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Abstract

The processing of natural language (NL) queries and the search for semantic matches between such
queries and the contents of multimedia documents necessitate powerful quantifiers that adequately
model quantifying expressions in NL.

In this report, we develop an axiomatic theory of fuzzy NL quantifiers and present a model of this
theory which makes its systematical interpretation possible. The need for such a theory arises from
the fact that the meaning of a natural language query depends heavily not only on the concepts it
contains, but also on the various quantifying expressions interrelating these concepts in the query,
which are often fuzzy in nature.

The resulting operators form a class of generic operators for information aggregation and the fusion
of gradual evaluations, which could also prove useful in more traditional retrieval systems.

We conclude the report by sketching some applications of the theory to our multimedia retrieval
system and give an example of how it is used for the content-based retrieval of meteorological
documents.1

Keywords

natural-language query processing, content-based image retrieval, multimedia systems, fuzzy in-
formation retrieval, fuzzy quantifiers, generalized quantifiers, information aggregation.

1Parts of the work reported here were funded by the ministry of science and research of the state of Northrhine-
Westphalia within the collaborative research initiative “Virtual Knowledge Factory”.
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1 Introduction

1.1 Research background

The theory of fuzzy generalized quantification presented here has evolved from our research
into the design of a semantic search module for the multimedia retrieval system HPQS (High-
Performance Query Server) [1], a system for structuring and querying large databases of multime-
dia documents, which is accessed by natural language (NL) queries.

HPQS attempts to cover the full path from natural language input to the presentation of retrieved
documents. Queries are formulated in natural language and are evaluated for their semantic con-
tents. For the document evaluation, a knowledge model consisting of a set of domain specific
concept interpretation methods is constructed. Thus, the semantics of both the query and the doc-
uments can be interconnected, i.e. the retrieval process searches for a match on the semantic level
(not merely on the level of keywords or global image properties) between the query and the doc-
ument. Methods from fuzzy set theory are used to find the matches. Furthermore, the retrieval
methods associate information from different document classes (texts, images, . . . ). To avoid the
loss of information inherent to pre-indexing, documents need not be indexed; in principle, every
search may be performed on the raw data under a given query. The system can therefore answer
every query that can be expressed in the semantic model. To achieve the high data rates necessary
for on-line analysis, dedicated VLSI search processors are being developed along with a parallel
high-throughput media-server. A further speed-up is achieved by the mediator module [2] which,
apart from hiding various kinds of implementation details, maintains an intelligent result cache.
This caching mechanism plays a similar role in HPQS as that of pre-computed indexes in more
traditional retrieval systems. The system architecture is sketched in fig. 1.

A prototype implementation, for which the domain of meteorology was chosen, serves to validate
the HPQS architecture and the content-based search mechanism; the document base of the HPQS
system contains large amounts of textual and multimedia weather reports (short, mid and long-
term), weather maps, satellite images and time-series.

The range of queries is large, starting from simple requests for documents about the current
weather, by the way of queries about weather developments in the past fulfilling certain con-
straints, to questions about special weather conditions in certain locations. Sample queries that can
be answered are:

� Show me a map of the region with the hottest temperature readings yesterday!

� What additional weather data do you have about that region?

� Show me weather maps with a similar temperature distribution!

� Can you show me a satellite image of upper Bavaria that has a 50% coverage of clouds?

1.2 The case for an NL interface

The acceptance of a multimedia system depends crucially on the design of its user interface. Ide-
ally, the user interface should totally hide the complexity of the program, thus providing the view
of an easy-to-use “information assistant”. In particular, it should meet the needs of naive users who
may be competent specialists in their field, but do not know or do not want to learn the peculiarities
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Figure 1: Architecture of the HPQS

of retrieval techniques or languages. Natural language provides an intuitive interface because ev-
erybody knows how to use their native language without effort. Hence, providing an NL front-end
can remove technical barriers in accessing the more advanced features of an information retrieval
system. Moreover, a reliable NL front end is a precondition for future retrieval systems that are
controlled by speech input.

With non-textual documents, e.g. still images, graphics, or technical drawings, there is an even
stronger case for natural language interfaces. While a text normally has a central “theme” that
can be distilled into keywords, pictures may contain a multitude of different objects. It is not only
these objects but often their relations that constitute the interesting part of the image content (“a
car in front of the house”). Quantitative aspects are best expressed using quantifiers (“several cars
in front of the house”).

Relational and quantitative information also plays a crucial role in the domain of meteorology.
It makes a difference to users planning their vacation in Italy whether “there are clouds” on the
current weather image or whether “there are clouds in Italy”. The difference in meaning is easily
expressed in natural language. Keyword-based approaches, however, are obviously not suited for
querying such structured information.

1.3 Retrieval methods for NL queries

Querying by natural language is highly demanding not only because the NL-analysis itself is a
complex endeavour, but also because the users express their information needs on the level of
meaning, the processing of which requires content-based search. For example, when a query
requests images displaying cloudiness in some geographic region, then a corresponding interpreta-
tion method must be available in the system which evaluates images of the document base for their
“cloudiness in a specified region”. Natural language concepts such as “cloudy”, “warm” and “fine
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weather”, however, are inherently fuzzy. For example, there is no sharp-cut threshold in cloud den-
sity which distinguishes a “cloudy” weather situation from a “non-cloudy” one.2 Therefore, we
decided to model these concepts by fuzzy evaluation methods which result in gradual evaluations.
Although these methods build on a common substrate of generic image processing methods, they
are highly domain specific. An example is given at the end of the paper.

The fuzziness of natural language queries is also observed in local specifications (e.g. “upper
Bavaria”, “near Munich”) and temporal specifications (“recently”, “about one month ago”), which
are accounted for in our system. These are modelled as fuzzy regions in time or space.

