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Abstract

Herein, methods for the holistic multiobjective design optimization of composite structures are
developed and discussed. Consideration of manufacturing effort is the the first pillar of realizing
holistic optimization. The modeling of manufacturing effort is based on expert knowledge, where soft
computing facilitates the emulation of expert’s judgment competence. An enrichment to prior effort
models have been realized by extending capabilities providing reason and giving refinement advice.
Beside this technical pillar of the optimization process, the structural-mechanics has been strengthened
by a decoupled multi-scale homogenization approach. Lastly, numerics–as another important column
of optimization–are equipped by methods for equidistant approximations of Pareto frontiers, which
commonly form in vector optimization. These aspects are studied on comprehend-able academic
examples, as well as industry relevant ones.

Kurzfassung

In dieser Arbeit werden Methoden zur multikriteriellen ganzheitlichen Optimierung von Faserver-
bundstrukturen entwickelt und anschließend diskutiert. Die Berücksichtigung von Fertigungsaufwän-
den repräsentiert hierbei die erste Säule der ganzheitlichen Optimierung. Um diese Aufwände
quantifizierbar zu machen, wird auf Methoden der weichen Modellbildung zurückgegriffen. Hierbei
wird eine Bereicherung zu vorherigen Aufwandsmodellen realisiert, indem diese um eine Begründung
des Ausgabe und mögliche Ausgestaltungshinweise erweitert werden. Neben dieser technischen
Säule des ganzheitlichen Optimierungsprozesses, wird auch die der Strukturmechanik durch einen
entkoppelten Mehrskalenhomogenisierungsansatz gestärkt. Zu guter Letzt, wird der letzte Pfeiler des
ganzheitlichen Optimierungsprozesses gesetzt; die Numerik. Hierfür wird eine Methode zur Find-
ung von äquidistanten Approximationen von Pareto-Fronten implementiert und untersucht. Diese
Fronten stellen häufig die gesuchte Lösungsmenge in der Vektoroptimierung dar. Die erarbeiteten
ganzheitlichen Methoden werden zuerst an akademischen Beispielen aufgezeigt und im Weiteren auf
große Strukturproblem angewandt.
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1 | Introduction

This first section depicts the goals the conducted research was proceeding to. This is done by first
providing the key idea and, thus, the core of the motivation for the research work done. The subsequent
section underlines this motivation by giving a brief review on contemporary literature, thereby
highlighting the momentum of this topic. Finally, the goals of this work will be stated and the
structure of the thesis will be outlined.

Contents

1.1. Motivation and scope of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Aims and structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1. Motivation and scope of thesis

It is well-known, that carbon fiber reinforced polymers CFRP bear a huge lightweight potential. An
example can be found in their promising mass specific properties, such as their favorable ratio of
Young‘s modulus in reinforcement direction to density. In addition to that, they present more design
parameters and unseen possibilities in manufacturing, such as to build integrally or functionalize
structures. On the contrary to that, they also bring forth higher designing complexity, due to the
multitude of parameters, which do demand optimal determination. Specifically, an engineer needs
to assign fiber material, matrix material, volume fraction and many more for an unidirectional ply.
Ascending in the length scales, the stacking and orientation of these unidirectional plies need to be
determined as well. As already observable, this marks the challenge: Explicitly, to overlook and
handle all parameters involved in composite design in an optimal fashion, so as to unlock the full
lightweight potential, thereby making the material as competitive to established lightweight materials
as possible. This challenge encompasses not only such sophisticated physical disciplines as structural
mechanics. But moreover, technical ones, where the most appropriate manufacturing technique is to
be chosen and considered, such that the final composite structure can be realized at low or tolerable
effort levels and hence costs.

To address this challenge, a general optimization framework, spanning several relevant disciplines,
is set-up in this thesis. First and foremost, the requirements of structural mechanics are met by forming
the optimization process upon a mechanical basis. This basis is defined by structural continuum
mechanics, being complemented by material models. These material models are defined based on
a decoupled multi-scale homogenization approach. The decoupling is thereby realized by a novel
approach being development by this research work. In addition to the consideration of these briefly
outlined physical aspects, the established optimization process also regards technical aspects as well.
For that matter, an approach deduced from the discipline soft computing, is adopted so as to capture
and thereafter expressing expert knowledge concerning the manufacturing of composites.
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Finally, the scope of this thesis lies on the early design phase, where most designing freedoms are
at disposal for the optimization process and, in that consequence, most of the lightweight potential
can be released.

1.2. State of the art

Composite design is predestinated for the application of optimization for multiple reasons. This is
particularly due to the manifold of parameters inherently being involved in designing composite
structures. Moreover, these parameters such as the orientation of reinforcements do substantially
interact with the composite structure’s realizable stiffness and strength quantities. A challenge being
seldomly addressed, but of paramount importance, is the simultaneous consideration of structural
mechanics and manufacturing aspects. This is of relevance, since manufacturing processes not only
have a strong imprint onto the mechanical properties of the composite material, but also onto the
realizable designs, i.e. design parameter and variable values, and even further onto the associated
manufacturing costs. This clearly request the optimization process to be general enough to account
responses originating from structural mechanics and manufacturing, such that parameters can be
adjusted to strike optimal compromise in-between both goals; i.e. maximal structural efficiency and
minimal manufacturing effort. Beside the necessity of a general profound optimization framework,
there is obviously also the demand for efficient, reliable and robust modeling procedures for capturing
manufacturing aspects at early design phases. The latter is because of the fact, that optimization itself
can deploy its beneficial effects most effectively at the beginning of the designing process, where most
parameters exhibit great designing freedom.

In the past decades, great effort has been made to meet the aforementioned demands by incorpo-
rating technical constraints into structural design optimization, thereby leveraging it towards higher
technical significance. Wang and Costin (1991) optimized a composite wing box structure for which
they considered three different manufacturing constraints via analytic expressions, with which they
essentially bounded the design space of the optimization problem. The three constraints discussed in
their work were: ply orientation percentage (controlling the relative thickness of each ply via upper
and lower design variable limits), maximum drop-off slopes (Lower the delamination tendency at the
considered ply drop-offs by defining maximal allowable slopes) and, finally, the interleaving of plies
(aims to mitigate stiffness jumps and to assure a certain structural integrity by probing for continuing
plies). Sure enough, the significance of the optimization approach has been increased by ensuring that
the optimized designs are closer to a technical reality in terms of manufacturing. This work marks one
starting point for more sophisticated approaches, which for instance enable the consideration of more
complex technical manufacturing considerations, where interactions are regarded as well.

Henderson et al. (1999) optimized a composite stiffened panel while simultaneously considering
composite failure and associated manufacturing effort. In this work, the manufacturing effort has
been derived for a resin film infusion (RFI) with which resin is brought into the dry textile carbon
fiber preform. RFI is regarded as a cost effective process for resin transforming. By considering both,
mass and manufacturing time of the stiffened panel as an objective, Henderson et al. show that both
can have an competitive relationship. These contra-acting objectives did ultimately lead to pareto
frontiers, where pareto-optimal solutions, each representing an optimal compromise, are gathered.
Irisarri et al. (2014) present a state of the art realization of this approach.

Another source of inspiration is the work of Ghiasi et al. (2008), in which a globalized Nelder-Mead
algorithm is applied on a composite bracket in Z-form. Therein, the spring-in of the bracket after
curing, is set to be the manufacturing objective along with structural objectives and constraints, such
as mass, deflection and load factor. Due to the presence of multiple objectives, they had solve a vector
optimization problem. In Ghiasi et al. (2010) the mentioned globalized Nelder-Mead algorithm is
applied on a braided bicycle stem connecting the handlebar with the bicycle’s fork. In this work,

4



1. Introduction

resin transfer molding (RTM) has been used as the vehicle to discuss simultaneous optimization
of structural and manufacturing objectives. The objectives namely were: weight, failure index and
manufacturing time. A hollow braid structure could be realized by an inflatable bladder and the
involved process parameters were considered as well (bladder-assisted RTM process). By varying
the design variables braid diameter and process pressures pareto optimal solutions are found. The
variation of braid fiber orientation, thickness and fiber volume fraction is covered via curve fitting
based on the braid diameter. A major outcome of the work is given by the set of solutions of the
vector optimization, where each is derived by simultaneously considering the structure’s mass, failure
indices and manufacturing time as objectives. In addition, they made it comprehensible, how different
conflicting goals could arise in an optimization problem originating from physical and technical
areas.

Further examples of research on vector optimization simultaneously considering mechanical and
manufacturing aspects can be found with ease. For instance, Nadir et al. (2004) performed shape
optimizations, while considering an abrasive water jet cutting as the manufacturing process and
Park et al. (2004) optimized a composite panel produced via a RTM process incorporating design
variables which directly influence both models. More examples are given by Dimopoulos and Zalzala
(2000), where several problems and their solution are being discussed. Nonetheless, most of the so far
discussed research activities use rather simple analytic expressions for quantifying manufacturing
effort caused by the related manufacturing technique. An attractive approach mitigating this, is
the modeling of qualitative information or, speaking more generally, soft aspects. By doing so,
expert knowledge regarding that manufacturing technique can be made accessible and exploitable for
studying processes that involve many parameters, whose interactions are highly complex or partially
unknown. This is for instance the case for many preforming techniques, such is for braiding. Moreover,
manufacturing models should be able to mimic human capabilities in evaluating complex situations
and making decisions based on provided knowledge and gained experience. This would broaden the
range of application of structural design optimization at least in a practical setting. Therefore, one of
the major goals of this work is to meet this demand for more holistic manufacturing models being
capable to consider known sharp relationships as well as soft aspects based on verbal expertise.

One of the first steps into this direction, has been made by Huber (2010) how studied and
propagated the framework for doing so; the framework of fuzzy logic as a representative of the
discipline soft computing. A similar framework has for instance been used by Iqbal et al. (2007) in
his work, where a knowledge-based system has been determined to study and evaluate performance
measures for milling. Another contribution into the direction of capturing soft aspect is made by Zhou
and Saitou (2015). In this work, a intelligent machine is developed to capture process associated aspects.
The intelligent machine was trained by multiple process simulations. Recently, many publication in
structural design optimization pointing into this direction of enriching the optimization process by
quantifying soft aspects. Two examples underpinning this are given by Yildiz (2013) and Huang et al.
(2015). Both use the soft computing methodology so as to capture qualitative and therefore aspects
being hard to model with classical approaches. Both researcher demonstrate how the optimization
process is being lifted to a higher significance. Singh et al. (2012) present a survey of research papers
pointing into the same direction. Studying this recent progresses reveals, that the significance of the
optimization process is lifted since the soft computing of qualitative aspects made the optimization
models more holistic. But, however, most researcher utilize zero order optimization algorithms and,
hence, may compromise in terms of numerical efficiency.

An introduction into the wide composite field and the manufacturing techniques to produce them
is given by Mazumdar (2002) with his book on composite manufacturing. Schürmann (2005) and Jones
(1999) shall be recommended as basic literature addressing composite designing and the associated
manufacturing aspects.
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1.3. Aims and structure of the thesis

As outlined above, so far, there is no research work–at least known to the author–explicitly addressing
the issue of optimizing composite parts, while simultaneously considering physical and technical
criteria, while, moreover, exploiting gradient-based algorithms in an efficient way. Figure 1.1 provides
an overview on the three columns on which the thesis shall rest on. As can be seen, the key topic,
addressed herein, is the holistic optimization of composite structures. Since optimization tasks are
obtained spanning several disciplines (multidisciplinary) and involving conflicting criteria (multi-
criteria), a profound mathematical framework needs to be set up.

Holistic Optimization
of Composite Structures

Profound mathematical framework for
multidisciplinary and multi-criteria opti-
mization

Structural Technical Material

Cradle for optimization

Analytical sensitivities

Structural problems

Soft computing

Consideration of effort

Provide reasoning

Elaboration advises

Incorporate into opti-
mization model

Multi-scale homoge-
nization

Surrogate modeling

Decoupling of homoge-
nization chain

Analytical gradients

Figure 1.1.: The three columns of the thesis, where a list of key topics being considered for
each is given as well

The columns are defined by structural, technical and material aspects, which jointly form a holistic
optimization framework, herein used for designing composite structures. Furthermore, a list of key
topics as being explicitly discussed within this thesis are given in figure 1.1 underneath each column.
Therefore, it will be discussed how continuum mechanics form the basis of the optimization and,
further, how their can be differentiated analytically with respect to the design variables. Last but
not least, the mechanics of actual structural design problems will be presented and upon which the
holistic optimization process will be set up. Technical aspects definitely represents one of the strongest
column of this thesis, since their consideration via soft computing methodologies will be discussed
elaborately. This will lead to the definition of manufacturing effort models capable of evaluating
the process inherent manufacturing effort for a given design proposal. Moreover, these models and
especially their development will be generalized and expended, such that they are able to provide
reasoning and even return elaboration advises pointing into the direction of optimal improvement.
Of course the incorporation of these models and how they actually enrich the optimization process
will be studied, evaluated and discussed for two different manufacturing techniques: braiding and
prepreg laying. The last column is presented by the development of efficient but yet accurate and
reliable material models. This is herein realized via an approach based on the idea of decoupling
the homogenization chain. This approach will be presented at length and illustrated for the braiding
process, which evidently yields a complex fiber architecture. The key to this decoupling will thereby
given by meta modeling, which equips this approach with unseen advantages such as mapping-free
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implementation, ease of verification, possible hybridization (e.g. numerical and experimental data
points) and many more.

The subsequent chapters 2 and 3 will provide most of the necessary fundamentals. Those two
will be followed by chapter 4, addressing the modeling of soft aspects. Therein, the development
of general soft models and key features of the implemented manufacturing effort models; one for
braiding and the other for prepreg manufacutring, will be discussed. Chapter 5 is devoted to the
definition of a decoupled multi-scale homogenization material model. Therein, the braid specific
fiber architecture and associated meso and micro scales will serve as a vehicle for demonstrating this
approach; yet, it will also become clear, that it is of general validity and applicability. The developed
approaches and models will be utilized to actually solve industry relevant structural design problems
in chapter 7, 8 and 9. By doing so, they are probed for application in a actual technical environment.
Once the significance of the derived approaches and outlined ideas has been underlined, all findings
and their scope of their application are exposed in the last chapter, chapter 10.
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2 | Structural design optimization

Within this chapter, fundamentals regarding optimization will be given. In Baier et al. (1994), Gürdal
and Haftka (1992), Rao (2009) and Vanderplaats (2007) more details about the broad topic of structural
design optimization can be found.

Contents

2.1. General problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Optimality in optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Optimality for single objective optimizations . . . . . . . . . . . . . . . . . . . 10
2.2.2. Shadow prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3. Pareto optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. System equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Sensitivities in optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5. General concepts in structural design optimization . . . . . . . . . . . . . . . . . . . 14

2.5.1. Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2. Gradient-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3. Hybrid algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4. Meta modeling within design optimization . . . . . . . . . . . . . . . . . . . . 18

2.1. General problem statement

In general a optimization problem can be stated as follows;

minimize
x⃗∈χ

fi(xj), i = 1, . . . , nO, j = 1, . . . , nDV

subject to hk(xj) = 0, k = 1, . . . , nEC

and gl(xj) ≤ 0, l = 1, . . . , nIC

with χ = {xj ∈ RnDV ∶ xlj ≤ xj ≤ x
u
j },

where

(2.1)

χ design space,
xj nDV design variables,

fi(xj) nO objective functions,
hk(xj) nEC equality constraint functions,
gl(xj) nIC inequality constraint functions.

This is the general mathematical form of an optimization problem. In case there is more than one
objective to be considered nO > 1, it is also denoted as a vector or multi-obejctive or multi-criteria
optimization problem. On the contrary, problems with one objective function, thus nO = 1, are called
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single objective optimization problems. For the sake of simplicity, the introduction of the optimization
basics first concentrates on those single objective optimization problems. Optimization problems
involving multiple objectives and their solutions are discussed at length in chapter 6.

2.2. Optimality in optimization

2.2.1. Optimality for single objective optimizations

A solution of an optimization problem as posed with equation set (2.1) is called an optimum x⃗opt. It is
hence defined as a vector of design variables, where the objectives are minimal, while still fulfilling
all imposed constraints. In case there are no constraints imposed, i.e. nEC + nIC = 0, the optimization
problem is referred to as an unconstraint optimization problem and moreover any optimal solution–
thus, either local or global–is characterized by ∂f

∂xj
= 0. This optimality criteria however only holds

for unconstraint problems and needs to be augmented for constraint optimization problems–thus
for problems where constraints such as g⃗ are imposed–by the sensitivities of those constraints. This
augmented optimality criteria is given by the Karush-Kuhn-Tucker (KKT) conditions. These conditions
are based on the Lagrangian or also called dual formulation of the original, or in this context, primal
optimization problem (2.1), where L represent the well-known Lagrangian function.

maximize
λ⃗≥0,µ⃗

g(λ⃗, µ⃗)

with g(λ⃗, µ⃗) ∶= inf
x⃗∈χ
L(x⃗, λ⃗, µ⃗)

and L(x⃗, λ⃗, µ⃗) = f(x⃗) + µ⃗h⃗(x⃗) + λ⃗g⃗(x⃗)

(2.2)

The KKT conditions can basically be interpret, as the stationary solution ∂L
∂xj

∣
x′j

= 0 and can be

stated as follows:

Stationary: ∂f
∂xj

∣
x′j
= −∑k µk

∂hk
∂xj

∣
x′j
−∑l λl

∂gl
∂xj

∣
x′j

Primal feasibility: hk(x
′) = 0,∀k

gl(x
′) ≤ 0,∀l

Dual feasibility: λl ≥ 0,∀l
Complementary slackness: λlgl(x

′) = 0,∀l

(2.3)

Any solution x⃗′ needs to fulfill those mentioned KKT conditions, otherwise it can not be called an
optimal solution x⃗opt. At this point, the mathematical nature of the objective and constraint functions
becomes relevant. Since, if these functions are non-convex–causing the optimization problem to be
multi-modal in terms of possible solutions–the KKT is only a necessary condition. Thus it does not
allow for the reverse argumentation, that any solution x⃗′ fulfilling the KKT conditions is per se an
optimal solution x⃗opt of the general optimization problem (2.1). Figure 2.1 illustrates via isolines how
the KKT can be interpreted geometrically.

The design vector at point one can be regarded optimal, thus x⃗′ = x⃗opt, since all KKT conditions
are fulfilled and there is no better solution nearby. However, looking at point three, which is clearly a
better optima due to the lower objective function value, it becomes clear that the optima at point one is
a local optimum, whereas the one at point three is a global optimum. The reason for that can be found
in the non-convexity in both constraint functions g1 and g2. The evaluation of the KKT at the point two
should clearly reveal that x⃗′ ≠ x⃗opt because the objective is decreasing for both design variables x1 and
x2. However, as also can be seen, there is linear combination of ∇f and ∇g2 for λ2 > 0, which in turn
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g2 = 0

∇f

f = c

g1 = 0

x1

x2

∇f

∇f
−∇g2

−∇g2

−∇g1

1
2

Isolines of
objective f
constraints g1,2

∇f

−∇g2

−∇g13

Infeasible
design space

Figure 2.1.: Illustration of the optimality criteria KKT

means the KKT conditions would be fulfilled, even though the design vector is not optimal. The false
identification by the KKT can also be lead back to the non-convexity, wherefore the KKT is regarded
as a necessary but not sufficient condition for optimality for non-convex optimization problems.

2.2.2. Shadow prices

Once the KKT has been evaluated one can abstract more useful information by taking advantage of
the obtained Lagrangian parameters λl and µk. Because linearizing the Lagrangian (2.2) at the optima
reveals that those parameters provide insight into the sensitivity of the objective with respect to the
active constraints (see equation (2.4)). They hence allow, based on the linearizion, an extrapolation
of the reduction in the objective for a certain relaxation of the constraints. Because of this outlined
imprint or shadow of the constraints onto the objective function value, they are are called shadow
prices within the context of optimization. Another visual interpretation would be, that the shadow
prices reveal the hidden unseen potential by loosening restriction limits. More information is given by
Baier et al. (1994) and Vanderplaats (2007).

λl = −
∂f

∂gl
∣
xoptj

(2.4)

For instance, if an active constraint g1 is given by g1 =
r
c − 1, with r being the constraint response

and c its corresponding bound, one can linearize the objective at the optima with respect to the
restricting bound c by

Lin(f(c +∆c)) = f ∣x⃗opt +
∂f
∂c∆c

= f ∣x⃗opt +
∂f
∂g1

∂g1
∂r

∂r
∂c∆c

= f ∣x⃗opt − λ1
1
c∆c.

(2.5)

2.2.3. Pareto optimality

For the case of a vector optimization problem (no > 1)–which would be the case for a simultaneous
minimization of mass and manufacturing effort–multiple optima can be obtained if the objectives
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are conflicting, which is normally the case. Special interest is lying on the so called Pareto optimal or
efficient solutions. These solutions are characterized by the fact that there is no improvement for one
objective without worsening at least one other objective. So, mathematically speaking, any optimal
solution x⃗opt is referred to as being Pareto optimal in case it dominates all other solutions in a sense,
that it is smaller or equal in all objectives and for at least one objective strictly smaller:

fi(x⃗
opt) ≤ fi(x⃗) ∀i = 1, . . . , nO and x⃗ ∈ χ

∃i ∶ fi(x⃗
opt) < fi(x⃗).

(2.6)

Figure 2.2a graphically illustrates this mathematical statement by gathering all Pareto optimal
solutions in a pareto frontier and highlighting them in red. When considering equation (2.6) it
becomes clear, that point one is dominated by point two in the second objective, which is why it is not
considered Pareto optimal. In case the optimization algorithm asks for a single objective optimization,
such as all gradient-based ones do, figure 2.2b illustrates a possibility by condensing the vector to the
norm of eachs objective distance to its single optimal value. The equation set (2.7) gives an example
for such an reduction from the general vector optimization problem (2.1). This class of optimization
problems and the determination of optimality will be discussed at lenght in section 6.1.

f1

f2

Pareto frontier

1

32

(a) Pareto optimality

f1

f2

fopt2

fopt1

d

(b) Norm approach

Figure 2.2.: Pareto optimality and gradient-based vector optimization

minimize
x⃗∈χ

f = d = ∥fi − f
opt
i ∥2, i = 1, . . . , nO,

subject to hk(xj) = 0, k = 1, . . . , nEC

and gl(xj) ≤ 0, l = 1, . . . , nIC

with χ = {xj ∈ RnDV ∶ xbj ≤ xj ≤ x
u
j }, j = 1, . . . , nDV.

(2.7)

2.3. System equations

So far, the perspective towards the optimization problem was purely mathematically based. Thus the
physical or technical nature of objective and constraint has not been discussed yet. However, when
performing optimizations, the nature of these optimization responses becomes as important as the
mathematical basis of the optimization itself. This especially holds for structural design optimization,
since optimization algorithms stringently evaluate the underlying models without any physical
or technical plausibility check as opposed to an engineer, who intuitively checks his designs for
consistency. It is rather up to the optimizer, thus again the engineer, to conduct a plausibility check
afterwards and also verify the models via parametric investigations, thereby ensuring also a strong
physical and technical basis. For that sake, the underlying system equations in the context of structural
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2. Structural design optimization

mechanics will be discussed next. One basic balance law in linear continuum mechanics is given by
the balance of linear momentum, which is also known as Chauchy’s first law of motion:

ρ¨⃗u = ∇ ⋅
¯
σ + ρb⃗, (2.8)

where u⃗ is the vector of displacements and ¨⃗u respectively the vector of accelerations, ρ the density,

¯
σ the stresses and b⃗ the body forces. In statics, ρ¨⃗u is equal to zero. Within this work the FEM will be
used to solve for displacements and stresses over the whole solution domain Ω. The FEM is based on
the weak formulation of (2.8)

∫
Ω
δε⃗T σ⃗ dV = ∫

Ω
δu⃗T b⃗ dV + ∫

Γ
δu⃗T t⃗ dA, (2.9)

with t⃗ being the traction force acting on the boundary Γ of the domain Ω. Please also note that the
stresses and strains are given in Voigt notation, hence σ⃗ = {σxx, σyy, σzz, σyz, σxz, σxy}. The weak form
is commonly first approached by a discretization of the design domain Ω. Further the displacement
field u⃗(e) within one finite element, i.e. Ω(e) is represented by linear functions, the so called shape
functions

¯
N with

u⃗(e) =
¯
N ⃗̃u(e), (2.10)

where ⃗̃u(e) are the nodal displacements acting on the nodes of one finite element e. With the consti-
tutive law σ⃗ =

¯
Cε⃗ and the strain displacement relationship ε⃗ = L⃗u⃗ the discretized stress displacement

relationship becomes

¯
σ =

¯
C

¯
L

¯
N ⃗̃u(e). (2.11)

The linear shape functions can then in tandem with the discretization be used to derive the
following equations

∑
e

[δu⃗(e)
T
{
¯
k(e)ũ(e) − f⃗ (e)}] = 0 (2.12)

with
¯
k(e) = ∫Ω(e) ¯

BT

¯
C

¯
B dV

¯
f (e) = ∫Ω(e) ¯

NT b⃗ dV + ∫Γ(e) ¯
NT t⃗ dA,

which include the local element stiffness matrix
¯
k(e) and local element force vector

¯
f (e). The

assembly A over all elements finally yields the well known equation

¯
KU⃗ = f⃗ (2.13)

with
¯
K = A

¯
k(e)

U⃗ = Au⃗(e)

F⃗ = Af⃗ (e)

Prior to solving equation (2.13) for U⃗ , the Dirichlet boundary conditions are to be imposed. Once,
the displacement field has been computed all secondary quantities such as strains, stresses and so
on will be computed in the post-processing. These quantities can be in nonlinear dependency to the
design variables x⃗ and do consequently lead to nonlinear optimization responses, which is frequently
the case within structural optimization and ultimately leads to a nonlinear optimization problem.
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2.4. Sensitivities in optimization

In structural optimization, the availability of response sensitivities with respect to the design variables
x⃗ drastically enhance the performance of gradient-based optimization algorithms. This especially
holds since the computation of response sensitivities can be carried out efficiently in FEA. To examplify
this, let us consider the response displacement U⃗ , which should be differentiated with respect to any
given design variable x1. Equation (2.14) illustrates three possible cases for the differentiation. The
design sensitivity for the nodal displacement vector with respect to the design variable xi can be
computed via the following three distinct approaches:

∂U⃗

∂xi

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

=
¯
K−1 {

∂f⃗
∂xi

−
∂

¯
K
∂xi
U⃗} analytical gradient

≈
¯
K−1 {

∂f⃗
∂xi

−
∆

¯
K

∆xi
U⃗} semi-analytical gradient

≈ ∆U⃗
∆xi

finite differences

(2.14)

The first case is the so called analytical gradient, which is owing its name to the analytical
differentiation of equation (2.13). As can be seen, the inverse of the stiffness matrix

¯
K−1 is not

modified, wherefore the determination of the sensitivity can be comprehended as simply another load
case with the fictitious force f̃ =

∂f⃗
∂x1

−
∂

¯
K

∂x1
U⃗ . However, there is a drawback in determining ∂

¯
K

∂x1
, since

this gradient needs to implemented in the FE code a priori for all possible design sensitivities. Just to
provide two examples of commercial FE tools, which provide those analytical sensitivities for almost
any design variable and response type, NASTRAN and RADIOSS shall be mentioned. Beside, this
concept of analytical design sensitivities can also be applied in other analysis types as well. So, for
instance, Schroll (2013) did show, that structural responses obtained by a transient nonlinear analysis
(e.g. crash simulations) are derivable analytically. Alternatively, the second case uses finite differences
so as to approximate the stiffness sensitivity, i.e. ∂

¯
K

∂x1
≈

∆
¯
K

∆x1
. This semi-analytical case is attractive

since its computationally efficiency is almost comparable to the one of the analytical approach but
circumvents considerably high implementation efforts. The Abaqus FEM tool strives a reasonable
compromise by utilizing semi-analytical gradients for shape and some sizing variables and analytical
gradients for rather simple sizing variables such as element thickness. The latter case is given by
simply using finite differences. Despite its straightforward implementation, it is quite unattractive
because of the high associated computational efforts, since equation (2.13) basically needs to solved
for each and every design variable.

2.5. General concepts in structural design optimization

Optimization is a powerful tool, since it can facilitate the optimal design even for complex situations,
where a wide range of constraints and design variables are present. Those complex situations often
arise for structural design problems, where multiple load cases need to be considered and at least
as many design parameters need to be determined. However, so as to enable the optimization with
such power that it actually solves for the optimal solution, the choice of the adequate optimization
algorithm is vital. This is why, some basics regarding optimization concepts, thus algorithms and
approaches, will be discussed below.

2.5.1. Evolutionary algorithms

Evolutionary algorithms are based on the idea of computationally mimicking biological evolution.
For that reason, they are also reference to as biology inspired algorithms. These kind of algorithms
are characterized by an metaheuristic or stochastic character, the mere demand for system responses
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2. Structural design optimization

(no sensitivities needed) and their possibility to come to the global optima (global search algorithm).
The latter only holds for certain parameter choices and may results in extensive computations. An
exemplary flow chart of an evolutionary algorithm or more specifically an evolutionary strategy is
given with figure 2.3 and discussed at length in the following.

Start
Read in opti-

mization settings

Compute ini-
tial population

Evaluation of pop-
ulation’s fitness

Stop?

Selection

Elite
Mutation and

Recombination

Set children and elite
as current population

Compute cur-
rent population

Store optimiza-
tion results

End
No

Yes

Figure 2.3.: Flowchart of an exemplary evolutionary strategy

The mechanisms which are adopted from the biological evolution are: reproduction, mutation,
recombination, natural selection and the survival of the fittest. Mutation and recombination steer the
diversity of the population, i.e. the exploration of the design space and natural selection together
with the concept of survival of the fittest can increase the populations quality, i.e. the exploitation in
the vicinity of optima. In most evolutionary algorithms exploration and exploitation are opposed
goals and therefore difficult to satisfy simultaneously. A parameter triggering this, is the so called
selection pressure, which basically is the ratio of elite and population size. In general, algorithms
of this class start with reading in the optimization settings including for instance population size
and number of generations. Thereafter, the design responses of the initial population are computed
(Initial generation). A population is thereby a gathering of several individuals, namely a set of design
vectors, which will be altered over generations, i.e. iterations. Then the fitness of each individual of the
population is evaluated based on its objective value and–if active constraints are present–the degree of
violation of bounds and restrictions. Once the fitness has been evaluated, it is being decided whether
the optimization algorithms stops or not. At this point, it should be mentioned, that mathematically
speaking, evolutionary algorithms do in general not converge in a strong sense. They rather show
small changes in the average fitness value or reach a pre-defined maximum number of generations
(provided by the user). If the stopping criteria are not fulfilled, the algorithms proceeds to the
selection of the fittest individuals, which then are gathered in an elite and/or used for mutation and
recombination. Most frequently, the process of mutation is implemented by a modification of random

15



2. Structural design optimization

entries of the design variable vectors, where the modification is determined based on stochastics (e.g.
Gaussian normal distribution) and influenced by the current generation number. Recombination on
the other hand, can be realized by combining two design vectors by averaging, interchanging entries
or similar approaches. Next, a new generation is formed by combining the individuals from the elite
and the ones obtained by mutation and recombination to a new population and the process basically
starts all over again. This sort of algorithms are regularly straight forward to implement and do
commonly display high robustness with regard to weak discontinuities, noisy design responses and
similar mathematical shortcomings in the underlying system equations. Further advantages are the
possibility to directly consider discrete variables and the direct optimization of vector problems. The
latter beneficial feature can be unlocked by formulating the fitness function based on pareto optimality.
Last but not least, evolutionary algorithms charm because of their intuitive notion, making them
comprehensible.

Despite these advantages, algorithms of this class should be used cautiously, since they can
pose irresolvable problems. For instance, if a satisfactory compromise between exploration and
exploitation is desired, one may ends up with a huge population size over many generations. This
can ultimately result in high computational expenses, which especially holds in case sophisticated
FEAs are involved. Parallelization, to which evolutionary algorithms are generally compliant, can
mitigate this dilemma. However, there are limitations from hardware and licensing side as well. The
situation worsens for problems involving a huge number of design variables, because the number of
individuals needs to grow somewhat exponentially so as to ensure some degree of exploration of the
design space. This major drawback can in last consequence be drawn back to the fact that no gradient
information is being used in most of these algorithms. This is why, subsequently, another class of
optimization algorithms–gradient-based algorithms–are being introduced and discussed. Lastly, it
should also be noted, that there is no mathematically founded convergence or optimality criteria for
the discussed class of biologically inspired algorithms, which can make it difficult to tell whether or
not the optimization has converged and even more so to state optimality.

2.5.2. Gradient-based algorithms

The main idea for gradient-based algorithms is to not only use optimization responses but also to
acquire and utilize their sensitivities. This new dimension enables this class with high computational
efficiency and additionally unlocks new potentials in the interpretation of optima (see KKT condition
(2.3)). However, this also restricts this class of algorithms to be a local search algorithm. Hence,
algorithms from this class have a certain likelihood of converging to local optima for optimization
problems with non-convex optimization responses. Figure 2.4 principally illustrates, how gradient-
based algorithms iteratively solves general optimization problems (see equation (2.1)) for the optimal
solution x⃗opt. In this figure, the black dot marks the starting point, which is also referred to as initial
design vector x⃗(0). The white point highlights the optimal solution x⃗opt and the dashed ones the
design vector x⃗(i) at the current iteration i. From iteration to iteration, the design vector is updated
based on a priorly determined search direction s⃗i and the step length αk. The process of determining
the optimal step length αk is called line search and k the inner iterations. Therefore, the dashed lines
highlight associated convergence paths. In this exemplary figure, two convergence paths are given
(convergence path A and B). These two convergence paths are given–even though their difference is
exaggerated here–to highlight, that there are variations in how the search direction s⃗i is determined
from algorithm to algorithm. For instance, SLP algorithms sequentially linearize the optimization
problem by using gradient information for the determination of s⃗i. The class of SQPs enhance this
approximation by incorporating second order gradient information, leading to sequential quadratic
approximations. With figure 2.5 a flow chart of a typical gradient-based optimization algorithm is
given. The details are discussed next.
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x⃗(i+1)
= x⃗(i) + αks⃗i (2.15)

x⃗
(3)
A

g2 = 0

∇f
f = cg1 = 0

x1

x2

Infeasible
design space
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sB
x⃗(0)

x⃗
(1)
A

x⃗
(2)
A

x⃗
(1)
B

x⃗
(2)
B

Figure 2.4.: Illustration of possible convergence paths

In general the optimization starts by reading in the initial design variables x⃗(0) and initializing the
optimization by loading settings (i.e. convergence tolerances etc.), setting iterators and initializing
variables. Next, the system responses are computed, which are most frequently solved with FE
in structural design optimization. As the name already indicates, the gradients are used, which is
why a sensitivity analysis needs to be conducted. In many FE programs such as NASTRAN and
Abaqus, sensitivities can be computed efficiently (see section 2.4). Even though the analysis of system
responses and their sensitivities only form two process boxes in this flow chart, they together raise
almost all computational effort throughout the optimization process. Once both, the responses and
their sensitivities have been computed the optimization quantities: objective f and the constraints
hk and gl can be formed. Except for the first iteration, this step is followed by a check whether the
line searched has converged. If not, the inner iteration proceeds by updating the step length αk

such that a maximal improvement in terms of minimizing the objective, while all constraints remain
fulfilled. Subsequently the inner iterator k is incremented, as well as the design variable vector as
given with (2.15). Then the process of evaluating system responses, sensitivities and assigning them to
the optimization quantities f , hk and gl is repeated until the line search has converged. Thereafter and
in case the overall optimization did not yet converge, a new search direction s⃗i+1 is computed based
on for instance linear approximations for a SLP or quadratic ones for a SQP. The outer iteration is
closed by an update of the iterator i and the initialization of the line search. After the outer iterations -
which basically are a cascade of inner iterations - end in convergence, the optimization quantities are
prepared for interpretation and stored. This marks the end of this algorithm.

Summing up, advantages of gradient-based algorithms are, that a profound convergence criteria is
available. In addition to that, the gradient information can be used to evaluate optimality based on the
KKT criteria (2.3). Another beneficial aspect is the possibility to further exploit gradient information for
extrapolating the influence of each bound, either on constraints or design variable onto the objective.
This extrapolation is facilitated by the shadow prices (see (2.5) and (2.4)) and supports engineers in
interpreting, making the optimization result plausible and re-designing a given structure. Finally, it
can be concluded, that gradient-based algorithms are in general superior in terms of computationally
efficiency due to fewer function calls. This especially holds for large-scale problems involving a high
number of design variables and if sensitivities are available, which is often the case in structural design
optimization. Minor drawbacks are the need of reformulating vector optimization problems and that
gradient-based algorithms, as a member of the class of local search algorithms, can bring forth local
optima.
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Figure 2.5.: Flowchart of an exemplary gradient-based algorithm

2.5.3. Hybrid algorithms

Another class of algorithms is given by hybrid algorithms. These algorithms combine aspects of both
afore mentioned algorithm classes. This is intuitively plausible, because evolutionary algorithms
are attractive due to their global search capability but do often lack in computational efficiency
and fast convergence in the vicinity of optima. On the opposite side, gradient-based algorithms
are computationally efficient and do show high convergence rates (notably SQP algorithms), but
may convergence to local optima. Hybrid algorithms aim to combine both classes so as to mitigate
each of the mentioned drawbacks. Commonly, evolutionary algorithms are used as a platform into
which gradient-based algorithms are implanted leading to a hybridization. There are basically two
approaches for this hybridization. First of all, one could perform both algorithm classes sequentially.
This can be achieved for instance by starting gradient-based optimizations for the elite of the last
generation. Secondly, one could start gradient-based optimizations at each generation. An example
for this would be the GAME algorithm. GAME has been developed at the institute of lightweight (see
Langer (2005) and Langer et al. (2004)).

