
In \Fuzzy logic techniques for autonomous vehicle navigation", edited by A. Sa�otti and D.Driankov, Springer, 1999.Integrating deliberative and reactive strategiesvia fuzzy modular controlJianwei Zhang and Alois KnollFaculty of Technology, University of Bielefeld, 33501 Bielefeld, GermanyAbstract. This work presents the concept and realisation of the integration ofdeliberative and reactive strategies for controlling mobile robot systems. Generalmotion control at the task-level in a partially known environment is divided into twoconsecutive steps: subgoal planning and subgoal-guided plan execution. A modularfuzzy control scheme is proposed, which allows independent development and exi-ble integration of di�erent rule bases, each for ful�lling a certain subtask. An on-linesituation evaluator assigns each rule base a weight according to the importance ofthe subtask. In this way, during motion between subgoals, the robot does not movealong a statically planned trajectory but under the control of a sensor-based schemeguided by subgoals.1 IntroductionThis work aims at integrating sensing, path planning and control so that thecoupling e�ects of these three components can be taken into account in orderto enhance the performance of the whole system. Planning methods which aretotally separated from sensing and control normally assume that the robotenvironment is completely known. Surveys of path planning methods aregiven in [3]. Pure geometric path planning in known environments constitutesa deliberative strategy. The approaches following this strategy normally haveto solve problems of space division/representation, search and complexityanalysis of planning algorithms. By contrast, the reactive strategy regardspath planning as a local feedback control problem. The task of local motioncontrol is to determine the motion parameters for driving all the actuatorsby evaluating the up-to-date sensor information as well as how well a pre-described path is followed.If we compare the deliberative strategy with the reactive one, the followingconclusions can be drawn:{ The advantage of the deliberative strategy is mainly its global planningability for the whole environment, while the reactive strategy lends itselfto taking into account dynamic aspects of the environment and applyingsensor data directly to determine the robot path.



{ However, methods of the deliberative strategy require that a completeenvironment model be available. The main disadvantage of the reactivestrategy is the problem of the robot running into dead ends because ithas no road maps and thus behaves rather \short-sightedly".Integration of deliberative and reactive strategies will contribute to thesolution of robot motion control in a mixed environment with both knownand unknown objects, i.e. the robot's environment is only partially known.O�-line modelling can be realised by using CAD data and by applying sensorfusion procedures so that static information can be acquired which repre-sents �xed objects like walls, tables, etc. In the on-line perception phase,data from a sensory system provide the controller with dynamic feedbackinformation for avoiding unknown moving objects like pedestrians and otherrobots. Therefore, it becomes an interesting problem how to design a con-trol scheme that can fully utilise on-line sensor feedback as well as a prioriknowledge.Beyond the numerical approaches, i.e. potential �eld [1], \intelligent com-puting methods" like neural networks and fuzzy logic are increasingly appliedin sensing, modelling and robot control. In real environments, exact sensordata as well as obstacle models are hard to acquire. Usually a feasible, approx-imate solution has high priority than an optimal, computation-intensive andnoise-sensitive solution. In sensor-based robotics, a domain where human-beings do much better than robots, modelling and then imitating humanbehaviours are especially meaningful. Fuzzy logic control provides an appro-priate tool for these purposes. Recently, applications of the fuzzy controlrange from purely reactive fuzzy controllers, e.g. [6,10], to the mixture of\behaviours" like single-goal directness and reactive collision-avoidance, e.g.[7,4]. Our work employs the fuzzy control approach and the modular designmethodology. A general architecture for integration of planning and execu-tion [2] is based on a supervisor which is situation-driven. Our system �ts intothis architecture. By using fuzzy meta-fules, similar concept is summarisedin [7] as context-dependent blending. In our work, we propose the methodof generating subgoals for collision-free motion, and then implementing thesubgoal approaching as an elementary rule base. An on-line situation evalua-tor determines its priority as well as priorities of other elementary rule bases.Integration of path planning and sensor-based control is realised by designingelementary rule bases and correctly blending them.This paper is organised as follows: section 2 describes plan subgoals andthe selection of sensor data, then introduces the basic idea of the modularfuzzy control scheme. Planning issues for mobile robot systems are discussedin section 3. Section 4 describes the design and implementation of the fuzzycontroller and its integration in a control algorithm for subgoal-guided mo-tion. Section 5 draws some conclusions.



