

code repository and triggering a set of Jobs or tasks.

Figure 13 shows Continuous Integration workflow.

Figure 12: Analysis Object Model describing the main concepts of Bitbucket/Stash

8

Figure 13: Continuous Integration workflow

After each Merge request, which basically means in-

tegration of the new code to the current system, the CI

tries to interpolate the code into the system, and if it

succeeds to do so, then it tries out different tests which

the developer defined to run on the CI. If the system

passes all of the tests, then it notifies us that the system

is ready and we can deploy it by pushing a button. If the

system fails during the integration part or testing, CI

notifies us to fix the problems. This is a general work-

flow for almost all the CIs.

Figure 14 shows different components of Bamboo

analysis object model:

The main concept in Bamboo build is Plan. A Plan

defines everything about our continuous integration

build process in Bamboo. By default, it has a single

Stage, but we can use it to group Jobs into multiple stag-

es. A Plan processes a series of one or more Stages that

are run sequentially using the same repository. It also

specifies how the build is triggered, and the triggering

dependencies between the plan and other Plans in the

Project. Every Plan belongs to a Project. A Stage maps

Jobs to individual steps within a build process of Plan.

For example, we may have a Plan build process that

contains an Integration step followed by several Test

steps and a Delivery step. We can create separate Bam-

boo Stages to represent each of these steps. By default, a

Stage has a single Job, but we can use it to group multi-

ple Jobs. A Stage processes its Jobs in parallel. It must

successfully complete all its Jobs before the next Stage

in the Plan can be processed. A Job is a single build unit

within a Plan. One or more Jobs can be organized into

one or more Stages. The Jobs in a Stage can all be run at

the same time, if enough Bamboo agents are available. A

Job is made up of one or more Tasks. A Task is a small

discrete unit of work, such as source code checkout or

running a script.

Figure 15 shows Travis analysis object model.

Figure 14: Analysis Object Model describing the main concepts of Bamboo

9

When a PullRequest is opened, Travis receives a

PullRequest notification from GitHub. It turns this noti-

fication into a Build and runs it. Along the way, it up-

dates the commit status of the commits involved, which

in turn shows on GitHub as either a warning that the

build is still running, which means the PullRequest

should be merged with caution because the Build failed,

or that it can be merged safely because the Build was

successful. Travis builds a PullRequest when it’s first

opened and when commits are added to the PullRequest

throughout its lifetime. Like Bamboo, it tests the merge

between the origin and the upstream Branch rather than

test the commits from the Branches the PullRequest is

sent from. Travis needs access to read and write

webhooks (an HTTP POST that occurs when something

happens), services, and commit statuses. That way that it

can create the automated “hooks” it needs to automati-

cally run when we want it to. Travis also uses a YAML

file called .travis.yml to tell it how to set up a build.

Travis most of the time knows what should be done

without any need to explicitly define the flow. For ex-

ample, if there is the build.java file, Travis will under-

stand that it should be compiled, tested, etc. using Java.

It inspects our code and acts accordingly. We can switch

from different technologies without making any changes

to Travis or the configuration file. It has a strong de-

pendency with GIT. In cases when some other version

controls system is used, Travis is not a good option. If,

on the other hand, we are using GIT, working with

Travis is like forgetting that continuous integration even

exists. Whenever the code is pushed to the repo Travis

will detect it and act depending on changes in the code,

including .travis.ylm file. It also removes the need to

deal with jobs, configurations and other nuances.

Figure 16 shows Jenkins analysis object model. Apart

from project structure and build plan, both Jenkins and

Bamboo work in the same way. With Jenkins we start by

creating Build Project, which is called Build Job. Draw-

ing an analogy to Bamboo, Jenkins has a build plan with

single stage containing single job and list of tasks (Build

Steps and Post-build Actions are nothing but tasks).

There are no stages and no way to run anything in paral-

lel.

Jenkins is easy to extend, powerful and free. Its main

advantage is in the number of plugins and community

support. One can hardly imagine a need that is not al-

ready covered by one or more plugins. Jenkins can be

extended easily. As a downside, such architecture based

on plugins comes at a cost of stability. Plugins are of

different quality and it is not uncommon for an update to

break existing jobs or to provoke unexpected behavior of

the system. If one is looking for robust and flexible solu-

tion without any cost, Jenkins is the best choice.