1.4 Quantifiers in NL queries

In traditional information retrieval systems, the set of operators for the aggregation of search results
is essentially restricted to the Boolean connectives “and”, “or” and “not”.3 These connectives may,
of course, also occur in NL queries, and they form an integral part of the meaning of these queries.
For example, when computing search results for an NL query containing a condition “not cloudy”,
the connective “not” must not be ignored.

The “modes of combination” of natural language, however, i.e. the various ways in which concepts
might be interrelated, are by no means restricted to these connectives. In particular, the meaning
of NL queries depends heavily on the quantifying expressions involved, as e.g. witnessed by the
different meaning of “there are few clouds over Italy” vs. “there is a lot of clouds over Italy”, which
both could be part of queries addressed to our system. Therefore, the meaning of quantifying
expressions must be accounted for if content-based retrieval, which reflects the semantics of NL
queries, is to be achieved.

Let us note that many of these expressions are approximate or fuzzy in nature:

� often, rarely, recently, mostly, almost always ,. . . (temporal)

� almost everywhere, hardly anywhere, partly ,. . . (local)

� many, few, a few, almost all, about ten, about �� percent,. . . (approximate specifi-
cation of the cardinality of a set, or a proportion of cardinalities).

These expressions are best modelled as resulting in gradual evaluations.

Another class of quantificational expressions is not itself fuzzy, but an application of these quanti-
fiers to fuzzy concepts presupposes a reasonable and systematic generalisation of their semantics
to the case of fuzzy arguments. For example, everywhere, nowhere, always, ten times,
at least ten, all, less than ��,. . . can be adequately modelled in the framework of a classical
(two-valued) logic. The query, however,

Is the weather fine in all of upper Bavaria?

requires the two-valued quantifier all to be applied to the fuzzy regions upper Bavaria, �ne
weather. In order to do so, the semantics of all must be extended to fuzzy arguments.

2At least in the non-technical use of the word “cloudy” which we intend to model.
3Adjacency (“near”) is not an aggregation operator because it applies to search terms instead of logical evaluations.
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In the sequel, a general theory based on axioms describing the intended behaviour of fuzzy quan-
tifiers is presented which permits a systematic interpretation of natural language queries involving
fuzzy quantifiers.

Finally, we sketch some applications of the theory to multimedia retrieval and give an example of
how it is used in a system for the content-based retrieval of meteorological documents.

Since in colloquial language, people are using natural language quantifiers with the same ease as
the connectives “and”, “or”, and “not”, these quantifiers constitute a rich yet human understand-
able class of operators for information aggregation and data fusion. For example, they can be
used in textual information retrieval—in a similar fashion as the operators “and” and “or” in tra-
ditional query languages—to provide for more natural (e.g., compromising) ways of aggregating
over sets of search terms. Availibility of these NL quantifiers makes possible a more fine-grained
and purposive search compared to standard methods.

As opposed to the domain-dependent evaluation methods, our approach to fuzzy quantifiers is
completely domain independent, i.e. it will prove useful in very different applications both

� for handling the fuzziness and vagueness of natural language expressions and

� for associating or fusing information from different document sources, evaluation methods,
or even from different domains.

2 A theory of fuzzy generalized quantification

2.1 Determiners

Our solution to the problem of systematic interpretation of fuzzy quantifying expressions is based
on the Theory of Generalized Quantifiers (TGQ) [3, 4, 5, 6], certainly the most elaborate exten-
sional theory of natural language quantification. In TGQ, quantifying expressions are generally
called “determiners”.

Definition 1 (Determiner) An n-ary determiner on a set of “entities” or “individuals” E is a
function D � P �E�n ��, where � � f�� �g is the set of truth values and P �E� is the set of
subsets of E.

A determiner D thus assigns to each n-tuple �X�� � � � � Xn� of subsets of E a corresponding truth
value D�X�� � � � � Xn� � �. E might be any set of objects; in our protoype system, a set of time
points, a set of pixel coordinates, a set of image regions, or a set of text search expressions. Well-
known examples of determiners are

��X� � � � X � E

��X� � � � X �� �

all�X�� X�� � � � X� � X�

some�X�� X�� � � � X� �X� �� 	

atleast n�X�� X�� � � � cardX� �X� 
 n

So if an image J contains objects E � fc�� c�g, and if car � fc�� c�g, red � fc�g, are extensions
of the concepts “car” and “red”4 in the image, then a query requesting “images showing a red car”

4For the sake of argument we shall assume that red be a crisp concept.
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would be answered positively on J :

some�car� red� � � �

while to a query requesting “images in which all cars are red”, J would be irrelevant:

all�car� red� � � �

As another example (taken from the application domain), let us consider a query in which quan-
tification ranges over pixels of image regions. Suppose the user requests for ground temperature
maps in which the temperature readings exceed ��� Celsius in all of Bavaria. In this case, E is the
set of pixel coordinates E � f�� � � � � W � �g � f�� � � � � H � �g, where W is the width and H
is the height of the temperature map. Suppose the cartographic projection of the map is known.
Then, the local region “Bavaria” can be interpreted as the set B � E of pixel coordinates which
belong to Bavaria (relative to the given projection). Further suppose that there is a method which
determines the set T � E of pixel coordinates with an associated temperature reading of more
than ��� Celsius. Given our definition of all, we can then evaluate all�B� T �. We obtain the result
1 (true) if all pixels which belong to Bavaria also have a � ���C temperature reading (in this
case, accept image G for presentation); otherwise, reject G as being irrelevant to the query.

Let us note that – at this stage – we are not yet able to process a query which poses the condition
that it is “hot in all of Bavaria” because the corresponding concept hot is fuzzy.

2.2 Fuzzy determiners

Now let us turn to the fuzzy case. Suppose E is some set. A fuzzy subset X of E assigns to each
x � E a gradual membership value �X�x� � I , where I � ��� �	. The set of fuzzy subsets of E,
denoted by eP �E�, is therefore in one-to-one correspondence with the set of membership functions
� � E �I , i.e. eP �E� 
� IE. We define fuzzy determiners as follows.