2 The concept for integrationOur idea of integrating the deliberative and reactive control strategies liesmainly in generating a set of critical points as subgoals, then using them forglobally guiding the robot motion by still leaving some freedom for the planexecutor to react to uncertainties about the dynamics of the environment,the precision of environmental data and areas about which nothing or littleis known.2.1 Introduction of subgoalsFor applications in a partially known, dynamic environment, the plan execu-tor does not need a detailed geometric path like an interpolated spline curveprovided by a planner because some of the path positions may have to bemodi�ed anyway due to the unknown static and dynamic obstacles. What ismost useful for the on-line motion control is a set of subgoals, e.g. where therobot has to change its direction relatively sharply in order to arrive at thenext subgoal position. The main di�erences between a subgoal and a �nalgoal are as follows:{ Subgoals are much easier to reach than a �nal goal;{ The robot should usually move continuously through a subgoal pointwhile it should stop at a �nal point;{ A subgoal can be exibly generated, communicated to the plan executorand abandoned if necessary;{ Subgoals need not be traversed exactly, where as a �nal goal is assumedto be �xed and should be reached exactly.2.2 Sensor dataIn order to develop a robust and exible on-line robot controller, external andinternal sensor data should be applied directly in each control cycle insteadof being used for building and updating the world model. If sensor data iscoupled with motion control in a simple form, the robot can determine itsreaction in time. The word \situatedness" used by Brooks [9] develops a simi-lar idea. Simon [8] summarised with the concept of \bounded rationality" theprinciple that human-beings often use only incomplete or imprecise knowl-edge for problem-solving.Sensor data needed for direct integration into motion control possess thefollowing features:{ Relativity. These data are mainly derived from the external sensor mea-surements and their derivatives or the di�erences between the sensorvalues and the internal model. Such a variable is not related to the robotor sensor alone, but to the interaction between the robot and its environ-ment.



{ Locality. Normally, only part of the environment, which is directly in-volved in the current robot motion, is perceived by the sensor system.Each sensor measurement represents one aspect of the object's features.No time-costly sensor fusion is performed (sensor data fusion is thustransformed to task fusion).{ Task-orientation. Modelling and interpretation of the sensor data dependon the control tasks. Only the control-relevant data are selected, pre-processed and represented.2.3 The modular fuzzy control schemeConventionally, a pre-planned trajectory is executed by a feedback positioncontroller, which utilises the sample of the trajectory as the desired valueand the internal position sensor as the true value. With such a controller thedata from the external sensors for acquiring en route information cannot beintegrated into the controller. To solve this problem, we propose the followingcontrol structure for realising subgoal-guided, sensor-based robot motions,Fig. 1.
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Parallel to the rule bases SA and LCA, further modules can be indepen-dently designed in the form of rule bases, each for a speci�ed subtask, andthey can be added to the knowledge base of the fuzzy controller. In multi-robot applications, the commands of other robots, which arrive through acommunication channel, can be viewed as an individual subtask also repre-sented by a rule base. An example scenario is shown in Fig. 2.

Fig. 2. In order to hand over an object to a manipulator, the mobile robot mustreceive coordinating commands from other robots or the central supervision system.If human-robot interaction is desirable, the linguistic interaction can bealso de�ned in rule form and integrated into the knowledge base. For example,a human operator can use spoken instructions, a joystick or special keys of thekeyboard to take over the control of the robot. In this case, priority shouldbe assigned to each rule base.To resolve potential conicts between the output values, the coordinationof the di�erent rule bases becomes very important. Generally, criteria of sucha coordinating action are{ robot-speci�c, i.e. a robot controller can decide by itself the priority ofeach subtask and use it to modify the inuence on the outputs of theserule bases correspondingly;{ situation-dependent, i.e. the priorities of these subtasks are not static andcannot be assigned in advance; they are dynamically determined by thesituation evaluation.2.4 The experimental systemThe modular fuzzy control scheme has been implemented on a real mobilerobot system Khepera. Khepera is of cylindrical shape with a diameter of52mm. Additional modules can be mounted on the top of Khepera, e.g. agripper and a vision module. The environment is observed by eight IR sensors(six on the front and two on the back). Khepera uses a Motorola MC68331



