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Abstract

Accurate and efficient electromagnetic modeling and simulations are always required for
modern high frequency component and wireless communication systems design, where large
scale simulations, unique solutions as well as radiation and scattering patterns are required
for complicated configurations. Electromagnetic analysis and large scale computations are
challenging problems with respect to computer resources.

In this work, accurate and efficient electromagnetic simulations are accomplished by
solving the numerically exact hybrid finite element boundary integral (FE-BI) equations for
arbitrarily shaped perfect electrically conducting (PEC) objects and also PEC components
enclosed by dielectric materials. The finite element method (FEM) is utilized to solve the
fields inside the dielectric materials, surface integral equations (IEs) are solved through
the method of moments (MoM). Highly accurate analytical solutions are proposed for the
FEM and the system matrices in the FEM are evaluated efficiently. Numerical solutions
are utilized for the MoM, where techniques of great significance are proposed, such as the
adaptive singularity cancellation technique for near-coupling computations, higher order
(HO) modeling of the surface currents and the l%—space solution of the spherical harmonics
expansion for the multilevel fast multipole method (MLFMM). The HO basis functions are
implemented into the algorithm for surface current and volume field evaluations.

The self-coupling and near mutual-coupling integrals need special treatments for their
accurate computations in the MoM solution, where the integral kernels involve the Green’s
function and the gradient of the Green’s function. The efficient and accurate evaluations of
the self-coupling and of mutual couplings are obtained through the singularity cancellation
technique with the adaptive selection of quadrature points in the planar testing and source
domains. The fundamental shortcoming of the low order (LO) Rao — Wilton — Glission
(RW @) basis functions lies in its insufficient accuracy even for dense geometrical discretiza-
tion, even though the LO basis functions have been widely utilized in the expansion of
unknown surface current densities. Improved accuracy is achieved with the combination of
hierarchical HO basis functions together with the LO for the surface current evaluations,
where the same total number of unknowns are utilized for the mixed order modeling as for
the pure LO simulations. Efficient and accurate solutions are provided by the fast multipole
method (FMM) and the multilevel fast multipole method (MLFMM) in fast solvers for large
scale simulations. However, traditional MLFMM methods turn out to be less efficient for
the HO, as they require larger element dimensions. Then, the l%—space algorithm has been
proposed in the SE-MLFMM, where the required memory has been considerably reduced
due to the efficient storage of the individual basis functions with the spherical harmonics
expansion. Thus, very efficient iterative solutions are obtained for the equation system.

The hierarchical HO basis functions are utilized in the FEM, where the compatibility is
required between the basis functions in the FEM and the MoM, respectively. The efficient
self-identification technique is proposed for the achievement of basis function compatibility,
where the basis functions in the FEM automatically discern the constructions of the MoM
basis functions and the basis functions from the ajacent elements. Then, the FEM basis
functions organize themselves to obtain compatibility at the element boundaries. Analytical
solutions are also obtained with the usage of the self-identification technique, where the



common local-global transformation process in the traditional FEM is avoided.

Various numerical simulation results are shown to demonstrate the applicability, the
robustness and the efficiency of the realized hybrid finite element boundary integral algo-
rithms.
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1 Introduction

The Maxwell equations [Maxwell, 1873] have been proposed in 19th century to describe
the propagation of electromagnetic waves. However, only some simple solution domains
can have analytical solutions for electromagnetic waves. So, the design of electromagnetic
devices, such as antennas, relied much on experiments and measurements in the early days
of electromagnetics.

The computer technology development allows for efficient numerical solutions to elec-
tromagnetic problems. The differential and integral equations that derived from Maxwell
equations can be solved numerically with the growing power of computers. The numerical
techniques in electromagnetic simulations are applicable to analyze complicated structures
and also provide solutions to the design of electromagnetic devices. Simulations tremen-
dously reduce the cost of electromagnetic component design, as the manufacturers of the
devices are supported by simulation results. Moreover, the time-consuming measurements
are also replaced by simulations, so that the efficiency of the component calibration is
significantly improved. The exploitation periods of new products are reduced and the
procedure from design to market is accelerated. Numerical algorithms are versatile for
arbitrarily shaped configurations and able to utilize simultaneous simulations with different
component parameters for system optimization. As it turns out, numerical algorithms
for discretized modeling become independent solutions within electromagnetic component
design. Numerical simulations are very efficient in the development of electromagnetic
devices such as antennas, filters, couplers, radar systems as well as in the analysis of
electromagnetic compatibility for radio frequency circuits.

Various techniques in numerical simulations have been exploited and they are improved
continuously. However, each single solution contains its own advantages and disadvan-
tages. So, hybrid techniques have been proposed to keep the advantages and overcome
the shortages of different solution techniques. However, none of the single techniques nor
the hybrid method are verified to meet all physical requirements. Suitable solutions have
to be determined for specific electromagnetic models and the efficiency and accuracy of
algorithms are still being improved.

1.1 The Surface Integral Equations

The surface integral equations (SIE) [Chakraborty and Jandhyala, 2006, Chew et al.,
2008, Cloux et al., 1994, Jandhyala et al., 2002, Kapur and Long, 1998, Liu et al., 2009a,
Nabors and White, 1991, Raziman et al., 2015, Shi et al., 2002, Srivastava et al., 2008, Wang
et al., 2004, Zhu et al., 2003] are derived from the Maxwell equations and also from the
Huygens’ theory [Huygens, 1912, Lindell, 1996, Lu and Chew, 1995, Monzon, 1993]. They
can be utilized to obtain equivalent electric and magnetic surface currents. The Huygens’
principle illustrates that the space can be divided into outside and inside spaces by enclosed
surfaces. The radiation in the outside and inside spaces can be computed through the
equivalent electric surface current J, and magnetic surface current My on the enclosed
boundary surfaces.



To obtain Jg and M, the SIEs can be solved by the method of moments (MoM)
[Gibson, 2008, Harrington, 1990, 1993, Liu et al., 2009b, Varmazyar et al., 2008]. The MoM
is applied to the electric field integral equation (EFIE) [Correia and Singer, 1999, Mautz and
Harrington, 1984, Wilton and Glisson, 1981], the magnetic field integral equation (MFIE)
[Ergiil and Giirel, 2004, Hodges and Samii, 1997, Ingber and Ott, 1991, Zhang et al., 2003], or
their combination, the combined field integral equation (CFIE) [Jung and Sarkar, 2004a,b,
Mautz and Harrington, 1978a,b, 1979, Oijala, 2008, Rao and Wilton, 1990, Song and Chew,
1995, Yaghjian, 1981, YIA-Oijala and Taskinen, 2003, Yli-Oijala and Taskinen, 2005). It
has been verified that the EFIE can obtain a very good accuracy, however, the pure EFIE
has resonances on the resonant frequencies for objects with enclosed surfaces. Then, the
CFIE is proposed to cure the resonances [Collins et al., 1992, Eibert and Hansen, 1996b,
Jin, 2002, Mittra and Klein, 1975, Murphy et al., 1990, Peterson, 1990], where the CFIE
combines the EFIE and also the MFIE.

The SIEs are often solved through the Galerkin process, where the testing functions
are the same as the basis functions. The system matrix can be obtained through mutual
couplings. The system matrix for MoM is very dense and it is necessary to cancel out
the singularities for near couplings. Many techniques have been proposed for singularity
treatments [Butler, 1975, Duffy, 1982, Eibert and Hansen, 1995b, 1996a, Fink et al., 2005,
Huber et al., 1997a,b, Ismatullah and Eibert, 2008, Khayat et al., 2008, Wilton et al.,
1984] and the singularity cancellation technique is one of the most effective solutions.
Through variable transformations, the Jacobian can cancel out the singularities in the
system matrices. Different variable transformation schemes may have different forms of
Jacobians and various distributions of the sampling points in the source domain. The
sampling points in the source domain can influence the efficiency of the transformation
schemes, especially for the vector integral kernels in MoM.

To speed up MoM, the mutual couplings far away are computed through the multilevel
fast multipole method (MLFMM) [Dembart and Yip, 1998, Donepudi et al., 2000, Eibert,
2005, Koc et al., 1999, Song et al., 1997]. The MLFMM tremendously saves computation
time of the mutual couplings with very good accuracy, the required RAM is also much
reduced. With spherical harmonics expansions of the basis function radiation patterns,
better performance of the MLFMM has been obtained.

The nearly orthogonal hierarchical 2-D basis functions [Graglia et al., 1997, Jin, 2002,
Jorgensen et al., 2005, Nedelec, 1980, Notaros, 2008, Sun et al., 2001, Webb, 1999, Zhu and
Cangellaris, 2006] can also be implemented into MoM. The hierarchical basis functions are
curl conforming, where the orthogonal components of the basis functions are continuous at
the mesh boundaries. The hierarchical basis functions are composed of different orders of
rotational and gradient spaces. The near orthogonality of the basis functions provides an
improved condition number for the system matrix. Thus, better convergence of the iterative
solvers can be obtained to solve the unknown coefficients. The low order basis functions
require fine meshes. However, the higher order basis functions decrease the requirements
for the mesh element size. Curved wave fronts within the mesh cells can also be represented
accurately with higher order basis functions.

The SIEs can be applied to arbitrarily shaped components, including perfect electrically



conducting (PEC) objects or dielectric components with homogeneous materials. Depen-
dent on frequency, reasonable mesh element size and mesh qualities are required to obtain
good performance. The SIEs have been verified to be efficient for electromagnetic model
simulations.

1.2 The Finite Element Method

The finite element method (FEM) is also derived from the Maxwell equations. It is
utilized to solve for the electric field E or the magnetic field H inside dielectric materials
and also on the boundaries. The FE method is a variational solver to compute the fields.
The functionals proposed in the FE method are made stationary through the Ritz process
[Jin, 2002], where the adjoint field is employed to test the Maxwell equations.

In numerical solutions, the unknown fields are expanded into 3-D vector basis functions
[Sun et al., 2001] multiplied with the corresponding unknown coefficients. The 3-D nearly
orthogonal hierarchical basis functions are employed in FEM, also including different orders
of rotational and gradient spaces. The basis functions are defined based on geometrical
meshes. Generally, the volumes of the dielectric materials are meshed into tetrahedra.
The definitions of basis functions rely on the tetrahedral vertices, edges, faces and volumes.
According to the tetrahedral mesh, the basis functions can be classified into the edge-related,
face-associated and volume-associated basis functions. The edge-related basis functions are
connected to the edges of the tetrahedron, where the two local node numbers of the edge
are utilized. The face-associated basis functions are connected to the faces, where the three
local node numbers are utilized. The volume-associated basis functions are connected to
the volume of the tetrahedron defined by all nodes. All basis functions are curl-conforming,
where the tangential components of the basis functions are continuous at the mesh element
boundaries.

The system equations for unknown coefficients are obtained under the condition of
minimizing the systematic error. The functional is differentiated with respect to the adjoint
fields and the resulting equations are forced to be zero. The system matrices of FEM are
sparse as the mutual couplings are only relevant to the local basis functions inside the
tetrahedra and on the relevant triangles. However, the system matrices of FEM can be
computed analytically through the integration properties of the simplex coordinates inside
the tetrahedral volume. So the numerical solution based on FEM is very efficient and
accurate to solve the fields inside the finite elements.

1.3 The Hybrid Finite Element Boundary Integral Technique

The hybrid finite element boundary integral (FE-BI) method [Eibert, 1997, Jin, 2002,
Jin and Riley, 2008, Jin and Volakis, 1991, Volakis et al., 1998] is a combination of FEM
and the method of boundary integral (BI) in terms of SIE. The 3-D vector basis functions
for the FE method should be compatible with the 2-D basis functions for BI. This requires
that the 3-D FE basis functions have the same node order as the 2-D BI basis functions.
Moreover, on the boundary faces of the finite elements, the FE basis functions in different
tetrahedra are also required to follow the same node order. As it is easy to fix the node



order of the triangular mesh for the BI method, the FE basis functions have to meet the
requirements of the compatibility.

A traditional solution to solve the compatibility of the basis functions is a so called local-
global transformation. First, the FE matrices are computed through the mutual couplings
of the local basis functions, where the local basis functions are defined by the local node
order of the tetrahedra. When linking to solvers, the local matrices need to be modified
according to global node orders. As a result, more computation time for the system matrices
is required. Moreover, this local-global transformation procedure is more complicated for
the hierarchical basis functions.

A self-identification technique [Li et al., 2014c] is proposed to meet the compatibility
requirement. The basis functions are defined directly by the global node orders. Then,
the basis functions follow the same node order at the boundaries of the finite elements and
satisfy the boundary continuity condition of the basis functions. The basis functions for the
MoM on the boundary triangles follow the global node orders of the edges or faces and the
basis functions for the FE method are self-identified with the node orders of the boundary
triangles. Then, the compatibility between the FE and BI methods can be obtained. The
self-identification technique avoids the procedure of the local-global transformations.

1.4 The Outline of the Thesis

The whole construction of this document is as follows. Chapter 2 describes the modeling
for the FE-BI simulations. A short review of Maxwell equations is the start and the Huygens’
principle, equivalence theory and the Galerkin process are also reviewed.

Chapter 3 discusses the boundary integral equations. The BI method is based on MoM,
including the EFIE, MFIE and CFIE. The numerical expansions of the electric and magnetic
currents are explained in detail. Through the Galerkin process, the system matrices for
EFIE and MFIE are provided. The MLFMM is then introduced as BI method acceleration.
The spherical harmonics expansion of the l;:-space integrals is also shown in the MLFMM.

Chapter 4 talks about the singularity treatment technologies. The configurations for
different projection points are illustrated for singularity treatments and a summary of
singularity treatment solutions is provided. In the singularity cancellation technique, a new
family of radial-angular-R™ transformations are proposed based on the variable separation
method. General solutions are presented for the variable separation method and a family
of transformation schemes are obtained for different orders of singularity cancellations. The
performance for deformed triangles is in detail studied for the new transformation schemes.
High efficiency and accuracy are achieved by the new transformation schemes.

Chapter 5 discusses the 2-D hierarchical basis functions for MoM. The Rao— Wilton —
Glission (RW@G) [Rao et al., 1982] basis functions are utilized as the low order (LO) basis
functions, higher order (HO) basis functions are also implemented into MoM and MoM
simulations of PEC objects are shown. The efficacy and accuracy of MoM are proven by
numerical results based on the nearly orthogonal basis functions.

Chapter 6 reviews the FEM. The variational formulation is derived from the Maxwell



equations tested by the ad-joint field through the Galerkin process. The variational formu-
lation is effective for homogeneous or inhomogeneous, isotropic or anisotropic materials and
can compute the fields inside of materials. The system matrices of FEM are sparse and the
elements in the matrix are computed analytically. The simulations of FEM are accurate
and efficient.

Chapter 7 displays the 3-D vector hierarchical basis functions for the FEM. The
geometrical information of a tetrahedron is shown. The integration properties of the simplex
coordinates are reviewed. Then, analytical solutions can be obtained for the system matrices
by the mutual couplings of the hierarchical basis functions. Together with MoM, the hybrid
FE-BI method is formulated incorporating the FEM. Then, coated objects can be simulated
for both radiation fields and also the fields inside the dielectric materials. Numerical results
of the FE-BI method are shown for different coated configurations.

Chapter 8 proposes an accuracy analysis of the FE-BI method for the nearly orthogonal
hierarchical basis functions. The accuracy of the FE-BI method mainly depends on the ratio
between the mesh size and the wavelength. Accuracy comparisons are provided for different
orders of basis functions. The root mean square (RMS) error is defined to evaluate the
accuracy. The RM S error is flexible for different variables and lower RM S error indicates
higher accuracy. The accuracy of the FE-BI method is shown for various models and the
performance is also discussed in detail for all orders of hierarchical basis functions.

Chapter 9 summarizes the most important numerical results proposed in the thesis,
conclusions are also highlighted for the efficient algorithms.






2 Electromagnetic Modeling by the Hybrid Finite Element
Boundary Integral Technique

The hybrid finite element boundary integral (FE-BI) method is well known for the
solution of wave scattering and radiation problems. The hybrid FE-BI method combines the
finite element method (FEM) and the boundary integral (BI) method and it also overcomes
the negative effects of the pure FE or BI methods. The pure FEM can be inefficient for
the electromagnetic simulation of non-convex shaped objects. The pure boundary integral
method is not effective for the electromagnetic simulation of objects with inhomogeneous
materials, even though the BI method has been proven to be efficient for the simulation
of perfect electric conductor objects or objects with homogeneous materials. The hybrid
FE-BI method contains the advantages of the BI method for simulations of arbitrarily
shaped objects and also the efficiency of the FE method for simulations of objects with
inhomogeneous and anisotropic materials. The hybrid FE-BI method also obtains good
performance in accuracy and efficiency.

The FE-BI method is applied to the modeling of arbitrarily shaped objects enclosed
by fictitious outside boundary surfaces. The objects can contain perfect electric conductors
(PEC), semi-conductors or dielectric materials. The scattering fields outside the boundary
surfaces are described through the BI based on equivalent surface electric and magnetic
currents. The fields inside the boundary surfaces are modeled through the FEM. For PEC,
the electric field vanishes at PEC boundaries and also inside the PEC objects. For semi-
conductors, the problem can be equivalent to set a minus number to the imaginary part
of the permittivity of the material. With a negative number in the imaginary part of the
permittivity, the semiconductor is lossy compared with pure dielectric materials. Thus, the
field analysis inside the boundaries can take advantage of the FEM. Inhomogeneous and
anisotropic dielectrics are represented by various permittivities and permeabilities. The
fields inside the materials can be accurately computed by the FE-BI method.

In this chapter, the modeling of electromagnetics by the FE-BI method is introduced.
The Maxwell equations and the symmetric Maxwell equations are reviewed, a general
description of the object model for simulations is provided, the equivalent currents for the BI
and the Huygens’ principle for scattering are also demonstrated, the general mathematical
solutions for the FE-BI method are also discussed for the modeling of electromagnetic
simulations.

2.1 Maxwell Equations

The essential foundations for electromagnetics are the Maxwell equations, where the
specified time factor /! can be suppressed. The Maxwell equations [Chew et al., 2001,



Harman, 1995, Jin, 2002] can be given as

V x H(r) = jwe(r)E(r) + J(r), ( )
V x E(r) = —jwp(r)H(r), (2.1.2)
V- (,u(r)H(r)) 0, (2.1.3)
V- (e(r)E(r)) = p(r), (2.1.4)

where J(r) is an impressed electric current density, p(r) is the corresponding charge density
in the model. E(r) and H (r) are the electric and magnetic fields, €(r) and p(r) are the
relative permittivity and relative permeability of the materials, r is the position inside the
medium.

The equations from (2.1.1) to (2.1.4) are the Maxwell equations in differential form.
(2.1.1) is the differential form of the Ampere’s law, (2.1.2) is the differential form of the
Faraday’s law, (2.1.3) demonstrates that there are no isolated magnetic charges and (2.1.4)
is the differential form of the Gauss’ law.

2.2 The Symmetric Maxwell Equations

It is well known that the electric current density J(r) exists and the radiating fields
are generated by the electric current sources as considered in (2.1.1). While to achieve the
symmetric Maxwell equations, an assumed magnetic current density M (r) is introduced.
Thus, the Maxwell equations turn out to be

V x H(r) = jwe(r)E(r) + J(r),

V % B(r) = —juwp(r) H(r) - M(r),
V- (u(r)H(r)) = p(r),

V- (e(r)B(r) = pe(r).

where p, is the electric charge density and p,, is the magnetic charge density. The radiating
fields in the space can be visualized as final effects of both the electric and magnetic current
density sources inside the object.

2.3 The Modeling Approach

An easy model to meet the general physical case of arbitrarily shaped objects is shown in
Fig. 1 and it is called FE-BI object. The FE-BI object is combined with PEC and dielectric
materials. In the PEC object, some of the surfaces are part of the outside boundary surfaces
of the FE-BI object and they conform to the outside PEC boundaries. The other parts
of the PEC surfaces are connected with the dielectric materials inside and they conform
to the inside PEC boundaries. For the dielectric object, the surfaces outside the FE-BI
object, together with the outside PEC boundaries, construct the enclosed surfaces of the
FE-BI object. They are utilized as the outside equivalent fictitious surfaces for the FE-BI
algorithm.
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Figure 1: The general geometrical configuration for the finite element boundary integral
method.

A model of equivalent surfaces from the FE-BI object is shown in Fig. 2. Compared
with Fig. 1, the outside boundary surfaces of the FE-BI object are selected as the equivalent
surfaces. In the model, A, is the assembled enclosed envelope, V,, is a finite volume enclosed
by Ag, n(r') is a normal vector pointing out of V, and §(r’) is a normal vector pointing
inside V,. The outside space is represented by V,. The equivalent electric surface currents
Js(r") and the magnetic surface currents M ¢(7') are distributed on the equivalent surfaces
Ag. The equivalent currents on Ay are utilized in the BI method. In Fig. 2, the fields
terminate inside the PEC object, the tangential electric field is zero at the PEC inside and
outside boundaries in the FE-BI object model. As a result, only the possibly anisotropic
and inhomogeneous materials inside the finite volume V, contain electric and magnetic
fields. The materials are characterized by the permittivity €(r') and the permeability a(r’).
The fields inside the materials need to be determined through the FEM. The hybrid FE-
BI method is efficient for the electromagnetic simulations of the FE-BI object model and
accurate results can be obtained.

Dependent on the properties of inhomogeneous and anisotropic dielectric materials,
the electric flux density and the magnetic flux density are determined by the constitutive
relations shown as

where the fields in the dielectric materials are modeled through the FEM, which is discussed
in Chapter 3.

In the FEM, the objects are subdivided into sub-regions, the material properties within
a single section are constant, even though the material properties may have a continuous
variation with the changing positions inside the volumes. This represents that the sub-
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Figure 2: The general geometrical configuration for equivalent surfaces.

regions can be arbitrarily small and the FEM can increase the accuracy of the electromag-
netic (EM) simulations by decreasing the mesh element sizes. With equations (2.1.1) to
(2.1.4), combined with (2.3.1) and (2.3.2), the specified fields inside the dielectrics can be
precisely described. Moreover, based on the structure of the divided sections, the fields
in the sections are expanded as the product of the basis functions and the corresponding
coefficients. The basis functions are defined based on the geometrical information of the
divided sections, the coefficients are unknowns to be solved. Compared with the wavelength,
a smaller size of the sections can increase the EM simulation accuracy. With larger mesh
element size, higher order basis functions can be utilized to obtain good accuracy. The
FE can also have effects on the surface electric and magnetic currents. As a result, the
FE method can describe the effects of the dielectric materials on the radiating fields in the
outside space.

As shown in Fig. 2, the radiating fields can be computed through the equivalent surface
electric currents J4(r’) and the magnetic currents M ,(r’). They are calculated in the BI.
In the BI method, the fictitious enclosed envelope Ay is subdivided into sections. Similar to
the FE method, a smaller size of the sections can also increase the accuracy. The currents
Js(r") and M 4(r’) are also expanded into products of basis functions and the corresponding
coefficients. The basis functions are defined based on the geometric information of the
divided sections and the coefficients are the unknowns to be computed. With higher order
basis functions, the accuracy of the BI can also be improved for larger mesh element size.

In the FE-BI method, it is advantageous to be compatible between the basis functions
for the BI method and the basis functions for the FE method. The selected basis functions
for the BI method are div conforming, meaning that the orthogonal components at the
section boundaries are continuous. The selected basis functions for the FE method are curl
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conforming, where the tangential components on the section boundaries are continuous.
The curl-conforming and the divergence-conforming basis functions have to follow the same
geometric information of the corresponding sections. Thus, the compatibility of the hybrid
FE-BI method is obtained.

2.4 Equivalent Currents

The equivalent electric and magnetic currents are utilized to compute the scattering
fields in the outer space. The model of the equivalent currents derived for the FE-BI object
is shown in Fig. 2. Through the Huygens’ principle, the equivalent electric currents and the
magnetic currents are distributed on the enclosed envelopes. The same radiating fields to
the outside free space can be achieved through the equivalent electric and magnetic currents.
Then, the fields inside V,, can be neglected.

Based on the boundary conditions of the Huygens’ principle, the surface electric cur-
rents Js(r) and the magnetic currents M ¢(r) are written as

Js(r) =n(r) x H(r),
Ms(r) = —n(r) x E(r)

on the outside surfaces A4. In computational electromagnetics, the electric currents J4 and
the magnetic currents M, are essential for the field scattering. In most EM simulations,
Js and M, are unknowns to be solved for.

In the FE method, the fields in the volume are discretized. However, the electric and
the magnetic fields on the outside boundaries maintain the compatibility with the surface
electric and magnetic currents, as shown in (2.4.1) and (2.4.2). Thus, the FE method is
also connected to the surface currents.

The boundary integral equations are focused on the envelope A;. Through the numer-
ical expansions of the electric and magnetic currents, the unknowns need to be solved. A
very efficient solution to the boundary integral equations is the method of moments (MoM),
where the Galerkin process is applied to obtain the system matrices. To accurately evaluate
the mutual couplings in MoM, the well known Gauss-Legendre quadrature is utilized for the
integrals. The system matrices of the BI method are full-filled. The pure BI method is very
effective to solve PEC problems. Both the electric and magnetic fields vanish inside the
PEC objects and the electric fields are also zero on the PEC surfaces. Moreover, the pure
BI method is also effective to compute the fields and currents for homogeneous materials.
However, without cooperating with other techniques, it can not tackle inhomogeneous and
anisotropic materials.

The hybrid FE-BI method is efficient for both J4 and M ; computations. It is applicable
to objects with inhomogeneous and anisotropic materials. The reconstructed surface cur-
rents are utilized to compute the scattering fields outside the envelope without considering
the sources inside. The currents derived from the boundary conditions (2.4.1) and (2.4.2)
are visualized as the only sources for the outside space. The electric and magnetic fields
inside the volumes are determined precisely through the FE method.
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2.5 Huygens’ Principle

The Huygens’ principle develops from the equivalence theorem. The general FE-BI
object is shown in Fig. 1. It consists of finite volumes filled with dielectric materials and
also PEC components. The PEC components are connected with the dielectric components.
The whole FE-BI object is enclosed by an envelope and the envelope is represented by the
closed surfaces. To efficiently solve electromagnetic problems with the FE-BI object models,
the equivalence theorem is utilized. A simplified model for the equivalence theorem is shown
in Fig. 2. The outside enclosed surfaces are represented by Ag. Ay separates the space into
the inside volume V,(7") and the outside volume V,(r), where 7’ is the position inside A4 and
7 describes the position outside Agz. The equivalence theorem focuses on A4 and computes
the equivalent electric currents Js and magnetic currents Mg, as shown in Fig. 2. The
reconstructed electric and magnetic currents on the enclosed boundary surfaces generate
the same scattering fields in the outside space as the sources inside V. As it turns out, the
fields, sources and structures inside V, can be neglected.

To prove the Huygens’ principle [Kong, 1986], the model in Fig. 2 is utilized. An
incident wave in an arbitrary direction is assumed as the excitation of the model. €(r’) is
the permittivity and fi(r) is the permeability inside the volume V,. However, the scattering
fields are only dependent on the surface equivalent currents J; and M. 7 is the unit vector
orthogonal to Ay pointing outside V, and inside V,. § is the unit vector also orthogonal to
Ay pointing inside V, and outside V,. As shown in Fig. 2, at a position on the surface of
Ag, 1 and § are parallel and pointing in the inverse directions, which means n(r) = —3(r).

Assume V}, is a source free homogeneous space, it gives J(r) = M (r) = 0 and pp, () =
pe(r) = 0. As it turns out, the symmetric Maxwell equations from (2.2.1) to (2.2.4) are the
same as the Maxwell equations from (2.1.1) to (2.1.4). With (2.1.1) and (2.1.2) utilized in
V,, it is obtained that

V xVxE(r)—kE(@) =0, (2.5.1)

where k = w,/€opo is the wave number in free space. To solve (2.5.1), the dyadic Green’s
function is introduced. The format of the dyadic Green’s function is written as

V x V xGr,r") = k2G(r,r") = I5(r —r'), (2.5.2)

where G(r’,r) is the dyadic Green’s function and I = 23 + 9 + 22 is the unit dyad. A
general solution to the dyadic Green’s function in (2.5.2) is given by

G(r,r') = <I+ Vg) G(r,r’) (2.5.3)
and
e—jkz‘r—r”
"N —
G(r,r") = pryr—— (2.5.4)

in (2.5.3) is the scalar Green’s function [Jin, 2002] (Page 720, C.30 and Page 724, C.62).
With the dyadic Green’s function dot with (2.5.1) and the electric field E(r) dot with
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(2.5.2) [Kong, 1986], it is found that

E(r)-VxVxG',r)—VxVxE(@r) G r)=Er)dsr—r). (2.5.5)
Through the integral of (2.5.5) over V,, where the boundary surfaces of V, include A, and
the infinitely far away surface S, it is obtained

E(r') = // ; E(r)-VxVxGr', r)—VxVxEFw -G, r)dv. (2.5.6)

(2.5.6) can be rewritten by the second vector-dyadic Green’s theorem [Jin, 2002] (Page 712,
A.29), shown as

///a-Vxbe—Vxwabdv——ﬂﬁ-[axbe+(an)xb] ds. (2.5.7)
v
s

Let a = E(r), b= G(r,7"), V =V, , i =5 and S = A3 + Ss. Under the Sommerfeld
radiation condition [Sommerfeld, 1949], the integration over S., vanishes, the integration
over the outside boundary turns to be S = Ag. Then, it is found that

// . E(r) - VxVxG@',r)—VxVxEfw)- G, r)dv
= —#é [E(r) x VxGr',r)+ (Vx E(r) x G(r',r)] ds. (2.5.8)
Ad
Through the use of (2.5.5) in (2.5.8), it is found that
E(r') = —# (X E(r) (VX G ,r)+(8xVx E(r) -G(r',r)] ds.  (2.5.9)
Ag

To further expand (2.5.9), an arbitrary constant assisting vector e is utilized. The first term
in (2.5.9) is written as

(5x E(r))-VxGr',r)-e=(5

=(8x E(r)) - (VG(r',r)xe)=(§x E(r)) x VG(r',7) - e. (2.5.10)

As e is an arbitrary constant vector, (2.5.10) proves that
(3x E(r))-Vx (G(r',7)) = (5 x E(r)) x VG(r', 7). (2.5.11)
The second term with the constant vector e in (2.5.9) can be written as

(§xVxE((r) -Gr'r)-e

=B xVxE(r))- (G(r',r)e + k—gvv . G(r’,r)e) (2.5.12a)
_(3x V x B(r))- G(r',1)e + =5 (V x B(r) x VV - G(r',r)e). (2.5.12D)

k2
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As a vector identity is known as (V x A) x Vo = ¢(V x V x A) =V x (¢V x A), and when
A=E(r), $ =V -G(r',r)e, the second term in (2.5.12b) turns to be

%g (Y x B(r) x VV - G(r', r)e)

zég. { (VxVxE(r)V-Gr' re—V x [(V-Gr' r)e) (V x E(r))] } (2.5.13)

and

#ﬁ (V% [(V-G(r,r)e) (V x E(r))]) ds

Ag
:// [ V(¥ X (- GO.)e) (7 x B(m) dv=0. (2.5.14)
Then, it is found
ﬁkgs {(V x E(r) x VV - G(r',1)e) ds
Ag

:ﬂlé (VX V x E() (VG r) - e) ds. (2.5.15)

By substituting (2.5.11), (2.5.12b) and (2.5.15) into (2.5.9), it follows
E(r) = —# | (5 x B(r)) x VG(r',7)
Ag
. 1
+(6x VX B(r)G(r,r) + 5 (3-(Vx V x B(r))) VG(r’,r)] ds.  (2.5.16)
Together with (2.1.2), (2.5.1) and n = —3§, (2.5.16) turns to be

E(r) :ﬁ [(ﬁ(r) x E(r)) x VG(r',r)

Aqg
— jwu(r) ((r) x H(r))G(r’',r) + (a(r) - E(r)) VG(r’, 1“)] ds. (2.5.17)

Moreover, the positions of the variables ’ and 7 in (2.5.17) can be exchanged, as they are
equivalent in the scalar Green’s functions. So (2.5.17) can also be written as

E(r) :ﬂ [(ﬁ(r’) x E(r)) x V'G(r,r")
Aqg
— jwp(r’) (A(r") x H(r")) G(r,v") + (A(r") - E(r")) V'G(r,7’')| ds’.  (2.5.18)
In a similar process, the magnetic field H(r) can be written as
H(r) :# ()  H(r)) x V'G(r.a7)
Aqg
+ jwe(r”) (a(r") x E(r")) G(r,7") + (a(r’') - H(r")) V'G(r,7’')| ds’.  (2.5.19)
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With the definitions of the surface electric and magnetic currents (2.4.1) and (2.4.2) into
(2.5.19), it is obtained that

E(r) :ﬂ [—jw,qu(r')G(r,r')—Ms(r') X V'G(r,'r’)—l—1pe(r’)V'G(r,r’)} ds', (2.5.20)
Aq

! ! ") — jwe rG(r,r’ 1 r\V'G(r,r")| ds
HW:éTMTWVG@W)j Mx)m,)+M%(WG(,4d,@mn

where pe(r") = n(r’) - (e(r’) - E(r’)) is the equivalent electric charge density, pn,(r') =
n(r’) - (u(r’) - H(r’)) is the equivalent magnetic charge density. G(r,r’) is the Green’s
function in free space. The equivalent currents and charges are distributed outside Ajy.
In computational electromagnetics, it is necessary to compute the electromagnetic fields
outside the objects based on the equivalent currents. The radiating electric field E(r) and
the radiating magnetic field H(r) are determined by the surface electric currents Js(r’)
and the magnetic currents Ms(r"), where the radiating fields are given by (2.5.20) and
(2.5.21).

2.6 The Hybrid Finite Element Boundary Integral Technique

The hybrid method in this work means a combination of a local computation method
and a global computation method. The local computation method is represented by the
FEM and the boundary integral (BI) method is the global method. The FE method is
utilized in the hybrid method, this is due to its high flexibility and adaptive properties
for arbitrarily shaped penetrable objects. The BI method is also required in the hybrid
method, this lies in its accuracy and efficiency for the EM simulations. When the FE
method is combined with the BI method, the hybrid finite element boundary integral (FE-
BI) method is obtained. The hybrid FE-BI method is effective for EM simulations of objects
with inhomogeneous and anisotropic materials. Moreover, it is also effective for models with
dielectrics combined with PEC components. However, the hybrid FE-BI method requires
the compatibility between FE and BI. The basis functions in the FE and BI methods need to
follow the same node orders. The compatibility in FE-BI provides an effective and accurate
solution to different kinds of complicated geometrical models. As a result, the formulations
of the hybrid FE-BI method are advantageous with inheriting the efficiency of the FEM
and also the accuracy of the BI method.

The FEM is a numerical procedure to obtain approximate values of the fields on
the boundaries of the objects and also inside the dielectric volumes. In this work, the
FEM is computed through the Ritz method [Jin, 2002]. The Ritz method produces system
matrices and the matrices are also applicable to specified values on the boundaries. Through
minimizing the error, a solution to the variable coefficients is obtained for the fields. The
general formulation is written as

Lo = f, (2.6.1)

where L is a linear operator, f is a function based on the excitations, ¢ is the unknown
function which needs to be computed. The Ritz procedure is utilized to find ¢ and the
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problem is written as a functional

F(¢) =<Lg,¢p>—<f,¢>, (2.6.2)
where the inner product is defined as
< ¢, 9 >=/ (¢ ¢)dQ2 (2.6.3)
Q
and
<0 >=<,¢>, (2.6.4)

where ¢~) is a trial function. The variable ¢ can be expanded as

N
¢=>cui, (2.6.5)
=1

where v; are defined basis functions, ¢; are unknown coefficients to be determined and N is
the total number of unknowns. Under the condition of minimizing the error, the formulation
is computed as

OF(6) 0 yoox o S
de, = 8—cz(< LZch,,;c]v] > =< ;szuf >)

=1

N
=Y < Lvj,v; > cj— <w, f >=0, i=1,2,3,...,N. (2.6.6)
j=1

Then, the matrix equation can be obtained as
[A] [e] = [b], (2.6.7)
with the system matrix elements written as
Aij =< Ly, Vj >= / (Uj L’UZ‘)CZQ, ,7=1,2,3,....N (2.6.8)
Q
and the elements in the vector [b] are given as
b =<, f >:/ (v; f)dS2, 1=1,2,3,...,N. (2.6.9)
Q
The Ritz process can be applied for the FE method. ¢ can be the field to be computed,
¢ can be selected as the ad-joint field, f can be the excitation. With application of basis
functions, the system equations can be determined through (2.6.6) to (2.6.9). Then, the
unknowns can be determined through iterative solvers. Iterative solvers, such as GMRES

[Aiello et al., 2013, Eibert, 2003, Saad and Schultz, 1986], LSQR [Ergiil and Giirel, 2008,
Paige and Saunders, 1982a,b], BiCG_Stab [Sleijpen and Fokkema, 1993] and so on, can be
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employed to solve the system equations. With the thresholds set for the solvers, an accurate
approximation of [¢] can be obtained.

The BI method utilizes the method of moments (MoM) [Harrington, 1993] to solve the
boundary equivalent electric and magnetic currents. MoM takes advantage of the Galerkin
process [Peterson et al., 1996]. A group of functions are utilized as the testing functions.
The system matrix equations are derived from (2.6.1) and they are written as

< wi, Lo >=< w;, f >, i=1,2,3,..,N (2.6.10)

and the system formulation is obtained as

V1ld = K], (26.11)
where
Vij =< w;, Lv; >= /Q(wj Lv;)dQ, i,j=1,2,3,... N (2.6.12)
and
K, =<w;, f>= /Q(wZ f)ds, i=1,2,3,...,N. (2.6.13)

In the Galerkin process, the testing functions are generally selected as the basis functions.
Thus, the testing functions are written as

w; =v;,  i=1,2,3, .. N. (2.6.14)

As a result, the BI formulation can be solved through (2.6.11) for the unknown coefficients
C;.

It can be noticed that, compared with the pure FE and BI methods, the hybrid FE-
BI method has often better performance. The simulations for the fields in free space can
be determined through the BI method, while the fields in the penetrable materials can
be computed through the FE method. The boundary integral equations derived from
the Galerkin process are implemented for the model simulations, so the hybrid FE-BI
method is very effective and efficient. When many independent objects are separated with
possibly inhomogeneous and anisotropic materials far away, the hybrid FE-BI method can
also provide an efficient and accurate solution to the EM simulations. The fields inside
the dielectric materials can be computed, the currents on the boundary surfaces can be
reconstructed and the scattering fields in the outside space can also be obtained. Moreover,
the hybrid FE-BI method also contains the compatibility between the FE and BI methods.
The analytical solution can be utilized for the system matrices in FE, while specified
algorithms, such as MLFMM, can also be utilized for the BI method. Then, the simulations
with sufficient accuracy can be obtained and the efficiency is improved since the amount of
computations is tremendously reduced.
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3 The Boundary Integral (BI) Equations

The boundary integral (BI) equations are well applied to the simulation of arbitrarily
shaped components such as antennas, aircrafts, vehicles and so on. Generally, the enclosed
boundary surfaces of the objects for the boundary integral separate the space into the
inside and outside parts. The solutions of the boundary integral equations emphasize on
radiations in the outside space based on the reconstructed equivalent surface electric and
magnetic currents. As it turns out, the BI method is efficient for the radiation computations
in the outside space, especially for PEC objects. Some simulations of the BI method also
generate the radiation to the inside space for the inner space field computations. However,
this is only applicable to homogeneous materials.

Compared with other integral techniques, such as the volume integral equations, the
BI method is more efficient with fewer discretizations as the meshes are only located on
the surfaces. Moreover, combined with FE, it can also compute the field distributions for
inhomogeneous and anisotropic materials. Thus, the BI method provides a flexible and
versatile solution to electromagnetic simulations.

A successful numerical solution to the boundary integral is the method of moments
(MoM). MoM is often realized through the Galerkin process, including the electric field
integral equation (EFIE) and the magnetic field integral equation (MFIE). The pure EFIE
contains a problem of the interior resonances for the objects with enclosed surfaces. Thus,
the CFIE is innovated, where the CFIE is a linear combination of the EFIE and the MFIE.
The CFIE provides stable and unique solutions for all closed objects, so it is very efficient
to resolve the interior resonances. The CFIE can also achieve a similarly good accuracy as
the EFIE, when both of them are working at a non-resonant frequency.

As the boundary integral is combined with the method of finite elements, the basis
functions in the BI method should be compliant with the basis functions in the FEM.
Then, the boundary continuity conditions are satisfied. The radiation in the outside space
is only dependent on the reconstructed electric and magnetic currents on the surfaces, the
fields in the inner space can be computed by the FE method. Thus, the fields in both inside
and outside spaces are solved precisely.

3.1 The Spatial Electromagnetic Integral Equations

The general objective of the boundary integral equations is the computation of the
electromagnetic fields in the outside free space. The total fields in free space combine
the fields generated from the sources and also the scattering fields by arbitrarily shaped
objects. The fields derived from the sources can be visualized as the inputs for the simulation
models. Enclosed by the envelope, the scattering of arbitrarily shaped objects depends on
the equivalent surface electric and magnetic currents. The radiation fields are computed
under the Sommerfeld condition.

The sources of the models can be input plane waves, or voltage sources of impressed
currents. The input plane waves and voltage sources will be considered in the integral
equations based on the current sources from the outside space. The total fields are dependent
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on the input waves and the scattering fields. The impressed currents will be integrated into
the method of finite elements for computations of the fields and the equivalent currents.

With (2.5.20), the integral representation in the outside source free space for fields can
be written as

E(r) +ﬂ[(ﬁ/ ~E(r"))VGo + (7' x E(r")) x VGq + jwpe(R' x H(r"))Golda' = Emc('r),
Aq
(3.1.1)

where r belongs to the source free space outside A; and S;. Following (2.5.21), it is found
that

H(r) +#[(ﬁ' -H(r"))VGo + (7' x H(r")) x VGy — jweo(i x E(r"))Golda' = H™(r).

Ag
(3.1.2)

By substituting (2.4.1) and (2.4.2) into (3.1.1) and (3.1.2), it gives

1 .
E(r) + jkoZ szﬁGOV' - Jgda +#JSGOda’ +ﬂvc¢o x Myda' = E"(r), (3.1.3)
0
Ad Ad

Aq
ik 1 .
H(r)+ JZi() WV#GOV, - M dd +#MSGOda/ —#VGO x Jgda' = H™(r), (3.1.4)
L Ay A,

where ko = w,/mo€o is the wave number in free space, Zyp = +/ to/€o is the intrinsic
impedance of free space. E"(r) and H™(r) are the input plane waves for the FE-BI
object models. E(r) and H(r) are the total electric and magnetic fields in the source free
space. Js and M are the equivalent electric and magnetic surface currents.

3.2 Electric Field Integral Equation

To solve for the equivalent electric and magnetic currents, Js and M ¢, on the boundary
surfaces, (3.1.3) is utilized. When the position 7 in the source free space approaches A4, the
unit vector n is pointing outside Ay, the cross product of n for both sides of the equation
is applied, together with (2.4.1) and (2.4.2), it turns out to be [Jin, 2002]

1 1
_iMS(T‘) + jkoZyn X kaV#CJQV/ . Jsd(ll +ﬁJsGoda/
0 Aq Ad

+ 7 x#vao X Mdd' =1 x E™(r) (3.2.1)
Aq
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and (3.2.1) is called the electric field integral equation (EFIE). The clear formulation of the
EFIE demonstrates that the 2-D integrals over the surfaces contain the kernels to determine
the electric current Js and the magnetic current M. Once the currents are obtained, the
scattering fields can be determined through (2.5.14) and (2.5.15). Moreover, from (3.2.1),
it illustrates that the EFIE is focused on the radiations in free space. The EFIE can also be
utilized for homogeneous scattering problems with modifications of the wave number and
the intrinsic impedance of the materials. However, when combining with the method of
finite elements, the EFIE only concentrates on the radiation problems in free space.

It is shown that the electric and magnetic currents are distributed on A4 and they are
responsible for the exterior scatterings. It is well known that the EFIE is well applied to
solve the scattering fields in the outside space. However, for the enclosed surface objects,
there are resonances for the EFIE, where the equation system becomes ill-posed. An effective
solution to the drawback of the resonance problem is to utilize the method of finite elements
combined with the complexification of the wave number [Collins et al., 1992, Eibert and
Hansen, 1996b, Jin, 2002, Monzon and Damaskos, 1994, Peterson, 1990], another technique
called the dual-surface technique [Shore and Yaghjian, 2005, 2002] can also be used to
cope with the resonances of EFIE. In this work, to solve this problem, the magnetic field
integral equation (MFIE) is employed in conjunction with the EFIE. It is well known as the
combined field integral equation (CFIE) [Chew et al., 2001, Mautz and Harrington, 1978a,
Yaghjian, 1981, Y1A-Oijala and Taskinen, 2003].

3.3 Magnetic Field Integral Equation

Through a similar process based on the scalar Green’s theorem [Stratton, 1941] for H,
the integral equation (3.1.4) on the envelope surfaces A turns out to be

1 ' 1
*JS(T') + @ﬁ X QVﬂGov/ -Msda' —l—#MsGoda/
2 Zy k2
Ad A(i
— 7 X#VGO x Joda' = n x H™(r) (3.3.1)

Aq

and it is called the magnetic field integral equation (MFIE). Even though the MFIE
converges fast for the enclosed object models, it also contains the resonant frequencies
for the enclosed surface objects.

3.4 Combined Field Integral Equation

The linear combination of EFIE and MFIE is called the combined field integral equation
(CFIE) and it is given by

aEFIE + (1 — a)Zyh x MFIE, (3.4.1)

where « is the CFIE coefficient between 0 and 1. To obtain a better condition of the system
matrices, n is utilized to cross MFIE. Thus, the bases for the EFIE and the pure MFIE
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are orthogonalized. The benefits of the CFIE are that it deletes the drawbacks of the pure
EFIE or MFIE, where the CFIE avoids the resonant frequencies and it can be applied to
both enclosed and open objects. Moreover, the CFIE also inherits the advantages from both
EFIE and MFIE, such that the CFIE converges fast with iterative solvers and maintains a
good accuracy.

The CFIE is effective as BI within the FE-BI method, where the CFIE in (3.4.1) is
usually computed in free space. However, the CFIE can also be utilized independently.
For enclosed or open PEC objects, (3.4.1) provides an effective and accurate solution
for scattering. Moreover, within homogeneous materials, the CFIE can also compute
the radiation in both outside and inside spaces according to the corresponding material
parameters.

3.5 Method of Moments (MoM)

To solve the electric and magnetic currents on enclosed surfaces with MoM, the currents
Js and M, on each cell are separated with the vector basis functions, which are dependent
on the configurations of the 2-D surfaces, and also the unknown coefficients, which rely on
the inputs of the models. Based on meshes, general descriptions of J; and M of the models
are expanded into a series of vector basis functions and the corresponding coefficients. They
are given by

Ny

N
J, = ifnfn, M,=> Vufo. (3.5.1)
n=1 n=1

where I, and V,, are the unknown coefficients for the corresponding electric and magnetic
currents. Ny and Njs are the numbers of unknowns for the electric and magnetic currents,
N = Ny + Ny is the total number of unknowns. The f, are vector basis functions, which
are defined by the structural information of the mesh cells. One famous choice of the basis
functions on a triangular mesh are called the Rao—Wilton—Glisson (RW G) basis functions
[Rao et al., 1982]. They are defined as

B (r—1r,) reQ
fo(r) = {S"‘ reQ’ (3.5.2)

where () represents the domain of the corresponding cell, A is the area of the domain, r,
is a vertex of the triangle and r is a position inside the domain for the non-zero value of
fn- It is also clear that the basis function is a linear function of the distance between the
position in the source domain and the vertex. As well known, the RW G basis functions are
accurate and efficient when the mesh element size is below A/8, where A is the wavelength
based on the working frequency within the corresponding material. However, the format of
the RW G basis functions can also be expressed through the simplex coordinates and the
gradient of the simplex coordinates. The orders of the basis functions are represented by
the order of the simplex coordinate polynomials in other formats apart from the RW G basis
functions. Moreover, to maintain the compatibility between BI and FE, the definitions of f,,
must be compliant with the definitions of the basis functions for FE within the connecting
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tetrahedron. Meanwhile, the boundary continuity conditions of the basis functions have to
be guaranteed within the FE-BI method.

