
Training Recurrent Networks by Evolino

Jürgen Schmidhuber∗† Daan Wierstra∗ Matteo Gagliolo∗

Faustino Gomez∗
∗IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland

†TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany
{juergen,daan,matteo,tino}@idsia.ch

Abstract

In recent years, gradient-based LSTM recurrent neural networks (RNNs)
solved many previously RNN-unlearnable tasks. Sometimes,however, gra-
dient information is of little use for training RNNs, due to numerous local
minima. For such cases we present a novel method, namely, EVOlution
of systems with LINear Outputs (Evolino). Evolino evolves weights to the
nonlinear, hidden nodes of RNNs while computing optimal linear mappings
from hidden state to output, using methods such as pseudo-inverse-based
linear regression. If we instead use quadratic programmingto maximize
the margin, we obtain the first evolutionary recurrent Support Vector Ma-
chines. We show that Evolino-based LSTM can solve tasks thatEcho State
nets [15] cannot, and achieves higher accuracy in certain continuous func-
tion generation tasks than conventional gradient descent RNNs, including
gradient-based LSTM.

1 Introduction

Recurrent Neural Networks (RNNS; [27,32,33,49,52]) are mathematical abstrac-
tions of biological nervous systems that can perform complex mappings from in-
put sequences to output sequences. In principle one can wirethem up just like
microprocessors, hence RNNs can compute anything a traditional computer can
compute [35]. In particular, they can approximate any dynamical system with
arbitrary precision [44]. However, unlike traditional, programmed computers,
RNNs learn their behavior from a training set of correct example sequences. As

1

training sequences are fed to the network, the error betweenthe actual and de-
sired network output is minimized using gradient descent, whereby the connec-
tion weights are gradually adjusted in the direction that reduces this error most
rapidly. Potential applications include adaptive robotics, speech recognition, at-
tentive vision, music composition, and innumerably many others where retaining
information from arbitrarily far in the past can be criticalto making optimal deci-
sions.

Recently,Echo State Networks(ESNs; [15]) and a very similar approach,Liq-
uid State Machines[17], have attracted significant attention. Composed primarily
of a large pool of hidden neurons (typically hundreds or thousands) with fixed
random weights, ESNs are trained by computing a set of weights from the pool
to the output units using fast, linear regression. The idea is that with so many
random hidden units, the pool is capable of very rich dynamics that just need to
be correctly “tapped” by setting the output weights appropriately. ESNs have the
best known error rates on the Mackey-Glass time series prediction task [15].

The drawback of ESNs is that the only truly computationally powerful, non-
linear part of the net does not learn, whereas previous supervised, gradient-based
learning algorithms for sequence-processing RNNs [27, 32,36, 50, 52] adjustall
weights of the net, not just the output weights. Unfortunately, early RNN archi-
tectures could not learn to look far back into the past because they made gradients
either vanish or blow up exponentially with the size of the time lag [9,10].

A recent RNN called Long Short-Term Memory (LSTM; [11]), however, over-
comes this fundamental problem through a specialized architecture that does not
impose any unrealistic bias towards recent events by maintaining constant error
flow back through time. Using gradient-based learning for both linear and nonlin-
ear nodes, LSTM networks can efficiently solve many tasks that were previously
unlearnable using RNNs, e.g. [1–3,8,11,29,38].

However, even when using LSTM, gradient-based learning algorithms can
sometimes yield suboptimal results because rough error surfaces can often lead to
inescapable local minima. As we showed [12, 39], many RNN problems involv-
ing long-term dependencies that were considered challenging benchmarks in the
1990s, turned out to be trivial in that they could be solved byrandom weight guess-
ing. That is, these problems were difficult only because learning relied solely on
gradient information—there was actually a high density of solutions in the weight
space, but the error surface was too rough to be exploited using the local gradient.
By repeatedly selecting weights at random, the network doesnot get stuck in a
local minimum, and eventually happens upon one of the plentiful solutions.

One popular method that uses the advantage of random weight guessing in a

2

Recurrent
Neural Network

Linear Output
Layer W

m

u (t) u (t) u (t)

(t)(t) (t) (t)(t)

y1(t) y (t)2

1 2 3 4 u (t)p

y

φ φ φ φφ 2 n1 3 4

u

(t)

(t)

Figure 1:Evolino network A recurrent neural network receives sequential inputs
u(t) and produce the vector (φ1, φ2, . . . , φn) at every time stept. These values are
linearly combined with the weight matrixW to yield the network’s output vector
y(t). While the RNN is evolved, the output layer weights are computed using a
fast, optimal method such as linear regression or quadraticprogramming.

more efficient and principled way is to search the space of RNNweight matri-
ces [20,21,26,45,53,54] using evolutionary algorithms [13,31,41]. The applica-
bility of such methods is actually broader than that of gradient-based algorithms,
since no teacher is required to specify target trajectoriesfor the RNN output nodes.
In particular, recent progress has been made with cooperatively coevolving re-
current neurons, each with its own rather small, local search space of possible
weight vectors [6, 23, 30]. This approach can quickly learn to solve difficult rein-
forcement learning control tasks [5,6,22], including onesthat require use of deep
memory [7].

Successfully evolved networks of this type are currently still rather small, with
not more than several hundred weights or so. At least for supervised applications,
however, such methods may be unnecessarily slow, since theydo not exploit gra-
dient information about good directions in the search space.

To overcome such drawbacks, in what follows we limit the domain of evo-
lutionary methods to weight vectors of hidden units, while using fast traditional
methods for finding optimal linear maps from hidden to outputunits. We present

3

a general framework for training RNNs called EVOlution of recurrent systems
with LINear Outputs (Evolino) [40,51]. Evolino evolves weights to the nonlinear,
hidden nodes while computing optimal linear mappings from hidden state to out-
put, using methods such as pseudo-inverse-based linear regression [28] or Support
Vector Machines [48], depending on the notion of optimalityemployed. This gen-
eralizes methods such as those of Maillard [19] and Ishii et al. [14,47] that evolve
radial basis functions and ESNs, respectively. Applied to the LSTM architecture,
Evolino can solve tasks that ESNs [15] cannot, and achieves higher accuracy in
certain continuous function generation tasks than conventional gradient descent
RNNs, including gradient-based LSTM (henceforth called G-LSTM).

