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Abstract—In this contribution we compare different realiza-
tions of the polyphase networks employed in Offset QAM based
Filter Bank Multicarrier (OQAM-FBMC). Our objective is to
evaluate the structures’ computational cost and robustness for
very low complexity implementations of the prototype filter coef-
ficients. We compare a direct form, a classical lattice realization,
where in both the Canonical Signed Digit (CSD) representation of
the coefficients is applied, and a Coordinate Rotation by Digital
Computer (CORDIC)-based lattice structure. We evaluate the
cost after coefficient quantization in terms of number of additions
and shifts. By considering the multicarrier application, we show
the effects of coefficient quantization on the subcarrier filters
spectrum and on the multicarrier transmit signal Power Spectral
Density (PSD).

I. INTRODUCTION

FBMC systems are currently strong candidates for the fifth
generation (5G) of mobile communications standards. Among
them, OQAM-FBMC appears as a very competitive approach.
Because of the wide range of applications envisioned for 5G,
including low cost mobile stations, e.g. sensors, an efficient
implementation of the waveform generation is necessary.

Multiplication by the prototype filter coefficients are the
very costly operations in FBMC modulation. After the design
of the prototype filter, the coefficients obtained are represented
with the accuracy of the computer employed, usually in high
resolution floating point representation. However, in efficient
practical implementations they will be realized with low
resolution fixed-point arithmetic in Digital Signal Processors
(DSPs) or VLSI ASIC chips. In this case, the coefficients
have to be quantized, usually using rounding, and the time
and frequency responses will deviate from the originals. If the
subcarrier frequency response or the out-of-band radiation have
to meet some prescribed specification, the quantized prototype
may even fail to do that. Moreover, the sensitivity to coefficient
quantization depends on the filter structure employed and this
is the main motivation of this study. Therefore, we perform a
comparison of different realization structures.

By using a fixed-point binary representation of the co-
efficients, e.g. two’s complement, the multiplication can be
substituted by shifts and additions. However, using an ordinary
binary representations will require a large number of shifts
and additions. An alternative representation is the CSD repre-
sentation [1], [2] that also includes subtractions. In addition
to that, CSD minimizes the number of non-zero digits by
avoiding them to be consecutive and thus reducing the number
of partial product additions/subtractions. The shift operations
can be implemented by only connecting the wires to the
corresponding bit positions or by using shift registers. The
hardware complexity can then be evaluated in terms of the

total number of additions/subtractions and shift operations. It is
worth noting that the output signal word-length will determine
the maximum size of the shift registers. We also assume here
that input and output word-lengths are identical.

The critically sampled Modulated Filter Banks (MFBs)
have very efficient structures that allow the implementation
of pairs of polyphase components using lattice structures, that
preserve perfect reconstruction (PR)[3] even after quantization.
Moreover, the lattice structures can be implemented using
CORDIC [4], [5] in order to improve the quality of the
quantized coefficients with reduced complexity.

II. EFFICIENT MODULATED FILTER BANK STRUCTURE

We consider here uniform exponential MFBs. In uniform
FBs, all subchannels have the same sampling rate 1/T , all
analysis Hk(z) and synthesis filters Fk(z) in the subchannels
have the same bandwidth and are derived from a single
prototype filter denoted as HP(z). In those FBs, both Hk(z)
and Fk(z) are obtained by exponentially modulating HP(z) as

Hk(z) = Fk(z) = HP (zW
k
M )dk, k = 0, 1, . . . ,M−1, (1)

where M is the number of subchannels and

HP(z) = H0(z) =

P−1
∑

p=0

hpz
−p,

Hk(z) =

P−1
∑

p=0

hk,pz
−p, hk,p = hpW

−k(p−P−1

2
)

M , (2)

with WM = e−j 2π

M and d = ej
2π

M

P−1

2 . We also assume here
without loss of generality that the length of the prototype P =
KM , where K is a time overlap factor and determines not
only the complexity of the filter bank, but also its memory.

An efficient structure of the Synthesis Filter Bank (SFB)
is shown in Fig. 1, where Gm(zM ),m = 0, ...,M − 1, is the
m-th type-1 polyphase component of HP(z) according to the
relation

HP (z) =

M−1
∑

m=0

Gm(zM )z−m. (3)

Since we have assumed that the prototype has a length of KM ,
each polyphase component will have K coefficients.

The block Ok performs a T
2

OQAM staggering of the
real and imaginary parts of the low-rate signals xk[m]. Fig. 2
depicts the internal structure of Ok for even k. For odd k the
Re{•} and jIm{•} blocks are exchanged.