Definition 2 (Fuzzy determiner) By an n-ary fuzzy determiner on a set E we denote a function
D � eP �E�

n
�I .

A fuzzy determiner thus maps any n-tuple �X�� � � � � Xn� of fuzzy subsets of E to a corresponding
fuzzy membership value D�X�� � � � � Xn� � I .

This definition is the obvious generalisation of two-valued determiners (in the sense of TGQ) to the
fuzzy case. Nevertheless, these fuzzy determiners pose a problem. We all have strong intuitions
about the proper definition of determiners on “crisp” subsets of E; for example, the definition of
all � P �E� � P �E� �� stated above is certainly uncontroversial. In the fuzzy case, however,
such intuitions are lacking: which choice of all � eP �E� � eP �E� �I should be considered the
“correct” one and why?

2.3 Determiner fuzzification schemes

Now, suppose that in order to define a fuzzy determiner D � eP �E�
n
�I , we would only have to

specify its behaviour on “crisp” arguments, i.e. onP �E�n, because we had a consistent mechanism
F which generalises our partial definition to a fuzzy determiner F�D� which is defined on fuzzy
arguments also. For example, we could start with all � P �E��P �E� �� � I and automatically
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obtain its fuzzy analogon F�all� � eP �E� � eP �E� �I . Then the above problem of the proper
definition of all as a fuzzy determiner would have a unique answer relative to F , namely F�all�,
and conditions on reasonable or intended interpretations of fuzzy quantifiers could be stated as
axioms governing the behaviour of F . To make this idea work, we firstly introduce fuzzy pre-
determiners, and then detail the generalisation mechanism.

Definition 3 (Fuzzy pre-determiner) An n-ary fuzzy pre-determiner on a set of entities E is a
function D � P �E�n �I .

Hence in order to define a fuzzy pre-determiner, only results for the application of D to “crisp”
arguments (n-tuples of two-valued sets) must be specified. Therefore, an appropriate interpretation
of NL determiners is much easier to obtain than in the case of fuzzy determiners. In particular,
every two-valued determiner (i.e. determiner in the sense of TGQ, such as all), is a fuzzy pre-
determiner. Hence we need not guess any new definitions for these determiners.

As examples of fuzzy pre-determiners, let us firstly consider proportional and singular definite
determiners:

�
 r
	�X�� X�� �

���
�
�

� cardX� � �
� � cardX� �� � and cardX��X�

cardX�

 r

���

� � else

thesg�X�� X�� �

���
�
� � cardX� �� �
� � cardX� � � and X� � X�

� � else

for all X�� X� � P �E�, r � ��� ���	. �
� represents indeterminacy. In the case of �
 r
	 we shall

assume that E is finite.

Next let us turn to genuine fuzzy determiners. We shall focus here on three generic examples from
which instances such asmany, almost all, often, almost everywhere etc. can be derived. Let
us call these fuzzy pre-determiners abs many�� � (“many X�'s are X � compared to an absolute
expected value � � R with sharpness parameter � � ��� �	”), rel many�� � (“the proportion of
X�'s that are X � is large compared to an expected proportion � � ��� �	 with sharpness parameter
� � ��� �	”), and as many as possible (which we interpret as denoting “the proportion of X� 's
that are X�”):

abs many�� ��X�� X�� � S� cardX��X�

cardX�
� �� �� � � � �

rel many�� ��X�� X�� �

�
�
� � cardX� � �
S� cardX��X�

cardX�
� � � �� �� � � � cardX� �� �

as many as possible�X�� X�� �

�
�
�

� cardX� � �
cardX��X�

cardX�
� cardX� �� �

for all X�� X� � P �E�, where S is Zadeh's S-function [7, pp. 611+]. 5

abs many�� � , rel many�� � and as many as possible cover various meanings of many and
similar quantifying expressions such as often, relatively often, almost all etc. The param-
eters �� � are application-specific. Hence as part of a domain model, plausible choices of these
parameters must be encoded.

5The shape of this curve is as follows: S�x� � � �� � � � � � � for all x � ��� � � � �. For x � �� � �� � � � �, S
grows monotonically and reaches � at � � � . For x � ��� �� ��, then, S�x� � � �� � � � � � �. The “indeterminate”
value �

�
is obtained if x equals the expected value �.
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Although their global shape should be uncontroversial, there is obviously some degree of freedom
in the choice of these fuzzy pre-determiners—some readers might wish to use different defini-
tions. Our theory, however, is in no respect dependent on any particular choice of these fuzzy
pre-determiners. By contrast, it is supposed to ensure that all fuzzy pre-determiners (including, for
example, the alternative definitions of the readers) are systematically generalised to corresponding
fuzzy determiners. This is accomplished by means of a determiner fuzzification scheme.

Definition 4 (Determiner fuzzification scheme) A determiner fuzzification scheme (DFS) F as-
signs to each n-ary fuzzy pre-determiner D � P �E�n �I an n-ary fuzzy determiner F�D� �eP �E�

n
�I subject to the axioms DFS 1-10 stated below.

The DFS axioms are mainly of the “preservation” or “compatibility” (homomorphism) type, i.e. we
require that F preserves relevant properties of a determiner, or that F is compatible with certain
operations for building new determiners from given ones.6 Hence by stating these axioms, we
are making explicit what we think should be expected from a “reasonable” fuzzification scheme.
This is of particular importance in the context of fuzzy logic where—even for the propositional
connectives—quite a lot of alternative interpretations have been proposed. The DFS-axioms, then,
provide a criterion to discern principled approaches to fuzzy quantification from ad-hoc ones.