2.5.4. Meta modeling within design optimization

In meta modeling, engineers seek for surrogate models approximating the responses of the original
problem within certain limits on the design space as well as on the precision of the approximation.
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Owing to that nature, these models are also referred to as response surface approximations (RSA).
The formation of such RSA models can be divided into two phases. In the first phase, the support
points of the RSA need to be determined. So as to maximize the information gain and thereby most
likely reduce approximation errors the support points need to be distributed throughout the whole
design domain. The process of determining the distribution of the support points is called design
of experiments (DoE). This phase is followed by a phase where the values of the responses of the
original model are computed at the support points and thereafter the computation of the coefficients
of the chosen RSA type. In some more sophisticated approaches, the described phases are carried
out iteratively based on error estimations which enable the enhancement of the DoE and in that
consequence the quality of the approximation overall in terms of number support points needed or
approximation errors. An example of this would be the work of Xu, who extended surrogate modeling
by adding sample points such that expected improvement is being maximized (see Xu (2014)). Next,
both phases are being discussed in brevity.

Design of experiments as the first phase pre-determines the computational effort associated
with the RSA generation, since it defines the support or also called sample points, where the system
equations need to be evaluated. Moreover, it also influences the overall quality of the RSA by its sample
points distribution. For these two reasons, one seeks to strike a compromise in-between exploration
of design space and number of prospective system evaluations, hence, as few as necessary. An
straight forward approach for planing the sampling, thus performing a DoE, is to simply consider all
possible combinations, which is then referred to as full factorial design (FFD). This approach, however,
brings forth a high number of sample points resulting in high computational efforts especially for
high dimensional problems. Contrary to the FFD, the latin hypercube sampling (LHS) method is
independent of the dimension of the design space since it projects points of the design space to an two
dimensional domain. The basic principle of LHS is the generation of sample points based on a grid,
whereby each column or row has only one sample point. This is illustrated in figure 2.6. Summing up,
LHS is superior to FFD because of the fact, that minimal sampling number is independent of the design
space’s dimension (although oversampling is highly advised) and that it generates well-scattered
samples even for high dimensional design spaces.

Figure 2.6.: Latin Hypercube Sampling in a design space of dimension three
(inspired by Xu (2014))

Once the DoE is finished, the actual computation commences by the evaluation of the system
equations for the design responses at the sample points and right thereafter, the computation of the
RSA’s coefficients. RSAs can be distinguished in either regression or interpolation. In case of the
latter, an interpolation, the approximation passes through each sample point’s response value exactly,
whereas a regression yields approximations which fit the data points at a minimal error norm. The use
of a regression can be advantageous, when the underlying model yields noisy responses for which the
regression can then predict a global smoothed trend. An example of a regression is given with formula
(2.16), which represents a polynomial regression of degree two, with β being the RSA’s coefficients
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and r̃k the approximation of the response rk.

r̃k = βk,0 +∑i βk,ixi +∑ij βk,ijxixj with i, j = 1,2, . . . , nDV (2.16)

For such a polynomial regression, the minimum sampling size can be given with the number
of coefficients nβ = 1

2(1 + nDV)(2 + nDV). However, in most cases an oversampling of at least fifty
percent is advised and reasonable to foresee a possible poor DoE or weak scattered sampling points
in a spacious design domain. Opposed to the polynomial regression, Kriging (or Gaussian process)
interpolates the data points at each sampling point. More regarding surrogate modeling and the
different approaches, can be found in Forrester et al. (2008) and in the work of Xu (2014).

Table 2.1.: Illustration of the curse of dimensionality, i.e. exponential increase in minimal
sampling size ∼ nβ over the dimensions nDV for a quadratic regression

Dimensions nDV Minimal sample size nβ

1 3
2 6
3 10
6 28

12 91

Finally, it should be noted, that meta modeling is limited to the well-known curse of dimensionality,
which is illustratively exemplified with numbers in table 2.1 for the case of a polynomial regression of
degree two. An example of a polynomial regression of degree two is given with equation (2.17).

r̃ = β0 + β1x1 + β2x2 + β11x
2
1 + β12x1x2 + β22x

2
2 (2.17)

As can be seen in table 2.1, the number of the minimal number of samples increases exponentially.
This can be observed more or less for any meta modeling approach and can in that consequence
limit the number of design variables to be approximated at a desirable precision. Nevertheless,
RSAs can facilitate numerical efficient optimizations and should be considered in every planing of
an optimization strategy. Moreover, it can be advantageous to use any sort of approximation if the
use of gradient-based algorithms is aspired and integer variables are present, since they are then
continuilized.
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As discussed earlier, understanding the underlying system equation is of vital importance for the
successful and significant optimization of structures. Beyond that, the understanding also helps the
optimizer to interpret the derived optimum. For that sake, this chapter is addressing mechanics
and further aspects of composites, such that the system equations of the subsequently introduced
composite design optimization tasks become transparent to the reader. Basic knowledge regarding
composites is given with Jones (1999) and Schürmann (2005), whereas Mazumdar (2002) focuses on
the composite manufacturing aspects.
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3.1. Unidirectional composite layers

Fiber-reinforced polymers (FRP) are composed of three materials: fibers, polymer and the coating. The
fibers equip the composite with high specific stiffness and strength quantities and this is why their
volume content is usually the greatest of all three materials; commonly around sixty percent. Because
of their predominant influence, FRPs can be categorized according to the fiber length; endless–or
also called continuous–fiber (e.g. lf > 50 mm), long fibers (e.g. lf ≈ 10 mm) and short fibers (e.g. lf ≈
0.5 mm) respectively. However, the afore mentioned high stiffness and strength properties are solely
available in fiber direction (L-direction see fig. 3.1a) and do drop in orthogonal direction (T -direction
see fig. 3.1a). Typical fiber materials are carbon, glass and aramid. In industry, most composite
structures are build with endless fibers due to their superior stiffness and strength contribution to the
composite (Schürmann (2005)).

The second material–or matrix phase–consists of polymer, which is considerably softer and
displays lower strength. It basically has the purpose of supporting the fibers, such that they can
actually withstand shear and compression loading. Moreover, they also protect the fibers from
the environment. The most commonly used polymer type is thermosetting, whereas thermoplastic
polymers are recently uprising to their promising melting characteristics enabling them for instance
with short cycle times in manufacturing. Coating, the last of all three materials, has the purpose to
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Figure 3.1.: Plane of isotropy and coordinate system definition (Schatz (2012))

improve the adhesion in-between the fiber and matrix phase. It also protects the fibers during the
manufacturing process from mechanical damage. Coating is most often neglected in micro mechanical
models due to its very low volume percentage. Figure 3.1b depicts the local (1,2) and respectively the
global coordinate system (x, y) for an UD ply. The constitutive law for an unidirectional FRP layer
can be given in (1,2) coordinate system with

σ⃗ =
¯
Qε⃗, (3.1)

with σ⃗ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

τ12

⎫⎪⎪⎪⎪⎪⎪⎪
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⎢
⎢
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⎥
⎥
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,

ε⃗ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

γ12

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where four independent material parameters describe the transversely isotropic behavior. The
transformation of the stiffness tensor

¯
Q based in local coordinates (1,2) to the stiffness

¯
Q̄ into global

coordinate system (x, y) can be carried out by,

¯
Q̄ =

¯
T

¯
Q

¯
T T , (3.2)

with
¯
T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2θ s2θ −2sθcθ

s2θ c2θ 2sθcθ

sθcθ −sθcθ c2θ − s2θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and sθ ∶= sin(θ),

cθ ∶= cos(θ),

s2θ ∶= sin2(θ),

c2θ ∶= cos2(θ).

The transformation matrix T (θ) is not symmetric since the Voigt notation is being used. Studying
this transformation reveals two relevant characteristics about the mechanics of FRP UD plies. First
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of all, the stiffness drastically decreases–even for small deviations–from the ideal orientation θ = 0○.
This is being illustrated in figure 3.2, which is based on an UD ply derived for a T300 carbon fiber and
a typical epoxy matrix. As can be seen, the stiffness Exx drops to half of the initial value of E11 at
about twelve degrees. Further it should be noted, that at this point even for θ = 0○ the mere presence
of matrix material scales down the promising fiber stiffness. Secondly, the stiffness varies nonlinearly
with respect to θ, e.g. ∼ sin4(θ). This will later affect the optimization in a sense that stresses–which
will be evaluated for the determination of failure or similar responses–will be nonlinear as well. They
may moreover form non-convex constraint or objective functions. This has already been shown in the
PhD thesis of Baier (1978), where multi-modality and its cause, local optima, are discussed amongst
other aspects.
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Figure 3.2.: Stiffness drop for different orientations θ of a typical UD ply

3.2. Mechanics of composites

Next, the actual composite is formed by defining the stacking sequence, thus the staple order, ori-
entation, material and thickness of each unidirectional ply (UD ply). This is illustrated in figure 3.3,
where six plies form a composite, which is at this point not a material any more but rather a structure
already.

z y

x

θ1

h4
h5

h6

h3 = 0
h2h1h0

θ2

θ3

θ4

θ5

θ6

Figure 3.3.: Definition of the coodinate system and quantities for the CLT

To provide some insight into the mechanics of composites, the classical lamiante theory (CLT)
is derived. This theory is based on the Kirchhoff-Love plate theory and are derived based on the
following assumptions:

• Linear elasticity

• Small deflections (first-order theory)
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3. Structural mechanics of composites

• Plane stress state

• Shear rigidity (Bernoulli’s assumption)

• Thin laminate

• Constant laminate thickness

• Perfect bondings (No slip within plies)

With these assumptions, the kinematics of the plate can be described with

ε⃗(z) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

εx(z)
εy(z)
γxy(z)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ε0x
ε0y
γ0
xy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+ z

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

κx
κy
κxy

⎫⎪⎪⎪
⎬
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, (3.3)

with ε0x being the membrane strain in the reference or mid-plane of the composite plate and κ0
x

its curvature. By integrating over the composite’s thickness and using the constitutive law given by
equation (3.2), the line forces nx, ny and nxy can be obtained.

n⃗ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

nx
ny
nxy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=∑
k
∫

hk

hk−1
σ⃗(z)dz =∑

k
∫

hk

hk−1 ¯
Q̄(z){ε⃗0 + κ⃗z}dz. (3.4)

Similarly, the line moments nx, ny and nxy are defined as

m⃗ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

mx

my

mxy

⎫⎪⎪⎪
⎬
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k
∫
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hk−1
σ⃗(z)zdz =∑

k
∫

hk

hk−1 ¯
Q̄(z){ε⃗0z + κ⃗z2

}dz. (3.5)

Those two equations (3.4) and (3.5) can be condensed to the so called ABD matrix as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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⎬
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¯
B

¯
B

¯
D

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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(3.6)

with Aij ∶= ∑k Q̄
k
ij{hk − hk−1}

Bij ∶=
1
2 ∑k Q̄

k
ij{h

2
k − h

2
k−1}

Dij ∶=
1
3 ∑k Q̄

k
ij{h

3
k − h

3
k−1}

This ABD matrix and especially the coupling matrix
¯
B not only forms due to the orthotropy of the

material in each ply, but because of the property change throughout the thickness, i.e.
¯
Q̄(z) ≠ const.

This is why the coupling matrix
¯
B basically couples in-plane forces with out-off-plane deflections

and vice versa. Therefore, these couplings needs to be monitored in most engineering applications to
circumvent undesired modes of deflection. Just to visualize representative coupling modes, such as
the tension-bending coupling, figure 3.4 is given.
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A11 A12 A16 B11 B12 B16
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A66 B66

D11D12D16
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Tension-shear Tension-bending

Tension-twisting

Bending-twisting

Figure 3.4.: Illustrative coupling effects for a general composite plate

Beside the comprehension of possible coupling modes, the ABD matrix chiefly constitutes the
material law for composite plates by linking line forces and moments with strains and curvatures.
Wherefore it also provides insight into the stiffness of a composite plate. Figure 3.5 shows an exemplary
polar plot of an (0/30/ − 30/90)sym laminate based on the UD matrerial properties as used in figrure
3.2, i.e. a T300 carbon fiber and an epoxy matrix. The plot has been created via eLamX 2.2, which is
a license free program developed by the TU Dresden. As can be seen there, the membrane stiffness
A11 varies enormously from over seventy GPa to about forty, thereby marking another drop in FRPs’
material properties along with the loss due to the presence of matrix material and the orthotropy of
fibrous stiffened UD ply.

A11
A12
A66

90○

−45○

45○

0○

Aii[GPa]

45○

−45○

90○
10

30

50

70

Figure 3.5.: Polar plot of A11, A12 and A66 for the (0/30/ − 30/90)sym laminate

Concerning the design optimization of composite structures, the ABD matrix and its mathematical
derivation is involving variables, which are of discrete nature. Hence, they can not be varied con-
tinuously in practice. An example would be the thickness of each ply, which can only take discrete
values in an actual Prepreg lamination process. This is of relevance for the optimization process, since
the presence of discrete variables result in a new and quite challenging problem class: Mixed Integer
Nonlinear Programming (MINLP) problems. Another interesting fact is, that the orientation has a
great lever on the overall stiffness behavior of composite plates, but does not influence the structural
mass at all. For that reason, engineers have to be aware of these zero sensitivities of the design
response mass, when posing the general optimization statement as given with equation set (2.1). This
especially holds, when gradient-based algorithms are chosen. It has also been highlighted earlier,
that the transformation of UD plies brings forth nonlinear and non-convex responses for stresses and
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3. Structural mechanics of composites

others, which needs to be considered as well.

3.3. Failure of composite materials

At the beginning of this section, it was stated that most FRPs consists of three phases. Beside the
influence on stiffness, e.g. the orientation sensitivity, these different phases do also utter complex
failure mechanisms. First and foremost, failure is differentiated between inter and intra lamina failure;
hence, in failure in-between and within FRP plies. The inter lamina failure is characterized by a
debonding of plies and is referred to as delamination. This mode of failure involves stresses which
are directed out-off plane. For that reason, FEA with shell elements or CLT analyses do not provide
any measure, whether or not delamination occurs, because of the mechanical abstraction, i.e. the
assumption of plane stress. In intra lamina failure, the failure originates within a ply. Physically, the
fibrous structure and the presence of fiber and matrix material cause several different modes of failure
such as fiber breakage, fiber buckling or matrix cracks (inter-fiber failure). To evaluate, whether failure
exists or not, there are many different failure criteria such as Tsai-Hill, Hashin and Cuntze, just to
mention a view. They all share the notation of a failure index as a measure based on stress

¯
σ and

strength R⃗ information, as given with the following equation set (3.7).

FI(
¯
σ, R⃗)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

< 1 No failure
= 1 Exactly critical loading
> 1 Failure within failure theory

(3.7)

In this thesis, the failure criteria according to Puck (1996) is detailed and used, because it can
differentiate in distinct failure modes and did also show to perform superior in many cases within
the World-Wide-Failure-Expersie II (see Kaddour and Hinton (2013)). The formulas for computing
the failure index (3.7) are given with (3.8) for fiber failure and with (3.9). As can be seen, the puck
failure criterium distinguishes in-between fiber failure and different modes of inter-fiber failure. These
three modes (Mode A, B, C) occur for different ratios and signs of the fiber transversal stress σ22 and
the shear stress τ12. The information of which inter-fiber mode prevails, discloses how the failure
propagates and how critical it is. For instance, in mode C, a wedge forms, which is pressed out of the
lamina, subsequently probably causing delaminations.

Fiber failure

FIF = 1
e22,(t/c)

∥ε11 +mσFσ22
ν21,F
E11,F

∥
(3.8)

Inter-fiber failure

Mode A: FIIF−A =

√

( τ12R12
)

2
+ (1 − p12,t

R22,t

R12
)

2
( σ22
R22,t

)
2
+ p12,t

σ22
R12

Mode B: FIIF−B = 1
R12

√

τ2
12 (p12,cσ22)

2
+ p12,tσ22

Mode C: FIIF−C = [( τ21
2(1+p22,cR12)

)
2
+ ( σ22

R22,c
)

2
]
R22,c

−σ22

(3.9)

Next, the Puck failure criteria for the earlier mentioned UD ply is depicted in figure 3.6a. One can
see the characteristic discontinuity in the derivative in 1 direction, which originates from the transition
inter-fiber failure to fiber failure and basically looks like cuts. The cut on the lower left of figure 3.6a,
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also reveals the failure surface for the inter-fiber failure, which frankly speaking looks like a potato
with an asymmetry towards compression. This asymmetry is reasonable because the failure modes
transits from mode A over B to C. Further the crack surface and angle for mode C is higher, resulting
in higher stress levels than for mode A. So far, the failure of one ply has been discussed. However,
for a laminate, the failure index needs to be evaluated for each ply individually depending on each
stress state

¯
σ and strength properties R⃗. In figure 3.6b the color coding represents the different plies

which fail according to Puck. The yellow surfaces in this figure represent the inter fiber failure of
the −30○ ply, the red ones of the 0○ and green ones of the 90○ ply respectively. Therefore, one can not
only observe a discontinuity in each ply’s failure body due to failure mode transitions but also on a
laminate scale, where different plies become critical. These discontiuities in the derivatives may also
lead to convergence problems for gradient-based optimization strategies, wherefore they should be
noted and approached. It should also be noted that this only marks the initial failure of the composite
laminate and that the laminate may be loaded even further until fatal failure is reached.

(a) (0) (b) (0/30/ − 30/90)sym

Figure 3.6.: Failure bodies of a UD ply (left) and a laminate (right)

Last but not least, it should also be mentioned, that the failure of composites evolves nonlinearly
over the loading level. This is owned to the fact, that once a ply shows first signs of failure (initial
failure) the stiffness and residual strength is decreased. By further load increase, the failure propagates
through the whole ply and then, thereafter through the entire laminate. During this progressive
failure process, load shifting and crack growth portray the nonlinearity. Progressive failure is herein
not further detailed. Wegmann (2015) performed preliminary investigations. The discussion on
failure of composites with the focus on the numerical determination should be closed by putting
the performance of current failure criteria into context. Hinton and Kaddour conducted the World
Wide Failure Exercise WWFE-II over several years and published their results in Kaddour and Hinton
(2013). The key idea of the WWFE-II was to investigate the performance of the most promising modern
failure criteria. In Kaddour and Hinton (2013) the description of the investigated test cases, detailed
discussions on the theoretical foundation of each failure criteria and grading of each failure criteria
based on quantitative and qualitative performance is given. One key outcome is a ranking based on
the grading (quantitative and qualitative) of each failure criteria. This ranking is given with figure
3.7. Before this figure is studied, one should consider, that all failure criteria for which modifications
in terms of parameter adjustment are marked by an additional B. The ranking is provided for two
reasons. First of all, to underline the performance capabilities of the Puck failure criteria, for which
no modifications and no parametric adjustment has been made. Secondly, to stimulate a certain
sensitivity regarding numerical failure prognosis in the field of composites. It is the case, that the
quality of failure predictions varies drastically from case to case, which is reflected by those rather
moderate grades.

3.4. Manufacturing of composites

Owing to the two composed phases of FRPs, the manufacturing techniques vary considerably from
those of isotropic materials such as aluminum. This is why, there exists a multitude of manufacturing
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Figure 3.7.: Ranking of failures theories taking part in the
WWFE-II (Kaddour and Hinton (2013))

approaches, yielding different fiber architectures (i.e. woven, braided etc.), fiber length (e.g. short fiber
polymers) and mechanical overall properties. Moreover, in composite design, available manufacturing
techniques evince a significant contrast in associated manufacturing effort and comprised costs, which
is mainly due to individual characteristics in realizable production scales, degree of automation,
prices of semi-finished goods, machine costs and many more (Mazumdar (2002)). There are several
possibilities to group manufacturing processes; wet (e.g. prepreg) versus dry (e.g. preform) or by
processed matrix system (thermosetting, thermoplastic or both), just to mention two possibilities.
Figure 3.8 provides a brief overview over the variety of composite manufacturing processes by
providing details for the prepreg technology, resin transfer molding, injection molding, pultrusion
and sheet molding compound. All five manufacturing processes demonstrate strong distinctions in
the core ingredients of composite manufacturing, which namely are: impregnation of fibers, stacking
of plies (lay-up), consolidation and solidification.

In the first step, the impregnation, fibers are basically wetted with resin. This can for instance be
accomplished by wetting fiber mats with brushes and rollers or by pulling fibers through a resin bath.
Contrarily, in prepreg manufacturing, the semi-finished goods are already impregnated–as the name
prepreg already indicates–before they are processed. In resin transfer molding (RTM) processes, the
dry fiber preforms are impregnated via infusion or injection of resin into a mold (one or two-sided
molds). There are several variation possible regarding pressure/vacuum application on either inlet
and/or outlet and variation of the applied temperature on the mold. These variations are necessary
to address sharp distinctions of available resin materials in viscosity and reaction kinetics and to
account different demands on the final structures performance. In this regard, thermoplastics display
a manifold higher viscosity than thermosettings, thereby demanding higher pressure gradients during
the filling process. An example of a thermoplastic manufacturing of a complex structure is given
by Lee (2014), where the focus was also lying on the scalability to mass production. This step is
followed by the lay-up. In prepreg technology, the lay-up is carried out by stacking several plies.
For the RTM process, the lay-up is defined by the preform technology. Therefore, when multi-axial
or unidirectional non-crimp fiber mats are used, the stacking process is similar to the one of the
prepreg technology. Nevertheless, for braided preforms, the lay-up is determined by the complex
braiding process including a pronounced fiber architecture and is, in that consequence, quite opposed.
Consolidation, the subsequent process step, mainly aims towards the solidification of the matrix phase,
which is being discussed in the following. Aside from this, it can further promote drainage of abundant
matrix material (called bleeding), squeeze out of voids and to circumvent dry spots. The latter two
sorts of air traps reduce the stiffness of the composite and especially lower its strength because of
the earlier onset of failure at those regions. This is why consolidation is of vital importance for the
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3. Structural mechanics of composites

manufacturing of high quality parts. The autoclave process marks the ideal process environment
with respect to consolidation, because the composite part is exposed to a high pressure while being
bagged into a vacuum bag. The combination of pressure and vacuum is promoting the escaping of
trapped air and the bleeding out of redundant resin. In the solidification phase, the resin is cured at
certain temperatures and pressure levels. These levels are in most cases determined by the used resin
system. The solidification itself can take seconds for thermoplastics, which are normally solely melted,
whereby they do not undergo any chemical reaction, and can even go up to more than two hours for
certain thermosets. It should be noted that the production rate is related to the solidification time. For
instance, the sheet molding compound (SMC) process is characterized by short solidification times
enabling high achievable production rates and levering low cost parts via high volume production.
This is why, SMC is the leading technology in 2013 annual over-all GFRP production (25% in 2013; see
Witten et al. (2014)).

3.4.1. Injection molding for shooting short fiber composites

The injection molding process is qualitatively illustrated with figure 3.9. As can be seen there, the
molding compound is transported via a screw conveyor into the mold cavity. Alternatively, a hydraulic
plunger can provide the pressure for injecting the molding compound into the cavity. The molding
compound consists of short or long fibers, which typically make up to 20 weight-%.

Cavity

Pressurized mold

Molten
polymer
with short
fibers

Figure 3.9.: The injection molding process

In a typical injection molding process the mold has a temperature of 150 degree Celsius, the
injection takes three seconds and the shot size is about 250 Gram. The shot then remains for twenty-
five seconds in the mold, which is meanwhile clamped with a force of five tons (see Mazumdar (2002)).
The injection molding process is attractive for industrial application because of its short cycling times
and low costs for high volume production. The latter is mainly due to the high degree of automation.
However, the upfront investment costs are high, e.g. tooling costs are hundred times higher than for
a filament winding process. In addition to that the obtainable material properties are poor in light
of stiffness and strength. This is due to the fiber type and their low content in the final composite.
Nevertheless, the manufacturing technique has its benefits and is responsible for almost one tenth of
the CFRP production in 2013 (see Witten et al. (2014)).

3.4.2. Braiding as a preform technology

Braiding is a textile preforming technique; putting forth preforms consisting of two helical fiber
yarns–called braider yarns–for the bi-axial and another longitudinal fiber for the tri-axial braiding
case. On the left side of figure 3.10 the basic braiding process is being illustrated, whereas, on the right
side a detailed view of the braid structure with the characteristic braiding angle ϕ is given.
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Braider yarn

Axial yarn

Braiding angle

Mandrel

Horn gear

ϕ

Figure 3.10.: Braiding and the obtained tri-axial braid

Once the preform is braided it can thereafter be impregnated with resin, consolidated and solidi-
fied in one step. A possibility to do so, is given by the RTM technology, for which, as mentioned earlier,
several variations do exists. The use of RTM technologies in tandem with the highly automatable
braiding process facilitates low production cycle times of composites. These low cycle times with min-
imal hand operation solely translates into low manufacturing costs, in case high volume production
of composite parts amortize high upfront investment costs. This was also highlighted by the work of
Knaier (2015). Further associated drawbacks are the limitation on a certain range of realizable braiding
angles and possibly suboptimal stiffness properties of the obtained composites, which especially holds
in the braiding fiber yarns’ direction. The reduced stiffness quantities can be lead back to the presence
of strong undulations. However, it should be noted, that the interlaminar properties of the derived
composite are superior to those of layered composites because of the interwoven structure. These
drawbacks can–to a certain extend–be alleviated by using different yarn sizes or fiber types for braider
and axial yarn. In addition to this, the obtained preform can be augmented in stiffness and strength
properties by adding UD or multiaxial NCF preform plies. On this mentioned grounds and due to low
preform costs per composite part (in case of a high volume production), braiding is recently gaining
pace.

3.4.3. Prepreg tape laying

The prepreg technology is owing its wide spread success in many industry fields to the fact, that high
mechanical properties can be realized. This fact makes it clear that prepreg materials are most notably
deployed in applications asking for high performance lightweight materials; as is for instance the
case in aerospace. Further, high mechanical properties deduce from high fiber volume contents in
the semi-finished goods, along with the ideal consolidation and solidification, for the case, curing
is put into effect in an autoclave. Semi-finished goods are in this manufacturing technique, pre-
impregnated fibers in the form of weaves, UD or multiaxial plies, tapes or patches. UD plies can be
draped into forms by either hand or machine to realize defined laminate lay-ups. Prepreg tapes are
commonly draped by machines via gantry robot heads or portal machines as illustrated in figure 3.11.
When portal robots or similar machineries are involved, the mold does not necessarily be rotational
symmetric. Prior to the placement of the continuous tapes, they are made sticky by warming them up
(Heating in figure 3.11), so as to ensure a certain adhesion.

Different fiber orientation can be actualized by either automatically cutting the current tape and
recommencing after re-orientating the draper head or by rotating the draper head during the draping
process. The latter is only viable for certain rotation rates and is in inverse dependence on the mold’s
curvature. These restrictions arise, because wrinkles need to be circumvented. On the negative
side, prepreg technologies are critical in terms of storage of the semi-finished goods, the prepregs
itself, because of the often high labor intensive draping, if for instance realized by hand and the long
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Prepreg tape

Draping Heating

Figure 3.11.: The prepreg tape laying

cycling times for the autoclave cure. The first drawback is determined by the most frequently used
thermosetting polymer matrix material, which would start to polymerize, i.e. the chemical reaction
realizing the solidification, if uncooled or stored too long. The latter disadvantage results in high part
costs and marks the bottleneck in terms of number of parts per annum. On the contrary, advantages
of the technology are the high performance products and high designing freedoms for engineers. The
high quality of the obtained composite parts can be traced back to the small fiber misalignments in
production, neglect-able undulations, high volume content of fibers and the almost absence of air
traps. For engineers, prepregs offer a multitude of design parameters which are only slightly restricted.
An example for this would be the orientation of plies or tapes, which can in most cases be varied
almost freely.

3.4.4. Further manufacturing techniques

Beside those mentioned manufacturing techniques, there do exist a great variety. Further examples
would for instance be the filament winding, being frequently used for producing pipelines or the
pultrusion as depicted with figure 3.12. To preserve some compactness of the thesis, the discussion of
those shall be redirected to the work of Mazumdar (2002), Jones (1999) and Schürmann (2005).

Fibers

Impregnation unit

Solidification

Figure 3.12.: Illustration of the pultrusion technology

3.5. Summary of thesis relevant fundamentals

The following items shall provide a summary of thesis relevant composite fundamentals in light of
numerical design optimization.

Great stiffness drop from fiber material properties to final composite
Therefore it is essential to design composite structures in such a way that fibers predominately
carry loads. This can ideally be realized with the use of structural design optimization.

Variety of manufacturing processes and variations
Demand for efficient and intuitive modeling strategies which enable the qualitative consideration
of associated manufacturing effort and their impact on structural mechanics even at early design
phases.
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Strong coupling of manufacturing and mechanics
In composite manufacturing, the manufacturing process itself pre-defines fiber architecture and
many more aspects of the final composite and does thereby have a great impact on achievable
mechanical properties (e.g. undulations in braid fiber direction for the braiding process).

Zero design sensitivities for mass with respect to some variables
Mass is by far the most frequently used objective in design optimization. Yet, when optimizing
composites, the optimizer needs to mind variables such as fiber orientation, since they lead to
zero sensitivities in gradient-based optimization and in consequence may cause convergence
issues.

Non-convex and nonlinear system equations
Non-convexity and nonlinear design responses stemming from UD transformations, thickness
integration, switching of failure modes can lead to multi-modal optimization problems. These
problems can pose issues regarding convergence to the global optima for local optimization
strategies.

Presence of integer variables
When composite structures need to be parametrized, variables which are inherently of discrete
nature can arise. Examples would be the number of plies or fiber type. These variables lead to a
more complex problem class; mixed integer nonlinear programming problems.
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4 | Quantifying manufacturing aspects

Within this chapter, a method for the capturing of topic-specific verbal knowledge regarding man-
ufacturing effort will be presented. First, an overview on general concepts for the integration of
manufacturing aspects is given. This is followed by an introduction into the soft computing method-
ology. At last, two manufacturing effort models will be developed, discussed and compared in
detail.

“In general, complexity and precision bear an inverse relation to one another in the sense
that, as the complexity of a problem increases, the possibility of analyzing it in precise
terms diminishes. [...] From this point of view, the capacity of a human brain to manipulate
fuzzy concepts and non-quantitative sensory inputs may well be one of its most important
assets. Thus, ’fuzzy thinking’ may not be deplorable, after all, if it makes possible the
solution of problems which are much too complex for precise analysis.”

Lotfi Zadeh (1921 – present)
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4.1. Concepts for considering manufacturing aspects

In general, one can distinguish between two categories of possibilities for integrating manufacturing
aspects into the optimization process, namely: explicit and implicit modeling. For each category, there
are classes of approaches, such as the direct simulation and the simplified analytics for the explicit
category and soft computing for the implicit respectively. This is depicted in figure 4.1.

The direct simulation or coupling approach is the by far most intuitive approach, since one sim-
ply couples process and structural simulations. In practice, there exists a wide variety of coupling
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4. Quantifying manufacturing aspects

approaches. One approach would be the sequential evaluation of process responses and structural
responses, where a subset of the process simulation’s responses are passed as inputs to the structural
simulation. The direct passing of available and detailed information–albeit dependent on the made ab-
stractions and modeling degree of the process simulation–leverages the design optimization to a great
degree of generality. This is mainly because most relevant manufacturing aspects are being considered
directly. However, this high degree of generality comes in tandem with high numerical expenses,
which are composed of computational as well as model building expenses. The latter is especially
limiting, when considering the fact, that the process simulation needs to be fully parametrized and,
moreover, an interface in-between process and structural simulations needs to be developed, so as to
facilitate a coupled evaluation, where parameters and results are mutually exchanged. This coupling
approach for considering manufacturing aspects can advantageously be utilized for the optimization
of short fiber reinforced parts produced via injection molding. The process simulation in this context
is a fluid simulation, which will not only provides information on the resin flow including void and
weld line formations, but also give essential insight into the distribution and alignment of the short
fibers. This fiber distribution is influenced by the part’s geometry–or also called cavity in the context
of injection molding–and process parameters such as gate location, injection pressure et cetera and
will therefore have a crucial effect upon structural performance of the short fiber composite part by
determining its stiffness and strength. Swoboda (2014) has first set up the frame for coupling and
controlling both simulations. It did actually need another two works, Stadler (2015) and Müller (2015),
so as to actually perform a structural design optimization on fully coupled structural and process
simulations. Despite these development expenses, the optimizations themselves could be performed
quite satisfactory in terms of computational effort and the significance of the optima they yielded. The
latter especially holds, since the whole imprint of the manufacturing via the fiber orientation, weld
and melt line information was processes onto stiffness and strength behavior on the structural level.

Integrating Manufacturing
Aspects into the

Optimization Process

Explicit

Direct Simulation Simlified Analytics

Implicit

Soft Computing

Couple process and
structural simulations

Issues:

Availability of fully
parametrized process

simulation models at
early design phase,
high computational
effort and computation

times

Advantages:

Detailed depiction of

the manufacturing
process

Express characteristics
in formulas and define
sharp restrictions and
bounds

Issues:

Limited due to nec-
essary degree of ab-
straction, may not be
realizable for complex

manufacturing techniques

Advantages:

No need for complex

process simulations,

numericall efficient

Capture existing verbal
knowledge through
soft computing

Issues:

Physical meaning of
the model’s response
values is vague due to

inherently qualitative
nature

Advantages:

Straight forward to
form model’s basis and

to implement in opti-
mization, numerically
efficient

Figure 4.1.: Cathegories for modeling manufacturing aspects such that
they can be introduced into the optimization process
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4. Quantifying manufacturing aspects

Alternatively, one could use the second approach, which is the simplified analytics approach aim-
ing to directly model the essential characteristics of the underlying manufacturing process via highly
abstracted analytics. In this context, direct modeling is hence to be understood as a mathematically
modeling with the use of analytical expressions. As not every physical and technical aspect of a given
manufacturing process can analytically be formalized with ease, one needs to compromise on the
level of detail and the complexity of captured interactions. Further, the analytical expressions need
to be phrased such that they can be incorporated as constraints and bounds into the optimization
process. Nevertheless, the advantage of having analytical system equations for the process responses
empowers this approach with numerically efficiency and thereby places this approach in a more
favorable light. Two examples of design optimizations conducted involving this approach are given
by the chopper optimization performed by Schwarz (2013), Weinzierl (2014) and Nagarajan (2015) and
the optimal design of a TU-Fast racer’s monocoque by Kastner (2014) and Dolansky (2014). In all these
research works, the rather straight forward consideration of manufacturing aspects enabled a numeri-
cally efficient optimization process. Lastly, soft computing representing an implicit approach is, as all
priorly mentioned approaches, able to pass crucial information adhering to the manufacturing process.
But, however, as the implicit already indicates, this approach models the manufacturing process in an
indirect way, by actually capturing verbal and thus inherently qualitative expert knowledge. Soft com-
puting, as it is compliant to uncertainty and fuzziness in values and their dependencies, can be used to
form a model established on a expert knowledge. It is the qualitative nature of this verbal knowledge
base used as a root for the later derived models, why soft computing methods are used instead of
conventional methods. This is opposed to the finite element modeling in structural mechanics, where
hard numbers and formulas form the basis. It is characteristic to this sort of approaches, that they are
rather straight forward to implement. This is because of their intuitive and human-like evaluation, by
processing qualitative information defined by the afore assessed verbal knowledge. Moreover, models
build by taking advantage of soft computing methodologies are numerically efficient even in case the
underlying physics are complex and challenging to capture with conventional approaches. Last but
not least, the foundation on expert knowledge in combination with an ease of implementation enable
a model development at early product development phases along with low expenses, i.e. no extra
experiments for material characterization nor extra licensing costs for new software tools.

Summing up, the approach of implicit modeling bridges the advantages of both, the coupling
and the direct modeling approach. This is because of its ability to capture optimization relevant
process aspects by allowing a certain degree of complexity, while still being numerically efficient
and displaying ease of implementation. Figure 4.1 summarizes the discussion lead in a single graph.
In this work the latter approach of modeling the associated manufacturing effort of a given process
implicitly through soft computing of verbal expert knowledge will be developed, displayed for two
manufacturing techniques and critically discussed. The theoretical basis will be given next, which is
followed by two tangible manufacturing effort models: one for the braiding technique and the other
for Prepreg lamination process.

4.2. Soft computing as a tool for creating effort models

This chapter is addressing the challenge of creating a parametrized model capable of evaluating the
level of effort linked to a manufacturing technique. Hence, the theoretical background for generating
manufacturing effort models will be given first. Thereafter, a general outline on how a manufacturing
effort model is actually developed will be given. This chapter will then be framed by the discussion and
presentation of two manufacturing effort models: one for braiding and one for prepreg technology.
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4.2.1. Theory and practice of knowledge-based systems

A knowledge-based system is characterized by its specific architecture and its foundation on a
knowledge base, also called knowledge domain. The system processes information, interpolates and
reasons about quantitative inputs by evaluating information based on the provided knowledge base.
It can hence also be defined as a system, which attempts to emulate human capabilities in analyzing
and solving complex problems, by decision making and reasoning based on afore assessed knowledge
(Rosenman et al. (1986)). Since a given knowledge-based system is not able to extrapolate knowledge
by its own, the boundaries of this knowledge domain describe the limits of the solving competence
of a given knowledge-based system, as mentioned by Shortliffe and Buchanan (1975). The science
studying how to derive such a knowledge domain is referred to as knowledge engineering. Figure 4.2
depicts the general architecture of a knowledge-based system.