In the process of MoM, testing functions are selected to produce an inner product
with the original equations. Different kinds of testing functions may contain various testing
domains, thus, the system matrices are different. One type of testing functions is called
point matching or point collocation [Ascher and Petzold, 1998, Hairer et al., 1993, Iserles,
1996] and defined as

G (1) = F(rm)o(r —rm) (3.5.3)

A~

where g,,, is the testing function, f is a general unit vector and r,, is the position on the
source domain. The matrices based on the point matching solution are simple. However,
the singularity of the matrices have to be considered. The positions of the sampling points
are fixed through the ¢ function. Another type of testing functions is called sub-domain
collocation function [Chen et al., 2009] and defined as

g () = {(1) : ng : (3.5.4)

where €2, is the mth sub-domain. The matrices based on the sub-domain collocation are
also simple.

A third kind of testing functions are selected the same as the basis functions in the
source domain. This is well known as the Galerkin prcess for MoM, where

Compared with the other techniques, the Galerkin process requires heavier computations of
the matrix entries, however, the matrices are more robust and more general for complicated
meshes. The system matrix turns out to be symmetric when the integral operators are
symmetric. Thus, the Galerkin process is widely applied to MoM for the BI.

The Galerkin process takes advantage of the inner product between the testing func-
tions and the equations. When applied to the CFIE with numerical expansions [Eastwood
and Morgan, 2008, Fink et al., 2005], the system matrices are written as

Ny

1

EFIE: ) [2Amn + Dmn] Vi,
n=1
Ny C

+7Zoko Z [an + l:;”] I,=GE m=1,.. Ny, (3.5.6)

n=1 0
Nj 1

MFIE : Z [—QA’W — D’mn] I,
n=1

ko alll Clmn H
0 n=1 0
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The CFIE can be obtained through a linear combination of EFIE and MFIE according to
(3.4.1). The corresponding system matrices in (3.5.6) and (3.5.7) are given by

Ay = / / 9, (F) -7 x F.(r)ds, (3.5.8)
Sm

Bmn ://gm(r) : // Go(r,r") f,(r")ds'ds, (3.5.9)
S Shn,

m

Cinn ://gm(r) : V// Go(r, v )V £, (r")ds'ds, (3.5.10)
Sm Sn

=cM _ck (3.5.10a)

cE. :éz V- g, () /Sn/ Go(r, vV, - f,.(r")dsds, (3.5.11)

cM — g, (r) - i, // Go(r, 7))V, - £, (r")ds'dl, (3.5.12)
Sh

Cm

Do ://gm(r) : // VGo(r,r') x f,(r")ds'ds, (3.5.13)
Sm Sn
GE :// Fou(r) - E™(r)ds, (3.5.14)
Sm

Gl ://n X fo(r) - H™(r)ds. (3.5.15)
Sim

In the computations of the system matrices, g,, = f,, is utilized in the A, .., D matrices
for the EFIE, while g,, = 7 x f,, in the A’,..., D’ for the MFIE. Through the application
of the Gauss’ divergence theorem [Bladel, 2007, Rao et al., 1982], the system matrix Cy,,
for the EFIE can be split into C£ and CM and the same results can also be obtained
for the MFIE. (3.5.10) denotes that in the CFIE, the divergence of the testing functions
have to be computed to evaluate the mutual couplings. (3.5.12) illustrates that a line
integral also needs to be computed in the testing domain. C,, is the line boundary of the
testing domain. ,, represents the unit vector in the testing domain plane, on the line
boundary, perpendicular to the curve and pointing outside the area. S, and S,, represent
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the corresponding testing domain and source domain. The RW G basis functions are the
first order div conforming space, where the curl of the RWG functions vanishes inside the
triangles. For higher order (HO) basis functions, the curl and the divergence of the spaces
are also utilized for mutual couplings. With the application of HO basis functions in MoM,
higher accuracy can be achieved especially for higher frequencies.

In the mutual couplings, CZ and C contain the Green’s function inside the kernels
and they become singular for near couplings, where S, is near to S,,. They are also singular
for self-couplings where S,,, = S,,. Moreover, the D,,, matrix contains the gradient of the
Green’s function. It introduces a hyper singularity into the integrals. To cancel out the
singularities, new singularity cancellation techniques are innovated with different orders. In
the singularity cancellation techniques, the adaptive approaches are also applied [Ismatullah
and Eibert, 2008] to the numerical integral solutions. The Jacobian determinants of the new
coordinate transformation schemes are efficient to cancel out the singularities in singular
and hyper-singular kernels. Obviously, the higher order singularity cancellation techniques
are also effective to the lower order singular kernels. As it turns out, the versatile techniques
are well performed for arbitrarily positioned singular and hyper singular mutual couplings,
even for the kernels multiplied with scalar and vector functions inside.
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3.6 Multilevel Fast Multipole Method

The fast multipole method (FMM) [Coifman et al., 1993, Engheta et al., 1992] and
the multilevel fast multipole method (MLFMM) [Chew et al., 2001, Dembart and Yip,
1998, Donepudi et al., 2000, Eibert, 2005, Kalbasi and Demarest, 1993, Koc et al., 1999,
Velamparambil et al., 2003] are always very efficient for arbitrary three-dimensional geome-
tries. Compared with the direct MoM, the memory requirement of MLFMM for fast solvers
is reduced from O(N?) to O(NlogN), where N is the number of BI unknowns. Then,
MLFMM is efficient and effective for large scale EM simulations. The FMM group size can
determine the number of levels for MLFMM, the minimum size of FMM is limited by the
largest edge length of the geometrical mesh. With higher order basis functions, the mesh
size with respect to the wavelength can be extended, so the FMM group size increases and
fewer MLFMM levels are required. As it turns out, more near couplings are computed
within the near FMM groups. The SE-MLFMM [Eibert, 2005] is introduced, in which, the
l;:-space integral over the Ewald sphere is computed. With the orthonormalized spherical
harmonics and the basis functions, the expansion coefficients can be obtained through the
l;:-space integral. Then, the far mutual couplings are computed through the translation
operator. With SE-MLFMM, the memory requirements and the computational time are
much reduced and more efficient performance is obtained.

3.6.1 Fast Multipole Method (FMM)

A general model of the fast multipole method (FMM) is shown in Fig. 3. 7, is a
point in the source domain and 7, is a point in the testing domain. The direct coupling
path is 7y, = 7y — 7. Ty is the center of the FMM group of the source domain, 7,
is the center of the FMM group of the testing domain. The vectors utilized in FMM are
defined as 7, = Tm — Tty P! = Tn — Ty and Ty = Ty — Ty. It can be seen that

Tmn = Tmm/ + Tm/n’ — Tnn/-

i T'm
r, —7

Y..r.1
Tn/ mn Tml

Figure 3: FMM expansion of Green’s function.

The FMM takes advantage of the spherical multipole expansion of the free space Green’s
function. Dependent on the Gegenbauer’s addition theorem [Abramowitz and Stegun, 1972],
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the free space Green’s function can be expanded as

*]k‘D+d‘ o o
Dya " Z "2+ 1)ji(kd)ly” (kD) Fi(d - D), (3.6.1.1)
where
D =7, (3.6.1.2a)
d = T — Tt (3.6.1.2b)

and D > d must be guaranteed, j; is the [ order spherical Bessel function, hz(2) is the [ order
spherical Hankel function of the second kind, P is the [ order Legendre polynomial.

The spherical wave functions in (3.6.1.1) can be rewritten in terms of a spectral integral
with application of the identity [Stratton, 1941]

dr(=)jukd)Pi(d - D) = ﬂ e=ikdp (. D)di?, (3.6.1.3)
k
where the right hand side of (3.6.1.3) is an integral over the unit sphere and k represents

the direction of the normal unit vector on the spherical surface. By replacing (3.6.1.3) into
(3.6.1.1), it gives that

efjk|D+d’ N ik
ID+d| ~ 4n

ﬂejk'dTL(d- D)di?, (3.6.1.4)
k
where T}, is the translation operator defined as

Lm,
Ty(d- D) = 3" (—5)' 2+ 1)h{? (kD)P(k - D). (3.6.1.5)
=0

As shown in Fig. 3, it can be seen in (3.6.1.5) that the translator 77, translates the waves
from the center of the source group directly to the center of the testing group. The multipole
series expansion of the spherical wave functions is truncated by L,,. The error introduced
by the truncation of L,, is controllable in FMM as shown in [Chew et al., 2001]

L ~ kd + 1.8d2"% (kd)'/3, (3.6.1.6)

where dy is the digital number of the accuracy and the relative error is given by ¢ =
10~%. Through the approximation of the multipole order, the error magnitude of the
translator can meet the accuracy requirements. However, the accuracy estimation can only
be obtained under the condition of far FMM groups. For near groups, the direct MoM
needs to be utilized. The k-space integral over the Ewald sphere in (3.6.1.4) is computed
with numerical solutions. The Gauss-Legendre quadrature with (L,, + 1) sampling points
is utilized for integration over 6, the trapezoidal quadrature rule with 2(L,, + 1) points is
used for integration over ¢. Then, the total integration points over the Ewald sphere are
2(Ly, + 1)? with the multipoles order from 0 up to Ly,
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3.6.2 Maxtrix Elements with FMM

From (3.2.1) and (3.3.1), the MoM system matrix for the CFIE derived from the mutual
couplings can be written as

ZGETE _+c1/ Fon(Tm) // <I+ VV>Go(rm,rn)'fn(rn)dsmdSn

o / / [V X ()] / Go(rm o) F oo () dSumd S | (3.6.2.1)
ZCFIE — 4 o / / () / / <I+ VV)Go(rm,rn)- £ (7)dSmdSh
+er / [ pnr) / [ Go(r ) ffra)dSuds,, (3.6.2.2)

where a,,,(r) = n(r) x f,,(r) are edge related basis functions and equal to the tangential
counterpart of the RWG basis functions f,,. ng{]E and ZCF IE are the system coupling
matrices of the CFIE for the surface electric and magnetic current unknowns respectively.

The coeflicients ¢ to ¢4 are computed as

c1 = —jZO%)ra, (3.6.2.3)
o = Zgi(l _a), (3.6.2.3b)
c3 = jZO%(l —a), (3.6.2.3¢)
ey = %a. (3.6.2.3d)

By using (3.6.1.1)-(3.6.1.5), the scalar Green’s function (2.5.4) in free space can be rewritten
as
efjko‘rm*rn|

Go(Pmy ) = ———— ~ ﬁ e IR0 vt Ty (g - 7 i ) RO T 12 (3.6.2.4)

AT |7y — T
ko
Through substituting (3.6.2.4) into (3.6.2.1) and (3.6.2.2), the MoM matrices for CFIE are
obtained as

ziw = - o ﬂ Folho) - T (o - P V(T — ko) - o)
ko
koZo S s = a\ 2o
(L a)ﬁ [k;g x am(ko)} Ty (o - o) f () A2, (3.6.2.5)
ko
ZfWM —i—]faﬂ [iﬁo X }':n(];‘o)} . TL(]%O . fm’n’)}nU;'O)d]%g
ko
+j%(1 - a)ﬁd:@(ffo) Ty, (ko « P ) (I = kioko) - (ko) dk5, (3.6.2.6)

ko
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where

Folho) = / / Fo(rn)e®o T ds, (3.6.2.7)
Sn
bty (ko) = // an(rn)ejkO'T"n’dSn, (3.6.2.8)
where o, (1) = A(r) x f,,(rn). The functions f, and é, are the k-space basis functions
and * denotes the complex conjugation. T7 (kg - 7yrp/) is the translation operator given by

(3.6.1.5). As FMM is utilized in free space for the BI, the wave number in free space kg is
used in the matrix elements with FMM.
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Figure 4: Aggregation, translation and disaggregation processes in FMM.

The acceleration of the mutual coupling computation for the MoM matrix with FMM
relies on the aggregation process of the nearby basis functions within the independent
FMM groups. In the aggregation process, the basis functions are collected to the center of
the corresponding FMM group through (3.6.2.7) and (3.6.2.8), where the basis functions
for the l%—space integral are obtained in terms of their far field radiation patterns. After
the aggregation process of the independent FMM groups, the source FMM groups can be
translated to the far testing groups through the translation operator. When the distance
between the centers of the source and testing groups is far enough, where the distance D
between the group centers is larger than the distance d with respect to the threshold of
FMM, the collective evaluation of the source group can be translated to the testing group
center. Within the testing group, the received wave field is finally transferred to the testing
functions by multiplying the far field radiation patterns with respect to the center of the
testing group. The procedure of indirect computation of the MoM matrix with FMM groups
is constructed by aggregation, translation and disaggregation processes as shown in Fig. 4.
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3.6.3 Spherical Harmonics Expansion of the l%—space Integrals

In computations of the mutual couplings with FMM, the number of sampling points on
the Ewald sphere is associated with the translation operator and the factor derived from the
dyadic Green’s function. The numerical integration of the source and testing basis functions
over the corresponding domains, as shown in (3.6.2.7) and (3.6.2.8), requires large numbers
of sampling points and a large amount of memory is utilized. The l%—space representation of
the basis functions in spherical harmonics [Eibert, 2005] is introduced. The far-field pattern
of the basis functions in the l%—space representation (3.6.2.7) is expanded with spherical
harmonics Y), [Harrington, 1961]. The basis function radiation pattern is rewritten as

P

Fa,0) =) Z FpaYoa(9,0) (3.6.3.1)

p=0g=—p

and the orthonormalized spherical harmonics Y,q(¥, ¢) are given by

Yipg(d,0) = \/ (2p 4:(;)fq_)!q)!Pg(cos el (3.6.3.2)

Where Pj is the Lengendre polynomial of degree p with order g. The expansion coefficients

g I (3 6.3.1) are computed as

pa zﬂfn(ﬂ, ) Yo (0, )k (3.6.3.3)

for all the corresponding basis functions in the initialization step. This can be finished
through the application of the Gauss Legendre quadrature rules [Koc et al., 1999]. The
increasing computational time for the expansion coefficients is typically negligible com-
pared to the traditional initialization steps. Moreover, to avoid the Gibb’s phenomenon
[Harmuth and Hussain, 1994], where the spherical vector components are not continuous,
the vector basis functions j:n are considered as Cartesian vector components for the integral
evaluations.

In a similar procedure, the received wave can be expanded with the orthonormality of
the spherical harmonics as

p
T (ko - vy ) (I = koko) - Fu(ko) =D D~ g5 Yoa(9,9) (3.6.3.4)
p=0g=—p

and the expansion coefficients g, can be computed analogously with (3.6.3.3). Therefore,
the integral over the closed Ewald sphere yields the simplified series as

:_]72 Z (F)* - gy (3.6.3.5)

p=0g¢=—p

With (3.6.3.5), the testing step is accelerated significantly and better performance can be
obtained.

30



3.6.4 Multilevel Fast Multipole Method

For large scale simulations, the pure FMM can meet limitation of efficiency. The
basis functions in a single FMM group have to utilize the direct MoM, the large number
of unknowns in the FMM group requires much memory and the computations of mutual
couplings are also heavy. To increase the efficiency of the system matrix computation, the
FMM algorithm can be further improved into hierarchical schemes by extending the FMM
levels. Then, the multilevel fast multipole method (MLFMM) algorithm is obtained. The
multilevel FMM groups start from a single box containing all basis functions, each block
from the FMM is subdivided by half the edge length and the sub-blocks in the corresponding
FMM block are obtained. Then, the basis functions in the FMM group are indexed into
the corresponding sub-divided blocks. Through repeating the subdivision process for each
subdivided block until a minimum box size is reached, the total number of levels of the
groups is obtained. With the half-dividing procedure of obtaining the multilevel groups,
each above level box is subdivided into eight below level boxes, the construction of the
MLFMM groups can be referred to an octree.
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Figure 5: Aggregation, translation and disaggregation processes in MLFMM.
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The MLFMM can increase the efficiency of the system matrix computations as the
boxes in the lowest level are clustered and the mutual couplings are evaluated collectively
up to a higher level. The number of the multipoles in the lowest level depends on the
minimum group size. In an optimized solution, the multipole number for each level is kept
as low as possible.

The computation procedure of the mutual couplings in MLFMM starts from the ag-
gregation process to the centers of the boxes in the lowest level. This process is the same as
in the FMM shown in Fig. 4. All the non-empty lowest level boxes perform the aggregation
procedure. Then, the radiating wave patterns in the lowest groups are transformed to the
center of the next higher level, this is finished through a phase shift. The aggregation
process of the wave patterns to the higher level box requires a larger number of multipoles
according to the higher level box size. The aggregation process performs up to the higher
level of FMM groups until the current level of source and testing groups are well separated.
Then, the aggregated wave patterns of the source group is transformed to the center of the
testing group through the translation operator in the current level. In the testing group
in the corresponding level of translation, the disaggregation process begins. The wave
patterns are disaggregated level by level until the lowest level box, then transformed to
the individual testing functions. The disaggregation process is also fulfilled through phase
shifts. In each disaggregation process from the higher to the lower level, the number of
multipoles is well selected according to the lowest level for an accurate evaluation. The
aggregation, translation and disaggregation processes in MLFMM are shown in Fig. 5.

MLFMM can increase the efficiency of far zone mutual coupling evaluations with com-
putation effort proportional to O(N log V), where N is the number of total BI unknowns.
In the optimized efficient solutions, the size of the lowest level box is set as small as possible.
However, the minimum box size should be larger than about the maximum edge length and
also greater than about A/5. To obtain optimal accuracy, when MLFMM is applied to
hierarchical basis functions, the number of multipoles for the lowest level is determined by
the box size. The spherical harmonics degree in the basis function expansion can be set as
half the multipole number.
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4 Singularity Treatment Approaches

Computations of mutual coupling integrals, especially the couplings of singular kernels,
determine the accuracy of MoM for the surface integral equations. When testing and
source domains are near, singularities are introduced into the coupling integrals due to the
Green’s function and the gradient of the Green’s function. Then, direct couplings can not
be evaluated with the numerical quadrature. Under this case, special numerical treatments
for such singularities are required for near couplings. The adaptive singularity cancellation
technique is detailed discussed and a new family of radial-angular- R™ coordinate transfor-
mation schemes are proposed. The coupling integrals are evaluated efficiently and accurately
with singularity cancellation techniques.

4.1 Singular Integral Configurations

Three integration configurations are considered dependent on the relative position of
the projection point O with respect to the source domain. The three configurations together
with the relevant geometric parameters are depicted in Figs. 6 to 8. The distance between
the observation point and the projection point O is |z|, the distance between the observation
point and the sampling point inside the source domain is R, the distance between the
projection point and the sampling point is 7, the angle between R and |z| is denoted as ¥.
Also, the angular integration range is from @; to @, and the radial integration range in the
source plane is from 7; to r,. For |z| = 0, ; = J, must be chosen in order to avoid the
common singularity in transformations, if the projection point is located inside the source
domain.

4.2 Singular Integral Kernels

Under consideration of the mutual couplings from (3.5.9) to (3.5.13), the integrals
contain singular kernels in the MoM solution. The singular integrals can be written as

’ ’ e IRl /
B = //A n(r")B(r") 7 da’, (4.2.1)
o—ikoR

D://An(r’),@(r’)xv —da, (4.2.2)

where A is the integral source domain, 7 is a scalar function, 3 is a vector function, r is the
observation point in the testing domain, 7’ is the position in the source domain, R = |r — 7’|
is the distance between the observation point and the sampling point in the source domain.
The 1/R-type kernel B contains a weak singularity, the R/R3-type kernel D contains a
hyper singularity. In the configurations of Fig. 7 and Fig. 8, where the projection of the
observation point is outside the source domain, the corresponding kernels turn to be near
singular and near hyper singular.
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Figure 6: Geometric confiugration for projection point inside.

4.3 Singularity Subtraction Method

The singularity subtraction method splits the singular kernel into two terms. One term
can be approximated under the condition of the neighboring testing and source domains.
The second term can be computed through analytical solutions. Take the scalar Green’s
function for the singularity subtraction method as an example

e IkoR e IRl 1 1
do' = [ &~ qd ~dd 43.1
J] = ] e (43.1)

where the first term on the right hand side can be computed numerically and the second
term can be computed analytically [Eibert and Hansen, 1995a, 1996a].

The singularity subtraction method can be applied to the constant, first order and also
higher order polynomial basis functions [Butler, 1975, Eibert and Hansen, 1995a, 1996a,
Jarvenpdd et al., 2006a,b, Wilton et al., 1984]. It is also applicable to both linear and
non-linear geometrical configurations [Eastwood and Morgan, 2008, Jarvenpéaa et al., 2003,
Knockaert, 1991]. Different orders of basis functions can be integrated over planar triangles
and also over curved triangles. The curved triangles can be extended into tangent planar
elements, where the same integration on the planar elements can be utilized. However,
in the singularity subtraction method, the integrands of the polynomials are not easily
approximated in the vicinity of the singularity. So, the accuracy of the quadrature rule
is limited. When it comes to higher order basis functions, curved elements, or complex
Green’s functions, the Taylor expansions of the variables turn to be more complicated. So
the improved radial-angular- R" singularity cancellation techniques are introduced next.
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Figure 7: Geometric configuration for 1st type of projection point outside.

)

Figure 8: Geometric configuration for 2nd type of projection point outside.
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4.4 Radial Angular Singularity Cancellation Transformations Derived by
the Variable Separation Method

The variable separation method [Stone and Goldbart, 2009] is employed to formulate
new radial-angular-R™ coordinate transformation schemes for the singularity cancellation
technique. Derived from the concept of obtaining an ideal Jacobian of the transformations
and with different parameter settings in the variable separation method, a new augmented
radial-angular-R! transformation, new radial-angular- R? and radial-angular- R2-cosh trans-
formations, together with a new radial-angular- R3, an augmented radial-angular- R and an
arcsinh- R? transformation are introduced. The proposed R? and R? transformations are ef-
ficient and applicable to different types of singular kernels in the Method of Moments (MoM)
solution of electromagnetic surface integral equations, whereas the R! transformation is only
suitable for the first order singular integrals. The newly proposed transformation schemes
are verified and they are also utilized for deformed triangles, where good performance is
still obtained. Detailed discussions of the new family of radial-angular-R™ transformation
schemes have already been proposed in [Li and Eibert, 2016].

4.4.1 Introduction

Singularity and hyper singularity treatments are essential for the computation of the
mutual coupling integrals in the method of moments (MoM) [Chew et al., 2001, Ismatullah
and Eibert, 2009]. The singularity cancellation techniques are regarded as very effective
solutions to the singularity problems. Derived from the Helmholtz equation, the boundary
integral (BI) equations involve the scalar Green’s function [Chew et al., 2001, Ismatullah
and Eibert, 2009, Rao et al., 1982] and its gradient in the integral kernels. In the procedure
of the Gauss Legendre evaluation of mutual couplings and when the observation points
in the testing domain approaching the source domain, the 1/R-type of kernels from the
Green’s function and the R/R3-type kernels from the gradient of the Green’s function
import the singularity into the integrals. Thus, the 1/R-type and R/R3-type kernels
require the corresponding order of singularity cancellation treatments. Moreover, the lower
order singular coupling integral kernels can also be effectively solved by the higher order
singularity treatment solutions.

A lot of singularity subtraction and cancellation techniques for the 1/R-type and R/ R3-
type of kernels have been proposed [Botha, 2013, 2014, Duffy, 1982, Eibert and Hansen,
1995b, Fink et al., 2005, 2008, Graglia, 1993, Ismatullah and Eibert, 2008, Jarvenpaé et al.,
2006a, Khayat and Wilton, 2005, Khayat et al., 2008, Li et al., 2014a, Polimeridis et al.,
2013, Vipiana et al., 2008, Vipiana and Wilton, 2011] A number of effective schemes are
proposed in [Fink et al., 2005], including the Arcsinh scheme for the 1st order singular
kernels and radial-angular schemes for 1st, 2nd and 3rd order near-singularity cancellation.
In [Vipiana and Wilton, 2011], an optimized solution to the evaluation of singular and
near-singular potential integrals has been provided. In [Polimeridis et al., 2013], an efficient
singularity treatment algorithm is presented for mutual couplings, where the testing and
the source domains contain one common edge or one common vertex. Partly analytical
solutions are introduced to some of the integrations and the integral dimensions are re-
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duced. In [Botha, 2013, 2014], a family of augmented Duffy transformation schemes have
been provided for near-singularity cancellations, where augmentation means that further,
successive smoothing transformations are utilized to achieve cancellations of various orders
of near-singularities. However, the radial angular transformations are related and sensitive
to the projection height of the observation points above the source plane. An augmented
radial-angular- R? transformation has been proposed in [Li et al., 2014a], where the negative
effects of the observation points in the testing domain are removed effectively. In this
chapter, a new family of radial-angular-R" transformation schemes are proposed for the
1st, 2nd and 3rd order singular coupling integral kernels. The new schemes are innovated
from the variable separation method. Improvements in accuracy and efficiency for the
corresponding types of kernels are obtained for the singularity and the near-singularity
cancellation techniques.

The geometrical configurations [Ismatullah and Eibert, 2008, Li et al., 2014a] are
classified dependent on the observation points and their projection points on the source
domain plane. As displayed from Figs. 6 to 8, three kinds of configurations are considered:
Fig. 6, the projection of the observation point into the source plane is inside the source
domain, Fig. 7, the projection point is outside the source domain and the projection point
can directly see only one edge of the source triangle and it is called the 1st type of outside
projection, Fig. 8, the projection point is outside the source domain and the projection
point can directly see two edges of the source triangle and it is called the 2nd type of
outside projection. 3 can also be located between the triangle edge from r; to r9 and
the projection point. In this case, r; and 7, should, however, be flipped in order to obtain
the correct integration results. In Fig. 6, the source triangle has been separated into three
sub-triangles and only one sub-triangle is shown. In Fig. 7 and Fig. 8, the source triangle
is divided into two sub-triangles and the sub-triangles are integrated independently. In the
singularity cancellation techniques, the coordinates (x,y) are transformed into (u,v). So, a
Jacobian is required to be multiplied inside the integral kernels. R is the distance between
the sampling point in the source domain and the observation point, J is the Jacobian of the
coordinate transformation from (z,y) to (u,v). The 1st, 2nd and 3rd order transformation
schemes are all effective for singularity cancellation in the B type of integrals, where the
Jacobian J contains an R, R? or an R> factor correspondingly. Moreover, the 2nd and
3rd order transformation schemes are effective for singularity cancellations in the D-type
integrals. To obtain an R" factor within J (n = 1,2, 3), the variable separation method is
utilized in this work.

The variable separation method, set up with the parameters in the transformed coordi-
nates, is utilized for the radial and the angular functional dependencies. The radial variable
is defined as a product of two separated functions and the angular variable is assumed as a
sum of two independent separated functions. With a desired Jacobian, differential equations
are obtained for the separated functions. The differential equations are almost symmetric
in the transformed coordinates. Dependent on the properties of the separated functions,
certain limit conditions are required to be satisfied, which are applied to solve the separated
functions. General solutions are provided for the transformation schemes with 1st, 2nd and
3rd order.

To increase the efficiency of the numerical solutions, the adaptive technique [Ismatullah
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and Eibert, 2008, Li et al., 2014a] is utilized for the singularity cancellation transformation
schemes. The advantages of the adaptive solutions are that the sampling points are located
only inside the source domain. For Figs. 7 and 8, the numbers of the sub-triangles are
reduced as compared to the traditional non-adaptive techniques. As it turns out, fewer
sampling points are required and faster accuracy convergence is obtained. The adaptive
technique is used for all the transformation schemes mentioned in this work. For Fig. 6, a
fixed threshold is always set to obtain a well-performed integral.

To obtain good performance for deformed triangles, the transformation schemes should
have well-performed integration limits in the (u, v) coordinates, ideally the (u, v) integration
domain should be the full unit square block or a rectangular triangle for the adaptive schemes
in the cases of projection point outside.

A series of transformation schemes are proposed in this chapter, which effectively satisfy
the requirements of regular and deformed triangles. Within the variable separation method,
general solutions to the radial-angular-R" transformation schemes are proposed and also
augmented radial-angular- R” transformation schemes are given. In general solutions, several
constant parameters can be freely selected. These parameters together with the augmenta-
tion function, in case of the augmented transformations, are set to optimize the normalized
integration domain in the (u,v) coordinates. For different orders of the transformation
schemes, numerical results are provided and the accuracy for the corresponding types of
integral kernels is discussed. It is found that excellent performance of the radial-angular- R™
and the augmented radial-angular-R™ transformation schemes is obtained for regular and
deformed triangles.
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4.4.2 The Variable Separation Method

The variable separation method is utilized within the singularity cancellation tech-
nique. The parameters to be separated are R and &, where R is the distance between the
observation point and the sampling point in the source domain and @ is the angle between
the z-axis and the line connecting the origin (the projection point on the source domain
plane) and the sampling point in the source domain. R and @ are given by

{ R(u,v) = f(u)g(v) (4.4.2.1)

where (u,v) are the transformed coordinates and (z,y) are the original coordinates in
Figs. 6-8. f(u) and ¢(u) are functions of coordinate u only, g(v) and 6(v) are functiona of
coordinate v only.

Through the geometric relationships between (z,y) and (R, @), the distance r between
the origin O and the sampling point in the source domain is given by

r=+/R2— |22 =/f2¢% — |2]2, (4.4.2.2)

where |z| is the height of the observation point above the source domain plane. Thus, (z,y)
can be written as

{ z _ :Scfj((;) (4.4.2.3)

and it is obtained that

(&= 7f2l;7922_|2‘2005(¢ + 0L /12g% — [z[%sin(¢ + 0) %
dr 7fzj;zfilz|zcos(¢ +0)% /262 —|z[%sin(p + 6) ¥
o VIETEE j - (4.4.2.4)
Bt = AL sin(o 4 0) + VP Peos(o +0) 2
y _ __f? : d d9
= \/ﬁsm(gﬁ +0) Gk + /1297 — |z]*cos(¢ + 0)

By combining (4.4.2.1), (4.4.2.2) and (4.4.2.3), the Jacobian of the transformation from
(z,y) to (u,v) is given by

Jr Oz
T o | Touoe aveu ! <9dudv— uds ) (4.4.2.5)
ou v

Equation (4.4.2.5) is a general solution for the Jacobian based on the variable separation
according to (4.4.2.1). It is utilized as an equation to achieve general solutions for f(u),
¢(u), g(v) and O(v). Then, with (4.4.2.1) and (4.4.2.3), the transformations from (u,v) to
(z,y) are obtained.
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4.4.3 General Solution to Radial-Angular Transformations
The essence of the Radial-Angular transformation schemes is to cancel out the singu-
larities in the coupling integrals. To achieve this, the Jacobian is required to be
J=R"= f"(u)g"(v), n=1,23.., (4.4.3.1)

where n is the order of the singular coupling integral kernels. With (4.4.2.5), it is found
that

ﬁﬁ_ djdﬁ n—1 n—1
Ywdo Tauwaw =1 9 (4.4.3.2)

d¢ [ db Ldf  ( ,y /dg\ e
= (a5 D) e () (14.33)

and its integration gives

¢ = ( ji/dg> Inf — ( " 1/35) /f"2du. (4.4.3.4)

Since ¢ is a function of v only and g as well as 8 are functions of v only, it is found that

(52 /48) =y g - [ =2)] = (1.43.5)

de /d
< dv/dg> =c3 =0 =c3lng + ¢4, (4.4.3.6)

Therefore,

where c1, co, c3 and ¢4 are constants and c¢; # 0.

From equations (4.4.3.3)-(4.4.3.6), it is clear that for any function f(u) # 0, the
Jacobian J = R™ can be found. The different constants ¢y, co, c3 and ¢4 can determine
the different transformation equations. However, in the singularity cancellation techniques,
it is necessary to compute the upper and lower integral limits of (u, v) for the Gauss Legendre
quadrature. A very complicated f(u) or strange constant settings may make the integral
limits difficult to be computed. A family of radial-angular-R™ transformation schemes are
proposed with n = 1,2, 3 and a certain number of f(u) are also selected as examples.

4.4.4 General Solution to Augmented Radial-Angular Transformations

With well-behaved functions multiplied into the Jacobian, a better behaved integration
domain in (u,v) and a more powerful distribution of the sampling points in the source
domain can be obtained. Thus, a general solution is proposed for the variable separation
method combined with well-behaved functions multiplied inside the Jacobian.

A simple case of (4.4.2.1) is obtained with f(u) = 1 and 6#(v) = 0. In this case,
R(u,v) = R(v), r(u,v) = r(v) and ®(u,v) = &(u) = ¢(u). With (4.4.2.2), the Jacobian
can be written as

dR dgb dr do
= —r—— 4441
=R dv du dv du’ ( )
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The Jacobian proposed in (4.4.3.1) achieves an exact singularity cancellation in the trans-
formation schemes. However, the Jacobian is still effective if it multiplies with a non-zero
and non-singular factor. Thus, the Jacobian employed to define augmented transformation
schemes can be written as

J = R"h(u,v), (4.4.4.2)

where h(u,v) # 0. To construct a group of augmented radial-angular transformation
schemes, the function h(u,v) is chosen as h(u,v) = h(), where ¥ is the angle between
R and |z| and r = Rsin(¥). In the family of radial-angular-R™ transformation schemes, the
function h(¥) is effective to modify the normalized integration domain in the transformed
coordinates and it can also modify the strength of the Jacobian relevant to ¢. A good
selection of A(1) can result in improved integration efficiency and accuracy. From (4.4.4.1)
and (4.4.4.2), it gives that

dRdy _ drdo _
dv du  dvdu

For different orders of transformation schemes, a family of augmented radial-angular- R"
transformation schemes are proposed with the function h(1}) chosen in various formats.

—R"h(9). (4.4.4.3)

4.5 The Family of Radial-Angular- R! Transformations

To obtain singularity cancellation techniques for the 1/R-type of singular coupling
integral kernels, the power of the Jacobian can be set as n = 1. Then, the solution in

(4.4.3.5) can be written as
dg v+ C2
( /dU) C1 =g 1 ) ( )

where ¢; and co are constants and c¢; # 0. For simplicity of the solutions, the constants
are set as ¢ = —1, ca = ¢3 = ¢4 = 0 as an example. Different functions f(u) will then
determine the different formats of the transformation schemes.

4.5.1 The Radial-Angular-R' Transformation

With the constant settings and the function f(u) set as f(u) = 1, the radial-angular- R!
(R-A-R1) transformation is achieved as

= arctan(¥
{ u arcan(m)? J—_R. (4.5.1.1)

v=—R

(4.5.1.1) is equivalent to the radial (extended polar) transformation scheme in [Fink et al.,
2005, Khayat et al., 2008]. The influence of the projection height of the observation point
|z| is deleted. The transformation scheme and the Jacobian are independent from the
projection height |z|. The corresponding integration limits are found to be

W = Prus  Viu =17, + 122 (4.5.1.2)
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From (4.5.1.1) and (4.5.1.2), it is seen that u is a monotonically increasing function of @
and v is a monotonically decreasing function of 7. Thus, (4.5.1.1) is flexible in transforming
from (z,y) to (u,v) and vice versa. When |z| — 0, the Jacobian is not zero. Thus, (4.5.1.1)
is effective for singular kernels.

4.5.2 The Augmented Radial-Angular-R!' Transformation

The power of the Jacobian can be set as n = 1 for the 1/R-type kernels. The solutions
derived from (4.4.3.2) illustrate that the Jacobians are exactly R for n =1. With n =1
and also with

sind
h(¥) = ——F—= 4.5.2.1
W)= T rsmd) (4.52.1)
an augmented 1/R-type transformation is found with Jacobian
sind dr do T
=R——— = —pr——= <9< - 4.5.2.2
J 1 + sind " v du’ 0< -2’ (452.2)

according to (4.4.4.1) h(¥) is here a general testing function to prove the efficacy of (4.4.4.3).
To obtain an easy solution, d¢/du = —1 is selected. It provides the solution for ®(u) as
d(u) = —u. From (4.4.4.3), (4.5.2.2) and with sind = r/R, it gives

dR dr (v+e1)? — |22
— =——41 = 4.5.2.3
dv aw T 2w +c1) ( )

where ¢; is an arbitrary constant. With ¢; = 0, a solution to the transformed coordinate
v is given by v = R + r. Thus, the resulting augmented radial-angular-R' (A-R-A-R1)
transformation turns out to be

0<d< (4.5.2.4)

{ u=—arctan(¥) IR sind s
5

v=R+r ’ ~ M fsind’
In Fig. 6, if |z| # 0, ¥ = 0 only when the sampling point in the source domain is exactly

positioned at the origin O . For the case of |z| # 0, ¥ < 7/2 is always satisfied. For |z| =0,
it is shown that ¥ = 7/2 and the Jacobian turns to be J = r/2.

For different geometric configurations in Figs. 6-8, the adaptive integration limits of

(4.5.2.4) are given by
Uy = —Pyl, V= \/Tl%u + 1212 + 11w, (4.5.2.5)

where for the determination of &, and 7,, the reader is referred to [Li et al., 2014a].
From (4.5.2.4), it is clear that the Jacobian is relevant to the angle ¢, which depends on
the height of the observation point |z|. When |z| — 0, the Jacobian turns out to be stable.
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4.6 The Family of Radial-Angular- R? Transformations

To obtain singularity cancellation techniques for the R/R3-type of singular coupling
integral kernels, the power of the Jacobian can be set as n = 2. However, the solution of
(4.4.3.5) has to be modified into

d
<g/9> — 1 =g = exp (” i CQ) , (4.6.1)
dv €1

where c¢; and co are constants and ¢y # 0. To simplify the solutions, the constants are set
as c; = 1, cog = ¢3 = ¢4 = 0 as an example. Different functions f(u) will then determine the
different transformation schemes.

4.6.1 The Radial-Angular- R? Transformation

With the same constant settings as above and the function f(u) set as f(u) = 1, the
radial-angular- R? (R-A-R2) transformation is found to be

= —arctan(¥
u arctan(¥) J-R (4.6.1.1)
v=1InR

The transformation scheme (4.6.1.1) is similar to the radial-angular-R? transformation in
[Fink et al., 2005, Ismatullah and Eibert, 2008]. However, the influence of the projection
height of the observation point |z| is removed. The transformation equations and the
Jacobian are irrelevant to the projection height |z|. When |z| — 0 in Fig. 6, a threshold
is required to determine the integration limits for R. The corresponding integration limits
are achieved as

1
iln(rﬁu + 12%) . (4.6.1.2)

Uy = _dsu,l y Ul =

From (4.6.1.1) and (4.6.1.2), it is found that w is a monotonically decreasing function of
¢ and v is a monotonically increasing function of r. Thus, (4.6.1.1) is useful to transform
from (x,y) to (u,v) and vice versa. When |z| — 0, the Jacobian is not zero. Thus, (4.6.1.1)
is effective for both singular and hyper singular integral kernels.

4.6.2 The Radial-Angular- R?>-Cosh Transformation

With the same constant settings as before, the function f(u) = cosh(u) is used to
achieve an improved normalized integration domain in the transformed coordinates. Then,
the radial-angular- R2-Cosh (R-A-R2-C) transformation is found as

= —arctan(¥
u arctan(¥) J-R (4.6.2.1)
v =1InR — cosh(u)

In (4.6.2.1), the influence of the projection height of the observation point |z| is also removed.
As in Figs. 7 and 8, the transformation scheme and the Jacobian are independent from |z|.
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When |z| — 0, in Fig. 6, a threshold is required to determine the integration limits for R.
The corresponding integration limits for all types of the geometric configurations are found
to be

1
Uy =—Pul, Vi = §ln(r£u + |2|?) — cosh(u). (4.6.2.2)

u is also a monotonically decreasing function of ¢. With a fixed value of u, the function
value cosh(u) is also fixed. So the upper boundary limit 7; and the lower boundary limit
ry are determined. Thus, v is a monotonically increasing function of r. So, the scheme in
(4.6.2.1) is effective for both singular and hyper singular integral kernels.

4.6.3 The Augmented Radial-Angular-R? Transformation

When n = 2 and d¢/du = 1, &(u) = u is obtained. To obtain a well performed
numerical integration, h(9) = —3sind is utilized to improve the effect of the Jacobian
dependent on theta. The Jacobian can be written as

1 d
J:—Qﬁmwz—ﬁi. (4.6.3.1)
From (4.6.3.1), it is found that
d*r 1
di,ug _ zr =0=1r= cle%” + Czefév , (4632)
where ¢; and ¢y are arbitrary constant values. Let ¢; = —% and ¢y = %, then
—1y _ 2 1y
oo €2 e (4.6.3.3)

2

Thus, an augmented radial-angular-R? (R-A-R2-Z2) transformation based on (4.6.3.3) and
®(u) is written as

= arctan(¥ 1
u = arctan(¥) J = — L R%ing, (4.6.3.4)
v=—2In(R+r) 2

where ¥ is the angle between R and |z|. The corresponding integration limits turn out to

be
Uy = Dluy  Viu = —ln(\/m+ Tu,l)- (4.6.3.5)

u is once more a monotonically increasing function of @ and v is again a monotonically
decreasing function of r. The Jacobian in (4.6.3.4) is not always zero when |z| — 0. So,
it is effective for both singular and hyper singular integral kernels. As a member of the
radial-angular- R? family, the R-A-R2-Z2 transformation is equivalent to the transformation
proposed in [Li et al., 2014a].
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4.7 The Family of Radial-Angular- R® Transformations

To obtain singularity cancellation for R/ R3-type singular coupling integral kernels, the
power of the Jacobian can also be set as n = 3, where the third order singularity is canceled
out directly. With the constant parameters set as ¢c; = —1, cg = c3 = ¢4 = 0, it is obtained
that

g(v) = % (;S(u):/fdu. (4.7.1)

With different formats of f(u), several radial-angular-R3 transformation schemes are con-
structed.

4.7.1 The Radial-Angular- R? Transformation

With f(u) = 1, the corresponding radial-angular-R? (R-A-R3) transformation scheme
is proposed as

= arctan(¥
{ u z:rc an(¥) CJ=R (4.7.1.1)
V=g

This transformation is similar to the radial-angular- R scheme in [Fink et al., 2005]. How-
ever, the influence of the projection height of the observation point |z| is removed. The
transformation equations and the Jacobian are irrelevant to |z|. When |z| — 0 in Fig. 6,
a threshold is required to determine the integration limits for R. The corresponding
integration limits for all types of the geometric configurations are written as

1
Uy = P, UVu=—F——r— (4.7.1.2)

A/ 7‘271 + [2]2

With the Jacobian in (4.7.1.1) for different configurations in Figs. 6-8, the scheme in (4.7.1.1)
is effective for near singular and also near-hyper singular integral kernels.

4.7.2 The Arcsinh-R3 Transformation

Another selection of the function f(u) is written as f(u) = cosh(u). Based on ¢(u)
in (4.7.1), the integration of f(u) turns out to be ¢(u) = sinh(u). The corresponding
Arcsinh-R3 (Asinh-R3) transformation equations turn to be

{ u = sinh" (arctan (1))

, J=R%. 4.7.2.1
v = %4/1+ arctan?(¥) ( )

z
These equations also avoid the influence of the projection height |z|. As before, a threshold
is required for R to determine the integration limits for |z| — 0 in Fig. 6. The corresponding
integration limits for all types of the geometric configurations are

1
T (R T . — (4.7.2.2)

rfb’l + |z]2
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Similar to (4.7.1.1), the scheme in (4.7.2.1) is also effective for both near singular and
near-hyper singular integral kernels.

4.7.3 The Augmented-Radial-Angular-R3 Transformation

When n = 3 and d¢/du = 1, it is achieved that @(u) = u. With h(9) = sind(1 + sind),
the kernel turns out to be dependent on the projection height and an improved integration
performance is obtained. The Jacobian for the third order transformation can be proposed
as

R d
J = Rsind(1 + sind) = ~R— " = —Td—z (4.7.3.1)

and it is found that

dr/dv = —-R(R+ d(R+
r/dv ( r) . M = —(R+7)2 (4.7.3.2)
dR/dv = —r(R+r) dv
Thus,
d(R+r)
allv+7r) d _ 4.7.3.3
(R+71)? VTV T Ry O ( )

where ¢ is an arbitrary constant value. Then, with ¢ = 0, an augmented radial-angular-R3
(A-R-A-R3) transformation is obtained as

= arctan(¥ )
{ v e () ) Rising (1 4+ sind), (4.7.3.4)
v = R+r

where ¥ is the angle between R and |z|. The corresponding integration limits are found as

1

<\/Ti,z + [ +7“u,l)

Similar to (4.7.1.1) and (4.7.2.1), the scheme in (4.7.3.4) is effective for both near singular
and near-hyper singular integral kernels.

Ul = Ql,ua Vlu = (4735)

4.8 Numerical Results

The numerical results from all the new transformation schemes are compared with
some traditional transformation equations. The unit source domains displayed in Fig. 8
are utilized dependent on the locations of the projection points. The adaptive integration
techniques according to [Ismatullah and Eibert, 2008] are applied to all of the transformation
schemes together with the corresponding integral limits. The accuracy convergence of the
different types of the coupling integral kernels with the increasing number of sampling
points are studied for all of the geometric configurations in Figs. 6-8. The performance of
the accuracy with changing height is also analyzed. The results are compared according
to the corresponding orders of the the singularity cancellation techniques. Moreover, the
performance of the different transformation techniques is also studied for deformed triangles.
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Figure 9: Unit source domain with different locations of the observation point: (a)
Projection point inside the source domain. (b) The 1st type of outside projection point.
(c) The 2nd type of outside projection point.

4.8.1 Normalized Integration Domain

An important property of all the transformation schemes is the transformed integration
domain for singularity cancellation. The normalized integration domains of the proposed
transformation formulas are proven to be very well performed when the height of the
observation point |z| tends to be zero. The normalized integration domains of the following
transformation schemes are evaluated:

Augmented Radial-Angular-R' (4.5.2.4) (A-R-A-R1);
Radial-Angular-R? (4.6.1.1) (R-A-R2);
Radial-Angular- R2-Cosh (4.6.2.1) (R-A-R2-C);
Augmented Radial-Angular-R? (4.7.3.4) (A-R-A-R3);
Radial-Angular-R3 (4.7.1.1) (R-A-R3);

Arcsinh-R3 (4.7.2.1) (Asinh-R3).

celzZe

—
N—"

The normalized integration domains are shown in Fig. 10 for the radial-angular-R™ trans-
formation schemes with zero height |z| = 0. The normalized transformed integration
domains are shown in Fig. 10(a) for a projection point located inside the integration
domain with a symmetric triangle. As shown in Fig. 9(a), the considered sub-triangle
is always a full triangle, the projection point is located on a vertex of it. It is found that the
normalized integration domains of the A-R-A-R1, R-A-R2-C and Asinh-R3 deviate from
the full square unit block with |z| = 0. However, the normalized integration domains of the
R-A-R2, A-R-A-R3 and R-A-R3 are very near to the full square unit block. The normalized
integration domains for a projection point outside the integration domain with |z| = 0 are
shown in Fig. 10(b). The projection point is always on an extension of one of the edges, as
the integration domains are always sub-triangles according to the configurations in Figs. 9(b)
and (c). For convenience, a symmetric triangle is again utilized as source sub-domain. Due
to the adaptive integration technique, the ideal transformed integration domains are now
near to rectangular triangles and some of the shown transformations approach this ideal
domain.
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Figure 10: Normalized integration sub-domain with |z| = 0. (a) Inside projection point,
(b) Outside projection point with the same legend as in (a).