micro-controller, whose instruction set is compatible with the well knownMC68020. A RAM size of 128k is available for user programs.The sensitivity of the IR sensors varies for di�erent objects and is limitedto 5cm. The directly controlled variables are the velocities of the robot's leftand right wheel, which are denoted by vl and vr respectively. In order to testrobot independent control programs, the robot's forward speed (Speed) andsteering angle (Steer) are translated to vl and vr.Since the proximity sensors as well as the controller outputs Speed andSteer are imprecise, it does not make sense to develop complicated, exactalgorithms to use the sensor data for world modelling and to control the robotmotion with a high resolution. If the control of a mobile robot is comparedwith the behaviour of a human, it is easily understood that fuzzy logic rulesemulating the human decision-making process with \IF-THEN" rules can beapplied in the design of such a robot controller.2.5 Fuzzy logic for sensor-based motion controlThe variables of the sensors as well as the control variables can be viewedas linguistic variables, such as Sensor Left, Sensor Right, Speed, Steer. Eachlinguistic variable can be covered with overlapping linguistic terms speci�edby fuzzy sets, like NB (negative big), NM (negative middle), NS (negativesmall), Z (zero), P (positive), PM (positive middle) and PB (positive big).
0

200
400

600
800

1000
1200

0

200

400

600

800

1000

1200

0

2

4

6

right IR sensor
left IR sensor

Speed

(a) The forward speed. 0
200

400
600

800
1000

1200

0

200

400

600

800

1000

1200

−100

−50

0

50

right IR sensor
left IR sensor

Steer

(b) The steering angle.Fig. 3. Mapping sensor data to the control output.In general, the perception-action relation is a multiple to multiple map-ping function. To visualise such a relation with a three-dimensional graphic,we use the following simpli�ed example. Fig. 3 illustrates the procedure ofmapping sensor space to control space. This is an example for tracking the



contour of an object, in which the mappings of the input variables Sen-sor Left and Sensor Right to the output variables Speed and Steer are shown.The Speed output will be assigned a high value when both IR sensors supplya low input (no obstacle in vicinity), and a low value otherwise (Fig. 3(a)).Fig. 3(b) shows the dependency between the IR sensors and the steering an-gle. Steer will be negative if the right IR sensor reading is high and positiveif the sensor reading is low, but only if the left IR sensor detects no obstacleon the left side at the same time. In this way the robot follows the contourof an object in clockwise direction. The linguistic terms of the input andoutput variables can be speci�ed with fuzzy sets using triangles, trapezoids,B-spline basis functions1, or they can be just selected as a crisp value (fuzzy-singleton). The linguistic terms of variables Speed and Steer in Fig. 4 arede�ned by triangular fuzzy sets.
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3 Subgoal planning issues3.1 Planning with a Tangent-graphIf the robot has approximately circular or square shape, the subgoal planningproblem can be reduced to a 2-D case by representing the robot as a discwith radius r. Since the dynamic characteristics of the environment makethe exact computation of subgoals unnecessary, only a rather conservativeapproximation of the environment is employed.Obstacles are assumed to be described as polygons. The obstacle data canbe acquired by the data of a building, interactive modelling by CAD systemor later by automatic modelling by laser scanner and vision system. Theseobstacles are enlarged by a constant distance r, where r can be the sum ofthe robot radius and a safety distance. The robot can be then shrunk to itsreference point. In this procedure, edges and sharp vertices of the polygons areextended by r and the intersection points are computed as the new verticesof the enlarged obstacles. After that, planning subgoals consists of �nding asequence of straight lines which do not intersect with the enlarged obstaclesand which connect the start and goal points with the shortest distance. Thisproblem can be solved best by searching in a Tangent-graph (T-graph), asimpli�ed V-graph, [5]. The number of arcs in a T-graph is considerablyreduced by eliminating non-convex edges and non-tangential lines from thecorresponding V-graph. An example of a T-graph is shown in Fig. 5.
S

G

Fig. 5. A T-Graph of enlarged obstacles.The A* algorithm is used to search for a global route in the T-graphbecause it can �nd the shortest path if such a path exists. The nodes of theshortest path from a start position S to a goal position G are a sequence ofvertices of the enlarged obstacles. They are viewed as the subgoals for guidingthe global direction of the robot motion and can be represented as a sequence<Q0;Q1; : : : ;Qm >.