2.3.1 Correct generalisation

Firstly, we would like that F�D� coincides with the original fuzzy pre-determiner D when all
arguments are crisp subsets of E.

DFS 1 For every fuzzy pre-determiner D � P �E�n �I , F�D�jP�E�n � D �

2.3.2 Induced truth functions

The standard choice of negation in fuzzy logic is �x � � � x, for all x � I . With conjunction,
there are more common choices (although the standard is certainly � � min). All of these belong
to the class of t-norms (cf. [8]), which seems to capture what one would expect of a reasonable
conjunction operator. By a canonical construction which we describe now, F induces a unique
fuzzy operator for each of the propositional connectives. We will require that the induced fuzzy
truth functions are “reasonable” in the above sense.

Suppose f�g is a singleton set. Then P �f�g� 
� � � f�� �g by means of the bijection � �
P �f�g� �� defined by ��f�g� � �, ���� � �. The inverse is ������ � �, ������ � f�g.

Likewise, eP �f�g� 
� I by means of the bijection 	 � eP �f�g� �I , 	�X� � �X��� for all
X � eP �f�g�, with obvious inverse

	���x� � the unique X � eP �f�g� defined by the membership function �X��� � x �

for all x � I .

Now assume f � �n �� is a propositional function (e.g., f � �). We can view f as a fuzzy
pre-determiner f� � P �f�g�n �� � I defined by

f��X�� � � � � Xn� � f���X��� � � � � ��Xn�� �

6“compatible” means that it does not matter whether we first apply the operation and then apply F , or whether we
first apply F and then apply the considered operation (or its fuzzy analogon).
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By applying F , f� is generalized to a fuzzy determiner F�f�� � eP �f�g�
n
�I , from which we

obtain a fuzzy truth function ef � In �I by definingef�x�� � � � xn� � F�f���	���x��� � � � � 	
���xn��

for all x�� � � � � xn � I . Abusing notation, we will again write F�f� instead of ef, in order to
emphasize that F uniquely determinesef by the above construction.

DFS 2 We require:

a. F��� is a t-norm.

b. F��� � �.

We do not impose restrictions on the other propositional connectives because these will result from
the other DFS-axioms. When in the following we are using fuzzy connectives, these are always
meant to denote the connectives induced by the above construction.

2.3.3 Compatibility with external negation

Assume D � P �E�n �I is a fuzzy pre-determiner. �D � P �E�n �I is defined by

��D��X�� � � � � Xn� � ��D�X�� � � � � Xn�� �

for all X�� � � � � Xn � P �E�.

In the case of fuzzy determiners, �D is defined analogously, choosing X�� � � � � Xn from eP �E�.

DFS 3 For every fuzzy pre-determiner, F��D� � �F�D�.

2.3.4 Monotonicity

Suppose D� D� � P �E�n �I are fuzzy pre-determiners of the same arity. Let us write D � D�

iff for all X�� � � � � Xn � P �E�,

D�X�� � � � � Xn� � D��X�� � � � � Xn� �

(On fuzzy determiners, define � analogously).

We require F to be monotonic, i.e. to preserve inequations between fuzzy pre-determiners:

DFS 4 For all fuzzy pre-determiners D� D� � P �E�n �I , if D � D�, then also F�D� � F�D��.

Note. The converse implication “�” follows from DFS-1.

2.3.5 Compatibility with argument transposition

Assume A is some set and n � N. By �i � An
�An (� � i � n) we denote the function defined

by
�i�a�� � � � � an� � �a�� � � � � ai��� an� ai�i� � � � � an��� ai� �

which swaps the i-th and n-th component in �a�� � � � � an� � An. By � we denote function compo-
sition.
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DFS 5 For every n-ary fuzzy pre-determiner D and all � � i � n, F�D � �i� � F�D� � �i .

Note. By a finite number of such argument transpositions, every permutation of arguments of D
can be obtained. Hence this axiom states that F treats all arguments of determiners in essentially
the same way.

2.3.6 Compatibility with internal complementation

For every fuzzy pre-determiner D � P �E�n �I , we define D� � P �E�n �I by

D��X�� � � � � Xn� � D�X�� � � � � Xn��� �Xn�

for all X�� � � � � Xn � P �E�, where �Xn denotes complementation. Again, we use an analog
definition based on eP �E� in the case of fuzzy determiners. (For a fuzzy subset Xn � eP �E�, the
complement �Xn is defined by ��Xn

�x� � �� �Xn
�x� for all x � E).

DFS 6 For every fuzzy pre-determiner, F�D�� � F�D�� .

Notes

� Due to the axiom of argument transposition, this generalizes to complementation in arbitrary
argument positions.

� By de Morgan's law, x�y � ���x��y�. By applying DFS-2, DFS-3 and DFS-6, we obtain
that F��� is the complementary co-t-norm of F���.

2.3.7 Compatibility with internal meets

Now assume D � P �E�n �I is a fuzzy pre-determiner. By D� � P �E�n�� �I we denote the
fuzzy pre-determiner defined by

D��X�� � � �Xn��� � D�X�� � � � � Xn��� Xn �Xn���

for all X�� � � � � Xn�� � P �E�. (Similar definition for fuzzy determiners. In this case, the meet of
Xn� Xn�� � eP �E� is defined by �Xn�Xn��

�x� � �Xn
�x���Xn��

�x� for all x � E, where � is the
t-norm induced by F .)

DFS 7 For all fuzzy pre-determiners, F�D�� � F�D�� .

Notes

� By iterating and transposing arguments, this axiom generalises to arbitrary meets of non-
redundant tuples of arguments.

� From the axiom of internal complementation, we obtain F�D�� � F�D��, where the join
operation is defined analogously.
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2.3.8 Compatibility with insertion of constants

For every fuzzy pre-determinerD � P �E�n�� �I and every A � P �E�, we denote by D�A the
n-ary fuzzy pre-determiner defined by

�D�A��X�� � � � � Xn� � D�X�� � � � � Xn� A� �

for all X�� � � � � Xn � P �E� (analogously for fuzzy determiners).

