
ON THE WAY TO WATER-TIGHT MESH

Rui Liu, Darius Burschka, Gerd Hirzinger

Institute of Robotics and Mechatronics, German Aerospace Center (DLR)
Oberpfaffenhofen, 82234 Wessling, Germany.

Rui.Liu@dlr.de

KEY WORDS: Modelling, Laser scanning, Cultural Heritage, Robotics, Automation, Segmentation, Reconstruction, Algorithms

Original Mesh Original Pointcloud Tight Cocone Power Crust Our Method

Figure 1. Comparison between different methods for water-tight mesh generation

ABSTRACT:

This paper presents a new approach to generate water-tight surface mesh. In comparison with the two famous water-tight mesh
generation algorithms: Tight Cocone (Dey and Goswami, 2003) and Power Crust (Amenta, Choi and Kolluri, 2001), our method
shows a significant quality on the resulted models due to the efficient pre- and post- processing. We choose our previously published
online mesh generation method, for it reduces the very large point-clouds very fast and effective, which is suitable for our
applications: reconstruction of historical buildings and online digitalisation of small scale objects. To optimisation the resulted mesh,
we apply a fast and automatic pre- and post-processing to fill the holes effectively. It consists of six steps: mesh segmentation,
filtering of noise, hole detection, filling of holes, triangles subdivision and surface smoothing. The whole process is integrated in one
and is performed fully automatically . Validation of our method is based on the digitalisation of small objects with a hand-guided
multi-sensory device and 3D-reconstruction of cultural heritage.

1. INTRODUCTION

Automatic generation of a water-tight surface mesh from 3D
point clouds is always a beautiful dream for 3D reconstruction.
We have tested all of the available water-tight surface meshing
software, a few visible holes are always existing. We can not
say, that our resulted mesh is “strict” water-tight. Like the other
people, we are on the way to water-tight mesh.

Generally, an original generated mesh has holes due to lack of
information or because of the special process-requirement, e.g.
online-visualization parallel to scanning process, etc. The hand-
guided multi-sensor device of our institute performs a online
surface reconstruction from the 3D point-cloud. And the
resulted mesh has noises and holes. It needs an optimisation.
Then, we apply an automatic process, which combines filtering
of noise, detection and filling of holes, subdivision and
smoothing in one program. And we used the same software for
the reconstruction of cultural heritage. It shows a good quality
on the resulted mesh. Since our method for mesh generation
(Bodenmüller and Hirzinger, 2004) is already published. This
paper focuses on the methods for mesh optimisation.

The main contributions of this paper are:
− Firstly, it describes how to get a qualified water-tight

surface mesh through some effective pre- and post-
processes;

− Secondly, it introduces an algorithms to fill big and
complex holes in 3D space. There are normally over
1000 vertices at the boundary of one of such big
holes.

We have applied our method both on the 3D-reconstruction of
historical buildings and on the modelling of objects at the
small-scale, which were captured with our hand-guided laser-
scanner. The processing is very fast and the resulted meshes
show a distinguished quality.

Our paper is organized as follows. In section 2, we summarize
and the existing researches in this area and give a brief
comparison of them. Then, section 3 describes the main method
of our approach, and the related experimental results are shown
too. At the end, the possible improvements in the future are
addressed in the conclusion section.

mailto:Rui.Liu@dlr.de

2. RELATED WORK

Surface reconstruction from scattered data was firstly addressed
by Uselton (Uselton, 1983) at the beginning of 1980’s. As one
of the early researchers, Boissonnat presented a sculpting of the
Delaunay triangulation for reconstruction (Boissonnat, 1984).
Edelsbrunner and Mücke introduced a three-dimensional alpha
shapes algorithm for a refined sculpting strategy (Edelsbrunner
and Mücke, 1994). Huppe et al. approximated a signed distance
function induced by the input points and constructed the output
surface as a polygon approximation of the zero-set of this
function (Huppe et al., 1992). Curless and Levoy represented
the signed distance function on voxel grids for surface
reconstruction from multiple range scans (Curless and Levoy,
1996). Bernardini et al. designed a ball-pivoting algorithm,
which avoids the computation of Voronoi diagram (Bernardini
et al.). Gopi, Krishnan and Silva proposed to project the sample
points with their neighbours on a plane and then lift the local
two dimensional Delaunay triangulations to reconstruct the
surface (Gopi, Krishnan and Silva, 2002).

The two important algorithms to generate water-tight surface
mesh are power crust and tight cocone. The power crust
algorithm (Amenta, Choi and Kolluri, 2001) produces directly a
watertight mesh without a post-processing. The main approach
is to approximate the medial axis transform (MAT) of a 3D
object firstly, and then use an inverse transform of MAT to
produce the watertight boundary of a 3D polyhedral solid.
Another algorithm to generate water-tight mesh is tight cocone
(Dey and Goswami, 2003), which was designed on the basis of
the above crust algorithm. It reduces the runtime complexity of
it, but needs a post-process to fill the holes. Schall O. and
Samozino M. have given a comprehensive analysis between
them and shown the related experiment-results (Schall O. and
Samozino M., 2005).

