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Chapter 1

Introduction

1.1 Motivation

The arithmetic implemented on “real computers” differs from “mathematical” arithmetic in many respects. Conse-
quences of finite word size, such as rounding, underflow, and overflow, have to be considered. Different hardware
platforms support different solutions to these problems; some platforms have unique weaknesses. Even some very
basic properties of numeric representations are not fully standardized.

In many programming language descriptions, details such as the exact semantics of primitive data types and operations
thereon are left out as either irrelevant or implementation-dependent. Within the typical application domains of “high-
level” languages, this may be a reasonable approach – computations can be done with types large and precise enough
to provide safety margins which ensure that finite-size effects don't affect the results. In “low-level” applications such
as signal processing and bit-true simulation, a precise semantics of the underlying numeric system is however needed.

During the last years, we felt the need for a precise semantic underpinning in three of our projects:

� The ALDiSP project [3][5] was concerned with the specification and implementation of asynchronous real-time
signal-processing applications in an applicative framework. ALDiSP is an outgrow of the CADiSP designer
tool bench study [7], in which the imperative language ImDiSP was also developed [8]. An understanding of
rounding and overflow effects is essential for the specification of many common DSP algorithms, and thus an
important issue in DSP language frameworks.

� In the context of the CBC project [2], a retargetable code generation back-end for DSP architectures was devel-
oped. This compiler is based on the concept of attributed control/data flow graphs as intermediate representation
of the algorithm. It employs “primitive operation” nodes that have to be matched to the hardware operators avail-
able in given hardware architecture. When matching n-bit operations to m-bit operators, precise notion of the
overflow/carry behaviour of the target hardware is needed.

� The nML machine specification language [1][4] defines hardware architectures by their instruction sets. A
behavioural instruction set definition is given by listing an execution semantics for each instruction. nML has to
provide adequate primitive operations to model machine operators to such a degree of precision that automatic
tools can extract all relevant information (nML descriptions are used to specify the target architectures of the
CBC compiler).

Each of these projects needed a bit-true model of primitive numeric data types, and operations defined on them.

1.2 Scope of this Report

This report defines a framework that supports a generic model of numeric representations and operations on them. We
try to model all user-relevant notions such as “representation”, “ideal” and “concrete” operations, and the treatment of
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CHAPTER 1. INTRODUCTION 1.3. TYPES AND OPERATIONS

erroneous situations. Our goal in defining this semantics is to provide a notational tool for our own needs in such areas
as compiler transformations, generation of hardware simulators, and conversion between data type representations.
One possible direct use of this semantics is to form a basis for a software library to support bit-true simulations.

One of the objectives in providing this semantics is its use as a rule base in type inference systems. This report
therefore restricts itself to those numeric types that occur naturally in “statically typed” languages, i.e. languages in
which each expression has a type which can be computed at compile-time. “`Symbolic” numeric data-types (e.g.,
those used in Mathematica or Maple) and dynamic types (e.g., those defined for Common Lisp) are not considered.1

This report does not purport to give earth-shattering new insight into numeric types; its purpose is to be a reference so
that other texts can employ well-defined types and operations by simply pointing here.

1.3 Types and Operations

At the core of this report is a list of types. Each type is characterized by its bit size, a decoding function, and its
domain. The domain of a type is the set of values modelled by it, usually a subset of the natural or real numbers,
occasionally refined with symbolic values like “�”. The decoding function projects bit strings into the domain; an
explicit encoding function need only be specified if the encoding is non-unique.

Using this type description, a standard operator projection is defined. This projection maps “mathematical operations”
onto their “hardware counterparts”. The behaviour of the resulting operators can be modified by defining attributes
that describe

� rounding behaviour,

� overflow behaviour,

� argument sets for which the operator is undefined,

� argument sets for which the operator is unspecified, and

� an error function.

These function- and set-valued attributes can be defined for both operations and types. Precedence rules define how
attributes interact.

