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Figure 1. Comparison between different methods for water-tight mesh generation 
 
ABSTRACT: 
 
This paper presents a new approach to generate water-tight surface mesh. In comparison with the two famous water-tight mesh 
generation algorithms: Tight Cocone (Dey and Goswami, 2003) and Power Crust (Amenta, Choi and Kolluri, 2001), our method 
shows a significant quality on the resulted models due to the efficient pre- and post- processing. We choose our previously published 
online mesh generation method, for it reduces the very large point-clouds very fast and effective, which is suitable for our 
applications: reconstruction of historical buildings and online digitalisation of small scale objects. To optimisation the resulted mesh, 
we apply a fast and automatic pre- and post-processing to fill the holes effectively. It consists of six steps: mesh segmentation, 
filtering of noise, hole detection, filling of holes, triangles subdivision and surface smoothing. The whole process is integrated in one 
and is performed fully automatically . Validation of our method is based on the digitalisation of small objects with a hand-guided 
multi-sensory device and 3D-reconstruction of cultural heritage. 
 
 

1. INTRODUCTION 

Automatic generation of a water-tight surface mesh from 3D 
point clouds is always a beautiful dream for 3D reconstruction. 
We have tested all of the available water-tight surface meshing 
software, a few visible holes are always existing. We can not 
say, that our resulted mesh is “strict” water-tight. Like the other 
people, we are on the way to water-tight mesh.  
 
Generally, an original generated mesh has holes due to lack of 
information or because of the special process-requirement, e.g. 
online-visualization parallel to scanning process, etc. The hand-
guided multi-sensor device of our institute  performs a online 
surface reconstruction from the 3D point-cloud. And the 
resulted mesh has noises and holes. It needs an optimisation. 
Then, we apply an automatic process, which combines filtering 
of noise, detection and  filling of holes, subdivision and 
smoothing in one program. And we used the same software for 
the reconstruction of cultural heritage. It shows a good quality 
on the resulted mesh. Since our method for mesh generation 
(Bodenmüller and Hirzinger, 2004) is already published. This 
paper focuses on the methods for mesh optimisation.   
 

The main contributions of this paper are: 
− Firstly, it describes how to get a qualified water-tight 

surface mesh through some effective pre- and post-
processes; 

− Secondly, it introduces an algorithms to fill big and 
complex holes in 3D space. There are normally over 
1000 vertices at the boundary of one of such big 
holes. 

 
We have applied our method both on the 3D-reconstruction of 
historical buildings and on the modelling of objects at the 
small-scale, which were captured with our hand-guided laser-
scanner. The processing is very fast and the resulted meshes 
show a distinguished quality.     
 
Our paper is organized as follows. In section 2, we summarize 
and the existing researches in this area and give a brief 
comparison of them. Then, section 3 describes the main method 
of our approach, and the related experimental results are shown 
too. At the end, the possible improvements in the future are 
addressed in the conclusion section.   
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2. RELATED WORK 

Surface reconstruction from scattered data was firstly addressed 
by Uselton (Uselton, 1983) at the beginning of 1980’s.  As one 
of the early researchers, Boissonnat presented a sculpting of the 
Delaunay triangulation for reconstruction (Boissonnat, 1984). 
Edelsbrunner and Mücke introduced a three-dimensional alpha 
shapes algorithm for a refined sculpting strategy (Edelsbrunner 
and Mücke, 1994). Huppe et al. approximated a signed distance 
function induced by the input points and constructed the output 
surface as a polygon approximation of the zero-set of this 
function (Huppe et al., 1992). Curless and Levoy represented 
the signed distance function on voxel grids for surface 
reconstruction from multiple range scans (Curless and Levoy, 
1996). Bernardini et al. designed a ball-pivoting algorithm, 
which avoids the computation of Voronoi diagram (Bernardini 
et al.). Gopi, Krishnan and Silva proposed to project the sample 
points with their neighbours on a plane and then lift the local 
two dimensional Delaunay triangulations to reconstruct the 
surface (Gopi, Krishnan and Silva, 2002). 
 