Figure 15: Analysis Object Model describing the main concepts of Travis

Figure 16: Analysis Object Model describing the main concepts of Jenkins

https://en.wikipedia.org/wiki/YAML

10

3.1.4 Continuous Delivery; HockeyApp vs.

Crashlytics

 Continuous Delivery (CD) is a software engineering

approach in which teams keep producing software in

short cycles and ensure that the software can be reliably

released at any time [Ch15]. Rugby uses an enterprise

app store as CD server, a web portal through which end

users can access, download, install approved software

applications, send feedback about the application and

report crashes. To report the crashes, Enterprise

AppStore should have two components: a reporting li-

brary and a server-side collector. The role of the report-

ing library is to prepare the details about a crash and the

role of the server-side component is to collect the crash

data and present it in a meaningful way. In this section,

we will compare three enterprise app stores: HockeyApp

and Crashlytics (named fabric after the acquisition from

Twitter).

Figure 17 shows HockeyApp main components. It

supports the management and recruitment of testers, the

distribution of apps and the collection of crash reports. It

also supports apps on iOS, Android, Mac OS X, and

Windows Phone as well as custom apps. Crash reports

are working on all those platforms. Beta distribution is

functional on iOS, Android, Windows Phone, and Mac

OS X; for custom apps, we can only notify testers via

email, but there is no in-app update functionality. On

iOS and Mac OS X, the SDK leverages the

PLCrashReporter framework by Plausible Labs.

PLCrashReporter is open source and creates full stand-

ard crash logs with all threads. After the user has sent the

crash log, the HockeyApp server collects all crash in-

formation and automatically symbolicates all threads to

provide class names, method names and even line num-

bers. To achieve this, developers need to upload the

dSYM package for each app version for iOS and Mac

OS X apps. It is not necessary to upload the app binary.

HockeyApp groups the crash reports on all platforms by

similarities, so developers always see the critical parts

quickly and easily.

Crashlytics is a free service offered by Twitter that

collects our crashes and various other bits of infor-

mation. It is easy to setup and install and it instantly

starts providing value as soon as we install it. It is com-

pletely free with unlimited apps, unlimited users, unlim-

ited crashes, and unlimited keys.

Crashlytics has a proficient symbolication, the ability

to browse logs and their usability on the server are good

and attentive. There is also a wait list, which means we

may have to wait to get notified. However, the wait time

at the moment does not appear to be very long and we

are often notified within minutes.

Figure 18 shows Crashlytics object analysis model

and we can see that to some extent, it looks like Hock-

eyApp. They both save the crashes and bugs as issues

within the version of the application. They also can con-

nect to an Issue Tracker and make use of the issue types

for further development and maintenance.

Figure 17: Analysis Object Model describing the main concepts of HockeyApp

11

3.2 Comparison between Different Tools in each

Workflow

For each of Issue Management, Review Manage-

ment, Release Management and Feedback Manage-

ment workflows, we select alternatives and compare

them with the corresponding commercial tools in the

existing reference implementation with respect to the

most important core use cases and non-functional re-

quirements in each workflow. At the end of each sec-

tion, there is a comparison table which shows scores

for each feature of the tool (combination). Scores

range from 1 (very poor quality or support) to 5 (ex-

cellent quality or support). In case a tool does not sup-

port a feature, a dash sign is shown (-).

3.2.1 Issue Management Workflow

Issue tracking is a software tool that enables the de-

velopers to record and track the status of all issues as-

sociated with each configuration object in the project

[Pr05]. In this section, we compare JIRA by Atlassian

and GitHub Issues for issue management.

JIRA has a customizable workflow for issues which

makes it easy to tailor based on different needs in each

project. The issue workflow consists of statuses and

transitions that an issue goes through during its lifecy-

cle modeled as a finite state automaton. The workflow

can be edited or a new one can be created from scratch.

JIRA supports sprint planning and sprint reviewing as

defined in Scrum.

On the other hand, GitHub Issues, does not have

customizable workflows for issues. However, a list of

milestones can be configured with a corresponding due

date. A milestone shows the last edit date, percentage of

completed tasks, the number of open and closed issues

and merge requests, which can give a general overview

of the project progress. With some configurations,

GitHub Issues can support agile project management.

Using milestones and labels, it is possible to simulate

sprint backlogs and versions which are not available by

default [Ke15].

Therefore, the main advantages of JIRA in compari-

son with GitHub Issues are its customizable workflows

for issues and support for variety of issue types as well

as different reports and charts. GitHub Issues main ad-

vantage is its usability which is very simple and easy to

work in comparison with JIRA.