3.2 Planning timeTheoretically, the overall computation complexity of the pre-calculation forconstructing a T-graph is on the order of O(n2 logn), where n is the numberof vertices of the polygons. In the case of the Khepera robot using highlyoptimised �xed point arithmetic instead oating point, we achieve nearly halfthe speed of a Sparc 5 workstation. The following table shows the time for thecalculation of V-graph, T-graph and subgoals of three example environments:Polygons / Edges 4 / 33 3 / 13 1 / 4init T-graph 116 ms 21 ms 18 msconstruct V-graph 16241 ms 591 ms 22 msconstruct T-graph 289 ms 44 ms 5 msSubgoal plan 538 ms 284 ms 30 ms4 Design of a fuzzy controller for plan-executionThis section discusses the design of three typical rule bases by using heuristicsfor classes of situations. The tasks of these rule bases are:1. Approach subgoals supplied by the planner;2. Avoid local collisions by evaluating sensor data;3. Evaluate situations to coordinate the tasks 1 and 2.The Mamdani-type controller is employed in the design since it allows usto convert heuristics directly into control algorithms.
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Fig. 6. Combination of planning and internal sensory information as inputs.4.1 Approaching subgoalsThe planning level assigns geometric subgoals for collision-free paths. Thegeometric distance between a subgoal and the current state, which is esti-mated by evaluating internal position sensors in the wheels, are be taken asthe information for control. We use two variables d and a that are applied todecide on the control action to keep a pre-planned path (Fig. 6):



{ Variable d: The shortest distance between the robot and the path segmentconnecting the previous subgoal and the next one (in the following calledpath for short). This linguistic variable d is represented with the followinglinguistic terms, each of which is de�ned by the fuzzy sets shown inFig. 7(a):� NB: far o� the path to the left;� NM: not too far o� the path to the left;� N: slightly o� the path to the left;� Z: almost on the path;� P: slightly o� the path to the right;� PM: not too far o� the path to the right;� PB: far o� the path to the right.{ Variable a: The angular divergence between orientation of the path andthe robot. The following linguistic terms are used (Fig. 7(b)):� NB: driving in the opposite direction, slightly to the left;� NM: direction is totally o� the path to the left;� N: direction is slightly o� the path to the left;� Z: almost on the path segment;� P: direction is slightly o� the path to the right;� PM: direction is totally o� the path to the right;� PB: driving in the opposite direction, slightly to the right.SA generates the following output variables:{ Speed: The speed of the robot.{ Steer: The steering angle, based on the current direction of movement.By classifying \situations" of the robot's current position to the pathsegment to be tracked, rules for path tracking to the next subgoal can bedeveloped. In appendix A, 49 rules for \subgoal approaching" are listed. Itis the task of the main control program to verify the current robot positionand to switch to the next path segment.A typical fuzzy rule of this module looks like this:IF (d IS N) AND (a IS Z) THEN (Speed IS HIGH) AND (Steer IS P),which is the fuzzy logic representation of the following heuristic rule: \If therobot is located slightly to the left of the path but its orientation is almoston the path, then it must steer slightly to the right at a high speed."Fig. 8 shows an example of the trajectory, realised by the fuzzy controller,to track a sequence of pre-planned path segments. The processing of the 49rules for Khepera takes only 3 ms.



