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Abstract

We propose a concept for integrating multiple sensors
in real-time robot control. To increase the controller ro-
bustness under diverse uncertainties, the robot systemati-
cally generates series of sensor data (as robot state) while
memorising the corresponding motion parameters. From
the collection of (multi-) sensor trajectories, statistical in-
dices like principal components for each sensor type can
be extracted. If the sensor data are preselected as out-
put relevant, these principal components can be used very
efficiently to approximately represent the original percep-
tion scenarios. After this dimension reduction procedure,
a non-linear fuzzy controller, e.g. a B-spline type, can be
trained to map the subspace projection into the robot con-
trol parameters. We apply the approach to a real robot
system with two arms and multiple vision and force/torque
sensors. These external sensors are used simultaneously
to control the robot arm performing insertion and screw-
ing operations. The successful experiments show that the
robustness as well as the precision of robot control can be
enhanced by integrating multiple additional sensors using
this concept.

1 Introduction

In our research work on sensor-based robot control [6],
we are faced with many high-dimensional problems con-
cerning a large number of input variables which importance
and inter-dependence are not clearly known. It is well-
known that general fuzzy rule descriptions of systems with
a large number of input variables suffer from the problem
of the “curse of dimensionality”. But in many real-world
applications it is difficult to identify the decisive input pa-
rameters and thus to reduce the number of input variables to
the minimum. Hence a general solution to building fuzzy
models is not only interesting from a theoretical point, it
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may also extend the range of applications of fuzzy control
to more complex intelligent control problems.

(a) (b)

Figure 1: The experimental setup for assembly. 1,1’:
hand-camera; 2,2’: force/torque sensor; 3,3’: parallel jaw-
gripper; 4: nut; 5: screw.

1.1 Vision/Force- Guided Robot Motion

Assembly skills like inserting and screwing are part of
the most important and most demanding sensor-based ma-
nipulation skills of cooperating robots. The use of force-
feedback is the mostly used sensor information source in
robotics but in recent years visual feedback and especially
the integration of both had been of great interest. Conven-
tional techniques try to exploit a common representation
space to achieve a fused model of the environment ([7],
[3]). In [11] this is achieved by describing sensor observa-
tions in terms of uncertain geometry using probabilistic fu-
sion methods. In [1] vision together with an internal strain
gauge is used to gather information about the contact forces
acting on a hand during grasping. In [10] force and vision
feedback is combined using so calledvision and force re-
solvabilities. Another approach is presented in [2]. There
the force and vision information is fused by using a task
frame formalism. As an example a vision algorithm recon-
structs the 3D position of a feature point, using also the dis-
tance information from a force sensor. Common to nearly
all these approaches is an explicit modeling of the sensor
properties in order to combine the information. In our work



presented here we fuse visual information from two uncal-
ibrated cameras resp. from one camera and a force/torque
sensor. We do not use any explicit models but employ an
adaptive neuro-fuzzy scheme tolearn the appropriate robot
motions necessary to perform a complex screw-task.

A special case of vision-action transformation is
camera-supported fine-motion control.Affine Visual Ser-
voing [4] may be applied to such tasks. The changes in
the shape of image contours are the input of a feed-forward
controller. In recent years the idea of using uncalibrated
cameras for visual guidance has found increasing interest
(c.f.[14, 5]). However, nearly all require some initial and
subsequent to perform well.

CMAC neural networks may tackle the problem of di-
mensionality; in [8] 12 inputs represent four joint posi-
tions of the robot, four image parameters and their desired
changes. The outputs are the control signals for the four
robot joints.

Figure 2: Location of the cameras: (1) overhead, (2) side-
view, (3) robot in park position

In [9] learning of vision-based positioning based on vi-
sual appearance information was introduced. The image
data set is compressed usingprincipal component analy-
sis to obtain a low-dimensional input space. A paramet-
ric eigenspace representation is used for describing the dif-
ferent objects as well as object locations. The positioning
problem is thus transformed into finding the minimum dis-
tance between a point and a manifold in the eigenspace.

As far as we know no work on mapping the multiple
images direct into “action values” has been reported.