The two important algorithms to generate water-tight surface 
mesh are power crust and tight cocone. The power crust 
algorithm (Amenta, Choi and Kolluri, 2001) produces directly a 
watertight mesh without a post-processing. The main approach 
is to approximate the medial axis transform (MAT) of a 3D 
object firstly, and then use an inverse transform of MAT to 
produce the watertight boundary of a 3D polyhedral solid. 
Another algorithm to generate water-tight mesh is tight cocone 
(Dey and Goswami, 2003), which was designed on the basis of 
the above crust algorithm. It reduces the runtime complexity of 
it, but needs a post-process to fill the holes. Schall O. and 
Samozino M. have given a comprehensive analysis between 
them and shown the related experiment-results (Schall O. and 
Samozino M., 2005). 
 
 

3. MAIN METHOD 

Since our mesh generation algorithm is already published, we 
concentrate on the mesh optimisation in this paper. In fact, an 
arbitrary triangle mesh can be taken as input for our algorithm, 
and the output is a "water-tight" surface mesh. 
 
Because there are always noises in the original mesh, e.g. small 
patches, none-manifold edges etc. To achieve an effective hole-
filling, we firstly applied an pre-process to filter them out. And 
after the hole-filling, we subdivide the filled triangles to 
average size of the original mesh and smooth the filled regions 
for a better mesh quality. The whole processing can be 
summarized as: 

• Pre-processing: segmentation, filtering and hole-
detection; 

• Filling of holes; 
• Post-processing: subdivision and smoothing 

 
3.1 

3.2 

Segmentation 

Since the noises produced during the 3D-points acquisition are 
always presented as small point-clouds around the main objects, 
they will be triangulated as small mesh-pieces isolated from the 
main object or adjacent to it only through one point. To detect 
these small pieces, we apply an modified BFS (Breath First 
Search) to identify the connected components. Through 
searching neighbourhood by edges, we can isolate the part, 
which is adjacent to the main mesh only by one point.   

Filtering 

In this section, small components will be treated as noises and 
deleted. The threshold can be set as the number of vertices or 
triangles in one component. However, we think that a better 
criterion is the sum of the triangles-areas. 
 
Besides missing of triangles, another reason of the visible holes 
in triangles mesh is the false triangulation direction. With the 
option of back-face culling by rendering, these triangles will be 
displayed as holes. Therefore we should find and delete them. 
As the common ordering of the triangle in mesh is counter-
clockwise, an simple method is to find the edge with the same 
start- and endpoints in its two neighboured triangles. As 
illustrated in Figure 2, edge AB is legal and edge CD is illegal.           
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Figure 2.  Detection of illegal edges 
 
According to the test of “Tight-Cocone” and “Power Crust”, 
both of them have some false triangulated polygons in the 
resulted mesh. If we set “two-side lighting off” and “back-face 
culling on” as the rendering options, there are some visible 
holes in the generated “water-tight” models (see Figure 3.). 
   

            
 
 
 
 

             
 
 
 
 

Figure 3. Direction-errors of Tight-Cocone and Power Crust 

B D 

a) Edge AB is legal                b) Edge CD is illegal 

     I. two-side lighting off      

a) Tight-Cocone generated model: Indian 

I. back-face culling on              II. back-face culling off 

b) Power Crust generated model: hotdog 



 

Fore the more, to maintain the manifold of the surface mesh, 
edges with more than two adjacent triangles will be treated as 
illegal and deleted. 
 
Thus, the filtering has the following content: 

• Delete illegal edges 
• Delete false triangulated triangles 
• Delete small components 

 
Figure 4 shows filtering of a 3D triangle-mesh model of a real 
meteorite fund in Bavaria, Germany. This model was generated 
with our hand-guided laser-scanner. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Filtering of the 3D model of a real meteorite 
 
 
3.3 Hole-Detection 

After the filtering, all of the edges with only one adjacent 
triangle will be defined as boundary-edges. Holes will be 
generated as closed chains out of the boundary edges. Figure 5 
shows the detected holes in the 3D triangle-mesh model of a 
Indian-figure.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.  Detection of Holes 
 
 
3.4 Hole-Filling 

As the holes in 2D space can be filled by the modification of 
“ear clipping” or “sweep line” algorithms and the 
implementation of these algorithms can by fund in many books, 
e.g. “computational geometry in c” (O'Rourke, 1998), so we 
need not describe it here. We simply denote the function to fill 

holes in 2D space as  fill_simple_2D_hole(vertex s), with s as 
one vertex at the boundary of the hole.  
 
