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Abstract

In this paper we introduce a new connectionist approach
to on-line handwriting recognition and address in partic-
ular the problem of recognizing handwritten whiteboard
notes. The approach uses a bidirectional recurrent neu-
ral network with long short-term memory blocks. We use
a recently introduced objective function, known as Connec-
tionist Temporal Classification (CTC), that directly trains
the network to label unsegmented sequence data. Our new
system achieves a word recognition rate of74.0 %, com-
pared with 65.4 % using a previously developed HMM-
based recognition system.

1. Introduction

Although the problem of handwriting recognition has
been considered for more than 30 years [1, 12, 16], there
are still many open issues, especially in the task of un-
constrained handwritten sentence recognition. Handwriting
recognition is traditionally divided into on-line and off-line
recognition. In on-line recognition a time ordered sequence
of coordinates, representing the movement of the tip of pen,
is captured, while in the off-line mode only the image of the
text is available.

In this paper we consider an on-line recognition prob-
lem, namely the recognition of notes written on a white-
board. This is a relatively new task. As people stand, rather
than sit, during writing and the arm does not rest on a ta-
ble, handwriting rendered on a whiteboard is different from
handwriting produced with a pen on a writing tablet. De-
spite some additional difficulty, the whiteboard modality is
important in several applications, such as the documenta-
tion of lectures or meetings. In the particular application

underlying this paper we aim at developing a handwriting
recognition system to be used in a smart meeting room sce-
nario [17], in our case the smart meeting room developed in
the IM2 project [11]. Smart meeting rooms usually have
multiple acquisition devices, such as microphones, cam-
eras, electronic tablets, and a whiteboard. In order to allow
for indexing and browsing [18], automatic transcription of
the recorded data is needed.

In this paper, we introduce a novel approach to on-line
handwriting recognition, using a single recurrent neural net-
work (RNN) to transcribe the data. The key innovation is a
recently introduced RNN objective function known as Con-
nectionist Temporal Classification (CTC) [5]. Whereas pre-
vious objective functions only use RNNs to label individual
data points within a sequence, CTC uses the network to la-
bel the entire input sequence at once. This means the net-
work can be trained with unsegmented input data (an impor-
tant requirement for on-line handwriting, where correct seg-
mentation of individual letters is often difficult to achieve),
and the final label sequence (in this case, the character level
transcription) is given directly by the network output.

In our writer independent experiments on the IAM-
OnDB [9]1, a word recognition rate of up to74.0 % has
been achieved. These results are significantly higher then
those from previous experiments with an HMM-based sys-
tem [10].

The rest of the paper is organized as follows. Section 2
gives an overview of the proposed system. In Section 3
the main steps for preprocessing the data and extracting
the features are presented. Section 4 introduces the new
classification approach for handwriting recognition. Exper-
iments and results are presented in Section 5, and finally
Section 6 draws some conclusions and gives an outlook to
future work.

1http://www.iam.unibe.ch/f̃ki/iamondb/



Figure 1. Illustration of the recording

2. System Overview

The eBeam interface2 is used for recording the handwrit-
ing. It allows the user to write on a whiteboard with a nor-
mal pen in a special casing, which sends infrared signals to
a triangular receiver mounted in one of the corners of the
whiteboard. The acquisition interface outputs a sequence
of (x,y)-coordinates representing the location of the tip of
the pen together with a time stamp for each location. The
frame rate of the recordings varies from 30 to 70 frames per
second. An illustration is shown in Fig. 1.

The system described in this paper consists of three main
modules: the on-line preprocessing, where noise in the raw
data is reduced and the text line is normalized with re-
spect to skew, slant, width and height; the feature extrac-
tion, where the sequence of points is transformed into a se-
quence of feature vectors; and the recognition, where an
ASCII transcription of the handwriting is generated.

3. Preprocessing

Before feature extraction can be applied, the recorded
data has to be normalized. This is a very important step in
handwriting recognition systems, because the styles of the
writers differ with respect to skew, slant, height and width of
the characters. If we do not apply any preprocessing and use
the raw features, the recognition rate is significantly lower.
The preprocessing steps applied in the current system have
been introduced in [10], but for the purpose of complete-
ness, we give a short overview below.

The recorded on-line data usually contain noisy points
and gaps within strokes, which are caused by loss of data.
Hence, we apply some noise filtering operations first. The
cleaned text data is then automatically divided into lines us-
ing some simple heuristics. As the skew often significantly

2eBeam System by Luidia, Inc. - www.e-Beam.com

Figure 2. Splitting a text line into subparts
and skew correction

Figure 3. Baseline and corpus line of an ex-
ample part of a text line

varies within the same line, we split lines into subparts. An
example of splitting is shown in Fig. 2 (upper line).