Design
Optimization
Expert or Program

Knowledge
Engineer

Interface
Inference

Engine
Knowledge

Base

Manufacturing Experts

Rule-Based Knowledge SystemAdvice

Query

Figure 4.2.: Architecture of a knowledge-based system including interface to
optimization program and manufacturing experts

As illustrated, a general knowledge-based system consists of an interface, inference engine and as
aforementioned the knowledge base (Russell and Norvig (2009)). The knowledge base is derived via
knowledge engineers from expert knowledge of one or more specialist in the desired field or fields
(Miles and Moore (2012)). With the help of the inference engine, the knowledge-based system is able
to make evaluations and decisions based on its knowledge base. Nguyen and Sugeno (2012) show
how this inference engine can be realized via fuzzy logic. The interface module then basically links
the knowledge-based system to the design optimization expert or program demanding expertise by
passing inputs and outputs from one to the other. For more insight into knowledge-based systems
and their architecture consult Hayes-Roth et al. (1984) and into weak and strong artificial intelligence
see Russell and Norvig (2009) and Luger (2004).

Summing up, the most relevant features of knowledge-based systems are:

• Specialized in purposed science disciplines (knowledge domain),

• Interpolate knowledge based on implemented knowledge domain,

• Provides rationale about decisions made.

Looking at the history of the field of artificial intelligence, knowledge-based systems can be
regarded to be the first representatives. This is mainly because they were first to be successful
implemented and applied in many disciplines, albeit they solely exhibit so-called weak artificial
intelligence (Luger (2004)). They are categorized as weak artificial intelligence, because they lack
many human capabilities like sentience, self-consciousness, self-awareness et cetera, which are for
instance needed for creative and innovative solution finding. The applications of knowledge-based
systems range from studying hypothesis about the structure of molecules (DENDRAL by Lindsay
et al. (1993)) over medical diagnosis of severe infections (MYCIN by Shortliffe and Buchanan (1975))
to geological appraisal of sites for commercial development and planty more. One of the most
renowned knowledge-based system is MYCIN, developed by Eduard Shortliffe during his Ph.D. at
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the Stanford University. This knowledge-based system–or in this specific case the expert system–
mimics doctors of medicine in detecting bacterial infections, e.g. bacteremia, meningitis et cetera, and
assigning the most appropriate drug treatment. MYCIN is further able to rank appropriate treatments,
provide a confidence factor and reason about decisions made. Medical treatment proposals included
a recommendation of antibiotics with their dose rates in dependency on the patient’s infection type
and body weight. The knowledge base has been formed by roughly six hundred rules, for which,
implementing took about five years. Remarkably, the final program was able to reach up to 65 percent
of correct answers and was superior to five medical specialist from the Stanford medical faculty, whose
ratings range from 42.5 to 62.5 percent as discussed by Yu et al. (1979). However, as it is a common
drawback of knowledge-based systems, the MYCIN is highly specialized on bacterial infections, but
has no “common-sense”, which is why it could make mistakes being obvious for doctors. Additional
problems linked to the MYCIN project are ethical and legal issues in case of a wrong diagnosis, the
need for a person interacting with MYCIN and the computational effort at that time. More practical
applications of knowledge-based systems originated between 1995 and 2004 can be found in Liao
(2004).

4.2.2. Soft computing

Up to this point, the general definition and capability of a knowledge-based system has been outlined;
yet, the question on how the knowledge base, as depicted in figure 4.2, can actually be formed and
be implemented has not been answered. In contrast to conventional programming, soft computing
methods are not founded on an analytical or numerical representation of the underlying physics, but
instead on qualitative information. Owing to this fact, one needs to seek for methods being compliant
to imprecision, uncertainty and partial truth. Hence, methods coping with fuzzy numbers and/or
relationships. One class fulfilling these requirements and in that sense, similarly working to a human
brain, is formed by soft computing methods (see Zadeh (1994) and Hajela (2002)), where the soft
already indicates, that instead of being based on conventional sharp or "hard" analytics and numerics
it processes information in a "soft" manner as we humans do as well. Hajela (2002) gives an overview
on soft computing methods, while also including viability in his discussions.

Most common representatives of soft computing methods are:

• Neural networks

• Fuzzy logic

• Evolutionary computation or search

• Probabilistic approaches, e.g. Bayesian networks

• Support vector machines

It will be the fuzzy logic founded by Zadeh (1965), which will be used as the soft computing
method to form the manufacturing effort model in this work. Neural networks, as comprehensively
discussed in Eberhart (2014), would have been an attractive alternative. For that reason they have
been investigated and tested for modeling manufacturing effort as well. However, as it did turn
out, these neural computing methods require extensive acquisition of information, so as to ensure
a sufficiently large training set and ultimately for asuring a certain approximation quality. Due to
the aim of being applicable at early design phases, the number of interviews or expert talks for the
acquisition of the manufacturing effort’s knowledge domain, shall be restricted to a minimum. This is
obviously in conflict with the demand for huge training sets. Bayesian networks as used in MYCIN
could be excluded for similar reasons. Evolutionary search approaches have been excluded, because
the choice of optimization algorithm shall not be dictated or limited by the manufacturing effort
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model. Moreover, the manufacturing effort model is also foreseen to not only be applied within an
optimization framework, but also in the analysis or even design of structures.

As a sidemark, another dazzling application of the fuzzy logic arithmetic is to grasp uncertainty
and thereby leveraging optimization schemes to a higher level of significance is shown and discussed
by Wehrle (2015). In this work, the consideration of fuzziness increased the robustness of design
optima concerning load, geometry and material variances, while still designing light weight. In
a wider sense, the approach shown in the subsequent sections also addresses uncertainty brought
forward by the qualitative nature of verbal expert knowledge.

4.2.3. Building a manufacturing effort model

So far, general information regarding knowledge engineering and soft computing have been given.
Now, both disciplines will combined such they can be utilized to form a manufacturing effort model
(MEM). The term MEM shall henceforth refer to a model capable of capturing verbal expert knowledge
concerning the associated level of effort for a manufacturing technique in light. Subsequently, two
MEM will be formed, one for braiding and the other addressing effort originating from the prepreg
laying process. The process of developing such a MEM is a balancing act on two demanding levels: the
knowledge engineering and soft computing level. This generalization has been elaborated after having
developed two distinct knowledge-based systems and applying them in computing manufacturing
effort within an optimization frame. The latter mentioned discipline, the soft computing, is addressing
the difficulty of emulating and handling qualitative information, which is described by a knowledge
base. Whereas the first involves the challenge of acquiring knowledge by enquiring knowledge and
experience of domain-specific experts and thereafter translating it into a well-structured knowledge
base of general nature. As can be observed, one link between both levels is the knowledge base, over
which they mutually express and exchange information. With figure 4.3 a sketch of these two levels is
given. This figure will support and guide the following description of the general process of how to
build a manufacturing effort model.

Level: Knowledge engineering

First, the knowledge base needs to be formed by querying verbal expert knowledge. This demand
of enquiring and assessing verbal information is the core of the discipline knowledge engineering,
which also marks the first level. This discipline is designated to the coping and formulation of
knowledge, such that it can be used in rule-based systems in a manner, that complex problems
demanding a high level of human expertise can be solved with ease. Hence, it is an intermediate step
towards the final knowledge-based system by defining its basis; the knowledge base. In that sense,
knowledge engineering can–in analogy to the FEA, where the integration of isoparametric elements
and the assembly of those lead to the final system equations as given with the equation set (2.13)–be
understood as a pre-processing step. As shown in figure 4.3 with Sources of information, the first step is
marked by the gathering of basic knowledge from different sources of information. Possible sources
thereby are: literature, data bases, norms or even some preliminary simulations. This gathering shall
be understood as a first inspection of the knowledge domain and purely aims to get in touch with
the domain-specific terminology and peculiarities. This step is actually of paramount importance for
two reasons. First and foremost, the knowledge engineers needs to get familiar with the involved
vocabulary, since otherwise the quality of the knowledge base will suffer from incompleteness or
inconsistency caused by communication problems. Further the knowledge engineer is per se not
familiar with the knowledge he is intending to enquire, but yet has to appear competent enough for
being taken seriously. Evidently, this especially holds if the knowledge engineer has to consult experts
from outside of his radius of renownedness or even outside of this own institution. For that reason,
prior to the first expert dialog, the vocabulary associated with the braiding manufacturing technique,
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e.g. braiding angle, axial yarn width, bobbins et cetera, have been learned and comprehended via a
brief literature review and sight of lecture notes, to provide an example.
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Figure 4.3.: Illustration of engineering knowledge and soft computing
level involved in building a manufacturing effort model

Once, the knowledge engineer is familiar enough to phrase the meaningful and relevant questions,
a questionnaire as a basis for the subsequent expert interviews shall be set up next ( item Questionnaire
in figure 4.3). This questionnaire is intended to support the knowledge engineer in conducting the
interview unbrokenly and fluently. It further needs to be organized in such a way, that it facilitates a
simple, but comprehensive recording, such that the expert interview can be conducted efficiently. This
is important since most contemplable experts have little time. Most importantly, the questionnaire
shall not feature or forward any bias. Figure 4.4 gives an example, of how questions have been
posed. Note, that the lines in Example 1 and the cross in Example 2 were interactively editable by the
manufacturing expert in the electronic version of the questionnaire, e.g. the cross was movable by
clicking on it. Therefore, it could be answered even without meeting in person. Nonetheless, it is highly
advisable to use the questionnaire as a conversation guidance for the knowledge engineer, allowing
for dynamics in terms of rephrasing questions or going into interesting aspects, as they can evolve
during the conversation. Speaking of which, the interview itself most probably leads to complete
new aspects, change perspectives or even bring forth unnoticed facets of the knowledge domain
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for the knowledge engineer. This can be made clear, by considering, that the knowledge engineer
is most commonly outside the experts subject area. Wherefore, the development of questionnaires
and the the subsequently conducted interviews shall be understood as an iterative process. This is
insinuated by the dashed Review arrow in figure 4.3. Over these iterations, the knowledge engineer
gains more and more insight into the topic and is therefore able to particularize his questions from
iteration to iteration. Ultimately, this leads to an evolvement from open to closed questions, where
open questions do not ask for one specific answer, but closed do. Moreover, in case of closed questions
the knowledge engineer has some idea of how the expert could answer, e.g. within certain bounds,
whereas he explores new areas of the knowledge domain with open ones. In figure 4.4, Example 1
represents an open example, since it could be one or multiple parameters given as an answer and,
moreover, the knowledge engineer may probes for the unexpected. Opposed to that, Example 2 can be
regarded as a closed one, due to the specific query about the minimal ratio R

D within given bounds. The
latter is further pointing towards another relevant aspect when developing a questionnaire; namely
numbers. It is highly recommended to abandon absolute numbers, at least wherever possible. By
doing so, the level of generality of the later deduced knowledge base is elevated. In addition to that,
experts working in different fields of application–but yet with the same field of expertise–do not face
difficulties answering questions, because otherwise, if numbers are involved, they are reasonable for
one field of application and may be totally off for others.

Example 1: Which parameters or parameter constillation effect the braid quality?

Example 2: What is the limit of curvature radius R in depence on the structure’s

1:1 1:101:5

diameter D?

Minimal ratio R
D is:

ϕ1

ϕ2

R

RD

Figure 4.4.: Two examples taken from the developed questionnaire sheet:
open (Example 1) and closed (Example 2) question

With figure 4.5, an extract of an interview record is given. The interview took place on the
4th of October 2014. For making it more readable, this extract, including the writings, have been
vectorized via the image tool Inkscape, wherefore the handwriting has slightly been altered by doing so.
Nonetheless, this figure marks the transition from conducting interviews towards the definition of a
knowledge base. This knowledge base bridges the knowledge acquisition process (Level: Knowledge
engineering in figure 4.3) with the program-wise realization, where upon this knowledge base the
final implemented inference engine rests. This will then enable the reasoning about certain given
inputs (Level: Soft computing in figure 4.3). Hence, the knowledge base will actually be implemented
as it is, by exploiting soft computing methods; herein, by defining a so called fuzzy inference system
with the use of the fuzzy logic arithmetic. For that reason, the more thoroughly the interviews are
post-processesed, and, in further consequence, the more detailed the knowledge base is being defined,
the more straightforward and intuitively the implementation can be carried out. At this transition
stage, there is a latent risk originating from the knowledge engineering in misinterpreting or biasing
the definition of the knowledge base. So as to foresee this risk, the documentation of the interview
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Example 3: Give a reasonable range for the yarn width of a standard 12k CFRP roving!

1.0 3.02.0
Minimal yarn with [mm]:

Please note: Choose such that no braid opening nor over-compacting occurs.

3.0 5.04.0
Maximal yarn with [mm]:

Figure 4.5.: Extract of an expert interview conducted on the 4th of October 2014

shall be as detailed and precise as possible. Notes and other recordings may already be close to the
diction used in formulating the knowledge base. In case of the example given with figure 4.5, the
knowledge engineer annotates fuzziness expressed by the expert in a form being as close as possible
to the later used membership functions as a part of the fuzzy logic arithmetic. This is why, this section
of the documented interview can be translated with ease, which can be comprehend with figure 4.6,
where the similarity becomes obvious.

Translates to

Degree of membership to perfect yarn width
100 %

0 %
yarn width [mm]1 2 3 4 5

If ϕ = 45○ and
R
D small, then: Verbal imprecision

or uncertainty

Figure 4.6.: Transition from interview notes towards the final knowledge base

Some details are already anticipated with figure 4.6. So, for instance, it already depicts a mem-
bership function, which basically defines the degree of membership of numerical values to a fuzzy
number set. By doing so, it conceptualizes one key aspect of the fuzzy logic, where fuzzy number sets
are defined and worked with, rather than sharp single numbers. These fuzzy number sets are then
compliant to verbal imprecision and/or uncertainty by allowing a vague degree of membership for
a certain range of numbers as discussed by Zadeh (1965). In figure 4.6 these ranges are highlighted
in marine blue. As a final remark on the interviews, the iterative dialogs in-between the knowledge
engineer as an analyst and the expert as the specialist in the knowledge domain of interest, shall
obey a open policy, where any bias is kept out, any question can be posed and, most importantly,
relevant aspects are not only verbally conceptualized, but also well recorded. This includes remarks
on the level of confidence in the discussed numbers and relations, their range of uncertainty et cetera.

45



4. Quantifying manufacturing aspects

Carefully following these points, will help to effectively identify essential parameters and making
their interrelations explicit, with a minimal number of interviews needed.

Level: Soft computing

The translation of the priorly acquired expert knowledge into an inference engine, capable of making
evaluations, reasoning about made decisions and providing hints for optimal parameter improvements
is based on the afore defined knowledge base. This translation and the involved soft computing
methods will be discussed in the following. The arithmetic used to form such an inference engine
(as illustrated in figure 4.2) will be the fuzzy logic. Here, the author desists from discussing the
fuzzy arithmetic at great detail. For more insight into the basics see Huber (2010) and Wehrle (2015).
Instead, the features explicitly utilized to model manufacturing effort and the extensions, made by
this thesis, will be discussed in the following. Fuzzy inference system (FIS) will henceforth refer to the
inference engine realized with the help of the fuzzy logic arithmetic. With figure 4.7 a general form of
a Mamdani fuzzy inference system is given as introduced by Mamdani and Assilian (1975). µjxi therein
refers to a membership function, defining the fuzzy number set associated with rule j and the input
variable xi. Coming from bottom left, the crisp input values of xi are first fuzzified, i.e. translated
to a fuzzy number set (antecedent - black horizontal lines over the input variables). Thereafter, their
antecedent is evaluated rule-wise such that the rule output membership function µjr can be defined
(implication - red fill of output fuzzy membership functions). All rule output membership functions
µjr are cumulated into the aggregated output function µr (aggregation - green fill of final output fuzzy
membership function). Finally, a crisp response r as one output of the Mamdani FIS is computed
(defuzzification - black dot in green fill). This process is discussed at length in section 4.3.1.

Rule j:

µjx1

X1

µjx2

X2

µjr

R

Implication †

‡ Max rule used: µr = max{µjr}

† Min rule used: µjr = min{µjxi
}

Rule j + 1:

µj+1
x1

X1

µj+1
x2

X2

µj+1
r

R

µr

R
r

Aggregation ‡

x1 x2

Figure 4.7.: General definition of a Mamdani fuzzy inference system

The implication can either represent an AND or OR rule. In figure 4.7 the implication is illustrated
via a minimum rule, whereas a maximum rule is used to aggregate. Thus the implication here
represents an OR rule. Further rule definitions are possible, yet, only one alternative is frequently
used as well; the product rule for implication and summation rule for the aggregation respectively.
Defuzzification is most commonly conducted by computing the center of gravity of the aggregated
membership function µr as given with the following equation:
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rCoG =
∫R µrrdr

∫R µrdr
(4.1)

In this thesis, an extension to the Mamdani FIS will be made, by not only using the direct output
of such a Mamdani fuzzy inference system, but also the weights and circumstances which did lead to
that specific outcome. Hence, the arguments which mainly influence the implication or aggregation
process are fetched as well. This can be realized by explicitly asking for argument values causing a
minimal or respectively maximal rule output. But before coming to this, the involved mathematics for
finding an argument causing a function to be minimal will be defined by

xmin
∶= arg min

x
f(x) = {x′∣f(x′) = min

x
f(x)}, (4.2)

with f being a given function and xmin the argument, where f is minimal. Translating this for the
aggregation and implication rule leads to the following equations (4.3) and (4.4), where jActive indicates
the active rule during aggregation and iActive the indices of the active input variable associated with
the active rule in the implication.

jActive ∶= arg max
j

{µjr} (4.3)

iActive ∶= arg min
i

{µjActive
xi } (4.4)

For rules different to the ones discussed here, the idea is still transferable, even though, the criteria
for identifying the active–or most contributing rule or input variable–may be changed. To further
illuminating this idea, first the actual manufacturing effort models will be derived and discussed in
the following two sections. Comparisons and examples how these general statements are actually
implemented will be made and by doing so, the idea will become more clear. So for instance, in section
4.3.1 this process will be demonstrated in detail.

4.2.4. Validating and verifying manufacturing effort models

Once, the knowledge base has been translated into rules and is being implemented in a fuzzy inference
system, the knowledge engineer needs to probe the derived system with the help of test queries. These
test queries may already been acquired during the interviewing phase, but sure must not been used
for defining the knowledge base. In case these test queries reveal inconsistencies, wrong estimates
or provide wrong reasoning, a revisal needs to be initiated. This revisal then leads to a re-entering
into the loop of updating the questionnaire, re-conducting interviews and re-defining or adding rules
in the knowledge base until a certain level of validity is reached. A general validation process, as
common in software development or other disciplines, is hard to realize, since it would also imply,
that the knowledge engineer needs to set-up that many test queries that all implemented relations and
possible interactions are probed. However, this is not viable within this thesis for two reasons. First,
the soft computing approach is that mighty, since it evolves human-like capabilities in interpolating
or inferring knowledge within a topic-specific field. By doing so, the final knowledge-based system
is thus cable of evaluating information, which has not explicitly been implemented by the software
engineer, but is covered by the formulation of the knowledge base overall. Moreover, the knowledge
engineer would rather implement all of these rules, in case he would be able to make all interactions
and possible variations explicit, instead of just using it for testing. Secondly and ultimately, this would
also result in an unrealistically high number of expert interviews hindering an efficient usage in the
early design phase.
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4.3. Developed manufacturing effort models

In this section, two manufacturing effort models (braiding and prepreg laying) will be presented.
Huber (2010) presented a FIS capturing soft aspects of another production technique and should be
mentioned as an additional reference and source of inspiration here.

Optimization process

Data
interface

x⃗0

y⃗

Start

x⃗opt

r⃗opt

design
Optimization

algorithm

Optimization
models

Effort
model

Structural
model

Optimal
design

Material
model

ρ¨⃗u = ∇ ⋅ σ(
¯
C,

¯
ε) + ρb⃗

¯
C = ψ(ϕ, b, nf , ...)

(x⃗, y⃗)↦ (e,R,A)

Figure 4.8.: The optimization process including the interface to the optimization models

Figure 4.8 depicts, how each effort model can be incorporated into the general optimization
process. This figure has been inspired by Baier et al. (1994), where the term optimization process
system have been introduced already. In this figure, x⃗0 represents the starting vector and y⃗ the vector
of parameters. Both are passed to the data interface provided by EOS. EOS is an Environment for
optimization and simulation developed by da Rocha-Schmidt and the author, both working at the
Institute of Lightweight Structures. The optimization algorithms and alike modules are imported
from the python package pyOpt (Perez et al. (2012)), which represents a gathering of up-to-date
optimization algorithms. The optimization as depicted in figure 4.8, then updates the design variable
vector x⃗ until convergence has been reached and the optimal design can be outputted in form of an
optimal design variable vector x⃗opt and the associated design responses at the optima r⃗opt. For each
determination of the objective functions f⃗ and the constraint vector g⃗, both optimization models need
to be evaluated. On right hand side, the structural responses r⃗FEM, as given by the implementation of
continuum mechanical system equations with the use of finite element software (FEA), are computed.
It shall already be noted, that for doing so, another model, namely a parametrized material model,
is needed. This material model will be addressed in chapter 5. On the other side, the soft responses
r⃗MEM will be determined, by conducting an manufacturing effort analysis (MEA), where the level of
effort e, the reasonR for that level and a designing advice A are computed.

(x⃗, y⃗)

y⃗FEM r⃗FEM

y⃗MEM r⃗MEM

(f⃗, g⃗)

FEA

MEA

Figure 4.9.: Embedding both models–effort and structural–in the chain from
design variables and parameters to optimization responses

Figure 4.9 illustrates the flow for one single evaluation of the optimization model, where the set of
design variables and parameters (x⃗, y⃗) are the input values and the optimization response set (f⃗, g⃗) is
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to be determined. Since, a sub-set of the MEM input parameter vector y⃗MEM is computed through the
pre-processing of the FEA, the FEA response vector r⃗FEM is linked with the input of the MMEA. An
example for this would be the braider yarn width w(b), which is needed for the material model as a
part of the FEA pre-processing, wherefore it is already computed there, but yet, of course, also needed
as an fuzzy variable in the fuzzy inference system of the MEM. For this reason, the braider yarn width
is in some cases already computed in the FEA and thereafter passed to MEA. This is depicted with the
dashed line in figure 4.9.

4.3.1. Braid manufacturing effort model

The manufacturing effort model (MEM), describing the efforts associated with the braiding technique
is derived based on a Mamdani fuzzy inference system as already generally defined and discussed, as
for instance given with figure 4.7. The rules are defined using product, max and sum, where the first
two define the AND and OR rule for the implication and the last the aggregation. This is summarized
with table 4.1.

Table 4.1.: Used implication and aggreation rules for braid MEM

Mamdani step Rule Realization

Implication AND Product
Implication OR Max
Aggregation - Sum

The knowledge base is derived based on multiple conducted interviews with braiding experts from
the Institute of Carbon Composites (LCC - TU Munich), Institute of Aircraft Design (IFB - TU Stuttgart),
the company Munich Composites (MC: Braid) and further partners from the MAI-Carbon project
MAI-Design. From these interviews, a knowledge base has iteratively formed, on which basis the
following depictive representation (figure 4.10) has been generated. It is illustrated there, how the two
dimensions of lengthwise geometry and profile geometry do imprint on the expectable manufacturing
effort level (ordinate axis). Moreover, the coloring represents the level of severity; hence, red reflects
an effort level close to not producible and blue translates into producible with ease. It is evident, that
altering the lengthwise geometry from being straight and non-conical towards curved and conical
in shape leads to an upward trend in the manufacturing effort level. The same holds for the profile
geometry, where a deviation from the perfect cylinder shape towards shapes displaying high aspect
ratios Λ, sharp edges r → 0, undercuts et cetera results in higher associated efforts. The situation even
worsens, in case both geometric deviations from a simple tubular braid mandrel occur simultaneously.
This is also depicted in figure 4.10, where the worst combination accumulate in the greatest level of
manufacturing effort. Before the discussion of the braid manufacturing effort model is deepened, the
used terminology of the response manufacturing effort shall be put in light of the discussion. This
abstract terminology of effort is chosen deliberately; basically because of its general validity. More
specifically, it is independent of peculiarities being immanent to different engineering disciplines. An
example of a measure being dependent on characteristics of the discipline in light, is costs. This is
because it is an absolute and quantitative measure, where peculiarities, such as existing machinery,
financial situation in terms of obtainable interest rates and regional positioning of the firm, do have a
clear and distinctive imprint onto the measure costs. It is further due to the fact, that manufacturing
effort basically embraces multiple sources including costs, complexity or poor product quality in
a qualitative manner. It can hence be classified as a superordinate measure, unifying the demands
for being company and discipline independent, as well as not being affected by regional or similar
peculiarities. Table 4.2 gives a brief overview on the sources embraced by the term effort, at least, as it
is being comprehended and considered herein.
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ComplexityComplexity of

Manufacturing effort

lengthwise geometry of profile geometry

Figure 4.10.: Manufacturing effortover complexity of profile and lengthwise geometry
(Schatz and Baier (2014))

Table 4.2.: Sources of manufacturing effort

Source Examples

costs production time
man power

complexity additional devices
special machinery

environmentalism wastage of preform material
product quality unusable semi-finished product

scrap rates
. . . . . .

So far, geometric parameters, which mainly influence the shape of the braid mandrel have been
discussed and illustrated in figure 4.10. Beside those geometric parameters, braid sizing parameters
such as braiding angle or number of over-braidings–or discrete braid layer thickness–as well as
process and machine parameters such as number of bobbins and ultimately material parameters,
i.e. number of filaments per yarn or fiber material, are considered too, since they contribute to the
level of manufacturing effort as well. The whole fuzzy inference system as the core of the braiding
manufacturing effort model (BMEM) is depicted with figure 4.11. As illustrated there, the input
variables of the BMEM are the braiding angle ϕ, the mandrel’s circumference U , fiber data such as
fiber material and number of filaments, lengthwise normalized curvature R

D , i.e. curvature of the
mandrel axis, the profile’s or respectively mandrel’s aspect ratio Λ, edge radii r of the profile and the
number of layers. A subset of these input variables, namely the braiding angle, the circumference and
fiber data, are first condensed by taking advantage of analytical formulas such that the generalized
parameters yarn width w and its range w′ along with braiding angle ϕ are obtained and thereafter
passed to the appropriate sub-FIS modules. With equation (4.5) the forumla for computing the braider
yarn width w(b) as part of the analytical condensation is being given,

w(b) =
2U

nBobbin
cos(ϕ). (4.5)

Next, an extract of the whole BMEM will be serve as an illustrative example of how the derived
knowledge base has been transfered to the final BMEM. Figure 4.12 shows four rules of the ϕ-w-FIS,
which itself is a sub-FIS module of the main FIS as illustrated in figure 4.11.
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Figure 4.11.: Illustration of the fuzzy inference system for the braiding manufacturing
effort model

As illustrated in figure 4.12, the two input variables braiding angle and yarn width are processed
such that their contribution to the level of manufacturing effort is computed. For the sake of simplicity,
the following discussion is focusing on the interaction of those two input variables and their influence
on the final manufacturing effort. This represents a simplification, since more input variable do interact
with those two variables and thereby contribute to the final outcome: manufacturing effort. Moreover,
the outcome of the sub-FIS ϕ-w-FIS is contrasted and processed together with the outputs of the sub
modules ϕ-Rd -FIS and w-Rd -FIS, along with the direct inputs aspect ratio Λ, edge radii r and number of
layers via AND and OR rules in the main FIS as given with figure 4.11. This is way the rules given
with figure 4.12 represent a subset of the BMEM, but yet highlight the underlying idea of capturing
and reasoning about expert knowledge. The black lines in the gray boxes of figure 4.12 represent
the afore discussed membership functions µ, which define the affiliation of sharp values to the fuzzy
or, here, verbal variables. This, for instance, defines the link of the sharp input variable braiding
angle of ϕ = 35○ to the verbal variable small braiding angle. This link is hence illustrated by an 100 %
yellow fill of the membership function in rule three. The advantageous feature of being compliant to
verbal imprecision and vagueness is also illustrated in that figure, by the partially fill of the two verbal
variables very small and moderate braiding angle. This is respecting the verbal imprecision inhering to
each expert interview, where the knowledge engineer needs to decide whether ϕ = 35○ is a small or
rather a moderate braiding angle. Of course, this decision is finalized after re-consultation. This feature
of the underlying fuzzy logic set theory, empowers the effort model with human-like capabilities
in problem solving, involving variables comprising some sort of uncertainty and imprecision. This
outlined translation of sharp variables to verbal ones is referred to as fuzzification and the degree of
fill of this membership functions is marking the antecedent being passed to the subsequent step; the
evaluation of all rules via implication. Implication is realized here by product rule for AND network
modules and by a maximum for ORs (see table 4.1). Each rule is reflecting parts of the knowledge
base and to some extend the knowledge of an expert. Rule one for instance, has been translated
from the intelligible expertise, that either a too small braiding angle or a too big yarn width results
in the highest possible effort level. In that case high manufacturing effort, because either of those
leads to a design being in-producible. Rule two, three and four vary in the associated effort level to
mirror the difference in the braiding angle, which itself is defined as a ratio of horn gear revolutions
and take-up speed of the mandrel and, in that consequence, being proportional to the machine time
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Too Small or then

Braiding Angle
Input 1

Rule 1: If Too Big High

Very Small and thenRule 2: If Moderate Very Low

Small and thenRule 3: If Moderate Low

Moderate and thenRule 4: If Moderate Moderate

Rule 61:

Yarn Width
Input 2

Manufacturing Effort
Output 1

0.0 90.0 1.0 4.0 0.0 1.0

Implication

Reason
Output 2

Designing Advice
Output 3

Antecedent

Figure 4.12.: Extract of the sub-FIS ϕ-w-FIS as part of the whole MEM
as given with figure 4.11

and in turn costs. Hence, smaller braiding angles regularly means less braiding time and less effort
as well. Once the implication has been computed, which is depicted by the blue fills of the output
membership functions in figure 4.12, the final outcome can be computed. This is achieved by the
process called aggregation. In the implemented effort model, aggregation has been realized by the
summation rule. Summation is generally realized by simply adding all membership functions of each
rule according to their implication value or, in other words, according to the degree of fulfillment
of each membership function. This is illustrated with the output membership function on the right
bottom side of figure 4.12. Finally, a sharp value for the output variable manufacturing effort can be
computed by determining the center of gravity, which is computed via the first moment of area herein
(see equation (4.1)). This last step is referred to as defuzzification. It has previously been discussed,
how the general Mamdani FIS as illustrated with figure 4.7 has been expanded by the feature of
deriving the critical rules and therein, the critical design variables, which lead to the computed
outcome. This has been achieved by fetching the arguments of the maximal rule of the aggregation by
equation (4.3) or the minimal rule in case of an AND during implication by equation (4.4). Now, this
generally defined concept is transfered into practice by showing its realization for the BMEM. It is the
case, that the knowledge engineer, as the one who implemented all fuzzy rules derived from assessed
knowledge domain, can depose a reason for each rule, as long this reason has also been queried from
the experts during the interview phase. So by computing the critical rule jActive via equation (4.3),
the deposited reasonR can be passed back. Table 4.3 shows an overview of some reasonsR, which
have been priorly linked to implemented rules. So, in case rule ten can be identified to be the critical
one, the reason R ∶ Braid opening is passed back, indicating, that the braid does not cover whole of
the mandrel and in that consequence, the final product’s quality in terms of stiffness is way below an
acceptable level.

In addition, the Mamdani FIS has been enhanced such that the critical input variable iActive can be
identified by equation (4.4). Prior to that, the critical rule jActive has to be determined as well, but this
is obviously realizable. Once, the critical variable and rule have been identified, the effort model can
further pass back an elaboration advice A along with the level of effort and reason R. This advice
then gives insight on how to further reduce the computed level of effort. As an example, if variable
braid angle in rule four has been identified to be critical in a sense, that it dominated the computed
manufacturing effort level, the BMEM passes back the advice A ∶ Increase take-up speed or reduce horn
gear speed. This advice then helps to resolve the problem of an over-compacting braid, which can also be
provided as the reasonR for the associated effort level. More examples are given with the following

52



4. Quantifying manufacturing aspects

Table 4.3.: Some deposited reasonsR and specific elaboration advices A

Rule Variable ReasonR Elaboration advice A

. . . . . . . . . . . .
4 Yarn width High production time ⇔ a

4 Braid angle High production time ⇑ b take-up speed {1}
. . . . . . . . .

10 Braid angle Braid opening ⇓ c take-up speed {1}; ⇑ horn gear speed {2}
. . . . . . . . .

16 Curvature Over-compacting ⇑ curvature’s radius {1}; ⇓mandrel’s diameter {2}
Yarn width Over-compacting ⇓ filaments per yarn {1}; ⇓ bobbin number {2}
Braid angle Over-compacting ⇑ take-up speed {1}; ⇓ horn gear speed {2}

. . . . . . . . . . . .

aCheck subsequent rule
bIncrease
cDecrease

table 4.3. Both the provided reasonR and elaboration advice A are leveraging the significance of the
manufacturing effort model to a whole new level for multiple reasons. First of all, it does increase the
trust-ability for the users, since effort computations can be made plausible by studying the provided
reason and advice. Moreover, this transparency not only increases the trust-ability in a direct fashion,
but also equips the verification process with a helpful tool, with which the knowledge engineer can
discuss the validity with experts more thoroughly and thereby raising the trust level indirectly. This
is mainly because a given reason makes it transparent to the expert, whether or not the underlying
rules are reasonable and meaningful. Secondly, the information gain by the supply of a reasons R
and elaboration advices Amake the manufacturing effort model more interesting to be used as an
augmented tool, even in the designing process. A realization of this idea, would be the embedding in
the computer aided design environment framework, where the effort model could work in tandem
with a construction tool, giving the designer a live feed-back on associated effort levels, including
reasoning and advices for possible improvements. Clearly, this would propagate the concept of
concurrent product development processes beyond all criticism.
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Figure 4.13.: Manufacturing effort response surface over braiding angle and
edge radius (Schatz and Baier (2014))

For bringing this section to closure, the final response surfaces defined by the priorly developed
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and described braiding manufacturing effort model will be presented. Figure 4.13 depicts the response
surface plotted over the braiding angle ϕ and the smallest edge radius r of the mandrel or respectively
the profile. In addition to the direction output, the manufacturing effort e, the reasonR and the first
advice of list of advices A is given as well. With figure 4.14 a gathering of response surface plots is
provided, so as to give insight how the input parameters define the level of manufacturing effort.

4.3.2. Prepreg manufacturing effort model

As many aspects of braid manufacturing effort model (BMEM) apply to the prepreg manufacturing
effort model (PMEM) in a similar fashion, solely unique features of the PMEM will be discussed at
length in the following. This is also why, the reader is advised to read the section 4.3.1 addressing
the BMEM first. Table 4.4 depicts the used rules for defining the implication rules AND and OR, as
well as the implication of the PMEM. Some of the underlying rules differ in contrast to the BMEM.
This is owned to the uniqueness of some features of the PMEM, such as the embedding of a wastage
algorithm or the circumstance, that more sub-FIS modules have used, so as to define the overall main
FIS capturing the knowledge assessed for the prepreg lamination technique.

Table 4.4.: Used implication and aggreation methods for prepreg MEM

Mamdani step Rule Realization

Implication AND Min
Implication OR Sum
Aggregation - Sum

The main sources of manufacturing effort covered by the PMEM are: ply wastage, ply continuity
requirements, ply drop-offs and drapability of prepreg plies. Figure 4.15 illustrates how prepreg
ply wastage is defined. In addition, it schematically depicts how ply wastage has been computed
numerically. At first, ply wastage is defined as the leftover, thus the rest of the prepreg roll remaining
unused, once each and every prepreg patch has been cut out. In figure 4.15, the gray areas mark
the wastage and the differently colored rectangles represent patches, where each color represent a
certain prepreg roll (see legend). So for instance, red is representing a prepreg roll of ninety degrees
orientation.

Figure 4.15.: Ply wastage algorithm (wastage is highlighted in gray)

The developed algorithm tries to minimize the wastage, by filling up each column, until no
further patch fits in. However, this can lead to discrete jumps in the resulting wastage rate, when
for instance a slight change in the patch orientation allows the placing of another patch in a column,
thereby drastically reducing total ply wastage. This effect is shown with figure 4.16, where a slight
change in the ply orientation α1 leads to jumps in the wastage rate ψ. A solution described and
analyzed by Köhler (2014) is meta-modeling, which flattens this jumps out, by echoing the overall
trend determined by the wastage algorithm. This flattening facilitates the usage of gradient-based
algorithms, which would not have been applicable in case the PMEM has been build up on the original
wastage algorithm. The next aspect determining the level of manufacturing effort, is the fulfillment of
the continuity requirement. This continuity requirement ensures structural integrity, by requiring a
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certain fraction of a given ply stack to continue into adjacent ply stacks. The check, whether or not a
ply continuous into the neighboring region can be realized straight forward, but yet also brings forth
discontinuities. Thus, in case of regular check, continuity C is only verified or, here, identified to be
one, in case the angle difference ∆α of two neighboring plies is equal to zero and is hence evidently
discontinuous, as it basically is a Dirac delta function δ(∆α):

C = δ(∆α) = {
1 if ∆α = 0
0 otherwise.