Relevant features

for Rugby

JIRA GitHub

Customizable is-

sue states and

transitions

5 1

Taskboard support 5 3

Versions support 5 4 (using La-

bels)

Backlogs support 5 3 (using Mile-

stones)

Sprint plan-

ning/review sup-

port

5 3

Usability 3 5

Table 1: Issue management workflow comparison

3.2.2 Review Management Workflow

VCS is a system that keeps track of files and their

history and have a model for concurrent access [Ot09].

In this section, we compare Bitbucket Server, formerly

Figure 18: Analysis Object Model describing the main concepts of Crashlytics

12

known as Stash, by Atlassian and GitHub for review

management.

Both Bitbucket and GitHub use Git as distributed

VCS to control the source code versions. Features like

merge requests (a.k.a. pull request), branch manage-

ment and merge management are the most important

functions [CS14]. Therefore, Bitbucket and GitHub

function similarly in their core features. Bitbucket only

supports sharing code files as snippets (known as Gists)

with additional plugins. Its web interface lacks inline

editing unless additional plugins are used.

In contrast to GitHub, Bitbucket’s web interface does

not show tags. However, this does not affect its func-

tionalities, since it supports all the GitHub’s features

without needing to use labels. In terms of usability,

GitHub is slightly better than Bitbucket. It is simple and

everything is easy to find in the menus. One important

difference between Bitbucket and GitHub is that they

use different mechanism to show compare view (diff)

[Pe15]. Although Bitbucket’s approach is more complex

and has an overhead, it provides more accurate and use-

ful merge request diff.

Relevant features

for Rugby

Bitbucket Server GitHub

Merge requests 5 5

Inline code com-

menting

5 4

Web inline editing 4 (using plugins) 5

Sharing code files

and snippets sup-

port

4 (using plugins) 5

Commit comments 5 5

Accurate compare

views

5 4

Branch/merge

management

5 5

Collaborative code

review

5 5

Usability 4 5

Table 2: Review management workflow comparison

3.2.3 Release Management Workflow

CI is a software development practice where devel-

opers integrate their work frequently, which leads to

multiple integrations per day. Each integration is verified

by an automated build, including test, to detect integra-

tion errors as quickly as possible [FF06]. In other words,

CI is the process of automatically building and running

tests whenever a change is committed. On the other

hand, CD is a software engineering approach in which

teams keep producing software in short cycles and en-

sure that the software can be reliably released at any

time [Ch15]. Rugby uses an enterprise app store as CD

server, a web portal through which end users can access,

download, install approved software applications, send

feedback about the application and report crashes. In this

section, we compare three combinations of CI and CD,

Bamboo and HockeyApp, Travis and Crashlytics, and

Jenkins and Crashlytics.

Travis is a maintenance free CI server, since it is a

hosted service and all the installations and updates are

performed server side. Although Jenkins can be a hosted

service as well, it is usually use on premise, needing ad-

ministration effort for installations and updates. Bamboo

can be used as cloud service or as on premise solution.

Jenkins does not use a database for storage which makes

it flexible and portable. Only by copying the configura-

tion, Jenkins jobs can be easily migrated across multiple

instances which is not possible in Bamboo. Therefore,

maintainability in Jenkins is easier.

Additional build agents are needed to scale CI servers

horizontally. Bamboo licenses are priced per agents that

need to be installed and configured. In Jenkins, unlim-

ited amount of build agents is available and configura-

tion of build agents is very easy. The build agents are

configured via Jenkins UI and all of the tools can be in-

stalled automatically. Therefore, Jenkins is easier to

scale than Bamboo.

A deployment project in Bamboo is a container for

holding the software project which is deployed. Besides,

plan branches represent a build for a branch in the ver-

sion control system. When the plan branch build suc-

ceeds, it can be automatically or manually merged back

into master. Bamboo deployments allow a plan branch to

be deployed to a test environment and the feature source

code can be tested and evaluated in a real server envi-

ronment before the code is merged back to master. In

Jenkins, there are available plugins to support deploy-

ment and branches as well, while in Travis they are sup-

ported by Travis’ configuration file. Concluding, all

tools support deployment and branches. However, in

Bamboo, when build jobs call deployments, it is not pos-

sible to go back to the build job to perform some post-

deployment tasks. In addition, inability to provide input

parameters, especially for deployment jobs, is a problem

in Bamboo as well.

Each release includes release notes, which describe

features and resolved bugs. The release notes are collect-

ed by the CI server and can be edited in the manual re-

lease step if necessary. Non of the CI solutions can cre-

ate release notes automatically.

