TUTI

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Dissertation in Informatik

Behavior-based Malware Detection with
Quantitative Data Flow Analysis

Tobias Wiichner

D



ii



I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Lehrstuhl XXII - Software Engineering

Behavior-based Malware Detection with
Quantitative Data Flow Analysis

Tobias Wiichner

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. rer. nat. Claudia Eckert
Priifer der Dissertation:
1. Univ.-Prof. Dr. rer. nat. Alexander Pretschner
2. Univ.-Prof. Dr.-Ing. Felix Freiling,

Friedrich-Alexander-Universitit Erlangen-Niirnberg

Die Dissertation wurde am 27.01.2016 bei der Technischen Universitiat Miinchen

eingereicht und durch die Fakultit fiir Informatik am 10.05.2016 angenommen.






Acknowledgments

I would like to thank my first adviser, Prof. Dr. Alexander Pretschner, for giving
me the opportunity to almost freely decide on a research topic that I was truly
passionate and excited about and for letting me “play around” — even though this
meant that I got a bit offside the main research profile of the group. Although
in particular the beginning of my time as a Phd student, without even a vague
vision of where the whole thing should be going to, was sometimes frustrating, in
retrospect I am glad having taken this road.

My thanks also go to Prof. Dr.-Ing. Felix Freiling for agreeing to be my second
adviser, for providing me with useful feedback in earlier stages of my research,
and in particular for supporting me with my research stay in England.

Furthermore, I would like to thank Siemens AG and the Siemens CERT for fund-
ing my research. In particular I want to thank Thomas Schreck for stimulating my
thoughts and teaching me what really matters in industry.

My sincere thanks go to Prof. Dr. Martin Ochoa for always encouraging me to
carry on with my research, even when I was close to giving up. Your continuous
belief in me and your tireless support definitely were among the main reasons for
me to push further — thank you a lot for this!

Also, I shall thank my office-mate Dr. Enrico Lovat and my flat-mate Dominik
Holling for enduring my frustrations, for endless and fruitful discussions, and for
always being open and critical.

I am very grateful to Hannah Brosch, Benjamin Lautenschldger, Alei Salem, and
Enrico Lovat for reviewing my thesis and for providing valuable feedback that
definitely improved the quality of this work.

Thank you also Andrea Catalucci, Aleksander Cistak, and Gaurav Srivastava
for supporting me in the development of my research prototypes and for helping
me to turn my often half-baked ideas into usable software.

I would further like to express my gratitude to my parents and family for always
having supported me in this endeavor, both financially and motivational.

Last but most important, thank you Monika for always backing me up and sup-
porting me through all these years, even though my decisions for sure did not
make your life much easier. Thank you for your empathy and understanding
when I was not as much there for you as I should have been. Thank you for forc-
ing me to sometimes hold on, reflect on my goals and plans in life, and for always
reminding me that there is a life beyond work and research. I will not forget this!




vi



Abstract

Malware remains one of the biggest IT security threats, with available detec-
tion approaches struggling to cope with a professionalized malware development
industry. The increasing sophistication of today’s malware and the prevalent us-
age of obfuscation techniques renders traditional static detection approaches in-
creasingly ineffective. This thesis contributes towards improving this situation by
proposing a novel effective, robust, and efficient concept of leveraging quantita-
tive data flow analysis for behavior-based malware detection.

We interpret system calls, issued by monitored processes, as quantifiable flows
of data between system entities, such as files, sockets, or processes. We aggregate
multiple flows as quantitative data flow graphs (QDFGs) that model the behav-
ior of a system during a certain period of time. We operationalize this model for
behavior-based malware detection in four different ways by either detecting pat-
terns of known malicious behavior in QDFGs of unknown samples, or by profiling
and identifying malicious behavior with graph metrics on QDFGs.

The core contribution of this thesis is the demonstration that quantitative data
flow information improves detection effectiveness compared to non-quantitative
analyses. We establish high detection effectiveness, obfuscation robustness, and
efficiency by evaluations on a large and diverse malware and goodware data set.

vii



viii



Zusammenfassung

Schadsoftware stellt nach wie vor eines der grofiten Probleme im Bereich
IT-Sicherheit dar. Die Effektivitdt verfiigbarer Erkennungsmethoden, insbe-
sondere kommerzieller Anti-Virus-Produkte, ist in zunehmendem Mafd durch
die ansteigende Professionalisierung der Entwickler von Schadsoftware be-
droht. Vor allem die stetig steigende Komplexitdt und der mittlerweile nahezu
flaichendeckende Einsatz von Obfuskations- und Anti-Analysetechniken durch
Standard-Schadsoftware stellen insbesondere statische Erkennungsansétze vor
grofie Probleme. Die vorliegende Arbeit leistet einen Beitrag hin zu einer Verbesse-
rung dieser Situation mit einem neuen, effektiven, robusten und effizienten Ansatz
zur Erkennung von Schadsoftware basierend auf quantitativer Datenflussanalyse.