(4.6)
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Figure 4.16.: Response surface approximation of the clipping ψ as realized by
Köhler (2014): α1 and α2 represent patch orientations

This is being illustrated by figure 4.17, where this regular check is highlighted in red. Since
implementing the continuity check as proposed by equation (4.6) leads to a similar limitation in terms
of choice of optimization algorithm, as discussed earlier for the discontinuous clipping response of the
wastage algorithm, a continualization is seeked instead. This continualization is given with equation
(4.7) and illustrated with the blue curve in figure 4.17 and enables the use of gradient-based algorithms
even when the PMEM is embedded.

0

1

Continuity C 0○α

Ply 2Ply 1

Angle difference ∆α = α − 0○
0 90

Regular check
Eqn. (4.6)

Continualizaion
Eqn. (4.7)

Figure 4.17.: Demonstration of the continualization of the continuity requirement

C = 1 − (
∆α

90
)

0.2

(4.7)

Lastly, ply drop-offs and their steepness have also been considered. Figure 4.18 illustrates how
such a ply drop-off is defined. The slope of such is defined via the drop-off length lD and the drop
hight tD. They need to be considered here as well, because a very steep ply drop-off leads to great
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stiffness jumps and in that consequence to three dimensional stress states including peeling stresses,
which in turn then increase the risk of possible delaminations. A design displaying a low tendency
towards delaminations is desirable and thus pursued by the manufacturing effort model as well.

Region 11Region 12

tD

lD

Figure 4.18.: Illustration of a drop-off with its drop height tD and length lD

All the afore mentioned parameters are comprehended in the circuit-like illustration of the FIS via
figure 4.19, where the evaluation of the individual contributors such as the continuity requirement
are illustrated via sub-FIS modules, e.g. C-FIS. Due to the massive extend of parameters, which
need to be passed into PMEM, a general interface querying all needed parameters directly from the
mesh data being generated by the pre-processing for the FEA has been developed. By doing so, the
parametrization in terms of the variable mapping from the structural model to the manufacturing effort
model is now obsolete and the MEM can therefore basically be plugged into any given optimization
model, once the finite element model is defined already. The two red dashed boxes in figure 4.19
represent interfaces to external scripts. The wastage algorithm is being called here from within the
PMEM, such that the wastage ψ for a given patch geometry (l, b) and orientation α can be computed.
For the sake of completeness, several response surfaces of the PMEM are given with figure 4.21. As can
be seen there, all response surfaces are smooth, continuous and unimodal, which is why, no issues are
to be expected in case gradient-based algorithms are chosen to solve optimization problems involving
such soft computing models.
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Ply number np

Patch size (l, b)

Stacking info

Adjacent plies

Curvature 1
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Figure 4.19.: The fuzzy inference system for the prepreg manufacturing effort model
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4.3.3. Implementation details

It shall be highlighted here, how the implementation of such manufacturing effort models is compliant
to generalization, thereby leveraging the applicability of the underlying method. Once a general soft
computing base has been set up, deriving multiple manufacturing effort models founded on different
knowledge bases is rather straight forward to realize.

Base class:
Soft computing

Prepreg classBraiding class

EOS

Prepreg MEMBraid MEM

Figure 4.20.: Overview on base and derived classes used to implement
both manufacturing effort models

This is already observable in figure 4.3, where the programming-wise realization was basically
sketched via the soft computing level, which itself can in most regards be separated from the knowl-
edge engineering. The link connecting both levels is the knowledge base, which is obviously not
common to distinct effort models as well as the revision process of the same is not. Both effort
models, as priorly discussed, have been implemented in the programming language Python using its
object-orientated scheme. Therefore, a general base class has been defined for all general methods
associated with soft computing. Examples would be the setting-up of a Mamdani fuzzy inference
system as given with figure 4.7, including the programming-wise realization of the equations (4.1),
(4.3), (4.4), et cetera. Further, the post-processing in terms of reasoning and advising, also for plotting
response surfaces and similar has been generalized and defined in that base class. All methods have
then been inherited by the derivative classes from the base class. These derivative classes, such as
the one defining the braiding manufacturing effort model, are for instance unique because of its own
knowledge base covering acquired and formalized expertise regarding the braiding technique. This is
illustrated with figure 4.20, where the black circle represents the base class Soft computing and the red
one respectively the Braiding class. Things become interesting, once another effort model needs to be
defined, since, this can be achieved by simply inherit it with the general methodolgies being defined
in the Base class and focusing on the determination of the knowledge base. Finally, it should be noted,
that all of this has been added to the simulation platform EOS as a library called FuzzyLibrary. This is
sketched by the dashed gray circle in figure 4.20. Again, EOS as an Environment for Optimization and
Simulation has been developed by da Rocha-Schmidt and the author. It is currently licensed such that
no fees or costs need to be paid to use it.

4.4. Final remarks on the soft computing of manufacturing effort

It has been shown that soft computing represents a powerful methodology. This is mainly because of
its capability to model and capture imprecise and uncertain information, so as to solve problems being
not solvable or hard to solve with conventional methods. Of similar significance; one can address the
demand of replacing highly sophisticated analyses being numerically expensive and elaborately to be
build up, by this modeling scheme being straight forward to be developed and displaying efficiency in
terms of numerics. In addition, it is because of its ease of implementation, that the derived approach
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4. Quantifying manufacturing aspects

can be employed even in early design phases, where information is brought in most potently. All of
this, can be lead back to the analogy of the underlying methodologies to the human mind, making it
intuitive to form such soft models for the developer, or in this context, the knowledge engineer. The
capability to cope with impression, being inherently involved in verbal expert knowledge and thus
qualitative information in an expedient fashion underpins this analogy.

The fertile coping with fuzziness, gives access to the modeling and handling of verbal knowledge.
This further facilitates the definition of effort models, founded on knowledge bases, which essentially
capture verbal knowledge, being priorly acquired from appropriate experts. Reasoning about this
captured qualitative expertise concerning a manufacturing technique in hand, leads to the ability
to compute associated levels of manufacturing effort for distinct designs. This has been realized by
translating the described expert knowledge into Mamdani fuzzy inference systems (FIS). It has more-
over been shown, that this Mamdani FIS could be extended, such that the critical argument primarily
determining the final output can be identified. Utilizing the arguments of both evaluation steps of the
inference engine–the implication and aggregation–and contrasting them with the knowledge base
reveals the reason of why a certain output level has been computed and, further, which parameters
need to be altered such that an optimal improvement is realized.

Summing up, the impact of the manufacturing effort models reaches beyond the question: whether
or not a certain design is producible. This is not only because of its capability to rank design proposals
based on the linked effort levels in dependence on the chosen production technique, but also since
these models do provide reasoning and return elaboration advices. The latter facilitates–similar to a
sensitivity study–the identification of critical design parameters and thereby the most effective design
improvement in terms of reducing the level of manufacturing effort. The priorly mentioned reasoning
increases the significance of these models, since this reasoning makes the determination of the effort
level transparent to the knowledge engineer, such that it can made plausible and verified with ease.
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5 | Efficient meta modeling of compos-
ite materials

In this chapter, a novel approach for incorporating complex composite material models–those de-
manding multi scale homogenization–into the composite optimization process, is being presented.
Before the details of this approach are given, a brief review on micro mechanics will be given. For
the purpose of demonstrating the developed approach, braiding has been chosen throughout the
following chapter, as it evinces a complex fiber architecture, thereby making experimental and/or
numerical homogenization indispensable. Please note, that the scope of this chapter is rather lying on
the surrogate-based decoupling of the homogenization chain, such that a given complex composite
material model can be considered efficiently, than on the homogenization model, theory or technique
itself.

Contents
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5.4. Summary on the decoupled homogenization . . . . . . . . . . . . . . . . . . . . . . . 74

5.1. General concepts in micro mechanics

Composites in general evince at least two different scales; one where the material can be regarded to
be homogeneous and scales were multiple constituent phases do exist. Most frequently, these multiple
phases display some sort of repetitive pattern and further influence the material properties. In micro
mechanical engineering, homogenization is used to model material quantities in an effective and
thus representative fashion. In principal, there are four different types of homogenization methods
researcher generally distinguish in: analytical, semi-empirical, empirical and numerical. Analytical
homogenization methods commonly take advantage of the repetitive geometric pattern or of dilute
distributions of phases and abstract effective material quantities in analytic formulas. Examples of
analytical homogenization methods are the rule of mixture, Hashin-Shtrikman bounds introduced
by Hashin and Shtrikman (1963), mean field approximations based on Eshelby (1957) and many
more. UD composites may be described sufficiently accurate with such analytical homogenization
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5. Efficient meta modeling of composite materials

formulas. This is due to the presence of one predominant material scale, the micro scale, i.e. the length
scale proportional to the fiber’s diameter. However, when considering textiles with complex fiber
architectures, as is the case for braids, another scale becomes relevant; the so called meso scale.

All three scales are illustrated in figure 5.1 for the case of an automotive A-pillar structure. For
the composite material in that figure, braiding has been chosen as the manufacturing technique. The
meso scale is thus characterized by fiber-matrix tows and the surrounding matrix. These braided
composites demonstrate all three scales: micro, meso and macro. Analytical approaches may also
lack precision especially for strength quantities. Byun (2000) has for instance been able to derive
an efficient analytical approach for the stiffness modeling of triaxial braids. But there are only few
investigations regarding effective strength of braid composites, as was done by Swanson and Smith
(1996). A remedy addressing these inaccuracies, is to enhance analytical formulas by embedding
results from experimental investigations leading to so called semi-empirical homogenization methods,
as discussed by Daniel and O.Ishai (2010). Nevertheless, labor intense and time consuming test
campaigns must be performed in order to do so. This is also why, the third approach empirical of
simply describing the material via excessive test campaigns is not being pursuit herein. For more
details regarding homogenization methods consult Kanouté et al. (2009) as well as Daniel and O.Ishai
(2010). Finally, performing numerical homogenizations to determine effective properties can result in
accurate predictions in stiffness as well as strength properties, but are also computationally expensive
due to the involved FEA. One key idea pursued within this chapter is to mitigate computational costs,
while still preserving numerical accuracy, by decoupling the homogenization chain in-between the
macro and meso scale. The decoupling is realized by surrogate modeling as discussed in section 2.5.4.
This surrogate modeling leverages several numerical analyses to a complete material model, capturing
the response behavior over the whole parameter space via approximations.

5.2. The developed decoupled homogenization approach

5.2.1. Underlying idea

The basic idea is to separate the homogenization chain between the meso and macro scale as depicted
with figure 5.1.

Macro scale

Decoupling via Resonse Surface
Approximation

Meso scale

Micro scale

Figure 5.1.: The multi-scale homogenization via RSA-based decoupling

This is promising for multiple reasons. First and foremost, the computation times of the structural
model are in the same order as to conduct the homogenization based on a meso scale model. Moreover,
slight parameter changes in the macro scale would generally require an update of the material
properties, hence, further homogenization runs. Finally, it can be the case, that on the macro scale
parameters such as for instance the braiding angle, just change slightly in their magnitude, but
still demand corresponding material properties, which however do only slightly vary. All of these
mentioned aspects are especially visible in the case of structural optimization. This is mainly because
the optimization process per se alters parameters, which would require re-homogenization at the meso
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5. Efficient meta modeling of composite materials

scale or even micro scale. The separation or decoupling of the homogenization chain is herein realized
by taking advantage of surrogate modeling. Surrogate modeling–or also referred to as meta-modeling
and response surface approximation (RSA)–has been introduced in section 2.5.4. By using surrogate
models, the effective responses of the meso unit cell model, e.g. homogenized stiffness in fiber
direction, can be leveraged to a fully parametrized and general material model. This parametrized
model can be embedded in most finite element tools or in CLT analyses software packages as well.
This is due to the fact, that the surrogate model is in the following formed by a polynomial regression
and is therefore expressible via rather simple equations. NASTRAN for instance offers users the
possibility to define the material card entries via a sum of coefficients and variables, which are later
also considered in the computation of analytical derivatives during the analytical design sensitivity
analysis (see (2.14) in section 2.4).

5.2.2. Overview of the developed decoupling process

Figure 5.2 depicts the decoupled process. The process as illustrated there, has been developed and
sucessfully been implemented by taking advantage of the Python programming language and by the
help of Flach (2014).

Start

Perform DoE Support points

n = nDoE ? Compute RSA Meta model
of material

End

Create meso model Meso cell

Conduct stiffness
homogenization Stiffness

Compute failure index Strength

FI = 1 ? Update strength data

RSA module

Yes

No

NoYes

Figure 5.2.: Flow chart of developed homogenization approach
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5.3. Application of the approach on triax-braid materials

The realization of the decoupled homogenization approach will be shown next. Again, braiding has
been chosen to be the composite manufacturing technique, but can however be substituted by similar
ones while the approach remains the same.

5.3.1. Derived meso scale model

Parametrized of the meso scale model

As already shown with figure 5.1, the key idea is to decouple the multi-scale homogenization chain
in-between the macro and meso scale. Because the surrogate material model, once it has been
computed, will be used for parametric investigations and within structural design optimizations,
the homogenization of the meso scale model needs to be parametrized in all relevant parameters.
The superscripts ∎(a) and ∎(b) declare whether the quantity ∎ is associated with the axial or braider
yarn.

The meso cell and independent parameters of the meso model are:

Braider yarn
h(b) = f(n(b),w(b), df)

w(b)

Axial yarn
h(a) = f(n(a),w(a), df)

w(a)

ϕ

Axial yarn

Braider yarn

Figure 5.3.: Parametrized meso model derived via TexGen

● braiding angle: ϕ

● filament number for axial and braider yarn (a, b): n(a,b)

● fiber volume in percent for both yarns (a, b): ξ(a,b)

● width of axia (a) and braider (b) yarn: w(a,b)

● stiffness properties of yarns (a, b): E
(a,b)
11 ,E

(a,b)
33 , ν

(a,b)
12 , ν

(a,b)
13 ,G

(a,b)
13

● stiffness properties of matrix (m): E(m), ν(m)

● CTEs† of yarns (a, b) and matrix (m): α
(a,b,m)
1 , α

(a,b,m)
2 , α

(a,b,m)
3

● strength quantities of yarns (a, b): Rt11,R
c
11,R

t
22,R

c
22,R12

● strength quantities of matrix (m): ε
(m)
max

● curvature of meso braid architecture: κ = 1
R

The meso model and especially the parametrization has been realized by using the dynamic link
libraries (dll) of TexGen. TexGen has been developed by Long and Brown (2011) from the University
of Nottingham Textile Composites Research group. It is a license-free software. An example of how
TexGen can be used to compute the textile’s mechanics is given with Lin et al. (2011). In this thesis, the
libraries have been imported via Python so that all functionalities of TexGen could be used to generate

†CTE . . . Coefficient of thermal expansion
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parametrized meso models, which are then passed to the Abaqus standard solver. Figure 5.3 gives an
example of how such an meso model looks like, with ϕ being the braiding angle, h(a,b) yarn height,
w(a,b) yarn width and df the fibers’ diameter. The specific fiber architecture defined by the braiding
process also imposes some geometric dependencies onto the parameters w(b) and w(a) and further on
h(b) and h(a). The first dependency is given by the architecture itself and is illustrated with figure 5.4.
The latter, between w(a,b) and h(a,b), is given by the fact, that both parameter pairs are defined by the
corresponding surface A(a,b) of the yarns.

ϕ

w(a)

w(b)

Braider yarn 1
Braider yarn 2

Axial yarn

w(a) = w(b)
2 cos(ϕ)

Figure 5.4.: Relationship in-between axial yarn width w(a), braider
yarn width w(b) and braiding angle ϕ

In this work the surface of each yarn is assumed to be of lenticular shape and can therefore be
defined as,

A = 2r2 arccos(1 −
h

2r
) −

√

rh −
h2

4
(2r − h) , (5.1)

with r being

r =
h2 +w2

4h
. (5.2)

So for instance, the axial yarn’s hight h(a) is determined based on the axial yarn’s width w(a)

and the desired area A(a). Prior to this computation, the width w(a) needs to be resolved via w(a) =
w(b)/(2 cos(ϕ)), as illustrated in figure 5.4. Using the independent parameters; number of filaments
n(a) and fiber volume ξ(a) together with the constant fiber diameter df one can define the following
equation (5.3).

A(a) =
πn(a)

4ξ(a)
d2
f (5.3)

Together with equation (5.1), which defines A(h(a),w(a)), one can then define the nonlinear and
implicit equation (5.4), which is here given in residual form withRA being the residual.

RA =
πn(a)

4ξ(a)
d2
f −A(h(a),w(a)) = 0. (5.4)

An appropriate and efficient way to solve this equation, is by taking advantage of the Newton-
Raphson method, which basically linearizes the residuum RA and solves it iteratively, where i
represents the iterator. Convergence is achieved onceRA falls below an afore defined tolerance. The
solution is then, the needed h(a) for the given parameters w(a), n(a) and ξ(a).
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Lin(RA) =RA(h(a),i) + ∂RA
∂h

∣
h(a),i ∆h(a),i = πn(a)

4ξ(a) d
2
f −A(h(a),w(a)) − ∂A

∂h
∣
h(a),i ∆h(a),i = 0

h(a),i+1 = h(a),i +∆h(a),i
(5.5)

After all dependent parameters have been determined via equations (5.5) andw(a) = w(b)/(2 cos(ϕ)),
the meso model can be build up using TexGen. Once the geometry has been defined within the TexGen
module, the mesh and all associated transformed element rotations for the yarns will be determined
and returned.

Computing the effective stiffness

In this work, the numerical homogenization is being realized by imposing an uniform strain field and
inversely computing the effective stiffness of fictitious material, such that it would display equal strain
energy for this applied loading. Hashin and Shtrikman (1963) and Sun and Vaidya (1996), did show,
that doing so, solely the upper bound of the effective material property in light is being computed. In
the appendix A.1, the reason for this given, by deriving equation (A.1), which illustratively depicts
the incompatibility originating from the uniform strain loading. For the sake of completeness, the
lower bound on material properties can be computed by imposing a uniform stress field. Both
bounds are most frequently referred to as variational bounds and sometimes as the Reuss (upper) and
Voigt (lower) bound. In the diploma thesis of the author (Schatz (2012)) a homogenization scheme
for directly resolving the viso-elastic material properties is being presented, where the asymptotic
expansion homogenization scheme has been used to compute the effective visco-elastic material
properties. Yu and Fish (2002) also discussed the asymptotic expansion homogenization for spatial
and temporal scales. Further homogenization theories can also be found in Lukkassen et al. (1995).
Nonetheless, since both bounds are quite narrow for the given fiber-architecture, namely the triaxial
braid, and strength properties can be computed accordingly, the homogenization is conducted based
on the variational bounds approach. Figure 5.5a depicts the realized loading state, which in tandem
with the periodic boundary conditions resolve in a uniform strain field, such as ui,0 = xjεij (Sun and
Vaidya (1996)). The periodic boundary conditions are given with equation (5.6) for the strain and with
(5.7) for the stresses. In those equations ΓY,k denotes the opposite boundary surface of ΓY,k.

(a) Applied uniform load (b) Periodic boundary condition

Figure 5.5.: Unit cell loading and boundary condition (Schatz (2012))

εij ∣ΓY,k = εij ∣ΓY,k (5.6)

(σijnj)∣ΓY,k = −(σijnj)∣ΓY,k (5.7)

These periodic boundary conditions can be set by using a reference boundary node and is being
depicted in figure 5.5b, where the blue d represent the reference or also called dummy node.
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Strength computation

For computing effective strength properties of the meso cell model–hence, the strength of the represen-
tative and so to say fictitious homogeneous braid-like material–the meso cell model is incrementally
loaded until initial failure can be observed. During that loading, the same periodic boundary con-
ditions as priorly defined are used, such that periodicity and therefore repeatability of the unit cell
in each direction can be assured. The thereby derived effective strength quantities mark the onset
of failure, thus initial failure. It has been desisted from computing progressive or even fatal failure
quantities numerically based on the unit cell, since linear homogenization theory, as assumed up to
this point, would then not hold any more. Moreover, the thereby caused numerical efforts would burst
the frame of this thesis (see Wegmann (2015)). Failure of the meso cell model has been evaluated based
on the Puck failure criteria for the fiber tows and max strain failure for the matrix phase surrounding
the fiber tows. The Puck failure theory has been introduced in section 3.3 and are embedded here
based on equation (3.8) and (3.9). In order to enhance the numerical performance of the homoge-
nization approach, the computation of the strength properties have been accelerated by utilizing the
Newton-Raphson scheme to solve for the critical loading forces Fcrit,i, such that initial failure occurs,
i.e.

FI(Fcrit,i)
!
= 1 (5.8)

The residuumRFi for determining the critical force Fcrit,i and its linearization as an intermediate
stage towards the iterative solving procedure are given with the following equations (5.9) and (5.10).

RFi = FI(Fi) − 1 = 0. (5.9)

Lin(RFi) =RFi(Fi) +
∂RFi
∂Fi

∣
Fi

∆Fi
!
= 0 (5.10)

The linearized equation (5.10) is then iteratively solved via (5.11) and (5.12) until convergence has
been reached. Converge is again assumed to be achieved, once the residuum RFi(F

j+1
i ) is smaller

than a given tolerance. At this point, initial failure strength as stated with (5.8) has been computed.

F j+1
i = F j+1

i +∆F ji (5.11)

∆F ji = −RFi(F
j
i )

⎛

⎝

∂RFi
∂Fi

∣
F ji

⎞

⎠

−1

(5.12)

5.3.2. Results for stiffness and strength

Next, the results of the homogenization approach will be shown and discussed. The parameters
and their values used to conduct the homogenizations are given with the following table 5.1. Both
variables, braiding angle ϕ and braider yarn width w(b) will be varied in the following but are given
here as parameter as well, since these values are defined to be the reference values for one-dimensional
plots. For instance, if any result is plotted over the braiding angle ϕ, w(b) is set to 2.7mm.

67



5. Efficient meta modeling of composite materials

Table 5.1.: Used material parameter for the
mirco and meso scale model

Entity Value Unit

ϕ 40 DEG
w(b) 2.7 mm

EMatrix 3.8 GPa
νMatrix .3 -

εmax,Matrix .8 %
Exx,Fiber 239 GPa
Eyy,Fiber 15 GPa
Ezz,Fiber 15 GPa
Gxy,Fiber 5.8 GPa
Gxz,Fiber 6 GPa
Gyz,Fiber 6 GPa
νyz,Fiber .3 -
νyz,Fiber .3 -
νyz,Fiber .3 -
ψFiber 68 %
nFiber 12k -

R11,t,Tow 2142 MPa
R11,c,Tow 1083 MPa
R22,t,Tow 40 MPa
R22,c,Tow 104 MPa
R12,Tow 117 MPa

Stiffness responses

Before the stiffness responses of the surrogate model are presented, a generalized appearance of the
response surface plots will be defined. This definition is given with figure 5.6, where the red grid is
depicting the response of the meta-model and the blue points represent the support points on which
basis the meta-model has been computed. Since the meta-model represents an approximation of the
original model and a polynomial regression has been used to compute it, approximation errors for
each support point can be computed and will therefore also be given with error bars.

Param 1 p1 [-]

R
es

po
ns

e
r

[-
]

Param 2 p2 [-]

Support point

Approximation error Response of
meta-model

Figure 5.6.: Definition of the general illustration

In the following, the responses of the meta-model, which approximates all stiffness and strength
properties of the triaxial braid (table 5.1) in dependence on the two parameters braiding angle ϕ and
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yarn width w(b) will be presented and discussed. Together with the equation for the minimal number
of coefficients nβ = 1

2(1 + nDV)(2 + nDV) the minimal sampling size can be computed to be six (also
see table 2.1). However, a certain oversampling is always advisable, for which reason the number of
samples has been set to nine. These samples have been distributed over the design space by taking
advantage of the Latin Hypercube Sampling method.

10 20 30 40 50 60 70 80
2.0
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Figure 5.7.: Stiffness Exx computed by the material meta-model
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Figure 5.8.: Stiffness Eyy computed by the material meta-model

With figure 5.7 the response surface plot of the stiffness Exx, thus in axial fiber direction is
given. As defined with figure 5.6, the red represents the derived polynomial regression, whereas
the blue points mark the support points. The support points are determined via the DoE and the
corresponding stiffness and strength responses are computed by evaluating the meso homogenization
model. Beside the computed response values, the distance to the response grid of the meta-model–or
response surface approximation–is given, which basically displays the approximation error made by
the conducted curve fitting. By studying the error bars in figure 5.7, one can convince oneself, that the
approximation error made is less then two percent at the support points. Despite this obviously good
fitting agreement, one cannot deduce a good approximation quality of the meta-model, since these
points, where the error has been computed have also been considered during the curve fitting and are
thus likely to be approximated well. To gain more insight on whether or not the meta-model is able
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to bring forth credible and resilient surrogate response values over the whole design space several
verification studies have been made. The verification study for Exx will be discussed next. Before
the quality of the meta-model is being assessed by verifying and studying approximation errors, the
surrogate response for the transversal stiffness Eyy will be discussed briefly. The response surface of
the meta-model for that stiffness Eyy, probed perpendicular to the axial yarn direction, is depicted in
figure 5.8. Similarly to the axial stiffness Exx, the surrogate response displayed there evinces small
approximation errors at the support points, which again have been used to set up the meta-model.
They actually are less then five percent. As afore mentioned, in order to gain sharp impression on
the quality of the surrogate responses of the meta-model the error should not be evaluated at the
DoE points, which have been used as support points. This is because of the fact, that a polynomial
regression inherently intends to minimize the sum of squared errors (least squares). It is thereby
actually realizing curve fitting to a polynomial of priorly defined order. Knowing that, verification can
solely be established by studying the approximation at sample points, being randomly scattered over
the whole parameter space spanned by the lower and upper bound of each parameter and contrasting
surrogate responses with the responses of the original model. This is herein done for the stiffness
response Exx by randomly scatter sample points; four hundred points in total for this verification case.
Figure 5.9 depicts the result of this verification by plotting the surrogate stiffness provided by the
meta-model Exx,meta on the coordinate axis and the stiffness result determined by the original model
on the ordinate axis Exx,org.
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Figure 5.9.: The approximation quality for the responsel stiffness Exx

The maximal approximation error identified by this verification study can be numbered to be six
percent and the mean approximation error can be computed to three percent. In the thesis of Flach
(2014) these errors and the small–but still present–jumps can be traced back to mesh-size dependent
geometrical approximations of the braider yarns geometry. This is the reason for these jumps to
especially turn up at high braiding angles ϕ and hence great geometric changes. They are regarded to
be small, since the maximal detected change in stiffness is less then five percent. Considering all of
this, the meta-model can be regarded to be verified for all stiffness responses.
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5. Efficient meta modeling of composite materials

Strength responses

Beside the stiffness responses, the meta-model further comprises the strength quantities of the triaxial
braid based on initial failure decided based on Puck’s failure criteria for the yarn tows and max strain
for the pure matrix phase. At this point, it shall be noted, that these strength quantities are surely
conservative and that the braid sustains greater loads (see Wegmann (2015)). Figure 5.10 depicts the
initial failure strength in axial yarn direction R11. The transversal strength R22 of the triaxial braid is
illustrated in figure 5.11. As before, the response surface of the meta-model is given by the red grid
and the blue points highlight the support points.
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Figure 5.10.: Strength R11 computed by the material meta-model
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Figure 5.11.: Strength R22 computed by the material meta-model

For both strength responses, the approximation error at the support points are higher then
for the stiffness case. For instance, the maximal approximation error can be identified to be eight
percent for the approximated transversal strength R22 and even goes up to nine percent for the
approximated axial strength R11. This can be explained by the voxel finite element discretization of
the meso geometry, where great stiffness discontinuities over element boundaries in tandem with
the rectangular approximation of curved geometries–especially critical, where the braider yarns
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dive underneath the axial yarns–leads to a greater mesh dependence. Two possible approaches for
further reducing the approximation error have been identified for this case: either drastically reduce
element size or change discretization type. However, since the developed material model neglects
aspects, which influence the strength behavior more dominantly on a detailed level, such as nesting
or geometrical deviations from the idealized sinusoidal path of the braider yarns. And, moreover,
the material model is not indented to be used in detailed analyses of progressive damage evolution
of one single given braid structure, but instead for the effective and efficient incorporation into a
structural design optimization model for optimizing braid structures at early design phases, it has
been abstained from further detailing the homogenization model. This particularly holds in light of
the fact, that the derived meta-model is able to predict general trends and parameter relations and
their impact on the strength properties of the braid material correctly and in a conservative fashion.

5.3.3. Comparison with experimental investigations

The experimental comparison shall just briefly be mentioned here, but has been studied by Siroky
(2014) more thoroughly, where also a comparison with the analytical modeling approach proposed by
Byun (2000) has been made. Table 5.2 summarizes experimental investigations made by AUDI and
IFB Stuttgart, who studied the material within the MAI-Carbon project MAI-Design. These test have
been conducted to the specifications of the standard AITM 1-0007 in case of tensile testing and AITM
1-0008 respectively for compression testing. In table 5.2 it has been differentiated in-between tension
and compression testing and transversal (Eyy) and longitudinal stiffness (Exx).

Table 5.2.: Meassured stiffness via two specimen configurations:
Triax30 (ϕ = 30○) and Triax55 (ϕ = 55○)

Thomas (2014)

Tension Compression
Specimen Exx [GPa] Eyy [GPa] Exx [GPa] Eyy [GPa]

Triax30 63.6 10.2 61.0 9.2
Triax55 33.5 35.2 30.7 30.8

For drawing a comparison, the results, in terms of longitudinal Exx and transversal stiffness Eyy,
generated by the derived meta-material model are given with table 5.3. Evidently, the meta-model
does not differentiate in-between tension and compression.

Table 5.3.: Computed stiffness responses by the meta-model

Braiding angle ϕ[DEG] Exx [GPa] Eyy [GPa]

30. 53.5 8.5
55. 34.2 23.5

Comparing the results from experiments (table 5.2) with the those given by the meta-model (table
5.3) leads to the insight, that the meta-model rather underestimates the stiffness, which makes it
conservative. Further, some stiffness values differ considerably, which may also be traced back to
the experimental test procedure, which is currently under revision. This is the case, because during
the production of the specimens, alteration of the braid architecture in terms of braider angle ϕ and
yarn widths could yet not be avoided. This certainly influences the test outcome, since changing
the braider angle by just five degrees brings forth a deviation in stiffness of eleven percent. This
deviation has been computed by changing the braider angle at ϕ = 30 ± 5○ and studying the output of
the meta-model. Next, the geometric representation of the braid architecture as presented earlier is
compared. For that purpose, several micrographs have been made by Siroky (2014). Three of these
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are shown in figure 5.12. In this figure the actual fiber architecture is depicted. The micrograph in
die middle cuts the axial yarn perpendicularly, while the one right next to it cuts the axial yarns
lengthwise and the left one cuts the braider yarns lengthwise. Several of those micrographs have been
made and evaluated leading to the results as given with tables 5.4 and 5.5.

1000µm 1000µm 1000µm

A B

Figure 5.12.: Different micrographs for verifying the made geometrical abstraction

Table 5.4.: Meassured geometric properties of Triax30

Entity Mean value [µm] Error band [%]

h(a) 424.3 ±5

h(b) 375.7 ±12

w(a) 2260.3 ±3

Table 5.5.: Meassured geometric properties of Triax55

Entity Mean value [µm] Error band [%]

h(a) 397.3 ±4

h(b) 379.7 ±18

w(a) 2963.7 ±3

5.3.4. Hybrid homogenization - experimental and numerical

In this subsection, a possible extension of the introduced idea will be sketched. So far, it has been
shown, that the surrogate modeling approach can be used to approximate the stiffness and strength
responses of the meso unit cell model and, thereby, decouple the homogenization chain in-between
macro and meso scale. In principal, the underlying nature of the "original model" does therein not
matter. Hence, the approach works for numerically determined responses as well as for those based
on experiments. This is why, the material model could have been formed by solely conducting
a polynomial regression on the experimental data. Or, and this is discussed in the following, by
pursuing a hybrid approach, where responses from both disciplines, i.e. numerics and experiments,
are considered simultaneously, so as to form a common unified material model via hybrid meta
modeling. This hybrid homogenization approach has been carried out, by simply embedding two
additional support points right before the polynomial coefficients are determined via the least squares
approach. Figure 5.13 depicts the response surface for the case of nine numerically determined support
points and two experimental ones. As displayed there, they successfully form one unified material
meta-model capable of predicting the effective longitudinal stiffness Exx based on a basis formed by
simulations and experiments.
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Figure 5.13.: Stiffness Exx response by the hybrid material meta-model

5.4. Summary on the decoupled homogenization

By taking advantage of surrogate modeling techniques, an efficient material model has been developed.
It is regarded efficient, since once all effective properties, such as longitudinal stiffness or transversal
strength for a certain kind of composite material are homogenized, the meta-model comprising
most relevant aspects can be formed, which then predicts effective properties for any other parameter
configuration in no time. This especially holds, since the meta-model–owing to its polynomial basis for
the polynomial regression–is orders of magnitudes less numerically expensive than full simulations,
which are needed throughout the numerical homogenization.

The decoupling in-between the macro and meso scale of the homogenization chain, enables
detailed investigation of the material meta-model in terms of sensitivity studies of the considered
material parameters. Further, the decoupled material model can be re-used for multiple structural
problems. This will actually be demonstrated later, by showing how straight forward the material
meta-model can be incorporated into the analyses of an A-pillar, via the FEA tool Abaqus, and a
propeller, where NASTRAN has been used for solving the underlying mechanical system equations.
As already indicated with this software independence, the polynomial coefficients, which basically
determine the meta model, can be passed to most FEA tools without the necessity of any complex
mapping or similar obstacles.

Moreover, it has been shown, how the homogenization approach can be hybridized, so that
effective material properties are determined based on numerics as well as experiments. This can
leverage the trust level by unlocking the potential of mutual enrichment from both disciplines, which
may also result in higher model accuracy and generality.

As a final remark, the surrogate modeling in form of a polynomial regression can equalize errors
originating from simulation or experiments. This was already postulated by Gauss, who realized, that
the underlying least square approach equalizes errors in the observation of planets and thus helps to
describe and predict their pathways. And ultimately, most material models–as they involve curve
fitting for some of their parameters–can be regarded to be surrogate models, at least to some extend,
as well.
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6 | General insights and anticipated find-
ings

This chapter generalizes and presents core aspects of the conducted research of this thesis. The
concepts, ideas and insights gained presented throughout this chapter will later be discussed based
on technically relevant design tasks involving structural analyses. They are presented before and
separately, to underpin their general validity. For the sake of understanding, a small analytical design
task–specifically a pipeline optimization based on the classical laminate theory–will be used as a
vehicle to illustrate the concept or idea. This small academic example will be highlighted in gray, such
that the focal point solely lies on the general statements made throughout this chapter.
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6.1. Introduction to multi-criteria optimization

6.1.1. A brief overview

In everyday life, we face situation demanding some sort of decision making, where each individual
needs to weight up, possibly contradicting, decision criteria, so to make the most appropriate choice.
An example reflecting this, can be found in the variety of bicycles ranging from mountain bikes over
racing to folding bicycles, each of those representing an optimal choice depending on individual
preferences on criteria such as flotation, max speed, price, size variety et cetera. These sort of
"decision-making" problems are within the frame of optimization addressed by the discipline of vector
optimization; also being referred to as multi-criteria, multi-objective and in some literature Pareto
optimization. Historically, one of the first discussions addressing the handling of conflicting objectives
is given by Edgeworth (1881). In this book, the optimal settlement in-between parties, e.g. consumers,
with conflicting interest is described to be achieved, once for any infinitesimal change in the decision
variables each consumer’s utility does not increase simultaneously. Further it has been stated: "In case
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the utility of one party increases, the utilities of the remaining must decrease". This early statement
of optimality of multi-criteria problems has been profoundly elaborated by Pareto (1906). Pareto
studied in this context, conflicts in societies and how optimal compromises can be characterized. He
for instance came to the following conclusion:

The optimum allocation of the resources of a society is not attained so long as it is possible
to make at least one individual better off in his own estimation, while keeping others as
well off as before in their own estimation

Vilfredo Pareto (1848 – 1923)

This conclusion did lead to a general definition of optimality in vector optimization. The terms
dedicated to this early optimality definition are Pareto efficiency and optimality, which basically
both characterize optimal solutions of a given multi-criteria optimization problem. In the following
decades, mathematical debates dominated the vector optimization discipline. Kuhn and Tucker (1951)
for instance contributed to the generalization of the efficiency definition in case multiple objectives are
to be considered. Further contributions to the proper and mathematically profound understanding
of optimality and the solution space of general vector optimization problems have for instance been
made by Cunha and Polak (1967). In engineering, optimization problems involving multiple objective
where extensively discussed by Baier (1977), Leitmann (1977) and Stadler (1984) at first. Baier (1978)
especially pioneered by not only discussing the peculiarities of vector optimization in structural
design, but further showed its realization and added value–by for instance depicting post-processing
possibilities in analogy to the well-known shadow price concept–on structural problems derived from
engineering practice.

A side example is given next, but yet is introduced within a gray box, so as to highlight, that this
example is not of superior importance for the understanding of this part. However, these framed and
colored sections intend to provide an intuitive and comprehensive illustration of the rather abstract
discussions of this thesis part and shall thus be regarded as supplementary information.