4.8.2 Accuracy of the 1st Order Transformation Schemes

The considered evaluated integral in the source domain and the corresponding error
are defined as

. Iquad - Iref

g(A1,\2)
// 1,A2) 9l N) e s
Vr?+y? + 22 Tref

where (A1, A2, \3) are the simplex coordinates defined in the source domain, g(A1, \2) is a
scalar function of the simplex coordinates multiplied inside the kernel. The 1-D order N
is the Gauss-Legendre sampling point number in both (u,v). The following transformation
schemes are evaluated:

, (4.8.2.1)

Augmented Radial-Angular-R! (4.5.2.4) (A-R-A-R1);

Arcsinh [Fink et al., 2005, Khayat et al., 2008] (Archsinh-R1);

Extended Duffy scheme [Fink et al., 2005, Khayat et al., 2008] (Duffy-R1);
Radial (Extended Polar) [Fink et al., 2005, Khayat et al., 2008] (Radial-R1-P);
Radial-Angular [Fink et al., 2005, Khayat et al., 2008] (Radial-R1-S);
Augmented-Duffy-R!-Constant [Botha, 2013] (A-D-R1-C);
Augmented-Duffy-R!-Linear [Botha, 2013] (A-D-R1-L);
Augmented-Duffy-R!-Linear-2014 [Botha, 2014] (A-D-R1-S).

Erzoaoze

Figs. 11 and 12 display the relative integral errors for the inside projection point. Fig. 13
illustrates the integration error for the outside projection points. Figure 11(a) compares
the different 1/R schemes for increasing N. Figure 11(b), Fig. 13(a), Fig. 13(b) compare
the different 1/R-type transformation schemes multiplied with a scalar function inside the
kernels. Figure 12 compares the different 1/R-type transformation schemes for inside
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Figure 11: Comparison for 1/R-type kernel (n = 1) and the configuration in Fig. 9(a).
Logarithmic relative integration error & versus sampling order N, with |z| = 1072. (a) g =
1.0, (b) g = A2 + )2, (c) The legend of Figs. (a) and (b).

projection point in Fig. 9(a) for changing |z|. With |z| — 0, the new transformation
scheme of (4.5.2.4) (A-R-A-R1) obtains in particular good accuracy. For the cases of
outside projection points, all schemes achieve stable results independent from |z|. From the
numerical results, it can be found that the A-D-R1-L in [Botha, 2013] and the A-D-R1-S
in [Botha, 2014] show also excellent performance.
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Figure 12: Comparison for 1/R-type kernel (n = 1) and the configuration in Fig. 9(a).
Logarithmic relative integration error § versus log(|z|), with sampling order N = 30. (a) g =
1.0, (b) g = A2 + )2, (c) The legend for Figs. (a) and (b).
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Figure 13: Comparison for 1/R-type kernel (n = 1). Logarithmic relative integration error
§ versus sampling order N, with |z| = 1074, g = A2+ 5. (a) Projection point 2 in Fig. 9(b),
(b) Projection point 3 in Fig. 9(c), (c) The legend for Figs. (a) and (b).
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4.8.3 Accuracy of the 2nd Order Transformation Schemes

The evaluated integrals in the source domain and the corresponding error are defined

)\ )\ )\ A Iua _ITE
T +y +z ’Iref|

as

and the following transformation schemes are evaluated:

Radial-Angular-R? (4.6.1.1) (R-A-R2);

Radial-Angular- R?-Cosh (4.6.2.1) (R-A-R2-C);

Augmented Radial-Angular-R? [Li et al., 2014a] (R-A-R2-Z2);

Radial Angular-R? [Fink et al., 2005, Ismatullah and Eibert, 2008] (R-A-R2-Z1);
Augmented-Duffy- R2-Constant [Botha, 2013] (A-D-R2-C);

Augmented-Duffy- R%-Linear [Botha, 2013] (A-D-R2-L);
Augmented-Duffy-R!-Linear-2014 [Botha, 2014] (A-D-R1-S).

rZaeLzeE

Figs. 14-16 exhibit the numerical relative vector integration error for the radial-angular- R?
transformation schemes. The unit vector R is pointing from the sampling point in the
source domain toward the observation point. Figs. 14 and 15 exhibit the relative vector
integration error for the inside projection point. Fig. 16 shows the vector integration error
for the projection point 2 in Fig. 9(b). Figure 14(a) shows the vector integration error
with increasing sampling order N, where a pure vector cross product is multiplied inside
the kernel. Figure 14(b) displays the similar type of error as in Fig. 14(a), but it contains
another scalar function multiplied with a vector cross product inside the kernel. Figure 15(a)
displays the relative vector integration error changing with the projection height, where the
unit vector R is multiplied inside the kernel. Figure 15(b) demonstrates the same type of
performance as in Fig. 15(a), but with a vector cross product multiplied inside the kernel.
Figure 16(a) displays the relative vector integration error versus N for the projection point 2
in Fig. 9(b). Figure 16(b) exhibits the vector integration error changing with the projection
height with the unit vector R multiplied inside the kernel for the projection point 2 in
Fig. 9(b).
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Figure 14: Comparison for R/R3-type kernel (n = 2) and the configuration in Fig. 9(a).
Logarithmic relative vector integration error § versus sampling order N, with |z| = 1076,
f= ()\11}1 + Aatg +)\3t3) X R()\l, )\2). (a) g=1, (b) g = )\% + A2, (C) The legend for Figs. (a)
and (b).
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Figure 15: Comparison for R/R3-type kernel (n = 2) and the configuration in Fig. 9(a).
Logarithmic relative vector integration error ¢ versus log(|z|), with sampling order N = 30
and g = 1.0. (a) f = R(\1,\2), (b) f = (Mit1 + Xata + Ast3) x R(\i, \2), (c) The legend
for Figs. (a) and (b).
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Figure 16: Comparison for R/R3-type kernel (n = 2). g = 1.0, f = R(A1,\2).
(a) Logarithmic relative vector integration error § versus sampling order N, with |z| = 1076
for the projection point 2 in Fig. 9(b), (b) Logarithmic relative vector integration error &
versus log(|z|), with sampling order N = 30 for the projection point 2 in Fig. 9(b), (c) The
legend for Figs. (a) and (b).
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4.8.4 Accuracy of the 3rd Order Transformation Schemes

The discussed integrals in the source domain and the corresponding error are defined

)\ )\ )\ A Iua _ITE
// LA 20) 5 W guad —Trey] (4.8.4.1)
x2_|_y +22) ’Iref|

as

and the following transformation schemes are evaluated:

Augmented Radial-Angular-R? (4.7.3.4) (A-R-A-R3);
Radial-Angular-R3 (4.7.1.1) (R-A-R3);

Arcsinh-R3 (4.7.2.1) (Asinh-R3);

Augmented-Duffy- R3-Constant [Botha, 2013] (A-D-R3-C);
Augmented-Duffy- R3-Linear [Botha, 2013] (A-D-R3-L);
Radial-Angular-R? [Fink et al., 2005] (R-A-R3-Z);
Augmented-Duffy-R!-Linear-2014 [Botha, 2014] (A-D-R1-S).
Augmented Radial-Angular-R? [Li et al., 2014a] (R-A-R2-Z2);

Erzloaloze

Figs. 17 to 19 exhibit the numerical relative vector integration error for the radial-angular- R?
transformation schemes. Figs. 17 and 18 display the relative vector integration error for
the inside projection point. Fig. 19 displays the integration error for projection point 2 in
Fig. 9(b). Figure 17(a) shows the vector integration error with increasing sampling order
N, where the unit vector is multiplied inside the kernel. Figure 17(b) displays the similar
type of error as in Fig. 17(a), but with another scalar function together with a vector cross
product multiplied inside the kernel. Figure 18(a) displays the relative vector integration
error changing with the projection height, where the unit vector R is multiplied inside the
kernel. Figure 18(b) displays the same result as in Fig. 18(a) with a scalar function together
with a vector cross product multiplied inside the kernel. Figure 19(a) displays the relative
vector integration error versus N for the projection point 2 in Fig. 9(b). Figure 19(b)
displays the vector integration error changing with the projection height, where a scalar
function and the unit vector R are multiplied inside the kernels for the projection point 2
in Fig. 9(b).
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Figure 17: Comparison for R/R3-type kernel (n = 3) in Fig. 9(a).
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vector integration error § versus sampling order N, with |2| =1072. (a) ¢ = 1.0 and
f =R\, X)), (b) g =X + X and f = (Ait1 + Aata + Asts) X R(A1, X2), (¢) The legend

for Figs. (a) and (b).
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Figure 18: Comparison for R/R3-type kernel (n = 3) in Fig. 9(a). Logarithmic relative
vector integration error 0 versus log(|z|), with sampling order N = 30. (a) g = 1.0 and
f = R()\l, )\2), (b) g = )\% + )\2 and f = ()\1151 + )\2t2 + )\3153) X R()\l, )\2), (C) The legend

for Figs. (a) and (b).
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Figure 19: Comparison for R/R3-type kernel (n = 3), g = A + )Xo, f = R(\1, \2).
(a) Logarithmic relative vector integration error § versus sampling order N, with |z| = 107°
for the projection point 2 in Fig. 9(b), (b) Logarithmic relative vector integration error §
versus log(|z|), with sampling order N = 20 for the projection point 2 in Fig. 9(b), (¢) The
legend for Figs. (a) and (b).
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4.8.5 Accuracy Analysis Dependent on the Exclusion Disk Radius

This analysis of the integration accuracy is important for the radial-angular- R™ trans-
formation schemes with n > 1 with changing radius threshold rs of the required exclusion
disk for the case of inside projection point. When the corresponding singular kernels are
treated by radial angular transformations, surface integrals over strong or hyper-singular
kernels (n = 2 and n = 3) do in general not exist (the integration results are infinite) and
this results in infinite integration domains. However, the relevant MoM integrals still exist,
even though there may be a 1/R? term in these integrals. In particular, the D-type integral
in (4.2.2) exists, since it is a vector type integral with a cross product inside, it causes an
additional cancellation effect. Thus, all integrals of interest exist and they can be computed
by 1/R? and 1/R? cancellation transformations. An exclusion disk with a very small radius
rs is utilized to avoid the infinite integration domains, it is proven that the integration
results converge by reducing 5.
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Figure 20: Comparison of the integration accuracy for projection point 1 in Fig. 9(a) versus
the exclusion disk radius threshold rs, with 1/ R-type kernel (n = 1), sampling order N = 40,
g = A? + \2. (a) Logarithmic relative scalar integration error § versus logarithmic 75 with
|z] = 107°, (b) Logarithmic relative scalar integration error & versus logarithmic rs with
|z| = 1079, (c) The legend for Figs. (a) and (b).

Figs. 20 and 21 exhibit the logarithmic integration accuracy changing with the disk
radius threshold. The projection point is the point 1 in Fig. 9(a), the sampling order is
N =40 and a scalar function is multiplied inside the kernel. Figure 20 exhibits the relative
scalar accuracy with decreasing rs for the 1/R-type kernel (n =1). In Fig. 20(a), the
projection height is set as |z| = 107°. In Fig. 20(b), the projection height is set as |z| = 1077,
Figure 21 exhibits the relative vector accuracy with decreasing 5 for the R/R3-type kernel
(n = 2), where a vector cross product is multiplied inside the kernel. In Fig. 21(a), the
projection height is set as |z| = 107°. In Fig. 21(b), the projection height is set as |z| = 1077,
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Figure 21: Comparison of the integration accuracy for projection point 1 in Fig. 9(a) versus
the exclusion disk radius threshold s, with R/R3-type kernel (n = 2), f = (A1t1 + Aot2 +
Ast3) x R(\i, \2), sampling order N =40, g = A} + X2. (a) Logarithmic relative vector
integration error § versus logarithmic rs; with |z| = 107, (b) Logarithmic relative vector
integration error & versus logarithmic rs with |z| = 1077, (c) The legend for Figs. (a) and

(b).

From Figs. 20 and 21, it is shown that, when rs is sufficiently smaller than the projection
height, the new family of radial-angular-R™ (n > 1) transformation schemes converges. For
some of the exhibited transformations, the number of integration points was not large
enough to approach machine accuracy.

58



4.8.6 Accuracy for Deformed Triangles

In MoM, it is recommended to study the performance of different transformation
schemes for deformed triangles. In near couplings, deformed triangles require more sampling
points to obtain good accuracy. The deformed triangle displayed in Fig. 22 is utilized for
studying the efficiency of the transformation schemes. One edge of the triangle is set as
ten percent of another edge. The accuracy of the transformation schemes proposed in this
work are exhibited for the projection points 1, 2 and 3 as seen in Fig. 22.

(0, 0.01, 0)

Proj. pt 2
Integration °
Domain Proj. pt 1*
(0,0,0) (0.1,0,0)
Proj. pt 3

Figure 22: A deformed triangle with different projection points. Projection point 1:
(0.05, 0.003, 0), Projection point 2: (0.05, 0.006, 0), Projection point 3: (-0.01, -0.01, 0)

Figs. 23 and 24 exhibit the accuracy performance of different transformation schemes for
the 1/R-type kernel (n = 1). For the radial-angular-R" schemes, N, is the sampling point
number in u and N, is the sampling number in v. For the other transformation schemes,
the sampling point number is N in both u and v. With employing a real number 7, the
performance of radial-angular-R™ transformation schemes can be improved efficiently. The
normalized integration domains in both (u,v) are utilized for the definition of 1 as shown in
Fig. 10, where 7 is determined by the integration area in the normalized integration domain,

given by
1 pou(uw)
77:/ / dvdu . (4.8.6.1)
0 Jur(u)

It is noticed that the integration limits of u are from 0 to 1 and the integration limits of v
are from v;(u) to vy (u), where 0 < vy(u) < vy (u) <1, as shown in (4.8.6.1) and Fig. 10. To
obtain better performance with a given number of sampling points in the source domain, u
domain integration requires more sampling points and v domain integration requires fewer
sampling points. Thus, the real number 1 between 0 and 1 is utilized to construct N, and
N, for the radial-angular schemes, and they are written as

N, =(1/n)N, (4.8.6.2)
N, =nN. (4.8.6.3)

In numerical solutions, the nearest integer value is utilized. With increasing N, one obtains

V/NuN, ~ N. (4.8.6.4)

Fig. 23 is dependent on the projection point 1 in Fig. 22. A scalar function is multiplied
inside the kernel. Figure 23(a) exhibits the relative accuracy dependent on v/N,N,, where
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n = 0.4 and |z| = 1072 have been selected. Figure 23(b) exhibits the relative integration
error with changing height, where the sampling order N = 40, n = 0.4 and /NN, = 40.
Fig. 24 shows the accuracy of the transformation schemes for the 1/R-type kernels depen-
dent on the height. Figure 24(a) provides the performance for projection point 2 in Fig. 22
and Fig. 24(b) gives the performance for projection point 3 in Fig. 22.
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Figure 23: Comparison for 1/R-type kernel (n = 1) of logarithmic relative integration error
§ for Fig. 22 projection point 1, g = A3 + Ag, n = 0.4. (a) Logarithmic relative integration
error § versus sampling order /N, N,, with |z| = 1072, (b) Logarithmic relative integration
error § versus log(|z|), with sampling order /N, N, ~ N = 40, (c) The legend for Figs. (a)
and (b).
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Figure 24: Comparison for 1/R-type kernel (n = 1) of logarithmic relative integration error
d versus log(|z|), with square root of sampling order product vN,N, ~ N = 40, n = 0.4,
g = A2+ X2. (a) Fig. 22, projection point 2, (b) Fig. 22, projection point 3, (c¢) The legend
for Figs. (a) and (b).
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Figs. 25 and 26 show the accuracy performance of the 2nd order transformation schemes
for the R/R3-type kernel (n = 2). Fig. 25 is related to projection point 1 in Fig. 22, a scalar
function and a vector cross product are multiplied inside the kernel. Figure 25(a) shows
the relative vector accuracy dependent on /N, N,, where 7 = 0.7 and the height was set as
|z| = 10~*. Figure 25(b) shows the relative vector integration error with changing height,
where n = 0.7 and the sampling orders are VN, N, =~ N = 40. Fig. 26 shows the accuracy
of the 2nd order schemes for R/R3-type kernels according to changing height. Figure 26(a)
is the performance for projection point 2 in Fig. 22 and Fig. 26(b) is the performance for
projection point 3 in Fig. 22.
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Figure 25: Comparison for R/R3-type kernel (n = 2) of logarithmic relative vector
integration error § for Fig. 22 projection point 1, with n=0.7, g = M\ + Xy, f =
(Mt + Aato + Asts) X R(A1, A2). (a) Logarithmic relative vector integration error & versus
square root of sampling order product /N, N,, with |z| = 10~%, (b) Logarithmic relative
vector integration error ¢ versus log(|z|), with sampling order VN, N, ~ N = 40, (c) The
legend for Figs. (a) and (b).

Figs. 27 and 28 exhibit the accuracy performance of the 3rd order transformation
schemes for R/R3-type kernel (n = 3). Fig. 27 is related to projection point 1 in Fig. 22,
a scalar function and a vector cross product are multiplied inside the kernels. Figure 27(a)
exhibits the relative vector accuracy dependent on v/ N, N,, where 7 = 0.6 and the height is
set as |z| = 1072, Figure 27(b) exhibits the relative vector integration error with changing
height, where the sampling orders are v/N,N, ~ N = 40 and n = 0.6. Fig. 28 shows the
accuracy of the 3rd order schemes for the R/R3-type kernels according to changing height.
Figure 28(a) is the performance for projection point 2 in Fig. 22. Figure. 28(b) is the
performance for projection point 3 in Fig. 22.
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Figure 26: Comparison for R/R3-type kernel (n = 2) of logarithmic relative vector
integration error 0 versus log(|z|), with sampling order N,N,~ N =40, n = 0.3,
g =N+ Xy, F = (Mt1+Aata+Ast3) x R(\1, o). (a) Fig. 22, projection point 2, (b) Fig. 22,
projection point 3, (c) The legend for Figs. (a) and (b).
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Figure 27: Comparison for R/R3-type kernel (n = 3) of logarithmic relative vector
integration error § for Fig. 22 projection point 1, with n = 0.6, g= A+ Ao,
= (Ait1 + Aato + Ast3) x R(A, A2). (a) Logarithmic relative vector integration error §
versus the square root of sampling order product v/N,N, and |z| = 1072, (b) Logarithmic
relative vector integration error § versus log(|z|), with sampling orders v/ N, N, ~ N = 40,
(c) The legend for Figs. (a) and (b).
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Figure 28: Comparison for R/R3-type kernel (n = 3) of logarithmic relative vector
integration error § versus log(|z|), with n = 0.6, sampling orders /N,N, ~ N = 40,
g = A2+ )Xo, f = (Mt1+Aata+A3t3) x R(A1, A2). (a) Fig. 22, projection point 2, (b) Fig. 22,
projection point 3, (c) The legend for Figs. (a) and (b).

4.8.7 Accuracy Analysis

The accuracy is stable for all the proposed transformation schemes in all orders (n =
1,2,3) for the outside projection points and regular source triangles, as seen in Figs. 9(b)
and (c). When n = 1, the new A-R-A-R1 transformation scheme achieves a better accuracy
for the 1/R-type kernel with decreasing projection height for Fig. 9(a). The proposed
R-A-R2 and R-A-R2-C transformation schemes achieve the same good accuracy in the case
of a vector cross product multiplied inside the kernels for the R/R3-type kernel. The
new A-R-A-R3, R-A-R3 and the Asinh-R3 transformation schemes obtain better accuracy
performance with decreasing projection height compared with the traditional R? transfor-
mation schemes. However, it can be proven that with decreasing projection height, the 2nd
order transformation schemes turn out to be more accurate, while on the other hand, with
increasing height, the 3rd order transformation schemes are more accurate. Consequently,
a strategy to obtain a good accuracy with changing height is that for the near couplings,
the 2nd order (n = 2) transformation schemes can be utilized when the projection height is
below a certain threshold, while, the 3rd order (n = 3) transformation schemes should be
applied when the projection height is above the threshold.

For deformed source triangles and outside projection points, as shown in Fig. 22,
the accuracy performance of almost all transformation schemes for R' kernels is stable
for changing height. However, for the inside projection point, some schemes turn out
to be unstable with decreasing height. In particular, the new cancellation schemes of
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this work exhibit still good performance. All of the 2nd order transformation schemes
are stable for the outside projection points for the R/R3-type kernels. However, for the
inside projection point, the R-A-R2, R-A-R2-C, R-A-R2-Z2 and R-A-R2-Z1 obtain good
performance with decreasing projection height, while, the A-D-R2-L transformation turns
out to be more accurate for increasing projection height. For R/R3-type kernels and also
outside projection points, the A-R-A-R3, R-A-R3, Asinh-R3 and A-D-R3-C schemes are
stable and accurate with decreasing height. For the inside projection point, the A-R-A-R3,
R-A-R3 and Asinh-R3 transformation schemes can obtain a better accuracy with decreasing
height compared with the other 3rd order transformation schemes. With increasing height,
they also exhibit good performance. The proposed transformation schemes can be optimally
selected for good accuracy performance dependent on the projection height and different
situations of the projection points. In many cases, it was shown that the A-D-R1-L from
[Botha, 2013] and the A-D-R1-S from [Botha, 2014] exhibit also very good performance.

4.9 Conclusion

Through the application of the variable separation method to the singularity cancella-
tion technique, a general solution was provided for the singularity cancellation transforma-
tion equations. Dependent on the settings of the constant parameters and the selection of all
the f(u) function, a new family of radial-angular- R™ transformation schemes were proposed.
For the 1st order transformation schemes, a new A-R-A-R1 transformation equation was
proposed and a better convergence for the 1/R-type kernel was achieved compared with the
other 1st order transformation schemes. For the 2nd order transformation schemes, the new
R-A-R2 and R-A-R2-C transformation schemes were proposed and the same good accuracy
as the R-A-R2-Z2 for the R/R3-type kernel was achieved. For the 3rd order transformation
schemes, the new A-R-A-R3, R-A-R3 and Asinh-R3 transformation schemes were proposed,
the better performance was achieved for the R/ R3-type kernel compared with the traditional
3rd order transformation schemes. Moreover, when applied to deformed triangles, the new
proposed transformation schemes still keep good performance for the corresponding types of
kernels. Depending on the different projection situations and the projection height, certain
singularity cancellation techniques can be selected to achieve good performance.
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5 Hierarchical Basis Functions in the Method of Moments
for the Surface Integral Equations

The hierarchical basis functions are utilized to discretize the surface electric and mag-
netic currents. The hierarchical spaces combine the low order (LO) [Ismatullah and Eibert,
2009, Rao et al., 1982] and the higher order (HO) [Eibert, 2005] vector basis functions.
The LO basis functions can accurately simulate the surface currents with relatively dense
mesh with respect to the wavelength. For geometrical edges and corners, LO is efficient
and accurate with dense meshes. The HO basis functions are adapted to coarse meshes
and they are able to obtain efficient and accurate performance for smooth geometrical
surfaces. Moreover, compared to LO, HO produces more unknowns for each single mesh
element. However, with coarse mesh size, the number of the mesh elements is reduced. Then,
fewer total unknowns are achieved by HO to obtain the same accuracy as LO for surface
integral equations (SIE) [Chiang and Chew, 2006a,b, Eibert, 2007, Ewe et al., 2004, Liu
and Chew, 1990, Menshov and Okhmatovski, 2014, Nie et al., 2005, Ramahi and Mittra,
1991, Tong and Chew, 2012, Usner et al., 2006, Yla-Oijala et al., 2005]. The LO basis
functions are constructed by the 1st-order div conforming space, where the Rao-Wilton-
Glisson (RWG) [Rao et al., 1982] basis functions are utilized. The HO basis functions
are constructed by the 1st-order rotational space, the 2nd-order div conforming space,
the 2nd-order rotational space and also the 3rd-order div conforming space in this work.
The hierarchical basis functions are implemented for MoM [Harrington, 1993, Klopf et al.,
2012], where the self-coupling and mutual couplings are computed with adaptive singularity
cancellation techniques [Ismatullah and Eibert, 2008].

5.1 Introduction

The method of moments (MoM) takes advantage of the Galerkin process to obtain
system matrices. Based on the Huygens’ principle, the outside scatterings can be calculated
from the surface currents. So an accurate computation of the surface currents is important
to obtain accurate fields in the outside space [Martini et al., 2008]. To obtain the surface
electric and magnetic currents, the boundary surfaces of arbitrarily shaped objects are
descritized into meshes. The surface currents are expanded into the product of the basis
functions and the unknown coefficients, where the unknown coeflicients can be computed
through iterative solvers and the basis functions are constructed by the geometrical infor-
mation of the meshes.

The hierarchical vector basis functions [Sun et al., 2001] are utilized in this work. LO
contains the RW G basis functions and it is widely applied to the simulation of electro-
magnetic fields and surface currents. However, LO requires the mesh element size below
A/8 to obtain accurate results, where X is wavelength of the electromagnetic waves in the
corresponding material. This results in a large number of unknowns. With denser mesh
and increased number of unknowns, more RAM and computational time are required to
obtain accurate results. However, the accuracy of LO simulations improves slowly with the
increasing number of unknowns.
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The HO basis functions are introduced to reduce the total number of unknowns and the
desired good accuracy is also obtained. With HO together with L.O, the average mesh size
of the object can be extended up to A/2. As a result, fewer mesh elements are required and
the total number of unknowns is tremendously reduced, even though each single mesh cell
produces more coefficients. Through the combination of LO and HO, the hierarchical basis
functions are fully implemented for MoM. The performance of hierarchical basis functions
is discussed in detail for the surface currents and the outside scatterings in this chapter.

5.2 Definitions of the Hierarchical Vector Basis Functions

The hierarchical vector basis functions are defined based on the geometrical information
of the mesh elements. The construction of the hierarchical basis functions is node indexed
and the node orders represent the directions of the vector basis functions. To obtain accurate
simulation results, the fields and currents can be expanded with the hierarchical basis
functions, in both the div conforming and also the rotational spaces.

The div conforming and the rotational spaces are 2-D hierarchical basis functions for
MoM, as both spaces are defined on the surface mesh. The first order div conforming space
and the first order rotational space are edge-related, where the edge-related basis functions
are defined with two nodes. The second order div conforming space is face-associated,
where the face-associated basis functions are defined with three nodes. The second order
rotational space contains both edge-related and face-associated basis functions. The third
order div conforming space is face-associated.

A good condition of the system matrix is required to obtain a faster convergence of
the iterative solvers. The nearly orthogonal hierarchical basis functions [Sun et al., 2001]
defined on the triangular mesh can improve the condition of the system matrix. The nearly
orthogonal hierarchical basis functions ay, are initialized for the field simulations [Chew
et al., 2001, Jin, 2002, Sun et al., 2001], then the nearly orthogonal basis functions f,
[Chew et al., 2001, Eibert and Hansen, 1995b, Ismatullah and Eibert, 2009, Rao et al.,
1982] for MoM are defined based on the tangential counterpart of a, and written as

fo=0Xa,, (5.2.1)
where 7 is the surface unit normal vector pointing outward the boundary surfaces. The
nearly orthogonal hierarchical basis functions are constructed by all of the sub-spaces.

The definitions of hierarchical basis functions are shown in Table 1, the general format

of the basis functions can be presented as [Ismatullah and Eibert, 2009]

u(Ar, A2)tia 4+ v(Ar, A2tz + w(A, Ao)tis

fn= 5 A , (5.2.2)

where A1, Ay and A3 are the simplex coordinates and Ay + As + A3 = 1. u, v and w are
polynomials of A\; and As. The orders of the simplex coordinates in u, v and w determine
the orders of the hierarchical basis functions. A is the area of the element. The vector
tij (i,j = 1,2,3; 4 < j) is the constant edge vector of the element. The divergence and the
curl properties of the basis functions are also computed, they are constructed by the simplex
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coordinates and the gradients of the simplex coordinates. The detailed definitions of the
constant edge vectors, the gradients of the simplex coordinates and their corresponding
relationships are shown in Fig. 29. The definitions of the edge vectors in Fig. 29 are based
on the local node orders. However, when the basis functions, their divergence and curl
properties are implemented into mutual couplings, the edge-related basis functions have to
follow the global node orders of the edges, the face-associated basis functions also have to
follow the global node orders of the face. The face unit vector in Fig. 29 is the local unit
vector based on the local node orders. In MoM, the surface unit vector points outside the
envelope. When the local unit vector is in the same direction as the global surface unit
vector, it can be directly applied. Otherwise, the direction of the local unit vector has to
be inverted for the mutual couplings in MoM.

tlZ =—ﬁXV13 =ﬁXV12

V)'3 Vll VAZ

,
|

t23 = —-nxX Vll

2

Figure 29: Triangular element construction of the local simplex coordinates for the definition
of the vectorial representation of the basis functions.

The distributions of the first order div conforming space, the first order rotational
space and the second order div conforming space can be referred to [Ismatullah and Eibert,
2009]. The distributions of the second order rotational space and the third order div
conforming space inside the mesh elements are shown in Fig. 30 and Fig. 31 correspondingly.
Figure 30(a) shows the edge-related basis functions in the second order rotational space with
respect to the edge 23. It is clear that at the common edge of the adjacent elements,
the orthogonal components of the basis functions are continuous, while the tangential
components are not. Figure 30(b) shows the face-associated basis function in the second
order rotational space. It shows that the orthogonal component of the basis functions
disappear, only the tangential components are distributed along the edges of the element.
All of the basis functions in the third order div conforming space are face-associated and
they are shown in Fig. 31. Figure. 31(a) shows the distribution of f,,, Fig.31(b) shows
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Table 1: Hierarchical Basis Functions and Properties Within the Triangle

MoM Vector Basis Functions f,, V-fa. Vxf,=—[V-(axf,)n
Fo | AX(MVA2 =22V A1) Mbigiaata -4 0
G'| Fi | Ax(MVAs=AsV A1) “tiziaaten 1 0
Fo | AX(A2VAs—AsVA2) otz Astis -1 0
Fs | AX(A VA2 A2V A1) ESLAEER 12N 0 2(VA1 - VA2)h
RY| £, | ax(MVAs+AsVAL) iz Agteg 0 2(VA; - VAs)h
Fs | Ax(A2VAs+AsVA2) “Aebiziagtiy 0 2(VAz - VAs)h
n x ()\1)\2V}\3 (—)\1V)\2 . V>\3
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the distribution of f;5 and Fig.31(c) shows the distribution of f,,. It can be seen that the
orthogonal components of the basis functions in the third order div conforming space vanish
at the boundary edges of the elements, only the tangential components are distributed along
the edges.

The unknown coefficients for the basis functions determine the total number of the
unknowns for MoM. The products of the basis functions and the corresponding coefficients
can determine the distribution of the surface currents inside the element. For each point
in the element, the summary of all the hierarchical basis functions multiplied with the
corresponding coefficients can determine the vector electric and magnetic currents. For the
basis functions shown in Fig. 30(a), the coefficients are dependent on the corresponding
edge. For the basis functions in Fig. 30(b) and in Figs. 31(a), (b) and (c), the coefficients
are dependent on faces. With increasing frequencies, more accurate simulations can be
obtained for electric and magnetic currents inside elements.
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Figure 30: Graphical representation of basis functions in the the 2°4 order rotational space:
(a) 274 order, edge-related, rotational space, (b) 27d order, face-associated, rotational space.
The basis function in (a) are related to the node order 12 of the two adjacent triangles.
The basis function in (b) are face-associated with the node order 123. The 2" order of
rotational space together with the 2°9 order of div conforming space construct the complete
2nd order spaces.
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Figure 31: Graphical representations of basis functions in the the 34 order div conforming
space: (a) fyo in the 3" order, face-associated, div conforming space, (b) f,3 in the 3
order, face-associated, div conforming space, (c) fy, in the 3'¢ order, face-associated, div
conforming space. The basis functions are all face-associated with the node order 123.
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5.3 Numerical Results of MoM for Perfect Electric Conductor (PEC)
Objects

To testify the accuracy of different orders of hierarchical basis functions and mutual
coupling matrices assembly in BI, several numerical simulation results are shown in this
section. A convincing illustration is to utilize a PEC sphere as a testing case, where the
scattering of an input plane wave is shown. The well known analytical RCS is the MIE
scattering [Balanis, 1989], where the RCS is computed analytically. Good matching of RCS
between the analytical solution and the numerical method verifies the efficacy of hierarchical
basis functions for BI. For higher frequencies and finer meshes, more unknowns have to be
solved. Moreover, Bl applications are shown based on hierarchical basis functions for very
large scale simulations through the RCS of PEC bomber and the PEC Flamme aircraft
models. As Oth order of BI has been verified in many published articles [Eibert, 2007,
Eibert and Hansen, 1997, Tzoulis and Eibert, 2005b], it can be utilized as a reference for
BI with HO. The efficiency of BI is presented based on different orders of hierarchical basis
functions. The Oth order is the first order div conforming space, 1st order adds the first
order rotational space, 2nd order adds the second order div conforming space, 3rd order adds
the second order rotational space, 4th order adds the 3rd order div conforming space. The
sphere simulations were performed on a PC with Intel(R) Core(TM)2 Quad CPU Q9550
@ 2.83 GHz processor, installed memory (RAM) 16.0 GB and 64-bit operating system.
The simulations of the B2 and the Flamme aircrafts were operated on a workstation with
Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz (2 processors), installed memory (RAM) 96.0 GB
and 64-bit operating system. All simulations were computed on one core.

5.3.1 PEC Sphere

The PEC sphere is a good example to testify the efficiency and efficacy of numerical
solutions to the surface integral equations based on the hierarchical vector basis functions.
The symmetrical property of the sphere provides a privilege. The input plane waves are
equivalent from any directions. So the input plane wave in the PEC spherical model
propagates along the 4z axis, the polarization of the electric field is along the x axis,
the amplitude of the electric field is 100 V/m. The efficiency of the hierarchical basis
functions for MoM is represented by the performance of the results, including the run time,
the required peak RAM for the PC, the surface current distributions and also the accuracy
of the radiation power in space. The efficacy of MoM is represented by the accuracy of the
simulation results. For studying the accuracy of the vector hierarchical basis functions, the
MIE scattering [Balanis, 1989] of the PEC sphere is utilized. It is an analytical solution
to the Bi-RCS of the spherical PEC object with plane input electromagnetic waves. For
different frequencies, the root mean square (RMS) can show the accuracy of the final
simulation results for the corresponding input waves.

The simulations of the PEC sphere are computed by a 64 bit workstation with processor
X 5690 @ 3.47 GHz and RAM 192 GB. The same modeling mesh was used for all orders
of hierarchical basis functions. The mesh size was set to 0.03 m, the mean edge length is
3.422 cm, with minimum edge length 2.304 cm and maximum edge length 5.406 cm. For
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Oth order, the total number of unknowns is 75012. The run time was 19685.5 s. For 1st
order, the total number of unknowns is 150 024. The run time was 25483.9 s. For 2nd order,
the total number of unknowns is 250 040. The run time was 30192.1 s. For 3rd order, the
total number of unknowns is 375 060. The run time was 39416.7 s. For 4th order, the total
number of unknowns is 525084. The run time was 47 955.7 s.

The numerical RCS results are compared with the MIE scattering of the PEC sphere.
The mesh size of the PEC sphere is roughly from A/7 to A/3 in free space. The mean
edge length is about A/5. Compared with LO, the number of unknowns is much larger for
HO. However, more accurate scattering results can be obtained by HO as shown in Fig. 33.
The detailed accuracy analysis is studied for different orders of basis functions in the later
chapters.
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Figure 32: Surface electric current distribution of the PEC sphere @ 2 GHz.
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Figure 33: Bistatic RCS of PEC sphere @ 2 GHz on zz cut half plane (¢ = 0°).
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5.3.2 PEC Stealth Aircraft Model

The PEC stealth B2 aircraft model simulation is an application of MoM for a large scale
computation. Simulations of the PEC stealth B2 are computed by a 64 bit workstation with
processor X 5690 @ 3.47 GHz and RAM 192 GB. The PEC stealth B2 aircraft is located in
the zz plane, with nose heading along the +z axis, as shown in Fig. 34. The PEC stealth B2
aircraft is positioned in free space, where the permittivity is €, = 1.0 and the permeability
is g = 1.0. The simulation frequency is 1.5 GHz. The incident plane wave propagates
towards —z direction, with electric field E, = 100 V/m. To visualize invisibility effects of
the PEC stealth B2 Aircraft, the reflected power towards back to the incoming plane wave
direction can be seen from the numerical results.

Figure 34 shows the real components of the equivalent surface electric current of the
PEC stealth B2 aircraft. The RCS of the PEC stealth B2 in different cut planes are shown
in Figs. 35 - 37. The normalized polar RCS of the PEC stealth B2 in different cut planes
are shown in Figs. 38 - 40. The PEC stealth B2 aircraft is simulated through BI with Oth,
1st, 2nd, 3rd and 4th order of hierarchical basis functions. As the efficacy of Oth order has
been verified with fine mesh with respect to the wavelength, here it is used as a reference.
The RCS comparison shows that most of the input power goes over the PEC stealth B2.
The reflected power in the inverse direction of the input wave is very low.

The simulation data summary for the PEC B2 is shown in Table 2. TB is the type
of bases, D is the mesh size set for the model, D is the mean mesh edge length, D,,;, is
the minimum mesh edge length, D,,4, is the maximum mesh edge length, N is the total
number of unknowns, N is the number of BI electric current unknowns, N, is the number
of BI magnetic current unknowns, L is the number of levels for MLFMM, PM is the peak
memory consumption and T is the run time of the simulation.

Table 2: The Simulation Results for the PEC B2

TB D D | Dmin | Dmaz N N;s | Ny |[L| PM T
(m) | (cm) | (cm) | (cm) (MB) (s)
R! 0.01 | 1.009 | 0.253 | 2.172 | 17700 | 17700 | 0 | 4 | 305.215 | 39846.6
R'+ G 0.01 | 1.009 | 0.253 | 2.172 | 35400 | 35400 | 0 | 4 | 975.574 | 45093.3

R'+G'+R? | 0.01 | 1.009 | 0.253 | 2.172 | 59000 | 59000 0 | 4| 2464.742 | 51057.8

R'+G' 0.01 | 1.009 | 0.253 | 2.172 | 88500 | 88500 | 0 | 4 | 5313.852 | 63784.1
+R*+G*

R'+G' 0.01 | 1.009 | 0.253 | 2.172 | 123900 | 123900 | 0 | 4 | 10107.25 | 75945.1
+R*+G*+R®
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Figure 34: PEC stealth B2 real components of the surface current distribution @ 1.5 GHz.
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Figure 35: Bistatic RCS of PEC stealth B2 @ 1.5 GHz on zy cut plane (¢ = 90°).
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Figure 36: Bistatic RCS of PEC stealth B2 @ 1.5 GHz on zz cut half plane (¢ = 0°).
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Figure 37: Bistatic RCS of PEC stealth B2 @ 1.5 GHz on yz cut half plane (¢ = 90°).
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Figure 38: Normalized polar bistatic RCS of PEC stealth B2 @ 1.5 GHz on xy cut plane.
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Figure 39: Normalized polar bistatic RCS of PEC stealth B2 @ 1.5 GHz on zz cut plane.
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Figure 40: Normalized polar bistatic RCS of PEC stealth B2 @ 1.5 GHz on yz cut plane.
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5.3.3 PEC Flamme

The PEC Flamme simulation is an application of BI for very large scale computation.
The PEC Flamme is located in the zy plane, with nose heading along the +x axis, as
shown in Fig. 41. The Flamme is positioned in free space. The permittivity is €. = 1.0
and the permeability is u, = 1. The simulation frequency is 1.0 GHz. The incident plane
wave propagates towards —x direction with polarized electric field E, = 100 V/m. The
PEC Flamme is simulated through BI with different orders of hierarchical basis functions
for comparisons.

The real components of equivalent surface electric currents on the PEC Flamme are
shown in Fig. 41. The RCS of PEC Flamme in different cut planes are shown in Figs. 42 - 45.
The normalized polar RCS of the PEC Flamme in different cut planes are shown in
Figs. 46 - 48. The PEC Flamme is simulated through BI with Oth, 1st, 2nd, 3rd and
4th order of hierarchical basis functions. As the efficacy of LO with finer meshes has been
verified, here it is used as a reference. The RCS comparison shows that most of the input
power goes over the PEC Flamme.

The simulation data summary for the PEC Flamme is shown in Table 3. TB is the
type of bases, D is the mesh size set for the model, D is the mean mesh edge length, D,.n
is the minimum mesh edge length, D,,4, is the maximum mesh edge length, N is the total
number of unknowns, N is the number of BI electric current unknowns, N, is the number
of BI magnetic current unknowns, L is the number of levels for MLFMM, PM is the peak
memory consumption and T is the run time of the simulation.

Table 3: The Simulation Results for the PEC Flamme

B D D Dimin | Dimas N N Nu | L PM T
(m) | (cm) | (cm) | (cm) (MB) (s)

R 0.02 | 1.860 | 0.405 | 3.766 | 203619 | 203619 | 0 | 6 | 3413.055 | 393879.1

R'+G* 0.07 | 5.924 | 0.405 | 15.216 | 33744 | 33744 0 | 4| 1006.406 | 35102.7

R'+G*+R? | 007 | 5924 | 0.405 | 15.216 | 56240 | 56240 0 | 4 | 2504.887 | 43477.0

R'+G? 0.07 | 5.924 | 0.405 | 15.216 | 84360 | 84360 0 | 4| 5343.914 | 49153.6
+R* + G?

R'+G? 0.07 | 5.924 | 0.405 | 15.216 | 118104 | 118104 | 0 4 | 10140.52 | 57656.8
+R*+ G+ R®
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Figure 41: PEC flamme real components of the surface current distributions @ 1.0 GHz.
The simulation is based on Oth order with dense mesh element size.
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Figure 42: Bistatic RCS of PEC flamme @ 1 GHz on xy cut plane (9 = 90°).
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Figure 43: Bistatic RCS of PEC flamme @ 1 GHz on zz cut half plane (¢ = 180°).
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Figure 44: Bistatic RCS of PEC flamme @ 1 GHz on xz cut half plane (¢ = 0°).
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Figure 46: Normalized polar bistatic RCS of PEC stealth Bomber @ 1 GHz on xy cut plane.
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Figure 47: Normalized polar bistatic RCS of PEC stealth Bomber @ 1 GHz on xz cut plane.

Figure 48: Normalized polar bistatic RCS of PEC stealth Bomber @ 1 GHz on yz cut plane.

270

90 4B

==== ORDER 0-D
----- ORDER 1
==== ORDER2
........ ORDER 3
--=-= ORDER4

-=-—= ORDER 0-D
----- ORDER 1
====  ORDER?2
........ ORDER 3
----  ORDER4

270



86



6 The Finite Element Method

The finite element method (FEM) [Eibert and Hansen, 1996a, Jin, 2002] is a numerical
technique to obtain an approximation of the electromagnetic field values in objects with
enclosed boundary surfaces. As mentioned in Chapter 2 and shown in Fig. 1, FEM focuses
on field computations on the enclosed envelope of the FE-BI object A; and inside the
dielectric volume V,. V, is the volume of the dielectric materials inside A,. Since the
electric field vanishes inside PEC volumes. FEM performs the field simulations in the PEC
volume with dielectric materials in V, only. On the outside boundary surfaces, the FEM
has to be compatible with the BI. The basis functions for the FEM have to follow the same
node order as in the BI. Moreover, the model simulated by FEM may consist of different
disconnected components. In this chapter, the total volumes and the enclosed envelopes of
the components are represented correspondingly by V, and Ay.

6.1 Variational Formulation

To obtain the formulation of FEM in the homogeneous and isotropic dielectric ma-
terials, the variational method derives from the Maxwell equations for the time-harmonic
fields. With the time factor e/*! suppressed, the Maxwell equations are written as

V x H(r) = jweoe (1) - E(r) + J4(r), (6.1.1.1)
V x E(r) = —jwuop,(r) - H(r), (6.1.1.2)

where the corresponding material properties are considered. €y and pg are the material
properties in free space, Jq is the impressed electric current density inside V. The €. and
i inside V, are the permittivity and the permeability of the material, they are assumed as
constant complex values in a possibly lossy, inhomogeneous and anisotropic material. They
are defined as

€xx  €ry €Exz Pz oy  Hzz
€T(r) = €Eyz  €Eyy €Eyz , ﬂr(’l‘) = Pyz  Hyy  fhyz . (6133)
€0 €zy €z Bex  Hzy Hzz

The permittivity and permeability of the inhomogeneous and anisotropic material have to be
considered when achieving the variational formulation from the vector Maxwell equations.
From (6.1.1.2), it leads to

V x (5,1 (r) -V x E(r)) = —jwuV x H(r). (6.1.1.4)

By substituting (6.1.1.1) into (6.1.1.4), the wave equation for the electric field E turns to
be

V x (A71(r) -V x B(r)) — k% (r) - E(r) = —jkoZoJ a(r), (6.1.1.5)

where kg = w,/lip€p is the wave number in free space and Zy = 4 /’;—g is the wave impedance

of free space.
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Within the variational method, the ad-joint electric field Eq4q is utilized. A complex-
valued scalar product functional based on (6.1.1.5) is formed as

F(Bat. B [ [Buar)-(9 5 (1) -9 5 Blr)
— K2Eo(r) - & (r) - E(r) + jkoZoEaa(r) Jd('r)] dv (6.1.1.6)

and the real field E as well as the ad-joint filed E,; are stationary in the solution. Based
on the first vector Green’s theorem [Jin, 2002]

///aa(v x uV X b)dv:///a[u(v x a)-(Vxb)|dv —ﬂu(a x V xb)-nds, (6.1.1.7)

Aq

when setting @ = Eq4, v = 1, b = E and substitute (6.1.1.7) into (6.1.1.6), the equation
turns to be

F(Eoa, E) = / / / (VX Baa(r)) - iy (1) - (V x E(r)) — KeEqa(r) - &(r) - E(r)

+ jkoZoEqa(r) - Ja(r)]dv +jkOZO#Ead(T) ~(H(r) x a(r))ds, (6.1.1.8)
Aq

where 7 is the surface normal unit vector pointing out of V,. The surface integral on Ay
replaces the electric field E with the magnetic field H. Here the boundary continuity
conditions are utilized for E and H on Ay.

Compared with the real-valued functional formulation based on the Hermitian inner
product, the generalized complex-valued functional formulation is achieved without claiming
the uniqueness of the solution. However, there is no problem for this case since a clear
formulation of the field problem is presumed. It is noticed that the complex scalar product
(6.1.1.8) is applicable to the lossy materials, where the real-valued scalar product can not
arrive.

In (6.1.1.8), the functional demonstrates that the fields described in the formulation
only focus on the inside volume V, without considering the fields in the outside space.
However, it guarantees that the fields linking to the outside space on A, satisfy the boundary
continuity conditions through the surface integral. The magnetic field H utilized in the
surface integral promotes (6.1.1.8) into a dual variational formulation. However, inside V,
only the E field is taken into account. In most cases, the electric field is the main interest
in most field problems. Moreover, the F field is zero in the ideally electrically conductive
structures, as displayed in Fig. 1, the object contains PEC inside the volume. It leads to a
smaller number of unknowns in the FE-discretizations.

The variational formulation can also utilize the electro-dynamic potentials to obtain
the system matrices. Both the magnetic vector potential and the electric scalar potential are
utilized. Compared with the analytical solutions, the variational formulation is more com-
plicated than the direct field solution. The main difficulty arises from the non-uniqueness
of the potential variables. That means that additional calibration methods are required for
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the variable determinations and an unnecessarily increasing number of unknowns have to be
computed in FEM. The calibration formulation for the electro-dynamic potentials contains
an advantage that there are no jumps at the boundaries between different materials. Thus,
it does not require treatments for cracks along with the materials. However, to calculate
the electric and magnetic fields, the differentiation of the potentials must be carried out.

6.2 Finite Element Discretization

The concept of finite elements relies on the decomposition of the corresponding volume
V, into a series of finite spatial sections. Appropriate basis functions are utilized to represent
the unknown fields inside the volumes.

6.2.1 The Mathematical Foundation for the Method of Finite Elements

To compute the re-constructed fields accurately and efficiently, the selection of the
mathematical variables is important for the method of finite elements, where the variables
are generally dependent on the geometrical configurations of the mesh cells. The solution
of the fields can be referred to the mathematical concepts described by [Nedelec, 1980] as

the mesh section (tegrahedron, hexahedron, ...)
the boundary of K
KUo0K

a space of polynomials defined on K with dimension N

o8
Qv A==

Linear functionals on P with degree of freedom N
L*(K) Hilbert space of square integrable functions defined on K
H(curl) {u € (L*(K))3|V x u € (L*(K))3}

where u is an arbitrary vector function. For the complex-valued scalar variational formula-
tion, vector variables E, H and V x E are utilized. Then the H(curl) space is considered
for the solution of finite elements.