Dazu interpretieren wir von Prozessen ausgeloste Funktionsaufrufe als quan-
tifizierbare Datenfliisse zwischen verschiedenen Systemressourcen, etwa Datei-
en, Netzwerkschnittstellen, oder anderen Prozessen. Mehrerer solcher Datenfliisse
werden dann in Form sogenannter quantitativer Datenflussgraphen (QDFGs) ag-
gregiert, die das Systemverhalten wihrend eines bestimmten Zeitraums modellie-
ren. Wir stellen vier verschiedene Ansitze zur Operationalisierung dieses Modells
tiir die verhaltensbasierte Erkennung von Schadsoftware vor. Diese geschieht ent-
weder durch Definition und Wiederkennung von Mustern bekannten Schadver-
haltens in QDFGs unbekannter Prozesse oder iiber das Erstellen von Profilen ty-
pischen Schadverhaltens mit Hilfe spezieller Graphmetriken auf QDFGs.

Der Kernbeitrag dieser Arbeit ist der Nachweis der Niitzlichkeit quantitativer
Datenflussanalyse zur Verbesserung der Erkennungseffektivitit gegentiber nicht-
quantitativen Analysen. Wir weisen die hohe absolute Effektivitdt, Robustheit
und Effizienz unserer Erkennungsansatze auf Basis einer grofsen und heterogenen
Sammlung bosartiger und gutartiger Software nach.

1X






Contents

Acknowledgments
Abstract
Zusammenfassung
Outline of this Thesis

1. Introduction

1.1. Research Description . . . . ... .... .. ... .. .. .......
1.1.1. Tackled Problems and Research Goals . . . . . ... ... ..
1.1.2. ResearchQuestions. . . . ... ... ... ... ........

1.2. Structure and Research Methodology . . . ... .. .........

1.3. Contributions . .

2. Background

21. Malware . . .. ... .. ... ...
2.11. MalwareHistory . ... ... ... ... ... . ......
2.1.2. Malware Taxonomy . . ... ..................

2.2. Malware Detection

2.2.1. StaticDetection . . . . . . . . . . ... .
2.2.2. Dynamic Detection . . . . ... .................
2.2.3. Gap Analysis and Assessment . . . ... ... ... .....

3. System Model

3.1. Quantitative Data Flow Graphs . . . . ... ... .. ... ... ...
3.2. Model Instantiation . . . . . ... .. ... ... .. ... ... ..
3.3. Malware Data Flow Behavior Example . . . . . ... ... .. .. ..

4. Pattern-based Detection
4.1. Deductive Pattern-based Detection . . . . . . . . . .. .. ... ...
41.1. Introduction . . . . . . . . . . . e

41.2. Approach
4.1.3. Evaluation

25
26
29
34

35
37
37
39
48

x1i



Contents

414. RelatedWork . . .. ... ... ... ... ... ... ...
4.15. Discussionand Conclusion . . .. ... ... .........
4.2. Inductive Pattern-based Detection . . .. ... ... ... ......
421. Introduction . . . ... .. ... ... ... ... ... ..
422. Preliminaries . . ... ... .. ... ... ... ... .. ...
423. Approach . ... .. .. ... ... ...
424. Evaluation . . . . . ... ... ... ...
425. RelatedWork . . ... ... ... ... ... .. .. .. ...
4.2.6. Discussionand Conclusion . . ... ..............

Metric-based Detection

5.1. Deductive Metric-based Detection . . ... ... .. ... ......
5.1.1. Introduction . . . . . .. .. .. .. ... .. ...
512. Approach . ... ... .. ... ... .. .. .. .. ...
513. Evaluation . . . ... ... ... ... ... .. .. ... ...,
51.4. Related Work . . . ... .. ... ... ... . ... ......
5.1.5. Discussion and Conclusion . . ... ... ... ........

5.2. Inductive Metric-based Detection . . . . . . ... ... ... .....
52.1. Introduction . . . . ... .. ... ... ... ... ...
5.2.2. Preliminaries . . . ... .. ... ... ... ... ...
523. Approach . .. ... ... .. ... ... L
524, Evaluation . . ... ... .. ... ... ... ... ... ...
525. Related Work . . . ... .. ... ... . ... ... ......
5.2.6. Discussion and Conclusion . . . ... ... ... .......