0.5

1

0.75

0.25

0

0 10.5-0.5-1

NB PBNM PMZN P

d [m](a) The shortest distance from path.
0.5

1

0.75

0.25

0

NM N Z P PM PBNB

-180 -90 0 90 180
a [deg](b) The angular divergence.Fig. 7. Linguistic terms of two inputs for \subgoal approach".4.2 Local collision avoidanceTypically, for local collision avoidance we need to determine the value of �veproximity sensors, e.g. infrared or ultrasonic sensors (left, half-left, front, half-right and right) if we approximately view the control as a Markov decisionprocess, i.e. the control action is merely determined by the current sensorvalue and not by the historical sensor readings. The LCA rule base tries toavoid collisions with unknown or dynamic obstacles. By observing the currentvalues of the �ve proximity sensors, LCA calculates the speed and steeringangle, which is needed to avoid obstacles. The input variables are2:SL85 SL85,SL45, SLR0, SR45, SR85, the current value of the proximity sensors. Thefour linguistic terms are based on triangular membership functions, whichhave di�erent distances from each other because of the non-linearity of thesesensors.{ VL: no obstacle in sight;{ LOW: an obstacle is far away;{ HIGH: an obstacle is close;2 They are referring to the IR sensors arranged at di�erent angles, e.g. \sensor onthe left at angle 85�".
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Fig. 8. Trajectory of the controller using the rule base \subgoal approach".{ VH: almost in touch with an obstacle.The fuzzy rules can be extracted by modelling human experience whencoping with the following situations: \dead end", \obstacle from right", \ob-stacle from left", \obstacle ahead", \obstacle from half-left/right", \no ob-stacle nearby".4.3 Situation evaluationThe rule base \situation evaluation" of the Khepera robot uses the \near-sighted" proximity sensors as input and generates two output variables: thepriority K and the re-planning selector Replan. The rule base calculates thepriority of each module for all possible situations.{ K: the priority for the LCA rule base, normalised in [0,1]. Each speci�csituation is assigned its priority (Fig. 9 (a)):� VL: no obstacle avoidance, subgoal approach only;� LOW: put little emphasis on obstacle avoidance, mainly try to ap-proach subgoal;� HIGH: mainly obstacle avoidance, slightly try to approach subgoal;� VH: obstacle avoidance has priority, subgoal approach is irrelevant.{ Replan: decide if a \no-way-out" situation, which requires the path plan-ning procedure to be invoked once again, is reached. That will be in-dicated by a high value in Replan (normalised in [0,1]) (Fig. 9 (b)). Atypical case is that the next subgoal is occupied by an obstacle. In thissituation, the robot can only be freed by inhibiting the next subgoal andplanning a new subgoal sequence.� LOW: no re-planning required;� HIGH: re-planning required.
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\IF situation evaluation IS for RuleBasei THEN apply RuleBasei"The coordination of the rule bases LCA and SA is based on the priorityK, see also [4]. The value of K is determined by heuristic rules (see AppendixB), which are tuned slightly in the experiment to guarantee collision-freemotions as well as correct subgoal approaching. By denoting the Speed andSteer parameters of both rule bases as SpeedSA, SteerSA for subgoal approachand SpeedLCA and SteerLCA for local collision avoidance, the e�ective Speedand Steer becomes:Speed = SpeedLCA �K + SpeedSA � (1�K);Steer = SteerLCA �K + SteerSA � (1�K):In general, the situation evaluation considers the sensor information andprovides each rule base with an individual weight. This modular concept canbe extended by adding further control modules which are implemented byfuzzy rules. Each new subtask receives its rule base which will be added inthe knowledge base of the robot controller. For n rule bases to coordinate,n priorities, e.g. K1;K2; : : : ;Kn should be set. By classifying di�erent sit-uations, the dynamic decision for these parameters can be formulated withfuzzy rules and then integrated in the situation evaluation. The linear rela-tionship between the priority variableKi (i = 1; : : : ; n) and the m defuzzi�edcontrol variables of the n rule bases, yi;j (j = 1; : : : ;m) can be expressed asfollows: Yi = y1;i �K1 + y2;i �K2 + : : :+ yn;i �Kn with i = 1; : : : ;mwhere Yi represents the direct value of the i-th control variable. In nor-mal cases, all modular rule bases possess the same control variables. Situa-tion evaluation will provide values for special control variables for which noweighting is necessary.4.5 ImplementationThe ow chart of the robot control program is shown in Fig. 10. Experimentshave demonstrated the nice modular features of this concept, Fig. 11. Therule base SA alone works well for realising its subgoal approaching subtaskin a completely known environment. As expected, the test in a completelyunknown environment with the rule base LCA shows that collisions withobstacles can be avoided, but the robot can possibly move into a dead-endor a cycle. In a partially known environment, SA and LCA are coordinatedby the rule base situation evaluation and realise the global subgoal-guidedcollision-free motion. In this way, during motion between subgoals, the robotdoes not move along a statically planned trajectory but under the control of asubgoal-guided, sensor-based controller. On-line sensor data can be evaluatedto detect local collisions and the motion control is adapted to the dynamicenvironment.
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Fig. 11. A test environment.
Fig. 12. Subgoal approaching in a known environment.becomes straight again since the obstacle has already crossed the path beforethe robot arrives. Curves 1, 2, 3, 4, 5 in Fig. 14(b) correspond to the robottrajectory when the moving object moves head on to the robot or with adeviation of 20, 40, 60, and 80 degrees.5 ConclusionsThe fuzzy control scheme is used for executing subgoal-guided motions. Fuzzyrule bases, e.g. for local collision-avoidance, can work together with the rulebase for passing through subgoals, each of which with only a limited numberof control rules. The main advantages of using fuzzy control for mobile robotscan be summarised as follows:Modularity. Fuzzy control is intrinsically modular: a rule base is generatedby elaborating each single rule, which has a linguistic interpretation andits own control function. The order of these rules is does not make adi�erence, both during controller design and rule evaluation. If we regarda rule base performing a certain subtask as a separate module, it is easy