Next the subparts are corrected with respect to their skew
using a linear regression. This process is illustrated in Fig. 2
with the resulting text line shown in the lower part. For slant
normalization, we compute the histogram over all angles
between the lines connecting two successive points of the
trajectory and the horizontal line [8]. Subsequently, the his-
togram is processed to recover the skew angle. After these
operations, we remove delayed stokes, e.g. the crossing of a
“t” or the dot of an “i”, using simple heuristics. The next im-
portant step is the computation of the baseline and the cor-
pus line by computing two linear regression lines through
the minima and maxima of they-coordinates of the strokes.
Figure 3 illustrates the estimated baseline and the corpus
line of part of the example shown in Fig. 2. The base-
line is subtracted from ally-coordinates to make it equal
to thex-axis. As the last preprocessing step, the width of
the characters is normalized. First, the number of characters
is estimated as a fraction of the number of strokes crossing
the horizontal line between the baseline and the corpus line.
The text is then horizontally scaled according to this value.

The set of extracted features can be divided into two
classes. The first class consists of features extracted for each
pointpi considering the neighbors ofpi with respect to time.
The second class takes the off-line matrix representation of
the handwriting into account.

The features of the first class are the following:

• pen-up/pen-down: a boolean variable indicating
whether or not the pen-tip touches the board.

• hat-feature: this feature indicates if a delayed stroke
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Figure 4. Features of the vicinity

was removed at the considered horizontal position.

• speed:the velocity at pointpi is computed before re-
sampling and then interpolated.

• x-coordinate: thex-position of pointpi is taken after
high-pass filtering (subtracting a moving average)

• y-coordinate:the vertical position after normalization.

• writing direction: the cosine and sine of the angle be-
tween the line segment starting atpi and thex-axis.

• curvature:the cosine and sine of the angle between the
lines to the previous and the next point.

• vicinity aspect:the aspect of the trajectory (see Fig. 4):
(∆y(t)−∆x(t)) / (∆y(t) + ∆x(t))

• vicinity slope:cosine and sine of the angleα(t) of the
straight line from the first to the last vicinity point.

• vicinity curliness: the length of the trajectory in the
vicinity divided by max(∆x(t),∆y(t)).

• vicinity linearity: the average square distanced2 of
each point in the vicinity to the straight line from the
first to the last vicinity point.

The features of the second class are all computed using a
two-dimensional matrix representing the off-line version of
the data. The following features are used:

• ascenders/descenders: the number of points
above/below the corpus in thex-vicinity of pi.

• context map: the two-dimensional vicinity ofpi is
transformed to a3 × 3 map. The resulting nine val-
ues are taken as features.

4. The New Approach

Recurrent neural networks (RNNs) are a natural choice
for on-line handwriting recognition, since they are able
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Figure 5. Individual timestep classification
with a standard RNN

to access a wide range of context when transcribing let-
ters, words or word sequences. Until recently however,
RNNs were limited to making separate classifications at ev-
ery timestep in an input sequence. This severely limited
their applicability to domains such as cursive handwriting
recognition, since it required that the training data be pre-
segmented, and that the network outputs be post-processed
to give the final transcriptions. Figure 5 shows an example
output sequence for a standard RNN as it is used in speech
recognition. The network has one output neuron for each
phoneme. Note that the targets, i.e. the phonemes to be
recognized, are pre-segmented.

Connectionist Temporal Classification (CTC) [2, 5] is an
RNN objective function designed to overcome the above
problem. It uses the network to define a probability distri-
bution over a fixed set of labels plus an additional ‘blank’,
or ‘no label’ unit. It then interprets the sequence of network
outputs as a probability distribution over all possible tran-
scriptions for a given input sequence, and trains the network
by maximizing the log probabilities of the correct transcrip-
tions on the training set. Figure 6 illustrates how CTC tran-
scribes an on-line handwriting sample. At the bottom there
is an image of a handwritten input word. Above the in-
put, three on-line feature streams representing x-position,
y-position and time, together with a fourth binary feature
indicating the end of a stroke, are shown. Above the fea-
ture stream, the outputs of the neurons in the hidden layer
are given. Finally, he network output is shown in the upper-
most layer in Figure 6.

As mentioned above, the effectiveness of RNNs lies in
their ability to access contextual information. It is therefore
important to choose an RNN architecture that maximizes
the amount of context available.