2 Problem Description

2.1 Experiment Setup

The problem scenario (see Fig. 1 and 2), screwing a
screw (5) into a nut (4) with two cooperating robots, orig-

inates from our collaborative project which aims at assem-
bly of aggregates with wooden toy construction sets. The
manipulators are installed upside down and can grasp the
required assembly components from the assembly table.
Each robot is equipped with a force sensor (2,2’) on which
a pneumatic parallel-jaw gripper (3,3’) is mounted. A small
camera (1,1’) is fixed over the gripper. The manipulators
are two Puma 260 and the host computer is a Sun Ultra-
SPARC. We consider general screwing without using any
fixture devices.

2.2 Uncertainties

For a general-purpose arm/gripper system, the following
two types of uncertainties must be taken into account:

Figure 3: An inconvenient start-situation for screwing

Grasping precision. Although we have applied a hand-
camera in a “self-viewing” configuration, which sig-
nificantly improved the grasping precision in compar-
ison with the open-loop positioning, regrasping still
engenders deviation of the screw from the rotation
axis of the gripper.

Slippage of the part in the hand. Due to the effect of the
resulting forces, the screw grasped by a jaw gripper
may easily slip during the screwing process.

The uncertainties in a screwing process cause the fol-
lowing two concrete problems:

1. The screw is not centrically grasped: the rotating axis
of the screw does not match the axis of the gripper.

2. The screw is obliquely grasped, see Fig. 3.

3 Vision-Based Control

Without using sensors a screwing operation can fail
under each of the uncertainties discussed above. There-
fore, sensor-based compensation motions become neces-
sary. The resulting forces in case 1. in the normal and



orientation directions should be minimised and stable. Ad-
ditionally, to guarantee a successful screwing-in phase, a
constant force in the approach direction should be exerted.
Unlike the first case, the forces and/or torques give no suf-
ficient information about the orientation of the screw. A
supplementary approach is to monitor the scene with ex-
ternal cameras and correct the orientation before contact is
made between the screw and the nut [12]. Now we have
performed two different approaches to adjust the orienta-
tion of the screw after contact is made:

1. We fuse the images from two different cameras to de-
termine the orientation of the screw (see Fig. 5).

2. We fuse the information of a force/torque sensor and
the related camera.

In both tasks we use the same B-spline neuro-fuzzy model.
The displacement of the screw in the gripper is the output
of the controller and hence the output can direct be used to
correct the manipulator.

(a) (b) (c)

(d) (e) (f)

Figure 4: Typical images taken by the external cameras
((a)-(c) viewpoint from above, (d)-(f) side view

Fig. 4 shows a sequence of typical views of the scene.
We therefore employed a method that extracts automati-
cally the needed features from one or two fused images to
compensate the uncertainties.

4 B-Spline Neuro-Fuzzy Model

4.1 Basic Principle

The controller for force control can be efficiently real-
ized using the B-spline fuzzy controllers proposed in our
earlier work [15, 16]. This type of controller may be char-
acterised by the following features distinguishing it from
standard fuzzy controllers:

� B-spline basis functions are employed for specifying
the linguistic terms (labels) of the input variables. By
choosing the ordern of the basis functions, the output
isCn�2 continuous.

� Each controller output is defined by a set of fuzzy sin-
gletons (control vertices). The number of control ver-
tices is equal to the number of the rules and their opti-
mal values can be iteratively found through learning.
This adaptation procedure is equivalent to weight ad-
justment in an Associated Memory Neural Network.

� One problem with learning in conventional fuzzy con-
trollers is that too many parameters must be adjusted.
With B-spline fuzzy controllers, a simple modification
of control vertices causes the change of the control
surface. As far as concerned supervised learning, if
the square error is selected as the quality measure, the
partial differential with respect to each control vertex
is a convex function. As for unsupervised learning, if
the error of the cost function is approximately piece-
wise proportional to the error of the control values, the
learning-process descent will also show stable asymp-
totic behaviour [15].

4.2 Dimension Reduction

It is one of our long-term research goals to find a gen-
eral model which transforms raw image data directly into
“action values”. Our grey-scale images have101� 41 pix-
els and if no image processing is performed then a control
system with about4; 000 input variables (i.e. one for each
pixel) needs to be modeled; the system output would be the
motion values for the robot(s).