1.4 Unspecified and Undefined Behaviours

Standards discriminate between unspecied and undefined behaviour.

An example for unspecified behaviour might be the result of integer division and modulo in C when arguments are
negative – the result will be well-defined for each particular implementation, but not the same across implementations.

An example for undefined behaviour might be division by zero in C – such an operation might cause an exception, or
even crash a program. A particular implemention is not required to specify the effects of an undefined operation; the
user has to ensue that such an operation does never occur.

Our semantics provides facilities to model both unspecified and undefined behaviour: the primitives provided by our
semantics have a very restricted argument range, even if “reasonable” definitions for wider argument ranges exists.
For example, the integer division and remainder operators are unspecified on negative arguments, and division by zero
is undefined. On top of these “weak” operations, more “powerful” operations can be built.

In some cases, it is necessary to make a function “less defined”. For example, the floating-point multiplication and
division operations on certain machines have an error of up to three ULPs. To model such behaviour, it is possible to
provide an error function that determines the number of bits of lost precision.

1Mathematica employs symbolic expression values and computes the numeric approximation of such a value only when the symbolic repre-
sentation becomes too unwieldy, or a numeric result is explicitly requested by the user. In Common LISP, the run-time type of an object might be
data-dependent, and type correctness cannot be guaranteed at compile time; it is not even guaranteed that a given value is always of a numeric type.
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CHAPTER 1. INTRODUCTION 1.5. OVERVIEW

1.5 Overview

Chapter 2 introduces the basic notions of object, value, representation, and type. Some lemmata are defined so as to
show the usefulness and completeness of the definitions. Based on these definitions, operations to cast and coerce
values to types are introduced. In our framework, these operations are rather basic and pop out naturally from the
definitions of types and objects.

Chapter 3 defines a set of attributes for rounding, overflow, and underflow.

Chapter 4 defines a list of standard operations defined on (nearly) all types.

Chapter 5 defines a standard catalogue of integer and floating point types.

7



Chapter 2

Basic Notions

A semantics for numerics is concerned with the description of numeric types and the primitive functions defined on
them. A type describes a domain, which is a set of values, and the representation of these values by bit strings. Values
are usually described in terms of “standard” mathematical domains, such as the natural or real numbers. Conversely,
a type can be seen to provide an interpretation for all bit patterns of a certain size. Such an interpreted bit pattern is
called a numeric object (or object). In other words, a type describes a set of objects. All primitive functions are be
defined in such a way that the result type of a primitive can be statically deduced from the argument type. When used
for a programming language, our semantics can therefore be used in combination with a static type system. Most types
are parameterized instances of generic types. For example, the generic type Int has instances such as Int(12) or
Int(37).

2.1 Domains

The basic domains of interest are Num, Obj, Type, and Bitstring. Numis the domain of mathematical numbers,
and contains several subsets of interest, such as the cardinal numbers, the integers, the real numbers, some symbolic
values (or non-numbers), and the special value �(bottom) that denotes an undefined result:

Num � N�Z�R� NoN � f�g

NoN � f��������� NaNg

A few convenience functions can be defined using these subdomain: isnum(x) determines whether x is a true
number; isnon(x) determines whether it is one of the NoN-numbers, isdef(x) determines whether it is defined.

isnum�� � Num� ft� fg

isnon�� � Num� ft� fg

isdef�� � Num� ft� fg

isdef�x� � x 	� �

isnon�x� � x 
 NoN

isnum�x� � isdef�x� � x 
 Num� 	 isnon�x�

8



CHAPTER 2. BASIC NOTIONS 2.2. ENCODE AND DECODE

Obj is the domain of computer-encoded numbers, or numeric objects. An object consists of two components, a type
(the internals of which will be explained later) and a bit string, which is a sequence of binary digits. A bit string
(and, transitively, each object) has a size, which is the number of bits needed to represent it. To keep the semantics
simple, there is a maximum size (sizemax) which has an appropriately large value. There are a number of convenient
operators to work with objects, types, bit strings, and sizes:

Obj � Type� Bitstring

Size�� � ��� � � � � sizemax	

Bitstring � Bit� � Bit� � � � �� Bitsizemax

Bit � f�� �g

sizeof � Bitstring� Size��

sizeof � Obj� Size��

sizeof � Type� Size��

typeof � Obj� Type

bits � Obj� Bitstring

2.2 Encode and Decode

Each type T has two associated functions, encodeT and decodeT, that mediate between the domains Bitstring
and Num. Encoding and decoding are partial functions; they are only defined on subdomains of Obj and Num.
decode (without a subscript) can be applied to any object; the type of the object provides the information as to what
decoding method is to be used:

encodeT � NumT � Obj

decodeT � BitstringT � Num

decode � Obj� Num

decode�x� � decodetypeof(x)�bits�x��

BitstringT � Bitsizeof�T �

ObjT � f�T� x�j x 
 BitstringTg

NumT � Domain�T � � decode�ObjT � � fv j v � decodeT�x�� x 
 BitstringTg

The domain of a type T is the set NumT of all values from Num that can be represented as objects of type T (elements
of ObjT ).

All encode/decode functions must fulfill the following equality:


T 
 Type � 
x 
 NumT � decodeT�encodeT�x�� � x
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CHAPTER 2. BASIC NOTIONS 2.3. CASTING AND COERCING

That is, the decoding is the inverse of the encoding function. There is no such guarantee for


s 
 BitstringT � encodeT�decodeT�s�� � s

since it is possible that an encoding is redundant, i.e. that one value is encoded by more than one binary representation.

An encoding (and its type) is redundant if there exists values that are represented by more than one bit pattern. A
non-redundant encoding is also called unique.


T 
 Type � redundant�T � � �s�� s� 
 BitstringT � s� 	� s� � decodeT�s�� � decodeT�s��


T 
 Type � unique�T � � �redundant�T �

2.3 Casting and Coercing

The most basic semantic functions are related to modifications of the type of an object. When an objects's type is
changed, its bit string may be left unchanged, or it might be changed as well. Merely replacing the type is performed
by the operation cast. A cast can thus modify the decoded value of an object; its bit-string is re-interpreted. A
re-typing with modification of the value is performed by the operation coerce:

cast � Type� Obj� Obj

coerce � Type� Obj� Obj

cast�t� o� � �t� bits���o��

coerce�t� o� � encodet�decode�o��

Note that coerce�t� o� is undefined on objects o that cannot be represented in type t, and that cast�t� o� is undefined
when sizeof�o� 	� sizeof�t�.

Some obvious lemmata about the cast function are:


T�� T�� T� 
 Type��
x 
 ObjT� � cast�T�� cast�T�� x�� � cast�T�� x�


T�� T� 
 Type��
x 
 ObjT� � cast�T�� cast�T�� x�� � x

Proof: by definition.

2.4 Projecting Mathematical Operators to Primitives

A standard mathematical operator pn (of arity n) is easily mapped to its “primitive” counterparts on a type T :

mappingtrivial�T� pn� � ��x�� � � � � xn��

encodeT�pn�decode�x��� � � � � decode�xn���

10



CHAPTER 2. BASIC NOTIONS 2.4. PROJECTING MATHEMATICAL OPERATORS TO PRIMITIVES

This trivial mapping is only possible if the results of pn can be represented as T -objects, and if pn is defined on all
n-tuples of T . In the more general case, two auxiliary functions are needed to resolve the problems:

mappingstandard�T� pn� � ��x�� � � � � xn��

encodeT �re�� if re 
 NumT � re 	� �

undef�T� x�� � � � � xn�� if re � �

round�T� v�� re� v��� if �v�� v� 
 NumT � v� � re � v�

bound�T� re�� otherwise

where

re � r� if error � �

re � error�T� r�� otherwise

r � pn�decode�x��� � � � � decode�xn��

The functionundef encapsulates the treatment of undefined argument sets. The functionround defines the rounding
mechanism, i.e. those cases where the true value of pn lies between to representable values. The function bound is
called when the result cannot be represented and does not lie between to values, i.e. when the value exceeds the bounds
(the largest positive/negatuve value that can be represented) of the type. The error function, if defined, introduces
an error.