Fig. 13. Subgoal approaching with an unknown obstacle.
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S SFig. 14. Collision-avoidance with a dynamic obstacle.to understand that di�erent rule bases can be developed independentlyand then evaluated together for realising a high-level task.E�ciency. The modular design enables a signi�cant reduction of develop-ment time, which is achieved by simple design of a single rule base, rapidprototyping and e�cient debugging. Further fuzzy rule bases, such as fordealing with the commands from other robots or a human user, can beseparately developed by using either heuristics or training. Thanks tothe simple computation and the possibility of parallel processing of fuzzyrules, fuzzy controllers can run in real-time with moderate computingpower requirements.Transparency. Since the sensor-based robot control strategy takes advan-tages of the heuristics of human experience, the control procedure is stilltransparent, which is an important property of the intelligent control phi-losophy. The transparent mapping from input space to action contributesto solving: a) the skill transfer from human experts to robots; b) the anal-ysis and validation of the controller development; c) supervision of thelearning process.Low-cost. The fuzzy control concept utilises the sensor data qualitativelyrather than quantitatively. Imprecise data like infra-read sensor readingsand low-resolution gray-level camera images can be applied e�ciently.



Based on simple, intuitive control rules, tracking of a pre-planned pathis not very exact. However, precise path tracking in a partially knownenvironment is not necessary at all.Adaptability. By selecting a special type of fuzzy controller, e.g. the B-spline type and designing appropriate learning algorithms, the robot con-troller can be self-optimised or even totally trained automatically.The limitations of the applied approach are:{ The real-time subgoal planning is only possible for a robot whose shapeis approximately circular or square like. If obstacles in the robot's envi-ronment are not sparsely distributed and rotation of the robot is neededto cross some tight passages, the two-dimensional T-graph will no longerbe adequate for subgoal planning. In such cases, the three-dimensionalcon�guration space will be needed. Unfortunately, fast computation ofsubgoals realised in this work cannot be guaranteed in general with thecurrent on-board computers.{ To correctly develop fuzzy rules, all possible situations should be takeninto account. On-line tuning of membership functions needs a lot of \trial-and-error" procedures. Automatic evolution of fuzzy control rules andon-line self-tuning of membership functions based on B-splines can con-tribute to solving the problem (which is our current work [13,14]).{ The number of proximity sensors applied in our experiment is small. Ifmultiple sensors and/or vision systems are used, the \curse of dimension-ality" will occur since the number of complete rules in a fuzzy controllergrows exponentially with the number of controller inputs. Automatic in-put and feature selection becomes a necessity. Another focus of our cur-rent work is to combine techniques of dimension reduction like \principalcomponent analysis", \output-related features", to make the use of fuzzycontrol approach for complex sensor patterns possible and easier, [12].AcknowledgementThe authors wish to thank Frank Wille for implementing the fuzzy rule basesand experimenting with theKhepera robot. We would also like to acknowledgethe valuable comments of the anonymous reviewers that greatly helped us toimprove the �nal version of the paper.References1. J. Barraquand, B. Lanlois, and J.-C. Latombe. Numerical potential �eld tech-niques for robot path planning. IEEE Transactions on System, Man and Cy-bernetics, 22(2):224{241, 1992.2. R. Chatila. Deliberation and reactivity in autonomous mobile robots. Journalof Robotics and Autonomous Systems, pages 197{211, 1995.
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A Appendix A - Rule Base SA (Subgoal Approach)Rules for tracing the path and approach the next subgoal, witha = angle between the orientation of the robot and the planned path seg-ment, andd = shortest distance between path and robot.Input Outputd a Steer speedCompletely o� the path on the left sideNB NB PB LOWNB NM PB LOWNB N PM LOWNB Z PM HIGHNB P P HIGHNB PM Z VHNB PB N HIGHFar away on the left sideNM NB PB LOWNM NM PB LOWNM N PM LOWNM Z PM HIGHNM P P HIGHNM PM Z HIGHNM PB N HIGHSlightly left of the pathN NB PB LOWN NM PB LOWN N PM HIGHN Z P HIGHN P Z VHN PM N HIGHN PB NB LOWAlmost on the pathZ NB PB LOWZ NM PM LOWZ N P HIGHZ Z Z VHZ P N HIGHZ PM NM LOWZ PB NB LOWSlightly right of the pathP NB PB LOWP NM P HIGHP N Z VHP Z N HIGHP P NM HIGHP PM NB LOWP PB NB LOWFar away on the right sidePM NB P HIGHPM NM Z HIGHPM N N HIGHPM Z NM HIGHPM P NM LOWPM PM NB LOWPM PB NB LOWCompletely o� the path on the right sidePB NB P HIGHPB NM Z VHPB N N HIGHPB Z NM HIGHPB P NM LOWPB PM NB LOWPB PB NB LOW