(a) (b) (c)

Figure 5: Clipped images from camera 1 (a) and camera 2
(b) and the resulting merged image (c).

If the dimension of the input space is small enough, the
input variables can be directly covered by fuzzy sets. Each
item of the rule is human readable and may be interpreted
as describing a special instance of a general situation. If,
however, the image of a camera is regarded as a vector, this
high-dimensional sensor image is too large to build a cor-
responding rule base. Fortunately, sensor images are often
observed in a local context: the complete situation is not of
particular interest and a subspace containing all necessary
information for determining the action values can be found.



4.3 Projection into Eigenspace

A well-known technique for dealing with multivariate
problems in statistics is theprincipal component analysis
(PCA). As shown in [9], this technique is also suitable for
reducing the dimension of the input space of a general con-
trol problem. It was introduced for the use of visual learn-
ing by [13].

In the first task our approach of dealing with 3D uncer-
tainties is to merge small and local parts of different grey-
scale camera images and project the resulting image into
an eigenspace (see Fig. 7). In the second task we project
the images from one camera into an eigenspace and take
this and the data from a force/torque sensor as input for our
controller (see Fig. 8). Fig. 6 shows the visualised trans-
form matrix of the fused image date. The brighter the pixel
the more relevant the component in the image.

Figure 6: Visualisation of the transformation matrix: first
to third principal component.

An eigenvector, denoted asEVi, is computed as
[a1;i; a2;i; : : : ; am;i]

T . The eigenvectors form an orthog-
onal basis for representing the original individual sensor
patterns. Assume that the eigenvectorsEV1; EV2; : : : are
sorted according to their eigenvalues in a descending order.
An eigenspace with a reduced dimensionn can be formed
with the firstn eigenvectors.EVi defines theith dimen-
sion in the eigenspace. The projection of an input vector
X = [x1; x2; � � � ; xm]T onto eigenvectorEVi, called the
ith principal component, ispi = a1;ix1 + a2;ix2 + � � � +

am;ixm. The complete projection can be represented as:
[EV1; : : : ; EVn]

T
�X = [p1; : : : ; pn]

T .
All projections of the sample data sequence form a man-

ifold in the eigenspace. Such a projection can be viewed as
a layer of neural network, see the connection layer of the
two left parts of Fig. 7.

5 Implementation

5.1 Sampling Training Data

For training, the input data and desired output values
have to be recorded. It is desirable that all typical input
data be generated. As outlined above there are different
orientations of the screw. For recording, the robot moves
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Figure 7: The structure of a fuzzy controller based on
eigenspace projection by fusing images.

to the ideal position and orientation for screwing. Subse-
quently, it moves to several other orientations. For each of
them the deviations from the ideal orientation , the forces
and torques are recorded.

5.2 Calculating Eigenvectors

After the input data are sampled, the following steps are
necessary:

1. The (potentially merged) images are normalised so
that the energy of each image becomes 1. As an op-
tion the average image can be subtracted.

2. The images are stacked into vectors.

3. The covariance matrix of the vectors is calculated.

4. The eigenvectors and eigenvalues are calculated.

5. Each image is projected into the eigenspace.

5.3 Training the Fuzzy Controller

For the B-spline controller the training procedure is as
follows:

1. Select then eigenvectors with the largestn eigenval-
ues denoted as EV1; : : : ;EVn.

2. For the second task select the components from the
force/torque vector which have the greatest relevance
to the desired controller output. In this application
these are the forces in N- and O- direction and torques
around the N- and O- vector of the robot tool, because
the rotation of the gripper is around the approach vec-
tor.

3. Select the order of the B-spline basis function for each
input

4. Determine the knots of the B-spline basis functions
for partitioning each input.

5. Project images onto the selected eigenvectors.

6. Initialise the control vertices for the output.

7. Learn the control vertices with the projected values
from the images and the data from the force/torque
sensor using the gradient descent method.



8. If the results are satisfying, terminate.

9. Modify the knots for eigenvectors, go to 5.
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Figure 8: The structure of a fuzzy controller for fusing
force and vision.

It is important to determine the right parameters for the
fuzzy set. If too few eigenvectors are used, then the fuzzy
controller cannot distinguish all situations. If too many
eigenvectors are used, then the memory requirements of the
fuzzy set and the number of required training samples is not
manageable. Similarly important is the correct partition. If
the partitioning is too fine, the fuzzy controller generalises
insufficiently.