The definitions of these functions are provided as attributes to either the mapping function, the type argument T , or the
arguments p�� � � � pn. Per default, none of these functions is defined (or rather, they are defined as �, i.e. as functions
being undefined on all arguments).

When more than one attribute definition is provided, the mapping function's attribute overrides the type's attribute,
which overrides any argument's attribute. If only the arguments are attributed, and the attributes are in conflict (i.e.,
not identical or bottom), this constitutes a type error.

11



Chapter 3

Attributes

By defining attributes that define round, undef, and bound functions, types can be modified. Such a modified (or
refined) type is specified by adding the attributes to type's name, as in

int����fround � nearest� bound� cutoffg

which describes a common integer type as it might be used for a C implementation. Note that only two of the attributes
are given, the third (undef) is left undefined.

One of the hairiest aspects of numeric representation, the handling of non-numbers (NaN, the infinities) is excluded
from the generic type attributes and instead specified via an undef attribute specific to each operation.

3.1 Rounding Methods

There are four common1 rounding methods:

� nearest rounds to the nearest representable number; if two numbers are equally near, the one with a zero bit
in its last position is chosen,

� to�� rounds to the next larger number, i.e. towards ��

� to�� rounds to the next smaller number, i.e. towards ��

� to�� rounds towards the �with the same sign as the rounded number

� tozero rounds towards zero

Their definitions are are:

3.1.1 nearest

nearest�T� vl � v� vu� � encodeT�vl�� if v � vl � vu � v

encodeT�vr�� if v � vl � vu � v

encodeT�vl�� if v � vl � vu � v � encodeT�vl�� � �

encodeT�vl�� if v � vl � vu � v � encodeT�vr�� � �

The four arguments to a round function are the type in which the result is to be encoded, the largest encodable
number smaller than the actual value (i.e., the “value to the left”), the actual value, and the smallest encodable number
larger than the actual value (i.e., the “value to the right”). The expression xi denotes the i-th bit of a bit string x.

1All of the presented rounding modes, except touinf, are defined in the IEEE-754 standard.
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CHAPTER 3. ATTRIBUTES 3.2. BOUNDING METHODS

3.1.2 to��

to���T� vl� v� vu� � encodeT�vu�

3.1.3 to��

to���T� vl� v� vu� � encodeT�vl�

3.1.4 to��

to���T� vl� v� vu� � encodeT�vu�� if v � �

encodeT�vl�� if v � �

3.1.5 tozero

tozero�T� vl� v� vu� � encodeT�vl�� if v � �

encodeT�vu�� if v � �

3.2 Bounding Methods

The bounding methods presented here are

� cutoff cuts of the “bits at the top”. This is the usual bounding method for integers in high-level programming
languages that don't feature bignums.

� stick(x � y) replaces any result exceeding the bounds with fixed values. This is the method used in IEEE float-
ing point numbers, with the values �� and ��. In fixed point systems, this is called “saturation arithmetic”,
and the values are MININT and MAXINT.

� cutoff(n) is a mixture between cutoff and stick(��T)he highest n bits are replaced by all-zero or all-
one (depending on the sign), the rest bits are left as they are. This method is sometimes used in DSP hardware.2

The bounding methods cutoff and cutoff(n) are most easily described by using a “scratchpad type” that is large
enough to hold the intermediate results. The size of the scratchpad type depends upon what operations are needed,
e.g. for addition/substraction, only one bit more is needed, while for multiplication, the added sizes of the argument
types are required.