Side example: Structural aspects and the system responses

For the sake of illustration, a side example–specifically the structural optimization of a
composite pipeline–will be defined next. As depicted below, a pipeline segment is abstracted
towards a non-curved plate. As illustrated there, the pipeline will be loaded with a certain
internal pressure pi. Moreover an axial stress loading and a simple supported bending
load case are considered as well (see Häußler (2014), Häußler et al. (2015), Harnischfeger
(2015) ). The laminate itself is parametrized in such a way, that the thickness ti and ply
ortientations αi of the outer (i = 1) and inner (i = 2) layer can be varied. The responses are
the pipeline mass m, structural failure indices according to Tsai-Hill FIS , function failure
index determined by a leakage criteria FIF , coefficient of thermal expansion αCTE and
bending stiffness Kb are computed via the classical laminate theory.
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6.1.2. Fundamentals in vector optimization

At first, the general statement of a vector optimization problem is given as,

minimize
x⃗∈χ

fi(xj), i = 1, . . . , nO, j = 1, . . . , nDV

subject to gl(xj) ≤ 0, l = 1, . . . , nIC

with χ = {xj ∈ RnDV ∶ 0. ≤ xj ≤ 5.},

(6.1)

where,

f⃗ vector of objectives,
g⃗ vector of inequality constraints,
x⃗ design variable vector.

In this posed optimization problem (6.1), nO represents the number of objectives. The following
three cases are of practical relevance and can thus be regarded as a common classification of multi-
criteria optimization problems,

nO =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ∶ Single objective problem
2 ∶ Bi-objective problem

> 2 ∶ Multi-objective problem
(6.2)

In this thesis, most of the multi-criteria optimization problems are bi-objective. The following
general discussion will focus on this case. Figure 6.1 illustratively depicts such an bi-objective problem,
where criteria one f1 is plotted over the coordinate axis and the second respectively over the ordinate
axis.

Objective function f1

O
bj

ec
ti

ve
fu

nc
ti

on
f 2

Pareto frontier ΩP

Pareto efficient set ΩE

Feasible criterion space Yf

f⃗∎

f⃗◻

Figure 6.1.: Exemplary illustration of bi-objective criterion space

The gray area reflects the feasible criterion space Yf , which is the space, gathering all criteria, i.e.
objective function values, where the inequality constraints as well as the side constraints are fulfilled
(see Marler and Arora (2004) and Stadler (1988)). Mathematically stated, the feasible criterion space
Yf is spanned by mapping each decision variable x⃗ as element of the feasible decision space χf via
the objective functions, as given with the following set of equations (6.3).

Yf ∶= {f⃗(x⃗) ∣ x⃗ ∈ χf}

χf ∶= {x⃗ ∈ χ ∣ g⃗(x⃗) ≤ 0}
(6.3)
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Side example: The definition of the optimization task

Now, an exemplary vector optimization problem will be stated, based on the priorly intro-
duced side example; the pipeline. This example will later serve as a vehicle to illustrate
abstract concepts and findings.

minimize
x∈χ

f⃗ = fi(xj), i = 1,2, j = 1, . . . ,4

subject to gl(xj) ≤ 0, l = 1, . . . ,5
with χ = {xj ∈ RnDV ∶ 0. ≤ xj ≤ 5.},

where,

(6.4)

f1 =m mass of pipeline,
f2 =Kb bending stiffness,

g1 = FIS FoSS − 1 no structural failure,
g2 = FIF FoSF − 1 no functional failure,
g3 =Kb,min −Kb minimal bending stiffness,
g4 = αCTE − αCTE,max maximal allowable CTE,
g5 =m −mmax maximal tolarable mass,

x1 = α1 ply orientation of outer layer,
x2 = α2 ply orientation of inner layer,
x3 = t1 ply thickness of outer layer,
x4 = t2 ply thickness of inner layer.

The following figure depicts the decision space, where x3 and x4 are set constant to mass
optimal values including the isolines for both objectives and all constraints (colored regions
are infeasible).

0.7

30 35 40 45 50 55 60

1.3

1.9

2.5

Ply orientation α1[DEG]

Pl
y

th
ic

kn
es

s
t 1
[m

m
] 8.5

7.3

6.0

4.7

3.5

2.2

Isolines, where mass m is constant

g1
g2
g3
g4
g5

Isolines, where bending stiffness Kb is constant

Once the feasible criterion space is spanned, the question of which criteria are optimal and how to
measure optimality arises. However, there is no distinct generally accepted definition for this. Marler
and Arora (2004) suggest in their work, that the reason for this can be found in the multitude of optimal
solutions of a multi-criteria problem. This is opposed to the presence of one unique global solution in
case of single objective problems. After reading Ehrgott (2005), Stadler (1988) and further publications,
the author of this thesis came to the same conclusion as Marler and Arora (2004); specifically, that
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optimality will be measured by the concept of dominance or Pareto efficiency, being, by the way,
the most frequently used concept anyhow. In the fundamentals part of this thesis, this concept for
determining Pareto efficiency has already been given (see section 2.2.3 and (2.6)). Pareto efficient
criteria will henceforth gathered in the set ΩE , being highlighted by the bold black line in figure 6.1. It
shall be noted that for most structural design problems, this set contains infinite many solutions due to
the presence of continuous decision variables, see (6.3). In addition to this set, another well-established
concept of optimality will be used throughout this thesis, namely, the concept of a Pareto frontier. A
Pareto frontier ΩP bounds the feasible criterion space Yf and locally fulfills the Pareto efficiency, but
may contain criteria, being not Pareto efficient over the whole criterion space Y . Thus,

ΩE ⊆ ΩP . (6.5)

Most literature also add the following terms to the afore mentioned terminologies: anchor points,
point of utopia and nadir point. The first, refers to the extremal of the Pareto frontier ΩF , i.e. minimiz-
ing to solely one criteria e.g. f = f2. Combining the best criteria values of each anchor point, yields the
point of utopia f⃗∎, which is evidently a fictitious solution being far from being obtainable in general.

f∎i = min
x∈χ

{fi(x⃗)∣g⃗(x⃗) ≤ 0} i = 1, . . . , nO (6.6)

The vice versa evaluation of the anchor points–thus crapping only the worst solutions–leads to
the nadir point f⃗◻. These points are relevant for many algorithms, e.g. internal normalizing or for
spanning hyperplanes. They are also depicted in figure 6.1.

6.2. Solving and post-processing of vector optimizations

6.2.1. Common solving techniques in multi-criteria optimization

Approaches based on zeroth order algorithms

Optimization problems can in general be solved by algorithms exploiting gradient information
and those that do not. Obviously, both classes gradient-based and zeroth order algorithms, do
therefore differ considerable in computational performance, treatment of discrete variables, ease
of implementation et cetera. When it comes to multi-criteria optimization problems, zeroth order
algorithms, and especially those being biologically inspired, frequently allow a straight forward
solving of such. This is mainly due to the fact, that some sort of fitness function, evaluating and
contrasting each member of the population, is embedded already, where a slight modification in terms
of considering the dominance rank, vector metrics or some sort of Pareto filter as an additional for
evaluating fitness can be incorporated with ease. This is also reflected by the flood of literature solving
multi-criteria via biologically-inspired algorithms. Schaffer (1985) implemented a vector evaluated
genetic algorithm, whereas Fonseca and Fleming (1993) used a ranking procedure and Cheng and
Li (1997) used Pareto filters within a genetic algorithm framework. Summing up, there is a great
variety of biologically-inspired algorithms being able to cope with multiple objectives. Despite their
pronounced advantages, the associated computational effort can be considerably high and due to
the lack of gradient information there is no possibility for evaluating optimality for a determined
solution.
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Approaches founded on gradient information

The by far most frequently used approach is the simple scalarization approach, where the multi-
objective problem is condensed to one single objective f̃ with the use of an objective weighting
parameter, here κ, as follows,

f̃ = f̃1 + f̃2 = κf1 + (1 − κ)f2. (6.7)

f = f̃1 + f̃2

f̃1 ∶= κf1

f̃2 ∶= (1 − κ)f2

f1

f2
Mapping

via κ

line L

Figure 6.2.: Interpretation of the objective weight κ as a mapping or as in
Sobieszczanksi-Sobieski et al. (2015) by an intersection with line

L ∶= {(f1, f2)∣const. = κf1 + (1 − κ)f2}

In most cases, the substitutive single objective optimization problem min{f̃ ∣g⃗ ≤ 0} is solved once
for one given weighting parameter κ. In literature, f̃ is sometimes also referred to as the utility function.
Interpreting equation (6.2), leads to the idea of κ being some sort of mapping, with which–once κ is
being fixed–the single objective f̃ can be understood as a measure of the minimal distance from the
origin of the criterion space to the mapped Pareto frontier. This interpretation is illustrated in figure
6.2. This mapping is especially usefully when all objective functions are normalized, for instance,
with their ideal or extremal value. A similar geometric interpretation of this scalarization is given by
Sobieszczanksi-Sobieski et al. (2015), where the condensed optimization problem is understood as
finding the intersection of the Pareto frontier with the line L given by const = κf1 + (1 − κ)f2, as also
depicted in figure 6.2. As a remark, for finding a reasonable compromise, one should normalize with
the help of the vector of utopia f⃗∎, as follows,

f̂i =
fi − f

∎
i

f∎i
. (6.8)

Optimizing on these normalized objectives, i.e. f̃ = .5f̂1 + .5f̂2, is quite likely to lead to an optimal
compromise, lying in the middle of the Pareto frontier, in case it is convex and symmetric. This will
also been shown in this thesis. In section 8.2, for instance, a reasonable compromise solution is found
by normalizing the individual objectives mass and effort–as given by equation (8.13)–such that an
optimal compromise for the structural optimization of the A-pillar can be found.

f̃ = {∑
i

αif̂
q
i }

−q

= {∑
i

αi (
fi − f

∎
i

f∎i
)

q

}

−q

(6.9)

Therefore, for the use of gradient-based approaches, some sort of condensation to one single
objective problem needs to be conducted and, obviously, each single objective problem solely reveals
one solution of the whole set of Pareto efficient solutions ΩE (see figure 6.1). However, in some
situations, for identifying the most suitable compromise it would be expedient to get some insight
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on how the objectives do compete and, thus, how the Pareto efficient solutions actually deploy in a
Pareto frontier. For efficiently approximating the whole Pareto frontier, an approach as suggested by
Pereyra et al. (2013) has been implemented and applied in this thesis as well.
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Figure 6.3.: Approximation ΩP̃ of the whole Pareto frontier ΩP

Figure 6.3 outlines the underlying idea of approximating the whole Pareto frontier ΩP as a superset
of Pareto efficient solutions ΩE by a pre-defined number of solution points, here denoted as nP . As
a consequence, the approximation ΩP̃ can be regarded as a subset of ΩP and thus ΩP̃ ⫋ ΩP . The
approximation ΩP̃ shall thereby ideally be equispaced, thus display equal distances in-between
different solutions, such that this approximation reveals most of the Pareto frontier in the criterion
space.

6.2.2. Implemented and realized approach in this thesis

Now, the approach of solving vector optimization for an equispaced set of Pareto efficient criteria
will be presented. The general multi-criteria optimization problem, as posed with equation set (6.1),
will therefore be substituted by a sequence of scalarized and, hence, single objective optimization
problems, as given next

minimize
x,κ

f̃ = κf1 + (1 − κ)f2

subject to g⃗ ≤ 0,
gBS ≤ 0,

and hγ = γ
2,

with x⃗ ∈ χ and κ ∈ [0, ...,1]

(6.10)

Studying this optimization formulation reveals two major aspects of this approach. First, the
vector of objective functions is condensed to a scalar objective f̃ by weighting them with κ. Opposed
to most approaches, the objective weight κ is not set constant, but instead optimized as well and thus
part of the decision variable vector. Secondly, two constraints have been added: the back-stepping gBS
and the equidistance hγ constraint. The first ensures, that priorly computed criteria vectors f⃗p−1, f⃗p−2

are not re-solved (no back-stepping), while the second imposes, that the distance in-between the
current criteria vector f⃗ and the prior one f⃗p−1 is constant, namely γ (equidistance). Both constraints
are given with the following equations and also sketched in figure 6.4.

gBS(x⃗) = ∥(f⃗p−1 − f⃗p−2)(f⃗(x⃗) − f⃗p−1)∥L2 ≤ 0,

hγ(x⃗) = ∥f⃗ − f⃗p−1∥2
L2 = γ

2 (6.11)
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gBS, the first constraint, is an inequality constraint and added to exclude solutions which already
have been found. These undesirable situations occur, when the algorithm is not properly climbing
from one side to the other of the Pareto frontier. This is also why, the constraint has been called
back-stepping (BS) constraint.This constraint is further illustrated in figure 7.1 on the right side. There,
the red arrows visualize a geometric interpretation gBS, where the angle αBS between the red arrows is
restricted such that it needs to be greater than ninety degrees. The following equation provides more
insight

gBS(x⃗) = ∥(f⃗p−1 − f⃗p−2)(f⃗(x⃗) − f⃗p−1)∥L2

= ∥(f⃗p−1 − f⃗p−2)∥L2∥(f⃗(x⃗) − f⃗
p−1)∥L2 cos(αBS) − cos(π).

(6.12)

The second constraint hγ is imposed so as to obtain an equidistant approximation ΩP̃ of the Pareto
frontier ΩP . To do so, an a priori estimate of the distance in-between successive Pareto solutions
f⃗p and f⃗p−1 needs to be made such that the desired distance in-between successive solutions γ can
be computed. In this work, this estimate is made by computing extremal solutions first, thus for
fixing κ to zero and one. Then, the length of the Pareto frontier is approximated by computing the
distance between both extremal solutions and multiplying it with a chord factor c accounting for the
possible bend of the frontier. This chord factor has in most cases been set to be 1.2 and is, aside from
the desired number of Pareto solutions np, the only parameter of the approach. Lastly, the desired
distance in-between Pareto optimal solutions γ is computed by dividing the scaled distance between
both extremal solutions by the desired number of Pareto optimal nP .

γ =
c

nP
∥f⃗1

− f⃗np∥
2

(6.13)
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f⃗p−1

f⃗

Figure 6.4.: Depiction of the added equidistant and back-stepping constraints

The added constraints do in tandem with the expansion of the design space by the objective
function weight κ facilitate the computation of an equidistant approximation of the Pareto frontier.
Obviously, the optimization problem as given with equation set (7.3) is solved multiple times, i.e.
p = 1, ..., np. Maier (2015) has implemented and validated this approach extensively. He moreover
showed its general applicability. With figure 6.5, an overview of the implemented approach is given.
This figure is followed by a parenthesis, where the solution of the priorly defined side-example is
given. At this point, it shall also be highlighted, that this approach is also applicable to multi-criteria
optimization problems with more than two objectives. This is for instance demonstrated for a small
academic example in the appendix section A.3. As can be seen in figure A.2, the approach can also
provide a reasonable approximation for such a tri-objective optimization problem. However, the
interpretation of the outcome is by far more challenging (surface instead of intuitive curve), which
makes the definition of such problems in practice rather unrealistic.
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Compute anchor points f⃗1 and f⃗np

Loop over remaining p,
i.e. p ∈ [2, np − 1]

Fetch previous solution
f⃗Prev = f⃗p−1

Update equidistant
constraint hγ

p = p + 1

Solve scalarized problem
objective: f̃(f⃗(x⃗), κ)
constraints: g, h, gBS, hγ

Store new solution:
[x⃗, κ, f̃, f⃗]

p

Figure 6.5.: Flow chart of the implemented algorithm by Maier (2015)

Side example: Solving the vector optimization task

The following plot depicts multiple solutions of the bi-objective optimization problem, as
posed with equation set (6.4), where the pipeline’s mass m was set as one objective and
the maximization of bending stiffness Kb as the contradicting one. The dashed black line
represents the solution determined by the implemented gradient-based Pareto frontier
approximation. On the contrary, the colored dots reflect vector optimizations accomplished
by a zeroth order algorithm; here, by the well renowned genetic algorithm NSGA-II by
Deb et al. (2002). In the legend, #eval., #pop. and #gen. stand for the number of needed
total function evaluations, size of population and respectively number of generations.
Contrasting these results, the gradient-based approach performed superior in terms of
number of function evaluations. Moreover, the gradient-based optimization outperformed
the genetic algorithm in the exploitation of the individual optima, therefore, the gradient-
based optimization found Pareto efficient solutions where most dominate those obtained by
the genetic ones. This indicates, the genetic algorithm did not completely "converge", which
could be improved by increasing the number of generations and in that turn, the number of
functions evaluations. Despite this, it shall be noted, that zeroth order algorithms do not
demand that sophisticated optimization models regarding convexity, variable type (discrete,
integer etc.), numerical robustness and alike.

f1 =m

f 2
=
K
b

1.0
1.00.5

0.2

(600∣60∣10)

Legend:

(#eval.∣#pop.∣#gen.)

(1200∣60∣20)

#: Number of

(1000∣100∣10)

(4000∣100∣40)

NLPQLP 64 evals
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6.2.3. Post-processing

Evaluating optimality for a given set of Pareto optimal solutions

A measure for evaluating, whether or not optimality is given, the Karush-Kuhn-Tucker condidtions–
being mentioned first in the fundamentals part in section 2.2 by equation (2.3)–can be used. This
measure can evidently be applied here as well, since a gradient-based algorithm is used and sensitivi-
ties are therefore evidently available at each derived optima. Yet, the fulfillment of this measure does
not guarantee, that the best, i.e. global, optima has been found. Nonetheless, it provides insight on
the quality of the found solutions. Such that the KKT conditions can be properly plotted, a definition
being compliant to numerics and the associated inaccuracies, a scalar measure needs to be defined.
One of the most established scalar measures is the so called first order optimality, which basically is
the norm of a vector embracing the stationary of the Lagrangian function L and the complementary
slackness. This first oder optimality measure is given by,

O =

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
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(6.14)

where ∂L
x1

∣
x

Opt
1

=
∂f
∂x1

∣
x

Opt
1

+∑k µk
∂hk
∂x1

∣
x

Opt
1

+∑l λl
∂gl
∂x1

∣
x

Opt
1

. The evaluation of this optimality criteria

is highly advisable and will for instance be shown for the propeller structure in section 9.2, where
the optimality can be stated for the whole approximation of the Pareto frontier for two distinct multi-
criteria optimizations; the simultaneous optimization of mass and frequency, and additionally for the
case where frequency and braiding time are considered.

Choosing the most appropriate Pareto efficient solution

In literature, there are multiple suggestions on how to chose the most suitable solution from the set of
computed Pareto efficient solutions. Marler and Arora (2004) for instance provide multiple variations
in their survey, where one is being picked and discussed in brevity herein, namely the notion of
maximal utility. One can for instance define utility such that it quantifies the degree of individual
benefit or gain by putting the current criteria value f⋆i into context with the best and worst possible
outcome. This definition is given next,

U =
no

∑
i=1

f̄i =
no

∑
i=1

1 −
f⋆i − f

◻
i

f◻i − f
∎
i

, (6.15)

where f◻i and f∎i represent the worst (nadir) solution and respectively the best (utopia). Once, the
utility is computed for each optimum, the one displaying the maximum utility could be chosen. Even
though, this approach is appealing due to its mathematical basis, it is not generally viable in practice,
since the engineer or responsible project managing director will re-evaluate the whole situation by
bringing in new preferences and thus weights, which could point into a totally other direction where
a situation-dependent optimal compromise is lying. Knowing that, it is hence beneficial to rely on an
efficient approach capable of robustly approximating most of Pareto frontier, such that the decision
maker’s information is being maximized. This utility definition has also been applied on the propeller
example yielding the outcome depicted in figure A.12.
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Sensitivities of the criteria and associated shadow prices

In this thesis, the concept of shadow prices is used quite extensively for almost every structural
example. This is mainly because of they illuminate much of the design-dominating restrictions and
how those imprint onto the releasable utilities or vice versa, the price being payed in the hidden by
imposing certain constraint levels. In section 2.2.2 they were introduced for single-objective problems
first via equation (2.4). Now, this concept will be transfered to a general multi-objective optimization
problem being scalarized to f̃ as given with equation (6.7). The linearization of one objective fi with
respect to the constraint level c of the response r associated with the constraint gl = r

c − 1 ≤ 0 can be
made explicit via the following equation

Lin(fi(c +∆c)) = fi∣xoptj
+
∂fi
∂c ∆c

= fi∣xoptj
+
∂fi
∂f̃

∂f̃
∂gl

∂gl
∂r

∂r
∂c∆c,

(6.16)

where the partial derivatives ∂f̃
∂gl

, ∂gl∂r and ∂r
∂c can be determined to be −λl, c−1 and 1, respectively.

The sole component asking for determination is the partial derivative ∂fi
∂f̃

, which can be obtained by
differentiating the scalarization. Hence, for the simplest scalarziation, given by equation (6.7), the
derivative can be computed to be ∂f1

∂f̃
= κ−1 and ∂f2

∂f̃
= (1 − κ)−1. This linearization is for instance

done for the A-pillar example in section 8.2, where the equations (8.18) and (8.19) provide the partial
derivative of the scalarized objective, there fd, and the linearization of one objective, effort e. An
extension of this linearization can be made by not linearizing with respect to the constraint level, but
instead to any given relevant parameter Υ of the model, such as fiber stiffness, number of filaments
or even process parameters such number of bobbins. Obviously, for doing so, the linearization
as introduced by (6.16) simply needs to be extended by all partial derivatives with respect to the
parameter Υ of interest. It shall be highlighted, that all partial derivatives means, that all constraints
comprising responses which are being influenced by Υ need be considered, such that a meaningful
linearization can be realized. The following equation (6.17) states this, with Λ representing a set of
indicies l of all constraints with direct or indirect dependency on Υ, i.e. gl = gl(Υ, rl(Υ), x, c).

Lin(fi(Υ +∆Υ)) = fi∣xoptj
+
∂fi
∂Υ ∆Υ

= fi∣xoptj
+
∂fi
∂f̃

{∑l∈Λ
∂f̃
∂gl

(
∂gl
∂rl

∂rl
∂Υ +

∂gl
∂Υ)}∆Υ,

(6.17)

The afore mentioned A-pillar linearlization of the objective effort e with respect to the constraint
level will also be extended by a sensitivity study yielding equation (8.20). This partial derivative
can be utilized so as to extrapolate the influence of the used fiber material, i.e. how the objective
effort e would change in case the fiber is being substituted ( see equation (8.21) and table 8.8). Before
the discussion on post-processing is closed, the sensitivity of one objective to another ∂f2

∂f1
is being

discussed briefly. This will be applied and discussed at length in section 9.2.2, where this derivative is
elaborated based on the computed approximations of the Pareto frontier. As mentioned before, the
optimization of the scalarized vector optimization problem, can also be understood, as finding the
intersection of of line L–being defined as L ∶= {(f1, f2)∣const. = κf1 + (1 − κ)f2} for a given objective
weight κ–with the boundary curve C on the region of feasible design criteria Y . Again, the Pareto
frontier is evidently a subset of this boundary ∂Y . This abstract interpretation is illustrated in the
following figure, where the line L is shifted until it touches the boundary ∂Y . Analytically, one can
derive, that at the optimum or geometrically speaking at the intersection of L and C, the derivative
∂f2
∂f1

of the Pareto frontier is equal to the one defined by the line L. This is because they are tangent
(minimization) at this point. Thus the derivative can be expressed via,
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∂f2

∂f1
=

κ

κ − 1
(6.18)

Obviously, this though only works for the convex hull of ∂Y . Moreover, it will be shown in section
9.2.2, by following a different derivation of this partial derivative, that this statement holds. However,
the application within industrial problems revealed, that computing the slope of the Pareto frontier via
equation (6.18) is susceptible to small numerical deviations in the used objective weights κ and thus
may yield derivative information being correct in direction but displaying considerable large errors in
magnitude. For this reason, an alternative approach will be derived and applied, being less sensitive
to numerical imperfections and being in that consequence more robust and reliable in practice.
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L ∶= {(f1, f2)∣const. = κf1 + (1 − κ)f2}

Optimization process

Found optimum for fixed κ

Boundary curve on Y , where
C ∶= {(f1, f2) ∈ ∂Y}Feasible

criteria Y

Figure 6.6.: Exploiting the line interpretation for deriving the sensitivity
at a given point of the Pareto frontier ΩP

6.3. General aspects of composite optimization

This section addresses all gained insights particularly associated with the structural design optimiza-
tion of composites. In spite of this, these insights may also apply for further fields and applications of
multi-criteria optimizations as well.

6.3.1. Possible design conflicts in composite optimization

The afore lead discussions mainly focused on vector optimizations, i.e., the simultaneous optimization
of multiple criteria, which typically emerge in the design process. The focal point of the discussion
was the involved theory and mathematical fundamentals in terms of solving, post-processing, stating
optimality et cetera; yet the question how these most-likely conflicting design goals determining
the optimization criteria do form, remained unanswered. Figure 6.7 provides the most prominent
fields in composite design, possibly yielding those conflicting optimization criteria. So obviously,
the ecological perspective can point into directions being opposed to the economical one, when for
instance the decision on a certain matrix material shall be made. Or, as being more related to this
thesis, the technical mindset, which may mainly focuses on technical feasibility and production-wise
realization of the structure. On the contrary, the mechanical viewpoint observes structural efficient by
designing as light as possible. This can, however, bring forth issues in producibility and associated
manufacturing cost, which in that consequence translates to designing conflicts with the technical and
economical perspective towards optimal composite design. Within this thesis, several multi-criteria
optimization tasks will be posed and solved, thereby illustrating how to capture relevant aspects
forming the distinct objectives and then solving methodologies facilitating the efficient treatment of
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those design tasks. Obviously, a profound framework for dissolving those conflicts in optimal design
of composites can unleash most of the light weight potential of composites.

Objective
Nature

EconomicalTechnical

Ecological

Mechanical Physical

. . .

Figure 6.7.: Possible design goals in structural design optimization

6.3.2. Pecularities of gradient-based composite optimization

Multi-modality and the developed global search strategy

g2 = 0

∇ff = cg1 = 0
x1

x2

xu1

xl1
xl2 xu2

Isolines:
objective f
constraints g1,2

infeasible χ

opt. candidates
sample point

design space χ
Global search:

Figure 6.8.: Illustration of the global search strategy

The differentiation between local and global optima has already been introduced in section 2.2,
where the optimality was in light of the discussion (see figure 2.1, where 1 represents a local and
3 a global optimum). Later, the system equations in tandem with the gradient-based optimization

strategy have been identified to possibly lead to local optimization results, in case the underlying
optimization responses are non-convex with respect to the design variables. This can for instance
be the case for strongly non-linear or oscillating system equations. In the subsequent chapter 3,
composite have been introduced. Since the mechanical description of those determines the underlying
system equations, they are of particular interest. It has further been show in section 3.1, how the
ply-wise transformation of the stiffness tensors

¯
Q to

¯
Q̄ introduced a trigonometric dependency on

the orientation of the plies, e.g. sin(θ)4 (see equation (3.2)). Obviously, this may lead to a pronounced
non-convexity of an optimization response with respect to the orientation θ, once the response is to
some extend characterized by the composites stiffness, e.g. maximal allowable failure index of 0.9:
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g(θ) = FI(θ)− 0.9. Figure 6.8 depicts the same design as in figure 2.1, but in addition to the isolines of
the objectives in red and constraints in bold black lines, the side constraint–hence, the bounds xli and
xui on the design variables–are given as well (dashed black box). As can be comprehend, the feasible
design space is basically situated in the upper-right half of the design space.

Side example: Post-processing of the vector optimization

In the following, the post-processing as discussed earlier is carried out for the posed and
solved optimization problem (6.4). At first, the first oder optimality O as introduced via
equation (6.14) is plotted. It can be comprehended by the help of the following figure, that
optimality can be stated for each derived solution with ease.
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Next, the utility u as defined with equation (6.15) is given as well. As can be seen in the
following plot, Pareto efficient solution four has the greatest utility. However, it shall also
be noticed that the utility values are all rather small indicating that the Pareto frontier itself
has a rather flat convexity, rendering each solution a reasonable compromise.
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As afore mentioned, the issue of converging to a local optimum can arise, once gradient-based
optimization strategies are chosen, which, by the way, will be the choice of strategy for multiple reasons
in this thesis. A strategy mitigating this drawback of multi-modality to some extend, herein referred
to as global search strategy, is introduced next. First, sample points are generated via a Latin Hypercube
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Sampling (see section 2.5.4) over the whole design space. Thereafter, the optimization responses, i.e.
objective f and inequality constraints g⃗, are being evaluated for each sample points. Then, the thereby
obtained results are ranked and sorted, such that infeasible solutions are highly penalized and sample
points are arranged in ascending order starting from the lowest feasible objective function value. Based
on this order, a small subset–the optimization candidates with the lowest objective function value,
while still being feasible–is chosen to be used as starting points for the subsequent optimizations. Once
each optimization run has converged, they are post-processed collectively, whereby additional insight
into the optimization task is provided by the evaluation of the scatter of optimal objective function
values, scatter in the optima et cetera. This global search strategy is also visualized in figure 6.8, where
the sample points are given by the five-teen bullets ●, being distributed over the whole design space
χ. As further can be seen, the five most promising candidates–thus the ones being feasible gi ≤ 0
and evincing the lowest objective function values f–are selected and highlighted by a surrounded
circle ⊙. Despite this additional sampling, requiring additional function evaluations, this strategy
proved itself to be highly computationally efficient. This is because of multiple reasons. First of all,
the number of sample points is rather small. Secondly, the optimizations themselves not only require
less function evaluations due to the efficient sampling, but further are already efficient in their-selves,
since gradient information was accessible and used in each and every design. Last but not least, this
strategy also enriched the understanding of the composite optimization tasks, by exposing more of
the complex design spaces and supplying additional information about the scatter of f⃗ and x⃗, thereby
allowing some sort of inference on the level of multi-modality of the design task.

Discrete variables

Stating optimization tasks in composite design often yields a special sub-class of optimization prob-
lems, the so-called mixed integer nonlinear problems as discrete or integer design variables are present.
Examples for those variable types are number of plies, choice of fiber, number of bobbins in braiding
and alike. For coping with those class of problems while still exploiting gradient information, Schatz
et al. (2014) developed a novel algorithm: APSIS (Algorithm-based Property Selection Including
Sizing). This algorithm was inspired by Bendsœand Sigmund (1999), where various material interpo-
lation are discussed, Ashby (2011), who discusses concepts for material selection and Stegmann and
Lund (2004), who relaxed integer variables in Topology optimization. The foundation for this, was set
by the work of Ehrmann (2013), where the first outline of APSIS was defined. Adam (2014) successfully
deepened the understanding and added value to the engineering examples. Finally, Eiperle (2014)
showed the numerical performance by studying academic examples as well as engineering examples
and moreover added a new discrete variable type, the beam’s profile shape, i.e. square, I-beam et
cetera.

Zero objective function sensitivities

An possible issue also being associated with composite optimization problems, is the presence of
the zero design sensitivities. These sensitivities can for instance arise, once the mass of a composite
structure m shall be minimized, which is most frequently the case, and in addition to that, ply
orientations θi are a subset of the design variables x⃗. Clearly, the mass is not affected by a change in
the orientation of a ply and consequently ∂m

∂θi

!
= 0. In case, gradient-based optimization approaches

are used and the response displaying zero design sensitivities is set as an objective, this may lead
to convergence issues, where the algorithms may need more iterations and, thus, more function
evaluations. This has been observed in several composite optimizations, e.g. in the work of Köhler
(2014). This will also be discussed later in section 8.2.1, where the optimization of the prepreg
laminated A-pillar is discussed. To underpin this, a survey has also been made for the side example,
the optimization of the pipeline and will be given next.
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Side example: Studying zero design sensitivities

To illuminate how zero design sensitivities can negatively affect the condition of the opti-
mization problem, the posed pipeline optimization ( see (6.4)) has been optimized twice,
once minimizing the mass of the pipeline m and thereafter, minimizing the compliance
of the structure Kb, whereby the first objective includes zero design sensitivities. Three
different algorithms, SLSQP, NLPQLP and CONMIN have been used.
The following bar plot illustrates the outcome of this, where the difference in function
evaluations between both runs ∆Eval = (Evalm − EvalKb)/Evalm is used as the measure.
Thus, ∆Eval = 49 basically means, that minimizing on the objective mass leads to an average
increase in function evaluations of 49%. So, considering all three studies, one can see, that
the number of function evaluations is considerably higher for the mass optimization using
SLSQP or NLPQLP and a bit less for CONMIN. This reflects the made experiences quite
well.
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The interaction of structural efficiency, manufacturing effort and complex material models is especially
of interest in the following chapters. For that purpose, several numerical demonstration examples will
be defined, with which these interactions will be highlighted and studied for two given manufacturing
techniques: prepreg laying and braiding. The used demonstration examples are adopted from practice.
But before the two large structural examples–the A-pillar and propeller structure–some academic
examples shall be given first. The fist example is intended to give an insight into the general gradient-
based multi-criteria optimization. This example is then followed by an academic structure, a cantilever
beam, for which the simultaneous gradient-based optimization of structural efficiency and technical
effort, particularly, the effort originating from the composite manufacturing, is being demonstrated.
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7.1. Analytical test example

This first analytical example is pointing towards the issue of approaching multi-criteria optimization
problems with gradient-based algorithms. The use of gradient-based algorithms is desirable in this
thesis, because the structural design problems addressed within the following two chapters are
involving not only sophisticated finite element analyses, but also a great number of design variables.
Next, the analytical test example is defined first. Thereafter, the optimization problem is transformed
such that the set of optimal solutions–thus the set of Pareto efficient criteria of the multi-objective
optimization problem–can iteratively be obtained. Then, the multi-criteria optimization problem is
solved, where the solution process is in the focus of the ensuing discussion. Lastly, the gained insights
are briefly discussed.
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7.1.1. Problem definition

With the following set of equations (7.1) the analytical multi-criteria optimization problem is being
defined.

minimize
x∈χ

fi(xj), i ∈ {1,2}, j ∈ {1,2}

subject to gl(xj) ≤ 0, l ∈ {1,2,3}
with χ = {xj ∈ RnDV ∶ 0. ≤ xj ≤ 5.},

where

(7.1)

f⃗ ∶ f1 = x1 g⃗ ∶ g1 = (x1 − 5)2 + (x2 − 5)2 − 42 ≤ 0
f2 = x2 g2 = x1 − 4 ≤ 0

g3 = x2 − 4 ≤ 0

As given therewith, the optimization task is, to find values for the two design variables x1 and x2

such that the objective function vector composed of f1 and f2 is minimal, while all three inequality
constraints g1, g2 and g3 are fulfilled. Studying this problem reveals, that there is in general not only
one single optimal solution, but rather a set of optima instead, the Pareto frontier as given with,

ΩP ∶= min
x

{f⃗(x⃗)∣g⃗(x⃗) ≤ 0⃗} (7.2)

In the following, an approach for computing discrete Pareto optimal points f⃗p approximating
the whole Pareto frontier ΩP , being composed of infinitely many Pareto efficient solutions, is being
presented. Clearly, the challenge in hand is to find this set of Pareto efficient solutions, or a subset
representing a good approximation of the whole set, such that it uncovers most of the Pareto frontier’s
course while requiring as few optimization runs as possible.

7.1.2. Condensing the optimization problem

In the prologue part, more specifically in section 6.2, a gradient-based approach for solving multi-
objective optimization problems has been introduced. This approach is now applied, such that the
original vector optimization problem stated by the equation set (7.1) can be condensed to

minimize
x,κ

fκ = κx1 + (1 − κ)x2,

subject to g1,2,3 ≤ 0,
gBS ≤ 0,

and hγ = γ
2,

with x⃗ ∈ χ and κ ∈ [0, ...,1]

(7.3)

As already given in section 6.2, the two additional constraints gBS and hγ are defined as follows,

gBS ∶= ∥(f⃗p−1 − f⃗p−2)(f⃗(x⃗) − f⃗p−1)∥L2 ≤ 0,

hγ ∶= ∥f⃗(x⃗) − f⃗p−1∥2
L2 = γ

2.
(7.4)

The following figure 7.1 recapitulates the introduction of the approach in brief, by illustrating the
equidistant constraint hγ in blue and the back-stepping constraint gBS in red.
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Figure 7.1.: Sketch of the vector optimization approach

7.1.3. Pareto efficient criteria

For this analytical vector optimization problem the set of Pareto optimal solutions, can be given
analytically with

ΩP = ΩE ∶= {(f1 , f2) = (t , 5 −
√

16 − (t − 5)2) ∣ t ∈ R ∶ 5 −
√

15 ≤ t ≤ 4} , (7.5)

where ΩE denotes the set of Pareto efficient or optimal solutions, ΩP the Pareto frontier and t
the parameter defining the frontier. For this example, the whole Pareto frontier is Pareto efficient,
hence, there are no local optima due to a non-convexity of the frontier. Next, the numerical solution is
presented by solving the condensed optimization problem (7.3) for eight Pareto optima nP , hence, eight
optimizations needed to be conducted sequentially. Figure 7.2 depicts this numerical approximation
of the frontier, where the red points highlight Pareto optimal solutions, the green line represents the
distance between the extremal solutions, i.e. ∥f⃗ ∣κ=0 − f⃗ ∣κ=1∥2

the blue circles with radius γ visualize the
equality constraint hγ and finally the black lines the approximation of the Pareto frontier. Besides, the
discrete scatter of points and the resulting multi-linear frontier representation, makes it comprehend-
able why the numerical vector optimization utilizing gradient-based methods has to be regarded as
an approximation ΩP̃ or at least as a subset of all Pareto optimal solutions as given here with ΩP . In
addition to these directly derived results, two interesting points–utopia and nadir design point–are
given in figure 7.2 as well. Combining the best objective function values of both extremal solutions
leads to utopia, but as the name already reflects, that this design is clearly fictitious in most cases. The
nadir is defined vice versa and thus theoretically represents the worst fictitious optima.