DFS 8 For every fuzzy pre-determiner D � P �E�n�� �I and every A � P �E�, F�D�A� �
F�D��A .

2.3.9 Preservation of monotonicity

We also require that F preserves monotonicity properties of a determiner. To be precise, assume
D � P �E�n �I is a fuzzy pre-determiner. We say that D is monotonically increasing in its i-th
argument iff for all X�� � � � � Xn� X

�
i � P �E� with Xi � X �

i ,

D�X�� � � � � Xn� � D�X�� � � � � Xi��� X
�
i � Xi��� Xn� �

For the definition on n-ary fuzzy determiners, we choose fuzzy subsets of eP �E�.

DFS 9 For every n-ary fuzzy per-determiner D, if D is monotonically increasing in its n-th argu-
ment, then so is F�D�.

Notes

� By argument transpositions, F preserves (increasing) monotonicity in all arguments of a
determiner.

� By DFS-9 and the axiom of external negation DFS-3, F also preserves decreasing mono-
tonicity.

2.3.10 Compatibility with functional application

Let E� E� be any sets. Every function f � E �E� induces a function P �E� �P �E�� (again
denoted by f) which maps subsets X ofE onto their corresponding images f�X� � ff�x� � x � Xg.
In the fuzzy case, f � eP �E� � eP �E�� is obtained from Zadeh's extension principle [9], which
states that for all X � eP �E�, f�X� is the fuzzy subset of E� defined by the membership function

�f�X��y� � sup f�X�x� � x � E and f�x� � yg �

DFS 10 Assume D � P �E��n �I is a fuzzy pre-determiner and f�� � � � � fn � E �E� are func-
tions. Define D� � P �E�n �I by

D��X�� � � � � Xn� � D�f��X��� � � � � fn�Xn�� �

for all X�� � � � � Xn � P �E�. Then for all X�� � � � � Xn � eP �E�,

F�D���X�� � � � � Xn� � F�D��f��X��� � � � � fn�Xn�� �
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Notes

� Basically, the axiom of functional application states that it does not matter whether we first
generalise (using F ) and then apply the f 's, or vice versa.

� One is tempted to require a generalisation to m-ary functions fi � Emi �E � where mi � �,
i.e. to

D��f��Xj�
�
� � � � � Xj�m�

�� � � � � fn�Xjn
�
� � � � � Xjn

mn
�� �

However, this would imply the law of “tertium non datur” and hence exclude all interesting
t-norms (in particular, min) from DFS-2a.

� Assume 
 � E �E � is a bijection and

D��X�� � � � � Xn� � D�
�X��� � � � � 
�Xn�� �

Then we obtain

F�D���X�� � � � � Xn� � F�D��
�X��� � � � � 
�Xn�� �

From this we see that F may not depend on any particular properties of elements of E.

3 A model of the DFS axioms

By stating the DFS axioms, we have made explicit our intuitions about “reasonable” mechanisms
of fuzzy quantification. In order to show that these axioms are consistent (but also to make the
theory useful for practical purposes), we will now present an actual model.

Assume X � eP �E� is a fuzzy subset of some set E and � � I . By �X��� � P �E� we denote the
�-cut

�X��� � fX � E � �X�x� 
 �g �

by �X�
��
� P �E� the strict �-cut

�X�
��

� fx � E � �X�x� � �g �

As a first attempt to find a DFS, let us consider

A�D��X�� � � � � Xn� �

Z �

�

D��X����� � � � � �Xn���� d� �

where D � P �E�n �I is a fuzzy pre-determiner and X�� � � � � Xn � eP �E�.

A fails to be a DFS as the above integral may not exist (we have not imposed any restrictions on
the “well-behavedness” of D).7 Even in the case that A is defined, it fails to satisfy the axiom
of internal complementation (DFS-6) because ��X��� � ��X�

����, which is different from
��X��� in most cases (� denotes complementation).

7To see this, choose a non-measurable function f 	 I � I and let E � I. Define D 	 P �I� �I by D�X� �

f�infX� for all X � P �I�. A�D� is undefined on the fuzzy subset X� � eP �I� defined by �X� �x� � x for all x � I,
because D��X����� � f���.
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The DFS we are actually using in our system is based on the idea of using “three-valued” cuts (as
opposed to the two-valued �-cuts).

We therefore reconsider Kleene's three-valued logic (see e.g. [10, p. 29]). Kleene's logic can
be obtained from two-valued logic by the following mechanism of generalizing a propositional
function f � �n �� to the three-valuedbf � f�� �

�
� �g

n
�f�� �

�
� �g.

Suppose x�� � � � � xn � f�� �
�
� �g are given. Associate to each xi a set Yi � P ��� as follows:

Yi �

���
f�g � xi � �
f�� �g � xi �

�
�

f�g � xi � �

So the “indeterminate” value �
�

is treated by considering both alternatives �� �. The truth-values �
and � do not induce any indeterminacy.

Then definebf � f�� �
� � �g

n
�f�� �

�� �g by

bf�x�� � � � � xn� �

���
� � f�y�� � � � � yn� � � for all yi � Yi� i � �� � � � � n
� � f�y�� � � � � yn� � � for all yi � Yi� i � �� � � � � n
�
�

� else

for all x�� � � � � xn � f�� �
�� �g.