3.2.1 cutoff

cutoff�T scratch��T� v� � �s�n���s�n��� � � � s�s��

where

n � sizeof�T �

m � sizeof�T scratch��m � n

s � �s�m���s�n��� � � � s�s�� � encodeT scratch
�v�

It is assumed that
v 
 Domain�T scratch�

.
2It is one of the rounding methods provided by SILAGE.
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CHAPTER 3. ATTRIBUTES 3.2. BOUNDING METHODS

3.2.2 cutoff(n)

cutoff�T scratch��N ��T� v� � �p�p� � � � pns�n�N���s�n�N��� � � � s�s��

where

n � sizeof�T �

pi � �� if v � �

pi � �� if v � �

m � sizeof�T scratch��m � n

s � �s�m���s�n��� � � � s�s�� � encodeT scratch
�v�

3.2.3 stick(x � y)

stick�x � y��T� v� � x� if v � Max�Domain�T ��

y� if v � Max�Domain�T ��

14



Chapter 4

Operations

The standard operations defined here in some variations are

� addition and subtraction

� negation

� multiplication

� division (for fp numbers)

� quotiont (division on non-fp numbers)

� remainder

� shift on non-fp numbers

� rotation on non-fp numbers

4.1 Addition/Subtraction

The basic add/subtract operators are defined via the standard mapping:

addT � mappingstandard�T� ��x� y��x � y�

subT � mappingstandard�T� ��x� y��x � y�

The basic operators are undefined on overflow; the most common variants for integer types handle overflow via cutoff:

addT(size)/cutoff � addT(size)fbound � cutoff�T �size � ���g

subT(size)/cutoff � subT(size)fbound � cutoff�T �size � ���g

Addition for floating-point numbers needs some extra cases to handle infinities, NaNs and the zeroes:

15



CHAPTER 4. OPERATIONS 4.2. NEGATION

addFloat(n,m) � mappingstandard�F loat�n�m�� ��x� y��x� y�fbound � b� round � r� undef � ug

where

b � stick�������

r � nearest

u�x� y� � NaN� if x � NaN � y � NaN � �x � ��� y � ��� � �x � ��� y � ���

��� if x � ��� y � ��

��� if x � ��� y � ��

��� if �x � �� � y � ��� � �x � � � y � ��� � �x � �� � y � ��

y� if �x � ���

x� if �y � ���

Subtraction can be defined via addition and negation:

subFloat(n,m)�x� y� � addFloat(n,m)�x� negFloat(n,m)�y��

4.2 Negation

Negation for most types is defined via straighforward subtraction:

negT�x� � subT�encodeT���� x�

Only floating-point types create a small problem, since �� � � �, but neg��� � ��. This can be handled by a simple
added case:

negFloat(n,m)�x� � subFloat(n,m)�encodeFloat(n,m)���� x�� if x 	� �

encodeFloat(n,m)����� if x � �

4.3 Multiplication

The basic multiplication operator is defined via the standard mapping:

mulT � mappingstandard�T� ��x� y��x � y�

mulTis undefined on overflow; the most common variants for integer types handle overflow via cutoff:

addT(size)/cutoff � addT(size)fbound � cutoff�T �size � size��g

16
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Multiplication for floating-point numbers needs some extra cases to handle infinities, NaNs and the zeroes:

mulFloat(n,m) � mappingstandard�F loat�n�m�� ��x� y��x � y�fbound � b� round � r� undef � ug

where

b � stick�������

r � nearest

u�x� y� � NaN� if x � NaN � y � NaN

� NaN� if ��x � ��� x � ��� � �y � � � y � ����

� NaN� if ��y � ��� y � ��� � �x � � � x � ����

��� if �x � ��� �y � ��� y � ��� � �y � ��� �x � ��� x � ���

��� if �x � ��� �y � ��� y � ��� � �x � �� � �y � ��� y � ���

��� if �x � ��� �y � ��� y � ��� � �y � ��� �x � ��� x � ���

��� if �x � ��� �y � ��� y � ��� � �x � ��� �y � ��� y � ���

��� if �x � � � y � ��� � �x � �� � y � ��

y� if �x � ���

x� if �y � ���

4.4 Division

“Division” means “floating-point division”; it is sufficiently different from whole-number division to have its own
definition.1