The next section describes the Evolino framework as well as two specific in-
stances, PI-Evolino (section 2.3) and Evoke (section 2.4) that both combine a
cooperative coevolution algorithm called Enforced SubPopulations (section 2.1)
with LSTM (section 2.2). In section 3 we apply Evolino to fourdifferent time se-
ries prediction problems, and in section 4 we provide some concluding remarks.

2 Evolino

Evolino is a general framework for supervised sequence learning that combines
neuroevolution (i.e. the evolution of neural networks) andanalytical linear meth-
ods that are optimal in some sense, such as linear regressionor quadratic program-
ming (see section 2.4). The underlying principle of Evolinois that often a linear
model can account for a large number of properties of a problem. Properties that
require non-linearity and recurrence are then dealt with byevolution.

Figure 1 illustrates the basic operation of an Evolino network. The output of
the network at timet, y(t)∈R

m, is computed by the following formulas:

y(t) = Wφ(t), (1)

φ(t) = f(u(t), u(t− 1), . . . , u(0)), (2)

whereφ(t)∈R
n is the output of a recurrent neural networkf(·), andW is a weight

matrix. Note that because the networks are recurrent,f(·) is indeed a function of
the entire input history,u(t), u(t − 1), . . . , u(0). In the case of maximum margin
classification problems [48] we may computeW by quadratic programming. In
what follows, however, we focus on mean squared error minimization problems
and computeW by linear regression.

In order to evolve anf(·) that minimizes the error betweeny and the correct
output,d, of the system being modeled, Evolino does not specify a particular

4

evolutionary algorithm, but rather only stipulates that networks be evaluated using
the following two-phase procedure.

In the first phase, a training set of sequences obtained from the system,{ui, di},
i = 1..k, each of lengthli, is presented to the network. For each sequenceui, start-
ing at timet = 0, each input patternui(t) is successively propagated through the
recurrent network to produce a vector of activationsφi(t) that is stored as a row in
a
∑k

i li×n matrixΦ. Associated with eachφi(t), is atargetvectordi(t) in matrix
D containing the correct output values for each time step. Once all k sequences
have been seen, the output weightsW (the output layer in figure 1) are computed
using linear regression fromΦ to D. The row vectors inΦ (i.e. the values of each
of then outputs over the entire training set) form a non-orthogonalbasis that is
combined linearly byW to approximateD.

In the second phase, the training set is presented to the network again, but now
the inputs are propagated through the recurrent networkf(·) and the newly com-
puted output connections to produce predictionsy(t). The error in the prediction
or theresidual erroris then used as the fitness measure to be minimized by evolu-
tion. Alternatively, the error on a previously unseen validation set, or the sum of
training and validation error, can be minimized.

Neuroevolution is normally applied to reinforcement learning tasks where cor-
rect network outputs (i.e. targets) are not knowna priori. Evolino uses neuroevo-
lution for supervised learning to circumvent the problems of gradient-based ap-
proaches. In order to obtain the precision required for time-series prediction, we
do not try to evolve a network that makes predictions directly. Instead, the net-
work outputs a set of vectors that form a basis for linear regression. The intuition
is that finding a sufficiently good basis is easier than tryingto find a network that
models the system accurately on its own.

One possible instantiation of Evolino that we have exploredthus far with
promising results coevolves the recurrent nodes of LSTM networks using a vari-
ant of the Enforced SubPopulations (ESP) neuroevolution algorithm. The next
sections describe ESP, LSTM, and the details of how they are combined in the
Evolino framework to form two algorithms: PI-Evolino whichuses the mean
squared error optimality criterion, and Evoke which uses the maximum margin.

2.1 Enforced SubPopulations (ESP)

Enforced SubPopulations differs from standard neuroevolution methods in that
instead of evolving complete networks, itcoevolvesseparate subpopulations of
network components orneurons(figure 2). ESP searches the space of networks

5

ESP

LSTM Network

output

input

pseudo−inverse
weights

Time series

fitness

Figure 2: Enforced SubPopulations (ESP). The population of neurons is seg-
regated into subpopulations. Networks are formed by randomly selecting one
neuron from each subpopulation. A neuron accumulates a fitness score by adding
the fitness of each network in which it participated. The bestneurons within each
subpopulation are mated to form new neurons. The network shown here is an
LSTM network with four memory cells (the triangular shapes).

6

indirectly by sampling the possible networks that can be constructed from the
subpopulations of neurons. Network evaluations serve to provide a fitness statis-
tic that is used to produce better neurons that can eventually be combined to form
a successful network. This cooperative coevolutionary approach is an extension to
Symbiotic, Adaptive Neuroevolution (SANE; [23]) which also evolves neurons,
but in a single population. By using separate subpopulations, ESP accelerates the
specialization of neurons into different sub-functions needed to form good net-
works because members of different evolving sub-function types are prevented
from mating. Subpopulations also reduce noise in the neuronfitness measure be-
cause each evolving neuron type is guaranteed to be represented in every network
that is formed. Both of these features allow ESP to evolve networks more effi-
ciently than SANE [4].

ESP normally uses crossover to recombine neurons. However,for the present
Evolino variant, where fine local search is desirable, ESP uses Cauchy-distributed
mutation to produce all new individuals, making the approach in effect an Evolu-
tion Strategy [42]. More concretely, evolution proceeds asfollows:

1. Initialization: The number of hidden unitsH in the networks that will be
evolved is specified and a subpopulation ofn neuron chromosomes is cre-
ated for each hidden unit. Each chromosome encodes a neuron’s input and
recurrent connection weights with a string of random real numbers.