We recall the definition of fuzzy median,

m �

�

�u�� u�� �

���
min�u�� u�� � min�u�� u�� �

�
�

max�u�� u�� � max�u�� u�� �
�
�

�
� � else

m �

�

is an associative mean operator [11] and the only stable associative symmetric sum [12]. Due
to its associativity and commutativity, m�

�

can be generalized to arbitrary finite sets of arguments.
Noting that for all finite X � fx�� � � � � xng � I , n 
 �, it holds that

m �

�

X � m �

�

�minX� maxX� �

the proper definition of m �

�
X in the case n � �� n � � is

m �

�

� � m �

�

�min�� max�� � m �

�

��� �� � �
� �

m �

�

fug � m �

�

�minfug� maxfug� � m �

�

�u� u� � u �

We extend m�

�
to arbitrary subsets X � I by defining

m �

�
X � m �

�
�infX� supX� �

for all X � I , which is obviously compatible with the definition on finite subsets of I .

By using the fuzzy median m�

�
, we can now state the above definition more compactly,

bf�x�� � � � � xn� � m �

�
ff�y�� � � � � yn� � yi � Yi� i � �� � � � � ng �

This median-based definition has the advantage that it can also be applied to functions f � �n �I ,
yieldingbf � f�� �

�
� �g

n
�I .
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Using the same mechanism, we can generalize two-valued determiners D � P �E�n �� to three-
valued determiners bD � bP �E�

n
�f�� �

� � �g, where bP �E� 
� f�� �
� � �g

E
is the set of all three-

valued subsets of E (each three-valued subset X of E is uniquely determined by its membership
function 
X � E �f�� �

�
� �g).

Suppose D � P �E�n �� and X�� � � � � Xn � bP �E� are given. To each of the three-valued sets
Xi � bP �E� we associate a set of two-valued sets Yi � P �E�,

Yi � fY � E � Xmin
i � Y � Xmax

i g

where

Xmin
i � fx � E � 
Xi

�x� � �g �

Xmax
i � fx � E � 
Xi

�x� � �
�

or 
Xi
�x� � �g

So if x � E such that �Xi
�x� � �, then all Y � Yi contain x; if x � E such that �Xi

�x� � �,
then no Y � Yi contains x, and for those x � E with �Xi

� �
� , Yi contains all combinations of the

alternatives x � Y , x �� Y .

Using Y�� � � � � Yn, we can now define

bD�X�� � � � � Xn� �

���
� � D�Y�� � � � � Yn� � � for all Yi � Yi� i � �� � � � � n
� � D�Y�� � � � � Yn� � � for all Yi � Yi� i � �� � � � � n
�
� � else

Again, we can restate this

bD�X�� � � � � Xn� � m �

�
fD�Y�� � � � � Yn� � Yi � Yi� i � �� � � � � ng �

The m�

�
-based definition can also be used to generalize fromD � P �E�n �I to bD � bP �E�

n
�I .

Now let us introduce three-valued cuts on fuzzy sets in order to build on these definitions. Assume
X � eP �E� is a fuzzy subset of some set E and � � ��� �	. Denote the membership function of
X by �X � E �I . We can cut X to a three-valued set bX � bP �E� with membership function


bX
� ��X � E �f�� �

�� �g by setting

��X�x� �

���
� � �X�x� �

�
� �

�
��

�
� � �

� �
�
�� � �X�x� �

�
� �

�
��

� � �X�x� 

�
� �

�
��

for all x � E. For � � �, we define

��X�x� �

���
� � �X�x� �

�
�

�
� � �X�x� �

�
�

� � �X�x� �
�
�

for all x � E.

� can be thought of as a parameter of “cautiousness”. If � � �, the set of indeterminates contains
only those x � E with �X �x� � �

�
; all other elements of E are mapped to the closest truth value

in f�� �g. As � increases, the set of indeterminates is increasing. For � � �, then, the level of
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maximal cautiousness is reached where all elements of E except those with �X�x� � f�� �g are
interpreted as indeterminates.

Now let D � P �E�n �I a fuzzy pre-determiner and � � I . Define D� � eP �E� �I by

D��X�� � � � � Xn� � m �

�
fD�Y�� � � � � Yn� � Yi � Yi

�� i � �� � � � � ng �

where Y�
i is obtained from the three-valued cut of Xi under � (i � �� � � � � n), i.e.

Y�

i � fY � E � �Xi�
min
� � Y � �Xi�

max
� g

�Xi�
min
� �

�
�Xi�� �

�
� �

�
� � � � ��� �	

�Xi�� �

�

� � � �

�Xi�
max
� �

�
�Xi�� �

�
� �

�
� � � � ��� �	

�Xi�� �

�

� � � �

This assignment D � P �E�n �I �� D� � eP �E�
n
�I is not a DFS yet; the fuzzy median

suppresses to much structure. Notably, �� �� � for all � � I , i.e. DFS-2b does not hold. We must
hence take into account the results obtained at each level of cautiousness, which we accomplish by
integrating over �:

M�D��X�� � � � � Xn� �

Z �

�

D��X�� � � � � Xn� d� �

Firstly, let us note that the integral is well-defined, regardless ofD. Provided a choice ofX�� � � � � Xn

in eP �E�, integration ranges over the function D� � � I �I defined by

D��� � D��X�� � � � � Xn�

for all � � I . Now if D��� 
 �
� , then D� � is monotonically decreasing in �; if D��� � �

� , then
D� � is monotonically increasing in �. Hence, as every monotonic function on a closed interval,
D� � is Riemann integrable.

M has some nice theoretical properties. In particular, M is a DFS.8

Furthermore,M��� � min, M��� � max andM��� � ��x. Hence by integrating over “levels
of cautiousness”, we have captured the essence of fuzzy logic in a single formula!

For the well-known quantors defined on page 4, the following results are obtained (E finite):

M����X� � min
x�E

�X�x�

M����X� � max
x�E

�X�x�

M�some��X�� X�� � max
x�E

min��X�
�x�� �X�

�x��

M�all��X�� X�� � min
x�E

max��� �X�
�x�� �X�

�x��

M�atleast n��X�� X�� � ��n� �

where ��n� is the n-th largest element in the ordered sequence of membership values of X� � X�

(including duplicates).