divFloat(n,m) � mappingstandard�F loat�n�m�� ��x� y��x�y�fbound � b� round � r� undef � ug

where

b � stick�������

r � nearest

u�x� y� � NaN� if x � NaN � y � NaN

� NaN� if ��x � � � x � ��� � �y � � � y � ����

� NaN� if ��y � ��� y � ��� � �x � ��� x � ����

��� if �x � � � x � ��� � �y � ��

��� if �x � � � x � ��� � �y � ���

��� if �x � � � x � ��� � �y � ���

��� if �x � � � x � ��� � �y � ��

�� if x � � � �y � � � y � ���

�� if x � �� � �y � � � y � ���

��� if x � � � �y � � � y � ���

��� if x � �� � �y � � � y � ���

1These definitions are horribles examples of special-case-itis; hopefully I didn't forget a case.
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CHAPTER 4. OPERATIONS 4.5. QUOTIENT AND REMAINDER

4.5 Quotient and Remainder

The integer division operator works together with the remainder operator; its rounding is defind as cutting off every-
thing behind the decimal point (if it were rounding towards the nearest result, negative remainders would ensue!).

quotientT � mappingstandard�T� ��x� y��x�y�fround � tozerog

The remainder operator is defined via the result of the quotient, multiplication, and subtraction operators:

remainderT�x� y� � subT�x� multT�y� quotientT�x� y���

4.6 Shift, Rotate

These operators are defined on the binary image of an operand, not on its mathematical value. They should only be
used on non-fp numbers.

shift�clT��sn��sn�� � � � s�s��� c� � �csn��sn�� � � � s��

shift�crT��sn��sn�� � � � s�s��� c� � �sn�� � � � s�s�c�

shift�lT��sn��sn�� � � � s�s��� � �sn��sn��sn�� � � � s��

shift�rT��sn��sn�� � � � s�s��� � �sn�� � � � s�s�s��

rot�clT��sn��sn�� � � � s�s��� c� � ��csn��sn�� � � � s��� s��

rot�crT��sn��sn�� � � � s�s��� c� � ��sn�� � � � s�s�c�� sn���

rot�lT��sn��sn�� � � � s�s��� c� � �s�sn��sn�� � � � s��

rot�rT��sn��sn�� � � � s�s��� c� � �sn�� � � � s�s�sn���

All shift- and rotate-operators shift by one position; the “c” indicates the presence of a carry bit, the “l/r” distinguish
between left and right.
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Chapter 5

The Standard Types

Each type will be presented in a uniform, Unix “man(1) page”-like format that comprises the following sections:

Size

Size�type� � (a constant that depends on the parameters)

Each instance (value) of a type is represented by a bit string of size Size�type�. For most types, any bit
string represents a valid object, i.e. there are no invalid bit combinations. Sizes must be � �; it makes no
sense to speak of 0-bit objects.

Domain

Domain�type� � (a set of values)

Each type denotes values drawn from a domain Domain�type�. This domain is usually subset of the
natural or real numbers, but does occasionaly contain “special objects” such as ��, NaN (“not a number”),
�� , or ��. The domain can usually be computed by applying the decoding function to the set of all
valid bit strings.

Decoding

Decodetype � f�� �gSize�type� � Domain�type�

The decoding function maps bit strings to values. There might also be a encoding function that maps
values to bit strings; the encoding function need only be made explicit when more than one value is
mapped to one bit string.