Code testing is the process of automatically building

and running tests whenever a change is committed. Code

13

integration is the process of automatically integrating the

code after a committed change. All three CI tools sup-

port testing and integration.

It is not possible to get crash logs in Travis, without

setting up scripts to upload them to a third-party service

after completion of a build. In Bamboo and Jenkins,

there are a lot of useful information regarding crash logs

in test output display. Bamboo has an easy to use UI,

Travis’ UI is even more simple. However, Jenkins’ UI

looks out of date. Both HockeyApp and Crashlytics, no-

tify the users about new releases and support feedback

notification as well. They enable the CI server to auto-

matically upload a new build and support the download

of releases, new versions, push notifications and publica-

tion configurations.

 Relevant features

for Rugby

Bamboo +

Hock-

eyApp

Travis +

Crash-

lytics

Jenkins +

Crash-

lytics

Build plan configu-

ration

5 4 4

New commit/branch

detection

5 4 4

Release notes crea-

tion

- - -

Testing 5 5 5

Integration 5 5 5

Build status notifica-

tion

5 2 5

Deploy build to CD

server

4 5 5

Feedback/new re-

lease notification

5 5 5

App version auto-

matic upload

5 5 5

Release download 5 4 4

CI scalability 3 - 5

CI maintainability 3 5 4

CI usability 4 5 2

App version down-

load usability for the

user

5 4 4

Support of multiple

mobile platforms

5 4 (iOS,

Android)

4 (iOS,

Android)

Table 3: Release management workflow comparison

3.2.4 Feedback Management Workflow

In Section 3.3, we mentioned that Rugby uses an en-

terprise app store as CD server. In this section we com-

pare the combinations of HockeyApp and JIRA, and

Crashlytics and GitHub Issues. Both Crashlytics and

HockeyApp store crash reports and errors as issues.

However, since GitHub Issues does not support multiple

issue types, it is not possible to convert issues to appro-

priate work items like bugs or improvements.

In Crashlytics, different user groups can be defined

and different users can be added to them. HockeyApp

supports five user roles: owner, manager, developer,

member and tester. HockeyApp supports more feedback

management features in comparison with Crashlytics;

while the user can reply to the developer’s questions and

his feedback records usage context, developer can pull

them and reply to them.

Therefore, the main differences between HockeyApp

and Crashlytics are the multiple mobile platforms sup-

port, user device registration and developer device man-

agement. While HockeyApp supports different plat-

forms, Crashlytics is only limited to iOS and Android.

Although both of these tools have a good usability,

HockeyApp is more simple and easier to use. While us-

ers can register their iOS and Android devices in Hock-

eyApp, they can do so only for the iOS devices in Crash-

lytics. HockeyApp also supports developer device man-

agement which is not supported in Crashlytics.

Crashlytics takes into account that often a crash oc-

curs and assigns it an impact level. It notifies when a

specific crash is more critical than another one. As a par-

ticular crash is reported more and more, Crashlytics

tracks that information and calls out the crashes that

should be dealt with next. On the other hand, Hock-

eyApp provides more depth and accuracy of crash logs.

However, it does require more setup compared to Crash-

lytics.

Relevant features

for Rugby

HockeyApp +

JIRA

Crashlytics +

GitHub Issues

User device regis-

tration

4 (iOS and An-

droid)

3 (iOS)

User feedback

upload

5 5

User reply to de-

veloper question

5 5

User attach media 5 5

Developer device

management

5 3

Developer feed-

back pull

5 5

Usage context

record

5 5

Feedbacks and

analytics for de-

veloper

5 5

Store crash reports

and errors as is-

sues

5 5

Issue conversion to

appropriate work

5 1

14

item (issue)

Table 4: Feedback Management workflow comparison

4 CONCLUSION

In this section, we create a second reference imple-

mentation with tools that can be used for free in open

source projects, using GitHub tools, Jenkins and Crash-

lytics, and compare it with the commercial reference

implementation. The second reference uses GitHub Is-

sues as Issue Tracking, GitHub as VCS, and Crashlytics

as CD server. For CI, there are two options to choose:

Travis and Jenkins. Both of these CI servers are candi-

dates to become the CI solution. Cloud vs On Premise of

the code repository is the most important factor in

choosing, followed by project type. If the project is open

source, Travis would be the better option, because there

is no setup time and fee. If it is a company project with

privacy concerns, Jenkins is a better option, because the

setup time is minimal and maintaining the server is ra-

ther simple.