We assume here that the prototype filter HP(z) was de-
signed such that PR [2], [3], [6] is fulfilled. In that case,
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Figure 1. Polyphase network based efficient structure of SFB
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Figure 2. OQAM-Staggering Operation for even k

and in ideal channel conditions, the subcarriers are completely
orthogonal. Furthermore, the prototype has to have a symmet-
rical impulse response. In general, the methods to design the
prototype filter HP (z) to guarantee PR set constraints on the
polyphase filters [7]. For the case that the prototype filter has
a length of P = 2M (K = 2), there exists a closed form
expression of the filter’s coefficients hp, the so called Extended
Lapped Transform (ELT) [8]:

hp=
−1

4
+
1

2
cos

( π

2M
(2p+ 2M)

)

, p = 0, ..., 2M − 1. (4)

For the cases where K > 2 there is no closed form solution
and the prototype has to be obtained by numerical optimization
methods [2], [9], [10].

It is worth noting that, although the PR prototype has a
symmetrical impulse response, one multiplier per coefficient
has to be realized in the polyphase network.

III. POLYPHASE COMPONENTS REALIZED WITH LATTICE

Regarding Fig. 1 again, it is possible to show that M/2
pairs of polyphase components are power complementary [3],
[6]. The terms Gk(z

2) and Gk+M

2

(z2) possess this property

thus can be grouped as shown in Fig. 3, where the permutation
matrix P is necessary to reorganize the IDFT outputs.

The polyphase components pairs can be jointly imple-
mented using a non-recursive lattice structure [3], [5]. The
lattice structure of each pair of the polyphase components is
shown in Fig. 4, where the rotations Rk,i, i = 0, ..., K− 2 are
mathematically defined by

Rk,i =

[

cosΘk,i sinΘk,i

− sinΘk,i cosΘk,i

]

,
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Figure 3. Efficient SFB structure with reordered polyphase components
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where we have dropped the index k to simplify the notation.
The Θis are calculated from the polyphase components transfer
function by a successive polynomial degree reduction [3].

We can also quantize the 4 coefficients of the lattice rotors
using the CSD representation. And again the multiplication can
be implemented by shifts and additions. Since the coefficients
are sines and cosines, the dynamic range is already normalized.
The main advantage of the lattice structure is that PR is
preserved even after quantization.

The problem is that the structure in Fig. 4 has a higher com-
plexity than the direct form. For this reason, we can modify
the rotors to have only two multipliers and, additionally, two
multipliers for each polyphase component, as shown in Fig. 5,

where κk =
∏K−1

i=0
cosΘk,i. Although now the complexity

is considerably reduced, the coefficients are tangent functions
and their dynamic range, depending on the resulting angles, are
theoretically unlimited. It becomes hard to find an optimum
quantizer step-size and the frequency behavior of the filters
depends a lot on this choice. As an alternative, we can use
CORDIC-based rotors [5], [11].

IV. CORDIC-BASED LATTICE ROTATION

To avoid the direct computation of the trigonometric
function tanΘk,i the rotation by the angle Θk,i is succes-
sively approximated by a sequence of elementary (micro-
) rotations by the angles σk,i,wαw, σk,i,w = {−1, 0,+1},
w = 0, 1, . . . ,W − 1. These are chosen in such a way that
tanαw = 2−w, which for binary data only requires a simple
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shift by w bits. Thus, we have

Θk,i ≈

W−1
∑

w=0

σk,i,wαw =

W−1
∑

w=0

σk,i,w arctan(2−w),

0 < |Θk,i| <
π

4
, σk,i,w = {−1, 0,+1}, (5)

where the sign factor σk,i,w is chosen according to the different
CORDIC algorithms as Elementary-Angle-Set Angle Recod-
ing (EAS-AR) [4], [12] and the extended CORDIC structures
that promise higher precision for the same complexity like,
for example, Extended EAS-AR [4]. The total number of
approximation steps W depends on the required accuracy. If
the word-length of the input and the output data is b bits, the
least significant bit has weight 2−b, which should be equal to
the smallest angle arctan2−W ≈ 2−W . So, we stop at W = b.

Each rotor can be now implemented as in the structure
in Fig. 6, where the multipliers are now only shifts and if
σk,i,w = 0 the micro-rotation will become trivial and neither
shift nor additions/subtractions need to be implemented.

V. NUMERICAL EVALUATION

To evaluate the effect of coefficient quantization in an
FBMC system we consider here a total of M = 128 subcarri-
ers. Two prototypes with different lengths will be considered:
for K = 2 we took the ELT from (4) and for K = 4 we
took a PR optimized prototype that minimizes the energy in
the stop-band in a Least Squares (LS) sense using the method
presented in [10], [13].

We consider three structures: direct form, classical lattice
and CORDIC-based lattice. For the first two, the coefficients
are directly quantized using CSD representation. Furthermore,
for the direct form, the dynamic range of the quantizer is
adjusted to minimize the effects of saturation. For the classical
lattice no such adjustment is needed, because the coefficients
are limited to one. For the CORDIC-based lattice, we have
employed the EAS-AR algorithm to calculate the micro-
rotations. Finally, for the κks we have employed a modified
Booth’s (multiplier) recoding representation as in [12].