3. MAIN METHOD

Since our mesh generation algorithm is already published, we
concentrate on the mesh optimisation in this paper. In fact, an
arbitrary triangle mesh can be taken as input for our algorithm,
and the output is a "water-tight" surface mesh.

Because there are always noises in the original mesh, e.g. small
patches, none-manifold edges etc. To achieve an effective hole-
filling, we firstly applied an pre-process to filter them out. And
after the hole-filling, we subdivide the filled triangles to
average size of the original mesh and smooth the filled regions
for a better mesh quality. The whole processing can be
summarized as:

• Pre-processing: segmentation, filtering and hole-
detection;

• Filling of holes;
• Post-processing: subdivision and smoothing

3.1

3.2

Segmentation

Since the noises produced during the 3D-points acquisition are
always presented as small point-clouds around the main objects,
they will be triangulated as small mesh-pieces isolated from the
main object or adjacent to it only through one point. To detect
these small pieces, we apply an modified BFS (Breath First
Search) to identify the connected components. Through
searching neighbourhood by edges, we can isolate the part,
which is adjacent to the main mesh only by one point.

Filtering

In this section, small components will be treated as noises and
deleted. The threshold can be set as the number of vertices or
triangles in one component. However, we think that a better
criterion is the sum of the triangles-areas.

Besides missing of triangles, another reason of the visible holes
in triangles mesh is the false triangulation direction. With the
option of back-face culling by rendering, these triangles will be
displayed as holes. Therefore we should find and delete them.
As the common ordering of the triangle in mesh is counter-
clockwise, an simple method is to find the edge with the same
start- and endpoints in its two neighboured triangles. As
illustrated in Figure 2, edge AB is legal and edge CD is illegal.

A C

Figure 2. Detection of illegal edges

According to the test of “Tight-Cocone” and “Power Crust”,
both of them have some false triangulated polygons in the
resulted mesh. If we set “two-side lighting off” and “back-face
culling on” as the rendering options, there are some visible
holes in the generated “water-tight” models (see Figure 3.).

Figure 3. Direction-errors of Tight-Cocone and Power Crust

B D

a) Edge AB is legal b) Edge CD is illegal

 I. two-side lighting off

a) Tight-Cocone generated model: Indian

I. back-face culling on II. back-face culling off

b) Power Crust generated model: hotdog

Fore the more, to maintain the manifold of the surface mesh,
edges with more than two adjacent triangles will be treated as
illegal and deleted.

Thus, the filtering has the following content:

• Delete illegal edges
• Delete false triangulated triangles
• Delete small components

Figure 4 shows filtering of a 3D triangle-mesh model of a real
meteorite fund in Bavaria, Germany. This model was generated
with our hand-guided laser-scanner.

Figure 4. Filtering of the 3D model of a real meteorite

3.3 Hole-Detection

After the filtering, all of the edges with only one adjacent
triangle will be defined as boundary-edges. Holes will be
generated as closed chains out of the boundary edges. Figure 5
shows the detected holes in the 3D triangle-mesh model of a
Indian-figure.

Figure 5. Detection of Holes

3.4 Hole-Filling

As the holes in 2D space can be filled by the modification of
“ear clipping” or “sweep line” algorithms and the
implementation of these algorithms can by fund in many books,
e.g. “computational geometry in c” (O'Rourke, 1998), so we
need not describe it here. We simply denote the function to fill

holes in 2D space as fill_simple_2D_hole(vertex s), with s as
one vertex at the boundary of the hole.

The main problem in 3D model of real buildings is the large
holes with complex form in 3D space. So we set the focus of
this paper as: how to divide a complex and large 3D-hole into a
group of simple-formed 2D-holes. It will be done by the
following recursive algorithm.

fill_complex_3D_hole (vertex s)
{

1. init plane P = (s, s→pre, s→next);
2. search in the direction of s→pre until find a

vertex a not in the plane P;

3. search in the direction of s→next until find
a vertex b not in the plane P;

4. add an edge E from b→pre to a→next;
5. fill_simple_2D_hole(s);
6. reverse edge E;
7. fill_complex_3D_hole(b);

}

a) Original b) After filtering
Figure 6. Algorithm for filling of complex 3D-holes

The data structure of vertex on the hole is shown below:

Class vertex
{
 vertex* pre;
 vertex* next;
 float value[3];
}

We set two pointers in one vertex: one indicates the pre-vertex
of it; and the other points at the next-vertex. The ordering of the
pre- and next-vertices is made by the triangulation direction of
the adjacent triangles on the boundary of the hole.

As illustrated in Figure 7, by searching in the pre- and next-
directions, a simple-2D-holes is generated and the rest of the
hole will be filled recursively.

s

s→next

s→pre

b

a

b→pre

a→next

2D
3D

E

a) Original mesh b) Detected holes

Figure 7. Recursive filling of complex 3D-holes

By the reconstruction of cultural heritage with laser range
scanner, many large holes with over 1000 vertices auf boundary
appeared beside thousands of small holes. With the above
recursive algorithm, all of the holes were filled automatically.