2. Evaluation: A neuron is selected at random from each of theH subpopula-
tions, and combined to form a recurrent network. The networkis evaluated
on the task and awarded a fitness score. The score is added to the cumula-
tive fitnessof each neuron that participated in the network. This procedure
is repeated until each neuron participated inm evaluations.

3. Reproduction: For each subpopulation the neurons are ranked by fitness,
and the top quarter of the chromosomes orparentsin each subpopulation
are duplicated and the copies orchildrenare mutated by adding noise to all
of their weight values from the Cauchy distributionf(x) = α

π(α2+x2)
, where

the parameterα determines the width of the distribution. The children then
replace the lowest-ranking half of their corresponding subpopulation.

4. Repeat the Evaluation–Reproduction cycle until a sufficiently fit network is
found.

If during evolution the fitness of the best network evaluatedso far does not
improve for a predetermined number of generations, a technique calledburst mu-

7

ex
te

rn
al

 in
pu

ts
in

pu
t g

at
e

fo
rg

et
 g

at
e

ou
tp

ut
 g

at
e

Genotype Phenotype

Σ

o

GI

G

F SG

O

Figure 3: Genotype-Phenotype mapping. Each chromosome (genotype, left)
in a subpopulation encodes the external input, and input, output, and forget gate
weights of an LSTM memory cell (right). The weights leading out of the state (S)
and output (O) units are not encoded in the genotype, but are instead computed at
evaluation time by linear regression.

tation is used. The idea of burst mutation is to search the space of modifications to
the best solution found so far. When burst mutation is activated, the best neuron in
each subpopulation is saved, the other neurons are deleted,and new neurons are
created for each subpopulation by adding Cauchy distributed noise to its saved
neuron. Evolution then resumes, but now searching in a neighborhood around the
previous best solution. Burst mutation injects new diversity into the subpopula-
tions and allows ESP to continue evolving after the initial subpopulations have
converged.

2.2 Long Short-Term Memory

LSTM is a recurrent neural network purposely designed to learn long-term de-
pendencies via gradient descent. The unique feature of the LSTM architecture is

8

output

peephole

external inputs

Σ

G

F

GI

o

G

S

Figure 4:Long Short-Term Memory The figure shows an LSTMmemory cell.
The cell has an internal stateS together with a forget gate (GF) that determines
how much the state is attenuated at each time step. The input gate (GI) controls
access to the cell by the external inputs that are summed intotheΣ unit, and the
output gate (GO) controls when and how much the cell fires. Small dark nodes
represent the multiplication function.

9

thememory cellthat is capable of maintaining its activation indefinitely (figure 4).
Memory cells consist of a linear unit which holds thestateof the cell, and three
gates that can open or close over time. The input gate “protects” a neuron from
its input: only when the gate is open, can inputs affect the internal state of the
neuron. The output gate lets the state out to other parts of the network, and the
forget gate enables the state to “leak” activity when it is nolonger useful.

The state of celli is computed by:

si(t) = neti(t)g
in
i (t) + gforget

i (t)si(t − 1), (3)

wheregin andgforget are the activation of the input and forget gates, respectively,
andnet is the weighted sum of the external inputs (indicated by theΣs in figure 4):

neti(t) = h(
∑

j

wcell
ij cj(t − 1) +

∑

k

wcell
ik uk(t)), (4)

whereh is usually the identity function, andcj is the output of cellj:

cj(t) = tanh(gout
j (t)sj(t)). (5)

wheregout is the output gate of cellj. The amount each gategi of memory celli
is open or closed at timet is calculated by:

gtype
i (t) = σ(

∑

j

wtype
ij cj(t − 1) +

∑

k

wtype
ik uk(t)), (6)

wheretype can beinput, output, or forget, andσ is the standard sigmoid func-
tion. The gates receive input from the output of other cellscj, and from the exter-
nal inputs to the network.

2.3 Combining LSTM, ESP, and Pseudoinverse in Evolino

We apply our general Evolino framework to the LSTM architecture, using ESP
for evolution and regression for computing linear mappingsfrom hidden state to
outputs. ESP coevolves subpopulations of LSTM memory cellsinstead of stan-
dard recurrent neurons (figure 2). Each chromosome is a string containing the
external input weights and the input, output, and forget gate weights, for a total
of 4 ∗ (I + H) weights in each memory cell chromosome, whereI is the number
of external inputs andH is the number of memory cells in the network. There
are four sets ofI + H weights because the three gates and the cell itself receive
input from outside the cell and the other cells. Figure 3 shows how the memory

10

cells are encoded in an ESP chromosome. Each chromosome in a subpopulation
encodes the connection weights for a cell’s input, output, and forget gates, and
external inputs.

The linear regression method used to compute the output weights (W in equa-
tion 2) is the Moore-Penrose pseudo-inverse method, which is both fast and opti-
mal in the sense that it minimizes the summed squared error [28]—compare [19]
for an application to feedforward RBF nets and [14] for an application to Echo
State Networks. The vectorφ(t) consists of both the cell outputsci, and their in-
ternal states,si, so that the pseudo-inverse computes two connection weights for
each memory cell. We refer to the connections from internal states to the output
units as “output peephole” connections, since they peer into the interior of the
cells.

For continuous function generation,backprojection(or teacher forcingin stan-
dard RNN terminology) is used where the predicted outputs are fed back as inputs
in the next time step:φ(t) = f(u(t), y(t− 1), u(t− 1), . . . , y(0), u(0)).