Comments

Some comments are made about each type. These regard notable features of the types, similarities and
differences with other types, and useful trivia.
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CHAPTER 5. THE STANDARD TYPES 5.1. CARD(N): N -BIT UNSIGNED NUMBER

5.1 Card(n): n-bit Unsigned Number

Size

Size�Card(n)� � n

Domain

Domain�Card(n)� � ��� ����
n� �	

Decoding

DecodeCard(n)�xn�� ��� x�� �
n��X

i��


ixi

Comments

This is the most “natural” representation of cardinal numbers. Other representations, such as Gray codes
(which are based upon the constraing that incrementing a valued changes exactly on bit), are only infre-
quently employed in common hard- or software systems.
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CHAPTER 5. THE STANDARD TYPES 5.2. INT(N): N -BIT SIGNED NUMBER

5.2 Int(n): n-bit Signed Number

Size

Size�Int(n)� � n

Domain

Domain�Int(n)� � ��
n��� ������� �� �� ����
n��� �	

Decoding

DecodeInt(n)�xn�� ��� x�� � �xn��

n�� �

n��X

i��


ixi

Comments

This is the most common representation of integer numbers. The biggest advantage of this representation
is the simplicity of addition/subtraction. As a disadvantage, negation must be done by inversion and
increment, necessitating a carry step. The domain is not symmetric; therefore the negation function is
undefined when applied to MININT (�
n��).
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CHAPTER 5. THE STANDARD TYPES 5.3. BIAS(N,B): N -BIT BIASED NUMBER

5.3 Bias(n,b): n-bit Biased Number

Size

Size�Bias(n,b)� � n

Domain

Domain�Bias(n,b)� � ��b� ���� 
n� �b� ��	

Decoding

DecodeBias(n,b)�x� � DecodeCard(n)�x� � b

� �b �
n��X

i��


ixi

Comments

The number b is called the bias. This encoding is employed in floating point exponents following IEEE
754. The main advantage of this encoding is that comparing biased numbers can be done with an unsigned
comparator, i.e. binary 0 is the smallest number.
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CHAPTER 5. THE STANDARD TYPES5.4. SIGNEDMAGNITUDE(N): N -BIT SIGNED MAGNITUDE NUMBER

5.4 SignedMagnitude(n): n-bit Signed Magnitude Number

Size

Size�SignedMagnitude(n)� � n

Domain

Domain�SignedMagnitude(n)� � ��
n�� � �� ���� �������� �� ����
n��� �	

Decoding

DecodeSignedMagnitude(n)�s xn�� ��� x�� � ��sDecodeCard(n-1)�xn�� ��� x��

� ��s
n��X

i��


ixi

Comments

Signed-magnitude numbers have as their advantages the very cheap negation/absolute operations (flip-
ping/clearing the front bit) and the fact that the domain is symmetric, hence negation is defined on all
values.

As a major disadvantage, there are two zeroes. This complicates testing and addition/subtraction. For all
operations that return zero, it is unspecified which zero is returned. Most implementations treat both zeros
as equal, but not identical; the sign() function is a sure way to diffentiate between them, but the result of
a simple comparison is undefined.

Signed-magnitude numbers of size � 
 are not very useful.
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CHAPTER 5. THE STANDARD TYPES 5.5. UFIX(N,M): N �M -BIT UNSIGNED FIXED POINT NUMBER

5.5 UFix(n,m): n�m-bit Unsigned Fixed Point Number

Size

Size�UFix(n,m)� � n�m

Domain

Domain�UFix(n,m)� �
�


m
DomainCard�n�m�

� ���
�


m
� ����


n �m � �


m
	

Decoding

DecodeUFix(n,m)�x�n�m��� x�n�m��� ��� x�� �
�


m
DecodeCard(n+m)�x�n�m��� x�n�m��� ��� x��

�
n�m��X

i��


i�mxi

Comments

Unsigned fixed point number are cardinals scaled by a fixed amount 
m, i.e., they have m bits behind the
“binary point”: In a UFix(n,m) number �xn�� ��� x�xm�� ��� x��, bit x� has the value �, and bit xm�� has
the value �

� .