7.1.4. Brief summary on the general vector optimization

Before stepping into the discussion, a comparison of the computed Pareto efficient solutions (f̃1, f̃2),
which approximate the analytical Pareto frontier given by ΩP in equation (7.5) will be made, by
evaluating the following error measure,

∆f⃗ ∶=
f2(f̃1) − f̃2

f2(f̃1)
, (7.6)
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Figure 7.2.: Solution of the analytical vector optimization problem

where f2 is determined by the analytical solution. As can be comprehended by studying the
optimization result as given with figure 7.2 in tandem with the errors listed in table 7.1, the gradient-
based vector optimization scheme is capable of computing Pareto frontier approximations with
high quality, i.e. equidistant, and of high accuracy. Ultimately, the approach can be identified to
be advantageous for the following reasons. First and foremost, the mathematical frame ensures an
equidistant approximation of the Pareto frontier, where the number of support points of the frontier
can be given afore by nP as well. Secondly, the sensitivities–being inherently computed within the
gradient-based algorithms–can be used for profoundly inquiring optimality via the KKT conditions
(see equation set (2.3)). And lastly, the approach did prove to be numerically efficient in terms of
number of function evaluations compared to zero-order algorithms. This superiority in efficiency even
magnifies for large design space and efficient design sensitivity analyses. This becomes more evident
after comparing the performance of this approach with the one of zero-order algorithms. Some of
these results are given in appendix section A.4, where the genetic algorithm NSGA-II needed more
function evaluations, while still not being able to resolve the Pareto frontier in good quality and in
addition to that yielding sub-optimal solutions, since dominated by the analytical solutions, which is
not the case for the ones obtained by the implemented approach (see table 7.1).

Table 7.1.: Listing of the errors ∆f⃗ for each Pareto efficient solution p

p 0 1 2 3 4 5 6 7

∆f⃗ −1.2E − 13 1.9E − 08 1.3E − 09 1.8E − 10 7.1E − 11 2.9E − 14 1.2E − 11 −1.2E − 13

7.2. Cantilever beam

Now, an academic demonstration example shall further underpin the general multi-criteria optimiza-
tion approach. In contrast to the analytical example, the technical significance will drastically be lifted,
since structural mechanics will be considered along side with manufacturing aspects. However, the
core discussion of how the developed manufacturing effort model enriches the optimization process
will be shifted into the two subsequent chapters.
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7.2.1. Model definition

The structural design problem is given by the following figure 7.3. As can be seen there, a beam of
square shape is clamped on one side and loaded with three different loads on the opposite side. Two
of the loads, FLC1 and FLC2, are determined by bending forces causing the deflections uLC1 and uLC2

respectively. The torsional moment MLC3 defines the last load, twisting the beam by ϑLC3. Height H ,
width B, edge radius r and the fiber architecture, i.e. ϕ, of the square beam are fully parametrized and
will thus later serve as design variables. Priorly, in chapter 4 and 5, the manufacturing effort model
and the involved multi-scale homogenization approach have been introduced. Both models are now
combined to one optimization model as illustrated in figure 4.8.

MLC2

FLC1

B

H

L

o○
ϕ

−ϕ

FLC3

Figure 7.3.: Schematic sketch of the beam problem

7.2.2. Setting up the optimization problem

With the following equation set (7.7), the optimization task is defined. As stated, H , B, r and ϕ of the
square beam form the design variable vector x⃗. The mass m and associated manufacturing effort e
determine the objective vector f⃗ . Imposing certain stiffness requirements and requiring no failure,
results in the constraint vector g⃗.

minimize
x∈χ

fi(xj), i ∈ {1,2}, j ∈ {1, . . . ,4}

subject to gl(xj) ≤ 0, l ∈ {1, . . . ,3nsec + 3}

with χ = {xj ∈ RnDV ∶ xlj ≤ xj ≤ x
u
j },

where

(7.7)

x⃗ ∶ x1 =H f⃗ ∶ f1 =m g⃗ ∶ g1 =
uLC1
umax,1

− 1 ≤ 0

x2 = B f2 = e gk+1 = FILC1 − 0.9 ≤ 0 k = 1, . . . , nsec

x3 = r gnsec+2 =
uLC2
umax,2

− 1 ≤ 0

x4 = ϕ gk+nsec+2 = FILC2 − 0.9 ≤ 0 k = 1, . . . , nsec

g2nsec+3 =
ϑLC3
ϑmax,3

− 1 ≤ 0

gk+2nsec+3 = FILC3 − 0.9 ≤ 0 k = 1, . . . , nsec

This optimization task is then iteratively solved, by solving the following condensed–or also called
scalarized–optimization problem (7.8). Again, the scalarized optimization problem (7.8) is solved
nP -times, where nP is the number of Pareto points for the approximation ΩP̃ of the whole Pareto
frontier ΩP . gBS and hγ further ensure a proper equidistant arrangement of those points. See equation
set (6.11) and the illustrations in section 7.1 for more information.
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minimize
x,κ

fκ = κm + (1 − κ)e

subject to g1,...,3(nsec+1) ≤ 0,

gBS ≤ 0,
and hγ = γ

2,
with x⃗ ∈ χ and κ ∈ [0, ...,1]

(7.8)

7.2.3. Pareto frontier of the cantilever beam

With figure 7.4 the solution of the original vector optimization problem (7.7) is given. As mentioned
earlier, the Pareto frontier has been iteratively been solved by solving the problem in scalarized form
as stated (7.8) for nP = 7 times. In figure 7.4, the green line represents the direct connection between
the extrema, minimal effort and minimal mass and thus highlights the non-convexity of the problem
once being contrasted with the computed nP Pareto optimal solutions in red.
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Figure 7.4.: Approximated Pareto frontier of the vector cantilever optimization

Moreover, the objective function weights κ are here given in figure 7.4 as well, so as to underpin
the generality of the approach, since those weights are not distributed linearly, but instead rather grow
exponentially. This can be comprehended by considering figure 7.5b, where those objective function
weights κ are plotted over the number of Pareto point, thus p = [1, . . . , nP ]. As can be seen there, they
are far from being linear as highlighted by the dashed black line. Last but not least, the approximated
Pareto frontier is given with figure 7.5a. As a side mark, due to the fact, that a Pareto frontier actually
did form, it can be stated at this point, that manufacturing effort and structural efficiency in terms
of mass can be competitive. Later it will be shown, that this is the case for most structural design
problems. For this case, the aspects influencing the outcome of the manufacturing effort model the
most are:

● H
B → 5.0 ∶ High aspect ratio, thus fiber slipage, breakage or braid opening

● ϕ→ 0.0○ ∶ Take-up speed to infinity

● w(b) → 4.0 mm ∶ Braid opening

● r → 0.0 mm ∶ Fiber breakage at sharp corners
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Figure 7.5.: Approxmiated Pareto frontier and objective weight plot
for cantilever beam example

7.2.4. Brief summary on multidisciplinary vector optimization

Even so, the example is conceivable simple from a structural optimization point of view, the multi-
criteria optimization task is rather challenging to be solve gradient-based. This is mainly because of
the fact that simple scalarizing the multi-criteria optimization task via f = .5e + .5m would lead to a
Pareto optimal solution being far from being an optimal compromise. However, the outlined approach,
where the objective weight κ is also being considered as a decision variable yields an equidistant
and in that sense accurate approximation of the whole Pareto frontier. By this approach, an optimal
compromise–here, minimal distance to utopia, being the combination of the both minima–could be
identified to be around κ = 0.968. This weight is actually quite far away from any intuition, which
would normally yield 0.5.

Morever, the discussed multi-criteria optimization problem included structural and technical
responses, which did display a pronounced competitiveness. The investigation of this will be further
deepened by studying industry relevant design tasks, an A-pillar and a propeller structure.
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8 | Optimizing an automotive A-pillar

In this section, an A-pillar of a roadster shall serve as a demonstrator. For this automotive structure the
simultaneous optimization of structural and technical aspects, namely, the associated manufacturing
efforts will be shown. The two considered manufacturing techniques are: braiding and prepreg
laying. Manufacturing effort will thereby be modeled via the introduced soft computing approach,
hence, by capturing and emulating expert knowledge regarding those two manufacturing techniques.
With figure 8.1, the A-pillar as situated in the convertible Roadster R1 produced by Roding is being
illustrated. The picture on the left is taken from the official Roding homepage. On the right, the
A-pillar structure itself is depicted. In the following subsections, the optimization problem is first
stated, then solved for the case of prepreg laying and braiding as the manufacturing technique. Finally
a brief summary is given for this automotive optimization example.

Figure 8.1.: The installation circumstances of the investigated A-pillar
Left picture: ©Roding Automobile GmbH

“Saving even a few pounds of a vehicle’s weight could mean that they would also go
faster and consume less fuel. Reducing weight involves reducing materials, which in turn,
means reducing cost as well!”

Henry Ford (1863 – 1947)

Contents

8.1. Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.1. Relevant load cases for the A-pillar . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.2. Modeling the A-pillar via finite elements . . . . . . . . . . . . . . . . . . . . . . 100
8.1.3. Material modeling in case of braiding . . . . . . . . . . . . . . . . . . . . . . . 102
8.1.4. The prepreg material definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.1.5. Design responses of the initial design . . . . . . . . . . . . . . . . . . . . . . . . 105
8.1.6. Definition of the optimization task . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2. Optimization of the A-pillar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.1. Optimizing the prepreg laminated A-pillar . . . . . . . . . . . . . . . . . . . . 107
8.2.2. Optimization considering braiding as the manufacturing technique . . . . . . 112

8.3. Summary of the optimization including a soft computing model . . . . . . . . . . . 118

99



8. Optimizing an automotive A-pillar

8.1. Problem definition

Concerning the designing of an automotive A-pillar, multiple disciplines do imprint restrictions and
requirements onto the designing process. However, in this thesis, the design-determining requirements
are to be derived from basically two disciplines: driving dynamics and crash-worthiness. By doing
so, the purview in terms of technical detailing and maturity may be inchoate. Nevertheless, the
study of influences and interactions with the associated manufacturing effort for both manufacturing
techniques–which is in any case the main focus of this thesis–is not affected.

8.1.1. Relevant load cases for the A-pillar

The first load case is determined by the most critical crash load case for the A-pillar structure, the
roof crush occurring once the vehicle overturns. Figure 8.2a illustrates the laboratory test set up
as for instance given with DOT (2006) according to the Federal Motor Vehicle Safety Standard FMVSS
216a. Based on this standard, the roof crush force FLC1 is defined to be one and a half times as
big as the vehicle’s weight force, thus, FLC1 = 1.5mg ≈ 15.5kN for the considered case. After the
load is being applied the structure shall retain structural integrity and may not deflect more than
uLC1,max = 127mm.

5○

FLC1 FLC1

35○

Side view Front view
(a) Roof crush test set-up

FLC1

FLC2
FLC3

FLC4
(b) Considered load cases

Figure 8.2.: Laboratory roof crush resistance test and load cases for the A-pillar design task

For ensuring a high level driving dynamic performance of the roadster, the car body needs display
a certain stiffness for a bending and torsional load. For that reason, the three load cases characterized
by FLC2, FLC3 and FLC4 are defined. They mainly probe the stiffness in three different directions,
by computing the displacement for unit forces, such that those stiffness responses can be used and
regarded throughout the optimization process. Figure 8.2b summarized all four considered load cases
in one figure.

8.1.2. Modeling the A-pillar via finite elements

At the beginning, the A-pillar has been fully modeled using a MatLab routine defining the mesh in
a direct fashion. In the thesis of Jörg (2014), the general approach of directly generating the mesh
for tubular structures is presented and discussed at length. Exploiting this approach of defining
the model directly via nodal coordinates and element connectivity is especially advantageous in
terms of analytical sensitivities. This is mainly because they are accessible in a straight forward
fashion, in case NASTRAN is being used as the FEA. This has for instance, successfully be done by
Köhler (2014). However, considering the fact, that geometric information such as profile radii and
circumferences are needed as a subset of the parameter input vector for the manufacturing effort
model (as already discussed and illustrated in figure 4.9: y⃗MEM) leads to the idea of actually modeling
and parameterizing the A-pillar based on geometric information. This has been initiated by the thesis
of Rödl (2014), where the A-pillar is geometrically parametrized utilizing Abaqus CAE with the help of
multiple scripts written in Python. In the following this A-pillar model including its parametrization
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will be presented. Figure 8.3 not only provides an overview by illustrating different modeling levels,
for instance the surface model including the partitions or the line model, where the different profile
types are already sketched. Figure 8.3 further shows, how the final FE model is actually derived;
namely, starting from profiles, the surfaces are defined with the help of the line model. After they are
partitioned, a neat mesh can be generated. In addition to the clear decomposition of the geometry,
enabling a robust and euclidean meshing, these partitions facilitate a variable definition of braiding
sections and, in that consequence, braiding angle. The extrude axis is defined via supporting points
and radii, which are taken from the initial geometry given by Roding. Due to strong geometric
restrictions imposed from other disciplines such as design or other parts such as the door, the only
variable parameter is considered to be the curvature R at the tip corner of the A-pillar. This is being
illustrated in figure 8.4a, where the extrude axis is given in blue. Moreover, a coordinate s, which
basically follows the extrude axis, is defined, witch which the braid angle will later be determined if
braiding is chosen as the manufacturing technique.

Line model Surface model Partitions Final meshProfiles
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B
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Figure 8.3.: Different parametrization levels for the A-pillar model by Rödl (2014)
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(b) Profile types by Rödl (2014)

Figure 8.4.: Extrusion axis and associated profile types A, B and C of the A-pillar

As also shown in figure 8.4a, the profiles vary along the extrude axis. To account that, three
different profile types, A, B and C have been defined. They mainly differ in the base shape shape,
hence, radii, the rounding off at the corners and number of corners (A six, B seven and C nine corners).
All three different profile types are given with figure 8.4b. By this parametrization, the generation
of basis vectors was made possible with which analytical design sensitivities can be computed. In
the two following subsections, the material parametrization and further peculiarities for the two
different manufacturing techniques–braiding and prepreg laying–will be discussed. But for the sake
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of completeness, the sequence of analyses and available responses shall be presented. As given in
table 8.1, first the roof crush is simulated by imposing the crush force FLC1 onto the tip of the A-pillar
(see figure 8.2b). Responses for this load case are failure indices for all composite layers and intrusion
at tip. This step is followed by a set load cases, which probe the stiffness of the A-pillar, hence, the
unit forces from FLC2 to FLC4 trial the stiffnesses ranging from Kxx to Kzz .

Table 8.1.: The analysis steps as implemented in the parametrized model

Step Load case Loading Remarks

(Buckling) - FLC1 Optional step
Roof crush LC1 FLC1 Evaluate failure and deflection

Static stiffness LC2 FLC2 Probing stiffness Kxx

Static stiffness LC3 FLC3 Probing stiffness Kyy

Static stiffness LC4 FLC4 Probing stiffness Kzz

8.1.3. Material modeling in case of braiding

Now, the FEM of the braided A-pillar is being discussed. Since, both FEM–prepreg layered and
braided–mainly differ in the material model definition and parametrization, the focus shall lie on
those two aspects. At first, a variation of the braiding angle ϕ(s) along the extrude axis s (as depicted
in figure 8.4a) needs to be enabled, such that this angle distribution can be optimized in the subsequent
structural design optimization. Equation (8.1) states how the braiding angle ϕ(s) is defined based on
the coordinate s, by taking advantage of several support points i. Each support point i is characterized
by an angle ϕi and a coordinate si and in-between two, i.e. si and si+1, a linear angle variation is set.

ϕ(s) = ϕi +
ϕi+1 − ϕi
si+1 − si

(s − si)⇐⇒ si < s ≤ si+1, i ∈ {1,2,3,4}, (8.1)

Through this variation of the braiding angle ϕ(s) multiple braid configuration can be considered.
For the sake of further increasing the degrees of freedom for design optimization, the thickness of the
braids can be varied and, thus, be optimized as well. This is shown in figure 8.5, where the three braid
layer sections k ∈ {1,2,3} with their corresponding section thickness tk is given.

t1 t2 t3

Figure 8.5.: Illustration of the three different braid section regions Rödl (2014)

As mentioned earlier, the stiffness and strength properties of a braided structure are highly
dependent on the given fiber architecture in regard of braiding angle, braider yarn width, axial yarn
width and many more, since undulations and similar effects have a strong imprint on these properties.
To account that, a decoupled homogenization approach based on surrogate modeling (as discussed
earlier in chapter 5) has been developed and actually conducted. Now, it will be shown, how this
material meta-model can be embedded into the FEA. First the constitutive law will be given, followed
by the failure criteria. Both will be discussed for the Abaqus CAE, but it is self-evident, that this
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procedure holds in similar form for other tools as well. A general anisotropic elastic material can be
defined as follows,
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. (8.2)

Please note, that in equation (8.2) the in-plane shear γ12 is equal to γ12 = 2ε12 and that it has further
been exploited, that the Mindlin-Reissner plate theory, i.e. plane stress, will later be used for describing
the A-pillar, being a tubular shell structure. Each component of the stiffness tensor, or matrix in Voigt
notation, is defined as given as depicted with the next equation for C11,

C11(ϕ(s),w
(b)

(s,ϕ)) = a5ϕ
2
+ a4 (w

(b)
)

2
+ a3ϕw

(b)
+ a2ϕ + a1w

(b)
+ a0 (8.3)

As given with this equation (8.3), the entry C11 of the stiffness tensor
¯
C is approximated via

a polynomial regression based on the two parameters braiding angle ϕ and braider yarn width
w(b). Because sensitivities massively accelerate gradient-based optimization runs and gradient-based
methods shall mainly be applied herein, available derivatives of each and every response will be
computed. For the entryC11 of the stiffness tensor, the derivative with respect toϕ at s′ = 0.5(s3−s2)+s2

can directly be stated to be

dC11

dϕ
∣
s′
=
∂C11

∂ϕ
∣
s′
+
∂C11

∂w(b)
dw(b)

dϕ
∣
s′

= 2a5
ϕ3 − ϕ2

2
+ a3w

(b)
∣s′ + a2 + (2a4w

(b)
∣s′ + a3

ϕ3 − ϕ2

2
+ a1)

dw(b)

dϕ
∣
s′
. (8.4)

Failure has been considered as based on first ply failure. To implement the computed and
approximated failure strength values Rk the following elliptic failure body has been used.

FI(σk,Rk) =

¿
Á
ÁÀ∑

k

(
σk
Rk

)
2

, k ∈ {11,22,12,13,23} (8.5)

Rk = a5,kϕ
2
+ a4,k (w

(b)
)

2
+ a3,kϕw

(b)
+ a2,kϕ + a1,kw

(b)
+ a0,k

As given with (8.5), the strength values Rk are also given via polynomial regressions, where
the six coefficients, thus from a0,k to a5,k, have been determined via the decoupled homogenization
scheme. In that scheme, the meso-cell model has been incrementally loaded in multiple directions
until failure according to Puck for the fiber tows or Max Strain for the matrix did occur. With figure
8.6 a visualization of the failure is being given. This shown failure body is computed for a braiding
angle ϕ of twenty degrees. The shape of the elliptical failure body is plausible, since the braid layer
can take more load in axial direction than in shear or in transversal direction.

Again, the derivatives can be defined beforehand in the following fashion,
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R11

R22

R12

Figure 8.6.: Failure body spanned by the material meta-model for braiding
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where DSA is referring to the analytical design sensitivity analysis (see equation (2.14)). The
derivatives and implementation of both, the stiffness tensor and strength quantities, have been studied
extensively by Rödl (2014). In his work, all sensitivities are implemented and used throughout every
optimization.

8.1.4. The prepreg material definition

For the optimization of the A-pillar considering prepreg laying as the manufacturing technique, NAS-
TRAN has been used for the FEA. This has been done for essentially two reasons. First and foremost,
it should be shown that the incorporation of soft computing models, especially the manufacturing
effort models, can be accomplished for any FEA tool and is in that consequence generally applicable
and realizable in a technical environment with moderate to low implementation effort. Secondly,
NASTRAN does, as opposed to Abaqus, provide analytical design sensitvities (see equation (2.14)),
which overweight the disadvantages of lacking geometrical information in the considered case, since
the linked manufacturing effort model fetches all needed inputs directly from raw mesh data. The
material is defined to be linear elastic and shows transversal isotropy for each ply. Because of the
fact, that undulations are negligible for most prepreg lay-ups–at least within early design phases–a
standard material definition provided by the FEA tool NASTRAN is used. The same accounts for the
failure criteria, which has been chosen to be the Tsai-Wu criteria. Each material card is defined for
a given region or, speaking more precisely, a given element set. Figure 8.7 depicts a possible region
definition.

In the master thesis of Köhler (2014), the consideration of discrete variables via APSIS within the
structural optimization of the A-pillar is studied comprehensively. An example for discrete variable
would be the thickness of plies, which can only be draped in integer steps. Köhler (2014) did shown,
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Figure 8.7.: Prepreg regions given in different colors for the A-pillar

that discrete variables can have a certain impact onto the optima, but, however, shall be studied for a
reduced set of discrete choices. He therefore concluded, that one shall first conduct fully continuous
optimizations, thereafter reduce the number of choices for discrete variables and optimize again
using APSIS. Withing the overall scope of this thesis, it is reasonable to conduct all optimizations
continuously, while focusing on the incorporation of manufacturing effort and restrictions first. As a
final remark, all prepreg optimization results shown later, have been derived based on an A-pillar
model in which analytical gradients are exploited. Hence, the following gradients (equation (8.7))
have been computed and passed back by NASTRAN. They namely are, intrusion uLC1 and failure
index FILC1 for the roof crush case and all stiffness responses Kxx,...,zz of load case two to four.

duLC1

dxi

dFILC1

dxi

dKxx,...,zz

dxi
(8.7)

8.1.5. Design responses of the initial design

Roding designs and manufactures the A-pillar using the braiding technology for manufacturing. This
is why, the initial design is being evaluated for the braided A-pillar. Rödl (2014) studied that initial
design. The results brought forth by his thesis are presented next. First, the deflections are presented
for all four load cases in figure 8.8. Load case number one, the roof crush load case, is depicted on
the left top side of the figure and the stiffness load cases start from right top side for Kxx and go
over the left bottom side for Kyy to the right bottom side for Kzz . Highlighted in red, right below
of the roof crush results, one can find the monitored intrusion value of umaxLC1 = 28.9mm. Due to the
fact, that similar forces have been used for all stiffness load cases, it can be stated that the A-pillar
structure shows the greatest stiffness in y direction for that initial design. In figure 8.9 information
regarding failure for the roof crush case is given. On the far left top, the failure index for that load case
is illustrated. As depicted, the maximal failure index is computed to be 0.69 and is near the clamp
point of the A-pillar. The A-pillar is installed and fixed at this clamp point with the help of bracket,
which in reality might be softer and in that consequence raise smaller stress peaks. Nevertheless,
stress peaks will be present in this area anyhow due the chiseled design in terms of radii and profile
geometry. Owned to the fact, that conservative values for the stiffness and strength properties of the
braid layers have been used and that the failure index is markedly below one, it can be stated that no
failure is to expected for the imposed load FLC1. If failure occurs, albeit not likely, the initial design of
the A-pillar will fail first near the clamping.

105



8. Optimizing an automotive A-pillar

uLC1

Kyy

Kxx

Kzz
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FLC3

umaxLC1 = 28.9 mm

Figure 8.8.: Deformation and deflections for all four load cases by Rödl (2014)
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Figure 8.9.: Stress and failure index distribution by Rödl (2014)

8.1.6. Definition of the optimization task

The optimization task for the braided as well as the prepreg manufactured A-pillar can be stated as
follows,

minimize
x∈χ

f,

subject to gl ≤ 0, l = 1, . . . , nIC

with χ = {xj ∈ RnDV ∶ xlj ≤ xj ≤ x
u
j }. j = 1, . . . , nDV

(8.8)

g1(x⃗) = 1 − Kxx
Kxx,min

Stiffness requirement in x direction

g2(x⃗) = 1 −
Kyy

Kyy,min
Stiffness requirement in y direction

g3(x⃗) = 1 − Kzz
Kzz,min

Stiffness requirement in z direction

g4(x⃗) =
uLC1

uLC1,max
− 1 Limit on intrusion for roof crush case

g5+s(x⃗) =
FILC1,s

0.9 − 1 No failure for the roof crush case ∀s ∈ {1, . . . , nSec}

The objective function vector will be defined right before each optimization result. As defined
with the set of equations (8.8), the constraints ensure that all technical requirements are fulfilled. One
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set of requirements is originating from the driving dynamics and is imposing a lower threshold onto
the A-pillars stiffness in each direction, thus x, y and z direction. These stiffness requirements are
considered via the constraints g1(x⃗) to g3(x⃗). The constraint g4(x⃗) limits the intrusion of the A-pillar
tip, such that no passenger is harmed for a roof crush. To further enforce structural integrity in this
given case g5,...,5+nSec(x⃗) are imposed as well. In the following table 8.2 the design space is given. The
subtable 8.2a lists all shape design variables with their bounds. Subtables 8.2b and 8.2c provide the
design space of the sizing variables for the prepreg and braiding case. In addition, all optimization
tasks of this section are solved by taking advantage of gradient-based algorithms, more precisely,
either NLPQLP by Schitttkowski (2010), SLSQP by Kraft (1988), KSOPT by Wrenn (1989), MMA by
Svanberg (2005) and CONMIN by Vanderplaats (1973).

Table 8.2.: Definition of the design space for both A-pillar optimization tasks: prepreg and braiding

(a) Shape variables

x⃗ x⃗l x⃗u Unit ID

b
(B)
1 -10. 20. mm 1
b
(B1)
2 -5. 15. mm 2
b
(B2)
2 -5. 30. mm 3
b
(B3)
2 -5. 10. mm 4
h
(B1)
1 -3. 20. mm 5
h
(B2)
1 -2. 20. mm 6
h
(B3)
1 -3. 20. mm 7
h
(B1)
2 -10. 15. mm 8
h
(B2)
2 -10. 15. mm 9
h
(B3)
2 -10. 20. mm 10
α(B1) -10. 20. DEG 11
α(B2) -10. 50. DEG 12
α(B3) -10. 20. DEG 13
r
(B2)
1 -2000. 2000. mm 14
r
(B3)
1 -2000. 2000. mm 15
r
(B2)
2 -4000. 4000. mm 16
r
(B3)
2 -1000. 1000. mm 17
b
(C)
1 -10. 20. mm 18
h
(C)
1 -7. 10. mm 19
h
(C)
2 -7. 10. mm 20
r
(C)
1 -1000. 1000. mm 21
r
(C1)
2 -4000. 2000. mm 22
r
(C2)
2 -4000. 3000. mm 23
R -1. 0.5 - 24

(b) Prepreg sizing variables

x⃗ x⃗l x⃗u Unit ID

n
(1)
0 1. 9. - 25
n
(1)
α 0. 9. - 26
n
(2)
0 1. 9. - 27
n
(2)
α 0. 9. - 28
n
(3)
0 1. 9. - 29
n
(3)
α 0. 9. - 30
n
(4)
0 1. 9. - 31
n
(4)
α 0. 9. - 32
α(1) 0. 90. DEG 33
α(2) 0. 90. DEG 34
α(3) 0. 90. DEG 35
α(4) 0. 90. DEG 36
n
(1)
P,α 0. 9. - 37
n
(2)
P,α 0. 9. - 38
n
(3)
P,α 0. 9. - 39
n
(4)
P,α 0. 9. - 40
α
(1)
P 0. 90. DEG 41
α
(2)
P 0. 90. DEG 42
α
(3)
P 0. 90. DEG 43
α
(4)
P 0. 90. DEG 44

(c) Braiding sizing variables

x⃗ x⃗l x⃗u Unit ID

t1 2. 8. mm 25
t2 2. 8. mm 26
t3 2. 8. mm 27
tP,1 0.001 0.6 mm 28
tP,2 0.001 0.6 mm 29
tP,3 0.001 0.6 mm 30
tP,4 0.001 0.6 mm 31
ϕ1 15. 75. DEG 32
ϕ2 15. 75. DEG 33
ϕ3 15. 75. DEG 34
ϕ4 15. 75. DEG 35
ϕ5 15. 75. DEG 36

8.2. Optimization of the A-pillar

8.2.1. Optimizing the prepreg laminated A-pillar

At first, the optimization task as defined with the equation set (8.8) will be solved and studied
considering the prepreg laying technology. To gain some insight; first, the mass of the A-pillar will
be minimized, followed by a minimization of the associated manufacturing effort. All constraints
will be monitored and regarded in all subsequent optimizations. At first, the objective f of (8.8) is
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set to the mass m as highlighted with equation (8.9). Several optimizations have been conduced,
which converged quite robustly, albeit they in average needed more iterations than expected. This is
exemplary illustrated in the following figure 8.10.

fm =m (mass objective) (8.9)

Figure 8.10.: Convergence plot of the prepreg A-pillar mass minimization

One reason the rather slow convergence, i.e. great number of needed iterations, can be found in
the fact, that some derivatives of the objective are exactly equal to zero, but yet have a huge imprint
onto the constraints. For instance, the derivative of fm and some of the defined constraints gl with
respect to the orientation of the prepreg unidirectional layer one α1 can evidently be stated to be,

dfm
dα1

!
= 0,

dgl
dα1

≠ 0. (8.10)

The difference in the gradients as given with the equation set (8.10) is considered to be the
explanation, because the objective can solely be reduced each time a constraint is released. For this to
happen, the constraint needs to be active first. Hence, an iterative pattern of constraints becoming
active and projecting the influence of specific design variables, such as orientation α, onto the cost
function in an indirect fashion forms. This finally yields an increase in iterations. This has also been
observed and studied in the thesis of Köhler (2014).

With figure 8.11 the optimum for solely minimizing mass is given. In the left sub-figure 8.11a,
the thickness distribution is given. This optimum is characterized by great thickness jumps; which,
nevertheless, are plausible considering the fact that they actually stiffen and reinforce the structure at
areas, where either high strain energy densities or stress peaks are to be expected. It can further been
seen, that the A-pillar’s root is enlarged, or graphically-spoken blown up. This leads to a higher second
moment of area and in that turn increases the bending stiffness of the overall structure. Nonetheless,
this optimum is critical in terms of technical feasibility, since multiple manufacturing restrictions are
even violated, thereby hindering a straight forward technical realization. One restriction, which is
totally disregarded here, is the continuity requirement. This requirement states, that a certain fraction
of plies needs to continue through several patch regions, such that structural integrity after curing
can be assured. For this and other reasons, such as wastage rates, the manufacturing effort model
predicted a very high effort level of 65 for this design (see sub-figure 8.11b). Please note, that sub-figure
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8.11b is plotting the manufacturing effort density, which is being computed for each ply region. The
final effort level is cumulated through the following integration scheme,

e =
∫AAPillar

ėdA

∫AAPillar
dA

, (8.11)

with ė being the effort density and ΩAPillar respectively the domain defined by the surface of the
A-pillar. After minimizing solely the mass of the structure, now, the associated manufacturing effort
shall be minimized as well. Therefore, the effort e, as a direct response of the manufacturing effort
model and being cumulated via equation (8.12), is minimized. For doing so, the objective is set to
be,

fe = e. (effort objective) (8.12)

(a) Thickness distribution (b) Manufacturing effort density

Figure 8.11.: Thickness and manufacturing effort shown for the mass optimal solution

The effort optimal solution is shown in both sub-figures of figure 8.12, where sub-figure 8.12a de-
picts the thickness distribution, whereas sub-figure 8.12b shows the manufacturing effort distribution
ė.

(a) Thickness distribution (b) Manufacturing effort density

Figure 8.12.: Thickness and manufacturing effort shown for the effort optimal solution

As can be seen in sub-figure 8.12a, the thickness distribution is uniform in a sense that the
thicknesses of each region is chosen equally. In addition to that, the geometry of the A-pillar has
converged to a state, where neat and sharp outlines result in rectangularly shaped patch geometries
for most ply regions. These rectangular shapes do in tandem with angles being almost equal to the
ones of the available rolls lead to minimal ply wastage.

Both presented optimizations evidently represent extrema, i.e. one is very lightweight, but yet
also associated with very high manufacturing efforts and the second optimization displays reverse
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relations. Despite their individual advantages, in engineering practice, a design striking an optimal
compromise of these obviously conflicting goals of being lightweight and at the same time producible
at a low effort level is highly desirable. In chapter 2 and 6.2, the simultaneous optimization of
multiple objectives has been introduced as a vector optimization task. Moreover, it has been briefly
shown, that with (2.7) and (6.9), an originally vector problem can be condensed to a single objective
optimization task by defining a norm. This will now be applied such that a optimal compromise can
be met in-between the objectives mass m and manufacturing effort e. As discussed in chapter 6.2, the
following scalarization of the objective function vector is likely to perform well, since both criteria are
normalized with their best possible outcome or in other words, by the utopia vector:

fd = d(m,e) (compromise objective) (8.13)

with d(m,e) = ∥(m̂, ê)∥2

m̂ =
αm(m −mopt)

mopt

ê =
αe(e − e

opt)

eopt

At the exact same moment, the analytical design sensitivities need to be defined as well. As an
example, the partial derivative of the compromise objective fd(x) with respect to the thickness t1
is given next. dm

dt1
is given analytically by the FEA and de

dt1
will be computed via finite difference.

Equation (8.14) represents the partial derivative in general metric form, whereas equation (8.15) only
holds for the euclidean norm, i.e. q == 2:

∂fd
∂t1

=
∂fd
∂ê

∂ê

∂e

de

dt1
+
∂fd
∂m̂

∂m̂

∂m

dm

dt1

= f1−q
d

⎧⎪⎪
⎨
⎪⎪⎩

(
αe(e − e

opt)

eopt
)

q−1
αe
eopt

de

dt1
+ (

αm(m −mopt)

mopt
)

q−1
αm
mopt

dm

dt1

⎫⎪⎪
⎬
⎪⎪⎭

(8.14)

q=2
=

1

fd
(
α2
e(e − e

opt)

eopt2

de

dt1
+
α2
m(m −mopt)

mopt2

dm

dt1
) . (8.15)

Setting fd given by equation (8.13) as the objective function, basically leads to a minimization of the
distance from the current criteria values, here mass m and effort e to a fictitious utopia configuration,
being assembled from both extremal solutions, i.e. minimal mass mopt and minimal effort eopt. Table
8.3 provides the result of the compromise optimization d(m,e). Moreover it contrasts this outcome
with the extremal solutions, i.e. sole minimization of mass m and effort e. As depicted there, the
compromise is met equitable in a sense, that the conflicting goals mass and effort settled almost evenly.
That the compromise is made equitable, can also be comprehended by plotting each optimum in a
normalized space, adding the utopia point and an angle bisector. This is given with figure 8.13, where
the red star reflects for the found compromise design. As illustrated, this compromise is almost lying
on the angle bisector and, thus, situated between both extremal solutions represented via the yellow
stars.

With figure 8.14, the manufacturing effort distribution of the optimal compromise solution is
given. The minimal effort solution is characterized by an optimal design in light of manufacturing.
For achieving this, the optimization algorithm did strictly follow the MEM’s responses such that no
drop-offs where realized, minimal clipping or ply wastage, almost every ply was continued, i.e. no
jumps in ply orientation et cetera. Opposed to that extremal design–truly being too radical for practical
applications in terms of structural efficiency or light weight design–the optimal compromise allows
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Table 8.3.: Pareto efficient solutions of the prepreg optimization task

Objective Mass m [kg] Effort e [-] Remarks

m 3.5 64.7 Pure minimization of mass
e 5.3 39.0 Pure minimization of effort

d(m,e) 3.9 54 Optimal compromise

m

e

d(m,e)

0.5

1.0

0.6
0.7
0.8
0.9

1.00.5 0.6 0.70.8 0.9

angle bisector

Figure 8.13.: Found Pareto optimal solutions for laminated A-pillar

for some increase in effort, thereby striking a reasonable and technically attractive compromise. This
compromise is hence realized by tolerating some clipping, certain ply drop-offs and by accepting that
multiple plies do not continue as long as they do not exceed a critical fraction. All of the mentioned
aspects are obviously plausible and tenable for a practical stance. Beside those technical insights,
the conducted optimization runs revealed, that the mathematical condition in terms of numerical
performance did not decrease, but instead actually got lifted once the MEM has been incorporated into
the optimization process. This has been studied by varying the starting point, optimization algorithms,
e.g. MMA, NLPQLP etc., optimization tolerances and similar facets of the optimization process. Of
course, this not only provides insight into the mathematical condition and especially whether or not
the optimization is well posed, but also whether the problem is multi-modal and in that consequence
local optima can lead to sub-optimal performance. Nonetheless, the following table 8.4 has been
condensed from all those conducted optimization runs. As given therewith, the MEM apparently
alleviates the scatter in optimal responses and optima.