During training, the correct target values are backprojected, in effect “clamp-
ing” the network’s outputs to the right values. During testing, the network back-
projects its own predictions. This technique is also used byESNs, but whereas
ESNs do not change the backprojection connection weights, Evolino evolves them,
treating them like any other input to the network. In the experiments described
below, backprojection was found useful for continuous function generation tasks,
but interferes to some extent with performance in the discrete context-sensitive
language task.

2.4 Evoke: Evolino for Recurrent Support Vector Machines

As outlined in section 2, the Evolino framework does not prescribe a particu-
lar optimality criterion for computing the output weights.If we replace mean
squared error with the maximum margin criterion of Support Vector Machines
(SVMs) [48], the optimal linear output weights can be evaluated using e.g. quadratic
programming, as in traditional SVMs. We call this Evolino variant EVOlution of
systems with KErnel-based outputs(Evoke; [37]). The Evoke variant of equation 1
becomes:

y(t) = w0 +

k∑

i=1

li∑

j=0

wijK(φ(t), φi(j)) (7)

whereφ(t) ∈ R
n is, again, the output of the recurrent neural networkf(·) at

11

time t (equation 2),K(·, ·) is a predefined kernel function, and the weightswij

correspond tok training sequencesφi, each of lengthli, and are computed with
the support vector algorithm.

Support Vector Machines are powerful regressors and classifiers that make
predictions based on a linear combination of kernel basis functions. The kernel
maps the input feature space to a higher dimensional space where the data is lin-
early separable (in classification), or can be approximatedwell with a hyperplane
(in regression). A limited way of applying existing SVMs to time series predic-
tion [24, 25] or classification [34] is to build a training seteither by transforming
the sequential input into some static domain (e.g., a frequency and phase repre-
sentation), or by considering restricted, fixed time windows ofm sequential input
values. One alternative presented in [43] is to average kernel distance between
elements of input sequences aligned tom points. Of course such approaches are
bound to fail if there are temporal dependencies exceedingm steps. In a more
sophisticated approach by Suykens and Vandewalle [46], a window ofm previous
output values is fed back as input to a recurrent model with a fixed kernel. So far,
however, there has not been any recurrent SVM thatlearnsto create internal state
representations for sequence learning tasks involving time lags of arbitrary length
between important input events. For example, consider the task of correctly clas-
sifying arbitrary instances of the context-free languageanbn (n a’s followed byn
b’s, for arbitrary integersn > 0).

For Evoke, the evolved recurrent neural network (RNN) is a preprocessor for
a standard SVM kernel. The combination of both can be viewed as an adaptive
kernel learning a task-specific distance measure between pairs of input sequences.
Although Evoke uses SVM methods, it can solve several tasks that traditional
SVMs cannot even solve in principle. We will see that it also outperforms recent
state-of-the-art RNNs on certain tasks, including Echo State Networks (ESNs)
[15] and previous gradient descent RNNs [11,27,32,33,49,52].

3 Experiments

Experiments with PI-Evolino were carried out on four test problems: context-
sensitive languages, multiple superimposed sine waves, parity problem with dis-
play, and the Mackey-Glass time series. The first two were chosen to high-
light Evolino’s ability to perform well in both discrete andcontinuous domains,
and to solve tasks that neither ESNs [15] nor traditional gradient descent RNNs
[27, 32, 33, 49, 52] can solve well. We also report successfulexperiments with

12

time steps

cell 3

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500
−1000

cell 4

cell 2
cell 1

−500

Figure 5:Internal state activations. The state activations for the 4 memory cells
of an Evolino network being presented the stringa800b800c800. The plot clearly
shows how some units function as “counters,” recording how manyas andbs have
been seen. More complex, non-linear behavior by the gates isnot shown.

Evoke-trained RSVMs on these tasks. The parity problem withdisplay demon-
strates PI-Evolino’s ability to cope with rough error surfaces that confound gra-
dient based approaches including G-LSTM. Although the Mackey-Glass system
can be modeled very accurately by non-recurrent systems [15], it was selected to
compare PI-Evolino with ESNs, the reference method on this widely used time
series benchmark.

3.1 Context-Sensitive Grammars

Context-sensitive languages are languages that cannot be recognized by determin-
istic finite-state automata, and are therefore more complexin some respects than
regular languages. In general, determining whether a string of symbols belongs
to a context-sensitive language requires remembering all the symbols in the string
seen so far, ruling out the use of non-recurrent architectures.

To compare Evolino-based LSTM with published results for G-LSTM [1], we
chose the languageanbncn. The task was implemented using networks with four
input units, one for each symbol(a, b, c) plus the start symbolS, and four output
units, one for each symbol plus the termination symbolT . Symbol strings were
presented sequentially to the network, with each symbol’s corresponding input
unit set to 1, and the other three set to -1. At each time step, the network must

13

predict the possible symbols that could come next in a legal string. Legal strings
in anbncn are those in which the number ofas,bs, andcs is equal, e.g.ST , SabcT ,
SaabbccT , SaaabbbcccT , and so forth. So, forn = 3, the set of input and target
values would be:

Input: S a a a b b b c c c

Target: a/T a/b a/b a/b b b c c c T

Evolino-based LSTM networks were evolved using 8 differenttraining sets,
each containing legal strings with values forn as shown in the first column of
Table 1. In the first four sets,n ranges from1 to k, wherek = 10, 20, 30, 40. The
second four sets consist of just two training samples, and were intended to test
how well the methods could induce the language from a nearly minimal number
of examples.

LSTM networks with memory cells were evolved (4 for PI-Evolino, 5 for
Evoke), with random initial values for the weights between−0.1 and 0.1 for
Evolino and between−5.0 and5.0 for Evoke. The Cauchy noise parameterα
for both mutation and burst mutation was set to0.00001 for Evolino and to0.1
for Evoke, i.e.50% of the mutations is kept within these bounds. In keeping with
the setup in [1], we added a bias unit to the Forget gates and Output gates with
values of+1.5 and−1.5, respectively. For Evoke, the parameters of the SVM
module were chosen heuristically: a Gaussian kernel with standard deviation2.0
and capacity100.0. Evolino evaluates fitness on the entire training set, but Evoke
uses a slightly different way of evaluating fitness: while the training set consists
of the first half of the strings, fitness was defined as performance on the second
half of the data, the validation set. Evolution was terminated after 50 generations,
after which the best network in each simulation was tested.