The FEM is able to obtain an accurate and unique solution for the system equations,
where the system equations derive from the variational formulation. The orthogonality or
near orthogonality of the vector basis functions can further improve the efficiency of FEM
with obtaining faster convergence for iterative solvers. The achieved better performance
of FEM mainly relies on the linear independence of the vector basis functions, where the
orthogonality or near-orthogonality tremendously reduces the linear dependence of the basis
functions. For each finite element in the variational formulation, the interpolation, defined
as [[u € P, is represented by

Glu—JJuw =0 YeQ (6.2.1.1)

to demonstrate the uniqueness. That means for any linear relationships on [[u € P, there
is a solution u € (L?(K))? satisfying (6.2.1.1), where the solution is unique in this case.
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The FEM with vector basis functions is more accurate and more efficient than the
traditional methods with scalar basis functions for vector components. The scalar approach
requires the interpolation of the scalar node values. When aiming at simulations for
Cartesian vector components, the approach turns out to be ineffective. The electric field
and magnetic field utilized in the variational formulation are field vectors belonging to the
Hilbert space H(curl). They are also compliant with the Hilbert space L?(K). To satisfy
this condition, the tangential component of the vector [[; w defined on K; and the vector
[, v defined on K3 must be the same at the common area, which means 0K; = 0Ko.
Thus, the basis functions defined in the FE method satisfy the continuity condition on
the boundaries. It results in the establishment of the Maxwell equations integrated in
the volume for electric field computations. The tangential continuity condition is required
firmly. However, the FEM does not require the normal components of the basis functions to
be continuous at the boundary 0K, even if there is no material change. It avoids spurious
modes in the FE solution.

A suitable operator (; can determine the degrees of freedom for the basis functions in
FEM. It can be selected precisely to avoid the spurious modes. The definitions of basis
functions are generally referred to the tangential components of the vector elements. The
basis functions are always classified as edge-related, face-associated and volume-associated
forms with the corresponding degrees of the interpolations.

6.2.2 The Discretization of the Field Vectors

To solve the fields through the variational formulation in the FEM, the general starting
step is the discretizations of the electric field E, the magnetic field H and also the ad-joint
electric field E 4. All fields are expanded into a series of polynomials constructed by real
vector basis functions «, defined in the FE cells multiplied with the corresponding unknown
coefficients. In FEM, the material is considered homogeneous in each single cell. So the
fields are expanded as

N

E(r) =) unan(r), (6.2.2.1)
nj;l

H(r) =) inon(r), (6.2.2.2)
n];l

Eqq(r) =) uplan(r). (6.2.2.3)
n=1

As the time factor e/“! is suppressed in the variational formulation, the expansion of the
fields describe the field amplitudes in the corresponding cells.

In the field expansions from (6.2.2.1) to (6.2.2.3), the vector basis functions a, are
the same for the electric field E and the magnetic field H. The basis functions are defined
through the dimensional parameters of the cells. Ng is the number of the unknowns for
the electric field and Ng is the number of the unknowns for the magnetic field. In FE,
Ng and Np are not required to be the same. The electric field and the ad-joint field are
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utilized in both terms of the volume and the surface integrals, however, the magnetic field
is only utilized in the term of the surface integral. To obtain high efficiency, the electric and
the magnetic fields are expanded independently. As a result, independent coefficients are
utilized. u,, and 7, are independent coefficients for the electric field and the magnetic field
correspondingly. Coefficients u2? for the ad-joint electric field can be deleted through the
differential process under the condition of minimizing the error of the variational formulation
to obtain the unknowns.

6.2.3 The Discretization of the Integral Space

In EM simulations, the method of finite elements is required to be effective and efficient
for arbitrarily shaped components. The arbitrarily shaped components can be constructed
by different materials. To detailed describe the arbitrary geometrical configurations, dif-
ferent types of meshes can be utilized. In this work, the tetrahedral mesh is utilized for
the volume discretizations and the triangular mesh is utilized for the boundary surface
discretizations. The tetrahedral and triangular meshes are flexible and effective to match the
arbitrarily shaped components. For complicated structures, the mesh size of the tetrahedra
and triangles have to be reduced for more accurately discretized objects. However, with
the decreasing mesh size, larger numbers of tetrahedra and triangles are required. So the
total number of unknowns is increased, more computational time and more RAM are also
required for EM simulations. Moreover, compared with the wavelength A, the mesh size
of tetrahedra and triangles is required to be less than A/8 for the low order (LO) basis
functions. With higher order (HO) basis functions, the mesh size can be extended up to
A/3 with the same good accuracy achieved as in LO.

The vector basis functions, including LO and HO, are defined based on the geometrical
information of tetrahedra and triangles. The tetrahedron and the triangle mesh cells are
shown in Fig. 49. Figure 49(a) shows the construction of a single tetrahedron. The numbers
0, 1, 2 and 3 are the local node numbers. Based on the local node numbers, the edge vectors
ty; (,¢=0,1,2,3; p < q) are defined. The direction of the edge vectors are always from the
lower node number p pointing towards the higher node number ¢. A, (p =0,1,2,3) is the
face vector with respect to the corresponding node number, pointing inside the tetrahedron.
The norm |A,| is the area of the p-th face of the tetrahedron. 7 is the position inside the
tetrahedron, hy, (p =0,1,2,3) is the projection height of r to the corresponding p-th face.
Figure 49(b) shows the construction of a single triangle. The numbers 1, 2 and 3 are the
local node numbers. The edge vectors t,, (p,q =1,2,3; p < q) are defined by the local node
numbers, the directions are from the lower node number p pointing towards the higher node
number ¢q. 7, is the position inside the triangle, h, (p = 1,2,3) is the height of 4 to the
corresponding p-th edge.

Tetrahedra are utilized for the volume integral terms in FE. The triangles are utilized
for the surface integral term in FEM and also for the BI. Assuming that the triangle in
Fig. 49(b) is a boundary surface triangle and it is one of the faces of the tetrahedron
in Fig. 49(a), when 7 tends to be 74, the FE basis functions defined in the tetrahedron
have to be compatible with the BI basis functions defined by the triangle. To obtain the
compatibility between FE and BI, the basis functions of FE have to maintain the same global
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Figure 49: The definition of subscripts based on a single tetrahedron (a) and the surface
boundary triangle (b). Every vertex index can be used as a row index m or as a column
index n.

node order as the basis functions of BI. So the tetrahedral FE basis functions have a format
represented by subscripts k = (i,5) and | = (r,s,t) as illustrated in Fig. 49. As elements
of matrices need row and column positions, the subscripts (m;,m;) and (m,, ms, m;) are
introduced for row basis functions and subscripts (n;,n;) and (n,,ns,n¢) are assigned to
column basis functions. In this work, (m;,m;) and (n;,n;) contain the global order of
local node numbers for edge-related basis functions, whereas (m,, ms, m;) and (n,,ns,n;)
represent the global order of nodes for face-associated basis functions, where k = (4, ) and
[ = (r,s,t) store the local node number of finite elements. As shown in Fig. 49, (m;,n;)
always represent the starting point of the edge, (mj,n;) represent the ending point of the
edge. (mgy,n;), (ms,ns), (my,ny) represent the node order of the triangles. Practically,
the local node numbers are arrayed in the unique global order with respect to the BI and
assigned to the corresponding subscripts for the FEM.
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6.3 The Definition and Properties of the FE Parameters

The vector basis functions utilized in the FEM are defined by scalar and vector param-
eters of the tetrahedron in terms of volume integrals and also defined by parameters of the
triangle in the term of the boundary surface integral. In the variational formulation of FE,
the system matrices contain the integral of the volume inner product of the field curls and
also the inner product of the fields in both volume and boundary surface integrals. In this
work, the simplex coordinates of tetrahedra and triangles are utilized. The basis functions
for field expansions are defined by simplex coordinates and also their gradients. The curls of
the fields require the curls of the basis functions. The curl properties of the basis functions
can be achieved through the cross product of the gradients of the simplex coordinates. In
the variational formulation, the integral properties of the simplex coordinates, the edge
vectors and also the face vectors are studied based on Fig. 49 for the FEM.

e The Fundamental Parameter Definitions of the Tetrahedron and Triangle.

1 local node index
h; the height of the inside point relative to node i
Vr  volume of the tetrahedron
A7 area of the triangle
t;; local edge vector from node 7 to node j
r; the vector position of node i
A; normal surface area relative to node 4 pointing inward the tetrahedron
7 the vector postion inside the tetrahedron

rs the vector position inside the triangle

e Definitions of the Simplex Coordinates for Tetrahedron and Triangle Finite Elements

The definitions of the simplex coordinates for the tetrahedron are utilized to
locate the positions inside the tetrahedral volume. All of the simplex coordinates
provide a real value between 0 and 1 inside the tetrahedron. As the inside point
7 can subdivide the tetrahedron into four sub-tetrahedra, the volume of the sub-
tetrahedron is represented by V; with respect to the corresponding node i. Then the
simplex coordinate \; is defined as

A= Vi(r)/VT, (Z =0,1,2, 3) (631)
and

AFAMFA+A3=1, (6.3.2)

T = AT0 + AM7T1 + Aaro + A3r3. (633)

The properties of the simplex coordinates (6.3.2) and (6.3.3) demonstrate a linear
interpolation based on the vertices of the tetrahedron.
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The definitions of the simplex coordinates for the triangle are similar to the
tetrahedron. The inside point 7, subdivides the triangle into three sub-triangles. The
area of a sub-triangle is represented by A; and it is relative to the corresponding
node 7. The simplex coordinate A; is defined as

>\i = Ai(r)/ATa (Z = O’ 17 27 3)3 (634)

where
M+ A+ A3=1, (6.3.5)
Ts = A171 + Aar2 + A37s. (6.3.6)

From the definitions of the simplex coordinates, it is seen that the degrees of freedom
for the triangle are fewer than for the tetrahedron. As a result, the basis functions
and unknowns are more in a single tetrahedron than in a surface triangle. However,
the basis functions have to be compliant based on the boundary continuity conditions.

The Integration Properties of the Simplex Coordinates for the Tetrahedron and the
Triangle

The simplex coordinates are utilized to determine the point positions inside the
finite elements. The integration properties of the simplex coordinates within the
finite elements are important. The system matrices determined in the variational
formulation require the volume and surface integrals of the simplex coordinates. The
integration property of the simplex coordinates for the tetrahedron [Lapidus and
Pinder, 1982] is shown as

mo \ M1 \ Mo \ ms molml!mg!mgl
Ap AN A B dy = 6V , 6.3.7
///VT 0 Az e (mo + my + mg + ms + 3)! ( )

where mg, m1, me, ms are integer numbers representing the power orders of the simplex
coordinates in the tetrahedron. The integration property of the simplex coordinates
for the triangle [Lapidus and Pinder, 1982] is written as

mi 'mQ'TTL3'

ATTAS2 AL da = 2A , 6.3.8
//AT 1 A2 Ay da T(m1+m2+m3+2)! ( )

where m1, mo, m3 are integer numbers representing the power orders of the simplex
coordinates in the triangle.

The Definition of the Gradient of the Simplex Coordinates

The computations of the simplex coordinate gradients in the tetrahedron derive
from the definitions of the coordinates in (6.3.1). V;(r) = h;A;/3 is the volume with
respect to the i-th node, h; is the height of the point over the corresponding face.
When the point r is moving inside the tetrahedron, the only changing value is h;. So
the gradient of \; is defined as

o(Vi(r)/Vr) i A;

o P = (6.3.9)

V)\Z - )
3Vr
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where h; is the unit vector pointing towards the changing trend of h;. For the
tetrahedron, h; is in the same direction as A;, pointing inside the tetrahedron.

In a similar process, let ti; represent the corresponding vector with respect to
node i, where (k,l # i) and k < [. Then the gradient of \; in the triangle turns into
O(Ai(r)/Ar) p 1 X ti

(2

VA= Oh; ~ 24Ar

(1)L (6.3.10)

where 7 is the local unit vector of the triangle, h; is the unit vector with respect to the
corresponding node pointing inside the triangle and V ); is also in the same direction
as h;.

e The Computation of V\; x V; for the Tetrahedron and Triangle

Based on the configuration of the tetrahedron, the cross product of different
simplex coordinate gradients is computed as
A; X Aj . 8(—1)j7i

A X VA = = thi, 6.3.11
VA xV gng Vs Kl ( )

where s = sgn((¢12 X t13) - to1). sgn(z) is a function judging the sign of the variable z,
its value is +1 or —1. The subscripts ¢, j, k,l are the node indices of the tetrahedron,
where i < j and k < [. (6.3.11) means the computation is applicable to any locally
defined tetrahedral finite element.

Based on the configuration of the triangle, the cross product of two different
simplex coordinate gradients is calculated as

Vi x VA = —2A7(—1)7", (6.3.12)

where ¢, j are node indices and ¢ < j.

6.4 The System Matrices of the Variational Formulation

The system matrices for the FE unknowns derive from the variational formulation by
utilizing the ad-joint electric field E,4. Under the condition of finding the stationary point
of the variational formulation, it is required that

aF(Eada E)

ad
ou

=0, (6.4.1)

where ¢ = 1,2,3,..., N indicates the unknowns. Then, the linear system matrices can be
determined.

Through substituting (6.1.1.8) into (6.4.1), a linear system of equations is obtained as

[Rmn] [un] - k%[smn] TL]k;OZO[Tmn] = *jkOZO[’wm], (m,n) = 1, ...,]\[7 (642)
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with
Ronl = [ (VX () () (7 % () (6.4.3)
[Smn] = ///a (1) - €-(r) - ay(r)do, (6.4.4)
[Tyon] = ﬂ (1) - (aun(r) x 7)da, (6.4.5)

[wi] = / / / a am(r) - Ja(r)dv, (6.4.6)

where kg and Zy are the wave number and the wave impedance of free space. V, is the
volume of the dielectric materials, Ay is the enclosed envelope of the object. The basis
functions ay,, and «, are defined inside the finite elements. The mutual couplings [Ry,y],
[Smnls [Timn] and the vector |[w,,| are also integrated inside the tetrahedron and the single
surface triangle. Thus, it is found that V, = Vp and Ay = Ar in each finite element for
the system matrices from (6.4.3) to (6.4.6). The calculations of the system matrices [Ryy)
and [Sy,] are shown in appendix A and B based on hierarchical 3-D vector basis functions,
where the hierarchical 3-D vector basis functions are detailed discussed in the next chapter.
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7 The Hierarchical 3-D Vector Basis Functions within the
Finite Element Method

A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed.
The FE matrix elements are computed by a fully analytical procedure and the gobal matrix
assembly is organized by a self-identifying procedure of the local to global transformation.
This assembly procedure is applied to both FE and BI. The geometry is meshed into three-
dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions
are employed. The boundary conditions are implemented in a strong sense, such that the
boundary values of the volume basis functions are directly utilized within the BI. The basis
functions can be utilized for the tangential electric and magnetic fields and also for the
associated equivalent surface current densities, where a cross product of the unit surface
normal and the basis functions is applied. The self-identified method for the global matrix
assembly automatically discerns the global order of the basis functions for generating the
matrix elements. Higher order basis functions do need more unknowns for each single FE.
However, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement
provides a lot more flexibility for meshing and allows the mesh size to raise up to A\/3. The
performance of the implemented system is evaluated in terms of computation time, accuracy
and memory occupation, where excellent results with respect to precision and computation
time of large scale simulations are found.

7.1 Introduction

The finite element boundary integral (FE-BI) method [Eibert and Hansen, 1997, Jin,
2002, Tzoulis and Eibert, 2005b] is an efficient numerical technique for solving electro-
magnetic field problems. Traditional finite element methods rely on utilizing the local
information of the FEs. The fixed local node order forces the local matrix elements to
be transformed into global ones. Facing low order (LO) basis functions, the local-global
transformation is easy as edge-related elements only follow the edge directions. When it
comes to higher order (HO) basis functions [Djordjevic and Notaros, 2004, Fink et al., 2005,
Ilic and Notaros, 2003, Ismatullah and Eibert, 2009, Jin, 2002, Klopf et al., 2012, Nedelec,
1980, Razi and Kasper, 2008], the basis functions are also related to faces or volumes. The
local-global transformation procedure introduces then considerably more difficulties. In this
work, a self-identified hierarchical basis function method is illustrated. This method effec-
tively overcomes the problem mentioned above and provides more feasibility within FE-BI.
Without fixing the node order or the sequence order of the basis functions for the local FEs,
the self-identified hierarchical basis function organization allows a simple assembly of the
global equation system. Simultaneously, this method guarantees the compatibility between
FE and BI [Ismatullah and Eibert, 2009] fluently. All arbitrarily shaped components are
meshed into tetrahedra [Jin, 2002] apart from perfect electric conductors (PEC) or perfect
magnetic conductors (PMC), where E and H are forced to vanish inside the volume. As
the FE-BI method solves for the field distribution inside the volume together with the
corresponding equivalent surface currents (Ismatullah and Eibert [2009], Rao et al. [1982]),
the self-identified hierarchical basis functions describe the distribution of fields within the
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tetrahedra. When observation points tend to the enclosed boundary surface, the boundary
condition determines the continuity of the E and H fields [Balanis, 1989, Bladel, 2007,
Harrington, 2001, Kong, 1986]. So it is useful to guarantee that the basis functions for
FEM are the same as the basis functions for BI.

Derived from the equivalence theorem, basis functions for BI are used to compose
equivalent 2-D surface currents [Chew et al., 2001, Ismatullah and Eibert, 2009, Rao et al.,
1982]. The currents are relevant to the surface unit normal vector and the polarization of the
fields, thus, the tangential component of FE basis functions on the surface is perpendicular
to the current basis functions. With respect to the corresponding sources (electric current J g
or magnetic current M) and the surface normal unit vector, the corresponding subspaces
ensure the compatibility between FEM and BI.

The LO basis functions have shortcomings when the simulation accuracy and the large
number of unknowns are considered. Precision and efficiency of LO are difficult to improve
with an increasing number of unknowns. The solution with LO basis functions demands
the mesh size to be around A/20 to A\/8. With coarser meshes, the elements may introduce
inaccurate waveforms for field reconstruction.

The well-known mixed order basis functions are successful for electromagnetic field
distributions and surface current reconstructions. Rao — Wilton — Glisson (RWG) [Rao
et al., 1982] basis functions are inherited as LO. As RWG is very effective for the BI,
its corresponding first order Rotational Subspace (Oth order) is utilized in FE tetrahedra.
The Nedelec HO basis functions also form the first order Gradient Subspace (1st order),
the second order Rotational Subspace (2nd order), the second order Gradient Subspace
(3rd order), the third order Rotational Subspace (4th order) and so on. In this work, the
hierarchical basis functions are extended up to the third order rotational subspace. Apart
from BI, LO and HO basis functions are also utilized within FE and they improve the
accuracy for field computations. In the FE-BI method, Oth and 1st order basis functions
for the FE and BI methods are easy to match. Both of them are edge-related and follow the
same direction of the edge vector. The situations for 2nd, 3rd and 4th order basis functions
are more complicated. 2nd order basis functions are face-associated, 3rd order basis func-
tions contain both edge-related and face-associated sub-spaces, 4th order basis functions
contain both face-associated and volume-associated sub-spaces. To achieve compatibility
between FE and BI, the edge-related and face-associated basis functions for FE and BI
have to maintain the same global node order. The tetrahedral FE basis functions defined
in Table 4 have a format represented by subscripts & = (i,j) and [ = (r, s, t) as illustrated
in Figs. 50 - 55. As elements of matrices need row and column positions, the subscripts
(mi,mj) and (m,,ms,m;) are introduced for row basis functions and subscripts (n;,n;)
and (n,,ns,ng) are assigned to column basis functions. In this work, (m;,m;) and (n;, nj)
contain the global order of local node numbers for edge-related basis functions, whereas
(my,ms,my) and (n,,ng,n;) represent the global order of nodes for face-associated basis
functions, where k = (4,7) and [ = (7, s,t) store the local node number of finite elements.
The local node numbers are assigned to the volume-associated basis functions, where the
tangential components of the basis functions vanish on the tetrahedral boundaries.

In FE analysis, the self-identified hierarchical basis functions are derived from the
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geometrical information of the tetrahedra. In the mesh file, the data structure for each
tetrahedron contains six edge identities and four face identities. Each edge is constructed
with two node numbers and the order of the two nodes determines the edge global direction.
Every face has the identity of the corresponding outside boundary triangles, inside volume
triangles or inside boundary triangles. The outside boundary triangles are described by
three edges in certain directions. The first edge gives out the first two nodes of the outside
boundary triangle, the last node can be found through another two edges. The order of
these three nodes are inherited as global node order. The inside volume triangles and inside
boundary triangles are constructed by three nodes directly and the node order is viewed
as the global node order. Through the index of edge and face identities, the tetrahedral
FEs can easily consult the corresponding edges and triangles. Thus, the determined global
node order can be set for the LO and HO basis functions. As shown in Fig. 49, (m;,n;)
always represent the starting point of the edge, (m;,n;) represent the ending point and
(my,n.), (ms,ns), (m¢,ny) represent the node order of the triangle. Practically, the local
node numbers are arrayed in the unique global order and assigned to the corresponding
subscripts. When generating the system matrices, the assigned subscripts are set to the
corresponding positions into the list of basis functions. Then, elements of system matrices
are automatically assigned to global edges and faces. If HO basis functions are implemented
into FE, the matrix elements can be calculated analytically and precisely. Since these results
are commonly not available in FE literature, it is a major contribution of this work to
present these analytical matrix elements up to 4th order. As the order of basis functions
is enlarged, the accuracy of the boundary integral (BI) should also be improved. As it
turns out, the integration order for the testing surface integrals should be increased, the
adaptive numbers of quadrature points in the singularity cancellation technique have to
grow and larger maximum numbers for spherical harmonic expansion terms are needed
within the Multilevel Fast Multipole Method [Chew et al., 2001, Eibert, 2005, Tzoulis and
Eibert, 2005a]. HO achieves satisfactory accuracy with larger mesh size and it provides a
better solution for non uniform finite elements. Good radar cross section (RCS) results of
PEC structures coated by dielectric materials are acquired. Since LO is inherited by the
hierarchical bases, orthogonality or near-orthogonality of basis functions is usefull for HO.
Based on the structure of tetrahedra, system matrices built from nearly orthogonal basis
functions converge faster and the solution is more accurate, so that the flexibility of mesh
size provided by HO gives a more feasible solution. Meanwhile, HO improves the accuracy
and also reduces the number of finite elements.

FE-BI solutions for coated spheres, the stealth bomber aircraft and the Flamme aircraft
referring to the self-identified hierarchical nearly orthogonal basis functions are explicitly
illustrated. The material of the layered sphere is homogeneous, isotropic and lossy. A
variety of FE-BI simulations up to 3 million unknowns based on self-identified hierarchical
basis functions are presented. The accuracy of HO testing cases is good, the simulation
results based on HO basis functions are also compared with LO situations.
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7.2 The First Order Rotational Space

The first order rotational space (Oth order) is a subspace of a,, constructed by edge-
related basis functions in the FEs and represented by a. The curls of the basis functions
in the rotational space are not zero, however, the divergences vanish. As a result, the
system matrices [Sy,,] and [wy,] are dependent on the basis functions, the system matrices
[Ryn] are fulfilled by the mutual couplings of the curls of the basis functions within the
FEs. Moreover, on the boundary surfaces, the tangential components of the edge-related
basis functions are utilized to compute the [T),,] system matrices. At the face and edge
boundaries of the FEs, the tangential components of the edge-related basis functions are
continuous. However, the orthogonal components of the basis functions are not required to
be continuous. As it turns out, the system matrices [T),,] are compliant with BI, where
the current basis functions are the cross products of the surface unit normal vector and the
field basis functions on the boundary surfaces.

The definitions of the edge-related basis functions take advantage of the nodes of edges
in the first order rotational space. The node order determines the direction of the edge,
while, the directions of the basis functions follow the corresponding directions of the global
edges. Then, the system matrices derived from the local FEs have to be transformed into
the global system matrices. To easily obtain the global system matrices, the self-identified
global edge-related basis functions in the first order rotational space are defined as

a; =AVA = AV, (i, =0,1,2,3; i # j), (7.2.1)

where 7 and j are local node numbers. The order of (i, j) can determine the direction of the
global edge and also the global basis function. With respect to the system matrices [Ry,y],
the curls of the global edge-related basis functions are calculated as
V x a;; = V x ()\iV/\j — )\jV/\i)
=)\ V x (V)\]) +VA; X V)\j — )\j V x (V)\Z) —V)\j x V\;
—_———— T
0

=2VA; x VX, (4,5 =0,1,2,3; i # j). (7.2.2)

With (6.3.9) and (6.3.11) into (7.2.1) and (7.2.2), it is shown that
1

a;; = 3VT (/\zA] — /\in), (7.2.3)
2
Vxajj=—=(A; x Aj), (i,j=0,1,2,3;i# j). (7.2.4)
9V2

From (7.2.1) to (7.2.4), it is found that the node index of (i, j) can determine six edge-
related basis functions in a single FE.

7.3 The First Order Gradient Space

The first order gradient space (1st order) is also a subspace of a,, constructed by edge-
related basis functions in the FEs and represented by b. The curls of the basis functions
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in the gradient space are zero. The system matrices [R,,,] vanish as they are relevant to
the curl of the basis functions. The system matrices [Sy,,] and [wy,] have to be computed
dependent on the basis functions. Moreover, on the boundary surfaces, the tangential
components of the basis functions are utilized to compute the [T},,,,] system matrices. At the
face and edge boundaries of the FEs, the tangential components are continuous. However,
the orthogonal components of the basis functions are not required to be continuous. Then,
the system matrices [T},,,,] are also compliant with BI.

The definitions of the basis functions in the 1st order gradient space also take advantage
of the nodes of edges. The node order determines the direction of the edge, while, the
directions of the basis functions follow the corresponding directions of the global edges.
Then, the system matrices derived from the local FEs have to be transformed into the
global system matrices. To easily obtain the global system matrices, the self-identified
global edge-related basis functions in the first order of gradient space are defined as

bij = AiVA; + A VA, (6,5 =0,1,2,3; 1 # j), (7.3.1)

With respect to the system matrices [Ry,,], the curls of the global edge-related basis
functions are computed as

V X bij =V X ()\iVAj + )\jV)\,;)
=NV X (V/\j) +VA X VA + A V x (Vi) +VA; x V)
—_——— HO,_/
0
=0, (i,j=0,1,2,3;7+# j). (7.3.2)

With (7.3.2) into (6.4.3), it gives
[Ryn) = 0. (7.3.3)

From (7.3.3), it is shown that the system matrices [R,,,| are zero when the mutual couplings
are related to the first order of gradient space.

7.4 The Second Order Rotational Space

The second order rotational space (2nd order) is a subspace of a,, constructed by
face-associated basis functions in the FEs and represented by ¢ and d. The curls of
the basis functions are not zero. So the system matrices [R,,,] have to be calculated
dependent on the curl of the basis functions. The system matrices [Sp,,] and [wy,] rely on
the basis functions and also have to be computed. Moreover, on the boundary surfaces, the
tangential components of the basis functions are utilized to compute [T},,]. At the face and
edge boundaries of the FEs, the tangential components are continuous. Then, the system
matrices [T)y,| are also compliant with the BI method.

The definitions of the basis functions take advantage of the nodes of faces in the second
order rotational space. The node orders of the FE faces determine the directions of their unit
normal vectors, the directions of the basis functions follow the corresponding global node
orders. Then, the system matrices derived from the local FEs have to be transformed into
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the global system matrices. To easily obtain the global system matrices, the self-identified
global face-associated basis functions in the second order rotational space are defined as

Crst — )\T)\SV)\t — 2)\r)\tV)\s + )\SAtVAr

1
= W()\r)\sAt - 2)\r)\tAs + )\SAtA'r‘); (7", S, t= O, 1, 2, 37 T 7é S 7é t), (741)
T
drst = AT)\SVAI: - AsAtV)\r
1
= W(/\TASAt — AsAiAL), (rys,t =0,1,2,3; 7 # s # t). (7.4.2)
T

With respect to the system matrices [Ry,,], the curls of the global face-associated basis
functions are computed as

V X erst =30V s X VA — 3NV A x VA

1
:W()\TAS X Ay — MA, X Ag), (r,s,t=0,1,2,3; r # s #1t), (7.4.3)
T
V X drst =MV s X VAt + 22XV X VAt + MV, X Vs
1
:72()\7~A5 X At + 2)\5Ar X At + >\tA7“ X As),
IV}
(r,s,t=0,1,2,3; r # s £ t). (7.4.4)

From (7.4.1) to (7.4.4), it can be noticed that the node index (7, s, t) can determine four
face-associated basis functions in a single FE for each ¢,s and d,s. Thus, there are eight
unknowns for the second order rotational space in each single FE.

7.5 The Second Order Gradient Space

The second order gradient space (3rd order) is a subspace of a,, constructed by both
edge-related and also face-associated basis functions in the FEs and represented by e and f
respectively. The curls of the basis functions are zero in the 2nd order gradient space. The
system matrices [Ry,,| vanish due to the curl of the basis functions. The system matrices
[Smn| and [wy,] have to be computed. Moreover, on the boundary surfaces, the tangential
components of the basis functions are utilized to compute the [T},,,,] system matrices. At the
face and edge boundaries of the FEs, the tangential components are continuous. However,
the orthogonal components of the basis functions are not required to be continuous. Then,
the system matrices [T}, are also compliant with BI

The definitions of the basis functions take advantage of the nodes in the FEs for the
second order gradient space. The node orders of the edges determine the directions of the
edge-related basis functions. The directions of the basis functions follow the corresponding
global edge directions. The node orders of the faces determine the directions of the face-
associated basis functions. Then, the system matrices derived from the local FEs have to be
transformed into the global system matrices. To easily obtain the global system matrices,
the self-identified global edge-related and face-associated basis functions in the second order
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gradient space are defined as

€ij = (2/\j — )\z))\lVAJ — (2)\i — /\j))\jVAZ‘
1

fTSt =M As VA + A ANV A + A VA
1
= W()\r)\sAt + )\T)\tAs + )\S)\tAT‘)7 (T‘7 57t = O7 1’ 2’ 3’ r # s # t) (752)
T

With respect to the system matrices [Ry,,], the curls of the basis functions are calculated
as

V x €ij = V x f’rst =0. (753)
It gives that
[Rinn] = 0. (7.5.4)

From (7.5.3), it is shown that the system matrices [R,,| are zero when the mutual couplings
are related to the second order gradient space.

7.6 The Third Order Rotational Space

The third order rotational space (4th order) is a subspace of a,, constructed by both
face-associated and volume-associated basis functions in the FEs. The face-associated
basis functions are represented by g, h and 2. The volume-associated basis functions are
represented by j, k and I. The curls of the basis functions are not zero in the third order
rotational space. The system matrices [R,] have to be calculated with the curl of the
basis functions. The system matrices [Sp,] and [wy,] have to be computed dependent on
the basis functions. Moreover, on the boundary surfaces, the tangential components of the
basis functions are utilized to compute the [T},,] in the third order rotational space. At the
face and edge boundaries of the FEs, the tangential components are continuous. Then, the
system matrices [T},,] are also compliant with BI.

The definitions of the basis functions take advantage of the nodes of faces and the
volume in the third order rotational space. The node orders of the FE faces determine
the directions of their unit normal vectors, the directions of the basis functions follow
the corresponding global node orders. Then, the system matrices derived from the face-
associated basis functions have to be transformed into the global system matrices. However,
the volume-associated basis functions vanish at the boundaries of the FEs, so the local
node number can be directly utilized for the system matrices. To easily obtain the global
system matrices, the self-identified global face-associated basis functions in the third order
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rotational space are defined as

9rst = <)‘T - )‘S))‘T)‘SV)‘t - (/\t - AS>)‘8)‘tv}"/‘ + ()\t - )\T))\TAtV)\S
1
= W[()‘T‘ - )\s))\r)\sAt - ()\t - )\s))\s)\tAr + ()\t - )\r))\r)\tAS],
T
(rys,t =0,1,2,3; 7 # s # t), (7.6.1)
st = (393M; + 80\, — 212X) A A VA — (393X, + 80N — 21220 A\ VA,

(292X + 292X,) A A VA

= 577 (3930 + 800, — 2120) A4y — (393, + 80\, — 2120 AN A,

+ (=292 + 2920, ) A\ A\ A, (r,s,t=0,1,2,3; 1 # s #t), (7.6.2)
irst = (—1310 + 168X, — 1240) A AV A 4+ (=131, + 168\ — 1240) ANV,
F(—440 — 440, + 2620) A A VA
3VT —[(=131M\; + 168X\, — 1240) N\ As Ay + (=131, 4+ 168X, — 124X ) AN A,
(44N — A0 + 2620 M NA), (hst=0,1,23 7 £s£1),  (T.6.3)

The volume-associated basis functions are written as

Joio3 = )\1)\2)\3V)\0 + AA2A3V AL — Ao A1 A3V A2 — Ao A1 A2V A3

3v (A3 Ao 4 Ade A3 AT — AoAiAsAs — AgAiAaAs), (7.6.4)
ko123 = )\0)\1)\3V)\2 — AoA1 A2V A3

3V — (MoM Az Az — AoMi A Ay), (7.6.5)
lo123 = >\1)\2)\3V)\0 — AoA2A3V A

3V — (MAedsAn — AodaAsAy). (7.6.6)

With respect to the system matrices [R,,;], the curl property of the basis functions in the
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third order rotational space are computed as

V X gt = 2l A M)A Vs X Ve — s A A AV A X Vr + Ardrds) A VA X V]
2
~ov2
(rys,t=0,1,2,3; r #s # t), (7.6.7)
V % hyst = (97TA—424M— 2120, )MV AKXV, + (533X + 533X — 424X0) AV A\ XV,
+ (977N —4240— 212X ) AV A XV A

(A AN Ay X Ay — AsAA) A Ar X Ay + (M) AN A, x Ay,

=5z [(97TA—424)0— 212X, )N\ A XA + (533X + 533N, — 424X )N A, XA,

+ (977N —4240— 2120 ) NA XAy, (1, s,t=0,1,2,3; r # s # 1), (7.6.8)
V X pst = (—430—D10AA-2120 ) AV AXV A + (—467\; + 467X ) AV A XV )\,
+ (430 A510As—2120) AV A XV g
1
9V2
+ (430 +510As— 212\ )N\ A xAg], (1, s,t=0,1,2,3; r # s # 1), (7.6.9)
V X Jo123 = —2()\1)\2V)\0 X VA3 4+ A1 A3V A X VAo + AgAaV AL X Vs 4+ AgA3V A1 X V/\Q)

[(—43X\—B10AA+ 2120 ) A, A x Ay + (—46T\; + 467\, ) AoA, XA,

9V2 [()\1)\2A0 X Az + M A3Ap X Ag + N2 A1 X Az + MA3Aq X Ag)]

(7.6.10)
V x ko123 = AoA3V AL X Vg + X A3V g X VAg — XAV A1 X VA3
— )\1)\2V}\0 X V)\g — 2)\0>\1V)\2 X V)\g
1
9V2
— MA2Ag x Az — 20\ Ay x Aj3), (7.6.11)
V x l0123 = —>\1)\2V)\(] X V)\g — /\1)\3V)\0 X V/\g + )\())\QV)\l X V)\g
+ )\0)\3V)\1 X V)\Q - 2)\2/\3V)\0 X V)\l
1
T o2
+ AA3A] X Ay —2XaA340 X Aq). (7.6.12)

()\0)\3A1 X Ag + AN A3Ag X Ag — A2 A1 X A3

( AMAAg X Az — M A3Ag X Ay + Aol A X Ajg

From (7.6.1) to (7.6.12), 9,4, Prst, irst and their curls are face-associated, 793, ko123, lo123
and their curls are volume-associated. Each face-associated basis function represents four
unknowns for the system matrices, while each volume-associated basis function produces
only one unknown. The third order rotational space together with the other spaces can
improve the accuracy with increasing frequencies.
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Table 4: Hierarchical Basis Functions and Properties for a Tetrahedron.

FE Vector Basis Functions a; V X a;
R'| a1 | NV — NV % 2VA; X VA, ﬁ(Az x A;)
G'| b1 | MV + AV M-A+TAJA¢ 0 0
s Ve Arre A a A A —2a 0 A 3A-VAs x V¢ 7oz (ArAs X Ay
e | FANYA, BWIESHIY S ¥ AT TN 2
—20, A VA, VA . —MA, X Ay)
R2
AVAs x VA sez (A AL x Ay
d 3\;/\;VV)\; % +2X: VA x V) izASAT x Ag
B FAVA X VA +MAr x Ay)
e (20 = X)XV, (23 20X A = (A=A A A 0 0
—(2>\1 - )\J)AJV)V 3V
G2
ArAs VA
Fal XAV AMsAszg‘t/;‘LHMtAS 0 0
FAr AV A
A =2A)NATVA | g (A=A ArAs A 2AAAAATASIN |z [ArAA) N A XA,
gs |—(Ae=As)As A VA, —(At—=As)As At Ay —AAA)ANAXVN, — A AA XA,
F A=A A AV s F (A=A A A A H+ A A ANVAXVAY + O AAYNA XA
(393A 480, - [(393A-+80), (97TA—424), sz (977N 424
—212X:) A AV A —212X5)Ar A5 Ay 212X )AVAXV A |—212),) A A XAy
b | —(393X480X, —(393A480 +(533) + 533X, | +(533) + 533\,
3 —212)\5))\5)\tv>\7- 7212/\_;)/\_;)\73147 —424)\5)>\3V/\1,><V)\t _424As)/\sArXAt
+(=2920+292),) +(=2920+292)) +(97TA,—424) F(9TTA,—424),
ArArVAs Ar At Ag] 21220)AVAXVAs [ —212X) AAr XA,
(=131 4168\ 39 [(—1310A4168), (—43X—510)s ﬁ(—43/\t—51m5
—124X)Ar AV e —124X )N As As F2L2A)ANVAXV A | 42120,) A A XA,
;. [F(-131A4168), (=131, 4168\, +(—467A¢ + 46TAr) | +(—467A¢ + 467\,
5 12400 AN VA, —124X) AN Ay ANV XV A Ao A, XA,
R (44 —44), (44044, +(43),+510A, TNEI
+262X)Ar A VA 26220 A\ Ay 2120)AVAXVAs | 212X\ A, %A,
A1d223V Ao ﬁ()q)\z)\ng —2(A1AaVAo X Vs ﬁ(h&Ao % As
j' +AoA2 A3V A +AoA2 A3 A1 +A1 A3V g X Vo T A3 A0 X Ao
3 1 =XoA A3V A2 —AoA1A3A2 +X0A2V A1 X Vg +AoA2 A1 X As
—XoA1 A2V A3 —)\0)\1/\2A3) +XoA3V A1 X V/\z) FAoA3A; X AQ)
MAsVAL X Vs |gyz(odsAr x Az
ke | A0ALASVA2 31 (AoAiAs Az +ili3v§0 X V§2 +A1A3A40 X Az
5| =AM A2VAs oAz Asz) —20A2VAL X VA | —AAAr X Ag
*/\1)\2V)\0 X V)\;g _)\1)\2A0 X A3
—2X00A1 V2 X VA3 | —2X0A1 As X A3)
A1 A2V X VA3 ﬁ(—AQ\zAO X As
s | poa | T o
3 —XoA2A3V A1 —XoA2AsA;) 0A2 VAL 3 FAoaA; X As

+A0A3V A1 X Vg
—2X2A3V o X V1

+)\o)\3A1 X A2
*2/\2)\3‘40 X Al)
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Figure 50: The basis function distribution of the first order rotational and gradient spaces:
(a) The first order rotational space a1, edge related from node i = 0 to node j = 1. (b)
The first order gradient space by, edge related from node ¢ = 0 to node j = 1.

(c) (d)

Figure 51: The basis function distribution of the second order rotational space: (c) The
basis function ¢y, face associated with node order rst (r =0, s =1, t = 2). (d) The basis
function dy, face associated with node order rst (r =0, s =1, t = 2).
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Figure 52: The basis function distribution of the second order gradient space: (e) The basis
function eg, edge related from node i = 0 to node j = 1. (f) The basis function f,, face
associated with node order rst (r =0, s =1, t =2).

Figure 53: The basis function distribution of the third order rotational space: (g) The basis
function g3, face associated with node order rst (r =0, s = 1, t = 2). (f) The basis function
hs, face associated with node order rst (r =0, s =1, t = 2).
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Figure 54: The basis function distribution of the third order rotational space: (i) The basis
function 3, face associated with node order rst (r =0, s = 1, ¢t = 2). (j) The basis function
J3, volume associated with node order 0123.

Figure 55: The basis function distribution of the third order rotational space: (k) The basis
function ks, volume associated with node order 0123. (1) The basis function I3, volume
associated with node order 0123.
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7.7 Numerical Results of the FE-BI Method

To specify the efficacy and accuracy of the analytical matrix elements and the global
matrix assembly in the FE-BI method, numerical simulation results are displayed in this
section. A convincing demonstration is to take advantage of a coated sphere testing case,
where a PEC sphere is enclosed by a layer of dielectric material. The MIE scattering
[Balanis, 1989] is a well known analytical RCS solution for this kind of problem. Good
matching of the RCS of the numerical method and the analytical solution can verify the
efficacy of the FE-BI method. With higher frequencies and finer mesh, more unknowns have
to be solved. Moreover, testing cases of FE-BI in very large scale simulations are shown
through the RCS of a bomber aircraft and also the Flamme aircraft, where both models are
layered with dielectric materials. The Oth order FE-BI method has been verified in many
published articles [Eibert, 2007, Eibert and Hansen, 1997, Tzoulis and Eibert, 2005b], it is
used as a reference for HO. The efficiency of different orders of self-identified basis functions
are presented for the FE-BI method. The sphere model, the bomber aircraft and the Flamme
simulations were performed on a 64 bit work station with processor X 5690 @ 3.47 GHz (24
processors), installed memory (RAM) 192 GB.

7.7.1 Coated Sphere

For the coated sphere testing case, numerical RCS results from different orders of basis
functions are compared with the MIE scattering results. The coated sphere contains a
PEC sphere core with radius 1.0 m, the PEC core is enclosed with a dielectric layer with
thickness 0.01 m. The properties of the dielectric layer are presented with €, = 2.5 — 0.55
and p, = 1.0. The incident wave is 2 GHz and propagating toward the +z direction and
the electric field is 100 V/m along the z direction (E, = 100 V/m). The results for the real
components of the electric currents are shown in Fig. 56 and the RCS is shown in Fig. 57.

The same mesh was utilized for all orders of hierarchical basis functions, the mesh
size was set 0.03 m, the mean edge length is 3.108 cm, with minimum edge length 1.0 cm
and maximum edge length 5.787 cm. For Oth order, the total unknowns are 127075. The
running time was 37877.3 s. For 1st order, the total unknowns are 254 150. The running
time was 48 949.3 s. For 2nd order, the total unknowns are 608 750. The running time was
50182.2 s. For 3rd order, the total unknowns are 913 125. The running time was 95 096.3 s.
For 4th order, the total unknowns are 1672290. The running time was 85375.7 s.

The numerical RCS results are compared with the MIE scattering results. The mesh
size of the layered sphere is roughly A/3 within the absorbing material layer. Compared with
LO, the number of unknowns for HO is much larger. However, more accurate scattering
results can be obtained by HO as shown in Fig. 57. The detailed analysis of the accuracy
for different orders of basis functions is proposed in a later chapter.
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Figure 56: Surface electric current distribution of the coated sphere @ 2 GHz through the
Oth order FE-BI method.
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Figure 57: Bistatic RCS of a coated sphere @ 2 GHz on zz cut half plane (¢ = 0°).

111



7.7.2 Stealth Bomber Aircraft with Absorbing Materials

A stealth B2 aircraft is utilized as an example for EM simulations with the FE-BI
method for very large scale applications. The B2 aircraft is located in the zz plane, with
nose heading along the +z axis, as shown in Fig. 58. The B2 is enclosed by a layer of
lossy dielectric material with thickness approximately 1 cm. The permittivity of the lossy
dielectric material is ¢, = 1.21 — 105 and the permeability is pu, = 1. The simulation
frequency is 1.5 GHz. The incident plane wave propagates towards the —z direction, with
electric field (E; = 100 V/m). To study the absorbing effects of the lossy dielectric material,
a PEC B2 aircraft simulation with the BI method is utilized for comparison.

Figure 58 shows the real components of the surface electric currents for the covered B2.
The bistatic RCS of the PEC and the layered B2 aircraft in different cut planes is shown
in Figs. 59 - 61. The normalized polar bistatic RCS of the PEC and the layered bomber in
different cut planes is shown in Figs. 62 - 64. The PEC B2 is simulated through BI with
4th order of self-identified basis functions, the layered B2 is simulated through FE-BI with
Oth, 1st, 2nd, 3rd and 4th order of self-identified basis functions correspondingly. The Oth
order has been proven accurate with a finer mesh. The 4th order basis functions for the
PEC B2 have also been verified as compared with the Oth order in Figs. 34 - 40. So, the
4th order PEC simulation result is utilized as a reference. The RCS comparison shows that
most of the input power goes over the bomber.

The simulation data summary for the layered and PEC B2 is shown in Table 5. TM is
the type of model, TB is the type of bases, D is the mesh size set for the model, D is the
mean mesh edge length, D,,;, is the minimum mesh edge length, D,,., is the maximum
mesh edge length, N is the total number of unknowns, N; is the number of BI electric
current unknowns, Nj; is the number of BI magnetic current unknowns, L is the number
of levels for MLFMM, PM is the peak memory consumption and T is the run time of the
simulation.
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Figure 58: Covered bomber real components of surface electric currents @ 1.5 GHz.
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Table 5: The Simulation Results for the PEC and Layered B2

™ TB D D Dmin | Dmasx N Ny Nas L PM T
(m) | (em) | (cm) | (cm) (MB) (s)
Layered R 0.01 | 0.980 | 0.033 | 2.172 | 56489 | 17847 | 16630 | 4 | 690.960 28 640.6
Layered | R*+G' | 0.01 | 0.980 | 0.033 | 2.172 | 112977 | 35694 | 33260 | 4 | 2084.113 | 33161.0
Layered | R'+G' | 0.01 | 0.980 | 0.033 | 2.172 | 269063 | 59490 | 55466 | 4 | 5392.330 | 48986.8
+R?
Layered | R'+G' | 0.01 | 0.980 | 0.033 | 2.172 | 403595 | 89235 | 83199 | 4 | 11145.910 | 80806.3
+R? 4+ G?
Layered | R'+G' | 0.01 | 0.980 | 0.033 | 2.172 | 637724 | 124929 | 116508 | 4 | 21132.31 | 1414122
+R* 4+ G?
+R?
PEC R'+G' | 0.01 | 1.009 | 0.253 | 2.172 | 123900 | 123900 0 4| 10107.25 | 75945.1
+R? 4+ G?
+R?
0 I i
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Figure 59: Bistatic RCS of covered bomber @ 1.5 GHz on zy cut plane (¢ = 90°).
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Figure 60: Bistatic RCS of covered bomber @ 1.5 GHz on zz cut half plane (¢ = 0°).
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Figure 61: Bistatic RCS of covered bomber @ 1.5 GHz on yz cut half plane (¢ = 90°).
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Figure 62: Normalized polar bistatic RCS of covered bomber @ 1.5 GHz on xy cut plane.
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Figure 63: Normalized polar bistatic RCS of covered bomber @ 1.5 GHz on zz cut plane.

115



-==-=0ORDER 0

-==-=-ORDER 4
- PEC
0

270

Figure 64: Normalized polar bistatic RCS of covered bomber @ 1.5 GHz on yz cut plane.
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7.7.3 Flamme with Absorbing Materials

The layered Flamme case is another application of the FE-BI method for very large scale
simulation. The Flamme is located in the xy plane, with nose heading along the +z axis,
as shown in Fig. 65. The Flamme is enclosed by a layer of lossy dielectric material with
thickness of approximately 1 cm. The permittivity of the dielectric material is €, = 1.21—10j5
and the permeability is u, = 1. The simulation frequency is 1.0 GHz. The incident plane
wave propagates towards —x direction, with electric field (E, = 100 V/m). To visualize
absorbing effects of the lossy dielectric material, a PEC Flamme simulated by BI is utilized
for comparison.