To evaluate the different structures after coefficient quanti-
zation, we have considered first the total number of additions
and subtractions for the realization of the polyphase network

Direct Form Classical lattice Lattice-CORDIC
Word-length

ELT LS-PR ELT LS-PR ELT LS-PR

8 602 892 1192 2516 525 1177

10 778 1216 1468 3104 683 1460

12 952 1576 1712 3716 843 1796

14 1120 1926 1964 4320 977 2124

Table I. NUMBER OF ADDITIONS AND SUBTRACTIONS FOR THE ELT
(K = 2) AND LS-OPTIMIZED PR PROTOTYPE (K = 4)

Direct Form Classical lattice Lattice-CORDIC
Word-length

ELT LS-PR ELT LS-PR ELT LS-PR

8 730 1020 1064 2132 260 944

10 906 1344 1340 2720 353 1177

12 1080 1704 1584 3332 434 1442

14 1248 2054 1836 3936 519 1703

Table II. NUMBER OF SHIFTERS FOR THE ELT (K = 2) AND

LS-OPTIMIZED PR PROTOTYPE (K = 4)

in the SFB. We assume that the complexity of the DFT will
be the same for all structures and we therefore do not include
it in the comparison.

In Table I the total number of additions are listed for
different word-lengths and for both prototypes. For the ELT,
one can see that the classical lattice needs a much higher num-
ber of additions and subtractions compared to the other two
structures, with the Lattice-CORDIC exhibiting a reduction
of about 13%. Of course both lattice structures preserve the
orthogonality between the subcarriers as opposed to the direct
form that does not. In the case of the LS-optimized prototype,
the complexity of the classical lattice structure increases by
more than 2 times compared to the direct form, but for the
lattice-CORDIC it increases by 10 to 30%.

In Table II the total number of shifters are given for
different word-lengths and for two prototypes. For the ELT we
can see that the lattice-CORDIC has a much lower number and
the classical lattice has more than 50% increase compared to
the direct form. In the case of the longer prototype the lattice-
CORDIC has a reduction from 8 to 18% compared to the direct
form.

As a second figure of merit to illustrate the effects of
coefficient quantization we have examined the frequency re-
sponse of the subcarrier filters, i.e. the prototype frequency
response, for all the three structures and for unquantized direct
form. In Fig. 7 we have depicted the frequency response for
W = 10 for ELT. We can see no significant deviation can
be observed compared to the direct form for all structures.
Again, one should note that only lattice structures preserve
the orthogonality.

In Fig. 8 we have plotted the frequency responses for the
LS-optimized PR prototype for W = 12. Only the lattice-
CORDIC shows a strong deviation in the stop-band but for
higher W s no deviations were observed.

In order to observe the quantization effects in the out-of-
band radiation of the transmitted multicarrier signals, we have
calculated the estimated power spectrum densities (PSD). A
total of 1000 QPSK symbols per subcarrier were sent through
the SFB and its outputs were used for the PSDs estimation.
Only Mu = 76 of the M = 128 subcarriers were occupied.
We have then employed the Welch’s method [14] with an FFT
size of 2048, an overlapping of 50% and a Kaiser window
with β = 5 to plot the PSDs.
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Figure 7. Subcarrier filter frequency response for the ELT (K = 2) with
word-length W = 10
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Figure 8. Subcarrier filter frequency response for the LS-optimized PR
prototype with K = 4 and word-length W = 12

In Fig. 9 the PSDs for the ELT with W = 8 and W =
10 are depicted. In the first case all the structures exhibit no
deviation except the Lattice-CORDIC with 17 dB higher out-
of-band radiation compared to the unquantized structure. But
for W = 10 even the Lattice-CORDIC shows no deviation.

Fig. 10 shows the PSDs for the LS-optimized PR prototype
with W = 12 and W = 14. The deviations for W = 12
is almost 30 dB for the lattice-CORDIC compared to the
unquantized case. For W = 14 no deviation is observed.

VI. CONCLUSIONS

For shorter prototypes, e.g. ELT, the Lattice-CORDIC
structure presents lower complexity in terms of number of
additions and shifters compared to the CSD quantized direct
form and even lower compared to classic Lattice. For longer
prototypes, a small increase in the complexity in terms of
number of additions is observed, but a much lower number of
shifters are required. However, for shorter word-lengths it is
necessary to consider more advanced CORDIC structures that
provide better rotation angle approximation without increased
complexity in order to obtain good spectral behavior.

A classical Lattice structure has the advantage to preserve
PR, i.e. orthogonality between subcarriers, even when the co-
efficients are quantized. It is expected that a Lattice-CORDIC
structure with a better angle approximation should have more
robustness to the coefficient quantization, specially for shorter
word-lengths, when compared to direct form.

To summarize, since for 5G applications a good spectral
containment of the multicarrier system based on filter banks is
expected, one should be careful in the choice of the efficient
implementation when considering finite word-length effects.
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