Table 1 compares the results of Evolino-based LSTM, using Pseudoinverse as
supervised learning module (PI-Evolino), with those of G-LSTM from [1]; “Stan-
dard PI-Evolino” uses parameter settings that are a compromise between discrete
and continuous domains. If we seth to thetanh function, we obtain “Tuned PI-
Evolino.” We never managed to train ESNs to solve this task, presumably because
the random pre-wiring of ESNs rarely represents an algorithm for solving such
context sensitive language problems.

The Standard PI-Evolino networks had generalization very similar to that of
G-LSTM on the1..k training sets, but slightly better on the two-example training
sets. Tuned PI-Evolino showed a dramatic improvement over G-LSTM on all of

14

Training Standard Tuned Gradient-
data PI-Evolino PI-Evolino LSTM

1..10 1..29 1..53 1..28
1..20 1..67 1..95 1..66
1..30 1..93 1..355 1..91
1..40 1..101 1..804 1..120

10,11 4..14 3..35 10..11
20,21 13..36 5..39 17..23
30,31 26..39 3..305 29..32
40,41 32..53 1..726 35..45

Table 1: Results for the anbncn language. The table compares Pseudoinverse
based Evolino (PI-Evolino) with Gradient-based LSTM (G-LSTM) on theanbncn

language task. “Standard” refers to Evolino with the parameter settings used for
both discrete and continuous domains (anbncn and superimposed sine waves). The
“Tuned” version is biased to the language task: we additionally squash the cell
input with thetanh function. The leftmost column shows the set of strings used
for training in each of the experiments. The other three columns show the set of
legal strings to which each method could generalize after 50generations (3000
evaluations), averaged over 20 runs. The upper training sets contain all strings
up to the indicated length. The lower training sets only contain a single pair. PI-
Evolino generalizes better than G-LSTM, most notably when trained on only two
examples of correct behavior. The G-LSTM results are taken from [1].

15

Mackey−Glass
Evolino

Evolino Mackey−Glass

 800

 0.8

 0.6

 1200 400 200
 0.4

 1

 1.2

 1.4

 0 1400 1000 600

Figure 6: Performance of PI-Evolino on the Mackey-Glass time-series. The
plot shows both the Mackey-Glass system and the prediction made by a typical
Evolino-based LSTM network evolved for 50 generations. Theobvious difference
between the system and the prediction during the first 100 steps is due to the
washout time. The inset shows a magnification that illustrates more clearly the
deviation between the two curves.

the training sets, but, most remarkably on the two-example sets where it was able
to generalize on average to all strings up ton = 726 after being trained on only
n = {40, 41}. Evoke’s performance was superior forN = 10 andN = 20,
generalizing up ton = 257 andn = 374 respectively, but degraded for larger
values ofN , for which both PI-Evolino and G-LSTM achieved better results.
Figure 3.1, shows the internal states of each of the 4 memory cells of one of the
networks evolved by PI-Evolino while processinga800b800c800.

3.2 Parity Problem with Display

The Parity Problem with Display involves classifying sequences consisting of1’s
and−1’s according to whether the number of1’s is even or odd. The target, which
depends on the entire sequence, is a display of10 × 10 output neurons depicting
“O” for odd and “E” for even. The display prevents the task from being solved by
guessing the network weights [12], and makes the error gradient very rough.

We trained PI-Evolino with 2 memory cells on50 random sequences of length
between100 and110. Unlike G-LSTM, which typically cannot solve this task
due to a lack of global gradient information, PI-Evolino learned a perfect display
classification on a test set within 30 generations, in all20 experiments.

3.3 Mackey-Glass Time-Series Prediction

The Mackey-Glass system (MGS; [18]) is a standard benchmarkfor chaotic time
series prediction. The system produces an irregular time series that is produced

16

by the following differential equation:̇y(t) = αy(t− τ)/(1 + y(t− τ)β)− γy(t),
where the parameters are usually set toα = 0.2, β = 10, γ = 0.1. The system
is chaotic whenever the delayτ > 16.8. We use the most common value for the
delayτ = 17.

Although the MGS can be modeled very accurately using feedforward net-
works with a time-window on the input, we compare PI-Evolinoto ESNs (cur-
rently the best method for MGS) in this domain to show its capacity for making
precise predictions. We used the same setup in our experiments as in [15].

Networks were evolved in the following way. During the first phase of an
evaluation, the network predicts the next function value for 3000 time steps with
the benefit of the backprojected target from the previous time step. For the first
100 “washout” time steps, the vectorsφ(t) are not collected, i.e only theφ(t), t =
101..3000, are used to calculate the output weights using the pseudo-inverse. Dur-
ing the second phase, the previous target is backprojected only during the washout
time, after which the network runs freely by backprojectingits own predictions.
The fitness score assigned to the network is the MSE on time steps101..3000.

Networks with 30 memory cells were evolved for 200 generations, and a
Cauchy noiseα of 10−7. A bias input of 1.0 was added to the network, the back-
projection values were scaled by a factor of 0.1, and the cellinput was squashed
with thetanh function.

At the end of an evolutionary run, the best network found was tested by having
it predict using the backprojected previous target for the first 3000 steps, and then
run freely from time step 3001 to 30841. The average NRMSE84 for PI-Evolino
with 30 cells over the 15 runs was1.9 × 10−3 compared to10−4.2 for ESNs with
1000 neurons [15]. The PI-Evolino results are currently thesecond-best reported
so far.