The real components of the equivalent surface electric currents on the layered Flamme
are shown in Fig. 65. The bistatic RCS of the layered Flamme on different cut planes
is shown in Figs. 66 - 69. The normalized polar bistatic RCS of the layered Flamme on
different cut planes is shown in Figs. 70 - 72. The layered Flamme is simulated through FE-
BI with Oth, 1st, 2nd, 3rd and 4th orders of self-identified basis functions. As the efficacy
of LO basis functions with finer mesh has been verified, here the 0th order of FE-BI for
the layered Flamme together with the 4th order of BI for the PEC flamme simulations are
used as references. The RCS comparison shows that most of the input power goes over the
layered Flamme.

The simulation data summary for the layered and PEC Flamme is shown in Table 6.
TM is the type of model, TB is the type of bases, D is the mesh size set for the model, D is
the mean mesh edge length, Dy, is the minimum mesh edge length, D, is the maximum
mesh edge length, N is the total number of unknowns, N; is the number of BI electric
current unknowns, Njs is the number of BI magnetic current unknowns, L is the number
of levels for MLFMM, PM is the peak memory consumption and T is the run time of the
simulation.

Table 6: The Simulation Results for the PEC and Layered Flamme

™ TB D D | Dmin | Dimas N Ny Ny | L PM T
(m) | (em) | (cm) | (cm) (MB) (s)
Layered R 0.02 | 1.783 | 0.065 | 3.933 | 626498 | 213855 | 180488 | 6 | 8111.168 | 410844.5

Layered | R' 4 G! 0.02 | 1.783 | 0.065 | 3.933 | 1252996 | 427710 | 360976 | 6 | 25496.380 | 484916.1

Layered | R'4+G' | 0.07 | 5.846 | 0.405 | 15.216 | 244347 | 58460 | 50128 | 4 | 5609.957 | 60852.5
+R?

Layered | R'+G' | 0.07 | 5.846 | 0.405 | 15.216 | 366521 | 87690 | 75192 | 4 | 11669.280 | 94771.3
+R? + G?

Layered | R'+G' | 0.07 | 5.846 | 0.405 | 15.216 | 577289 | 122766 | 105372 | 4 | 22144.43 | 148342.1
+R* +G*
+R3

PEC R'+G' | 007 | 5924 | 0.405 | 15.216 | 118104 | 118104 0 4 | 10140.52 | 57656.8
+R* +G*
+R?
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Figure 65: Layered Flamme real components of surface electric currents @ 1 GHz.
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Figure 66: Bistatic RCS of layered Flamme @ 1 GHz on zy cut plane (¢ = 90°).
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Figure 67: Bistatic RCS of layered Flamme @ 1 GHz on xz cut half plane (¢ = 0°).
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Figure 68: Bistatic RCS of layered Flamme @ 1 GHz on zz cut half plane (¢ = 180°).
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Figure 69: Bistatic RCS of layered Flamme @ 1 GHz on xy cut half plane (¢ = 90°).
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Figure 70: Normalized polar bistatic RCS of layered Flamme @ 1 GHz on zy cut plane.
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Figure 71: Normalized polar bistatic RCS of layered Flamme @ 1 GHz on xz cut plane.
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Figure 72: Normalized polar bistatic RCS of layered Flamme @ 1 GHz on yz cut plane.

121



7.8 Conclusion

Self-identified hierarchical 3D vector basis functions were generated for the finite ele-
ment method (FEM) and 2D vector basis functions were utilized for the boundary intetgral
(BI). Then, the hybrid finite element boundary integral (FE-BI) technique was obtained
for EM simulations with hierarchical spaces. For the FEM, analytical solutions for the FE
matrix elements have been presented up to 4th order. Self-identified basis functions are
feasible for the FEM and effectively compatible with BI. Going from 1st to 4th order, the
FE-BI method allows for a mesh size increasing from A/8 up to A\/3. From coated sphere
testing results, good accuracy was found, the Bomber and Flamme simulations proved that
the FE-BI method based on self-identified basis functions can be utilized for very large scale
simulations.
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8 Accuracy Analysis of the Finite Element Boundary Inte-
gral Method

Numerical electromagnetic (EM) simulations for arbitrarily shaped objects play a sig-
nificant role in microwave components design. An accuracy analysis of numerical techniques
is required to prove the efficacy and for validation of EM simulations. General methods
to evaluate the accuracy of the numerical algorithms are proposed. References are selected
and compared with numerical simulation results. When the numerical results agree with
the references, the algorithms are proven to be valid. Then, an accuracy analysis according
to the reference results is employed for the algorithm evaluations.

The approaches to select the reference results are important for an accuracy analysis.
Convincing selections of references contain analytical solutions to some simple structural
models, the measurement results of the physical objects, the simulation results from different
verified algorithms, and so on.

8.1 The Definition of Root Mean Square (RMS) Error

The FE-BI method is very efficient in electromagnetic simulations of PEC objects
and also PEC objects coated with dielectric materials. For the PEC models, the electric
field is zero inside the PEC objects. The bistatic radar cross section (Bi-RCS) is utilized
to illustrate the efficiency and the accuracy of the vector hierarchical basis functions for
MoM. For PEC together with dielectric material models, the electric and magnetic fields
can be computed inside the volumes of the dielectric materials. So the distributions of the
electric and magnetic fields can also be utilized to evaluate the accuracy of FE-BI with
vector hierarchical basis functions. The Bi-RCS is produced by the reconstructed electric
and magnetic currents, where the currents are computed through MoM. The electric and
magnetic fields are distributed inside the volume of the dielectric materials, where the fields
are computed through FEM. So an accurate Bi-RCS can also prove the efficacy and analyze
the efficiency of the currents on the outside surfaces of the objects. An accurate field
computation can be utilized for the accuracy analysis of FE-BI inside the volume of the
dielectric materials. In order to evaluate the accuracy through the Bi-RCS and electric and
magnetic fields, the root mean square (RM.S) error is utilized to measure the accuracy of
the solutions. The RM S is defined as

N
1 2

MS=,|— br — P 8.1.1

RMS N ;:1! T — Pr|”, ( )

where N is the total number of testing points. For the Bi-RCS, N is the number of
sampling directions. For electric and magnetic fields, N is the number of sampling points
inside the volume of the dielectric materials. @r are the reference values from the reference
solutions, including the results from the physical objects, the analytical solutions, the
measurement results, the commercial software simulation results or the results from the
classic technologies with very fine mesh. & are the computational results from the FE-BI
method with vector hierarchical basis functions. For the surface integral equation solvers,
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the normalized residual is set as 10~ and it is usually accurate enough for MoM to obtain
accurate simulation results. For the FE-BI method, the normalized residual is set as
1077 and it is accurate enough to obtain accurate simulation results for large scale EM
simulations. If a different normalized residual value is utilized for iterative solvers, it will
be illustrated in the numerical results. All simulations, unless exceptional illustration, are
computed with an X 5690 @ 3.47 GHz workstation with a total memory of 192 GB.

8.2 Accuracy Analysis Against Analytical Models

Analytical models are effective for testing the efficacy of numerical EM solutions. The
electric and magnetic fields are exactly known and these results can be utilized as references
for new algorithms. A simple analytical solution is given for objects filled with the same
material as the surrounding space. The excitation of these models can be plane waves. Then,
the electric and magnetic fields inside the object volumes are easy to compute through the
plane wave propagation. The numerical results are computed through the FE-BI method.
The fields inside the object volume are determined by the expansions of the vector basis
functions multiplied with the corresponding solved coefficients. The numerical results are
compared with the reference results for the accuracy evaluations.

The RMS electric field error is utilized to evaluate the accuracy of the FE-BI method as
proposed in (8.1.1). In the selected models, the reference results @ r(r) and the computation
results @7(r) are vector fields, so the RMS electric field error is reorganized as

N
1 Z 2
RMS = ||+ > | & — Bpl?, (8.2.1)

where N is the total number of testing points inside the object volumes. The accuracy of
the FE-BI method depends on the working frequencies. For LO, fine meshes are required,
but for HO, the mesh size can be extended. So the RMS electric field error with different
frequencies can illustrate the accuracy and performance of the FE-BI method according to
the relevant mesh size. The RMS electric field error with the same frequency also shows
the accuracy improvements for HO in the FE-BI method. An air block and an air sphere
are selected as the models for the accuracy analysis.

8.3 The RMS Electric Field Error for the Air Block

The air block model is efficient to study the accuracy of the FE-BI method. The faces
of the blocks are planar, so the planar triangular meshes of the faces do not influence the
accuracy of the model. The outside boundary surfaces are accurately illustrated by the
boundary meshes. To study the accuracy of the FE-BI method for the relevant mesh size,
the RMS electric field error in (8.2.1) with increasing frequencies is shown. So a fixed mesh
of an air block is selected. The input plane waves with different frequencies propagate in the
same direction. The EM simulations of the FE-BI method and the RMS electric field error
are computed separately for different frequencies, the field results are computed within the
FEs and compared with the physical model results.
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Figure 73: Covered volume mesh of the air cube with mesh size 0.1 m, cube edge length
1 m.

Figure 73 displays the mesh of the cube and parts of the mesh are masked. The edge
length of the cube is 1 m. The surfaces of the cube are meshed into triangles and the
volume is meshed into tetrahedra. The mesh size is set 0.1 m, the minimum edge length is
6.143 cm, the maximum edge length is 19.072 cm and the mean edge length is 11.713 cm.
The excitation plane wave is polarized along the z-axis, E, = 100 V/m, propagates from
the bottom towards the top of the cube. The air cube model requires the material inside
the cube volume to be the free space, the permittivity €, and the permeability ., inside the
tetrahedral FEs are set as ¢, = u, = 1.0.

The testing points are distributed uniformly inside the cube volume, where the electric
fields are evaluated. In each dimension of the cube, n sampling points are utilized, so
the total number of sampling points is N = n3. The positions of the testing points are
represented as r in Cartesian coordinates. Then, the reference results on the distributed
points r are written as

E(r) = Ege /R0, (8.3.1)

where Ej is the amplitude vector of the plane wave, kg is the wave number vector in free
space. It represents the propagation direction of the plane wave, kg = |ko| = w\/€opo is the
wave number in free space. €¢g and pg are the permittivity and the permeability of the free
space, w = 27 f, where f is the frequency of the plane wave.

With the position 7, the testing point can be located in the corresponding tetrahedron
in the mesh shown in Fig. 73. From the geometrical information of the tetrahedron, the
corresponding simplex coordinates of (A1, A2, Az, A4, ) can be computed for . With the FE
basis functions in Table 4 and the solved unknowns by FE, the numerical results of the FE-
BI method can be obtained through the expansion of the electric field in (6.2.2.1). Then,
the RMS electric field error in (8.2.1) can be computed with the electric field from (8.3.1)
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and compared with the numerical electric field from the FE-BI method.

The RMS electric field error is shown in Fig. 74 with changing frequency for different
orders of basis functions. The RMS electric field error is evaluated in dB and the frequencies
are shown in logarithmic scale. The sampling points in each dimension of the cube is n = 50,
so the total number of sampling points is N = 125000. It is shown in Fig. 74 that the
accuracy of all orders of basis functions increases with decreasing frequency.
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Figure 74: The RMS electric field error in dB versus the logarithmic frequency for the air
cube.
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8.4 The RMS Electric Field Error for Air Spheres

The air sphere is also utilized to study the accuracy of the FE-BI method. The spherical
surface is curvilinear, so the planar triangular mesh cells are required to be sufficiently small
for the accuracy of the model. To study the accuracy of the FE-BI method, the RMS in
(8.2.1) with increasing frequencies are also shown. A fixed mesh of an air sphere is selected.
The input plane waves with different frequencies propagate in the same direction. The
EM simulations of the FE-BI method and the RMS are computed separately for different
frequencies, the simulation results are computed within the FEs and compared with the
analytical model results.

Figure 75: Covered volume mesh of the air sphere with mesh size 0.1 m, radius 1 m.

Figure 75 displays the mesh of an air sphere and parts of the mesh are masked. The
radius of the sphere is 1 m. The surface of the sphere is meshed into triangles and the
volume is meshed into tetrahedra. The mesh size is set to 0.1 m, the minimum edge length
is 3.436 cm, the maximum edge length is 16.194 ¢m and the mean edge length is 10.419 cm.
The input plane waves are polarized along the z-axis, E, = 100 V/m and propagate from the
bottom towards the top of the sphere. The air sphere physical model requires the material
inside the spherical volume to be free space, the permittivity €, and the permeability pu,
inside the tetrahedral FEs are set as ¢, = pu, = 1.0.

The testing points are distributed inside the spherical volume, where the electric field
is evaluated. The testing points are illustrated through a Spherical Coordinate System
(p, 9, @), where p is the radial distance, ¥ is the polar angle and ¢ is the azimuthal angle.
n, is the number of sampling points along p, ny is the number of sampling points in o
and n,, is the number of sampling points in ¢. So the total number of sampling points is
N = nyngn,. The positions of the testing points in Cartesian coordinates are represented
as r = (psind cosyp, psind cosp, p cos?). Then, (8.3.1) is also utilized as reference result.
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The RMS electric field error is shown in Fig. 76 with changing frequencies for different
orders of basis functions. The RMS electric field error is evaluated in dB and the frequencies
are computed in logarithmic scale. The sampling points in all dimensions of the sphere are
n, = 30, nyg = 91, n, = 180. The total number of sampling points is N = 491400. It
is shown in Fig. 76 that the accuracy of all orders of basis functions increases with the
decreasing frequencies. A nearly linear accuracy performance of RMS electric field error is
obtained with respect to the selected frequencies in logarithmic scale. In general, higher
order basis functions achieve higher accuracy at some selected frequencies. Better accuracy
is obtained at lower frequencies for each order basis function. The performance of LO and
HO basis functions is clearly shown for the selected frequencies. Further improvement in
accuracy can also be obtained with better Gauss Legendre quadrature performance.
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Figure 76: The RMS electric field error in dB versus the logarithmic frequencies for the air

sphere.
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9 Summary and Conclusion

The hybrid FE-BI formulations have been proven to be efficient and accurate for
radiation and scattering simulations in electromagnetics, where the variational formulation
for the method of finite elements and the governing integral equations for the method
of moments have been converted into a system of linear equations. The FE method
utilizes the Ritz approach with tetrahedral hierarchical vector basis functions and analytical
solutions for system matrices have been obtained. The BI method utilizes the method of
moments, where MoM employs the Galerkin process with triangular hierarchical vector basis
functions and treats singularities in mutual coupling integrals adaptively. The MLFMM
with spherical harmonics expansions has also been implemented into fast iterative solvers
for unknown computations through linear equations, where the FE-BI method has been
considered powerful and versatile for simulations of antennas and electromagnetic scattering
for arbitrarily shaped components.

The accuracy of the FE-BI method relies on both FE and BI. High accuracy of
FE can be obtained as the system matrices are computed analytically. The accuracy
of MoM solutions of integral equations are significantly dependent on the precision of
mutual couplings, including singular kernels in near couplings. Special numerical treatments
of singular integrals are required, as quadrature rules are not applicable to neighboring
source and testing domains directly. A fully numerical treatment of singular integrals
inherits the adaptive singularity cancellation technique and good efficiency and accuracy are
also obtained. For singularity cancellation techniques, a new family of radial-angular-R"
transformations have been proposed in this work based on the variable separation method.
General solutions are provided for the variable separation method. Thus, a family of
transformation schemes are obtained for different orders of singularity cancellations. The
1st order transformation schemes are valid for 1/R - type singular kernels, 2nd and 3rd
order transformation schemes are effective for R/R3 - type singular kernels. Moreover,
good performance of radial-angular- R™ transformations has also been obtained for deformed
triangles. High efficiency and accuracy are acquired by the new transformation schemes.
Additionally, for the inside projection configuration, traditional transformation schemes
are sensitive to the projection height of the observation point to the source domain plain.
For extremely small projection height, a large number of sampling points are required
for the traditional schemes to achieve good accuracy. The new proposed transformations
successfully and efficiently cancel out the effects of the projection height and excellent
accuracy convergence has been obtained with a significantly limited number of quadrature
points. Improved efficiency and accuracy of near-coupling evaluations have been obtained.

Hierarchical spaces for the hybrid FE-BI formulations provide efficient and important
solutions to the development of powerful algorithms for computational electromagnetics.
The low order RW G basis functions are well applied in the expansion of surface currents,
however, the RW G basis functions suffer from the fundamental shortcoming that the
accuracy is limited for dense geometrical discretization. To achieve better accuracy, nearly
orthogonal hierarchical HO basis functions have been employed in the mixed order spaces
and implemented into the FE-BI formulations. Furthermore, the HO basis functions achieve
the same good accuracy as the LO counterparts with sufficient reduction in the number
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of unknowns for given models. Proper fast solvers are necessarily required for numerical
solutions to large scale EM simulations with the hybrid FE-BI formulations. The global
system matrix from FE is highly sparse since interactions only involve neighboring elements.
Thus, additional boundary conditions are utilized to arrive at a unique solution. The
global system matrix from Bl is dense since a traversal of all elements take place in mutual
couplings. However, traditional MLFMM approaches turn to be less efficient for HO due
to their hierarchical element dimensions. The SE-MLFMM has been proven considerably
efficient in terms of memory requirements and computation time even for HO basis functions,
where the k - space integral computations of the individual basis functions tremendously
reduce the RAM storage and hence raise up the efficiency of iterative solvers for the resulting
equation system. Thus, the SE-MLFMM technique accelerates the MoM solution for the
SIE formulations.

The new proposed radial-angular-R"™ transformation schemes have been utilized in
various EM simulations for practical models incorporated with the adaptive singularity
cancellation technique and higher-order surface current modeling. The efficacy of the
hybrid FE-BI method has been proven through comparisons between simulation results
and simple testing cases of physical models and analytical solutions. Bomber and Flamme
aircraft models have been detailed studied in terms of scattering for PEC configurations
and PEC configurations covered with dielectric absorbing materials. The hybrid FE-BI
method provides accurate predictions of current distributions on the envelopes of objects
and radiation pattern in free space. Furthermore, the accuracy analysis of the hybrid FE-BI
method demonstrates that HO basis functions provide more accurate simulation results for
increasing frequencies with respect to the corresponding model meshes.
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Appendix A

System Matrices of the Finite Element Formulation based on
Self-Identification Technique

In this appendix, the system matrices of the finite element formulation in (6.4.2) are
listed. The system matrices have been derived from the 3-D hierarchical vector basis
functions, where the basis functions are defined with the self-identification technique. The
matrices can be directly linked into the system solvers. In Appendix A.2, < ap,,q, >
means the system matrix element relevant to the basis functions «,, and «,.

A.1. Parameters for the System Matrices

The parameters are defined on a single tetrahedron shown in Fig. 49. It gives that

lij = Ai- Aj (A.1.1)
Tij=AixAj, (i#j)=1(01,23), (A.1.2)

and

v9 =1.0/(9.0 x v), (
180 = 180.0 % v, (
v36 = 1.0/(36.0 * v), (
v24 = 1.0/(24.0 ¥ v), (A.1.6
v72 =1.0/(72.0 x v), (
v80 = 1.0/(80.0 * v), (
0240 = 1.0/(240.0 % v), (
V720 = 1.0/(720.0 % v), (
v1080 = 1.0/(1080.0 * v) (
V7560 = 1.0,/(7560.0 * v), (
v180k02 = k02/(180.0 % v), (A.1.13
v1080k02 = k02/(1080 * v), (
v7560k02 = k02/(7560 * v), (
v60480k02 = k02/(60480 % v), (
v544320k02 = k02/(544320 * v), (

~—~~ I~ /N
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v3.81.4 =4.0/(81.0 x v?), ( )
v3.54 = 1.0/(54.0 * v*), ( )
v3.162 = 1.0/(162.0 % v*), ( )
03180 = 1.0/(180.0 * v*), ( )
v3.540 = 1.0/(540.0 % v*), ( )
v3.1620 = 1.0/(1620.0 * v°), ( )
v3.4860 = 1.0/(4860.0 * v*), (A.1.24)
0317010 = 1.0/(17010.0 * v3), ( )
v3.810 = 1.0/(810.0 % v*), ( )
v3-3240 = 1.0/(3240.0 * v*), ( )
v3.9720 = 1.0/(9720.0 * v3), ( )
0334020 = 1.0/(34020.0 * v3), ( )
v3.68040 = 1.0/(68040.0 * v3), ( )

where v is the volume of the corresponding tetrahedron, k02 = k(Q) = w?eg o, ko is the wave
number in free space, ¢y and g are the permittivity and permeability of the free space.

With (6.3.7) and (6.3.8), the coefficients for the system matrices can be determined.

for j=1:J
k; = 0;
for i=0:3
if (nj==1) ki++;
end
3
Li({n;}) = [T kit
i=0
end

where j is the number of the nodes relevant to the coefficients, n; is the node number
indexed in the basis functions, {n;} represents all nodes utilized for the coefficient, i is the
node index of the tetrahedron, k; is the number of index times of node 7 and L; is the
corresponding coefficient for the matrix mutual couplings.
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A.2. R,, and S,,, Matrix based on Self-Identification Technique

< Qim, G1p >
Rupn =03.81 AT . - Tin,
Smn =v180k02(La(mi, 1i) I n; — La(mi, nj) Imyn, — La(myni) Lgn, + La(my, n) L, )-
< G1m,bin
Ry =0.0,
Smn =v180k02(La(mi, 1i) L in; + La(mi, nj) Lnsn, — La(my, ni) I, — La(myg, 1) Imgn,)-
< Q1m, Con >
R =03 54(Tomim; * Tryn. — Ty * Trgny)s
Smn =v1080k02(L3 (M, ngy 1y ) Ly, + L3 (Mg, gy, 1) Iy, — 2.0L3 (M0, M, 2 ) I,
— L3(my,ng, ny) Imn. — La(mj, ny, ) Imn, + 2.0L3(my, ng, n2) Imgn, )-
< A1y, oy, >
Runn =03.162(Tmym; - Ty + 20T mim, cdotT . + Tonim, - T,
Smn =v1080k02(L3(mi, gy 1y ) Iy, — Ly (Miis yy 12) Iy, — L3 (Mg, Ny gy I,
+ L3(my, ny, n2) Imn,,)-
< A1m, €2n >
R, =0.0,
Smn =v1080k02(2.0L3(my, i, 15) Imyn; — La(mi, 1) Imyn; — 2.0L3(m, 1, 15) L,
+ La(mj,ni) Imn; — 2.0L3(mi, niy 1) I jn, + La(mi, 1) L n,
+2.0L3(mj, ni, 1) Imin; — La(mg, ) Lnn,)-
< Q1m, fon >
R,.n =0.0,
Smn =v1080k02(L3 (M, gy 1y ) Ly, + Lz (miis iy, 12 ) Iy, + L3 (M, gy 2 Iy,

- L3(mj> Ny, ny)Iminz - L3(mj’ Ty, nz)Immac - LS(mju Ny, nz)Imlny)

< Q1m, 93n >
Ry =0,
Sran =0T7560k02(—1I;n, La(mj, ny, ny, nz) + Imyny, La(my, ny,nz,n;)
+ Iin, La(mj, ng, e, nz) — Iny, La(mg, ng,nz,nz) — L, La(mg, g, ng, ny)
+ Lnyn, La(my, ng, ny,ny) + ImjnxL4(mi, Tyy My, M) — Im].nxL4(m2-, Ty Mz, Nz
— Imjny La(mi, g, Mg, 12) 4 Ty La(mi, N, iz, mz) 4 Ty, La(mi, g, g, my)
m]nzL4(mlv Ty My, My )

133



< a1m, hgn >

R =03 810(977(Tmim; - Trgny ) L2 (1, 12) — 424(T i, - T, ) La(ny, 122

= 212(T iym; - Tigny ) L2(nz,m2) + 553(T oy, - Tign. ) L2 (12, y)
— 424(T yym; - Tngn. ) L2(ny,ny) + 553(Tim; - Tngn. ) La(ny, 1)
- 212(Tm Ty, )Lo(ng,ny) — 424(Tpmm; - Toyn, ) L2(nz,ny)
+977(T mymy nynz)L (ngyn2)),

Srn =v7560k02(393 11,0, La(myj, g, 1y, z) — 21210, La(mj, ny, iy, m2)

< Q1m,13n >

+ 801 n, La(myg, ny,nz,nz) — 29210, La(mj, ng, ng, n2)
+ 2920000,
+ 2121, La(mj, ng, ny, ny) — 3931 pm,m, La(mj, ng, ny, nz)
— 393[mjn$L4(mi, Mgy Myy M) + 212ImjnxL4(mi, Ny, Ny, Nz
= 80Lm, La(mi, ny, iz, nz) + 29200 i, La(mi, g, Mg, )

= 2920, La(mi, g, iz mz) + 800, La(mis g, Mg, 1y)

= 2121, La(miy g, iy, my) + 393D . La(mg, ng, iy, m2 ).

L4(mj7 Ny Nz, nz) - SOIminz L4(mj? Ny Ny ny)

Ry =03 810(43(T ;- Tngny ) L2(na, nz2) + 510(T iy, - Thigny ) L2(ny, n2)

)
- 212(TmLmJ : nzny) 2(”2) nz) + 467(Tmzmj : TnznZ)LQ(nx) ny)
—467(T mym; - Tnpn.)La(ny,nz) + 212(T i, - Ty, ) Lo (nz, 12
- 510<Tm1m7 : Tnynz)LQ(n:tv ny) - 43(Tm,-mj ' Tnynz)LQ(nan nz))a

Sran =07560k02(1311,, 1, La(mj, ng, ny, nz) + 1241, La(my, ny, ny, ns)

— 168y, L
— 26210, La(myj, ng, ny, nz) + 4410, La(mj, ng,nz,nz)

— 1681 n, La(mj, ng, g, ny) + 124100, La(mj, ng, ny, ny)
+ 131 n. La(my, na, gy, nz) — 131, La(m, nia, my, 1)
— 12410, La(mi, iy, ny, nz) + 16810 i, La(mi, ny,nz,m)

- 44ImjnyL4(mz’ Ny Ny M) + 2620 nyL4(mZa Ny, Ny, n;)

a(mg,ny,nz,n.) + 44l i, La(mj, ng, ng, nz)

- 44ImjnyL4(mu Ny Ny, nz) + 168[mjnzL4(mu Ny, Ny, ny)

— 124ImjnzL4(mi,nx,ny, Ny) — 131]mjnzL4(mi,nx, Ny, Nz)).
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< A1, J3n >
R, =v3.810
(=2(Tmim; - Tngny ) L2(n1,m3) = 2(Tmim; * Tngng) La(na, n2)
= 2(Tmm; - Tnyng ) L2(no;m3) — 2(Tmgm; - Tnyng) L2(no, n2)),
Simn =v7560k02
(—Imino La(myj, na, na, m

+ Imny La(mj, ng, n1,ng3

~— — ~— —

(
+ Lmjne La(mi, ny, 2, n3
(

- mjn2L4 mi,ng, N1, N3

< G1m, k3n >
Ry, =v3.810
(Trmim; - Trgna)L2(n1,n3) — (Tmym; - Tngng) L2(n1,n2)
+ (Tmim; - Tring) L2(no,n3) — (Tmym; - Tnyng) L2(n0, n2)
- 2(Tmimj “ Thyng ) L2(no,n1)),
Sn =v7560k02
(—ILmino La(myj, no,n1,n3) + Imyng La(mj, ng, n1, n2)

+ Imjn2L4(mi7 n07 nl) ng) - Imjn3L4(mia nOv nlu nQ))

< G1m, l3n
Ry =v3.810
(=2(T'mim; - Tngny ) L2(n2,n3) — (Tmym; - Tngny) L2(n1,n3)
- (Tmimj Thgng)La(n1,n2) + (Tmimj * Tnyny ) L2(ng, n3)
+ (Tmimj “ Tyng) La(no, n2)),
Smn =v7560k02
(—=Imino La(mj, m1,n2,n3) + Imyn, La(mj, no, no, na)

+ Imjn0L4(mz’a n1,M2,M3) — Imjnl L4(mia no,Nn2,13))-

< bim, con >
R, =0.0,
Smn =v1080k02(L3 (M, ngy y) Ly, + Ly (migy gy, 02) Iy, — 2.0L3(m0, 1, 2 ) I,

+ L3(myj, g, y) Imyn, + La(mj, ny, 1) Imm, — 2.0L3(m;, nx,nz)Immy).

< blma d2n >
R, =0.0,
Simn :v1080k:02(L3(mi,nx,ny)fmjnz — Lz(m;, ny, nz)fmjnz + Ly(my, g, y) Inyn.,

- L3(mj7 Ty, nz)Iminz)-
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< bim, €2 >
Ry =0.0,
Smn =v1080k02(2.0L3(my, ni, 15) Iy — La(miy 1) Iy + 2.0L3(my, 1, 15) Ly,
— La(myj,ni) Imn; — 2.0L3(mq,ni, 1) I jng + La(miy m5) I,
— 2.0L3(mj, g, n5) Lmn; + Lo(myj, nj) I, )-

< blma f2n >
R, =0.0,
Smn =v1080k02(L3(1mi, gy My) Iy + La(miis 0y, 12) Iy, + L3 (Mg, nigy 12) Iy,

+ L3(mj7 Ny, ny)Immz =+ L3(mj> Ty, nz)Iminx + LS(mj7 Ny, nz>Immy)~

< bim, g3n >
R, =0,
Smn =0T7560k02(+ L n, La(mj, ny, ny,nz) — Imn, La(my, ny,nz,n)
— ImmyL4(mj, Mgy Mgy Ny ) + Lnin,
+ Lyn, La(my, ng, g, ny) —

+ ImjnzL4 MGy Moy Thyyy Nz ) — I,

) )

( ) = Imjn, )

— Iy, La(mi, g, e, nz) + Ly, La(mi, g, na,nz)
+ ImjnzL4(mZ,nx, Mgy Ny) — Iinjn, La(mg, Ny Myy Ny ).

< b1y, h3p >
R, =0,
Smn =07560k02(—393 1,0, La(mj, ng, ny, nz) + 21210, La(mj, ny, ny, n.)
— 80 mn, La(mj,ny,nz,n.) + 2921,
— 29210, La(mj, ng, nzymz) + 80L,n, La(my, ng, ng, ny)

iy La(mj, ng,ng,nz)
— 2121y, La(mj, ng, ny,ny) + 393Ly,n, La(mj, ng, ny, nz)
— 393 jn, La(mi, na, ny,nz) + 21210 0, La(mi, ny, my, n2)
— 80 ;n, La(mi, ny, iz, nz) + 2920 i, La(mi, gy g, 1)
— 2920 n, La(mi, ng, 1z, n2) + 801 .
— 212100, La(miy g, My, 1y ) + 3931,

L4(mi7 Ng, Ny, ny)

jnzL4(mi7 N, Ty, nz))
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< bim, t3n >
Ry =0,
Smn =v7560k02(—1311 1,5, La(mj, g, ny, nz) — 12410y, 0, La(mj, ny, ny, n)
+ 16810, La(mj, ny,nzyn.) — 44D m i, La(mj, g, ng, nz)
+ 26210, La(mj, ng, ny,nz) — 44000, La(mj, ng, nz,n;)
+ 1681,n, La(myj, g, g, y) — 124100 La(mj, ng, nyy, myy)
— 131 myn, La(my, ng, ny,nz) — 131 n, La(mi, nig, my, mz)
— 1241, La(mi, ny, ny, m) + 1681,
— 441y, La(mi, g, Mg, ) + 26200 1,

— 441y, .n L4(mi7n1:7nzynz) + 168[m-nzL4(mi7nCB7 N, T )
3Ty J Y

jnzL4(mi7 Ty, Tz, nz)

L4(mi7 Ny, ny7 nz)
— 1241 5, La(miy g, my, my) — 13100 i, La(mi, ng, iy, m2)).

< bim, Jan >
Ry =0,
Simn =v7560k02
(ImynoLa(mj, n1,n2,n3) + In, La(mj, no, na, n3)
— Imyno La(mg, no, n1,n3) — Inyng La(my, no, ny, n2)
+ Lnyng La(mi, na,ma, ng) + Lijny La(mi, no, n2, n3)

- Imjn2L4(mi7 no,ny, n3) - Imjn3L4(mia no,ny, n2))

< bim, k3n >
R, =0,
Simn =v7560k02
(+Lminy La(my, ng, 1, n3) Ly(mj,ng,n1,n2)

- Im n3
+ Imjn2L4(mi7 no, 11, n3) - Imjn3L4(mi7 no, N1, 7?,2))

< bim, l3n >
R, =0,
Smn =v7560k02
(Imyno La(mj, ni,n2,n3) — Im,n, La(mj, ng, n2, n3)

+ Imjng La(mi, n1,n2,m3) — Iy La(mi, no, n2,n3)).
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< Com, C2n >
Runn =03180(La(may n2) Ty * Ty — Lo (1, 1) Ty * T,
— La(mz,ne)Trmymy, - Tnyn. + La(mz, n2)Togmy, - Trogny, )
Smn =v7560k02(L4(mg, My, Ny Ny) I, + La(Ma, My, ny, 12 ) Iy,
— 2.0L4a(mg, my, N, 2) I, + La(my, mz, ng, ny) Imgn.
+ Ly(my, mz, ny, 1) Lyn, — 2.0L4(my, my, ng, nz)Imzny
— 2.0L4(mg, mz, ng, My ) Imyn. — 2.0La(mg, Mz, ny, nz) Inyn,

+ 40L4(mz7 Mz, N, nZ)Imyny)'

< Com, don >
Ry =v3.540(La(ma, ne) Tym., - Tryn, + 2.0La(ma, ny) Ty, - Tign,
+ La(me,n2)Tonym, - Trgny — La(mz, ) Togmy, - Trgn.
—2.0La(mz,ny) Ty, - Tngn. — La(mz, n2)Tigmy, - Tagny, )
Smn =v7560k02(Ls(my, My, Ny Ny) LI, — La(Ma, My, My, 12) Iy,
+ La(my, mz, na, ny) Imyn, — La(my, mz, ny, 1n2) Imon,

—2.0Lg(my, m,ny, ny)Imynz + 2.0L4(my, mz, ny, nz)Imynz).

< C2m, €2n >
Ry, =0.0,
Smn =vT560k02(2.0 L4 (Mg, my, 0, 15) Imn; — L3(Mg, My, i) I,

— 2.0L4(my, my, i, 15) I _n, + L3(Mg, My, 1n5) L n,

+ 2.0L4(my, Mz, i, 15) I, — L3(My, Mz, 1) I,
— 2.0L4(my, mz, ni, ) Iy, + La(my, mz,n5) Im,n,
— 4.0L4(ma, mz, i, 15) Iipyn; + 2.0L3 (Mg, mz, 1) Ly
+4.0L4(my, m, ni,nj)lmym - 2.OL3(mx,mz,nj)Imym).
< Com, fon >
R.n =0.0,

Srn =v7560k02(La(my, my, Ny, Ny) L n, + La(mg, my, ny, nz) I n,
+ La(mag, My, N, 02) Iy, + La(my, mz, g, iy I
+ La(my, mz,ny, n2) Imon, + La(my, mz, ng,n2) Imgn,
—2.0L4(mg, mz, g, My ) Iinyn, — 2.0L4(ma, Mz, Ny, 12) Iy,

—2.0Lg(mg, mz, g, 02 ) Iy, )-
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< Com, 93n >

— (Twmymy - Tngny ) L3(mz,nz,nz) — (Togmy, - Tign. ) L3(mz, g, ny)
+ (Tmgmy - Trgn.)L3(mz,ny,ny) — (Tmgmy, - Trgn. ) La(mz,ny, n.)
— (Twmpmy - Tnyn.)L3(mz,ne,nz) + (Tmgmy, - Toygn. ) La(mz, ng, ny)
+ (Tomgmy - Tryn. ) L3(Mzy 1z, n2) — (Tiyme - Tigny ) La(Ma, ng, )
— (Twmym. - Tngny)L3(ma, ny,n2) + (Tiym. - Tngn, ) La(me, nz,n2)
+ (Trmym. - Trngn. ) Ls(ma, na,ny) — (Tiym, - Togn. ) Ls(ma, ny, ny)
+ (Trmym. - Tngn. ) La(ma, iy, 12) + (Tiym, - Toyn. ) La (M, g, 0
— (Tmym. - Tnyn.)L3(Mma, na,ny) — (Timym. - Toyn. ) La(ma, na,n2)),

Sn =v60480k02(Ipn,n, Ls(my, mz, ny, Ny, nz) — Lmon, Ls(my, mz, ny, nz,ny)
— Lngny, Ls(my, mz, g, gy n2) + Igny Ls(my, mz, ng,nz,ny)
+ Loy, Ls(my, mz, ng, ng, ny) — Iy, Ls(My, mz, ng, ny, ny)
— 2Imyn, Ls(me, mz, ny, ny,n;) + 20y,
+ 21,

- 2ImynzL5(mI7 My, Mgy Ny ny) + 2Im

ynzLE)(mZ’ Mz Ny Nz, n.)

ynyLS (mxa Mzy Mgy Ny, nz) - QImynyLE)(mxa My, Ny, Nz, nz)

ynZLS(mxymmna:anyany)
+ImznzL5(mxamy7nyanyunz) - mznzLS mxamyvnyanZanz)

ImznyLS(mxa My, Mg, Ny nz) + Iy,

(
znyLEJ(mm My Ny Nz, nz)
(

+ ImznzLS(mxa My, Mg, Ny ny) mznzLS Mgy My, Mgy Ty ny))
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< C2m, hsp, >
Ryn =v3.3240(=977(Tmymy, - Trgny ) La(mz, ne,nz) + 424(Toymy, - Tign, ) L3(mz, ny,n2)

+212(Tmym, - Trgny ) La(mz,nz,n2) — 553(Timym, - Trgn, ) La(mz, ng, ny)
+ 424(Tyym,, - Trgn. ) La(mz, ny, ny) — 553(Trymy, - Tngn. ) L3(mz,ny,n2)
+212(Tymy, - Tayn. ) L3(mz, ne, ng) + 424(Trym, - Toyn. ) L3(mz, 1z, ny)
= 977(Trymy - Tnyn.)L3(mz,nz,n2) + 977 (Tonym. - Tngny ) L3(Ma, ng, n2)
— 424(Trym. - Tnony ) L3(ma, ny,nz) — 212(Tpym., - Togny ) L3 (Mg, nz,nz)
+553(Tinym. - Tngn. ) L3(Ma, ngyny) — 424(Tinym. - Tngn. ) L3(ma, ny, ny)
+553(Trmym. - Tngn. ) L3(ma, ny,n2) — 212(Tym. - Tryn. ) L3(Me, Nz, Nz
— 24T mym. - Tryn.)L3(Mma, e, ny) +9TT(Tiym. - Tryn. ) L3(Me, 1z, n2)),
San =v60480k02(—3931,,pn, L5 (my, Mz, Ny, Ny, nz) + 21205, 5, Ls(my, Mz, Ny, 0y, 12)

— 801 myn, Ls(my, mz,ny,nz,nz) + 29200, Ls(my, mz, ng, ng, n2)

- 292[mznyL5(my> My, Mgy Ny, nz) + 8OImgmzL5 (my’ My, Ny, Ny, ny)

— 2121, n, Ls(my, Mz, Mgy My, y) + 393100, Ls (Mg, Mz, Ny Mgy 11

Nz

( ) )

+ 78611, n, L5 (Mg, Mz, Mgy iy, ) — 42400, 5, Ls (Mg, Mz, iy, my, nz)
+ 16011, n, L5 (Mg, Mz, gy, iz, nz) — 584D, ny, Ls (M, Mz, Ny g, 12
+ 58411, n, Ls (M, Mz, gy Mz, mz) — 16010, 0, Ls (M, Mz, Ny gy )
+ 4241, 0. Ls (M, Mz, Ny Nyy My ) — 7860y, Lis (Mg, Mz, Mgy iy, 12
)

— 39311, n, Ls(mg, my, ng, ny,nz) + 21210, pn, Ls(mg, my, ny, ny, n;
— 801, n, Ls(mg, my,ny, nz,n;) + 2921,

- 292[mznyL5(mac7 Ty Mgy Tz nz) + SOImznzL5 (mZ‘7 My Mgy N, ny)

znyL5(mJ}7 myv Ny Ny, nz)

— 2121, . Ls(myg, My, Ng, Ty, ny) + 393110, Ls(my, My, Nz, Ny, nz)).

< Com, 130 >
Ry =v3.3240(—43(T rmymy, - Trgny ) L3(mz, ng,nz) — 510(Toym, - Thgn, ) La(mz, ny, n2)
+212(Tiymy - Trgny ) La(mz,nz,nz) — 467(Tiym, - Togn, ) La(mz, ng,ny)
+467(Tmymy, - Trgn. ) La(mz,ny,n.) — 212(Tpymy, - Toyn. ) L3 (mz, ng, )
+510(Tmymy - Tryn. ) L3(mz, ne, ny) + 43(Trnpmy, - Toyn. ) L3(mz, 1, nz)
+43(Trmym. - Trgny ) L3(me, g, nz) + 510(Tonym. - Tngn, ) La(ma, ny, 1)
= 212(Tmym. - Tnony ) L3(Ma, nz,nz2) + 467(Tiym. - Thgn, ) L3(Ma, ng, ny)
—467(Tyym. - Th,n.)L3(mg, ny,n;) + 212(Trym. - Tnyn. ) L3(Ma, Nz, )
- 510(Tmymz ) Tnynz)L3<m1‘7 Ng, ny) - 43(Tmymz ) Tnynz)LS(m:m N, Nz)),

-T
-T

-T
-T
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Srn =v60480k02(—1311p,, pn, Ls(my, Mz, Ny, Ny, nz) — 1241, 5, Ls(my, Mz, Ny, 1y, 112)

+ 1681 1,n, Ls(my, mz, ny,nz,n.) — 44l 0, Ls(my, m2, ng, ng, )
+ 2621 1,n, L5 (my, Mz, Ny iy, z) — 44000, Ls(my, mz, ng, nz,nz)
+ 1681 n, Ls(my, Mz, Ny, Ny, y) — 124000, 0, Ls (Mg, Mz, Mgy My, 1y
— 131, n, Ls(my, mz, g, iy, nz) + 262[manL5(mx,mz,nx,ny, n;)
+ 24811, n, Ls (Mg, Mz, gy, iy, ) — 33610, Ls (Mg, mz, ny,nz,ny)
+ 881 myn, Ls (Mg, Mz, gy Mgy n2) — 52410, 0y, Ls (M, Mz, My My, M)
+ 881 myny, Ls (Mg, Mz, gy Mz ) — 33610, 0, Ls (Mg, Mz, g, Mg, M)

+ 248[mynz Mgy My Mgy Ty, Ty + 262ImynzL5(mx7 My, Ny, Ny, nz)

— 131, Ls (Mg, Mgy gy iy, 124[mznxL5(mzamy7nyanyvnz)

44ImznyL5(m:m My, Ny, Ny, nz)

+ 16810, L5 (M, my, Ny, Nz, Ny,

5(
(

+ 1681, n, Ls (Mg, My, ny, 1z, ny
(
( 12410 n, L5 (Mg, My, Ny, My, y)
(

)
n:) —
n;) —
+ 262110, L5 (M, My, Nz, Ny, ) — 440y 0, Ls (Mg, my, g, nz,ne)
ny) —
)

— 131 . Ls(my, my, ng, ny, n ).

< Com, J3n >

Ry =v3.3240
(2(Tmymy - Tnona ) La(mz, n1,n3) + 2(Tmymy, - Tnons ) La(mz, n1, n2)
+2(Trmpmy, - Tnyny) La(mz,n0,13) + 2(Tinpm, - Tnyng) La(mz, no, n2)
= 2(Tmym. - Tngny) L3(mz, n1,n3) — 2(Trym. - Trgns ) L3(ma, n1,m2)
—2(Tmym. - Tning)L3(ma,n0,n3) = 2(Trmym. - Tnying) L3(ma, no, n2)),

Sinn =v60480k02
(Imgno Ls(my, mz,n1,n2,n3) + Lyyn, Ls(my, mz, ng, n2, n3)
— Iy Ls(my, mz, no, n1,n3) — Imyng Ls(my, m., ng, ni, n2)
— 2lmyno Ls (Mg, mz, n1,n2,n3) — 200,y Ls (Mg, m2, 1o, N2, n3)
+ 2L, ny Ls (Mg, mz, mo, n1,n3) + 2L, ng Ls (Mg, m2, no, 01, n2)
+ Linong Ls(mg, my, n1,n2,n3) + In_n, Ls(mg, my, no, n2, n3)

- ImanLE)(m:ca myv no, N1, n3) - ImzngLS(m:I:7 my7 no, N1, nZ))
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< Com, k3n >
Ry =v3.3240
(—(Tmymy - Trgna)L3(mz,n1,13) + (Timgmy, - Tgns ) L3(mz, n1,n2)
- (Tmzmy 'Tnmz)LS(mZanOa”S) (Tmzmy ’ mng)L3(mz,nO,n2)
+ 2(Trmymy, - Tnong ) La(mz,no,n1) + (Toym. - Tnony ) L3 (me, n1,13)
— (Twmym. - Tnons) La(mz, n1,n2) + (Timym. - Tnyny ) L3(me, no,n3)
— (Twym. - Tnyng) L3(ma, no,n2) — 2(Tmym. - Tnong) L3(Ma, no,n1)),
Smn =v60480k02
(Imyno Ls(my, mz, o, n1,n3) — Lmyng Ls(my, mz, ng, ni, n2)
— 2@ ny Ls (Mg, Mz, mo, n1,n3) + 2L, ng Ls (M, Mz, no, 01, n2)

+ Imzn2L5(m$7 my7 no, N1, 7’L3) - Imzn3L5(mm7 my7 no, N1, n2))

< Coam, l3n
R =v3.3240

(2(Tmmmy + Thgny ) L3(mz, na,n3) + (Tmrmy * Thgny ) L3(mz, n1, n3)

N

nons ) L3(mz,n1,n2) — (T MMy “Tyny ) Lz(mz, o, n3)

- (Tmzmy : Tn1n3)L3(m27 no,n 2) ( MyMmz Tnonl)L3(me7 na, n3)
- (Tmymz : Tnong)LB (mx, ny, nS) ( mym; Tnong)LB (mx, ny, n2)

+ (Tmymz : Tnlng)LS(mx, no, n3) + (Tmymz : Tnlng)LS(mx, no, n2))a
Smn :U60480k02(Imzn0L5 (my’ My, N1, N2, n3) - Imznl L5 (my7 mz,ng, N2, TLS)
- 2Imyn0L5 (mam my, N1, N2, n3) + QImynlLS(mxa my, o, N2, n3)

+ Linong Ls (Mg, my, n1,n2,n3) — Ly n, Ls(mg, my, no, n2, n3)).