B Appendix B - Rule Base LCA (Local CollisionAvoidance) and SE (Situation Evaluation)Input LCA output SE outputSL85 SL45 SLR0 SR45 SR85 Sp. St. K Repl.Dead end situation. Requires re-planning.VH VH - VH VH VL Z VH HIGHHIGH VH VH VH VH VL Z VH HIGHVH HIGH VH VH VH VL Z VH HIGHVH VH VH HIGH VH VL Z VH HIGHVH VH VH VH HIGH VL Z VH HIGHHIGH HIGH VH VH VH VL Z VH HIGHVH HIGH HIGH VH VH VL Z VH HIGHVH VH HIGH HIGH VH VL Z VH HIGHVH VH VH HIGH HIGH VL Z VH HIGHCollision avoidance in free space - Obstacle from rightollision avoidance in free space - Obstacle from leftvoiding direct collision with obstacle aheadVL VL LOW VL VL LOW Z HIGH LOWVL VL HIGH VL VL VL Z VH LOWVL VL VH VL VL VL PB VH LOWVL LOW HIGH LOW VL LOW Z VH LOWVL HIGH HIGH HIGH VL VL Z VH LOWVL HIGH VH HIGH VL VL PB VH LOWVL VH VH VH VL VL PB VH LOWAvoiding direct collision with obstacle from half-left/rightVL LOW HIGH VL VL LOW PM VH LOWVL LOW VH VL VL VL PB VH LOWVL LOW LOW VL VL LOW PM HIGH LOWVL HIGH VH VL VL VL PB VH LOWVL VH HIGH VL VL VL PB VH LOWVL VH VH VL VL VL PB VH LOWLOW HIGH HIGH LOW VL VL PB VH LOWHIGH VH HIGH VL VL VL PB VH LOWHIGH VH VH LOW VL VL PB VH LOWHIGH VH VH HIGH VL VL PB VH LOWHIGH VH VH HIGH LOW VL PB VH LOWVL VL HIGH LOW VL LOW NM VH LOWVL VL VH LOW VL VL NB VH LOWVL VL LOW LOW VL LOW NM HIGH LOWVL VL VH HIGH VL VL NB VH LOWVL VL HIGH VH VL VL NB VH LOWVL VL VH VH VL VL NB VH LOWVL LOW HIGH HIGH LOW VL NB VH LOWVL VL HIGH VH HIGH VL NB VH LOWVL LOW VH VH HIGH VL NB VH LOWVL HIGH VH VH HIGH VL NB VH LOWLOW HIGH VH VH HIGH VL NB VH LOWNo obstacle in vicinityVL VL VL VL VL VH Z VL LOW