Figure 6 shows the performance of an Evolino network on the MGtime-series
with even fewer memory cells, after 50 generations. Becausethis network has
fewer parameters, it is unable to achieve the same precisionas with 30 neurons,
but it demonstrates how Evolino can learn such functions very quickly; in this
case within approximately 3 minutes of CPU time.

1The normalized root mean square error (NRMSE84) 84 steps after the end of the training
sequence is the standard comparison measure used for this problem.

17

5

Training

time steps

Generalization

4

3

2

−4

 250 300 350 400

−4

−3

−2

−1

 0

 1

 2

 3

 4

 100 150 200 250 300 350 400

−3

−2

−1

 0

 1

 2

 3

 100 150 200 250 300 350 400

−4

−3

−2

−1

 0

 1

 2

 3

 4

 400 450 500 550 600 650 700

−3

−2

−1

 0

 1

 2

 3

 2700 2750 2800 2850 2900 2950 3000

−4

−2

 0

 2

 4

 400 450 500 550 600 650 700

−2

−1

 0

 1

 2

 100 150 200 250 300 350 400

−2

−1

 0

 1

 2

 9700 9750 9800 9850 9900 9950 10000

 150 100

 4

 2

 0

−2

 200

Figure 7: Performance of PI-Evolino on the superimposed sine wave tasks.
The plots show the behavior of a typical network produced after a specified num-
ber of generations: 50 for the two-, three-, and four-sine functions, and 150 for the
five-sine function. The first 300 steps of each function, in the left column, were
used for training. The curves in the right column show valuespredicted by the
networks (dashed curves) further into the future vs. the corresponding reference
signal (solid curves). While the onset of noticeable prediction error occurs earlier
as more sines are added, the networks still track the correctbehavior for hundreds
of time steps, even for the five-sine case.

18

No. sines No. cells Training NRMSE Gen. NRMSE
2 10 2.01×10−3 4.15×10−3

3 15 2.44×10−3 8.04×10−3

4 20 1.51×10−2 1.10×10−1

5 20 1.60×10−2 1.66×10−1

Table 2: PI-Evolino results for multiple superimposed sine waves. The table
shows the number of memory cells, training error, and generalization error for
each of the superimposed sine wave functions. The training NRMSE is calculated
on time steps100 to 400 (i.e. the washout time is not included in the measure); the
generalization NRMSE is calculated for time steps400 to 700 (averaged over 20
experiments).

3.4 Multiple Superimposed Sine Waves

Learning to generate a sinusoidal signal is a relatively simple task that requires
only one bit of memory to indicate whether the current network output is greater
or less than the previous output. When sine waves with frequencies that are not
integer multiples of each other are superimposed, the resulting signal becomes
much harder to predict because its wavelength can be extremely long, i.e. there
are large number of time steps before the periodic signal repeats. Generating such
a signal accurately without recurrency would require a prohibitively large time-
delay window using a feedforward architecture.

Jaeger reports [16] that Echo State Networks are unable to learn functions
composed of even two superimposed oscillators, in particularsin(0.2x)+sin(0.311x).
The reason for this is that the dynamics of all the neurons in the ESN “pool” are
coupled, while this task requires that the two underlying both oscillators be repre-
sented by the network’s internal state.

Here we show how Evolino-based LSTM not only can solve the two-sine
function mentioned above, but also more complex functions formed by super-
imposing up to three more sine waves. Each of the functions was constructed
by

∑n

i=1 sin(λix), wheren is the number of sine waves andλ1 = 0.2, λ2 =
0.311, λ3 = 0.42, λ4 = 0.51, andλ5 = 0.74.

For this task, PI-Evolino networks were evolved using the same setup and
procedure as for the Mackey-Glass system except that steps101..400 were used
the calculate the output weights in the first evaluation phase, and fitness in the
second phase. Again, during the first 100 washout time steps the vectorsφ(t)

19

were not collected for computing the pseudo-inverse.
The first three tasks,n = 2, 3, 4, used subpopulations of size 40 and simula-

tions were run for 50 generations. The five-sine wave task,n = 5, proved much
more difficult to learn requiring a larger subpopulation size of 100, and simula-
tions were allowed to run for 150 generations. At the end of each run, the best
network was tested for generalization on data points from time-steps401..700,
making predictions using backprojected previous predictions.

For Evoke, a slightly different setting was used, in which networks were
evolved to minimize the sum of training and validation error, on points100..400
and400..700 respectively, and tested on points700..1000. The weight range was
set to[−1.0, 1.0], and a Gaussian kernel with standard deviation2.0 and capacity
10.0 was used for the SVM.

Table 2 shows the number of memory cells used for each task, and the average
summed squared error on both the training set and the testingset for the best
network found during each evolutionary run of PI-Evolino. Evoke achieved a
relatively low generalization NRMSE of1.03×10−2 on the double sines problem,
but gave unsatisfactory results for three or more sines.

Figure 7 shows the behavior of one the successful networks from each of the
tasks. The column on the left shows the target signal from Table 2, and the output
generated by the network on the training set. The column on the right shows the
same curves forward in time to show the generalization capability of the networks.
For the two-sine function, even after 9000 time-steps, the network continues to
generate the signal accurately. As more sines are added, theprediction error grows
more quickly, but the overall behavior of the signal is stillretained.

Figure 8 reveals how the two-sine wave is represented internally by a typical
PI-Evolino network. For the purpose of illustration, a lessaccurate network con-
taining only three cells instead of ten, is shown. The upper graph shows the overall
output of the network, while the other graphs show the outputpeephole and out-
put activity of each cell multiplied by the corresponding pseudoinverse-generated
output weight.

Although the network can generate the function very accurately for thousands
of time steps, it does not do so by implementing sinusoidal oscillators. Instead,
each cell by itself behaves in a manner that is qualitativelysimilar to the two-sine
but scaled, translated, and phase-shifted. These six separate signals are added
together to produce the network output.