Long Short-Term Memory (LSTM) [4, 7] is an RNN ar-
chitecture specifically designed to bridge long time delays
between relevant input and target events, making it suitable
for problems (such as handwriting recognition) where long
range context is required to disambiguate individual labels.
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Figure 6. Online handwriting recognition with
CTC (with four simple input features)

An LSTM layer consists of a set of recurrently connected
blocks, known as memory blocks. Each one contains one
or more recurrently connected memory cells and three mul-
tiplicative units, namely the input, output and forget gates
that provide write, read and reset operations on the cells.
More precisely, the input to the cells is multiplied by the ac-
tivation of the input gate, the output to the net is multiplied
by the activation of the output gate, and the previous cell
values are multiplied by the forget gate. The net can only
interact with the cells via the gates. The cells are extended
by peephole connections [3] that allow them to inspect their
current internal states.

Whereas standard RNNs make use of previous context
only, bidirectional RNNs (BRNNs) [14] are able to incor-
porate context on both sides of every position in the input
sequence. This is useful in handwriting recognition, since
it is often necessary to look to both the right and left of a
given letter in order to identify it. Figure 7 shows a compar-
ison of a standard RNN and a BRNN in two time states. In
the BRNN there exist two hidden layers, i.e. one layer for
each direction, and the input/output neurons (marked with
I/O) are connected to both.

Combining the above two concepts gives bidirectional
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Figure 7. RNN and BRNN (unfolded in time)

LSTM (BLSTM), which has been shown to outperform
other neural network architectures in framewise phoneme
recognition [6]. In the experiments described below, we use
a BLSTM network with a CTC output layer to transcribe
samples of handwritten text.

5. Experiments and Results

For our experiments we used the IAM-OnDB, a large on-
line handwriting database acquired from a whiteboard [9].
This database contains 86,272 word instances from a 11,050
word dictionary written down in 13,040 text lines.

We used the sets of the benchmark task with the open
vocabulary IAM-OnDB-t23. There the data is divided into
four sets: one set for training; one set for validating the meta
parameters of the training; a second validation set which can
be used, for example, for optimizing a language model; and
an independent test set. No writer appears in more than one
set. Thus, a writer independent recognition task is consid-
ered. The size of the general vocabulary is20, 000. Please
note that the perfect accuracy would be94.4 % because the
remaining words of the test set are not present in the vocab-
ulary. In our experiments, we did not include a language
model. Thus the second validation set has not been used.

The CTC system used a BLSTM [6] network with 100
extended LSTM memory blocks in each of the forward and
backward layers. Each memory block contained one mem-
ory cell, an input gate, an output gate, a forget gate and
three peephole connections. The tanh activation function
was used for the block input and output squashing func-
tions, while the gate activation function was the logistic sig-
moid.

The input layer was size 25 (one input for each feature),
and the CTC output layer had one output for each character,
plus one for ‘blank’. The input layer was fully connected
to both hidden layers, and these were fully connected to
themselves and to the output layer.

3see benchmark task on http://www.iam.unibe.ch/f̃ki/iamondb/



The network was trained with online gradient descent
with momentum, using a learning rate of1e−4 and a mo-
mentum of0.9. Training was stopped when performance
ceased to improve on the validation set. The results are
quoted as an average over four runs,± the standard error.
At the start of each run, the network was initialized with
a Gaussian distribution of mean 0 and std. deviation 0.1.
Note that because of this random initialization we run the
experiments four times in contrast to the reference system,
where no random initialization takes place (see below).

The CTC network was trained to identify individual
characters. In the recognition phase, an adapted version of
the token passing algorithm [15] was used to find the most
probable sequence of complete words, given the dictionary.

The recognizer of [10] was used as a reference system. It
applies the same preprocessing and feature extraction steps
as described in Section 3. It is based on Hidden Markov
Models (HMMs). For more details we refer to [10].

System Accuracy

HMM 65.4 %
CTC 74.0 % (± 0.3 %)

Table 1. Results on IAM-OnDB-t2 benchmark

Table 1 shows the results of the CTC approach compared
to the HMM-based system. The recognition accuracy of
74.0 % is a significant improvement. The accuracy is calcu-
lated using the following formula:

acc = 1−#insertions + #substitutions + #deletions

#words in transcription

6. Conclusions and Future Work

In this paper we described a novel approach for recog-
nizing on-line handwritten text on a whiteboard, using a
single recurrent neural network (RNN). The key innova-
tion is a recently introduced RNN objective function known
as Connectionist Temporal Classification (CTC). CTC uses
the network to label the entire input sequence at once. This
means the network can be trained with unsegmented input
data, and the final label sequence can be read directly from
the network output. In our experiments we have achieved
a word recognition rate of74.0 % which is significantly
higher than the recognition rate of the HMM-based system.

In future we plan to develop a strategy for including a
statisticaln-gram language model in the RNN [13]. It is
reasonable to integrate a statistical language model, since
we are performing handwritten text recognition on text lines
and not only on single words. We also plan to overcome the
problem of Out-Of-Vocabulary words (OOV). This could be
done by using the network likelihood and the edit distance
to the nearest vocabulary word.
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