6 Numerical Results

The vision controller is learned with 363 training im-
ages, shifting the screw between�15Æ around the N- and
O-direction in steps of3Æ. The learned controller is tested
with additional 363 images. Fig. 9 shows the sorted eigen-
values of the covariance-matrix and it can be seen that most
of the information of the images is contained in the first di-
mension of the reduced eigenspace.
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Figure 9: Sorted eigenvalues of covariance-matrix.

6.1 Fusing two cameras

After merging the two images and projecting them into
the reduced eigenspace, we used the three greatest eigen-
vectors as input for the B-Spline fuzzy controller. Each
eigenvector is covered with10 B-Splines as membership
functions.

In comparison table 1 shows the mean square error of
the controller, the maximum error and the largest worst

Mean
square
error[Æ2]

Max. er-
ror [Æ]

Worst case
error [Æ]

N- direction
Overhead camera 8:62 7:35 7:07
Side-view camera 54:15 26:9 26:9
Fused images 2:92 6:06 –

O- direction
Overhead camera 51:88 18:51 18:51
Side-view camera 10:0 11:33 11:53
Fused images 2:75 5:68 –

Table 1: Mean square error, maximum error and worst case
error for angle around N-and O-direction.

case errors of the test images around the N- and O-direction
with and without fused images. The worst case is defined
as a movement of the manipulator in the wrong direction,
which causes a bigger displacement.

Our first experiment shows that merging the images pro-
duces a much better controller than the separated controller
for each camera and direction. The mean square error and
maximum error are smaller and with the merged images in
contrast there is no output of the controller, which moves
the manipulator in the wrong direction. Combining this ap-
proach with the first procedure described in [16] results in
a very robust and rapid technique to correct the orientation
of the screw.

6.2 Combining visual and force/torque informa-
tion

Simular to the first task we also use the three great-
est eigenvectors from a single image as input for the B-
Spline fuzzy controller. Additional the torque around the
N- resp. around the O- axis of the tool is used as input (see
Fig. 8). Each eigenvector is covered with10 B-Splines and
the torque with5 B-Splines as membership functions. Ta-
ble 2 also shows the mean square error of the controller,
the maximum error and the largest worst case errors of the
test images around the N- and O-direction with and with-
out additional force. This experiment shows that the fu-
sion of vision and force/torque data produce better results
in comparison with the unfused case. It also shows that the
B-spline neuro fuzzy model is capable of fusing different
sensor data.

7 Conclusions

We have shown that the B-spline model may be utilised
for sensor fusion and high-dimensional problems such as
visually guided fine-motion. We have implemented the



Mean
square
error [Æ2]

Max. er-
ror [Æ]

Worst case
error[Æ]

N- direction
Single camera 8:62 7:35 7:07
Camera + torque 6:6 8:75 –

O- direction
Single camera 12:9 11:64 7:65
Camera + torque 8:18 8:2 –

Table 2: Mean square error, maximum error and worst case
error for angle around N- and O-direction combining force
and vision.

approach with a two-arm robot system and both kinds of
training are used to build the controllers: unsupervised on-
line for the force controller and supervised off-line learning
for the vision system.

The advantages of our approach are:

� Projecting the high-dimensional input space into a re-
duced eigenspace the most significant information for
control is maintained. A limited number of trans-
formed inputs can be partitioned with the B-spline
model.

� By merging the different kinds of sensor data a suf-
ficient precision can be obtained for determining the
robots orientation correction.

� To solve this problem the statistical indices provide a
suitable solution to describe the information in images
with a lot of uncertainties.

� A vector in the eigenspace is directly mapped onto the
controller output based on the B-spline model. This
makes real-time computation possible.

� Designing the controllers is simple and identical for
both low and high dimensional controllers. Both force
and vision controllers are of the same type. The B-
spline fuzzy controller can be trained in a straightfor-
ward manner because modification of control vertices
only results in local change of the control surface.

In this approach no complex programming and knowl-
edge about vision and force control is needed. We have
shown that this approach is very promising for realizing
efficient robot assembly skills based on sensorimotor coor-
dinations.
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