< do, don >
Ry =v3.1620(La(my, ) Tinym. - Tnyn. + 2.0La (Mg, ny) Tonym, - Trgn.
+ La(me, n2)Tonym. - Trgny 4 2.0L2(my, n2) Tinpm, - Ty
+4.0La(my, ny) Trym, - Tngn. 4+ 2.0La(my, 1) Trpm, - Trogn,
+ Lo(mz, n2)Tomamy - Tyn. + 2.0La(m2, 1) Ty - T,
+ La(mz,n2)Trgmy, - Tgny),
Sran =0T560k02( L4 (M, My, Mgy Ny ) I on, — La(Mig, My, Ny, 102) I,

- L4(my, Mz, N, ny)Imznz + L4(my, My, Ny, nz)Imznz)-

< dom, €an >
R,.n =0.0,
Smn =07560k02(2.0L4(m, my, ni,nj)Imznj - Lg(mx,my,ni)lmznj
— 2.0L4(my, my, ni, n5) Iy _n; + La(mg, my, 1) I, p,
— 2.0L4(my, mz,ng, nj)Imznj + L3(my, m., ni)Imznj

+ 2.0L4(my, mz, i, 1) Lnyn, — La(my, my, ) I, p,)-
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< dom, fon >
Ry =0.0,
Srn =0T560k02( L4 (M, My, Mgy Ny ) Imon, + La(ma, My, Ny, 102) I n,
+ La(ma, My, N, 12) Ly, — La(my, Mz, ng, ny ) Inn,

- L4(mya Mz, Ny, nz)Imznz - L4(mya My, Ny, nz)Imzny)-

< dom, g3n >
Ry =v3.4860(—(Trmymy, - Trgny ) L3(mz, e, n2) = (Tigmy, - Trgn, ) L3(mz, ny,n.)
+ (Trmgmy - Trgny ) L3(mz, nz,n2) + (Tmgmy, - Tign. ) La(mz, nz, ny)
— (Tmumy - Tron. ) La(mez, nyg, ny) + (Togmy, - Trgn. ) La(mz, ny, n2)
)
)

+ (memy “Thyn L3(m27 Ng, nm) - (memy : Tnynz)Lii(mz; Ng, ny)

ynz
— (Twymy - Tnyn.)L3(mz,nz,nz) = 2(Timpm. - Thgn, ) L3(my, nz, n2)
—2(Trmym. - Trgny)L3(my, ny,n2) + 2(Trgm, - Trgn, ) L3(my, nz,n2)
+ 2(Tmym, - Thon. ) L3(my, nz,ny) — 2(Tmym. - Trgn. ) La(my, ny, ny)
+ 2(Tmom. * Tron. ) La(my, ny,nz) + 2(Timgm, - Toyn, ) La(my, ng, ng)
—2(Tmom, - Tnynz)Lg(my, Ny, Ny) — 2(Tmom, Tnynz)Lg(my, Mgy )
— (Twym. - Tngny)L3(ma, ne,nz) — (Tryme, - Trgny, ) L3 (Mg, ny, )
+ (Trmym. - Tngn, ) L3(ma, nz,nz) + (Tmym, - Togn, ) L3(ma, 1z, ny)

= (Trym. - Tnon. ) La(ma, ny, ny) + (Timym, - Tngn. ) L3(ma, ny, nz)
+ (Trym. - Tnyn. ) Ls(ma, 1z, n2) = (Tmym, - Toyn. ) L3 (M, na, ny)

(Tmymz ) Tnynz)LB(mx7 Nz, Nz)),

+ ImznyL5 myymmnranwanz) - ImznyLE’) myammnmnmnz)

— Ipyn, Ls(my, mz, g, g, my

- ImznyLS Mgy My, Mgy Ny nz) + ImznyLE) Mgy My Mgy Tz Ny
+ ImznzL5 )
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< dzm, hgn >
Ryn =v3.9720(977(Trnymy, - Tngny ) L3(mzyna, nz) — 424(T iymy, - Trgn, ) L3(mz, ny, n2)

— 212

— 424

L3 (mZ7 Ny, nz) + 553(Tmzmy : nznz)L?; (mza Ng, ny)
NgNy L3(m., Ty, Ny ) + 553(Tmzmy : nznz)Li’)(mZa Ty, nz)
( )

)
My, Ny, Ny ) — 424 Tmzmy “Lnyn, L3(m27nx7ny)
)+

+977(Tmymy, - Tryn.)La(mz, ng,nz) + 1954(Tym. - Thpny, ) La(my, ng, n2)
= 848(Trym. - Tngny ) L3(my, ny,n.) — 424(Tpym. - Thyn, ) La(my,nz,n2)
+ 1106(T o, - Thon, ) La(my, ng,ny) — 848(Timym, - Thon. ) La(my, ny, ny)
+1106(Tym. - Trpn. ) L3(my, ny,nz) — 424(Trnym, - Tiyn. ) L3(my, 0z, ng)
— 848(T ymym. - Tnyn. ) L3(my, 1z, ny) +1954(Trnym, - Tiyn. ) L3(my, ng, m2)
+977(Tym. - Tngny ) L3(Ma, ng,nz) — 424(Trym. - Tngny, ) L3(ma, ny, n2)
—212(Tym. - Tngn,)L3(ma,nz,nz) + 553(Tmym. - Tngn. ) L3(Ma, ng, ny)
— 424(T . Tropn.) L (M iy ) + 553(Tomy . - T ) L (Mg iy, 12
—212(Trym. - Tnyn. ) L3(me, e, ne) — 424(Tinym. - Tnyn. ) L3 (Mg, 1z, ny)
+977(Tym. - Tnyn.)L3(mg, nz,n2))

Smn =v60480k02(393Ly,,n, L5 (my, Mz, Mgy yy ) — 21210, 0, Lis (M, Mz, iy, 1y, 112 )
+ 8011,
+ 2921,
+ 212100, Ls(my, Mz, g, ey, ) — 39310, Ls (M, Mz, Mg, Mgy, M)
— 39311, n, Ls(ma, my, ng,ny,n;) + 2121,
— 801, ny Ls (Mg, My, ny, nz,nz) + 2921,

- 292ImznyL5(ma:7 Ty Mgy Tz nz) + 80[mznzL5 (mmy My Mgy N, ny)

L5(my7mz7nyanZa nz) - 292[mznyL5(myamZanxa na:vnz)
I’ILyLE)(my)mZ)nCCu nz’nz) - SOImznzLB(mypmmn:cunx)ny)

L5(mx7 My Ty Ty, nz)

zNgx

znyLE)(mxv my: Ny Ny, nz)

— 2121, L5 (Mg, My, Ny, Ny, Ny) + 3931y, L5 (Mg, My, N, My, 112) ).

< dam, i3n >
Ry =v3.9720(43(Tmymy, - Trgny ) La(mz, ng,nz) + 510(Tonymy, - Tngn, ) L3(mz, ny,n2)

= 212(Tmym, - Trgny ) La(mz,nz,nz) + 467(Tiym, - Togn. ) La(mz, ng,ny)
—467(Trmym, - Trgn.)L3(mz, ny,n.) + 212(Tomym, - Toygn. ) L3(mz, e, ne)
= 510(Trmymy - Toyn. ) L3(mz, e, ny) — 43(Tonpmy, - Tnyn. ) L3(mz, ng, nz)

+86(Tmym. - Tnxny)LB(mya N, Mz) + 1020(Tinyim, - Tmny)L?’(mya Ty, n;)
— R24(T . - Trgny ) La(my,nz,nz) +934(Tonym. - Trgn. ) L3(my, ng, ny)
— 934(Trmym. - Tngn. ) L3(my, ny,n.) +424(Tym. - Tnyn. ) L3(my, iz, 1)
—1020(T sy, - Tryn. ) L3(my, ng, ny) — 86(Tiym. - Tnyn. ) L3(my, nz, n2)
+43(Trym. - Trgny,)L3(me,nz,nz) + 510(Thym. - Tngn, ) L3(ma, ny, n2)

—212(Tmym. - Tnyn, ) L3(ma,nz,nz) + 467(Tym. - Tign. ) L3(Ma, ngy ny)
—467(Tmym. - Tnon.)L3(ma,ny,nz) + 212(Tmym. - Tnyn. ) L3(Ma, Ney g
= 510(Tmym. - Tnyn.)L3(me, nz, ny) — 43(Tonym. - Tnyn. ) L3 (Mg, Nz, n2)),
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San =v60480k02(131 1,1, L5 (my, Mz, Ny, My, ) + 12410, 0, Ls (M, Mz, ny, 1y, 112

— 1681,,,n, L5 MMy Mz Ty Nz, nz) + 44ImznyL5(mya My N, Ny nz)

— 1681, n, L5(m
+ 131, n, Ls(m
— 1241, 0, Ls(m
— 441,y Ls(my
— 441, Ls(my

(
— 2621, L5 (m

(

(

s Mz, Ny Ny, Nz ) + 440, Ls(my, Mz, g, nzy )
s Moz Ny Ny My ) + 12400, Lis (Mg, Mz, ng, My, M)
s Mz Ny Nyy M) — 131y Ls (Mg, My, Mgy My, M)
@ My Mgy My, M) + 16810,y Ls (Mg, My, My, Mz, M)
My Mgy Mgy M) + 262]mznyL5(mx, Mys Ny Mgy M)

s My Mgy Nz nz) + 168ImznzL5(mz7 My Mgy N ny)

— 12410, . L5 (g, My, Mg, My, Myy) — 1310,y Ls (Mg, My, Mg, My 1))

< dom, J3n >
Ry =v3.9720
(—2(T'mymy - Tnony ) L3(mz,n1,n3) — 2(Timymy, - Trgns ) L3(mz, n1,m2)
= 2(Trmymy - Ty ) L3(mz,n0,n3) = 2(Tigmy, - Tnying) L3(mz, no, n2)
- 4(memz T'nonz)L3(my7 ni, n3) - 4(memz : Tnon;,»)LS(my; ni, n2>
— AT rmym. - Thiny)Lz(my,no,n3) — 4(Trmym, - Thning)L3(my, no, n2)
- 2(Tmymz Tngny) L3(mg,n1,n3) — Q(Tmymz * Tngng ) L (ma, n1, n2)
—2(Tmym. - Tning)L3(ma,n0,13) = 2(Timym. - Tnyng) L3(ma, no,n2)),
Simn =v60480k02
(—ImonoLs(my, my,n1,n2,n3) — Iy,n, Ls(my, m., ng, ng, n3)
+ Linyno Ls(my, mz, no, 1, n3) + Lyyng Ls(my, mz, ng, n1, n2)
+ Linong Ls (Mg, my, n1,n2,n3) + In_n, Ls(mg, my, no, n2, n3)
I no Ls (Mg, my, no, n1,n3) — Inyng Ls (Mg, my, no, n1,n2));
< dom, k3n >
Ry =v3.9720

((Tmzmy : Tnong)L?)(mza ni, Tlg) - (Tmzmy . Tnong)L3(mZ7 ni, n2)

+ (Tmmmy

’ Tn1n2>L3(mZ7 no, 713) - (memy ' Tnlng)LS(mz7 no, n?)

- Q(ngcmy : T7L27’L3)L3<m27 no, nl) + 2(memz : Tnong)L?)(my7 ni, 7”L3)
- 2(memz ' Tn0n3)L3(my7 ni, n2) + 2(memz : Tnan)L3(my7 no, n3)
= 2(Tmym. - Tn1n3)L3(my7 ng, n2) — 4(Tmzmz : Tnzng)L3(my7 no, nl)

+ (Tmymz
+ (Tmymz

: Tnonz)L3(m:v7 ny, 713) - (Tmymz : Tnong)L3(m:v7 ny, 712)

. Tnlnz)L?)(m:E) no, n3) - (Tmymz : Tnlng)L?)(m:E) no, n2)

- 2(Tmymz : Tn2n3)L3(m.’I7; no, nl))a

Smn =v60480k02

(_ImzngLS(mya mz,No, N1, n3) + ImzngLE)(mya my, o, N1, n2)

+ ImanLS(m:ca myu no, N1, n3) - Imzn3L5(mx7 my7 no, N1, n2))
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< dam, l3n

R =v3.9720
(=2(Tmymy - Tnony)L3(mz,n2,13) — (Timym, - Tngny)L3(mz,n1,n3)
— (Twmymy - Tngns)La(mz,n1,n2) + (Timym, - Tniny)L3(mz,ng,n3)
+ (Tmymy - Tning)
—2(Tmom. - Thono)L3(my,n1,n3) — 2(Trpm, - Tngng ) L3(my, n1, n2)
+ 2(Trpm, - Thing)La(my, no, ng) + 2( ning ) L3 (my, no, n2)
= 2(Tmym. - Tnony ) L3(ma, n2,n3) — (Trmym. - Tnony) La(ma, n1,n3)
— (Trmym- - Tnons) L3(mg,n1,n2) + (Trym. - Tnyng) L3(mg, n0,n3)
+ (Trnym. - Tnyng) L3 (ma, no, n2)),

Sinn =v60480k02

(_Immn0L5(mya my,ny, N2, n3) + Immnl L5(my7 mz,no, 12, n3)

L3(mZa no, n2) - 4(Tmzmz : Tnonl)LS(mya na, n3)

NS

Tmzmz :

+ Imzn0L5(m.’Ea my7n17 n27n3) - Imzn1L5(mxamy>n07n27 n3))

< €2m, €an >
Ry =0.0,
Spn =v7560k02((4.0L4(m;, mj,ni, nj) — 2.0L3(m;, mj, n;)
— 2.0L3(mi, i, nj) + La(mi, n;)) Lnn;
— (4.0L4(mji, mj,ni,mj) — 2.0L3(
—2.0L3(mg, ng,nj) + La(mi, ) L n,
— (4.0L4(mi, mj,ni,nj) — 2.0Lg(m;, mj, n;)

mi, Mg, n;)

— 2.0L3(mj,ni, nj) + L2(mjvnl))1
+ (4.0L4(my, mj, ny,nj) — 2.0L3(mz,m],n])

< €am, fon >
Ry =0.0,
Smn =vT560k02((2.0L4(my, mj, ng, ny) — Ly(miy gy 1y ) ) I,
+ (2.0L4(my,mj,ny,n;) — Lg(mi,ny, nz))ImjnI
+ (2.0L4(m;, mj, ng,nz) — L3( )
— (2.0L4(m;, mj, ng,ny) — Lz(m; )
— (2. 0L4(mz,m],ny, n,) — L3(m Ny, M)
— (2.0L4( ) — Ls( )
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< €eam,93n >
Ry =0,
Srn =060480k02(—210,;n, L5 (Mg, mj, y, Ny, 2) + 2L m, Ls (Mg, mj, ny, nz,ny)
+ Loy, Ls(mj, mj, iy, ny,nz) — Ipin, Ls (Mg, mj, ny, nz,n2)

+ 2L,

ZnyLS (miv mg, Mg, Ng, nz) - 2Im¢nyL5(mia My, Mg, Ny, nz)

— Immng)(mj, My, N, N, M) + Immng,(mj, M, N, Mz, M)
— 2Lmn, Ls(mg, myj, g, g, y) + 20, Ls (M, My, Mg, My, My
+ Lin, Ls(myj, mj, g, g, ny) — L, Ls (M, My, Mg, Mgy, My
— I jng Ls (M, mi, my, iy, ) + Iy Ls (M, M, iy, mz, mz)
+ 21,,.

N
+ ImjnyL5(mia My Ny My M) — Im]-nyL5(mia My Ny Nz y M)

L5(mi7 mj7 ny; ny7 nz) - 2Im]'7’be5(mi7 mj) nyv nZ7 nz)

— 2L, Ls (M, My, Ny My Mz) + 20y, Ls (M, Mg, gy mz, mz)

iy
= Imjn. Ls (M, My Mgy g, y) + L, Lis (M, M, Mgy iy, My )

+ 20 ., Ls (M, mij, g, Mg, My) — 2L i Ls (M, M, g, myy, my ).

< €9m, h3n >
Ry, =0,
Srn =v60480k02(7861 11,1, L5 (i, mj, gy My, Mz) — 4241, Ls (M, myj, My, My, M)
+ 160150, Ls(mi, mj, ny, nz,ny) — 393ImimL5(mj,mj,nx,ny,nz)
+ 2121 p,n, Ls(mj, mj, ny, ny, n) — 80Ip,n, Ls(mj, mj, ny,n,,n;)
— 58410, Ls(mi, mj, ng, Nz, nz) + 5841, Ls(mg, mj, ng, nz,nz)
+ 292110, Ls(mj, mj, ng, ng,nz) — 2920, Ls(mj, mj, ng, nz,n;)
— 16010, Ls(mi, myj, g, N, ny) + 4241, Ls (Mg, mj, g, My, ny)
— 7861L,n. Ls(mi, mj, g, My, nz) + 801, Ls (M, myj, N, Ng, ny)
(

ny)
)

— 212L,n, Ls(mj, myj, na, iy, y) + 393 L0, Ls (M, myj, g, ny, mz)
) —

+ 3931, Ls(mi, mi, ng, my, my) — 21200 0, Ls (Mg, my, gy, ny, )
+ 80ImjnIL5(mi,mi,ny, NyyNy) — 786ImjnzL5(ml, M, Mgy Ny, M)

+ 424150, Ls(mi, myj, ny, iy, nz) — 1601, 0, Ls (mi, mj, ny, ., n.)
— 2921, Ls (M, My My Ny ) + 2920y, Lis (0, M, Mg, Mz 112
+ 5841, Ls(mi, myj, oy Ny ) — 584L i, Lis (M, mij, nig, mzy )

- SOImJ—nz L5(mi; My, Ny, Ny, ny) + 2120, .0, Ls (mia My, Mg, My ny)

- 393Im]-nzL5 <mi7 miu n$7 ny: nz) + 160[mjnzL5(mia mj7 niE’ n.T? ny)

FALE

— 4241 ., Ls (M, My, Mgy iy, iy ) + 7861 0 Lis (Mg, Mg, i, iy, ).
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< €am, 13n >
Ry =0,
Smn =v60480k02(26211,;n, L5 (1m0, mj, gy My, ) 4 24810, Ls (M, mj, My, My, M2
— 33610, Ls(ms, mj, ny,nz,nz) — 131Ly,0, Ls(mj, mj, g, ny, n2)
— 12410, Ls(mj, mj, ny, ny,nz) 4+ 168Ly,,n, Ls(mj, mj, ny, n.,ny)
+ 88ImmyL5(mi7 M, Ny, Ny, Nz) — 524[77%.%L5(mi7 M, N, Ny, M)
+ 88]minyL5(mi, M, Ny Nz, Ny) — 44IminyL5(mj, My Ny N, M)
+ 26210, Ls(mj, mj, g, ny, nz) — 4400, Ls(mg, my, ng, nz,ny)
— 3361 m,n, Ls(my, mj, ng, g, y) + 24810, Ls(my, mj, ng, ny, ny)
42620, L
— 1241, Ls(

ny)
TGy TNy Ty Thyyy TV z) + 168[m1nzL5(m] m]vn:E)n.Ivny)
ny) — (
+ 131[mjnmL5 My Mgy Ny, Ny, Nz) + 1241, n1L5(mzamzanyanyanz)
(

My, My, Ny Ny, Noy) — 1310 Ls (M, myj, Mg, iy, M)

( n)
— 168ImjnzL5(mi,mi,ny,nz, n.) — 26210, Ls My My Ny Ty, Nz
( )

— 2481, Ls(mi, mij, my, my, mz) + 3361y, Ls (M, my, iy, m,m)
+ 44D, Ls (M My Mgy Mgy M) — 262000 5, Ls (M, M, gy My 112
+ 44D, Ls(mi, mi, ng,mz,my) — 88]mjnyL5(mi,mj, Ny Mgy Ny
+ 52410, Ls(mi, myj, ng, gy, ny) — 881y, Ls (M, my, ng, mz, )

5( ) —
- 168[mjnzL5(mia mg, Mg, Ny, y) + 124Im nzLB(mw Mg, Ny, Ny, ny)
+ 1311, L5(mi, My, Mgy Ny N z) + 3361,
( ) —

Nz L5(ml)m]7n$7nw7ny)
26211 n., Ls(mi, mj, ng, ny,nz)).

Nz

— 248[mjnzL5 Mgy Mgy Mgy Ty Ty

< €eam, J3n >
Ry =0,
Simn =v60480k02
(—2Lmine Ls(mi, myj, mi,n2,n3) + Imng Ls(mj, mj, ni, na, ng

- 21m¢n1L5 mi, Mg, no, N2, N3 mmlLE) mg,mg,no, N2, N3

h

( )+
( )+

+ 2L,m0 Ls(mi, mj, no, n1,n3) — Imun, Ls(mg, mj, ng, ni, ng
( ) —

h

+ 21, n3L5 mg,mj,ng, N1, N2 mzng

h

- mjno

)
n3)
n3)
5(mj, mj, ng,ni,ng)
n3)
n3)
21y Ls(mi, myj, mo, n1,m3)

)

(
(
(
5(mz,m,,n1,n2,n3)-I—QImJnOLg,(ml,m],nl,nz, 3
— meL5(mZ,mz,no,n2,n3)+2Im]n1L5(m,,m],ng,n2, 3
+ L jng Ls(mi, mi, no, n1,n3) — (
( ) — (

+ Linjng Ls(mi, mi, o, n1, n2) — 20 g Ls(ms, my, ng, n1, n2)).
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< €eom, kan >
Ry =0,
Sinn =v60480k02
(—20m;no Ls(mi, mj, no, n1,n3) + I;mn, Ls(mj, mj, no, ni,n3)
+ 20,5 Ls(mi, mj, no, n1,n2) — Lpng Ls(my, mj, no, ni, na)
— Iy Ls(mi, mi, mo, ny, ng) + 2Im]n2L5(mz,m], no, N1, N3)
+ Linyng Ls(mi, mi, no, ma, n2) — 20m g Ls (mi, my, no, na,n2)).
< €9m, l3n
Ryn =0,
Sinn =v60480k02
(—2Lm;no Ls(mi, mj, n1,n2,n3) + I;mno Ls(mj, mj, n1, na, n3)
+ 21pn,m, Ls(ms, mj, no, o, n3) — Lyn, Ls(mj, mj, ng, na, n3)
— Imjnog Ls(mi, mi, ny,na, n3) + QIm]nOLg,(mZ,m], ni,N2,N3)
( )

+ Imjn1L5(mi7 mq, no, N2, nS) m]n1L5 mg, m]a no,N2,M3 )

< f2ma f2n >
R, =0.0,
Smn =v7560k02(Ls(my, My, g, Ny) L n, + La(mg, my, ny,nz) Iy

+ L4(m:v7 My Ny, nz)Imzny + L4<my7 My, Ny, ny)Imxnz

zNg
+ Ly TMyyy Mgy Thyy Ty Imxnm + L4<my7 My, Ny, nz)Imxny

( )
+ L4(mx7 Mz, Ny, ny)ImynZ + L4<mm> Mz, Ny, nz)Imynx
( )

+ L4 Mgy, My Mgy, Ny Imyny)

< f2mag3n >

Rmn :07

San =v60480k02 (L1, Ls (M, My, ey, Ny, ) — Loy Ls (Mg, my, gy, mz, g
— Irngny Ls(My, Mz, gy gy ) 4 Ly, Ls (0, Mz, gy iz, )
+ Lyn, Ls(my, Mz, g, g, y) — Ly, Ls (Mg, M, g, iy, ny)
+ Lnyng Ls (Mg, Mz, my, ny, mz) — Lnyng Ls (Mg, mz,my, nz,ne)
- ImynyL5(m$7 My, Ny, Ny, nz) + ImynyLB(mzy My Mgy Tz, nz)
+ Lnyn. Ls(ma, mz, ng, Nz, ny) — Inmyn, Ls (Mg, mz, g, ny, ny)
+ Lonng Ls (Mg, My, gy, My, 12) — I ny Ls (Mg, My, iy, ez, 112
— Lnony Ls(me, my, ng, ng, nz) + Iy Ls (M, My, ng, nz,ny)
+ Lonn, Ls (Mg, My, Ny Mgy Ny) — Inon, Ls (Mg, My, Mg, iy, My )
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< fom, han >
R, =0,
Srn =v60480k02(—3931y,, n, Ls(my, Mz, Ny, Ny, n2) + 2121,
— 80 n, Ls(my, mz, ny, nz,n.) + 2921,
— 2921, L5 (my, Mz, ng, 2y n) 4 800, Lis (1, Mz, Mgy gy 11y)
— 21215, Ls(my, mz, g, Ny, nyy) + 3931,
— 3931, n, Ls (M, M, g, ny, mz) + 2121,
= 80 myny Ls (Mg, Mz, iy, iz, mz) + 29200 0, Ls (Mg, Mz, Ny Mg, M)
— 2921, 1, L5 (Mg, Mz, Mgy 1z, 1) + 80D,
— 2120 n, Ls (Mg, mz, ng, ny, ny) + 3931,
— 3931, n, Ls (Mg, my, ng, ny, nz) + 21210, _n, Ls (Mg, my, Ny, ny, nz)
— 801, ny Ls (Mg, My, ny, iz, nz) + 2921,

- 292[mznyL5(m£B7 My, Ny, Ny, nz) + 80[mznzL5(mma My, Ny, Ny, ny)

LB(mya Mzy Ty Ty nz)

Nz

znyL5(mya My, Ny, Ny, nz)

L5(my7 My, Mgy Ty, nz)

xTz
ynzLB(mm My, Ty Ty, nz)
L5(mx7 My Mgy Ny ny)

L5(mac7 mz7 nl‘) nyv nz)

yNz

znyL5(m$a my7 Mgy Ny, nz)

— 2121, Ls (Mg, My, Mgy Ny, y) + 3931y, L5 (Mg, My, N, My, 2)).

< fom,i3n >
Ry, =0,
Spn =v60480k02(—1311,, pn, Ls(my, mz, g, iy, nz) — 12410, . Ls(my, m, ny, ny, )
+ 1681 1,n, Ls(my, My, 1y, iz, n) — 44D n, Ls(my, mey, g, g, )
+ 262117, 1, L5 (M), Mz, gy oy, M) — 44D, Ls (my, Mz, g, iz, me)
+ 1681 0, Ls(my, My, Ny, Ny, My) — 1241005, 5, Ls (Mg, Mz, Mg, My, 1y
— 13110, Ls(my, mz, ng, ny,nz) — 131 0, Ls (Mg, Mz, g, 0y, n2)
— 1241, 0, Ls(ma, Mz, 0y, ny, n2) + 1681,
— 445, Ls (Mg, Mz, Mgy Mg, ) + 26215,
— 445, Ls (Mg, Mz, g, iz, nz) 4 1681,

— 1241 0. Ls(mg, mz, ng, iy, ny) — 131 0, Ls (Mg, Mz, gy iy, m2)

ynzLS(mra Mz, Ny Nz, n.)

gy L5 (Mg, Mz, gy iy, M)

ynzL5(ma:y Mz, Mgy Ny, ny)

— 131 0y Ls (Mg, My, g, iy, 1241, n, Ls (Mg, my, ny, ny,n;)
+ 1681y, 0, L5 (Mg, My, ny, 2, n
+ 2621,

+ 16810, L5 (Mg, My, Ny, Nz, Ny

44ImznyL5(m:ca My, Ngy N, n;)

zMy

(
( ) —
( ) —

Ls(mg, my, ng, ny,n,) — 44l n, Ls (Mg, my, ng,nz,nz)
( Ny) — 12410, L5 (Mg, My, g, 1y, My
( )

— 131 n. Ls Mgy My s Ny Thy, T )
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< f2m>j3n >
Rmn :()7
Simn =v60480k02

(Imzn0L5(mya my, N1, N2, TL3) + Imznl L5(my7 mz, o, N2, n3)

( )

( )

— Lyns Ls(mg, mz, o, n1,n2)
1 ( )

( )

ImyngLS(mxa my, o, N1, n3)
+ Lnnong Ls (Mg, my, ni,n2,n3) + Ly n, Ls(mg, my, no, n2, n3
I no Ls (Mg, my, no, n1,n3) — Iny_ng Ls (Mg, my, no, 01, no
< f2m7 k3n >
Ron :07

Simn =v60480k02
(ImznzLE)(my? my, Mo, N1, n3) - Imzn3L5(my7 my,No, N1, n2)
+ ImyngLS(mxa mg,No, N1, n3) - ImyngLS(mx7 my,No, N1, ’I’LQ)

+ Imzn2L5(mCE7 myv no, N1, n3) - ImzngLS(mx’ my7 no, N1, nZ))

< fom, l3n >
Ry =0,
Simn =v60480k02
(Imyno Ls(my, mz, n1,n2,n3) — Lmn, Ls(my, mz, no, n2, n3)
+ Iyno Ls(ma, mz,n1,m2,13) = Imyny Ls(Ma, m2, g, N2, n3)

+ Imzn0L5(mm7 m’y) niy,na, n3) - Imzn1L5(m:B7 my7 no, N2, n3))
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< 93m, h3n >

v3.34020(a + 8+ 7),
a=—9T1(Tmymy Tnyny ) La(Ma, Mz, g, nz) + 424(T mymy » Tngny ) La(Ma, mz, ny,ne)

Rmn =

+ 212(Tmzmy > Tnzny)L4 (m:pa My Nz, nz) - 977(Tmzmy7 Tnzny)L4 (mya Mz, Ny, nz)

+ 424(T 1 ymy s Trgnyy ) La(my, mz,ny,nz) + 212(Tmy, , Trgny, ) La(my, mz,nz,nz)

+ 977(Tmzmy > Tnzny)L4 (mz7 My, Ny, nz) - 424(Tmzmy > Tnzny)L4 (mzv My, Ny, nz)

- 212(Tmzmy > Tnzny)L4 (mz7 My Nz, nz) - 553(Tmzmy > Tnznz)L4 (m:ca Mz, Ng, ny)

+ 424(Tmzmy ’ Tnznz)L4 (mm7 My, Ny, ny) - 553(Tmzmy ) Tnznz )L4 (mx7 My, Ny, nz)

= 553(T'mymy> Trgn. ) La(my, mz, ng,ny) +424(Tym,, Trgn. ) La(my, mz,ny, ny)
— 553(memy,Tnmnz)L4(my, My, Ny, M) + 553(T mym, Tron.)La(mz, my,ng, ny)
— 424(T 1ymy> Trgn. ) La(mz, mz, ny, ny) + 553(Tigmy s Tngn. ) La(mz, mz, ny,n.)
+ 212(Tmymys Tnyn. ) La(me, mz, ng, ng) + 424(Tiymy s Toyn, ) La(me, mz, ng, ny)
= 971(Trymy> Tryn. ) La(me, mz,ng,nz) + 212(Trymy,, Tiyn. ) La(my, mz, ng, ng)

+ 424(Tmzmy s Tnynz)L4 (myv Mz, Ng, ny) - 977(Tmzmy7 Tnynz)Lzl(mya Mz, Ng, nz)

—212(Trymys Tryn. ) La(mz, mz, ng,ne) — 424(Tiymy, Trygn. ) La(mz, mz, ng, ny)
+ 977(Tmzmy > Tnynz)L4(mZa Mz, Ny, nz) + 977(Tmzmz ) Tnzny)LéL(mxa My, Ny, nz)
- 424(Tmzmz 5 Tnzny)L4 (m:ca My, Ty, nz) - 212(Tmzmz 5 Tnzny)L4 (m:r:a My, Ny, nz)

= 971(Trym.> Trgny ) La(my, my, ng,nz) + 424(Tiym. , Tngny, ) La(my, my, ny,n.)
+ 212(Tmzmz,Tnzny)L4(my, My, Nz, Nz) + 977(Tmzmz,Tnzny)L4(my, My Ny M)

B=- 424<memz > Tnxny)L4 (mya My, Ny, nz) - 212(memz , Tnmny)L4 (my7 My Nz, nz)

+ 553(memz > Tnxnz)L4(maca My, Ny, ny) - 424(memz ) Tnxnz)L4 (mac; My, Ny, ny)

+ 553(1—'77195171Z ) Tnmnz>L4(mma My, Ny, nz) - 553(1—'777,,5771Z ) Tnxnz)L4(myv My, Ny, ny)

+ 424(Tm7‘mz ) T”Tnz)L4(my7 my> nya ny) - 553(Tmrmz? Tnmnz )L4 (mZ,H my7 ny7 nz)

+ 553(Tmzmz ) Tnznz)L4 (mya Mz, Ny, ny) - 424(Tmzmz ) Tnznz)L4 (myv me, ny7 ny)

+ 553(Tmzmz s Tnznz)L4 (mya Mz, Ny, nz) - 212(Tmzmz s Tnynz)Lzl(mx, My N, nz)

— 424(Trym.> Tryn. ) La(ma, my, ng,ny) + 977 (Trym. , Tnyn. ) La(ma, my, g, n2)
+ 212(Tmzmz s Tnynz)L4(mya My, Ny, n:):) + 424(Tmzmz , Tnynz)L4 (my, My, Ng, ny)

- 977(Tmzmz 5 Tnynz)L4(mya My, Ny, nz) - 212(Tmzmz , Tnynz)L4 (my’ My, Ng, nx)

- 424(Tmzmz 5 Tnynz)L4(mya My, Ne, ny) + 977(Tmzmz , Tnynz)L4 (my’ My, Ng, nz)
+ 977(Tmymz ) Tnl-ny)L4(mxa Mgy Ny, nz) - 424(Tmymz s Tnzny)L4 (mx7 Mgy Ny, nz)

- 212(Tmymz ) Tnxny)L4(m:ca Mgy Mzy Nz) — 977(Tmymz ) Tnmny)L4 (Mg, My, Ny, nz)

+ 424(Tmymz ’ Tnxny)L4 (m$; My, Ny, nz) + 212(Tmymz ’ Tnxny)Lll(mam My, Ny, nz)

—971(Trym. > Trgny ) La(me, mz,ng,nz) + 424(Trym. s Thgny ) La(ma, mz, ny, )
+212(Tmym. > Trgny, ) La(me, mz,nz,nz) + 553(Tmym. s Trgn. ) La(me, me, 1z, ny)
— 424(Tym. > Trign. ) La(ma, ma, ny, ny) + 553(Trmym. » Tngn. ) La(ma, ma, ny, n2)
= 553(Trym.> Trgn. ) La(ma, my, ne,ny) + 424(Tonym. , Trgn. ) La(ma, my, ny, ny)

- 553(Tmymz ) Tnznz)LéL(mx, Mgy y Ty nz) - 553(Tmymza Tnznz)L4 (maza My, Ny, ny)

+ 424(Tmymz ) Tnznz)Lél(mxv My, Ty, ny) - 553(Tmymza Tnznz)L4 (ma:a My, Ny, nz)a
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L6(mya MMy Mgy Ty Ty nz)

Nz

Syn =v544320k02(—3931,,n, Le(my, my, Mz, ng, ny, ny) + 2121,

— 80 m, L6 (Mg, My, Mz, My, Mz, M) + 39300, Lo (M, My, My, Mgy My )

xNx
— 2121, 5, Le(my, mz, m, ny, ny, ns) + 801,
+ 2921,

— 29210, L6 (my, mz, mz, g, ng, ) + 2921,

Lﬁ(my7m27mzvny7 nZ7nZ)

N

xnyLG(myu My Mz Mg, N, nz) - 292[mxnyL6(my7 My Mz s Mgy Tz nz)

xnyLG(mya My Mz, Ny, Nz, nz)

+ 8011, n, Lo (my, My, Mz, Mgy Ny ny) — 21210, 50, Le (Mg, My, Mz, g, iy, My

+ 39311, n, Le(My, My, Mz, ng, Ny, z) — 800, L (1M, Mz, Mz, Mgy Mgy Ny
+ 21211, Le(Mmy, Mz, Mz, ng, Ny, My) — 393 1, L (Mg, Mz, Mz, Mgy My, M)
+ 3931, n, Lo (Mg, Mg, Mz, Mgy My, M2) — 21205 10, Lo (M, My Mz, My, My, )
+ SOImanLG(mx7 Mgy Mz, Ny, Nz, Ny) — 393[manL6(mz, My, Mgy Mgy Mgy M)
+ 212]mynzL6(mx, Mz, My, Ty, Mgy Mz) — SOImynng(mx, My, My, Ny, Mgy M)
= 29211, n, L6 (M, My Mz, Ny Ny M) + 29200 0, L (Mg, Mg, Mz gy Mz M)
+ 29211, 0, Lo (Mg, Mz, My Mgy Ny ) — 2920 0y, Lo (Mg, Mz, Mz Mgy Mz, )

- 80[mynz L6(ma:a Mgy My, Mgy Ny, ny) + 2121, Lﬁ(mma Mgy My Ny Ty, ny)

yMz

- 393[mynzL6(mza Mg, My, Ny, nya nz) + 80[m L6(mxa My My Mgy Ny, ny)

yMz

— 212 n, Lo (Mg, My My gy My, My ) + 393 L, L (1, My Mz, My My, 1z

yNz

— 3931, n, L6 (Mg, Mg, My, Ny, Ny, ) + 21210, Le (Mg, Mg, My, My My, M)
— 801 n, Le (Mg, My, My, Ny, Nz, 12) + 393, 0y L (Mg, My, My, Mgy My, M)
— 2121 n, L6 (Mg, My, My, My, My, Mz) + 80000,y L (1M, My, My, My, My 112
+ 2921,

— 2921, n, L6 (Ma, My, My, Mg, N, 02) + 2921,

znyL6(mxa Mgy My y Mgy Ny nz) - 292ImznyL6(mxa Mgy My Mgy Nz, nz)

znyLG(mm Mgy Mgy Ny Nz nz)
+ 80]mznzL6(mxa Mgy My, Ny Ty ny) - 212]mznzL6(mxa Mgy My, Mg, Ty, ny)
+ 393]mznz LG(mxa Mgy My, Mgy Ty nz) - 8OImznzL6(moca My Meyyy Mgy N ny)

+ 2120, n, L6 (M, My, My, Mgy Mgy Myy) — 393D,y L (1M, Mgy, My, Mg, My, M) ).
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< 93m>93n >
Ry =a+ B + 1.
« :U3—17010((Tmzmy : Tng;ny)L4(mxa My, Ny, nz) + (Tmzmy : Tnzny)L4(ma:7 My, Ny, nz)

— (Tmamy - Trngny)La(me, mz,nz,n2) + (Togmy - Trgny ) La(my, mz, ng,n)
+ (Tmmmy 'Tnxny)L4(my7mZ7ny7n3) - (memy 'Tnxny)L4(my7mz7n27 n)
— (Trmymy - Tngny ) La(mz,mz,ng,n.) — (Tigmy, - Tigny ) La(mz, mz,ny, n2)
+ (Trmgmy - Trgny ) La(mz,mz,nz,nz) = (Tingmy, - Trgn, ) La(me, mz, g, ny)
+ (Timgmy - Trgn. ) La(me, mz,ny,ny) — (Tmgmy, - Trgn. ) La(me, mz,ny, n2)
= (Trmomy - Tngn. ) La(my, mz,ng,ny) + (Timgmy, - Togn, ) La(my, mz,ny, ny)
— (Twmymy - Trgn.)La(my, mz,ny,nz) + (Tomgmy, - Tign. ) La(mz, mz, ng, ny)
— (Tmzmy “Trpn, ) La(mz, mz,ny,ny) + (Tmzmy “Thpn. ) La(mz,mz,ny,ny)
— (Twmymy - Tryn. ) La(ma, mz,ng,ne) + (Tmgmy, - Togn. ) La(me, mz, ng, ny)
+ (Timamy - Trygn. ) La(ma, mz, e, nz) — (Tigmy - Togn. ) La(my, ma, g, ng)
+ (Timgmy - Taygn. ) La(my, mz,ng,ny) + (Tigmy - Tagn. ) La(my, mz, ng,n;)
+ (Trmymy - Trygn. ) La(mz, mz, ng,ne) — (Tmgmy, - Toyn. ) La(mz, mz, g, ny)
— (Trmymy - Tnyn. ) La(mz,mz,ng,nz) — (Togm, - Trgny ) La(me, my, ng,n.)
—(T'mym. 'Tn;cny)L4(m myynyan) + (Trmgm. 'Tnxny)L4(mfm My, Nz, M)
+ (Trpm. 'Tnmy)L4(m s My Ny Mz) + (T 'Tnzny)L4(my My, Ny, N2)),

N

B =v3.17010(—(Tmym, * Tron, ) La(my, my, nz,nz) — (Togm, - Trogny ) La(my, me, ng, n.)

— (Trym. - Tngny ) La(my, mz,ny,n2) + (Tmgm. - Tngny, ) La(my, mz,nz,n;)
+ (Trym, - Thgn. ) La(mg, my, nz, ny) — (Trpm, - Thgn, ) La(mg, my, ny, ny)
+ (Tmgm. - Tngn. ) La(mg, my, ny, nz) = (Tmgm, - Togn, ) La(my, my, ng, ny)
+ (Trom. - Trgn. ) La(my, my, ny, ny) = (Tmum, - Tnon, ) La(my, my,ny, nz)
+ (Trom, - Thon, ) La(my, mz, ng, ny) — (Trgm, - Tign, ) La(my, mz, ny, ny)
+ (Timgm. - Trgn. ) La(my, mz,ny,nz) + (Togme, - Toygn. ) La(meg, my, ng, ng)
— (Trmym. 'Tnynz)L4(m s My Ny My) — (T, - Tnynz)L4(ml’= My, N, Mz
— (Trmym. * Tnyn. ) La(my, my, na,ne) + (Tmgm. * Toyn. ) La(my, my, ng, ny)
+ (Trpm. - Tnynz)L4(m My, N, nz) + (Tmgm. - Tnynz)L4(my> Mz, Ny M)
— (Trmym. - Tnyn. ) La(my, mz,nz,ny) — (Trgm, - Tryn. ) La(my, mz,ng, nz)
— (Twmym. - Tngny)La(me, me,nz,nz) — (Tmym. - Trogny, ) La(me, me, ny, n2)
+ (Tmym. - Tngny ) La(maz, Mz, nz,nz) + (Tiym. - Thogny, ) La(me, my, ng, n2)
+ (Timym. - Tngny) La(ma, my,ny,n2) — (Tiym. - Tngny ) La(me, my,n.,n;)
+ (Timym. - Tngny ) La(mae, mz,ng,nz) + (Tiyme - Trogny, ) La(me, mz,ny,nz)
— (Twmym. - Tngny ) La(ma, mz,nz,mz) + (Togme, - Togn. ) La(me, me, g, ny)
= (Tmym. - Tnon. ) La(ma, ma, ny, ny) + (Tmym. - Tnon, ) La(ma, me, ny, nz)
= (Tmym. - Tnon.) La(ma, my, ng, ny) + (Trmym, - Togn, ) La(ma, my, ny, ny)),
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v =v317010(—(T'rmym.

N

N
3
8
3
N
h
N
3
&
3
&
S
&
S
N

+ (Timym. - Tngn.)La(ma, mz,ny,ny) = (Toym. - Tngn. ) La(me, mz,ny, n2)
+ (Timym. - Tnyn. ) La(maz, maz, ne,ne) — (Trym. - Toyn. ) La(me, me, g, ny)
— (Trmym. - Tnyn. ) La(me, me,ng,n2) — (Toym. - Toyn. ) La(me, my, ng, ng)
+ (Timym. - Tnyn. ) La(ma, my, nz, ny) + (Timym. - Toyn. ) La(ma, my, ng, n2)
— (Trmym. - Tnyn.)La(me, mz,ne,ng) + (T, - Toyn. ) La(me, mz, ng, ny)
+ (Tmymz ‘Tnynz) a(mg, mz, g, n2)),

San =v544320k02(Ipm,n, Le(my, My, Mz, ny, iy, M)

— I, Le(my, my, mz, ny, nz,ny)

Innyn, Lo (my, mz, ma, ny, ny, nz) + Lnyn, Le(My, Mz, my, ny, na,ny)
ImxnyLG(myymya My, Mg, Ny, nz) + ImxnyLG(myam%mz,nmanza nz)
+ ImznyL6<my, My, My, Ny, Ny nz) — ImznyL6(my> My, My, Mgy Ny, nz)
+ ImznzL6(my> My My Mgy N ny) - I’mznzLES(mya MMy Mgy Mgy Ty ny)
- mznzL6(my,mz,mmnzanx,ny) + ImznzLG(myamZamZanma ny7ny)
- Imynth‘)(mxa Mgy Mgy Ny Ty nz) + Imynth‘)(ma:a Mgy Mgy Ny y Nz nz)
+ ImanL@r(mxv My My, Ny, Ty, nz) - ImanL(i(ma:v My My, Ty, Ny, nz)
+ ImynyL6(m:camxammnx’nrvnz) - ImynyLG(mxvmrvmzvnxa nZ7nZ)
- ImynyL6(mx7 My My, Ny, Ny, nz) + ImynyLG(mxa My My, Ny, Ny, nz)
— Inyn. Lo (Mg, Mg, Mz, Mgy Ny Ny) + Ty Lo (M, Mgy, Mz, Mgy My, 1y)
+ ImynzLﬁ(mx, My My Mgy N, Ny) — Imynng(mx, My My, N, Ny, Ny )
+ I ny L6 (Mg, Mg, My, My, My, M2) — Loy L (Mg, Mg, My, gy, Mz, 1)
ImznxL6<mzamyamyynyynyanz> + ImznxLG(mmmyymyynyynz;nz>
ImznyLﬁ(mma Mgy My, Ny Mgy M) + ImznyLﬁ(ml'am"Eamy7nI7 Nz, Nz)
+ ImznyLﬁ(mza My s My, Ny N nz) - ImznyLG(m:E7 My, My, Mgy Nz nz)
+ ImznzLG(mma Mgy My, Mgy Ny ny) - ImznzL6(mza Mgy My, Mgy Ty, ny)
— Inon, L6 (Mg, My, My, Ny Ny Ny) + Do, L (M, My, My, N, My, 1)),
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< 93m; h3n >
Rmn =a + ﬁ + 7,
a =v3_34020(—=977(T m,m, - Tnon, ) La(me, mz,ng,n.) +424(Tym, - Trgn, ) La(me, mz,ny,n2)

+212(Tymy, - Trgny ) La(me, mz,nz,nz) — 97T iym, - Trgn, ) La(my, mz, ng,n2)
+424(T o ymy, - Trgny ) La(my, mz,ny,nz) + 212(Tiymy, - Tagn, ) La(my, mz,n.,n;)
+977(Tinymy, - Trgny ) La(mz, mz,ng,n) — 424(Tymy, - Togny ) La(mz, mz,ny, )
= 212(Tyymy - Trgny ) La(mz, mz,nz,nz) — 553(Timgmy, - Tign. ) La(me, mz, ng, ny)
+ 424(Tymy, - Trgn. ) La(me, mz, ny,ny) — 553(Tpmy, - Tngn. ) La(me, mz,ny,n2)
= 553(T'mymy - Tngn. ) La(my, mz,ng, ny) + 424(Tonymy, - Trgn. ) La(my, mz,ny, ny)
= 553(T'mymy - Tngn. ) La(my, mz,ny,n.) 4+ 553(Tm,m, - Tnon.)La(mz, mz,ng,ny)
— 424(T ymy, - Trgn. ) La(mz,mz,ny,ny) + 553(Timpmy, - Tngn. ) La(mz, mz,ny, n.

+212(Tymy, - Tryn. ) La(me, mz, ng, ng) + 424(Trym, - Toyn. ) La(ma, mz, ng, ny)
= 971(Trym, - Tryn. ) La(ma, mz,nz,nz) + 212(Tiymy, - Togn, ) La(my, mz, g, ne)
+ 424(T o ymy, - Tryn. ) La(my, mz,ng,ny) — 977 (Tiymy, - Toyn, ) La(my, mz, ng,n.)
—212(Trymy - Tnyn. ) La(mz, mz, ne,ng) — 424(Tym,, - Toygn. ) La(mz, mz, ng, ny)
+977(Tymy - Tryn.)La(mz, mz,ng,nz) + 977 (Toym. - Tngny ) La(ma, my, ng, nz)
— 424(Trym. - Tngny ) La(ma, my, ny,nz) — 212(Tiym. - Thgny, ) La(me, my,nz,n2)
= 977(Trym. - Tngny ) La(my, my, g, nz) + 424(Tm. - Thgn, ) La(my, my, ny,n;)
+212(Tonym. - Trngny ) La(my, my,nz,nz) + 977 (Tongm. - Tigny ) La(my, mz,ng, n)
— L24(T ymym. - Tgny ) La(my, mz,ny,n.) — 212(Tmym. - Tngn, ) La(my, mz,n2,n.))