20

 793.6

 1914

 18

 8

−1568

−1556

−1562

time steps

 14

 11

−1168.6

−1169.1

−1169.6

 1909.5

 11

 792.8

 1911.5

 793

 14

net prediction

cell 1

ouput

ouput

ouput

peephole

cell 2

cell 3
peephole

peephole

 2

 1700 1750 1800 1850 1900 1950 2000 1600

 1

−1

 0

−2

 1650

Figure 8:Internal representation of two-sine function. The upper graph shows
the output of a PI-Evolino LSTM network with three cells predicting the two-sine
function. The three pairs of graphs below show the output (upper) and output
peephole (lower) values of each cell in the network multiplied by their respective
(pseudoinverse-generated) output weight. These six signals are added to generate
the signal in the upper graph.

21

4 Concluding Remarks

The human brain is a biological, learning RNN. Previous successes with artifi-
cial RNNs have been limited by problems overcome by the LSTM architecture.
Its algorithms for shaping not only the linear but also the nonlinear parts allow
LSTM to learn to solve tasks unlearnable by standard feed-forward nets, Support
Vector Machines, Hidden Markov Models, and previous RNNs. Previous work
on LSTM has focused on gradient-based G-LSTM [1–3, 8, 11, 29,38]. Here we
introduced the novel Evolino class of supervised learning algorithms for such nets
that overcomes certain problems of gradient-based RNNs with local minima. Suc-
cessfully tested instances with hidden coevolving recurrent neurons use either the
pseudoinverse to minimize the MSE of the linear mapping fromhidden units to
outputs (PI-Evolino), or quadratic programming to maximize the margin. The lat-
ter yields the first evolutionary recurrent SVMs or RSVMs, trained by an Evolino
variant called Evoke.

In the experiments of our pilot study, RSVMs generally performed better than
G-LSTM and previous gradient-based RNNs, but typically worse than PI-Evolino.
One possible reason for this could be that the kernel mappingof the SVM com-
ponent induces a more rugged fitness landscape that makes evolutionary search
harder.

All of the evolved networks were comparatively small, usually featuring less
than 3,000 weights. On the other hand, for large data sets such as those used
in speech recognition we typically need much larger LSTM networks with on
the order of 100,000 weights [8]. On such problems, we have sofar generally
obtained better results with G-LSTM than with Evolino. Thisseems to reaffirm
the heuristic that evolution of large parameter sets is often harder than gradient
search in such sets. Currently it is unclear when exactly to favor one over the other.
Future work will explore hybrids combining G-LSTM and Evolino in an attempt
to leverage the best of both worlds. We will also explore waysof improving the
performance of Evoke, including the coevolution of SVM kernel parameters.

We have barely tapped the set of possible applications of ournew approaches:
in principle, any learning task that requires some sort of adaptive short-term mem-
ory may benefit.

22

References

[1] F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple con-
text free and context sensitive languages.IEEE Transactions on Neural Net-
works, 12(6):1333–1340, 2001.

[2] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with LSTM.Neural Computation, 12(10):2451–2471, 2000.

[3] F. A. Gers, N. Schraudolph, and J. Schmidhuber. Learningprecise timing
with LSTM recurrent networks.Journal of Machine Learning Research,
3:115–143, 2002.

[4] F. Gomez and R. Miikkulainen. Solving non-Markovian control tasks with
neuroevolution. InProceedings of the 16th International Joint Conference
on Artificial Intelligence, Denver, CO, 1999. Morgan Kaufmann.

[5] F. Gomez and J. Schmidhuber. Evolving modular fast-weight networks for
control. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors,Proceed-
ings of the Fifteenth International Conference on Artificial Neural Networks:
ICANN-05, pages 383–389, 2005.

[6] F. J. Gomez.Robust Nonlinear Control through Neuroevolution. PhD the-
sis, Department of Computer Sciences, The University of Texas at Austin,
August 2003. Technical Report AI-TR-03-303.

[7] F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn deep
memory pomdps. InProceedings of the Genetic Evolutionary Computation
Conference (GECCO-05), Berlin; New York, 2005. Springer-Verlag.

[8] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidi-
rectional LSTM and other neural network architectures.Neural Networks,
18:602–610, 2005.

[9] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Institut für Informatik, Lehrstuhl Prof.Brauer, Technische
Universität München, 1991.

[10] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. In S. C.

23

Kremer and J. F. Kolen, editors,A Field Guide to Dynamical Recurrent Neu-
ral Networks. IEEE Press, 2001.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[12] S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag prob-
lems. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in
Neural Information Processing Systems 9 (NIPS 9), pages 473–479. MIT
Press, 1997.

[13] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[14] K. Ishii, T. van der Zant, V. Bec̆anović, and P. G. Plöger. Identification of
motion with echo state network. InProc. IEEE Oceans04, pages 1205–1230,
Kobe, Japan, 2004. IEEE.

[15] H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication.Science, 304:78–80, 2004.

[16] H. Jaeger. http://www.faculty.iu-bremen.de/hjaeger/courses/seminarspring04/esnstandardslides.pdf,
2004.

[17] W. Maass, T. Natschläger, and H. Markram. A fresh look at real-time com-
putation in generic recurrent neural circuits. Technical report, Institute for
Theoretical Computer Science, TU Graz, 2002.

[18] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control
systems.Science, 197:287–289, 1977.

[19] E. P. Maillard and D. Gueriot. RBF neural network, basisfunctions and
genetic algorithms. InIEEE International Conference on Neural Networks,
pages 2187–2190, Piscataway, NJ, 1997. IEEE.

[20] O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robotsin simulated and
real environments.Artificial Life, 2(4):417–434, 1995.