The main problem in 3D model of real buildings is the large 
holes with complex form in 3D space. So we set the focus of 
this paper as: how to divide a complex and large 3D-hole into a 
group of simple-formed 2D-holes. It will be done by the 
following recursive algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fill_complex_3D_hole (vertex s) 
{ 

1. init plane P = (s, s→pre, s→next); 
2. search in the direction of s→pre until find a 

vertex a not in the plane P; 

            

3. search in the direction of s→next until find 
a vertex b not in the plane P; 

4. add an edge E from b→pre to a→next; 
5. fill_simple_2D_hole(s); 
6. reverse edge E; 
7. fill_complex_3D_hole(b); 

} 

a) Original                            b) After filtering 
Figure 6.  Algorithm for filling of complex 3D-holes 

        
The data structure of vertex on the hole is shown below: 
  
Class vertex 
{ 
        vertex* pre; 
        vertex* next; 
        float value[3]; 
} 
 
We set two pointers in one vertex: one indicates the pre-vertex 
of it; and the other points at the next-vertex. The ordering of the 
pre- and next-vertices is made by the triangulation direction of 
the adjacent triangles on the boundary of the hole.  

   

 
As illustrated in Figure 7, by searching in the pre- and next-
directions, a simple-2D-holes is generated and the rest of the 
hole will be filled recursively.    
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a) Original mesh                       b) Detected holes 

 
 

Figure 7.  Recursive filling of complex 3D-holes 
 



 

By the reconstruction of cultural heritage with laser range 
scanner, many large holes with over 1000 vertices auf boundary 
appeared beside thousands of small holes. With the above 
recursive algorithm, all of the holes were filled automatically. 

3.5 

 
Figure 7 shows the reconstructed model of the pulpit in one 
Church of Seefeld in Bavaria, Germany. In the middle of the 
model, a big hole with about 1200 vertices on it and they are 
lying on the different planes. 
   

 
 

a) Mesh with holes 
(including a big hole with over 1000 vertices on the  boundary) 
 
 

 
 

b) All of the holes are filled automatically 
 

Figure 8.   3D model of  the pulpit in one Church of Seefeld 
 
 

Subdivision 

To gain a better smoothing effect, the filled triangles in holes 
should be divided to the average size of the triangles in the 
original mesh. Figure 9 shows a part of 3D Indian mesh-model. 
The holes were filled with subdivided triangles. 
 
 

        
 
 
 

Figure 9. Subdivision of the filled triangles 
 

  
3.6 Smoothing 

With a a scale depended fairing algorithm (Desbrun et al. 
1999), the filled mesh will be smoothed. 
 
One of the important differences between the models generated 
by Tight-Cocone / Power Crust and ours is that our model is 
smoothed, which shows a better visual effect. And we set the 
extremely large holes as legal holes and let them open (see the 
outer contour of Indian in c) of  Figure 10) . 
 
 

       
 

 
 

    a) mesh with holes                 b) fill-patch subdivision 

   a) tight-cocone            b) power crust            c) our method 

Figure 10. Comparison between the end-results of Tight-
Cocone, Power-Crust and our method  

 
 

4. EXPERIMENTS AND RESULTS 

We have use our method both in the reconstruction of various 
historical buildings in Bavaria, Germany, and in the modelling 
of small figures captured by the hand-guided laser scanner 
developed in our institute. In Figure 11, some examples of them 
are shown. 
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a) King’s working room in the Neuschwanstein Castle 
 
 

 
 

b) Throne Hall in the Neuschwanstein Castle 
 

Figure 11. Automatically reconstructed historic buildings  
 
 
 

5. CONCLUSIONS 

For the development in the future, two important problems 
should be solved: the first is automatic filling of very long 
vacancies (see the Throne Hall model in Figure 11), and the 
second is to present the whole model in a more simplified and 
compressed form. This is especially necessary for the 
reconstruction of cultural heritages, for there are over millions 
of triangles in one model.  
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