Ordinary cardinals are just a special case of unsigned fixed point numbers, since

Card(n) = UFix(n,0)

Adding two UFix numbers which have the same scaling factor amounts to adding ordinary cardinals;
when fixed point numbers have to be multiplied, the result has to be corrected by re-scaling (i.e., shifting)
it m bits right.
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CHAPTER 5. THE STANDARD TYPES 5.6. SFIX(N,M): N �M -BIT SIGNED FIXED POINT NUMBER

5.6 SFix(n,m): n�m-bit Signed Fixed Point Number

Size

Size�SFix(n,m)� � n�m

Domain

Domain�SFix(n,m)� �
�


m
DomainInt�n�m�

� �
�
n�m��


m
� �����

�


m
� ��

�


m
� ����


n��� � �


m
	

Decoding

DecodeSFix(n,m)�xn�m�� xn�m�� ��� x�� �
�


m
DecodeInt(n+m)�xn�m�� xn�m�� ��� x��

� �xn��

n�� �

n�m��X

i��


i�mxi

Comments

Signed fixed point number are cardinals scaled by a fixed amount 
m, i.e., they have m bits behind the
“binary point”: In a SFix(n,m) number �xn�� ��� x�xm�� ��� x��, bit x� has the value �, and bit xm�� has
the value �

� .

Ordinary cardinals are just a special case of signed fixed point numbers, since

Int(n) = SFix(n,0)

Adding two SFix numbers which have the same scaling factor amounts to adding ordinary cardinals; when
fixed point numbers have to be multiplied, the result has to be corrected by re-scaling (i.e., shifting) it m
bits right.
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CHAPTER 5. THE STANDARD TYPES 5.7. FLOAT(N,M): IEEE-754 FLOATING POINT NUMBER

5.7 Float(n,m): IEEE-754 Floating Point Number

Size

Size�Float(n,m)� � n�m

Domain

Domain�Float(n,m)� � f����s
EF j 
E 
 ���
n��� � 
� ���� �
n���� �	� F 
 Domain�Fix���m� ����

� f����s

Emin��F j
F 
 Domain�Fix���m� ����

� fNaNsignaling� NaNquiet������g

Decoding

DecodeFloat(n,m)�s en�� ��� e� fm�� ��� f�� �

if e � 
n � � � f 	� � then NaN

if e � 
n � � � f � � then ����s�

if � � e � 
n � � then ����s
e�bDecodeUFix(1,m-1)�� fm�� ��� f��

if e � � � f 	� � then ����s
��bDecodeUFix(1,m-1)�� fm�� ��� f��

if e � � � f � � then ����s�

where

e � DecodeCard(n-1)�en�� ��� e��

f � DecodeCard(n-1)�fm�� ��� f��

b � 
n�� � �

Comments

IEEE-754 defines a number of floating point types (single, single extended, double, double extended) that
only differ in their sizes. The type “single” corresponds to Float(24,8); the type “double” corresponds to
Float(53,11). “Single extended” is any type of the form Float(� �
�� ��), “double extended is any type
of the form Float(� 
��� ��). The “e”-bits form the exponent, the “f” bits the mantissa. Note that the
sign bit is counted as part of the mantissa (The nomenclature with “s”, “e”, and “f” follows the standard
document).

The five cases of the decoding function define NaNs, signed infinities, normalized numbers (having an
implicit 1 in the first position), denormalized numbers (having an implicit 0 in the first position), and
signed zero. (While 99% of all computations is performed on normalized numbers, 95% of all proofs on
IEEE numbers consists of getting the other four cases right.)

There are (at least) twoNaNs, a signalingNaN and a quietNaN. Their exact representation is not specified.
Implementations that don't support exceptions can turn signalling NaNs into quiet NaNs. For the purpose
of arithmetic analysis, the difference between the NaNs doesn't really matter, since raising an exception
amounts to aborting the computation.
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