Due to the fact that JIRA, Bitbucket and Bamboo are

all Atlassian tools, they can integrate seamlessly using

minimal effort and have a high overall usability as well,

while the learning curve might be high for new users. On

the other hand, GitHub Issues, GitHub and Travis are

from GitHub and they also integrate with each other.

GitHub tools are simpler and have fewer features than

Atlassian tools, so they are easier for new users and can

be used for free in open source projects. In addition,

maintenance is not an issue while working with GitHub

tools, because they are all hosted in the cloud.

Considering the price plan of different tools, the pro-

posed reference implementation using open source tools

can be used for free, especially for small startups that

work on public repositories. However, if private reposi-

tories and concurrent jobs in CI are necessary, the price

varies and there is not too much difference between the

two reference implementations in the term of price. Us-

ing the commercial reference implementation for middle

sized companies, with around 100 persons, can be ex-

pensive. For such middle sized companies, the open

source reference implementation cost is about half of the

commercial one.

Therefore, both the existing commercial reference

implementation, using JIRA, Bitbucket, Bamboo and

HockeyApp, and the proposed open source implementa-

tion, using GitHub Issues, GitHub, Travis/Jenkins and

Crashlytics, cover most of Rugby’s important use cases.

The commercial solution is a better choice when security

and privacy are important and repositories should be pri-

vate. On the other hand, when the project can be public,

the open source solution should be preferred. Rugby can

be implemented with different tools, either for commer-

cial projects or open source projects. However, there is

always a tradeoff between the tools quality and their

price. It remains future work to compare other tools for

their use in Rugby projects.

5 REFERENCES

[FS14] B. Fitzgerald, K.J. Stol: "Continuous software en-

gineering and beyond: trends and challenges." Pro-

ceedings of the 1st International Workshop on Rap-

id Continuous Software Engineering. ACM, 2014.

[Bo14] J. Bosch: “Continuous software engineering: An

introduction,” in Continuous Software Engineer-

ing. Springer, 2014; Pages 3–13.

[Sc04] K. Schwaber: Agile project management with

Scrum. Microsoft Press, 2004; Chapter 4.

[JBR+99] I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh,

G. Booch: The unified software development pro-

cess. Addison-wesley, 1999; Page 92.

[HF10] J. Humble, D. Farley: Continuous delivery: reliable

software releases through build, test, and deploy-

ment automation. Pearson Education, 2010; Pages

24-29.

[KAB+14] S. Krusche, L. Alperowitz, B. Bruegge, M. O.

Wagner, Rugby: An Agile Process Model Based on

Continuous Delivery, Proceedings of the 1st Inter-

national Workshop on Rapid Continuous Software

Engineering. ACM, 2014.

[KKP+15] S. Klepper, S. Krusche, S. Peters, B. Bruegge, L.

Alperowitz: Introducing Continuous Delivery of

Mobile Apps in a Corporate Environment: A Case

Study, 2015.

[BKA15] B. Bruegge, S. Krusche, L. Alperowitz: Software

Engineering Project Courses with Industrial Cli-

ents, ACM Transactions on Computing Education,

2015.

[Pr05] R.S. Pressman: Software engineering: a practition-

er's approach (7th Edition). Palgrave Macmillan,

2010; Page 595.

[KA14] S. Krusche, L. Alperowitz: Introduction of Contin-

uous Delivery in Multi-Customer Project Courses,

Proceedings of the 36th International Conference

on Software Engineering, 2014; Pages 2-3.

[Ke15] H. Kellaway: Using Github for Lightweight Soft-

ware Project Management, 2015. Retrieved 06-

October-2015 from

http://harlankellaway.com/blog/2015/04/02/using-

github-issues-for-software-project-management/

15

[Ot09] S. Otte.: Version Control Systems. Computer Sys-

tems and Telematics, 2009 Institute of Computer

Science, Freie Universität, Berlin, Germany.

[CS14] S. Chacon, B. Straub: Pro Git (2nd Edition). Apress,

2014; Pages 89-98.

[Pe15] T. Petterson: A better pull request, 2015. Retrieved

13-September-2015 from

https://developer.atlassian.com/blog/2015/01/a-

better-pull-request/

[FF06] M. Fowler, M. Foemmel: Continuous integration.

Thought-Works)

http://www.thoughtworks.com/ContinuousIntegratio

n.Pdf, 2006.

[Ch15] L. Chen: Continuous Delivery: Huge Benefits, but

Challenges Too. Software, IEEE, 2015.