Table 8.4.: Evaluation of the optimization problems’ condition

Measured entity Optimization Objective
Mass fm Effort fe Compromise fd

Scatter in fopt ◇◇ ◇ ◇

Scatter in x⃗opt ◇ ◇ ◇ ◇◇ ◇◇

Scatter in g⃗opt ◇◇ ◇ ◇◇

◇ Low
◇◇ Moderate

◇ ◇ ◇ Strong

An explanation for the elevation in the optimization model’s condition can be found in the
sensitivities of the objective. As stated earlier, for the mass objective fm there are several sensitivities
being exactly zero, but yet their associated design variable show a major impact on certain constraints.
With equation (8.10), an example has been given by discussing the derivative with respect to a ply
orientation α1. These so to say unbalanced circumstances in the sensitivities did lead to a considerably
slower convergence and may also be the cause for the mal-conditioned optimization problem. For
the case, that the MEM is being incorporated, the sensitivities are in all circumstances throughout the
whole design space non-zero as given with equation (8.16). This can be verified by either studying the
response surface plots or by conducting sensitivity studies; both of which have been done. Ultimately,
the non-zero sensitivities lead to proper and robust convergences, thus in optimizations converging
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Figure 8.14.: Optimal compromise

within less than twenty iterations in average and displaying view till moderate scattering in the
objective function value fopt, constraint value g⃗opt and the corresponding designs x⃗opt.

dfd
dα1

=
dfe
dα1

≠ 0,
dgl
dα1

≠ 0. (8.16)

8.2.2. Optimization considering braiding as the manufacturing technique

The structural design optimization of the braided A-pillar will shown in the three subsequent sub-
sections. First the an optimal compromise will be derived and discussed. Thereafter, the post-
processing possibilities of the gradient-based approach will be shown. This braid optimization section
will then be closed by highlighting the CAE capabilities of the effort model, i.e. the stand-alone
features and, hence, the significance in designing based on the responses of the braid manufacturing
effort model.

Simple scalarization and post processing of multi-criteria optimizations

With equation (8.17), the objective function for solving the stated optimization task (8.8) for the optimal
compromise is given. Besides, it shall be noted at this point, that an optimal compromise can vary
from industry to industry and for different applications. It is here defined as the shortest distance from
the Pareto frontier to the fictitious combination of extremal solutions, the point of utopia. It is hence
assumed that an optimal compromise outbalances both objects equally. For achieving this, d(m,e) has
been defined via normalized mass m and effort e responses, whereby each of those is normalized by
its extremal solution.

fd = d(m,e) (compromise objective) (8.17)

with d(m,e) = ∥(m̂, ê)∥2

m̂ =
αm(m −mopt)

mopt

ê =
αe(e − e

opt)

eopt

After conducting several optimizations, the following solutions, as given via table 8.5, are obtained.
It can be observed that an optimal compromise between both objectives–similarly to the priorly
conducted prepreg optimizations–could be found. However, the objective weights leading to this
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Table 8.5.: Optima of the braid optimization task of the A-pillar

Weight αm [-] Weight αe [-] Mass m [kg] Effort e [-] Remarks

1.0 0. 5.2 70.3 Pure minimization of mass
0. 1.0 6.7 33.4 Pure minimization of effort

0.167 0.833 5.9 41.2 Optimal compromise

optimal compromise, took values deviating a lot from the intuitive guess of an equal weighting, i.e.
αm = αe = 0.5. They actually were αm = 1

6 ≈ 0.167 and αe = 5
6 ≈ 0.833.

Obviously, the found compromise solution for the braided A-pillar is heavier as the one derived for
the prepreg optimization, where the optimal compromise weight only 3.9kg (see table 8.3). Two major
reasons can be identified being response for that significant difference. First, different carbon materials
have been used. So, the carbon fibers for the braided A-Pillar case are less stiff and display lower
strength values, but are way easier to handle during the preform production. Secondly, the stiffness
of the cured braided material is further reduced by undulations. In section 5, it has already been
shown, that the braid material shows great stiffness sensitivities towards the braider yarn orientation,
but also towards the thickness of each yarn, since different amplitudes of these undulations are
brought forward. It has further been shown by figure 5.12 how those undulations appear in technical
specimens.

With figure 8.15 the lengthwise geometry and an examplary profile section (profile section 19) of
the optimal compromise design is illustrated. Several design requirements for the A-pillar require a
certain section modulus, e.g. minimal bending stiffness, which is, however, achieved in concert with
the material model and thus the braiding parameters, braiding angle and yarn width. Nonetheless, at
this point, the discussion is reduced on the profile’s cross section. As can be seen in figure 8.15, the
optimization increased the section modulus by blowing it up. This is highlighted by the red dashed
circle A. For accounting the associated manufacturing effort, the profile’s edge radii have been increase
to their limit (see green dashed circle C). Last but not least, the lengthwise curvature radius at the
region B has been increase a lot as well.

Section 19

Derived compromise

A

Initial design

A

C
B

Figure 8.15.: Illustration of the optimal compromise for the braided A-pillar

The distribution of the braiding angle ϕ for the first braid layer is given with subfigure 8.16a. The
following subfigure 8.16b depicts the corresponding effort density ė of the same first braid layer. It
can be comprehended, that the overall associated effort level is low, even though one region shows
a slight increase due to the lengthwise conical change of the A-pillar at this point. Noteworthy, is
the fact that the manufacturing effort level could be retained at such a low level, since the braiding
angle distribution is perfectly in concert with the corresponding yarn widths and associated geometry
quantities such as circumference. This is comprehend-able, when studying subfigure 8.16c, where
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local changes of the yarn width in areas of high curvature (region B in figure 8.15) get ahead of any
braid opening due to unrealistically high yarn widths. More plots, such as the ones for the braid layers
two and three, are given in the appendix section A.5.

15.

75.

45.

ϕ

[DEG]

(a) Braiding angle ϕ(s)

10.

90.

50.
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(b) Effort density ė(s)

2.0

3.4

2.7

w(b)

[mm]

(c) Braider yarn width w(b)(s)

Figure 8.16.: Response and design variable distributions for the optimal compromise
of the braided A-pillar given for the first braid layer

Post processing of vector optimizations

In the fundamentals section 2.2 optimality was introduced. This optimality evaluation given by the
Karuh-Kuhn-Tucker conditions, involved the so called Lagrangian parameters λi for each constraint i.
These parameters are obtainable with ease and do not require any re-evaluation of the underlying
system equations, i.e. finite element analyses. In section 6.2.3, the extrapolation at a found optima was
based on those Lagrangian parameters λi, which were then referred to as shadow prices (see equation
(2.4), (6.16) and (6.17)). Now, this theoretically demonstrated concept is applied for the structural
A-pillar design task and specifically for the optimal compromise design, discussed priorly. Before
the extrapolation based on a linearization can be conducted, the partial derivative of the aggregated
objective fd with respect to each contributing objective, i.e. mass m and effort e needs to be defined.
This is given by the following equation,

∂e

∂fd
=

fde
opt2

α2
e(e − e

opt)
. (8.18)

Exploiting this equation and linearizing at the found optima x⃗opt leads to the following expression,
where the linearization is conducted for the objective manufacturing effort e and relaxed over the
constraint number one, which imposes a minimal stiffness Kxx,min onto the design.

Lin(e)(∆Kxx,min) = e∣x⃗opt +
∂e

∂uLC1,max
∆Kxx,min.

= e∣x⃗opt +
∂e
∂fd
°
(8.18)

∂fd
∂g1
°
−λ1

∂g1
∂Kxx
²

−1
Kxx,min

∂Kxx
∂Kxx,min

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
1

∆Kxx,min

= e∣x⃗opt +
fde

opt2

α2
e(e−e

opt)
λ1

∆Kxx,min

Kxx,min
.

(8.19)

Equation (8.19) thus illuminates, how a change in the restriction limit–therein, a decrease in the
required minimal stiffness Kxx,min–would imprint onto the objective effort e. Or in other words, the
shadow prices reveal possible objective improvements in case constraints are loosened and, hence, the
price the optimizer paid by imposing that constraint level in hand. This has similarly been conducted
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for every constraint of the optimization task as given with equation set (8.8). The results of this is listed
in table 8.6. In this table, the values of each Lagrangian parameter λi is given. This column already
reveals, that the constraint of Kzz,min appears to be dominating for this optimum and further, that the
constraint based on the limit for the roof crush intrusion uLC1,max is not active, i.e. λ = 0. The two outer
right columns depicts the change in the corresponding objectives mass m and manufacturing effort
e. Again, the constraint for requiring a minimal stiffness Kzz,min demanded for the highest price in
terms of possible objective improvements, which has already been perceptible by studying the shadow
prices. For this case, the extrapolated improvements for a ten percent relaxation of the constraint level
are computed to be almost six hundred gram for mass and twelve units for the effort level.

Table 8.6.: Post processing of compromise optimum as of table 8.5

Shadow price Constraint Linearized changes
Constraint Lagrange value λ [-] change [%] Mass ∆m [g] Effort ∆e [-]

Kxx,min −2.3 −10.0 −50 −0.9

Kyy,min −3.6 −10.0 −70 −1.5

Kzz,min −28.6 −10.0 −570 −11.4

uLC1,max 0.0 10.0 0 0.0

FILC1,max 0.4 10.0 −8 −0.2

Beside the useful feature of linearly extrapolating based on these Lagrangian parameters λi, they
also allow the contrasting of different derived optima in terms of robustness. This is because, they
reflect the sensitivity of the objective function with respect to the constraint limits and thus how
sensitive an optimum regarding changes in the constraint responses or uncertainties–from a practical
perspective–is. Table 8.7 illustrates this, by portraying the maximal Lagrangian parameters max{λi}
along with the objective function values for the manufacturing effort e and the mass m. The third row
provides the optimal compromise design with the lowest manufacturing effort level, but yet also the
most sensitive one. It is regarded to be the most sensitive one, since its shadow prices is the highest.
In comparison to the shadow prices of the first design, which have been studied afore and listed in
table 8.6, the change in the objectives would be 53% greater.

Table 8.7.: Contrasting three found optimal compromises
with respect to robustness

Effort e [-] Mass m [kg] max{∥λi∥} [-] Remark

41.2 5.9 28.6 Most robust optimum
40.6 5.9 32.4 Moderate robust design
39.5 5.8 43.7 Minimal effort but most sensitive

In addition to the sole extrapolation of the how the objective function evolves for changes in
constraint limits, the linearization can be extended by further exploiting sensitivities of design pa-
rameters. Here, it has for instance been shown, that the stiffness requirement demanding a certain
stiffness for Kzz is the most limiting constraint. Obviously, beside all design variables, parameters
such as those of the material model do also influence the stiffness performance of the A-pillar. One
parameter chiefly determining the stiffness responses of the material model clearly is the used fiber
material and more specifically the fiber’s stiffness E11,f in longitudinal direction. The question to be
answered next is: how would a substitution of the used fiber material by a more stiffer one affect the
optimizations outcome? For answering this, a sensitivity study was additionally conducted. In this
sensitivity study, the influence of the fiber’s stiffness E11,f onto all optimization responses, such as the
stiffness responses Kxx, Kyy and Kzz , has been revealed, by varying the stiffness for the axial yarn
and the stiffness of the braider yarn. This is illustrated with equation (8.20), where E(a)11,f represent the
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fiber stiffness of the axial yarn and E(b)11,f respective the one of the braider yarn.

∂Kzz

∂E11,f
=
∂Kzz

∂E
(a)
11

∂E
(a)
11

∂E
(a)
11,f

+
∂Kzz

∂E
(b)
11

∂E
(b)
11,f

∂E11,f
(8.20)

Once this partial derivative (8.20) is computed via the sensitivity study, the linearization at the
optimal compromise design as already outlined by equation (8.19) can be expanded as follows. As a
side mark, the derivatives ∂e

∂uLC1
are not listed, since those constraints are not active (see table 8.6).
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(8.21)

Now, assuming a substitution of the so far used Toho Tenax HTA (E11,f ≈ 240GPa† ) carbon fibers
with SGL SIGRAFIL CT24-5 fiber (E11,f ≈ 270GPa† ) leads to the changes in effort e and mass m as
listed with 8.8. It is illustrated there, that both objectives, as must be the case, can be reduced; effort by
6.3 and mass by 406.7g.

Table 8.8.: Substitution of fiber material

Change of Resulting change in
fiber stiffness ∆E11,f [GPa] Effort ∆e [-] Mass ∆m [g]

+30.0 −6.3 −406.7

CAE capabilities of the developed soft computing approach

So far, the manufacturing effort model (MEM) has solely been studied in concert with the structural
design optimization. However, the approach is that mature, that it shall be considered as a stand-
alone computer-aided engineering (CAE) tool. This will be pinned in the following discussion.
First and foremost, the developed MEM is independent of any other software tool. So, the fuzzy
logic arithmetic, knowledge base, post-processing and miscellaneous are implemented via Python
in an object-orientated fashion and do not rely on any other software. Moreover, the inputs of the
MEM are automatically fetched from mere mesh data, which can be generated by almost any finite
element tool, since it only relies on nodal coordinates and connectivity information. This fetching of
geometrical information is realized exploiting B-splines as given with the following equation, where
Ψ⃗(s) represents the coordates of the spline curve at parameter value s, P⃗i being the nodal coordinate
values and ⃗Ni,p,τ the B-spline basis functions (⊙ denotes the pointwise Hadamard product).

Ψ⃗(s) =
n−p

∑
i=1

P⃗i ⊙ N⃗i,p,τ(s) (8.22)

The B-Spline interpolation scheme yields the following representation as depited with figure 8.17.
Once all splines are computed, the MEM inputs can be computed as well. For instance the curvature
radius R along the profile curve coordinate s can be computed to be

†Material properties are taken from data sheets provided by the corresponding company
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R(s) =
∥

˙⃗Ψ∥3

∥
˙⃗Ψ ×

¨⃗Ψ∥
with ˙⃗Ψ =

dΨ⃗

ds
. (8.23)

Section 19

B-spline Ψ⃗(s)

Node

s

Figure 8.17.: B-spline representation of the A-pillar

As observable, this renders the MEM to an independent CAE tool. Figure 8.18 illustrates how
the MEM generates the outputs solely based on the data provided by the B-spline representation.
First, it shall be noted, that a small legend is given in the lower right. Secondly, the outputs have
been computed for the initial design to display the significance of the MEM in terms of pointing
out design directions. Last but not least, the outputs of the MEM have not been modified, which is
why the outputs are of rather stenographic nature. In figure 8.18, three exemplary profiles have been
highlighted along with the associated manufacturing effort level e computed by the MEM. Below each
effort level, a reasonR why that specific manufacturing effort level has been computed, is passed as
well. Lastly, the engineer obtains an elaboration advice A as the last output. All three outputs equip
the engineer, such that he can alter the design in an optimal fashion. For instance, for the second
profile the MEM did compute the effort level to be e = 0.805, which is close to one and, hence, rather
high in that context. Further, the engineer can comprehend this computation by studying the reason
R, with which he can put things into context. In this case, the MEM identified the combination of
very small braiding angles ("Angle" is "VerySmall") and curvature (Rule "TakeUpCurvature") to be the
reason. If the engineer agrees with that, he can update the design according to the elaboration advice
A given next.

s

e = 0.783

R: In rule "BraidOpening": "YarnWidth" is "TooBig"
A: Increasing take-up speed, more filaments, greater . . .

e = 0.805

R: In rule "TakeUpCurvature": "Angle" is "VerySmall"
A: Decrease take-up speed, increase horn gear speed

e = 0.399

R: In rule "AllGood": "Angle" is "Moderate"
A: Increasing take-up speed (process time)

e

R

A

Profile . . . Effort level
. . . Reason
. . . Elaboration advice

Legend

Considered
profile

Figure 8.18.: CAE capabilities of effort model shown for the initial design
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At this point, it is conceivable that the engineer not only gains insight for one manufacturing
technique and updates the design on those insights, but also effort levels and reasons for multiple
manufacturing techniques. By doing that, the CAE process would be enriched a lot, since an engineer
could not only design concurrent to manufacturing, but also take influence on the optimal choice of a
manufacturing technique. This is mainly because of the general nature of the developed approach
and the fact that different MEMs share common rationals such as the fuzzy logic arithmetic and solely
differ in the knowledge base, which is obviously exchangeable (see figure 4.20).

8.3. Summary of the optimization including a soft computing model

The A-pillar served as the first structural design problem of industrial scale. It has been shown
how the multi-scale model as developed and motivated in section 5 can be incorporated into such a
structural optimization model. Particular attention was turned to the preservation of the analytical
design sensitivities, which have been made available for any conducted analysis kind and moreover
for every design variable, no matter which nature, i.e. sizing and shape variables. The associated
implementation effort amortized multiple times. Through this analytical design sensitivity analysis,
the high dimensional optimization tasks, could be solved with less than seventy system equation
evaluations in average for all considered cases. This is especially noteworthy, since each evaluation of
system equations involves sophisticated finite element analysis, which cause most of the computation
time throughout the optimization process. In addition to this numerical efficiency, the meta modeling
of the homogenization model made any complex mapping or alike unnecessary, while still preserving
most of the braiding material characteristics.

Concerning the manufacturing effort modeling through soft computing, the A-pillar design
task revealed its general validity and applicability. This can be stated, since manufacturing effort
caused by braiding, has been considered with ease, as the ones for prepreg laying. For both cases,
the manufacturing effort model considerably influenced the course of the optimization, resulting
into designs being closer to technical reality. In that consequence, the manufacturing effort models
leveraged the optimization process to a whole new level of technical significance, by making the
underlying optimization model more holistic. In addition to the enrichment of the optimization
process, it has been discussed, how the developed braiding manufacturing effort model can be used
as an independent CAE tool in designing. One major reason for regarding the effort model as an
independent tool, is the general data acquisition, being independent of any other finite element or
CAD tool. Hence, both effort models are implemented as stand-alone tools, capable of pointing into
the most goal orientated design direction in terms of technical manufacturing. Both effort models
underpin these directions, by providing reasons for its evaluation. Moreover, the designing direction
is supported by instructions on how to alter the current design, namely, by providing elaboration
advices.

Last but not least, it has been shown, that the objectives of structural efficiency, here, mass and the
associated manufacturing effort are strongly competitive and thus ultimately lead to a multi-criteria
optimization problem. In this section, all bi-objective optimizations, thus optimization problems with
two objectives, have been scalarized by using different types of norms. However, two major questions
remained unanswered. First, the difficulty of how to weight both objectives in general cases and
how the whole set of Pareto efficient solutions–or the gathering of those, the Pareto frontier–can be
obtained in one single shot. This will be analyzed, resolved for general cases and demonstrated for
the following structural design task: the braided propeller.
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9 | Optimizing a propeller structure

Within this chapter, a propeller will serve as an example for the structural multi-criteria optimization
considering manufacturing effort. The manufacturing effort will be computed by the afore discussed
manufacturing effort model, being facilitated through the soft computing based on verbal expert
knowledge. Despite further interesting aspects originating for instance from aerodynamics (optimiza-
tion of thrust and drag) or aeroelasticity (flutter and similar effects), the interaction of manufacturing
effort and structural mechanics shall have priority in the following discussion. Moreover, the general
multi-criteria optimization approach, as already introduced and applied for the academic examples,
will be extensively studied. Figure 9.1 depicts the two bladed propeller from which one blade will
serve as a technical demonstrator.

Propeller hub
Rotor blade

Figure 9.1.: Braided CFRP propeller
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9. Optimizing a propeller structure

9.1. Problem definition

During the designing of the propeller of a piston engine driven airplane, engineers need to face
two design-determining load cases. One is derived from climbing at the maximal climbing rate,
here referred to as max thrust load case, and the other of maximal descent, whereby the propeller is
operated with almost no thrust or in worst case even with a negative thrust, resulting in a so-called
windmill effect. Both load cases will be discussed next.

9.1.1. Description of the load cases

First, the load case of maximal thrust will be discussed. For an airplane climbing at a constant ascent
speed and climb angle of γ, figure 9.2 depicts the acting forces: thrust T , dragD, lift L and gravitational
force W . The airplane of the figure is inspired by illustrations of Curtiss-Wright-Corporation (1944),
from where the outer sketch has been taken. For this flight configuration, the following equations do
hold,

T −D −W sin(γ) = 0
L −W cos(γ) = 0.

(9.1)

γ

TL

D W

Figure 9.2.: Forces acting on an airplane in steady ascent

Re-arranging and exploiting that the ratio of drag to lift can be expressed via ε = D
L = 1

GR (german:
Gleitzahl) or the inverse of the glide ratio GR leads to

T =W (sin(γ) + ε) =mPlaneg(sin(γ) + ε). (9.2)

Computing the climb angle γ via the rate of climb ḣ and max climb speed Vḣ and inserting it into
(9.2) leads to the final equation

T =mPlaneg [sin(arctan(
ḣ

Vḣ
)) + ε] . (9.3)

Assuming a massmPlane of 1089kg, a climb rate of ḣ of 220 m
min at a speed Vḣ of 60kn and a moderate

ε of 0.14, the thrust T can be computed to be 2.8kN. In that consequence, each blade of a two-bladed
propeller needs to bring forth 1.4kN thrust. Contrary, for a stationary straight flight the thrust can be
computed to be 0.7kN by simple using (9.2), where the climb angle γ of (9.2) is simply set to zero, i.e.
T =Wε =mPlanegε. So, in that consequence, one can see, that the load case of climbing at the highest
climbing rate is design-driving in terms of maximal twist and bending forces acting on the propeller.
Further considering, that the propeller is rotating at the highest rotation speed, translating into great
centrifugal forces, underlines the design-determining character of this load case. The second load
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case basically represents an inversion of the forces acting on the propeller and, thus, in a sense the
opposite loading situation as of load case one. This inversion is caused by a negative pitch angle for
the relative wind along the propeller blade. This relative wind is depicted in figure 9.3, where VW is the
superposed velocity of wind and forward velocity of the airplane, VP the velocity of propeller defined
by the rotational speed and blade radius and VA as the aerodynamic velocity or relative wind speed.
Further illustrations of the relative wind for propellers can be found in Curtiss-Wright-Corporation
(1944). The angle at which the relative wind attacks the propeller blade’s profile is called pitch. In
case of a positive pitch angle, thrust is being generated by translating the moment of the engine into
aerodynamic lift. Hence, for the windmilling case, the negative pitch angles along the blade axis
results in inverse forces, where the propeller does not generate thrust, but instead behaves similar to a
wind turbine.

VAVP

VW

Figure 9.3.: Pitch angle distribution along the propeller

Another aspect, which is being illustrated in figure 9.3 is the geometrical twist of the aerodynamic
profiles along the propeller blade axis. This twist (german: Schränkung) is necessary to compensate for
the varying velocity of the propeller VP along the blade axis r (see equation (9.4)).

VP (r) =
nP 2π

60
r (9.4)

9.1.2. Computing the pressure distribution for both load cases

Prior to the computation of the structural responses in terms of stiffness, modal properties and strength,
the pressure distribution needs to be computed first, such that they can be imposed as loads in the
structural simulation. In this work, ANSYS Fluent has been used as it is a computational fluid dynamic
simulation (CFD) tool, since it is capable to resolve all relevant physical aspects of the flow around the
propeller. Extensions of the potential theory such as the blade element momentum theory have been
considered as computational approaches for this kind of problem. However, in the investigated case
the velocities–especially at the tip of propeller blade–are rather high, which is why incompressibility of
the flow may not be assumed. This assumption is commonly made until a Mach number of Ma ≈ 0.3,
see Oertel (2003). For the considered case the velocities even reach up to Ma ≈ 0.85, rendering the
assumption of incompressibility impossible. Further aspects, which can be considered by Fluent are
friction due to the viscosity of the fluid and turbulence.

For determining the flow and its quantities, the Reynolds-averaged Navier-Stokes equations have
to be solved in tandem with the energy equation. The latter is necessary to account for the fluid’s
compressibility. Within the fluid simulations, the k-ε turbulence model has been used to close the
closure problem. For more information regarding turbulence and the Reynolds-averaged Navier-
Stokes equations see Tu et al. (2008). With figure 9.4, the solution of the CFD simulation for the max
thrust load case is given. In the left sub-figure 9.4a, the resulting pressure distribution is being plotted
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(a) Streamlines and pressure distribution (b) Velocity at 85% of the propeller’s length

Figure 9.4.: Velocity and pressure results of the maximal thrust case

onto the propeller. Furthermore, some stream lines originating right before the propeller blade are
displayed. As can be seen, the flow is deflected by the propeller blade resulting in lift and in that
consequence translates into thrust, due to Bernoulli’s principle, where pressure drops for an increasing
flow speed on the top and vice versa underneath the propeller blade. In the right sub-figure 9.4b the
velocity distribution is plotted on a plane at 85% of the propeller’s length. Once the pressure fields
are computed for both load cases the information is passed to Abaqus, where an existing mapping
routine is used to map the pressure fields based on the fluid mesh to the structural shell mesh of the
propeller’s surface.

9.1.3. The structural model

With figure 9.5 the structural model of the propeller is given. As illustrated there, the blade profile
geometry (highlighted in red) varies in profile depth (chord length), camber and profile thickness.
Beside those geometric profile variations, the profiles are twisted along the blade axis, so as to realize
an optimal pitch angle distribution while in operation; as the propeller speed varies along the blade
axis r (see equation (9.4)).

ϕ
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S , ϕ

(3)
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Figure 9.5.: Structural model of the propeller
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The propeller has a length lP of one meter. The greatest chord length amounts to 180mm, which
drops down to 85mm at .9lP and 60mm at lP . For accounting multiple over-braidings, the model is
defined by three braid layer sections, where each braid section i is defined by a starting braiding angle
ϕ
(i)
S , an ending braiding angle ϕ(i)E and a braiding layer thickness ti. In addition to that, the first and

second of the braid sections are parametrized in their length l1,2. Therefore, the third braid section has
a length of l3 = lP , whereas the remaining can vary according to the following equation,

li = ξb,ilP , {ξb,i ∈ R∣0 < ξb,i < 1}, i ∈ {1,2}. (9.5)

For the braid angles, the following equation has been implemented

ϕi(r) = ϕ
(i)
S + α(i)r +

⎛

⎝

ϕ
(i)
E − ϕ

(i)
S

l2i
−
α(i)

li

⎞

⎠
r2, i ∈ {1,2,3}, (9.6)

where r is a coordinate axis aligned with the blade axis as illustrated in figure 9.5 andα parametrizes
the slope at r = 0, hence:

dϕi
dr

∣
r=0

= α(i), i ∈ {1,2,3}. (9.7)

Again–as shown in section 8.1.3–the braid material model is embedded within the structural
simulation as well. Here, it is being determined within the Abaqus CAE preprocessing by reading in
the meta-model of the homogenized meso scale. This model is parametrized in the braiding angle,
yarn width and thickness of the braid. With table 9.1, the solution sequence as implemented in the
FEA is given. As illustrated there, first mechanical stability, i.e. buckling analysis, is evaluated for both
load cases: maximal thrust and windmilling. This first step, is however an optional step, meaning it is
only being evaluated in verification runs and not throughout the entire optimization, since instabilities
do in most cases not occur. This is mainly because of the high centrifugal forces acting in both load
cases. Subsequent to this step, a static analysis for both load cases is conducted. These steps aim
towards the evaluation of failure and the determination of the deflection at the propeller’s tip together
with the rotational deflection along the propeller blade. These deflections will later be used to obtain
insight on whether or not aeroelastic effects are likely to interfere in a negative fashion. Failure is
evaluated based on a failure envelope determined by strength characteristica determined through the
meso scale model, where Puck has been used as the failure criteria for the fiber tows and max strain
respectively for the matrix. Lastly, a frequency analysis is conducted, where all modal properties
of the propeller are computed. It is worth mentioning, that the rotary stiffening caused by the high
rotation speeds are taken into account therein.

Table 9.1.: Overview on the solution sequence as implemented

Step Pressure field Remarks

(Buckling LC1) Maximal thrust Optional step
(Buckling LC2) Windmill Optional step

Static LC2 Windmill Evaluation of failure and stiffness
Static LC1 Maximal thrust Evaluation of failure and stiffness

Frequency step - Rotary stiffening is considered

For all steps, the propeller is properly clamped at r = 0, where an widening of the propeller’s
root at that clamp is of course not suppressed. The revolution is either set to 2100rpm for the max
thrust case or to 955rpm for the windmilling. So summing up, available optimization responses–thus,
responses passed from the structural simulation to the optimization model–are:
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• tip deflection for static loading of both LCs

• torsional deflection for static loading of both LCs

• failure indices for static loading of both LCs

• first ten eigenfrequencies

• critical buckling factors of both LCs (optional)

Beside those listed optimization responses, several parameters and geometric quantities are further
defined as responses, since they are needed for the computation of the manufacturing effort and are
therefore piped to the manufacturing effort model (see figure 4.9).

9.1.4. Evaluating the initial design

With figure 9.6a and figure 9.6b, the braiding angles ϕi(r) and thickness t(r) distribution of the initial
design is given.

15.75. 45.

Braiding angle [Deg]

ϕ1(r) ϕ2(r)

ϕ3(r)

ϕi(r)

Layer 1 Layer 2

Layer 3

(a) Braiding angle ϕi(r) of layer i

0.35.0 2.4

Braid thickness [mm]
∑i ti(r)

t(r)

(b) Total braid thickness t(r)

Figure 9.6.: Initial design of the propeller

Note, individual braid thickness of each braid layer ti(r) are summed up, such that the total braid
thickness is obtained, i.e. t(r) = ∑i ti(r). Conducting a modal analysis for this first design reveals the
natural frequencies as given with table 9.2 and the modal shapes as illustrated with figure 9.7. The
modal shapes as illustrated in figure 9.7 appear to be plausible. However, to get a precise insight on
whether or not the modal characteristics are properly computed they are here put into context with
the help of a so called Campbell diagram. This diagram, which is also referred to as inference diagram,
supports engineers in finding resonance frequencies. The Campbell diagram of the initial design is
plotted with figure 9.8, where the first and second eigenfrequency of the propeller are given in red
and blue and the citation frequencies–here originating from the shaft’s revolutions–of first order in
black and the one of second order with the dashed black line. As can be seen in figure 9.8, the initial
design has a resonance of second order at roughly 1600rpm. This is not as severe as if it would display
resonance of first order, since the amplitude and hence the energy of the citation is way smaller, but is
still somewhat less than perfect.

Table 9.2.: Eigenfrequencies of the first three modes

Mode 1 Mode 2 Mode 3

57Hz 114Hz 220Hz

Last but not least, the response of the manufacturing effort model is evaluated for this initial
design as well. The total manufacturing effort e is computed via equation (9.8), with ėi being the
effort density of braid layer i and AP,i the corresponding propeller surface. The manufacturing effort
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Shape 1 Shape 2 Shape 3

Figure 9.7.: The first three modal virbration shapes

e has been computed to be 49.6 for this case. Figure 9.9 depicts the individual contributions via the
effort densities ėi. This illustration reveals, that this initial design also offers huge potential in terms
of reducing associated manufacturing effort. This especially holds for layer one and two, where
for instance an unrealistic ratio of take-up and angular horn gear speed–in tandem with the yarn’s
geometric quantities–cause the braid to open and ultimately to an unserviceable propeller.

e =∑
i

∫AP,i
ėidA

∫AP,i
dA

(9.8)
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Figure 9.8.: Campbell diagram for the initial design of the propeller
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ėi

Layer 1 Layer 2

Layer 3

Figure 9.9.: Manufacturing effort density ėi for each layer i
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9. Optimizing a propeller structure

9.1.5. Definition of the optimization task

The vector optimization task for the propeller demonstration example can be defined as follows,

minimize
x∈χ

fi(xj), i = 1, . . . , nO, j = 1, . . . , nDV

subject to gl(xj) ≤ 0, l = 1, . . . , nIC

with χ = {xj ∈ RnDV ∶ xlj ≤ xj ≤ x
u
j }.

(9.9)

g1(x⃗) =
Fh

Fh,Max
− 1 Hub force

g2,...,11(x⃗) = 1 −
60ω1,...,10

2πnP,Max
Resonance behavior

g12,...,14(x⃗) =
uTip,LC1

uTip,LC1,Max
− 1 Aeroelastic interactions

g15,...,14+nSec(x⃗) =
FILC1,s

0.9 − 1 Failure for max thrust load case ∀s ∈ {1, . . . , nSec}

g15+nSec,...,14+2nSec(x⃗) =
FILC2,s

0.9 − 1 Failure for windmill load case ∀s ∈ {1, . . . , nSec}

g1 simply imposes an upper bound onto the hub force Fh and thus restricts the maximal clamp
force which is solely influenced by the mass of the propeller. The constraints two to eleven ensure that
the propeller is not excited by the rotary frequency while in operation. This is realized by restricting
the first ten eigenfrequencies of the propeller. For the accurate computation of these eigenfrequencies,
it is important, to take the centrifugal stiffening caused by the rotation into consideration. The rotary
frequency fR can be computed based on given revolution nP in rounds per minute of the propeller
with equation (9.10), where ωP is the angular frequency.

fR =
ωP
2π

=
nP
60

(9.10)

These resonance constraints are followed by constraints ensuring that the deflection of the propeller
blade’s tip is small enough, such that negative aeroelastic interactions are likely to not occur. Last
but not least, structural integrity is ensured by the constraints g15,...,14+nSec(x⃗) for the maximal thrust
load case and g15+nSec,...,14+2nSec(x⃗) for the windmill load case. It is important to note, that failure has
been evaluated for several sections along the propeller blade axis to ensure proper convergence of
the optimization. Thus, for each load case, failure indicies FILC1/2,s are computed and monitored
for each section s, i.e. ∀s ∈ {1, . . . , nSec}. The objective functions fi will be defined right before each
optimization outcome in the following subsection. Design variables and the design space they span
are given with the next table. In this table, x⃗, x⃗l, x⃗u and ID refer to the vector of design variables, the
lower and upper bound for the design variables and the associated identification number.

9.2. Design optimization of the braided propeller

In this section, multiple variations and post-processing possibilities for multi-criteria optimizations–
especially with focus on the introduced gradient-based approach of section 6.2–will be realized and
studied on the sophisticated structural design problem: the braided propeller.
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Table 9.3.: Definition of the design space for the propeller problem

x⃗ x⃗l x⃗u Unit ID

ϕ
(3)
S 15. 75. DEG 1

ϕ
(3)
E 15. 75. DEG 2
α(3) -100. -100. DEG/mm 3
t3 1. 8. mm 4
ϕ
(2)
S 15. 75. DEG 5

ϕ
(2)
E 15. 75. DEG 6
α(2) -100. -100. DEG/mm 7
t2 1. 8. mm 8
ξb,2 .5 .75 - 9
ϕ
(1)
S 15. 75. DEG 10

ϕ
(1)
E 15. 75. DEG 11
α(1) -100. -100. DEG/mm 12
t1 1. 8. mm 13
ξb,1 .2 .5 - 14

9.2.1. Multi-criterial optimization of manufacturing effort, mass and frequency

Gradient-based vector optimization on the criteria mass and eigenfrequency

The first structural design problem is defined by the two competing objectives: propeller’s mass m
and smallest eigenfrequency ω1, where mass is obviously minimized whereas the eigenfrequency will
be maximized. The following set of equations (9.11) represent the gradient-based vector optimization
approach, with κ being the objective weight and also a decision variable, gBS the back-stepping
constraint and hγ the equidistant constraint. Aside, both additional constraints are discussed in
section 6.2 and 7.1, illustrated in figure 7.1 and stated with equation (6.11) already. The constraints
and the design space are retained as priorly defined in section 9.1.5. With the following figure 9.10, the
iteratively obtained solution of the condensed vector optimization task (9.11) is given. As depicted
there, the Pareto frontier has been approximated by nine points, i.e. nP = 9. Moreover, it is now evident,
that both objectives are competing, since a pronounced convex Pareto frontier forms, being, here
approximated by the nine Pareto efficient solutions. Specifically, the change in mass from one extremal
solution to the other numbers ∆m = 1.7kg or 36 % and respectively for the frequency ∆ω1 = 34Hz or
97 %. The following sub-figure 9.11a is given to illustrate the approximated Pareto frontier in the
physical space, by plotting the first natural frequency ω1 over the propeller’s mass m. Physically
speaking, the fact that both criteria are competing can be made plausible by the fact, that adding mass
at the root of the propeller blade enhances its performance in terms of dynamics, even though it might
not be needed in terms of strength. Figure A.9b in the appendix provides insight on the frequency
optimal thickness distribution of the braid layers. In addition to the computed Pareto frontier, figure
9.11 provides insight how the objective function weights κ evolve over the discretely computed Pareto
optimal solutions f⃗p with sub-figure 9.11b. This plot shows, how the weights erratically change near
the extremal solutions and how they become almost constant in-between. The constant level is thereby
roughly 0.7. This again highlights, how difficult it can be to set most suitable objective weights a
priori.
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9. Optimizing a propeller structure

minimize
x,κ

f̃ = κm − (1 − κ)ω1

subject to g1,...,14+2nSec ≤ 0,
gBS ≤ 0,

and hγ = γ
2,

with x⃗ ∈ χ and κ ∈ [0, ...,1]

(9.11)
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Figure 9.10.: Direct result of the Pareto computation via equation set (9.11)
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Figure 9.11.: Pareto frontier (a) and weights (b) for mass m and frequency ω

Since it has been shown via the first Campbell diagram (see figure 9.8), that the first natural
frequency could be excited by the second shaft rotary frequency, the dynamical performance is solely
being discussed for the maximum natural frequency design. Besides, the mass is here considered to
be a less relevant design criteria, because it mainly contributes to the magnitude of the reaction forces
at the hub, which are however for almost any design tolerable and furthermore no other gains are
observable when minimizing the mass. Before the dynamics of the maximum frequency design are
discussed, the braiding angle distributions for this design are given with the following figure 9.12.
For this design, evincing a maximal natural frequency ω1–thus being on the outer upper right of the
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Pareto frontier in sub-figure 9.11a–more information is being given in the the appendix A.6. In this
appendix section, figure A.9a depicts the braider yarn width w(b)i (r) and figure A.9b the thickness
distribution ti(r).