8Proof: Glöckner 1997 [13].
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In the general case, M�D� cannot be described by such closed-form expressions. However,M�D�
always has an efficient operationalisation on the basis of histogram computations if D is quanti-
tative.9 In the experimental HPQS system, we have implemented 28 fuzzy determiners in this
fashion. Implementation aspects are described in [14].

4 Discussion of DFS

This axiomatic account of fuzzy quantification offers clear advantages compared to the approaches
described in the literature. Ever since Zadeh published his basic papers on fuzzy quantification
[15, 7, 16], fuzzy quantifiers have generally been treated as fuzzy subsets Q � eP �R�� of the non-
negative reals (so-called “absolute quantifiers”) or of the unit interval (Q � eP �I�, “proportional
quantifiers”). In order to make these fuzzy numbers applicable to fuzzy sets for the purpose of
quantification, a mechanism (which we denote by C) is needed which transports Q to a fuzzy
determiner

C�Q� � eP �E� �I (unrestricted use, relative to E), or

C�Q� � eP �E�� eP �E� �I (restricted use, relative to first argument).

Zadeh has also formulated the idea that in order to evaluate a statement “QX�s are A” (in our
notation: to compute C�Q��A�), one should instead evaluate the statement “cardX is Q”, where
card is a scalar or fuzzy measure of the cardinality of the fuzzy set A � eP �E� associated with
the linguistic variable X . The approaches described in the literature mainly differ in the measure
of fuzzy cardinality used and in the way that the required comparison of fuzzy cardinalities is
accomplished. Zadehs original �-count approach was shown to be implausible (see e.g. Ralescu
[17, 18]). Ralescu's possibilistic approach and Yagers 1984 [19] as well as his later OWA-approach
[20, 21, 22], however, have similar deficiencies (notably, neither provides a convincing account of
the “restricted quantification” case stated above).

Firstly, these approaches are based on the assumption that the base set E be finite. DFS, however,
requires a proper treatment of quantification over infinite base sets as well (and our model M can
handle this case).

Next, although in all these approaches, the term “linguistic quantifier” is used, none of them is
compatible with the results of modern linguistic theory. For example, the Theory of Generalized
Quantifiers wisely discerns determiners of different arities n because there are genuine multiplace
determiners such as more in “more men than women are smokers” (n � 
). These cannot be
interpreted as absolute or proportional quantifiers as they are known to be irreducible to two-place
determiners (Hamm [23, pp. 23+]).

Although absolute and proportional determiners form natural subclasses, it should be noted that
not every determiner (in the sense of TGQ) corresponds to these classes, not even every two-place
determiner. Quite the reverse, the comprehensive classification of natural language determiners
by Keenan and Stavi [6, pp. 253-256] distinguishes 16 main classes of determiners (among oth-
ers, determiners of exception like all except one, definites like the ten, bounding determiners
only,. . . ). It should be noted that TGQ can model all these very different classes of determiners
with the same basic mechanism, just as our DFS approach does: by a single DFS, every determiner
in the sense of TGQ can be generalized to a fuzzy determiner which also accepts fuzzy subsets of
the universe E as its arguments.

9i.e. if D depends only on the cardinalities of boolean combinations of its arguments.
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By contrast, the fuzzy approaches to quantification cited above rely on the distinction of propor-
tional and absolute determiners. There is no simple or straightforward way to generalise these
approaches to arbitrary determiners; just as there is no uniform account of cardinal (absolute) and
proportional determiners in these approaches.

DFS, however, is a compatible generalisation of contemporary linguistic theory. Its axiomatic
foundation ensures that the generalisations produced by a given DFS are intuitively plausible. The
uniform approach (one DFS is sufficient) also guarantees the desired systematicity.

Another advantage is that by choosing a DFS, a unique definition of all fuzzy connectives is in-
duced. For example, each DFS is compatible with exactly one choice of conjunction, disjunction,
implication, weighted conjunction and weighted disjunction—there is no degree of freedom left in
the definition of these connectives.

5 Applications

5.1 Evaluation of quantified expressions in NL queries

Our theory has been designed to establish a principled account of quantified expressions in NL
queries, and we have ensured this by stating it in the form of axioms.

As we have also provided an actual model M of the theory, we are now able to evaluate arbitrary
fuzzy quantifying expressions on fuzzy subsets of arbitrary base sets. We only need to provide a
fuzzy pre-determiner D which reflects the semantics of the considered expression on “crisp” sets,
and then implement the corresponding fuzzy determinerM�D�.

In the HPQS system, the fuzzy quantifiers M�D� thus obtained are used to evaluate NL queries
involving quantified expressions which range over sets of time points, pixel coordinates, and image
regions.

We will now reconsider the problem of searching for ground temperature maps subject to the
condition that “it is hot in all of Bavaria”.

Again suppose G � E �R is the ground temperature image under consideration, where E is the
set of pixel coordinates, and B � P �E� � eP �E� is the (crisp) extension of Bavaria in E. Further
assume that the fuzzy concept “hot” is modelled by some fuzzy subset hot in eP �R�. Then from
G, we obtain the fuzzy region H of pixels which are classified as “hot” by

�H�x� � �hot�G�x��

for all x � E. Now as B is crisp, evaluation of M�all� yields

M�all��B� H� � min
x�B

�H�x� �

i.e. the minimal degree of “hotness” which a pixel belonging to Bavaria obtains in the temperature
map G. From this we see that—when applied to image regions—the classical quantifiers all and
some are very sensitive to noise in the pixel values (a single erroneous pixel might change the
result drastically). M cannot be blamed for this because this “brittleness” is already present in
the two-valued determiners all and some � P �E� � P �E� �� from which we have started.
Genuine fuzzy quantifiers, e.g. of the abs many or rel many type, are much more robust in this
respect.
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5.2 Quantifiers as aggregation operators in textual information retrieval

Since in colloquial language, people are using natural language quantifiers with the same ease as
the connectives “and”, “or”, and “not”, these quantifiers constitute a rich yet human understand-
able class of operators for information aggregation and data fusion. For example, they can be used
in textual information retrieval—in a similar fashion as the operators “and” and “or” in traditional
query languages—to provide for more natural (e.g., compromising) ways of aggregating over sets
of search terms.