[21] G. Miller, P. Todd, and S. Hedge. Designing neural networks using genetic
algorithms. InProceedings of the 3rd International Conference on Genetic
Algorithms, pages 379–384. Morgan Kauffman, 1989.

24

[22] D. E. Moriarty. Symbiotic Evolution of Neural Networks in Sequential De-
cision Tasks. PhD thesis, Department of Computer Sciences, The University
of Texas at Austin, 1997. Technical Report UT-AI97-257.

[23] D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning
through symbiotic evolution.Machine Learning, 22:11–32, 1996.

[24] S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time
series using support vector machines. In J. Principe, L. Giles, N. Morgan,
and E. Wilson, editors,IEEE Workshop on Neural Networks for Signal Pro-
cessing VII, page 511. IEEE Press, 1997.

[25] K. Müller, A. Smola, G.Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik.
Predicting time series with support vector machines. In W. G. et al., editor,
Proceedings of the Seventh International Conference on Artificial Neural
Networks: ICANN-97, pages 999–1004. Springer-Verlag, 1997.

[26] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve au-
tonomous robots: Different approaches in evolutionary robotics. In R. A.
Brooks and P. Maes, editors,Fourth International Workshop on the Syn-
thesis and Simulation of Living Systems (Artificial Life IV), pages 190–197.
MIT, 1994.

[27] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural net-
works: A survey.IEEE Transactions on Neural Networks, 6(5):1212–1228,
1995.

[28] R. Penrose. A generalized inverse for matrices. InProceedings of the Cam-
bridge Philosophy Society, volume 51, pages 406–413, 1955.

[29] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman filters
improve LSTM network performance in problems unsolvable bytraditional
recurrent nets.Neural Networks, 16(2):241–250, 2003.

[30] M. A. Potter and K. A. De Jong. Evolving neural networks with collabo-
rative species. InProceedings of the 1995 Summer Computer Simulation
Conference, 1995.

[31] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Dissertation, 1971. Published 1973
by Fromman-Holzboog.

25

[32] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation
network. Technical Report CUED/F-INFENG/TR.1, CambridgeUniversity
Engineering Department, 1987.

[33] D. E. Rumelhart and J. L. McClelland, editors.Parallel Distributed Process-
ing, volume 1. MIT Press, 1986.

[34] J. Salomon, S. King, and M. Osborne. Framewise phone classification us-
ing support vector machines. InProceedings International Conference on
Spoken Language Processing, Denver, 2002.

[35] J. Schmidhuber. Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. Dissertation, Institut für Informatik, Technische
Universität München, 1990.

[36] J. Schmidhuber. A fixed size storageO(n3) time complexity learning algo-
rithm for fully recurrent continually running networks.Neural Computation,
4(2):243–248, 1992.

[37] J. Schmidhuber, M. Gagliolo, D. Wierstra, and F. Gomez.Evolino for recur-
rent support vector machines. InProc. ESANN’06, in press, 2006.

[38] J. Schmidhuber, F. Gers, and D. Eck. Learning nonregular languages: A
comparison of simple recurrent networks and LSTM.Neural Computation,
14(9):2039–2041, 2002.

[39] J. Schmidhuber, S. Hochreiter, and Y. Bengio. Evaluating benchmark prob-
lems by random guessing. In S. C. Kremer and J. F. Kolen, editors,A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.

[40] J. Schmidhuber, D. Wierstra, and F. J. Gomez. Evolino: Hybrid neuroevo-
lution / optimal linear search for sequence prediction. InProceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI). Mor-
gan Kaufman, 2005, in press.

[41] H. P. Schwefel. Numerische Optimierung von Computer-Modellen. Disser-
tation, 1974. Published 1977 by Birkhäuser, Basel.

[42] H. P. Schwefel.Evolution and Optimum Seeking. Wiley Interscience, 1995.

26

[43] H. Shimodaira, K.-I. Noma, M. Nakai, and S. Sagayama. Dynamic time-
alignment kernel in support vector machine. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002. MIT Press.

[44] H. T. Siegelmann and E. D. Sontag. Turing computabilitywith neural nets.
Applied Mathematics Letters, 4(6):77–80, 1991.

[45] K. Sims. Evolving virtual creatures. In A. Glassner, editor, Proceedings
of SIGGRAPH ’94 (Orlando, Florida, July 1994), Computer Graphics Pro-
ceedings, Annual Conference, pages 15–22. ACM SIGGRAPH, ACM Press,
jul 1994. ISBN 0-89791-667-0.

[46] J. Suykens and J. Vandewalle. Recurrent least squares support vector ma-
chines.IEEE Transactions on Circuits and Systems-I, 47(7):1109–1114, July
2000.

[47] T. van der Zant, V. Becanovic, K. Ishii, H.-U. Kobialka,and P. G. Plöger.
Finding good echo state networks to control an underwater robot using evo-
lutionary computations. InProceedings of the 5th IFAC symposium on Intel-
ligent Autonomous Vehicles (IAV04), Lisboa, Portugal, 2004.

[48] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

[49] P. J. Werbos.Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[50] P. J. Werbos. Generalization of backpropagation with application to a recur-
rent gas market model.Neural Networks, 1, 1988.

[51] D. Wierstra, F. J. Gomez, and J. Schmidhuber. Modeling non-linear dy-
namical systems with Evolino. InProc. GECCO 2005, Washington, D. C.,
2005. GECCO best paper award in Learning Classifier Systems and Other
Genetics-Based Machine Learning.

[52] R. J. Williams. Complexity of exact gradient computation algorithms for
recurrent neural networks. Technical Report Technical Report NU-CCS-89-
27, Boston: Northeastern University, College of Computer Science, 1989.

27

[53] B. M. Yamauchi and R. D. Beer. Sequential behavior and learning in evolved
dynamical neural networks.Adaptive Behavior, 2(3):219–246, 1994.

[54] X. Yao. A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 4:203–222, 1993.

28