B =v3_34020(+553(T rm,m. - Thnyn, ) La(mg, my, ng,ny) — 424(Tpm, - Tron, ) La(ma, my, ny, ny)

+ 553(Tmom. - Tnon. ) La(ma, my, ny, nz) = 553(Tmum. - Trngn. ) La(my, my, ng, ny)
+ 424(T ., - Ty, ) La(my, my, ny, ny) — 553(Trmym, - Thyn, ) La(my, my, ny, ;)
+553(Trmym. - Thgn, ) La(my, mz, ng,ny) — 424(Tmym. - Thyn, ) La(my, mz, ny, ny)
+553(Tym. - Trgn.)La(my, mz,ny,nz) — 212(Trym. - Toyn. ) La(me, my, g, ng)
—424(T . - Tnyn. ) La(ma, my, iz, ny) + 977(Trpm, - Toygn, ) La(me, my, ng,n2)
+212(Tym. - Tryn. ) La(my, my, g, ng) + 424(Trpm. - Toyn. ) La(my, my, ng, ny)
= 977(Trym. - Tnyn. ) La(my, my, ng,nz) — 212(Topm. - Toyn. ) La(my, mz, ng, ng)
— 424(Tyym. - Tnyn.) La(my, mz, ng,ny) + 977 (Trym. - Toyn. ) La(my, mz, ng,n;)
+ 977 (Tym. - Trngny ) La(ma, My, ng,nz) — 424(T iy, - Tigng ) La(Ma, Mg, ny, n2)
= 212(T yym. - Trgny ) La(Ma, ma,nz,nz) — 977 (Tonyme, - Tigny ) La(me, my, ng,n;)
+ 424(Tyym. - Tngny ) La(ma, my, ny,nz) + 212(T iy, - Thgn, ) La(mg, my,n.,n.)
—977(Trym. - Tnony)La(ma, mz,ng,nz) +424(Tmym. - Tngny ) La(ma, mz,ny,n.)
+212(Tym. - Tngny ) La(me, mz,nz,nz) 4+ 553(Toym. - Tngn. ) La(ma, ma, ng, ny)
—424(Tym. - Tngn.)La(ma, mg,ny,ny) + 553(Tmym. - Tngn, ) La(me, Mg, ny,n2)
= 553(Trmym. - Tnon.)La(ma, my, nz,ny) + 424(T mym. - Trpn, ) La(me, my, ny, ny)
= 553(Trym. - Tngn.)La(me, my,ny,nz) — 553(Timym. - Tngn. ) La(me, mz, ng, ny)
+ 424(Tym. - Tngn. ) La(ma, Mz, ny,ny) — 553(Tonym. - Tngn. ) La(ma, mz,ny,n2)),



v =v334020(—212(Tym. - Tnyn. ) La(me, me, g, ne) — 424(Trnym, - Toyn. ) La(me, Mg, 1z, ny)

+ 977(Tym. - Tnyn.)La(ma, maz,ng,nz) + 212(Trym, - Toyn, ) La(me, my, ng, ng)
+ 24(T i ym. - Tryn.)La(ma, my, ng,ny) — 977 (Trnym, - Tryn, ) La(ma, my, na,nz)
+212(Tym. - Tnyn. ) La(ma, mz,ng,ng) + 424(Tym. - Toygn, ) La(me, mz, ng, ny)
—977(Trym. - Tnyn.)La(me, mz,ng,nz)),

Syn =v544320k02(—3931,,n, Le(my, my, Mz, ng, ny, ny) + 2121,

— 801, n, Lo (my, my, mz, ny, iz, nz) + 3931,

L6(mya MMy Mgy Ny Ty nz)

xNax
xnzLG(myv My, My, Mgy Ty nz)
— 21211, 0, Le(my, mz, mz, ny, iy, nz) 4+ 801, n, Lo (My, Mz, my, ny, nz,ny)
+ 2921,

— 29210, Lo (my, mz, mz, g, ng, ) + 2921,

xNa

xnyLG(myu My Mz Mg, Mg nz) - 292[mxnyL6(my7 My Mzy Mgy Tz nz)

xnyLG(mya My Mz, Ny y Nz, nz)

+ 8011, n, Lo (my, My, Mz, Mgy Mgy ny) — 21210, 0, Le (Mg, My, Mz, Mgy My, My

+ 3931, n, Le(My, My, Mz, g, Ny, z) — 800, L (1M, Mz, Mz, Mgy Mgy Ny
+ 21211, Lo (Mmy, Mz, Mz, ng, Ny, y) — 3930, L (Mg, Mz, Mz, Mgy My, M)
+ 39311, n, Lo (Mg, Mg, Mz, Mgy My, M2) — 212005 50, Lo (M, My Mz, My, My, )
+ SOImanLG(mx7 Mgy Mz, Ny, Nz, Ny) — 393[manL6(mx, My, My, Mg, Mgy M)
+ 212]mynzL6(mx, Mz, My My, Nyyy My) — SOImynng(mx, My, My, Ny, Mgy M)
= 29211, n, L6 (M, My Mz, Ny Ny ) + 29200 0, L (Mg, Mg, Mz, gy M2y M)
+ 29211, 0, Lo (Mg, Mz, My Mg, Ny ) — 2920 0y, L (Mg, Mz, Mz Mg, Mz, )

- 80[mynz Lﬁ(mma Mgy My, Mgy Mg, ny) + 2121, Lﬁ(mma Mgy My Mgy Ty, ny)

yMz

- 393[mynzL6(mza Mg, My, Ny, nya nz) + 80[m L6(mxa MMy My Mgy Ny, ny)

yMz

— 2121 0, Lo (Mg, M2y My gy My, My ) + 393 L, L (10, My Mz, My My, 12

yNz

Lﬁ(mma Mgy My, Ny Ty nz)

zNg

— 3931, n, L6 (Mg, My, My, Ny, Ny, ) + 2121,
— 801 n, Le (Mg, My, My, Ny, Nz, 1z) + 393, 0y L (Mg, My, My, Mgy My, M)
— 2121 n, L6 (Mg, My, My, My, My, Mz) + 80000y, L (1M, My, My, gy, My 112
+ 2921,

— 2920, n, L6 (Mg, My, My, Mg, N, 02) + 2921,

znyL6(mxa Mgy My y Mgy Ny nz) - 292ImznyL6(mxa Mgy My Mgy Nz, nz)

znyLG(mm Mgy Meyyy Ny Tz nz)
+ 80]mznzL6(mxa Mgy My, Ny Ty ny) - 212]mznzL6(mxa Mgy My, Mg, Ty ny)
+ 393]mznz LG(mxa Mgy My, Ny Ty nz) - 8OImznzL6(moca My Meyyy Mgy Ny ny)

+ 2120, 0, L6 (Mg, My, My, Mgy Mgy, Myy) — 393D,y L (M, Mgy, My, Mg, My, M) ).
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< 93m, i13n >

Ry =v3.34020

(=43(T'rmymy, - Thony ) La(ma, mz,nz,nz) = 510(Tiym, - Trgny, ) La(me, mz,ny, n2)
+212(Tmymy - Trgny ) La(me, mz,nz,n.) — 43(Timgmy, - Thgny ) La(my, mz, ng, n.)
= 510(Tmymy - Trgny ) La(my, mz,ny,nz) + 212(Tmym, - Togny ) La(my, mz,n.,n.)
+43(Trmymy, - Tngny ) La(mz, mz, ng,nz) + 510(Tonymy, - Thgny ) La(mz, mz,ny, n2)
—212(Tmym, - Trgny ) La(mz, mz,nz,n,) — 467
+467(Tonymy - T, ) La(
+467( Thon.)La(
—467(Trmym, - Tngn.)La(mz,mz,ny,n,
( Ty, ) La(
( Tyn. ) La(

Tym, - Tron, ) La(mg, my, ng, ny)
Trom, Trpn. ) La(my, me, ng,my)
)
)

(
ey ) La (Mg, my, ny, n,) — 467(
La(my,mz,ny,n.) +467(Tmym, - Tnon.)La(mz, mz, ng, ny
nz) — 212(
)

Tmzmy : NgNz

N

memy ' Tnynz)L4 (macv My, Ny, Ny

+510(Tmymy, - Tryn. ) La(me, mz,ng,ny) + 43(Togmy, - Trygn. ) La(Ma, mz,ng,nz)
— 212 Tm,,my . ;
+43(Trymy, - Tnyn. ) La(my, mz,ng,nz) + 212(Tpmy, - Toyn, ) La(mz, me, ng, ng)
= 510(Trmymy - Tryn. ) La(mz,mz, ng,ny) — 43(Tmgmy, - Trygn. ) La(mz, mz, ng,n2)
+43(T . T%ny)lul(m%7 My, N, Nz) + 510(T iy, - Tnzny)L4(mz, My, Ny, M)
= 212(Tmym. - Tngny ) La(ma, my,nz,n.) — 43(Timgm. - Tagny, ) La(my, my, ng,n;)
= 510(Trmym. - Tngny ) La(my, my,ny,nz) + 212(Tmym. - Thgn, ) La(my, my,n.,n.)

+ 43(Tmzmz : Tnzny)Lél(mya My, Ng, nz) + 510( mamy Tnzny)L4(my7 My, Ty, nz)

nyn Ly(my, mz,ng, nz) + 510(Tmmmy : Tnynz)L4(mya Mz, Ny, ny)

= 212(Tmym. - Tngny ) La(my, mz,nz,nz) +467(Toym. - Togn. ) La(me, my, ng, ny)
— A67(T o, - Tnon.)La(ma, my, ny, ) — 467(Trum, - Tron, ) La(my, my, ng, ny)
+467(Toym. - Tngn. ) La(my, my, ny,nz) + 467 (Timym, - Trnon. ) La(my, mz, ng, ny)
—467(Trym. - Tngn.)La(my, mz,ny,nz) + 212(Tppm, - Tryn, ) La(me, my, ng, ng)
—510(Tmym. - Tnyn. ) La(me, my, ng,ny) = 43(Trgm, - Tryn, ) La(me, my, ng, n)

= 212(Tmym. - Tnyn.)La(my, my,ng,nz) + 510(Trym, - Tryn. ) La(my, my, ng, ny)

+ 43(Tmzmz : Tnynz)L4(my, My, Ny, nz) + 212(Tm1mz 3

yltz

)
- 5]‘0(Tmzmz : Tnynz)L4(my’ mZ’ nx’ ny) - 43(Tm;vmz : Tnynz)
)

)

La(my, mz, ng,ng)
L4(mya Mz, N, nz)
+ 43(Tmymz : Tnzny)Lll(mxz Mg, Ny, nz) + 510(Tmymz “Thpn

ity

= 212(Tmym. - Tnony ) La(Ma, ma,nz,nz) — 43(Tiym, - Trgn, ) La(me, my, ng,n.)
= 510(Trmym. - Tnony ) La(ma, my, ny,nz) + 212(Toym. - Togny ) La(ma, my, n, )
—43(Tmym. - Tryny ) La(me, mz,ng,nz) — 510(Tinym, - Trgn, ) La(me, mz,ny,n;)
+212(Trnym. - Tngny ) La(me, mz,nz,nz) +467(Tonym. - Tign. ) La(me, ma, ng, ny)
—467(Trmym. - Thnon. ) La(me, me,ny,nz) = 467(Tiym, - Tngn. ) La(ma, my, g, ny)
+467(Tonym. - Trpn, ) La(ma, my, ny,n.) — 467(Trym. - Tron. ) La(ma, mz, na, ny)
+467(Tym. - Trgn. ) La(ma, mz,ny,nz) + 212(Toym. - Toyn. ) La(me, me, g, ne)
= 510(Tmym. - Tnyn.)La(me, me, nz,ny) — 43(Trnym. - Tnyn. ) La(me, me, g, n2)
—212(Tmym. - Tnyn.)La(me, my, ng,nz) + 510(Trym, - Toyn, ) La(ma, my, ng, ny)

+ 43(Tmymz : Tnynz)Lél(mza My, N, nz) - 212(Tmymz : Tnynz)LAL(mx, Mz, Ny, nx)
+ 510(Tmymz : Tnynz)L4(ma:7 My, Ny, ny) + 43(Tmymz : Tnynz)LAL(mxa Mz, Mgy Nz)),
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Simn =v544320k02
(=131, Le(my, my, My, Ny, gy, 1) — 12410, 50, L (1, My, Mz, My, My, M)
+ 1681,

+ 12410 0, Lo (my, Mz, mz, iy, iy, z) — 16810, 0, L (My, Mz, Mz, My, Mz, M)

Le(my, my, mz,ny,nz,nz) + 1315, Le(my, M, ma, ng, ny, nz)

zNz

— 44ImznyL6(mya mya mey, nma nx) TLZ) + 262ImznyL6(mya mya my, ’I’Lx, ny7 TLZ)

— 441 0, Lo (my, my, Mz, ng, iz, ns) + 440 n, Le(My, my, Mz, ng, g, n2)

— 262110, Le(my, mz, my, ng, ny,n.) + 44ImznyL6(my, Mgy Mgy Ny Nozy Ny
+ 16811,,m, L6 (my, my, Mz, Ny, Mg, Myy) — 12410, L (110, My, Mz, gy, My, My
— 1311, m, Le(my, my, My, ng, Ny, ) — 1681y, 1, Le (g, Mz, Mz, gy Mgy My

+ 1311,

_1681mynTL6m > MMy My Moy Moy Ty

yNa

ynxLG(m s Mgy My Thyyy Thyy T

) — )
) — ny)
+ 12410, 0, Le(my, My, My, ng, iy, my) + 13110, . L (my, mz, my, ng, ny, ny)
n:) n:)
nz) — 1311y, n, Le(Ma, My Mz, Ng, My, 12
) )

(
(
(
Le(mg, My, Mz, Ny, Ny, ) + 12415,
(
6

— 1241, 0, Le (M, Mz, Mz, ny, iy, nz) + 1681y 5, Le(ma, mz, mz,ny, nz,n,
+ 441 n, Lo (Mg, Mg, Mz, Mgy Mgy M) — 26210, 0, Lo (M, My Mz, Ny My, M)
+ 441 0, Lo (Mg, Mg, Mz, gy Mz, nz) — 440 0, Le (M, Mz, Mz, Mgy Mg, M)
+ 26211, n, Lo (M, Mz, Mz, Mg, My, n2) — 44D ny, L (Mg, Mz, Mz Mg, Mz, M)
— 16811, n. L6 (ma, Ma, Mz, Mg, Ny oy ) + 1240, i, L (Mg, Mgy Mz, g, 1y 11y )
+ 131, n. Le (M, Moy Mz My Mgy, M) + 16811 Lo (M, Mz, My Mgy My My)
— 1241, 0. Le(ma, Mz, my, ng, ny, iy ) — 1315, 5, Le (Mg, Mz, my, g, iy, m2)
— 1311, 0, L6 (Mg, Mg, My, Ny, My, ) — 124150, . Lo (Mg, Mg, My, 1y, My, M)
+ 1681 n, L6 (Mg, My, My, Ny, Nz, nz) + 1311y, L (Mg, My, My, Mg, Ny, M)
+ 12410, n, L6 (Mg, My, My, Ny, Ny, 1) — 1681, L (Mg, My, My, My, Mz, 1)

_ 44ImznyL6(mxa Mgy Myy Mgy Mgy nz) + 262ImznyL6(mxa Mgy Mgy Ty Ty nz)
— 441 0, Le(Ma, Ma, My, Nz, Nz, mz) + 4410,
— 262[mznyL

(

+ 16811 n, L6 (Mg, Ma, My, Ny Ny Ty
(
(

znyL6(mx> My My Mgy Ny nz)

6 (Mg, My, My, Ny, Ny, M2 ) + 440 0, Lo (Mg, My, My, N, Mz, M)
— 1241 0, L6 (Mg, Mg, My, Mgy Ny, Ny
— 13110, L6

Moy Mg, Moy, Ny Ny M) — 16810y, L (Mg, My, My, Ny Moy My
+ 12415, n, L6 (Mg, my, My, g, Ny, M) + 1311, L (Mg, My, My, gy, My, M)
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< 93m, J3n >

Ry =v3.34020

(2(Tmzmy> TnonQ)L4(mx> mz,ni, 713) + 2(Tmzmy 5 Tngng)L4(mya mz,N1, 713)

= 2(Trymy» Tngny ) La(mz, mz, na,
+ 2(Trmymy > Trgns ) La(my, mz, ny,
+ 2(Trmymy > Tnyng) La(me, mz, no,
= 2(Trymy» Tnyny ) La(mz, m, no,
+ 2(Tmzmy, Ty ny) La(my, m., no,
- Q(memz ) Tnonz)L4(mz7 My, N1,
—2(Tmym. T?’Lonz)LéL(my; my, N1,
+ 2(Trym, » Trgng ) La(my, my, n,
- 2(Tmmmz:Tmn2)L4(mx7 My, 1o,
- 2(TmzmzaTmn2)L4(mya Mz, N,
+ 2(Tmpm. > Tnyng ) La(my, my, no,
= 2(Trmym. Tngny ) La(ma, ma, n1,
+ 2(Trmym. , Tngny ) La(me, mz, n1,
+ 2(Tmymz s Trong ) La(mg, my,nq,
= 2(Trmym. Trnyng ) La(ma, ma, no,
+ 2(Trmym., Tnyny ) La(meg, m2, no,
+ 2(Tmymz y Ting ) La(mg, my, ng,

Smn =v544320k02

(Imxn0L6(my7 My, Mz, N1, N2, n3)

+ Iinyny Le(my, my, m., ng, na, n3

+Imzn1L6 My mxvmy7n07n27n3

h

- mzn2 6\My m$7my7n07n17 3

) =

— Imono Le(my, my, mz, ng, 1, n3)
— Imgny Le(my, my, mz, ng, 1, no)
— Linyng L (Mg, Mg, mz, 1, n2,n3)
— Lyyny Lo (Mg, mg, mz, o, n2,n3)
+ Iyny L6 (M, M, Mz, mo, m1,m3) —
+ImyndL6(m Mgy My, N, N1, N2) —
+ Lin.no L6 (Mg, mg, my, ni,n2,n3) —
( ) —

( ng) +

( )+

- mzn3L6 Mg, My, mya no, N1, N2

160

n3) + 2(Tmymy» Tnons ) La(me, m2,n1,m2)
n2) — 2(Tm,my,, Tngns ) La(mz, m., n1,n2)
n3) + 2(Tmymy» Tniny ) La(my, m., no, n3)
n3) + 2(Tmzmy7 Tyins)La(mg, m.,ng, no)
n2) — 2(Tm,my, Tning) La(mz, m., no, n2)
n3) + 2(Tmym. , Trngns ) La(my, my, ni,n3)
n3) = 2(Trmym. Tnons) La(me, My, N1, n2)
n2) = 2(Tmum.» Tnong) La(my, mz,n1,n2)
n3) -+ Q(Tmzmz7Tn1nz)L4(my: My, No, ns)
n3) - 2(Tmzmszn1n3)L4(mma My, 1o, n2)
ng) — Q(TmzmzaTn1n3)L4(my> mz, ng, N2)
ng) + Q(Tmymz’TnOnQ)L4(m$7 My, N1, n3)
ng) — 2(Tmymz’TnOn3)L4(ml‘7 My, N1, N2)
ng) + 2(TmymzaTnon3)L4(mx7 mz, Ny, N2)
n3) + 2(Tmym. Tniny) La(me, my, no, n3)
n3) — 2(TmymzaTn1n3)L4(ma:7 Mz, N0, N2)
n2) + 2(Trmym. s Tring) La(mz, m2,no, n2)),

- IanOL6(mya My, Mg, N1, N2, n3)

Inmyny Le(my, m., mz, ng, na, ng)
Lnyns Lo (my, mz, m, ng, ni,n3)
Lnyng Lo (my, mz, m, ng, ni, no)
Linyno L (Mg, mz, mz, n1,n2,n3)
(mg n3)
Imynng(m My My, N, N, N3)
ImyndLg(m My My, N, N, N2)
)
)
)
)

L .no L (M, My, My, n1, N2, M3

w
S
@
h
2
3
&
3
<
3
<
S
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=
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< 93m, k3n >

Ry =v3.34020

(—(T'mymy - Trgng ) La(ma, mz,n1,m3) — (Trgmy, - Tngny ) La(my, mz,n1,n3)
+ (Tmgmy - Trgny ) La(mz, mz,n1,n3) + (Tigmy, - Tnons ) La(me, mz,n1,n2)
+ (Tmamy - Tngns)La(my, mz,n1,n2) — (Timgm, - Tngns) La(mz, mz,n1, na)
— (Tmzmy “Tyiny) La(mg, my,no,n3) — (Tmzmy - T'ping)La(my, mz, ng, n3)
+ (Timgmy - Tnyny)La(mz, mz,no,n3) + (Tipmy, - Tnyng) La(me, m2, no, n2)
+ (Timamy - Tnyng)La(my, mz,no,n2) — (Timgm, - Tnyng) La(mz, mz, no, na)
+ 2(Tmymy - Trnong) La(me, mz,n0,m1) + 2(Tmgmy, - Trong) La(my, mz,ng,n1)
— 2(Tmymy, - Trgns)La(mz, mz,mn0,n1) + (Timgm. - Tgny ) La(me, my, n1,m3)
—(T'mym. Tnong)L4(mya My, N1, n3) + (Tomym. 'Tnonz)L4(my7mz7”17n3)
— (Tmym. - Tngng) La(mg, my, n1,12) + (Timem, - Trong ) La(my, my, ni,n2)
— (Trmym. - Tnong) La(my,mz,n1,1n2) + (Trpm, - Thing ) La(ma, my, no, n3)
— (Trmgm. Tnlnz)L4(mya My, N0, n3) + (Tompm. Tnan)L4(my,mz,n0,n3)
— (Trmpm. - Thing)La(ma, my,no,n2) + (Trym. - Thyng) La(my, my, no, n2)
— (Trmym. - Thing)La(my,mz,no,n2) — 2(Trmpm, - Thong ) La(ma, my, no,n1)
+2(Trom. - Thong)La(my, my,no,n1) — 2(Trpm, - Trong) La(my, m;, ng, ny)
+ (Tmymz Trons ) La(myg, mg,n1,n3) — (Tmymz “Tnong ) La(mg, my,ni,n3)
— (Trmym. - Tnong ) La(ma, mz,n1,1m3) — (Tinyme. - Trong ) La(ma, ma, n1, na)
+ (Tonym. - Trnons) La(ma, my,n1,n2) + (Tmym. - Tngng ) La(mg, mz,n1,n2)
+ (Timym. - Tnyny) La(me, me,n0,13) = (Trym. - Tring ) La(ma, my, no, n3)
— (Trym. - Tryng ) La(ma, mz,n0,1m3) = (Trmym, - Tryng ) La(ma, ma, no, na)
+ (Tmym. - Tnyng) La(me, my, no,n2) + (Timym. - Tnyng) La(me, mz, no, n2)
— 2(Trmym. - Trgns)La(me, me,no,n1) + 2(Tmym. - Trgng) La(me, my,no,n1)
+2(Twmym. - Tnong) La(me, m2,ng,n1)),

Smn =v544320k02

(ImznzLG(mya My, My, No, N1, n3)

- ImanLG(my7 My, My, Mo, 101, 12 + Imzng

- mynQLG Mgy Mg, My, Mo, 11,13

)
ng) +
+ Inyng Lo (M, ma, mz, mo, ma, n2) —
ng) —
)

(
(

+ ImzngLG(mxa My, mya nop,ni,n3
(

- mzn3L6 Mgy Mg, My, T, 101, T2 +Imzn3L6
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- ImzngLG(mya My, My, No, N1, 713)

(my7mZ7mZ7n07nlu ng
ImyngLG(m y Mz, My, Mo, M1, 13

)
n3)
Linyns Le (Mg, mz, m, no, n1,m2)
1 n3)
)-

(
(



< 93m; l3n
Ry =v3.34020

(2(Tmzmy : Tnonl )L4 (mza mz,n2, 7”L3) + Z(Tmzmy : Tn0n1 )L4 (mya mg, N2, 7”L3)

- Q(Tmzmy : Tn0n1 )L4 (m2:7 my, N2, ’I”Lg) + (Tmzmy : Tnong)L4(mﬂc7 mz,ni, n3)

+ (Timamy - Trgny ) La(my, mz,n1,n3) — (Timgm, - Tngny ) La(mz, mz,n1, n3)
(Tmamy - Trgns) La(ma, mz,n1,12) + (Timgmy - Trons ) La(my, mz,n1,n2)
— (Twmymy - Trgng)La(mz, mz,n1,m2) — (Tipmy, - Tnyng ) La(me, mz, no, n3)
— (Twmymy - Tnyny) La(my, mz,n0,n3) + (Timpmy, - Tnyny) La(mz, m2, no, n3)
— (T'mamy - Tnyng)La(me, mz,n0,m2) = (Trpmy, - Tryng) La(my, mz, no, no)
+ (Trmamy - Tryng) La(mz, mz,n0,n2) = 2(Trym. - Trgny ) La(meg, my, n2,n3)
+ 2(Trym, - Thgny ) La(my, my, n2,n3) — 2(Tmym, - Trony ) La(my, mz, no, n3)
— (Trmym. * Tngny) La(ma, my, n1,n3) + (Tmum. * Tngny ) La(my, my, n1,n3)
— (Trmym. - Thgna ) La(my,mz,n1,n3) — (Trmpm, - Thgng ) La(ma, my, ni, no)
+ (Trym, - Thgng ) La(my, my,n1,12) — (Tmom, - Trgng ) La(my, m2, ni,n2)
+ (Trym, - Thing)La(ma, my,no,1n3) — (Trmym, - Thing ) La(my, my, no, n3)
+ (Trpm, - Thing ) La(my, mz,n0,n3) + (Tmym, - Trying) La(me, my, no, n2)
— (Trmom. - Thing)La(my, my,no,n2) + (Trmom, - Tring) La(my, m., ng, ng)
= 2(Tmym. - Trony ) La(ma, ma, n2,n3) + 2(Timym. - Trony ) La(ma, my, na, n3)
+2(Tomym. - Tnony ) La(ma, mz,n2,1m3) — (Tinym. - Trong ) La(ma, ma, n1, n3)
+ (Tmym. - Trnony ) La(ma, my,n1,13) + (Tmym. - Tnony ) La(ma, mz,n1,n3)
— (Trym. - Trons ) La(ma, maz,ni,n2) + (Tiym. - Tnong ) La(ma, my, n1, na)
+ (Timym. - Tnony) La(me, mz,n1,n2) + (Timym, - Tnyng) La(me, Mg, no, n3)
— (Trym. - Tryng ) La(ma, my,n0,n3) = (Trmym. - Tnyng ) La(ma, m2, no, n3)
+ (Timym. - Tnyng)La(me, me,n0,m2) — (Trym. - Tryng) La(ma, my, no, n2)
*Ting ) La( )

Simn =v544320k02
(ImznoL6(my7 my, mz, n17 n27 n3) - ImznoL6(mya m27 m27 nla n2a n3)

- ImznlLG(my’ my7 mz,nog, N2, N3 + Imznl myy mz,mz, Ng, N2, 13

) 6 )
- TrLynoLG(mxumxum27n17n27n3) mynoLG(mxvmmmmnlan27n3)
+ Inyny Lo (M, ma, Mz, mo, m2,13) — Imyng Le(Ma, ma, mz, no, n2, n3)
+ Linong L6 (M, My, my, ni,n2,n3) — Ly no Le (Mg, My, My, n1,n2,n3)
— I _ny Lo (Mg, Mg, my, g, n2,n3) + Iny_n, Le(My, My, my, no, 02, n3)).
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< h3m, h3n >

Ry =v3.68040(c + B + ),
a =954529(T ym,, - Trgny ) La(me, mz, ne,n.) — 414248(T ' ymy, - Tngny ) La(me, mz, ny,n.)

—207124(T oy, - Trpny ) La(me, mz,nz,n.) — 414248(T pymy, - Trgny, ) La(my, mz, ng,n2)
+ 179776(T 1y, - Trpny ) La(my, mz,ny,n.) + 89888(Trnym, - Tnony ) La(my, mz,nz,nz)
= 207124(T oy, - Trpny ) La(mz, mz,ng,nz) + 89888(Tonymy, - Thgny ) La(mz, mz,ny,n)
+44944(T 1y, - Tgny ) La(mz, mz,nz,nz) + 54028 (T rymy, - Tgn. ) La(me, mz, ng, ny)
— 414248(T oy - T ) La (10, M2, 1y ) + 540281 (T, - T,
— 234472(T yym,, - Trgn. ) La(my, mz, g, ny) + 179776(T iy, - Tign.
— 234472(T yym,, - Trgn. ) La(my, mz,ny,n.) — 117236(Tym, - Trgn. ) La(mz, mz, ng, ny)
+ 89888 (T, * T ) La(Mizy Mz, 1y, 1) — 117236(T oy T ) Lt (2, i, 1y, 1)
—207124(T 1y, - Tiyn. ) La(ma, mz, ng,ng) — 414248(T rymy, - Toyn. ) La(me, mz, ng, ny)
+954529(T 'y, - Tryn. ) La(mg, mz, ng,nz) + 89888(Tymy, - Tiyn. ) La(my, mz, ng, ny)
+ 179776(T Tyn.)La(my, mz,ng,ny) — 414248(T i, - Tryn. ) La(my, mz, ng,n.)
+44944(T vy, - Tyn. ) La(mz, mz, ng, ng) 4 89888(T ymy, - Tryn. ) La(mz, mz, ng, ny)

= 207124(T 1y, - Tryn. ) La(mz, mz, ng,nz) + 54028 1(T ym. - Tngny ) La(ma, my, ng, n2)
—234472(T . - Trgny ) La(meg, my, ny, n.) — 117236(T nany ) La(Me, My, nz,nz)
—414248(T 1y ym. - Tryny ) La(my, my, ng, n.) + 179776(T nany ) La(my, my,ny,n.),
+ 89888(Trmym. - Trgny ) La(my, my,nz,n.) + 54028 (T rym, - Thgn, ) La(my, mz, ng,n2)
— 234472(T o, . -
+ 305809(T ' m. -
+ 305809(T ', m. -
F179776(T . -
+ 305809(T 'y, . -

(
(

MzMy *

MaeMm, * T
MaeMm, * T
nxny)L4(mya My, Ny, nz) —117236(Tym, - T'n ny)L4(my7 My, Ny, nz)

nans ) La(Ma, My, ng, ny) — 234472(T i, - Thion

N

(

)La( )

nany ) La(Mag, My, gy, my) — 234472(T o, - T
YLa(my, my, ny, ny) — 234472(T ., - T,y

YLa(my, mz, ng, ny) — 234472(T o, - T,

+ 305809(T y,,m., - VL4 ( ) —117236(T ., - T

—234472(T 1,y - )La(mg, My, Ng, ny) + 540281(T . - Ty

+ 89888(Trmym. - Tnyn. ) La(my, my, ng,ng) + 179776(Tym. - Tyn. ) La(my, my, g, ny)

Ly(my, mz,ny,n,

HHH?HHH
3

S
<
3

—414248(T . - Tnyn. ) La(my, my,ng,n.) — 117236(Tym. - Tnyn. ) La(my, mz, ng, na)
—234472(T yym. - Tnyn. ) La(my, mz, ng,ny) + 540281(Tym. - Toyn. ) La(my, mz, ng, n.)
—207124(T . - Tgny ) La(ma, ma, ng, nz) + 89888(Tinym. - Tngny ) La(Ma, Ma, ny, n2)

Y
+ 44944(T .~ T, ) Lt (Mg Mgy 12y ) — 414248(T o - T,
+ 179776(Tmym. - T, T,
+954529(T 1y ., - Trgny ) La(mg, Mz, gy mz) — 414248(T iy, - Trpnyy ) La(me, mz,ny, n)
— 207124(T Tp.n,) )
+ 89888(T'rnym. - Trypn. ) La(me, Mg, ny,ny) — 117236(T ., - nznz)L4(mz, Mgy Ny, Nz
—234472(T i ym. - Tngn. ) La(ma, my, nz, ny) + 179776(Trnym, - Trpn. ) La(me, my, ny, ny)
—234472(Tyym. - Tngn. ) La(ma, my, ny,n2) + 540281(Tmymz Thon.)La(mg, mz, ng, ny)
— 414248(Tym. - T )

MyMy

NgNy Ly (mxa My, Ty, ny) + 540281(Tmymz nznz)L4 (m:L‘a My, Ty, nz)a
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v =+ 44944(T . - Tryn. ) La(Ma, Ma, Ngy ) + 89888(T ., - Tryn, ) La(Ma, Mg, ng, My

—207124(T o ym. - Tnyn. ) La(me, me, g, nz) + 89888(Trnym, - Tryn. ) La(me, my, ng, ng)
+179776(T mym. - Tnyn. ) La(ma, my, e, ny) — 414248(T i, - Toyn, ) La(me, my, ng, n2)
—207124(T oy - Tnyn. ) La(me, mz, ng,ng) — 414248(T iy, - Toyn. ) La(Ma, Mz, N, ny)
+954529(T iy - Tnyn. ) La(Ma, Mz, N, m2),
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+ 314401,
+ 449441,

Nz

zNz

Srn =0544320k02(1544491,,, n, L6 (Mg, My, Mz, Mg, Ny, Mz) — 833161 1,10, L (M, My, Mz, My, My, M)
Le(mg, my, Mz, ny,nz,nz) — 8331610, 1, Le(My, My, Mz, Mg, Ny, M2)

Le(my, my, Mz, ny, Ny, nz) — 169601, 1, Le(My, My, Mz, 0y, 1z, 12 )

+ 314401, n,, Lo (my, Mz, Mz, gy iy, Mz) — 169601 00, L (1), Mz, Mz My, My, )

+ 64001, 1,
+ 114756 I, n,
— 619041y, L6 (my, my, mz,ng,m2,nz) —
+ 233601m,n, L (my, mz, mz,ng,nz,nz) —
+ 83316 L. L6 (Mg, My, Mz, My My, Myy) —
+ 169601, L (1M, My My Ty Ty M) —
+ 833161, L6 (my, my, My, N, gy, 1) —

+ 169601, L6 (1my, Mz, Mz, Mg, Ny, y) —

— 1147561, n, L6 (1, Mg, Mz, Mg, My, 1) + 619041,
— 233601 m,n, L6 (Mg, Mg, mz,ny,nz,nz) + 1147561,
— 6190411, n, L6 (ma, My, my, ny,y ny, ny) + 233601,

Y

— 852641, n, L6 (may Mz My, Ny, Mg, ) + 852641,

(

( )
+ 852641, n, L6 (Me, My, Mz, Ngy Mgy M) —

( )

(

+ 233601 1m,n, L6 (M, My, Mz, g, Mg, ny)
+ 114756 L1, Le(mg, Mg, Mz, g, iy, m2)
+ 619041, 1,

— 314401, n, L6 (Mg, My, My, Ny, Ny, Mz) + 1696015,
— 6400151, n, L6 (Mg, My, My, My, iz, ) + 833161,

L6(my7mZ7mzvnyana nz) -

L¢(mg, my, mz, ng, nz,n,) + 619041,

114756 L, n, L6 (g, My, Mz, Mg, g, 12

ey L6 (My, My, Mz Mg, Mgy 1)
233601 ,n, Lo (my, m,, Mz, Ny, Ny M)
314401, n, L6 (Mg, My, Mz, Mg, g, My
1544491y, .. L6 (Mg, my, Mz, Ng, Ny, 1)
449441y, . L6 (my, my, mz, ng, Ny, 1y
64001, n, Le(my, mz, mz, Ny, ng, ny)
314401, Le(my, mz, mz, ng, ny, n2)
o L6 (Mg, Mg, Mz, My, My, M)
ynzL(i(m:):y Mzy Mz, Ny, Ty nz)
ynzLG(mx, My Mz, Ny, Ny, nz)

852641, m, L6 (Maxs Mgy Mz, Mg, Mz, M)

ynyLG(mx’ My My, Mgy Ny, nz)

— 619041, . Le(mg, mg, Mz, Ny, My, M)
— 233601, n. L6 (M, My Mz Mgy M, M)

LG(man My, My, Ny, Ty, ny) - 114756ImynzL6(maca My, My, Ny, Ty, nz)

L6(mx7 My Ty Ny Ty nz)

zNx

Lﬁ(ma:a MMy Meyyy Mgy Ty nz)

zNa

— 449441y, L6 (Mg, My, My, Ny, My, ) + 169601, 1, L (Mg, My, My, My, Mz, 1)

— 1544491y, n, L6 (Mg, My, Mz, Ny, Ny, M) + 833161, 1y, L (Mg, My, Mz, My, My, )

— 314401, Lo (Mg, my, m, iy, 2, n2) 4 2336000, Lo (Mg, Mgy My, Mgy Mg, M)

— 23360]mznyL6(mm, Mgy My, Ny Nz, Ny) — 61904ImznyL6(mx, My, My, Ny Ny M)

+ 619041,

zMy

Le(my, my, My, Ny, nzynz) + 1147561,

znyLG(mza My Mz Mg, N, n.)

— 114756ImznyL6(mx,my,mz,nx, Nz, My) + 64001, _n, Le(Mma, Mg, my, ng, Ng, ny)

— 169601y, n, L6 (Mg, My, My, Mg, Mgy, Myy) + 3144015,y L (Mg, Mg, My, gy, My, M)

— 1696011, 1, L6 (Mg, My, My, Mgy Mgy Myy) + 449441, L (M, My, My, Mgy My, My

( )
— 833161, 0, Ls (Mg, My, My, g, My, M)
( )

+ 314401,

LG(mxy My My Mgy N, ny)

zMz

— 8331611, 0, L6 (M, My, Mz, Mg, My, ) + 1544491, 1, Lo (Mg, my, Mz, g, My, 112));
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< h3m, 130 >

Rpn =v3.68040

(42011(T oy, - Trpny ) La(me, mz, ng,nz) +498270(Tym, - Trgny, ) La(me, mz,ny,n2)
—207124(T oy, - Trigny ) La(mg, mz,nz,nz) — 18232(Thymy, - Tigny, ) La(my, mz, ng, n2)
—216240(T mym,, - Trgny ) La(my, m,ny,n.) 4+ 89888(T ,my, - Tngn, ) La(my, mz,nz,n;)
= 9116(T iy, - Tgny ) La(mz, mz, ng,nz) — 108120(Thnymy, - Thgny, ) La(mz, mz,ny, n2)
+ 44944(T 1y ymy, - Tgnyy ) La(mz, mz,nz,nz) + 456259(T rymy, - Trgn. ) La(me, mz, ng, ny)
—456259(Tmym,, - Trgn. ) La(ma, mz,ny,n.) — 198008(T i ym, - Trgn. ) La(my, mz, na, ny)
+ 198008(T mmymy, - Tngn. ) La(my, mz,ny,n.) —99004(T s ym, - Trgn.) La(mz, mz, ng, ny)
+99004(T i,y - Trgn. ) La(mz, mz,my,nz) + 207124(T - Toyn. ) La(mg, mez, ng, ng)
—498270(T mymy, - Tryn. ) La(ma, mz,ng,ny) — 42011(Tyym, - Thyn. ) La(ma, mz, ng,n2)
—89888(T'mym, - Tryn. ) La(my, m, g, ng) + 216240(Tyym, - Tiyn. ) La(my, mz, ng, ny)
+18232(T iy, - Ty, ) La(my, mz,ng,n.) — 44944(T iy, - Tryn. ) La(mz, mz, ng, ng)
+ 108120(T mym, - Thyn. ) La(mz, mz, ng, ny) + 9116(Tym, - Thyn.,)
+ 23779(Tomym. * Ty ) Lt (M My, Mgy 1) + 282030(T o - Ty )
—117236(T ym. - Tngny ) La(me, my,nz,n.) — 18232(Trym, - Thyn,) )
—216240(Tmym. - Tngny ) La(my, my, ny,n2) 4+ 89888(Tm., - Tnyn, ) La(my, my,n.,n;)
+23779(Tomm. * Toony ) La (g, Mz, 11, 12) + 282030(T o - Ton) )
1

— 117236(Tnym. - Trngny ) La(my, mz,nz,nz) + 258251 (T ym. - Thgn. ) La(ma, my, nag, ny)
— 258251(Tym, - Thon, ) La(mg, my, ny,nz) — 198008(T m,m. - Thyn, ) La(my, my, ng, ny)
+ 198008(T 1y, - Tryn, ) La(my, my, ny,nz) + 258251(T m,m, - Thyn, ) La(my, mz, ng, ny)
—258251(Tym. - Tngn.)La(my, mz,ny,n.) + 117236(Trym. - Toyn. ) La(me, my, ng, ng)
—282030(Tmym. - Tnyn. ) La(ma, my, nz,ny) — 23779(Trym. - Tnyn. ) La(me, my, ng,n.)
— 89888(T' mym. - Tnyn. ) La(my, my, Nz, ne) + 216240(Trym. - Tnyn. ) La(my, my, ng, ny)
+18232(Trym. - Tryn. ) La(my, my, ng,nz) + 117236(Tmym, - Toyn. ) La(my, mz, ng, ng)
—282030(Trmym. - Tnyn. ) La(my, mz,ng,ny) — 23779(T mym, - Toyn, ) La(my, mz, ng,n;)

= 9116(T rmym. - Trpny ) La(me, me, g, nz) — 108120(T pym. - Thyn,
+ 44944(T rrym. - Trpny ) La(me, mg,nz,nz) — 18232(Tym. - Thign

— 216240(T . - Tony) L (10, 110y, 11y, 1) + 89888(Tr . - T, )
+ 42011(T oy, - Trpny ) La(mg, mz, ng, ) +498270(Trnym. - Thgny, ) La(ma, mz, ny, )
— 20T124(T . - Ty, ) La (1, M2, 12, 12) — 99004(T . - T ) )
+99004(T .. - T ) Lt (M M, 1y, 11z) — 198008(T o - T,

+ 198008(T'mym.. - Tngn. ) La(ma, my, ny,n.) + 456259(Tnym. - Thgn. ) La(Ma, mz, ng, ny)
—456259(Tym. - Tngn.)La(ma, mz,ny,n.) — 44944(T ., - Tryn. ) La(Ma, My, Ngy g
+108120(T 1 ym. - Tnyn. ) La(ma, ma, ng,ny) + 9116(T mym., - Tnyn. ) La(Ma, My, ng, n2)

—89888(T'mym. - Tnyn.)La(Ma, My, Nz, ne) + 216240(Trym. - Ty, ) La(me, my, ng, ny)

+18232(Trnym. - Tryn. ) La(me, my, ng,nz) + 207124(Tonym. - Ty, ) La(me, mz, ng, ng)

—498270(T1mym. - Tnyn.)La(me, mz,ng,ny) — 42011 Trym, - Toyn, ) La(me, mz, ng,nz)),
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Sin =v544320k02
(5148311, n, L6 (Mg, My, Mz, ng, Ny, nz) + 487321,

— 66024 1,,,n, L6 (Mg, My, Mz, My, iz, ) — 2777210 0, L (My, My, Mz, Mgy My, M2

wne L6 (M, My, Mz, My, My, M)

— 2628811,,n, L6 (my, My, Mz, Ny, Ny, 1) + 356161, 1, L (My, My, Mz, My, Mz y 1)
+ 104801, 1,
— 13440, n, L6 (my, Mz, Mz, iy, 1z, 1) + 172921,
— 1029661, L6 (12 Mgy M2y My Mgy M) + 1729200 0, Lo (M0, My, Mz g, Mz 112
— 93281,,n, L (my, My, M2, Ny, g, 02) + 555441,
— 93281,n, L6 (my, my, Mz, Ny, 0z 1) 4 35201,
— 20960117, 1, L6 (170, Mz, Mz, Mg, My 11z ) + 352007,
— 660241, 1, Le(ma, my, mz, Ny, ng, ny) + 487321,

Le(my, mz, mz, g, Ny, ) + 992010, 0, Lo (My, Mz, Mz, Ny, My, 1)

Nz

znyLG(mxa My My N, N n.)

znng(my,my,mZ,nw,ny,nz)
Le(my, mz, my, ng, g, 1)
Le(my, mz,my,ng,nz,n;)
) o= L6 (M, My, Mz, Mgy Ty, 1)
+ 514831, m, L6 (M, My, Mz, Ny, Ny, Mz) + 356161 0,00, L (g, My, Mz, Mg, Mg, My
— 2628811, L6 (1M, My, My Mg, Ny, Ny) — 2777210 1, L (110, My, Mz, N, My, 1)
— 134401,,m, L6 (Mg, Mz, Mz, Mgy My My ) + 9920100, L (g, Mz, Mz, Mgy My, y)
+ 1048011, 1, Lo (my, Mz, Mz, Mgy My, M) — 3825200, 00, Lo (M, Mg, Mz, Mg, My, M
— 3620811, n, L6 (Mg, My, mz, iy, ny,nz) + 490561,
+ 3825211, n, L6 (g, Mz, Mz, Ny, My, 112) 4 362081,
nz)
nz) —
nz)
nz)
ny) —
)

(
(
(
(
(
(
(
— 49056 L, 0, Lo (M, Mz, Mz, My sy 1) — 1284810, 1
(
(
(
(
(
(

ynzLﬁ(mm Ty MMy Moy, Tz, Ty

anLG(mxy Ty Mgy Thyy Thy, Ty

yLG Mgy Mgy Mgy Mg, Ty Ny

+ 76504 1,,n, L6

Y 12848Im n Lﬁ(mxgmxamzanl’7n27 Ny

Mgy Mgy Mz, gy Thy, Tz y

+ 128481,
+ 128481,

— 3620811, n. L6 (Mg, My, Mezy Ny My My

LGm s MMy Mgy Mgy Mgy Ty _76504Imyn

Y Y

L6m s MMy MMy Mgy Moz, Ty +490561m LG Mgy Mgy My Moy Ty Thy

Yy yNz

— 490561y, L (M, Mz, My, Ny, Ny, ny) + 362081,
+ 382527, Lo 6
— 99207, n, L6 (Mg, My My, Myy My, ) + 1344010, 5, L (M, Mg, My, My, Mz, 112

ynZLG Mgy My, Mz, Ny Ny, Ty

)
n:)
nz)
nz)
)
Le(mg, mz, my, ng, ny,ns)

( ny)

382521, . L6 (M, M, Mz, Mgy My, )
( ny)

( )

Le(my, mz, mz, ng,ny,n,) — 104801, n, L

T

. My Mg, My, N, Ny, N

+ 277721y L (M, My, Mgy My My, M) + 2628810, 1, L (M, My, My, My, My, M)
— 356161, n, L6 (M, My, My, Ny, Mz, ) — 5148310, Lo (Mg, My, Mz, Mg, My, M)
— 487321y, n, L6(Ma, my, M, ny, Ny, ) + 660241,y Le (Mg, my, mz, ny, nz, ny)
— 35201, L6 (1, Mg, My, Mg, g, 1) + 209601,
— 35201, L6 (M, Mg, My, g, 1z, ) + 932815, 1,
— 555441, L6 (Mg, My, My, Ny iy, M) + 93281,

— 1729211, 1, L6 (Mg, My, Mz, Mg, Mgy 112) + 102966117, Lig (10, 10y, M2, My My, 112)

ZnyLG(mx,mx,my,nx, Nys M)
Le(mg, my, My, Ny, Ny, M)
ZnyLG(mx,my, My Ny Mz, M)
— 1729211, 1, L6 (Mg, My, Mz, Mgy, 2y 0z) 4 134401, L (M, M, My, Ny g, My)
— 992015, n, L6 (Mg, Mg, My, Mg, Ny, yy) — 104801, 1, L (g, M, My, Ny Mgy, 112
— 3561615, n, L6 (M, My, My, Ny, N, Ny ) + 262881, 1, L (1M, My, My My My, My
+ 277721, L6 (Mg, My, My, Mg, Ny, M) + 6602411, L (M, My, Mz, Mgy Mg, M)

— 487321, n, L (Mg, My, Mz, Ny My, y) — 5148311y, L (M, My, Mz, Mgy My, 2 ) )
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< h3m, J3n >
R, =v3.68040

(=1954(T 11m,, - Trgny ) La(me, mz,n1,n3) + 848(Tmym, - Trgng ) La(my, mz,n1,n3)
+ 424(Tmzmy (

+ 848(T 'y ym, -
—1954(T' sy, - Tnyng) La(me, mz, no,n3) + 848(Tiym, - Tnyny ) La(my, m., no, n3)
+ 424(Tyymy, - Tryny) La(mz, mz,no,n3) — 1954(Tonym, - Tnyng ) La(me, m2, no, n2)
+ 848(Tym, - T

— 1106(T 1 m., - Trono ) La(mg, my,n1,n3) + 848(Tom. - Trgny ) La(my, my, n1,n3)

-T

Tnong)L4 (m2’7 my,N1, ’I”Lg) — 1954 Tmzmy : nong)Lél(mma mz,ny, n2)
TTLong)L4 (my7 mz,ny, n2) + 424(Tmzmy : Tnong)L4(mZ7 mz,ni, TLQ)

nins )L4(my7 mz,no, n?) + 424(Tmzmy : Tn1n3)L4(m27 mz,no, 77,2)

— 1106(Tmym. - Trono ) La(my, mz,n1,n3) — 1106(T sy, m, - Thons ) La(ma, my, n1,n2)
+ 848(Trmym. - Thgns) La(my, my, n1,n2) — 1106(Tmym. - Trngng ) La(my, mz, n1,n2)
—1106(T yym. -
—1106(T yym. -
+ 848(T 1. -
+ 424(Tmymz - Tony ) La(mg, mg,ni,n3) + 848(Tmymz “Thgny ) La(mg, my,n1,n3)
—1954(T snym. - Trgny ) La(ma, mz,n1,m3) + 424(Timym. - Trgns) La(ma, ma, n1, n2)
+ 848(Tny . -
+ 424(Tnym. - Tnyny ) La(me, me,mo,n3) + 848(Tym. - Tnyng) La(ma, my, no, n3)
—1954(T rnym. - Tryng ) La(ma, mz,no,n3) + 424(Timym. - Tryng) La(ma, ma, no, na)
+ 848(T'rnym. - Tnyng) La(mg, my,no,n2) — 1954(Tym. - Tnyng) La(me, m2, no,n2)),
Simn =v544320k02

(—3931 1, no L6 (Mg, My, Mz, n1, 2, n3) + 21210, 1o Le(my, My, Mz, n1, N2, 03)

n1n2)L4(mm: My, No, n3) + 848(Tm,m. - Tmnz)L4(mya My, N0, n3)

NN

nlng)L4(my7 mx,no, 713) - 1106(Tmzmz : Tnlng)L4(mza My, N, nZ)

ning ) La(my, my, no, n2) — 1106(Tm, - Tryng ) La(my, m2, ng, n2)

NS

Tnong)L4(mxa mya ny, TLQ) - 1954(Tmymz : Tnon3)L4 (mxu mz,mny, TLQ)
T

— 801, noLe(my, Mz, mz,n1,n2,n3) — 39310, n, Le(Ma, my, mz, ng, n2, n3)
+ 212110, L6 (my, my, M, no, N2, n3) — 801y, n, Le(my, mz, mz, ng, N2, n3)
+ 39311, n0 L6 (Mg, My, Mz, no, 01, n3) — 2121, 0y Le My, My, M, o, N1, 03)
+ 801, no Ls(My, Mz, Mz, no, 1, 13) + 39310, n5 Le (M, My, Mz, o, 111, N2)
— 2121y, 0y L (my, My, mz, no, 1, n2) + 801y, 0y Le(my, mz, my, ng, n1, n2)
+ 29211, no L6 (M, My, Mz, n1,m2,13) — 29210 0o Le (M, M, Mz, n1, 12, 13)
+ 29211, 0y L6 (Mma, My, Mz, mo, n2, n3) — 2920, 0y Le (M, M, Mz, o, 12, 13)
— 2921, n, Lo (Mg, Mg, Mz, o, 11, 13) + 29200 0y Le (M, M2, Mz, o, 11, 13)
— 2921105 L6 (Mg, My, Mz, 0, 01, M2) + 292100, 0y Le (Mg, Mz, mz, N0, 11, M2)
+ 8011 ng L6 (Mg, My, My, n1,n2,n3) — 21211, _no Le (Mg, My, My, 11, N2, 13)
+ 39311, no L6 (Mg, My, M, 1, M2, 13) + 801, 0, Le (Mg, My, My, no, N2, 13)
— 2121, 0, L (Mg, my, my, 1o, 2, n3) + 39310, n, Le (Mg, my, m2, no, n2, n3)
— 801 ny L6 (M, My, My, Mg, 1, 13) + 2121,y L (Mg, My, My, 1o, 111, M3)
— 3931, ny L6 (M, My, Mz, o, 11, 03) — 8010y Le (Mg, Mz, My, Mo, M1, M2)

+ 21211, ny L6 (Mg, My, My, 1o, 01, 2) — 3931, 0y L (M, My, M, g, 1, n2)).
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< h3m, k3n >
R, =v3.68040

(977(Trnymy, - Trnony) La(mg, mz,n1,n3)
—212(Tsym, - T
+424(T i, - T
. Tn1n2
T
T

— 212
+ 424
—1954(Tyym, -

N

(
+97T(Tyom,
(

(

+ 424(T . -
— 1954(T .
S =v544320k02

MgMy *

Tmzmy .