3.5

Figure 7 shows the reconstructed model of the pulpit in one
Church of Seefeld in Bavaria, Germany. In the middle of the
model, a big hole with about 1200 vertices on it and they are
lying on the different planes.

a) Mesh with holes
(including a big hole with over 1000 vertices on the boundary)

b) All of the holes are filled automatically

Figure 8. 3D model of the pulpit in one Church of Seefeld

Subdivision

To gain a better smoothing effect, the filled triangles in holes
should be divided to the average size of the triangles in the
original mesh. Figure 9 shows a part of 3D Indian mesh-model.
The holes were filled with subdivided triangles.

Figure 9. Subdivision of the filled triangles

3.6 Smoothing

With a a scale depended fairing algorithm (Desbrun et al.
1999), the filled mesh will be smoothed.

One of the important differences between the models generated
by Tight-Cocone / Power Crust and ours is that our model is
smoothed, which shows a better visual effect. And we set the
extremely large holes as legal holes and let them open (see the
outer contour of Indian in c) of Figure 10) .

 a) mesh with holes b) fill-patch subdivision

 a) tight-cocone b) power crust c) our method

Figure 10. Comparison between the end-results of Tight-
Cocone, Power-Crust and our method

4. EXPERIMENTS AND RESULTS

We have use our method both in the reconstruction of various
historical buildings in Bavaria, Germany, and in the modelling
of small figures captured by the hand-guided laser scanner
developed in our institute. In Figure 11, some examples of them
are shown.

http://doi.acm.org/10.1145/311535.311576
http://doi.acm.org/10.1145/311535.311576

a) King’s working room in the Neuschwanstein Castle

b) Throne Hall in the Neuschwanstein Castle

Figure 11. Automatically reconstructed historic buildings

5. CONCLUSIONS

For the development in the future, two important problems
should be solved: the first is automatic filling of very long
vacancies (see the Throne Hall model in Figure 11), and the
second is to present the whole model in a more simplified and
compressed form. This is especially necessary for the
reconstruction of cultural heritages, for there are over millions
of triangles in one model.

6. ACKNOWLEDGEMENTS

We would like to give our thanks to Tamal Dey and Nina
Amenta for making their software available.

And further thanks to Bernhard Strackenbrock, Michael Suppa,
Tim Bodenmueller, Johann Heindl and Wadim Tolstoi for the
useful discussions and delivery of related data.

7. REFERENCES

Amenta N., Choi S. and Kolluri R., 2001. The power crust. In:
Proceedings of 6th ACM Symposium on Solid Modeling, pp.
249-260.

Bernardini F., Mittleman, J., Rushmeier, H, Silva C. and Taubin
G., 1999. The ball-pivoting algorithm for surface
reconstruction. In: IEEE Transaction on Visualization Compute
Graphics, archive Volume 5, Issue 4, pp. 349-359.

Bodenmüller T. and Hirzinger G., 2004. Online surface
reconstruction from unorganized 3D-points for the DLR hand-
guided scanner system. In: Proceedings of 2nd Symposium on
3D Data Processing, Visualization, Transmission. pp. 285-292.

Boissonnat, J.-D., 1984. Geometric structures for three-
dimensional shape representation. In: ACM Transactions on
Graphics, 3(4), pp. 266-286.

Curless B. and Levoy M., 1996. A volumetric method for
building complex models from range images. In: Proceedings
of ACM SIGGRAPH 96, pp. 303-312.

Desbrun M., Meyer M., Schröder P. and Barr A. H., 1999.
Implicit fairing of irregular meshes using diffusion and
curvature flow. In: proceedings of ACM SIGGRAPH 99, pp.
317-324.

Dey T. K. and Goswami S., 2003. Tight cocone: A watertight
surface reconstructor. In: Proceedings of 8th ACM Symposium
on Solid Modeling Application, pp. 127-134.

Edelsbrunner H. and Mücke E. P, 1994. Three-dimensional
alpha
shapes. In: ACM Transaction on Graphics, Volume 13, Issue 1,
pp. 43-72.

Gopi M., Krishnan S. and Silva C. T., 2002. Surface
reconstruction based on lower dimensional localized delaunay
triangulation. In: Computer Graphics Forum, Volume 19,
Number 3, pp. 467-478

Hoppe H., DeRose T., Duchamp T., McDonald J. and Stuetzle
W., 1992. Surface reconstruction from unorganized points. In:
Proceedings of ACM SIGGRAPH 92, pp. 71-78

O'Rourke J., 1998. Computational Geometry in C (Second
Edition). Cambridge University Press.

Schall O. and Samozino M., 2005. Surface from scattered points
- a brief survey of recent developments. In: Proceedings of 1st
International Workshop on Semantic Virtual Environments,
pp. 138-147.

Uselton S.P., 1983. Three dimensional surface descriptions
from sensed data. In: Proceedings of the 16th Hawaii
International Conference on System Sciences. volume. 2, pp.
387-385.

	1. INTRODUCTION
	2. RELATED WORK
	3. MAIN METHOD
	3.1 Segmentation
	3.2 Filtering
	3.3 Hole-Detection
	3.4 Hole-Filling
	3.5 Subdivision
	3.6 Smoothing

	4. EXPERIMENTS AND RESULTS
	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