Suppose T is a set of search terms and B� Rd � eP �T � are fuzzy subsets of T . Assume �B�t�
describes the relevance of term t � T to the user's information need 10 and �Rd�t� describes the rel-
evance of term t with respect to a document d under consideration (such a gradual term-document
relevance could e.g. arise as the result of an approximate match). Now let Q � P �T ��P �T � �I
be a two-place fuzzy pre-determiner. By computing M�Q��B� Rd�, Q can be used to aggregate
the term-document relevances �Rd�t�� t � T relative to the user's interest �B�t�. The choice of
Q � fatleast n� more than r
� many� few, as many as possible� � � �g depends on the
desired specificity of search and the desired mode of aggregation.

5.3 Focussing of thesaurus search

Fuzzy quantifiers can also prove useful when applied to thesaurus search, as e.g. in

Show me all documents which contain as many terms associated with “information
retrieval” as possible!

In this case, B�t� � �Th�t� t�� where Th � eP �T�T � is a fuzzy thesaurus [24, 25], i.e. a reflexive
and symmetric fuzzy relation judging association strength between pairs of search terms, and t� �
information retrieval. This kind of “thesaurus search with quantifiers” yields more specific
and purposive results than the usual “thesaurus search by disjunction” of associated search terms.

5.4 Fitting the concept of fuzzy quantifiers to the HPQS

In order to show how these quantifiers may be used directly in the evaluation methods for semantic
search, we consider the following sample query, which can be posed to our system:

Show me pictures of cloud formation over Bavaria taken in August 1997!

This query requests weather images C from the database with an associated date C�date in August
1997 subject to the condition R�C�

C witnesses a weather situation of cloud formation over Bavaria.

So while the user simply requests documents of the database (as opposed to question-answering
in question-answer systems and expert systems), the condition R imposed on these documents
refers to an underlying domain model (in this case, of meteorology) in which the concept of “cloud
formation” over some specified region is given a procedural interpretation.

10The user might provide these weights by annotating search terms
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Considering a single image C is not sufficient to compute R�C� because “formation” is essentially
a matter of change and thus can only be judged relative to other images (in this case, images of rel-
evance to the weather situation before C�date). Therefore, at least the weather image immediately
preceeding C must be taken into account.

The task of detecting the relevant documents is decomposed by the retrieval component as follows:
“cloud formation” in a given local region is interpreted as a strong increase in cloudiness in that
region in two consecutive weather maps. The systems thus scans through the sequence of images
in the specified time interval (August 1997). For each image C under consideration, it firstly
determines the predecessor image P . The following operations are then applied to C and P :

a) compute estimates C�� P� of the density of low clouds in C and P ;

b) transform the results into the cartographic projection of the region B under consideration –
in this case, B � Bavaria, yielding C�, P�;

c) compute the fuzzy evaluations (grey-value images) C� � cloudy�C��, P� � �cloudy�P��

d) combine C� and P� relative to the given region B by a suitable quantifier to form the gradual
result R:

R � minfM�
 ��
��B� C��� M�
 ��
��B� P�� g �

Hence R is the fuzzy conjunction of the conditions that more than ��
 of Bavaria are sunny
in the predecessor image P and that more than ��
 of Bavaria are cloudy in the current
image C .11

Intermediate results of the search process are shown in fig. 2. As indicated by the search results in
fig. 3, the system detects images in which there is a clearly-visible increase in cloudiness.

11The choice of these percentages is of course to some degree arbitrary. However it should be noted that each
reasonable choice yields an improvement compared to an approach which does not utilize such modelling tools.



5 Applications 19

P C
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Figure 2: Intermediate search results
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Figure 3: Detected documents (relevant segments)
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[14] Ingo Glöckner. Efficient histogram-based evaluation of fuzzy generalized quantifiers in DFS.
Technical report, Technische Fakultät, Universität Bielefeld, 1998. (to appear Jan 1998).

[15] L.A. Zadeh. A theory of approximate reasoning. In J. Hayes, D. Michie, and L. Mikulich,
editors, Machine Intelligence, volume 9, pages 149–194. Halstead, New York, 1979.

[16] L.A. Zadeh. Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning
with dispositions. IEEE Transactions on Systems, Man, and Cybernetics, 15(6):754–763,
Nov./Dec. 1985.

[17] A.L. Ralescu. A note on rule representation in expert systems. Information Sciences, 38:193–
203, 1986.



[18] Dan Ralescu. Cardinality, quantifiers, and the aggregation of fuzzy criteria. Fuzzy Sets and
Systems, 69:355–365, 1995.

[19] R.R. Yager. Approximate reasoning as a basis for rule-based expert systems. IEEE Transac-
tions on Systems, Man, and Cybernetics, 14(4):636–643, Jul./Aug. 1984.

[20] R.R. Yager. On ordered weighted averaging aggregation operators in multicriteria decision-
making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):183–190, Jan./Feb.
1988.

[21] R.R. Yager. Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems, 40:39–75,
1991.

[22] R.R. Yager. Families of OWA operators. Fuzzy Sets and Systems, 59:125–148, 1993.

[23] Fritz Hamm. Natürlich-sprachliche Quantoren. Modelltheoretische Untersuchungen zu uni-
versellen semantischen Beschränkungen (Natural Language Quantifiers. Modell-Theoretical
Investigations in Universal Semantical Constraints). Number 236 in Linguistische Arbeiten.
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