B 424(Tmzmy ’ Tnonz)L4(my, mz, N1, ng)
nona) La(mez, mz,n1,n3) = 977(Trnym,
+212(T i, -
— 424(Tmym, * Ty
(
(T

'Tnons)L4(mx,mz,nlan2
nons)L4(m y Mz, Ty, M2
)La(me

)La(

nang ) La(my, mz, ng, ng) + 212
T'ryng

ning My, My, No,N3) — 977 ng;my

~—

L4(mx7mZ7n07nl) + 848( Mgy Tngng)Lél(mya mz, no, nl)

“Thong ) La(mz, mz,ng,n1) 4+ 553(Timum, - Trono ) La(mg, my, n1,n3)
- Trgny ) La(my, my,n1,n3) + 553(Tmom. - Trgno ) La(my, mz, ni,n3)
- Trgng ) La(mg, my,n1,n2) + 424(Tym. - Trgng ) La(my, my, n1,n2)
- Trgng ) La(my, mz,n1,n2) + 553(Tmym, - Tring ) La(me, my, no, n3)
- Tning ) La(my, my, no, n3) + 553(Tmym. - Thing)La(my, mz, ng, n3)
Ty ) La(me, my, no,n2) + 424(Trym. - Tnyng) La(my, my, no, no)
Ty ) La(my, m.,no,n2) — 1106(T o, m, - Thong ) La(ma, my, no, n1)
Thong ) La(my, my, ng,n1) — 1106(Tp,m. - Thong ) La(my, mz, ng,n1)
- Thony ) La(mg, mg, n1,ng) — 424(Tmymz Trons) La(my, my, n1, n3)
Tgny ) La(mg, mz,n1,m3) + 212(Tonym. - Thgns ) La(ma, mg, n1,n2)
Thons ) La(mg, my,n1,m2) = 977 (Trnym. - Trgns ) La(ma, mz,n1,n2)
Tnyny) La(me, me,no,n3) — 424(Trnym, - Tring ) La(ma, my, no, n3)
Tnyny)La(mg, mz,no,n3) + 212(Tym., - Thyng) La(me, me, no, n2)
Tnyng)La(mg, my,ng,n2) — 977(Tiym. - Tnyng)La(me, mz,ng, n2)
T yns ) La(me, me,mo,n1) + 848(Trym. - Trgns) La(ma, my, no, n1)

! Tn2n3)L4(mmv mz,no, nl))a

(*393-[mzn2L6(m:ca myv mz,no,ny, nS) + 212Imzn2L6(mya mya mz,no, ny, Tl,g)

- SOImIn2L6(my’ My, My, No, N1, n3) + 393]mzn3L6(mxa m’yu mz,No, N1, TLQ)

- 212]mzn3L6(mya myu m;,ng,ny, 77’2) + SOImIngLG(myv mz,mz,ng, Ny, n2)

+ 292Imyn2L6(mxa Mg, Mz, Mo, N1, n3) - 292Imyn2L6(mwa my, my, Mo, N1, n3)

- 292Imyn3L6(mI7 Mg, Mz, Mo, N1, n?) + 292Imyn3L6(m1‘7 my, my,No, N1, n2)

+ SOImzn2L6(mx; My, My, Mo, N1, n3) - 212Imzn2L6(mxa My, My, Mo, N1, 7’L3)

+ 393Imzn2L6(m17 my7 mz,No, N1, n3) - 80[mzn3L6(mma mg, myv no, N1, n2)

+ 212Imzn3L6(mI7 my: mya no, N1, n?) - 393Imzn3L6(mxa my7 my,No, N1, nQ))
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< ham, l3n
R, =v3.68040

(=1954(T 1y, - Trgny ) La(me, mz,n2,n3) + 848(T mym, - Trgny ) La(my, mz,n2,n3)
+424(T o ym,, - Trgny ) La(mz, mz,n2,n3) — 977(Tiym, - Trgny ) La(me, mz,n1,n3)
+ 424(T 1y ym,, - Trgny ) La(my, mz,n1,n3) + 212(Tym, - Tngny ) La(mz, mz, n1, n3)
- 977(Tmzmy « Trong) La(mg, my,n1,na) +424(Tmzmy T o) La(my, m,,ni, ng)
+ 212(Tmymy - Tngns) La(mz, mz,ny,n2) + 977(Toym, - Toyny ) La(me, mz, no, n3)
— 424(Tyymy - Tnyny ) La(my, mz,no,n3) — 212(Timym, - Toyny ) La(mez, m2, no, n3)
+ 977(memy “Tying)La(mg, my,ng,ng) — 424(memy “Tping)La(my, mz, ng, na)
— 212(T' iy, - Tnyng) La(mz, mz,no,n2) — 1106(Thpm, - Tngny ) La(ma, my, n2, n3)
+ 848(Trmym. - Trgny ) La(my, my,na,ng) — 1106(Trym. - Trgny ) La(my, mz, n2, n3)
—553(Tmum. - Trono ) La(ma, my,n1,n3) + 424(Trym. - Trgny ) La(my, my, n1,n3)
—553(Tmum. - Trons ) La(my, mz,n1,n3) — 553(Tm,m. - Trong ) La(me, my, n1,n2)
+ 424(T 1y ym. - Trgng) La(my, my,n1,m2) = 553(Tmym. - Tngng) La(my, mz, n1,n2)
+ 553(Trmym. - Thyng) La(me, my, no,n3) — 424(Tmym, - Thing ) La(my, my, no, n3)
+553(T . - Tnlng)L4(my Mz, 10,N3) + 553(Trpm. - Thing) La(mg, My, No, ng)
— 424(T'rm,m. - Tnyng) La(my, my, no, n2) + 553(Tm,m, - Tnyng) La(my, mz, no, n2)
+ 424(Tnym. - Tngny ) La(me, me,n2,n3) + 848(Trym., - Trgny ) La(ma, my, na, n3)
—1954(T rmym. - Trgny ) La(ma, mz,na,n3) + 212(Tiym, - Trgny ) La(ma, ma, n1, n3)
+ 424(T rnym. - Tngny ) La(me, my,n1,m3) — 977 (Trnym. - Trgny ) La(ma, mz,n1,n3)
+ 212(Tym. - Tnons ) La(me, Mg, n1,m2) + 424(Trym, - Trgns) La(ma, my, n1,n2)
—977(Trym. - Tnons) La(maz, mz,n1,n2) — 212(Tym. - Thyny) La(me, me, no, n3)
—424(Trym. - Tnyng) La(ma, my,no,n3) + 977 (Tiym. - Tnyny ) La(me, m2,no, n3)
—212(Tym. - Tnyng) La(ma, mz, no, n2) — 424(Tmym. - Tnyng)La(me, my, no, n2)
+977(Tym. - Tnyng)La(me, mz,ng, n2)),

Simn =v544320k02
(—3931 1, no L6 (Mg, my, mz, n1,n2,n3) + 2121, no Le(my, my, m., n1,n2, n3)
— 801y, no Le(my, mz, mz, n1,n2,n3) + 3931y, 1, Le (Mg, my, m, ng, na, n3)
— 2121y, 0, Le(my, my, mz, no, N2, n3) + 801, 0, Le(my, m., mz, ng, n2, n3)
+ 29211, no L6 (M, My, Mz, n1,m2,13) — 29200, 0 Le (M, Mz, Mz, m1, M2, 113)
— 29211, 0y L6 (Mg, My, Mz, o, 02, 13) + 29210, 0y L (M, Mz, Mz, Mo, 12, 13)
+ 8011 ng L6 (Mg, My, My, 01,12, 13) — 21210, _po Le (Mg, My, My, 11, M2, 13)
+ 39311 no L6 (Mg, My, Mz, 1, M2, 13) — 801, 0, Le (Mg, My, My, no, N2, 13)

+ 212Imzn1L6(m$7 mya my7 no, N2, n3) - 393[mzn1L6(mwa my7 my,No, N2, n3))
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< i3m, 13n >

Ry =v3.68040

(1849(Tniymy, - Tngny ) La(ma, mz,ng, nz) + 21930(Tonymy, - Thgny ) La(Ma, mz, ny, n2)

= 9116(T'nymy, - Tngny ) La(ma, mz,nz,nz) + 21930(Tymy, - Tagny, ) La(my, mz, ng, nz)
+260100(T yymy, - Trypny ) La(my, mz,ny,n.) — 108120(T rymy, - Tngn, ) La(my, mz,nz,n;)
= 9116(T'nymy, - Tnony ) La(mz, mz, ng,nz) — 108120(Thymy, - Tigny, ) La(mz, mz, ny, n2)

+ 44944(T 1y, - Tgny ) La(mz, mz,nz,nz) + 20081(Thym, - Thgn. ) La(Ma, mez, g, ny)

= 20081(T rmymy, - Trgn. ) La(me, mz,ny,n.) + 238170(Tonymy, - Tign. ) La(my, mz, ng, ny)
—238170(T 1y, - Tgn. ) La(my, mz,ny,nz) — 99004(T iy, - Tign. ) La(mz, mz, ng, ny)
+99004(T s,y - Trgn. ) La(mz, mz,ny,nz) + 9116(T mymy, - Toyn. ) La(ma, mz, ng, ng)
—21930(Tmymy - Tryn. ) La(me, mz,ng,ny) — 1849(T iy, - Tryn, ) La(me, mz, ng, 1)
+108120(T 'y, - Tryn. ) La(my, mz, g, ng) — 260100(Tym, - Tiyn. ) La(my, mz, ng, ny)
—21930(T 1y, - Tryn. ) La(my, mz,ng,n.) — 44944(Trym, - Tnyn. ) La(mz, mz, ng, ng)
+108120(T mmymy, - Tryn. ) La(mz, mz,ng,ny) + 9116(Toym, - Thnyn. ) La(mz, mz, ng, n2)

+ 20081 T rmym. - Trygny ) La(ma, my, ng,nz) + 238170(T mym, - Trpny, ) La(me, my,ny, n)
—99004(T rnym. - Trpny ) La(me, my,nz,nz) — 20081(Tym. - Tngny, ) La(my, mz, ng,n.)
—238170(Tym. - Tngny ) La(my, mz,ny,nz) + 99004(T . - Tryny, ) La(my, mz,n.,n,)
+ 218089(T 1, m. - Thon, ) La(mg, my, g, ny) — 218089(Triym, - Thyn, ) La(ma, my, ny, n)
— 218089(T vy, - Tyn, ) La(my, mz, ng, ny) + 218089( T, m, - Thon, ) La(my, m.,ny,n;)
+99004(T . - Ty,

—20081(Tmym. - Tryn. ) La(mz, my, ng,nz) — 99004(Tyym, - Thnyn. ) La(my, mz, ng, ng)
+ 238170(T yym. - Tryn, ) La(my, mz, ng, ny) + 20081 (Trym, - Thyn. ) La(my, mz,ng,n2)
+9116(Trym. - Tngny ) La(ma, ma, ng,nz) + 108120(Tonym, - Trgn, ) La(me, me, ny, n2)
— 44944(T 1y, - Trpny ) La(me, me,nz,nz) — 21930(Toym. - Tngny ) La(Ma, my, ng, nz)
—260100(T'ym. - Tnyn,)La(mg, my,ny,n.) + 108120(T nym. - Tnyny, ) La(me, my,nz,n;)
— 1849(T .
+9116(Trym. - Tngny, ) La(ma, mz,nz,nz) +99004(Tym. - Thgn. ) La(ma, ma, ng, ny)

= 99004(T rnym. - Trpn. ) La(ma, My, ny,nz) — 238170(Tonym, - Trgn. ) La(meg, my, ng, ny)
+ 238170(T ymym.. - Trpn. ) La(ma, my, ny,mz) — 20081 (Tonym, - Thgn. ) La(me, mz, ng, ny)
+2008U(Tmym. - Trpn. ) La(me, mz,ny,n.) + 44944(Tym. - Tnyn. ) La(me, Mg, g, ng)

— 108120(Tmym. - Tnyn. ) La(me, My, ng, ny) — 9116(T mym. - Tryn. ) La(Mme, Mg, ng,n2)
—108120(Tnym. - Tnyn. ) La(me, my, ng, nz) + 260100(T ryym, - Tryn, ) La(mg, my, ng, ny)
+21930(Tnym. - Tryn. ) La(me, my, ng,nz) — 9116(T ., - Tryn, ) La(ma, mz, ng, ng)
+21930(Trnym. - Tryn. ) La(me, mz, ng,ny) + 1849(T ., - Tryn. ) La(ma, mz, ng,nz)),

-T
-T

La(ma, my, ng,ng) — 238170(T mym. - Toyn. ) La(ma, my, ng, ny)

: Tnzny)L4(mza My, Ny, nz) - 21930(Tmymz : Tnzny)L4(m:r7 My Ny, nz)
-T
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Sinn =v544320k02(cv + B + ),

a =171611,n, L (Mg, My, Mz, g, Ny, ) + 1624405, 0, Lo (Mg, My, Mz, Ny, 1y, )

Ny
— 2200811, n, L6 (Mg, My, Mz, Ny, 2y ) + 162441, 0, Le(My, My, Mz, g, Ny, M)

+ 153761, 6(My, My, Mz, My, Ny, Mz) — 208321,y L (Mg, My, Mz, My, Mz M)

ono L6 ( )
— 2200811, n, L6 (My, My Mz, Mgy Ny, ) — 2083211, L (Mg, Mz, Mz, My, My, 112 )
+ 282241, 1, Lo (My, Mz, Mz, My, Mz, M) + 576410, Le (M, My, My Mg, Mgy M2)
— 34322110, Lo (Mg, My, My, Ny iy, M) + 5764100, Lo (Mg, My Mz, Mgy Mz, M)
+ 5456 Ly, L6 (1, My, My gy Mgy M) — 324881, L (M My M2y Mgy My, )
+ 545611, L6 (my, gy, Mz, gy iz, M) — 7392100, Lo (My, Mz, Mz, My My M)
+ 4401611p,,n, Lo (Mg, Mz, Mz, Mgy My, M) — 7392000y, Lg (M, Mz, Mz gy iz, M)

— 220081, n, L6 (Mg, My, My, Ny, Ny, Myy) + 162441, 1, L (Mg, My, Mz, Mg, My, 1y
+ 171611,
4153761,
+ 282241,

Le(mg, my, Mz, ng, Ny, nz) — 2083210, . Le(my, My, Mz, Mg, g, ny

z

z

Le(my, Mz, Mz, Ny, Mg, ) — 2083211, L (Mg, Mz, Mz, gy My, My

Nz

— 220081,

6 ) —
( ny) )
( nz) — )
Le(my, my, Mz, ng, Ny, y) + 162441y, . Le(my, My, Mz, Ny, My, n2)
( ny) — )
6( )
+ 545611, n, Lo (Mg, Mg, Mz, My, My, M) — 739210 0, Lig (M, Mgy Mz, My, Mz, M)

cLe(my, mz,m.,ng,ny,nz) + 57641, 0, L (Mg, My, Mz, Ny, 1y, n2)
— 343221 1,0, Lo (Mg, My, Mz, g, iy, M) — 324881, Lig (M, My, Mz, My, My, ),

B =+ 440161, 1, L6 (mz, My, mz, ny, iz, nz) + 576415, 0, Le (Mg, Mz, Mz, ng, ny, m)
+ 54561,
+ 19361,
+ 193611,
+ 686441,
+ 19361,
+ 19361,
+ 5456 L, n.
+ 440161,
— 343221 1,0 Lo (M, My, Mz, Mg, My, mz) — 739210 0, Lo (Mg, Mz, Mz, Mgy Mg, M)
+ 54561,
— 220081, n, L6 (Mg, My, My, g, My, ) — 208321,y L (Mg, Mg, My, My, 1y, M
+ 282241, .
+ 153761,
+ 171611,
— 220081, Lo (Mg, my, mz, ny, nz
+ 440161, L

+ 5456 L1, L6 (Mg, My, My, Mgy Mgy M) — 324881y, Lig (1M, Ty, My, Mgy My, M12),

ynmLG(mxy My My, Ny, Ty, nz) - 7392ImanL6(mx7 My My, Ty, Ny, nz)

ynyL6(mxa Mgy My, Ny, Ny, nz) - 11528[mynyL6(mma Mgy My, Ny, Ty, nz)

Lﬁ(mzy Mgy My, Mgy Nz, nz) - 11528ImynyL6(mma myv My, Ny Ny, nz)

ynyLG(mx7 My, Mz N5 Ny, nz) - 11528ImynyL6(mx7 My, Mgy Mgy Nz nz)

ynyLG(mxymmmzynma N, Mz) — 11528ImynyL6(mxa Mz, My, nw,nyynz)
ynyL6(m:Jcam27m27n27 Nz Nz) — 7392ImynzL6(mx7m:p,mz,nma na:>ny)
L6(mxa My, My, N, Ny, ny) + 5764ImynzL6(mx7 Mgy Mz Ny, Ny, nz)

gz L6 (M, My, Mz, Mg, gy y) — 324881 1, Lo (Mg, My, Mz, gy My, My

YTz L6(m:r;a My My, Mgy Ty, ny) + 5764ImynzL6(mx7 My, My Mgy Ny, nz)

Lg TNy Mgy Mgy Thyyy Mz, Ty + 162441, Lﬁ(mxamyamyvnxanya z

zNg

x

x

)
) nz)
Le(mg, my, my, iy, ny, nz) — 208321, _y,, Le(Mmg, my, my, ny, ny,n;)
) )
) =

(
(

Le(mg, my, mz, g, Ny, nz) + 162441, . Le (Mg, my, Mz, iy, 0y, 1,
( 7392110, L6 (Mg, Mg, My, Ny Mg, M
6

)
6\ Ty Mgy My, Ty Ty nz) - 7392[mznyL6(mma Mgy My Mgy Mz, M z)
)
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Y = 4 545610, L6 (Mg, My, My, gy 1z, 12 ) + 57641,

— 3432211, Lo (M, My, Mz, Mg, My, M) + 5764100, Lo (Mg, My, Mz, Mgy 2y 1)

ony L6 (M, My, Mz, Mg, Mgy M)
+ 282241, . L6 (Mg, Mg, My, Mgy Mgy Ny) — 208320, 10, L (M, Mg, My, Mg, My, Moy
220081, 1)
+ 153761, . L6 (M, My, My, Ny, Ny, My ) + 1624415, 4,
ny)
)

z

z z

( )
LG(mxamyamyanmanyv Z)
— 220081y, n, L6 (Mg, My, My, g, Ny, M) + 1624415, 1, Le( )

(
(
Le (Mg, Mg, My, Mgy Ny, ) — 20832000, 1, L (M, My, My, Ny N, My
( n
(
+ 1716115, n, L6 (Mg, my, Mz, Ny, Ny, 1)
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< 13m, J3n >
R =v3.68040
(=86(T'mymy, - Tnony ) La(me, mz,n1,n3) — 1020(Tmymy, - Thony ) La(my, m2, n1,n3)
+424(T yymy - Trgny ) La(mz, mz,n1,n3) — 86(Tmym, - Tnons ) La(ma, mz, n1,n2)
—1020(Tnymy, - Tnons ) La(my, m,n1,n2) + 424(Trnym, - Tnonsg ) La(mz, m2, n1,n2)
= 86(Tmymy - Tring) La(ma, mz,no,n3) — 1020(T mymy, - Tryng ) La(my, mz,no, n3)
+424(T yymy, - Tryng) La(mz, mz,no,n3) — 86(Tmymy, - Tnyng) La(ma, m2, no, n2)
—1020(T sy, - Tryng) La(my, mz,mo,n2) + 424(Trpmy, - Tiyng) La(m., mz,no, n2)
— 934(Tmym. - Trgno ) La(mg, my,n1,n3) + 934(Trm. - Thngny ) La(my, ms, n1, n3)
— 934(Tmym. - Trgng) La(mg, my,n1,n2) + 934(Trm. - Thgng ) La(my, mz, n1,n2)
—934(Tmym. - Trino)La(myg, my,no,n3) + 934(Tym. - Thyiny)La(my, ms, ng, n3)
— 934(T rym. - Tnyng) La( ) T'1iny)La(my, m,, ng,n2)
— 424(Tym. - Tngny ) La(ma, ma, n1,n3) + 1020(Thnym. - Tnony ) La(me, my, n1,n3)
+86(Tmym. - Tngny ) La(ma, mz,n1,m3) — 424(Tnym., - Trgns ) La(ma, ma, n1, na)
+1020(Tym. - Tnons ) La(me, my, n1,n2) + 86(Tmym. - Tngns) La(me, mz,n1,n2)
—424(T yym. - Tnyny ) La(me, me,mo,n3) + 1020(Tym. - Tnyny ) La(me, my, no, n3)
+86(Tmym. - Tnyng) La(ma, mz,mo,n3) — 424(Tinym., - Tryng) La(ma, ma, no, n2)
+1020(Tmym. - Tnyng)La(me, my, no,n2) + 86(Tmym. - Tning) La(me, mz,no,n2)),
Simn =v544320k02

(=131, no Lo (Mg, my, m,, n1, no, n3

nins L4 m$7my7n07n2 + 934( mgmz *

( ) — 1241, 1o Le(my, my, m, n1,n2,n3)
+ 1681, no L6 (my, mz, mz, n1,n2,n3) — 1311, n, L (Mg, my, m2, ng, na, n3)
— 1241, n, L6 (my, my, mz, 0o, n2, n3) + 1681, ., Le(my, mz, mz, ng, n2, n3)
+ 1311, o L6 (Mg, My, mz, no, 01, n3) + 12410, 1, Le(my, my, M2, 1o, 111, 13)
— 1681,,,n, L6 (my, Mz, m2, g, 01, 1n3) + 1311 5y Le (Mg, My, M2, ng, 01, n2)
+ 124110y L6 (my, my, mz, ng, 01, n2) — 1681, n, Le(my, m., m,, ng, n1,n2)
— 441 ng Le (M, Ma, Mz, M1, M2, 13) + 26200, 1 Le (Mg, My, M, 01, N2, M3)
— 441 0o Le(Ma, Mz, mz,n1,n2,n3) — 440, 0y L (Mg, Mg, m2, 0o, N2, n3)
+ 26211, 0, L6 (M, My, Mz, g, n2,13) — 441, 0y L (Mg, M, M2, mo, n2,113)
+ 44Imyn2L6(mx,mx,mz,no,nl,ng) - 262[myn2L6(mI,my,mz,no,nl,ng)
+ 441,y L (M, My, Mz, mo, n1, n3) + 440y, ng L (Mg, Mg, mz, 0o, 01, n2)
— 2621, 05 L6 (Mg, My, M, 0o, 11, M2) + 4410, 05 Le (M, Mz, Mz, no, 01, n2)
+ 1681, ng L6 (my, My, My, n1,n2,n3) — 1241, _no Le (Mg, My, My, 11, N2, 13)
— 1311, no L6 (Mg, my, mz, 1, na, ng) + 1681, _n, Le(my, My, my, no, N2, n3)
— 1241, n, L (Mg, my, my, no, n2,n3) — 13115, n, Le(my, my, mz, ng, n2, n3)
— 1681, ny L6 (M, My, My, 1o, 1, 13) + 1241, p, Le (Mg, My, my, no, 01, n3)
+ 13111 no L6 (Mg, My, Mz, no, 1, 13) — 168100, ny Le (M, M, My, g, 101, M2)
( ) ( )

+ 124[mzn3L6 Mgy My My, MO, 101, T2 + ]-3]-Imz7’L3L6 Mgy My, Mz, T, 101, T2 )
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< 13m, k3n >
R =v3.68040
(43(T'mymy - Trong ) La(ma, mz,n1,m3) + 510(Tmymy, - Tnony ) La(my, m2, n1,n3)
— 212(Tmzmy “Thony)La(mz,my,ni,n3) — 43(Tmzmy  Tong) La(mg, mz,ny,na)
= 510(Tmymy - Trgns)La(my, mz,n1,n2) + 212(Tym, - Trgns) La(mz, mz,n1,n2)
+ 43(Tmzmy “Thiny)La(my, m,,ng,ng) + 510(Tmzmy - Tpiny)La(my, m;, ng, n3)
— 212(Tmzmy “Tyiny)La(my, my,ng,n3) —43(T Mamy © Thins)La(my, ms,no, n2)
= 510(Trmymy - Tryng) La(my, mz,no,n2) + 212(Tiym, - Tnyng) La(mz, m., no, ne
= 86(T'm,m, - Thyng ) La(mg, m,,no,n1) — 1020(Tmmmy - Thons ) La(my, mz, ng, nq
+ 424(Tmymy, - Thong)La(mz, m2,ng,ny) + 467(
— 467(Tmyrm. - 467(Tm$mz :
+ 467 (
— 467 (
(
(

(
(
(
+467(
(
(
(

Tm.z‘mz '

N

mgmz *

Tonsy ) La(

Tons ) La(my

T'nyny)La(my
mzmz'Tnlng)L4(m Mz, 1o, N2

T'yns) La(my

T'nony ) La(my

T'gns) La(

N

+ 934
— 510
— 212(Tonym. - Tons
+43(Trym. - Trgns) La(ma, mz,n1,na) + 212(Tmymz “Tryny ) La(my, my, no, n3)

— 510(Tmymz - T'ping ) La(mg, my, ng, ng) — 43(Tmymz - Tring ) La(mg, my,no, n3)
—212(T imym. - Tnyng) La(me, ma, no,n2) + 510(T oy m. - Tryng) La(ma, my, no, n2)
+43(Trym. - Tring)La(ma, mz,mo,m2) — 424(Trnym, - Trgns ) La(ma, ma, no, n1)
+1020(Tym. - Thong ) La(ma, my, no,n1) + 86(Tmym. - Tnons) La(me, mz,ng,n1)),

Sinn =v544320k02

(_lgljmzngLG(mah My, My, No, 11, 713) - 124Imzn2L6(my> My, My, No, N1, nS)

~
N
S 3
3
&
S
e
=
+
[\]
—_
[\
N
5
g

Tmzmz :

=
'
3
3
<
S
3
w
\
o~
,93
N
3
<
§
N
s
3
F (]
=y
3
8
3
§
S
s
&

Tmymz :

T

T

+ 168[mzn2L6(my7 My, My, No, N1, n3) + 131]mzn3L6(mm mya my,no, N1, 7’L2)
L

+ 1241, 0,

- 44ImyngL6(mx, mx, mz, nOv nla n3) + 262Imyn2L6(mxy my’ mZa TLO, n17 n3)

6(my7 My, Mz, No, N1, TLQ) - 168Im1n3L6(mya mz, Mg, No, N1, n2)

— 441, 0y Le(Ma, Mz, Mz, no, 11, n3) + 4400, g Le (M, My, M2, 1o, N1, N2)

— 26211, n5 L6 (M, my, mz, no, 01, n2) + 441 g Le(Ma, M, m2, mo, 11, n2)

+ 16811, 0y L6 (Mg, My, My, N0, M1, 13) — 12415,y L (M, My, My, 1o, 11, M3)

— 13110, ny L (Mg, My, m, g, 1, n3) — 16810, ny L (Mg, My, My, Mg, 111, 102)
( )

+ 124[m3n3L6 Mg, My, My, 10, 101, TV2 + 131[mzn3L6(mxa My, My, Mo, N1, n2)>
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< 13m, I3n
Ry =v3.68040

(_86(Tmzmy o )La(mz, mz,n2,n3) — 1020(Tmzmy o e )L4(mya mz, N2, n3)

—+ 424(Tmzmy . Tn0n1 )L4 (mza mz,n2, n3)

- 43(Tmzmy : Tnong)L4 (mza mz,ni, n3)

= 510(Trmymy - Trony ) La(my, mz,n1,n3) + 212(Tym, - Trgny) La(mz, mz,n1,n3)
— 43(Tmmmy - Tong)La(mg, m,n1,na) — 510(Tmzmy - Thong ) La(my, mz,ni,na)
+212(Tymy - Trgns) La(mz, mz,ny,n2) + 43(Timgmy, - Tryng ) La(ma, m2, no, n3)
+510(Tmymy - Tryng) La(my, mz,no,n3) — 212(Tmym, - Tryng) La(mz, mz, no, n3)

+ 43(memy . Tn1n3)L4(mx7 mz,no, 77,2) + 510( Mgmy Tnlng)L4(my7 mz,no, nQ)

— 212
+ 934

Tm;,;my

+ 467
— 467

N

— 467(T . -
+1020(T . - Tnonl) L4(mx, 1y, nizy ) + 86
= 212(T'mym. - Tnong) La(ma, ma, n1,n3) + 510
+43(Trym. - Tnony) La(ma, mz,n1,n3) — 212(Tym, -
nons ) La(Ma, my,n1,n2) +43(Tym. - T

nan)L4(mx7 Mg, N, 713) - 510(Tmymz : Tn1n2)L4(mac7 My, 1o, 713)

+510(Tm. -
+212(T . -

(
(Tm;cmz ’
+467(T oy, -
(Tmzmz ’
(
(

mgmz *

T
T

: T’nlng)L4(mZ7 mz,no, n2) - 934(T’mxmz ’
(

T rony ) La(mg, my, na, n3)

) —467(Tnym. - Thnony) La(myg, my, n1,n3)
) 467(Tmmmz 'TTLOH3)L4(mLE7my;n17n2)
n2) + 467(Tm,m. - Tnyny) La(ma, My, N0, n3)
) +467(Tnym. - Thning)La(mg, my, ng, n2)
— 424(T . - Tnony ) La(mg, Mg, n2,n3)
(Tmym. - Tnony ) La(me, mz, n2,n3)
(Tmymz T pong ) La(mg, my,ni,n3)

nond)L4 My, My, N1, 77,2)
)

(
Ly(

Mg, My, N1, Tlg)

- 43(Tmymz : Tn1n2)L4(m;tv mz, no, TL3) + 212(Tmymz ’ Tn1n3>L4(mma My, 1O, 7”L2)

- 510<Tmymz ) TnlnS)L4(m$7 My, No, n2)

Spn =v544320k02
(—131Lm, no Lo
+ 168,

L
12410, L

(mxv My, My, N1, 12, 713) -

6(my> My, My, No, 102, ’I’Lg) -

- 43(Tmymz ) Tmns)L4(mzv Mz, No, n2))7

124ImzngL6(my7 My, Mz, N1, N2, n3)

6(my> Mz, Mg, N1, N2, n3) + 131]mzn1L6(mx; My, My, No, 112, n3)

168[mzn1L6(my, Mz, My, N0, N2, 7”L3)

- 44Imyn0L6(mx7 My, My, N1, N2, nS) + 262[myn0L6(mx7 My, My, Ny, 12, n3)

- 44Imyn0L6(mxy mz,mz,ny, N2, n3) + 44Imyn1 LG(m.Z‘y Mg, Mz, No, N2, n3)

- 262[myn1L6 mg, myv mz,no, n2, n3) + 44Imyn1L6(m:ca mz,mz,ng, N2, n3)

+ 16811y Lg
— 1311n.no L

(
(mxu ml‘7my7 n17n27n3
(
(

) —
My, mya mz,ni,ng, n3)
)

12410, ng L6 (Mg, My, My, 11, N2, 113)

168Imzn1L6(m$7 My, myu no, N2, n3)

+ 124Imzn1 L6 Mg, My, My, 10, 102, TV3 + 131[mzn1 LG(mxv My, My, 10, 12, TL3))
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< Jams Jan >
R, =v3.68040
(4(Tm0m2 : Tnong)L4 (m17 ms,ny, n3) + 4(TmOm2 : Tn0n3)L4(m1a ms3,ni, 712)

AT mgmy - Thing)La(mi,ms, no,n3) + 4T memy - Tryng ) La(ma, ms, no, n2)
AT mgms - Thony ) La(mi,ma,n1,n3) + AT moms - Trong ) La(ma, ma, ni, n2)
AT mgms - Thing)La(mi,ma,no,n3) + AT mems - Tryng ) La(ma, ma, no, n2)
AT mymy - Thony ) La(mo, ma, ni,n3) + 4T mimy - Trgng ) La(mo, ms, ni, n2)
AT mymy - Thing)La(mo, ma, no, n3) + AT mymy - Tryng ) La(mo, ms, no, n2)
AT ryms - Thgng ) La(mo, ma,n1,m3) + 4T ryms - Thong ) La(mo, ma, n1,n2)
+ 4(Triyms - Tyng ) La(mo, ma, ng,n3) + 4(Tmyms - Thyng) La(mo, ma, ng, na)

Sinn =v544320k02
(Imans Le (o, m1, ma, no, n1, n2) + Imgn, Le(mo, m1, ma, no, n1,n3)
- ImgnlLG(mOam17m27n07n21n3) m3n0

+ IanSLG(mo, my, m3, o, N1, N2

mo,mi,ma,ny, N2, N3
Iyn, Le(mo, my, m3, ng, ni,n3
I

6(m0am17m3an0an2a ns mgnoLG mo,mi,ms,ni,n2, N3

§
s
h

h

h
h

Ininy Le(o, ma, m3, ng, n2,n3) + Iy ngLe(mo, ma, m3, n1,n2, n3

h

Igns Le(m1, ma, m3, ng, n1,n3g

~— — ~— ~— ~— ~— ~—

Le(
)+ (
) — (
- mlngLﬁ(mo,mz,m&no,nl, n2) = Lmyny Le (Mo, ma, m3, ng, n1,n3
+ ( n3) (
— Lngns Le(m1, ma, m3, ng, n1,n2) — (
+ Ipon, Le(mi, ma, m3, no, n2, n3) + Imgno Le (M1, ma, ms, ni, na, n3

)-

< J3m, k3n >
Ry =v3.68040
(=2(Tmgmy - Thgny) La(mi,ma,ni,n3) + 2(Tmems © Trgns ) La(ma, ms, ni, n2)
— 2(Trmgms - Tryng ) La(mi, ms,ng,n3) + 2(Trmgms - Tnyng)La(mi, ms, ng, n2)
+ AT rgms - Thong)La(mi,m3, no, n1) — 2(Tmems - Trgng ) La(ma, ma, ni,n3)
+ 2(Trgms - Trgns ) La(mi, ma,n1,n2) — 2(Tmgms - Thing)La(mi, ma, ng, ng)
+ 2(Trgms - Tnyng)La(mi, ma,ng,n2) + 4(Tmgms - Thong ) La(mi, ma, ng, n1)
— 2(Trmymsy - Trgny ) La(mo, ms,n1,n3) + 2(Tryms + Thons ) La(mo, ms, ni, na)
= 2(Trymsy - Tryng ) La(mo, ms,ng,n3) + 2(Trymy + Thyng ) La(mo, ms, ng, n2)
+ 4T rymy - Trgns ) La(mo, ms,no,n1) — 2(Tryms - Thong ) La(mo, ma, ni, ng)
+ 2(Tryms - Trgns ) La(mo, ma,n1,n2) — 2(Timyms - Thyng ) La(mo, ma, ng, ng)
+ 2(Tryms - Tnyns ) La(mo, ma, ng,n2) + 4(Tmyms - Thong ) La(mo, ma, no, n1)),

Smn =v544320k02
(Imons Le (M1, m2, m3, g, n1,n3) — Ingns Le(m1, ma, m3, ng, n1,na)
+ Imyny L (Mo, ma, m3, no, n1,n3) — Ly Le(mo, ma, m3, ng, n1, n2)
— Linyny Le(mo, m1, m3, o, n1,n3) + Imyns Le (Mo, m1, m3, ng, n1, na)

— Linany Lo (mo, mi, ma, no, n1,n3) + Imgns Le (Mo, mi, ma, no, n1,n2)).
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< J3ms l3n

Ry =v3.68040

(AT rgms - Thony ) La(ma, ma, n2,n3) + 2(Tmgme - Trony ) La(ma, ms, ny, n3)

+ 2(Trgms - Thgns)La(mi,ms, n1,n2) — 2(Tmemy * Tnyng ) La(ma, ms, no, n3)
— 2(Trmoms - Tryng ) La(mi, ms,ng,n2) + 4(Trmgms - Tnony ) La(mi, ma, na, ng)
+ 2(Trgms - Thong ) La(mi,ma, n1,n3) + 2(Tmems - Trong ) La(mi, ma, ni, n2)
— 2(Trmoms - Tryny)La(mi, ma,ng,n3) — 2(Trmgms - Tnyng)La(mi, ma, ng, n2)
+ 4A(Trymy - Thony ) La(mo, m3, n2, ng) + 2(Tmimy - Trgny ) La(mo, ms, ni,n3)
+ 2(Tmyms - Trgng) La(mo, m3, ni,n2) — 2(Tmymy - Tnyng ) La(mo, ms, no, ng)
= 2(Trymsy - Tryns ) La(mo, ms, ng,n2) + 4(Trmyms * Thgny ) La(mo, ma, no, ng)
+ 2(Tryms - Trgny ) La(mo, ma,n1,n3) + 2(Tryms * Thons ) La(mo, ma, ni, no)
= 2(Tryms - Tryny ) La(mo, ma,no,n3) — 2(Tiyms - Tnyns ) La(mo, ma, ng, na)),

Smn =v544320k02

(Im0n0L6(m17m27m37n1>n23n3) - Imon1L6(m17m27m3a n07n27n3)
+ Im1n0L6(m07 ma,ms,ni, nz, n3) - ImlnlLG(m07 ma,ms, no, n2, n3)
— Lingno Le(mo, m1, m3, n1,n2,n3) + Lmyny Le(mo, m1, m3, no, n2, n3)

— Iinang Le(mo, mi, ma, ni,n2,n3g) + Imgn, Le(mo, m1, ma, no, n2, n3)).

< k3m7 k3n >
Ry =v3.68040

((Tmomg . T?’Lonz)LZl(ml? ms,ni, n3) - (T’rnom2 : T’non3>L4(m17 ms,ni, n2)
+ (Tm0m2 . Tnan)L4(m17 ms, no, n3) - (Tm0m2 : Tn1n3)L4(m17 ms, no, n2)

- 2(Tmomz -Tn2n3)L4(m1,m3,n0,n1) - (Tmoms 'Tnonz)L4(m17m27n17n3)

+ (Trgms - Tngns)La(mi,ma,n1,n2) — (Tmgms - Thing ) La(mi, ma, ng, ng)
+ (Trgms - Tnyns)La(mi, ma, ng,n2) + 2(Tmgms * Thong) La(ma, ma, no, n1)
+ (Tryms - Thgng ) La(mo, ms, n1,n3) — (Tmymy - Thons ) La(mo, ma, ni, na)
+ (Triyms - Tyng ) La(mo, ms, no,n3) — (Tmymg - Thyng ) La(mo, m3, ng, n2)

- 2(Tm1m2 : Tnzng)L4(m07 ms3, no, nl) - (Tm1m3 : TnonQ)L4(m0’ ma,ny, n3)

+ (Tryms - Trgng ) La(mo, ma, n1,12) — (Trymg - Thyne ) La(mo, ma, no, n3)
+ (Tm1m3 . Tn1n3)L4(m07 ma, no, nQ) + 2(Tm1m3 : Tn2n3)L4(m07 ma, o, 77,1)
- 2(Tm2m3 :

T'ny ) La(mo, m1,n1,13) + 2(Timgms - Tnons ) La(mo, m1,n1,n2)
- Q(T’mgmg . T’n1n2>L4(m07 mi, no, n3) + 2(Tm2m3 . nlng)L4(m0; mi, no, TLQ)
T

+ 4(Tm2m3 ) n2n3)L4(m07 mi, o, nl))7

Smn =v544320k02

(Imgnye Le (Mo, m1, ms, no, n1,n3) — Imyng Le(mo, m1, ms, ng, ni, n2)

- Im:',ngLﬁ(mOa miy,ma,no, N1, n3) + ImgngLG(m()a mi,m2,no, N1, 712))
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< k3m, l3n >
Ry =v3.68040

(=2(Tmgms - Tnony ) La(mi, ms3, n2,n3) — (Tmgms - Thgne ) La(mi, ms, ni,n3)

— (Trgms - Trgns ) La(mi, ms,n1,n2) + (Trgmsg - Thyng ) La(mi, ms, ng, ng)
+ (Trgms - Tnyng)La(mi,ms, no,n2) + 2(Tmems - Tnony ) La(ma, ma, na, n3)
+ (Trgms - Tngng ) La(mi, ma,n1,n3) + (Tmgms - Thons ) La(mi, ma, n1, na)
— (Trmgms - Tryny ) La(mi, ma,ng,n3) — (Trmgms - Thyng)La(mi, ma, ng, n2)
—2(Tryms - Trgny ) La(mo, ms, na2,n3) — (Trmyms - Thong ) La(mo, ms, n1,n3)
— (Tmyms - Trgng) La(mo, m3,n1,n2) + (Tmyms - Tnyng ) La(mo, ms, no, ng)
+ (Triymso - Thyns)La(mo, ms, ng, n2) + 2(Timyms © Thgny ) La(mo, ma, na, ns)
+ (Triyms - Tngng ) La(mo, ma, n1,n3) + (Tryms - Thons ) La(mo, ma, ny, no)
— (Tryms * Tryng ) La(mo, ma,no,n3) — (Tryms * Thyns ) La(mo, ma, ng, na)
+ 4(Tryms - Tngny ) La(mo, mi, n2,n3) + 2(Tmyms - Thgng ) La(mo, mi,n1,n3)
+ 2(Tryms - Thgns) La(mo, mi, n1,n2) — 2(Tmyms - Thyng ) La(mo, mi,no, n3)
- 2(Tm2m3 ) Tn1n3)L4(mOa mi,no,Nn2)),

Smn =v544320k02

< l3m) l3n >
Rmn =

(Imang Le(mo, m1, ms, ni,ng,n3) — Lnyn, Le(mo, m1, ms, ng, na, n3)

— Lingno Le(mo, m1, ma, n1,n2,n3) + Imgn, Le(mo, mi, ma, ng, ng, n3)).

v3-68040

(U Tmgmy - Tngny ) La(ma, m3, n2,n3) + 2(Tmem, - Trgny ) La(me, ms, ny, n3)
+ 2(Trgm, - Thgns ) La(ma, ms, n1,n2) — 2(Tmgm, - Thing ) La(ma, ms, no, n3)
= 2(Timomy * Tryns)La(ma, ms,ng,n2) + 2(Trmgmsy - Thony ) La(mi, ms, ne, ng)
+ (Trgms - Trngng ) La(mi, mg,n1,n3) + (Trmgmsy - Thons ) La(mi, ms, ni, ng)
— (Trmgms * Tryny ) La(mi, ms,ng,n3) — (Trmgmsg * Thyns)La(mi, ms, ng, na)
+ 2(Trgms - Thgny ) La(mi,ma, no,ng) + (Timgms * Thgng ) La(ma, ma, ni,n3)

+ (Trgms * Tngns ) La(mi, ma,n1,n2) — (Tmgms - Thing ) La(mi, ma, ng, ng)
— (Trmgms - Tryng)La(mi, ma,ng,n2) — 2(Trmymsy - Thgny ) La(mo, ms, na, ng)
— (Tryms - Trgny ) La(mo, ms,n1,n3) — (Trymsg - Thons ) La(mo, ms, ni, n2)
+ (Triyms - Tyng ) La(mo, ms, no,n3) + (Tmymg - Thyng ) La(mo, ms, ng, n2)

- 2(Tm1m3 : Tnonl)L4(m07 ma,na, n3) - (Tmlmg . Tnonz)Lél(mO) ma,ny, n3)
- (Tm1m3
+ (Tryms

nong)L4(m07 ma,niy, n2) + (Tmlmg : Tn1n2)L4(m07 ma, no, n3)

-T
: Tn1n3)L4(m07 ma,no, nQ))

Smn =v544320k02

(Imono Le(m1, ma, m3, n1,ng,n3) — Imgn, Le(m1, ma, m3, ng, na, n3)

- ImanLG(mOa ma,ms,ni, n2, TL3) + ImlnlLﬁ(mﬁa ma,ms,ng,n2, TL3>)
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