15.75. 45.

Braiding angle [Deg]

ϕ1(r) ϕ2(r)

ϕ3(r)

ϕi(r)

Layer 1 Layer 2

Layer 3

Figure 9.12.: Braiding angle ϕi(r) for each layer i of the
maximum natural frequency design

Modal performance and Imprint of the braider yarn onto the optimal propeller design

Figure 9.13 provides the Campbell diagram for this design. As can be seen there, the situation
improved significantly, because the first and evidently also the second natural frequency do not
anymore intersect with any of the rotary frequencies–hence, not the first nor the second rotary
frequency given in black–over the whole revolutions range.
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Figure 9.13.: Campbell diagram for the maximum frequency design;
depicting the influence of the braider yarn width w(b)

So, the afore critical area, highlighted by an A in figure 9.13, has been mitigated by elevating
the first natural frequencies through the conducted design optimization. Beside this information,
figure 9.13 also provides insights on the influence of the braider yarn width w(b) and especially its
computation via the directly integrated material meta-model. As a side mark, the material model has
been defined via equation (8.2) and for each entry via equations according to (8.3). Each of those entries

129



9. Optimizing a propeller structure

are thereby determined by the meta-model of the meso cell homogenization (see figure 5.3). By default,
the model has been set up in such a fashion, that it automatically computes the corresponding braid
parameters, such as braider yarn width w(b), for a given geometry situation. However, to underpin
the influence arising from the fact, that the braid parameters are interwoven with the geometry of
the current design, the braider yarn width w(b) is set constant for once. The outcome of this, is given
by the red dashed line in figure 9.13. Despite the fact, that w(b) has only been set to be constant to a
technically reasonable value, one can clearly observe the difference. This difference would become
even more distinct, once the braider yarn width would go to extremer values.

The numerical performance of the gradient-based vector optimization approach

Now, the numerical performance of the used approach shall be assessed. For doing so, the result
obtained via the gradient-based vector optimization approach have been compared with a widely used
alternative: the genetic algorithm NSGA-II. This genetic algorithm has a tournament selection-based
fitness evaluation, enabling it with the capability of solving multi-objective optimization problems.
The population size npop and the number of generations ngen has been varied so as to leverage the
comparability. In figure 9.14, one can find the plots of the obtained results. Before the results are
actually compared, the optimality of the outcomes will be assessed first. In section 6.2.3, a measure for
determining optimality being compliant to numerical imprecision has been introduced, the first oder
optimality O. It was basically defined as the norm of the stationary of the Lagrangian function and
complementary slackness.
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Figure 9.14.: Contrasting the gradient-based approach with a genetic algorithm
Maier (2015)

In the following figure 9.15, this first order optimality O is plotted for every computed Pareto
efficient solution p. As can be observed with ease, the first order optimality O takes throughout the
whole set of solutions small values. Coming back to the comparison of the outcomes, the black line in
figure 9.14 highlights the results computed via SLSQP, thus second order gradient-based. Knowing
that for each computed Pareto point p optimality can be stated (O is numerically zero as in figure 9.15)
each computed point p is a Pareto efficient solution and can hence collectively be regarded to be a
reasonable good approximation of the Pareto frontier. For the sake of comparison, several optimal
populations obtained by the NSGA-II algorithm are plotted in the same figure, where the colors refer
to different settings. At the first glance, the genetic algorithm lead to a denser approximation of the
frontier. However, the approximation is considerably inferior, because each of the derived optima

130



9. Optimizing a propeller structure

is being dominated. In addition to that, for the NSGA-II algorithm to converge (strictly speaking no
convergence observable!), significantly more system evaluations are needed, e.g. the blue frontier
did need more than twenty three times the system evaluations and thus numerical analyses than the
gradient-based approach. This leveraged the computation times from a couple of hours (3h ∶ 47min)
to days (3d ∶ 14h ∶ 17min). This becomes even worse for a large design space. This has, by the way,
been the reason, why the genetic algorithm has not been applicable with reasonable computational
effort for the A-pillar example. Further it has been observed, that a certain population size is needed
such that the individuals of the optimal population representatively approximate the Pareto frontier.
This becomes evident, when studying the outcome of the smallest population (72 individuals and red
dots in plot), where the approximation of the frontier is rather dilute.
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Figure 9.15.: First oder optimality O as introduced via equation (6.14) and
associated with the vector optimization problem (9.11)

Despite all these mentioned shortcomings it should be mentioned as well, that for the genetic
algorithm to work, almost no effort in terms of modeling has to be made, which is definitely expedient
in many industrial applications. Besides, in the appendix section A.7 the utility U is evaluated for
both, the gradient-based approach and the genetic algorithm. By studying the different utility curves
in figure A.12 and the pronounced oscillations, again confirms that the genetic algorithm approach
performs inferior in providing information for the necessary decision making. This is because, the
gradient-based approach points to a distinct Pareto efficient solution (roughly in the middle), whereas
the genetic algorithm identifies a whole range of maximal utility.

Incorporating manufacturing effort into the vector optimization

For the derived design almost every structural aspect has improved, e.g. maximal eigenfrequency,
while still fulfilling all structural requirements. On the contrary, studying the technical aspects of this
design in terms of manufacturing reveals a high associated effort. This is described by the developed
manufacturing effort model (MEM), whose responses are given by figure 9.16. The individual effort
levels turn out that high, since the MEM did predict a braid opening for the current configuration.
Therefore the braider yarn width is going beyond 3.5mm in some regions and in others way underneath
the threshold of 2.0mm (figure A.9a). To address this high level of effort while still maintaining the
satisfying dynamical performance, the multi-criteria optimization problem is redefined to (9.11). There,
the first objective is substituted by the MEM’s response effort e, so as to compensate for the high
associated manufacturing effort of the prior design. This objective is of course minimized while the
smallest eigenfrequency ω1 is still maximized.
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Figure 9.16.: Effort densities ėi(r) for each layer i of the
maximum natural frequency design

minimize
x,κ

f̃ = κe − (1 − κ)ω1

subject to g1,...,14+2nSec ≤ 0,
gBS ≤ 0,

and hγ = γ
2,

with x⃗ ∈ χ and κ ∈ [0, ...,1]

(9.12)
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Figure 9.17.: Pareto frontier (a) and weights (b) for effort e and frequency ω

Figure 9.17 depicts the solution of the re-conducted optimizations, where again the continuous
Pareto frontier has been approximated by nine nP = 9 Pareto efficient solutions. The thereby computed
Pareto frontier approximation is illustrated with sub-figure 9.17a. As can be observed, both objectives,
ω1 and e are competing as well, wherefore substantial differences between both extremal solutions
or ends of the Pareto frontier can be observed. Analogously to before, a plot, providing insight on
the distribution of the objective weight κ(p) over the Pareto points is given by sub-figure 9.17b. Once
more, the distribution of those weights is far from being intuitive and thus predictable a priori. One
design of the derived nine design has been identified to represent an optimal compromise. This design
is given by the following figure 9.18, where its braiding angle distribution ϕi(r) for each braid layer i
is given. In the appendix section A.6, figures A.10a, A.11 and A.10b reveal more detail by plotting
the braider yarn width distribution w(b)(r), braid thickness distribution t(r) and the corresponding
effort densities ėi. Next, the precise and profound post-processing of the so far conducted vector
optimization is presented.
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Figure 9.18.: Braiding angle ϕi(r) for each layer i of the
effort-frequency-compromise design

9.2.2. Post-processing of vector optimizations

First, the sensitivity of one entry of the objective vector to another entry, i.e. ∂f2∂f1
will be derived and

discussed. Thereafter, the linearizion based on the available shadow prices will be shown for a general
vector optimization problem statement. In section 2.2, optimality has been mentioned first. There, the
optimality has been discussed via the Karush-Kuhn-Tucker conditions, which are in principle founded

on the stationarity condition of the Lagrangian function, thus δL !
= 0 (equation 2.2 and following).

In general, this can analogously be applied to any of the priorly defined multi-criteria optimization
problems. However, to leverage the discussion on a general level, the following abstract definition of
a scalarized objective f̃ with the two objective f1 and f2 is made,

f̃ = κf1 + (1 − κ)f2. (9.13)

Using this and further requiring the Lagrangian function L to be stationary, leads to the following
expression:

δL
!
= 0 = κδf1 + (1 − κ)δf2 + (f1 − f2)δκ + µδhγ +∑

l

λlδgl (9.14)

Rearranging this, such that the desired partial derivative of f2 with respect to f1 can be determined,
results in the following equation (9.15). It appears, that the partial derivative is directly defined via
the objective weight variable κ. This has already been discussed by Baier (1978).

δf2

δf1

δ→0
=

∂f2

∂f1
=

κ

κ − 1
while δκ = δhγ = δgl

!
= 0 (9.15)

However, it should kept in mind, that this only holds in case neither of the constraints nor the
objective weight variable κ itself is changed, i.e. δκ = δhγ = δgl=0. This basically means, that the
sensitivity of one objective to another competing objective can only be computed by κ, if no change
in the constraints and objective weights is expected. Or in other words, using equation (9.15) to
extrapolate solutions on the Pareto frontier is only valid if none of the constraint levels is being
altered, thus δhγ = δgl=0 and if the change in the objective weight is neglect-able δκ0. This will now
be discussed for the analytical vector optimization problem as given via equation set (7.3) in section
7.1, where figure 7.2 did reveal the accurate approximation of the Pareto frontier. The fact that the
Pareto frontier is given analytically by equation (7.5), also enables the analytical computation of the
derivative df2

df1
. This derivative is given in the following figure 9.19 by the red dashed line. In this

figure, the approximation based on the objective function weights κ, as suggested by the statement
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(9.15), is given by the blue dashed line. Obviously, the direction and the magnitude of both derivatives
are quite alike, which is why, their error in percent, in figure 9.19 illustrated via the black line plot,
is rather small. For the sake of completeness, the plot of objective function weights is given in the
appendix section A.4.
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Figure 9.19.: Comparison of the two methods for computing df2
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for the analytical example

Despite this promising rendering of the derivative in direction and magnitude, this approach can
result in an insignificant prognosis, because the approximation did show to be quite sensitive towards
the underlying numerics, by being mal-conditioned. Thus, a small change in the used algorithm
settings aggregates in huge and almost erratic changes in the prediction, even though, the objective
function values do not change much. For this reason, another approach for determining the whole
Pareto frontier and for extrapolating additional solutions will be presented next. As already illustrated
for the simple analytical test, the set of all Pareto efficient solutions ΩE , or in this case as well the
Pareto frontier ΩP , can be accurately approximated by the outlined gradient-based approach, by
iteratively solving for the nP Pareto efficient solutions. This cumulated in negligible approximation
errors as given with table 7.1. Further, for the structural vector design optimization the computed
Pareto frontier did display a pronounced strict convexity of almost quadratic shape. Accumulating
these mentioned properties of high approximation accuracy and convex shape, clearly points to the
direction of utilizing a polynomial regression to describe the Pareto frontier, thus to solve for the
coefficients ai in the following equation,

f2(f1) ≃ a2f
2
1 + a1f1 + a0. (9.16)

This will here be done for the multi-criteria optimization problem given by (9.11), hence, where
mass and natural frequency did serve as the optimization criteria. The red points in figure 9.20 show
the computed Pareto efficient solutions and the blue line represents the polynomial regression. For
this representation of the Pareto frontier, partial derivatives can be computed, as given with equation
set (9.17), where the derivative is computed for the Pareto point A as depicted in figure 9.20.

f2(f1) ≃ (−11.369f2
1 + 66.713f1 − 29.782)Hz

∂f2
∂f1

∣
A

= (66.713 − 22.738f1)∣f1=1.8
Hz
kg = 25.785Hz

kg

(9.17)
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Figure 9.20.: Response surface approximation of the Pareto front

This derivative ∂f2
∂f1

∣
A

reveals at this point, that adding half a kilogram more to the propeller
design will further increase the first natural frequency by roughly thirteen Hertz. This approach for
determining the derivative or extrapolating via meta modeling is by far more effective. This can also
be comprehended by considering the following figure 9.21, where the derivative given by the meta
model is contrasted to the derivative approximated by equation (9.15). As observable, despite the fact,
that the directions of the derivatives point into the same direction, they are of no use, since, the error
is now way beyond an acceptable level. Through multiple optimization runs, it has been observed,
that the objective function weights κ are quite sensitive with respect to the choice of optimization
algorithm, e.g. NLPQLP or MMA, to the convergence tolerances and alike. For these reasons, the
estimation of the Pareto derivative df2

df1
based on equation (9.15) is not advisable for structural design

problems as discussed herein. Instead, the surrogate modeling of Pareto frontiers–as for instance via
equation (9.16)–is recommended.
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Now, two further advantageous features of the gradient-based approach for computing the
equidistant Pareto frontier are discussed: the accessibility of optimality and the possibility to linearize
at an optima based on shadow prices. The first is self-evident, since all gradients are computed and
also due to that the vector optimization problem is scalarized to one single objective. This is why,
the Karush-Kuhn-Tucker conditions can be applied and probed for every Pareto optimal point. The
optimality has already been given by figure 9.15, where the first order optimality as a norm of all
equations (2.3) is plotted over the Pareto optimal points p. As can be seen, each of the Pareto optimal
points can be regarded to be optimal because all norms are numerically zero. The second feature, the
linearization of one optimization response at the optimum with respect to one active constraint level
is discussed next. For doing so, the Pareto optimal solution f⃗4 is picked. At this Pareto point, the
first natural frequency ω1 is linearized with respect to the constraint level uTip,LC1,Max of constraint g13,
which restricts the displacement of the rotor blade’s tip. The following equations show the conducted
linearization. As can be computed, loosen the constraint level for the tip displacement by five perfect
would result in an additional gain of seven Hertz.

Lin(ω1)(∆uTip,LC1,Max) = ω1∣x⃗opt +
∂ω1

∂uTip,LC1,Max
∆uTip,LC1,Max.

= ω1∣x⃗opt
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
54.9Hz

+ ∂ω1

∂f̃
°
(κ − 1)−1

∂f̃
∂g13
±
−λ13

∂g13
∂uTip,LC1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
1

uTip,LC1,Max

∂uTip,LC1

∂uTip,LC1,Max

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

∆uTip,LC1,Max

= 54.9Hz + 1.4Hz
% ∆uTip,LC1,Max

(9.18)

9.2.3. Considering braiding time as a bridge towards costs

In this subsection, a progression towards the incorporation of a cost model into the multi-criteria
design optimization process will be discussed. The canonical basis for achieving this progression, is in
the context of braiding, the manufacturing time. And one huge fraction of the overall manufacturing
time, is influenced by the take-up speed of the mandrel V i

T and can thus be expressed for each braid
layer i as follows,

T iϕ = ∫
1

V i
T

ds. (9.19)

Since the braiding angle is defined by the ratio of take-up speed and horn gear speed, this
braiding time T iϕ for braid layer i is therefore ascertainable by the braiding angle ϕ as well. Equation
(9.20) depicts the quadrature, thus the numerical integration, of equation (9.19), where the Gaussian
quadrature has been chosen as the numerical integration scheme. For the integration of a linear braid
angle section one Gauss point (ϕ ∼ s ∶ nGauss = 1) has been used. Otherwise nGauss has been set to two
and, hence, ξ1 = −

√
3−1, ξ1 =

√
3−1 and w1 = w2 = 1.

T iϕ = ∫
sni
s1

1
V (ϕ(s))ds = ∫

sni
s1

tan(ϕ(s))Nh
2πωhr(s)

ds

= ∫
1

−1
tan(ϕ(s(ξ)))Nh

2πωhr(s(ξ))
ds
dξdξ ≈ ∑

nGauss
j=1

tan(ϕ(s(ξj)))Nh
2πωhr(s(ξj))

sni+s1
2 wj

Tϕ = ∑nLayeri=1 T iϕ

(9.20)
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Just for the sake of completeness, an exemplary and frequently used cost model in the context
of braiding will be outlined. However, in the subsequent optimization the braiding time Tϕ will be
set as one objective in the objective vector to preserve general validity. As mentioned earlier, the
manufacturing time can be regarded as the canonical basis in the context of braiding. This is why, the
manufacturing cost for one single preform can be estimated with equation (9.21), with Tm being the
sole machine time, Tw the time of a worker and the constants am and aw. The machine time Tm is
composed of the braiding time Tϕ and an offset T0 accounting for the turn-overs, which are necessary
after each braid layer. The constants are determined by multiple aspects and do vary from company
to company. For instance, aspects determining am–amongst further ones–are: possible shift pattern,
production period, plant surface costs and capital costs for financing including depreciation methods
et cetera.

Cϕ = Tmam + Twaw = (Tϕ + T0)am + Twaw (9.21)

As before, the vector optimization task can be stated as follows, where the eigenfrequency ω1 is
maximized and the braiding time Tϕ is minimized, while all structural constraints are still honored.

minimize
x,κ

f̃ = −κω1 + (1 − κ)Tϕ

subject to g1,...,14+2nSec ≤ 0,
gBS ≤ 0,

and hγ = γ
2,

with x⃗ ∈ χ and κ ∈ [0, ...,1]

(9.22)

Similarly to before, this vector optimization has been solved nine times (nP = 9), such that the
following approximation of the Pareto frontier is yielded. Sub-figure 9.22a depicts the approximated
Pareto frontier, whereas sub-figure 9.22b provides the plot of the objective weights κ over the iden-
tification number p of each Pareto optimal solution. It has been noted before, that the curve κ(p)
is far from being intuitive and thus challenging to be defined a priori. This applies for this vector
optimization task (9.22) as well. With figure 9.23 a plot showing the first order optimality for each
Pareto optimal point p of the approximated Pareto frontier is given.
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Figure 9.22.: Pareto frontier (a) and objective weights (b) for the criteria braiding time Tϕ and
frequency ω
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Figure 9.23.: Evaluation of the first oder optimality for the
vector optimization problem (9.22)

9.2.4. Tri-objective optimization

Next the propeller optimization task, as posed with equation set (9.9), shall be solved considering three
criteria simultaneously. The criteria shall be mass m, effort e and frequency ω. Thus, the optimization
task can be stated as follows.

minimize
x⃗

f⃗ = [m; e; −ω]T

subject to g⃗ ≤ 0,
with x⃗ ∈ χ

(9.23)

So as to efficiently solve for the approximation of the Pareto frontier ΩP̃ this optimization task
is first scalarized by objective weights κ⃗. Then four additional constraints are added for ensuring
no back-stepping to occur gBS,1/2 and that found Pareto efficient solutions are equidistant hγ,1/2 are
added to the optimization task. Last but not least, the optimization task is solved, whilst the objective
weights κ⃗ are also considered as design variables.

minimize
x⃗,κ⃗

f̃ = κ1m + κ2e − (1 − κ1 − κ2)ω1

subject to g⃗ ≤ 0,
gBS,1 ≤ 0,
gBS,2 ≤ 0,
hγ,1 = γ

2
1 ,

and hγ,2 = γ
2
2 ,

with x⃗ ∈ χ and κ1,2 ∈ [0, ...,1]

(9.24)

The obtained three-dimensional Pareto frontier–or more precisely its approximation–is given by
figure 9.24. As observable, all three criteria are highly competitive, wherefore a clear and convex
Pareto frontier forms. For this frontier, five-teen Pareto efficient criteria, each displaying equal spacing
in the criterion space, have been computed. The optimization algorithm needed 351 system response
evaluations (FEA and MEA). This underlines the applicability and effectiveness of the gradient-based
vector optimization approach.

138



9. Optimizing a propeller structure

40

601.4 1.6 1.8 2 2.2 2.4

−80

−60

−40

−20

emin

mmin

ωmax

Effort e [%]
Mass m [kg]

1st
Fr

eq
ue

nc
y
−
ω

[H
z]

Pareto Front
Hyper plane

Figure 9.24.: Illustration of the obtained 3D Pareto frontier for the criteria
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9.3. Summary on the conducted vector optimizations

In this chapter, the focal point was lying on multi-criteria optimizations and their post-processing.
One major outcome certainly is, that the implemented and deployed gradient-based multi-criteria
optimization approach is of general applicability and that it is not solely limited to academic analytical
multi-criteria optimization tasks. The approach did further facilitate the investigation of how certain
objectives do interact for the investigated propeller, itself representing a sophisticated structural design
task. In this regard, the analytical design sensitivities and the efficient exploitation of those, released
the full potential of the approach. This has also been reflected by the average number of function
calls, which have been way less than two hundred for most of the multi-criteria optimizations. The
superior efficiency was also underpinned by contrasting the approach with a state of the art genetic
algorithm, which did require more than twenty times the number of function evaluations while still
not yielding the same approximation quality of the Pareto frontier. In addition to the appealing
numerical efficiency, further advantageous features like the precise evaluation of optimality (KKT
conditions for each solution) or the extrapolation at any optimum–either via shadow prices or via
sensitivity study at Pareto efficient solutions–could have been identified. Moreover, the approach also
revealed how the objective function weights κ can vary over the Pareto frontier making an a priori
guess almost impossible for most cases. Nonetheless, if only an optimal compromise is of interest,
the geometric interpretation–gained via the conducted investigations–as already being introduced
in section 6.2 may help. As discussed there, the scalarization via κ can either be interpreted as a
mapping or by a line, for which the intersection with the Pareto frontier shall be found through the
optimization.

Lastly, the conducted optimizations gave insight on how the different objectives frequency, mass,
manufacturing effort and braiding time lead to distinct designs. This is mainly due to the fact, that
the objectives are strongly competing with each other. The following table 9.4 highlights this, by
providing the extremal solution of each objective. So, for instance, solely minimizing manufacturing
effort results in a design displaying a really low first eigenfrequency of roughly forty Hertz and a
moderate mass and braiding time. Trying to resolve this, by maximizing the first eigenfrequency in
turn, yields a design evincing really high associated manufacturing efforts in tandem with a high
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structural mass and long braiding times, which ultimately also translate into high production costs.
Studying this table hence underlines the potential of Pareto frontiers, which do form a great basis for
engineers to find most suitable compromises for given design tasks, while simultaneously considering
the industrial situation and available means.

Table 9.4.: Extremal optima of the vector optimization task

Objective f̃ Eigenfrequency ω1 [Hz] Effort e [-] Mass m [kg] Braiding time Tϕ [s]

−ω1 68.8 72.5 2.9 1478

m 35.0 55.1 1.2 1823

e 39.1 25.0 1.6 1116

Tϕ 47.2 51.1 2.1 695

140



Part III.

Postlude

141





10 | Discussion and findings

This chapter summarizes the conducted research first. Then, the presented research work will be
condensed to the gained insights. Finally, an outlook for perspective research work will be given.
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10.1. Summary of the conducted research work

Next a summary on the three core aspects of the conducted research work will be given: incorpo-
ration of manufacturing effort, gradient-based vector optimization and optimization of composite
structures.

The incorporation of manufacturing effort through soft computing forms one pillar of this thesis.
First and foremost, the developed approach of capturing expert knowledge, so as to describe soft
aspects via soft computing is applicable to a wide variety of processes. Herein, the manufacturing
effort associated with the braiding technology have been captured as well as those, associated with
the prepreg lamination. Even though, each manufacturing process has its distinct peculiarities, the
developed approach displayed great generality, while still being adaptable to specific demands. It
further showed great flexibility in terms of its utilization. As has been investigated with the A-pillar
design problem, the manufacturing effort model could be used independently. This is mainly due to
the b-spline-based representation of the underlying geometry, where the model fetched all necessary
data fully automated. This leveraged the effort model to an independent CAE tool. In this regard,
the novel output capability of providing reason R and elaboration advices A, augmented its CAE
capabilities tremendously. This is mainly because, an engineer can precisely comprehend, what lead
to the effort level and, moreover, which had the greatest imprint on it and how to optimally re-design.
Both responses have only been accessible, because the effort models have been implemented from
sketch via object orientation Python scripts. This implementation also revealed that most effort
models share a common basis, which can hence be gathered in a base class, which then inherits
further classes. Furthermore, the developed approach is appealing within any structural design
optimization process, since it has been shown, that the mathematical condition is rather affected in
a positive fashion. In addition to that, soft computing relaxes discrete variables, such that they can
be considered in gradient-based optimization and the computational effort is neglect-able. Despite
of these mentioned advantages, the approach is also subjected to certain limitations. One being,
that the approach always relies on the derived knowledge basis and thus only considers knowledge
covered throughout the acquisition and derivation of that basis. In that consequence, the approach
is not capable of extrapolating knowledge. Another drawback, may be the fact, that the technical
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interpretation of the used measure effort could be tedious due to its qualitative nature. Nevertheless,
it shall be noted here, that the approach gains most of its advantages out of this qualitative and thus
generally valid measure. Moreover, it was shown, how measures such as costs are to be computed by
data provided by the effort model.

Another strong pillar of the thesis is given by the developed gradient-based vector optimization
approach, which yields equidistantly distributed Pareto optimal solutions. These solutions thereby
approximate the continuous Pareto frontier, which in general gathers an infinite number of Pareto
efficient solutions. Expanding the design variable vector by the objective function weights, made
the afore intricate necessity of defining those a priori redundant. This can specifically regarded as
an advantage, because most multi-criteria optimizations, such as those conducted on the propeller,
revealed, that those objective weights distribute far from any intuition and can change erratically near
the extrema. Beside this, the approach is further controllable in terms of the number of derived Pareto
efficient solutions, with which the optimizer can strike a compromise in-between computational effort
and the accuracy of the Pareto frontier approximation. In addition to this, the approach showed to be
numerically efficient, because of few function evaluations needed. This got immensely amplified by
the embedded analytical design sensitivities. These sensitivities in concert with the gradient-based
optimization algorithms, also rendered the profound evaluation of optimality and shadow prices
possible, which equipped the approach with a sophisticated mathematical basis. Lastly, the thereby
computed Pareto frontiers facilitated the decision making on a firm basis. This is pre-eminently due to
the visualization of how the individual goals actually compete. On the contrary, two drawbacks could
be identified as well. One being the difficulty to interpret Pareto fronts of a higher dimension than
three. Obviously, this is because of the impossibility of graphically visualizing hypersurfaces. Further,
the general implementation of such a higher dimensional approach can be quite sophisticated, but
yet possible. Nonetheless, to draw a conclusion on that, the approach performed superiorly to most
alternatives, for the two and three dimensional case.

To close this summary, a general statement concluding the overall general gradient-based op-
timization of composite structures shall be given. In this thesis two industry relevant composite
structures have explicitly been optimized. Both of them had a rather big design space, i.e. the A-pillar
structure had almost fifty design variables and involved multiple analysis types ranging from stiffness
computation over failure analysis to modal analysis. These aspects did in concert with the multitude
of design requirements yield sophisticated and complex composite design tasks. In spite of these
challenges, the gradient-based methodology performed more than satisfactory. One fact substantiating
this, is the numerical efficiency manifesting in few function evaluations, hence, finite element analyses.
This fact has been leveraged by exploiting analytical design sensitivities. These sensitivities where
available for each and every analysis type, variable type and model. Despite the upfront implementa-
tion effort they caused, they not only amortized the effort spend, but instead reimbursed it multiple
times, since most vector optimization would not have been viable without. Beside this, they also
enabled a sophisticated post-processing of each and every optima, where optimality could precisely
stated, sensitivities and shadow prices utilized to extrapolate further gains and deepen insight. This
has for instance been shown for the A-pillar example, where the design sensitivity analysis at the end
illuminated the most critical design restrictions and on top pointed out parameters, which influence
this situation the most for an optimal design revision.

10.2. Insights gained

This section presents the condensate of the conducted thesis; the gained insights. For the sake of a
clear synopsis, the gained insights are grouped and given in itemized format.
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Soft computing of manufacturing aspects

Underlying methodology of general applicability: This is because it can be exploited to define
models capturing soft aspects of almost any nature, e.g. Klinsiński (1988). Herein, manufacturing
effort was described based on verbal expert knowledge base.

Emulates human designing capabilities: Both developed manufacturing effort models (MEMs)
compute effort levels upon request. In addition to that, the MEMs provide reason about their
evaluations made and return elaboration advices pointing into the direction of optimal design
improvement. Owing to all of that, the MEMs shall be regarded as an independent CAE tool, i.e.
complementary to classical constructing software.

Soft computing as used is numerically appealing: The approach is numerically efficient in terms
of computation times, because of its rather elementary mathematics. This efficiency empowers
the fast conduct of sensitivity analyses. It is further appealing, since it can cope with discrete
variables, since the fuzzy set theory is inherently compliant to continualization.

Straightforward model development: For a successful MEM development the acquisition and defin-
tion of a knowledge base is essential and this vital step is realizable with only few expert inter-
views, in case the knowledge engineer pursuits the ideas propagated herein. Adding to this, a
object-orientation implementation facilitates the separation of general soft computing methods,
such that they only need to be defined and implemented once.

Design optimization of composite structures

Potential of mathematical design optimization: The profound mathematical optimization frame-
work unleashed most of the composite’s potential in lightweight design. This is mostly because
it handled the multitude of design parameters, different load cases and multiple criteria pro-
foundly.

Soft computing enriches the optimization process: Such that the optimization can yield optimal
and significant design proposals, the optimization models need to be as holistic as possible,
while still being available at early product development phases and being numerically efficient.
Both demands are met by soft computing.

Gradient-based optimization most expedient approach: Based on the experiences made, gradi-
ents are less affected by the dimension of the design space, since the computation via analytical
approaches is convenient in FEA. The issue of non-convexity was addressed adequately by
multiple starting points generated via a DoE. Last but not least, first or second order optimization
algorithms share an overwhelming majority in commercial software as well, e.g. OptiStruct,
VisualDOC, ATOM, NASTRAN and more.

Great flexibility in the formulation of optimization tasks: Studying the optimization on the pro-
peller reveals that not only each response of either the FEM or MEM can be set as an objective or
constraint, but further they can be combined or formulated as a multi-criteria optimization task.
This underlines the flexibility an engineer has in formulating an optimization task.
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Multi-criteria optimization of conflicting goals

Pareto frontiers mitigate issues in decision finding: In industry, engineers seek for optimal com-
promises in-between many conflicting goals. Since the optimizer may not be familiar with each
and every involved discipline and/or the superordinate goals, Pareto frontiers can represent
distinguished media for communicating the optimization outcomes to a committee, which then
strikes the final design determining compromise.

Forthright formulation of the optimization task: Defining the optimization problem and especially
the objective functions is a rather straight forward task, because the optimizer does not face the
difficulty of providing weights for objectives a priori; instead, each of the allegedly conflicting
goals can be defined as an objective and the post-processing of the multi-criteria optimization
then reveals, whether or not these goals have been counteracting and in case yes, where an
optimal compromise could lie.

Gradient-based algorithms are applicable as well: Algorithms of higher order can be utilized for
computing Pareto optimal solutions by the proposed approach, which then solves for the Pareto
optimal solutions efficiently. Moreover, the approximation of the Pareto frontier is of high quality
since the computed solutions are equidistantly distributed.

10.3. Outlook

It has been shown, that considering manufacturing effort even in the early design phase–herein
realized and discussed via structural design optimization of composites–immensely enriches the
significance of the thereby derived designs. Moreover, the developed manufacturing effort models
are apparently independent and can thus be regarded as a separate simulation tool within the vast
family of CAE tools. This gives room for further investigation of how the effort models are for instance
integrable into a CAD software and whether or not they are able to similarly enhance the designing
phase. Besides, the underlying soft computing methodology could be applied to other fields as
well. Klinsiński (1988) for instance applied it in material modeling, also pointing out an interesting
research direction. Another path for extending the conducted research work, is given by leveraging the
significance of the optimization process by incorporating more aspects. For instance, the conducted
propeller optimization could be augmented by fully coupled structural and fluid simulations, thereby
facilitating the investigation of aerodynamics, aeroelasticity and their imprint onto the optimization
model’s condition and optimization outcomes. Further aspects to be investigated at more detail, are
for instance, discrete variables and the optimization considering those. Wehrle and the author have
developed a promising approach called APSIS, where the discrete variables are basically relaxed
to continuous ones, such that efficient gradient-based approaches (including analytical sensitivity
informations) are applicable again (see Schatz et al. (2014)). Integrating APSIS into the outlined
optimization process represents another interesting facet of holistic composite design optimization.
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A.1. Homogenization: Incompability in terms of the upper bound

The following equations have already been shown in Schatz (2012). The potential engergy of the
composite (heterogenous) for the unit cell Y can be derived to be.

U = ∫
ΩY

1

2
σijεijdΩ

This equation can be expanded via pertubating the strain, hence, U is strictly speeking the strain
energy.

Uε = ∫
ΩY

1

2
σij(εij − εij + εij)dΩ

= ∫
ΩY

1

2
σij(εij − εij)dΩ + εij

1

2
∫
ΩY

σijddΩ

Exploiting the fact that rotations are zero, or more precisely, that the antisymmetric part of the
gradient is zero 1

2
(∇u − (∇u)T ) = 0, yields [Sun and Vaidya (1996)].

Uε =
1

2
{∫

ΩY
σij (

∂ui
∂xj

−
∂ui
∂xj

)dΩ + εij ∫
ΩY

σijdΩ}

Now, assuming that both, ∫ΩY σijdΩ = σijVY and U ε = σijεijVY hold, further simplifies the
equation to;

Uε −U ε =
1

2
∫
ΩY

σij (
∂ui
∂xj

−
∂ui
∂xj

)dΩ

With the equilibrium equation ∂σij
∂xj

= 0 and the Gaussian divergence theorem one can obtain the
final identity in which ΓY representes the boundary of the unit cell Y . Since ΩY covers the volume,
ΓY accordingly is the surface of the domain [Sun and Vaidya (1996)].

147



A. Appendix

Uε −U ε =
1

2
∫
ΩY

∂

∂xj
{σij (ui − ui)}dΩ

=
1

2
∫
ΓY
σij (ui − ui)njdΓ

Uε −U ε =
1

2
∫
ΓY
σij (ui − ui)njdΓ i, j = 1,2,3 (A.1)

A.2. Vector optimization: Generalized κ-plots
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Figure A.1.: Three general abstract Pareto frontiers

A.3. Tri-objective vector optimization example

This analytical example is provided so as to demonstrate the capability of the developed approach for
also solving vector optimization problems with more than two objectives. For this sake, the following
problem statement is given,
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minimize
x∈χ

f⃗ = fi(xj), i = 1, . . . ,3, j = 1, . . . ,3

subject to g(xj) ≤ 0,
with χ = {xj ∈ R3 ∶ 0. ≤ xj ≤ 5.},

where,

(A.2)

f1 = x1

f2 = x2

f3 = x3

g = (x1 − 2)2 + (x2 − 2)2 + (x3 − 2)2 − 1.5

where three objectives have been defined. Because of the analytics, one can determine the set of
Pareto efficient solutions, the Pareto frontier ΩP explicitly. This analytical frontier is being approxi-
mated by taking advantage of the implemented vector optimization approach as introduced earlier
and plotted next. As can be seen, the approximation ΩP̃ is almost identical to the analytical one.

Approximation ΩP̃

f1

f2

f3
Analytical solution

Anchor points

Hyperplane

Figure A.2.: Solution of the vector optimization problem given with equation set (A.2)

A.4. Analytical example: Additional Pareto frontiers

Gradient-based Pareto frontier

With figure A.3, the computed approximation of the Pareto frontier of the analytical vector optimization
problem of section 7.1 is given. It shall be noted, that the Pareto frontier is analytically determinable
via equation (7.5) as well and that both, the computed and the analytical one are almost congruent.

Biologically insprired computation of Pareto optima

In the following, some results computed via the well known and renowned genetic algorithm NSGA-II
as implemented in pyOpt by Deb et al. (2002) will be given. The red line in each plot illustrates the
analytical solution and the blue points are computed by the GA for a given number of individuals per
generation nI and a total number of generations nG.
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Figure A.3.: Approxmiated Pareto frontier and objective weight plot
for the analytical example (see section 7.1)
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Figure A.4.: Computed Pareto frontiers via NSGA-II:
600 (A) and 300 (B) function calls
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Figure A.5.: Computed Pareto frontiers via NSGA-II:
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A.5. A-Pillar example: Supplementary braid results
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Figure A.6.: Braiding angle distribution ϕ(s) for the second and third braid layer
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Figure A.7.: Effort density distribution ė(s) for the second and third braid layer
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Figure A.8.: Braider yarn width distribution w(b)(s) for the second and third braid layer
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A.6. Propeller example: Supplementary plots of the optimal designs

In this section, supplementary propeller results are given. Most of the pictures are discussed in section
9.2 and are therefore referenced from there as well.
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Figure A.9.: Maximum frequency design of the propeller
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Figure A.10.: Effort-frequency-compromise design of the propeller
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Figure A.11.: Braid thickness t(r) of the
effort-frequency-compromise design

A.7. Evaluating utility for the bi-objective optimization mass-frequency
of the propeller

The following figure A.12 illustrates the evaluation of the utility U based on the definition in section
6.2.3. However, a slight modification was necessary, since the first natural frequency is maximized,
wherefore the utility has to be defined as

U = 1 −
mopt −m◻

m◻ −m∎

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m̄

+
ω

opt
1 − ω◻1
ω◻1 − ω

∎
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω̄1

. (A.3)
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Figure A.12.: Illustration of the utility as defined in section 6.2.3
(more details see Maier (2015))
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