Assessment and Operationalization

6.1. Assessment

6.1.1. Effectiveness . . .. . ... . . .. ... ... ..
6.1.2. Efficiency . ... ... .. .. .. ... o L
6.1.3. Summary and Discussion . . . .. ... ............
6.2. Operationalization . . ... ... ... ... ... ... .. ......
6.2.1. Offline Detection . . . ... ... .. ... ... ........
6.2.2. Online Detection . . . .. ... ... ... ... ........
Conclusion
71. GainedInsights . .. ... ... ... ... .. .. .. ... ...

7.2. Future Work

Bibliography

89

93

93

96
106
114
115
116
116
119
120
134
147
148

149
149
149
155
157
160
160
161

165
166
167

171

xii



Contents

Appendix 187
A. Analysis and Visualization 187
A.1. Pattern-based Analysis and Visualization . . .. ... ... ... .. 187
A11. Approach . ... ... ... .. ... . ... o . 187

A12. Application . . ... ... ... ... ... L 198

B. From Detection to Mitigation 201
B.1. Metric-based Risk Assessment and Mitigation . .. ... ... ... 201
B.1.1. Approach . ... ... .. ... ... .. .. .. ... ... 201

B.1.2. Evaluation . . .. ... ... .. ... ... .. . ... ... 210

C. Evaluation Data Set 217
Cl. Malware . ... ... .. ... ... ... 217
C2 Goodware . ... ... ... ... ... 218

xiii






Contents

Outline of this Thesis

CHAPTER 1: INTRODUCTION In this chapter we discuss problems of current mal-

ware detection approaches, derive a set of open research questions, and sketch the
contributions of this thesis towards answering them.

CHAPTER 2: BACKGROUND In this chapter we briefly introduce the history and

genealogy of malware, give an overview of the two basic categories of malware
detection, and briefly discuss the most prevalent detection models and concepts.

CHAPTER 3: SYSTEM MODEL In this chapter we propose a model to represent

the interaction between different system entities as quantitative data flows that
together constitute a quantitative data flow graph. An earlier version of this model
was presented in [144], co-authored as first author by the writer of this thesis. We
then sketch how to leverage this model for behavior-based malware detection.

CHAPTER 4: PATTERN-BASED DETECTION In this chapter we discuss how to use

QDFG patterns to detect malicious activities. We do so with a deductive approach
that detects pre-defined patterns of known malicious behavior in unknown sam-
ples and an inductive one that mines behavioral commonalities of malware sam-
ples to infer generalized detection patterns. Parts of this chapter are based on
published work [144], co-authored as first author by the writer of this thesis.

CHAPTER 5: METRIC-BASED DETECTION In this chapter we propose an approxi-

mate notion of QDFG similarity based on graph metrics as a flexible alternative to
sub-graph isomorphism-based detection. To this end, we discuss a deductive ap-
proach to profile behavior with generic graph metrics and an inductive extension
to this where we use genetic programming to generate complex graph metrics that
are by design effective. Some parts of this chapter are based on a previous publi-
cation [145], co-authored as first author by the writer of this thesis.

CHAPTER 6: ASSESSMENT AND OPERATIONALIZATION In this chapter we criti-

cally assess the devised detection approaches with respect to common malware
detection quality attributes, carve out strengths and weaknesses, and relate them
to our initial research questions. We also show how to operationalize our ap-
proaches for different detection settings and reason about their real-world utility.

CHAPTER 7: CONCLUSION This chapter summarizes the conclusions and contri-

butions of this thesis, critically reflects on the gained answers to the initial research
questions, and discusses open questions and possible directions for future work
in the area of malware detection using quantitative data flow analysis.

XV






1. Introduction

Malicious software (malware) remains to be one of the biggest IT security threats,
with hundreds of thousands new malware samples and reported infections ap-
pearing on a daily basis [112]. Despite the widespread use of security software
like anti-virus scanners or firewalls, the yearly global economic losses caused by
malware are estimated to be in the order of several hundred billion dollars [95].

The reason for this can be found on both the attacker and the defender sides.
Commercial anti-malware products are still mainly based on signature matching
or basic static analysis and thus very limited in detecting unknown malware. This
results in an inevitable time interval between the release of a new, unknown mal-
ware and the specification and distribution of the corresponding detection signa-
tures [134]. Within this time interval, the malware cannot be detected through
signatures and can freely operate, if no other security measures are in place.

At the same time, malware development has become a lucrative business model
[22,154, 59]. A considerable body of today’s malware landscape is highly sophisti-
cated, polymorphic, and makes use of a diverse portfolio of advanced obfuscation
and anti-analysis techniques [152, 15]. This in particular renders signature-based
malware detection mechanisms more and more ineffective as modern polymor-
phic malware often autonomously creates obfuscated clones, yielding completely
different looking malicious binaries with every new malware generation [35].

To cope with the issue of modern malware continuously obfuscating itself and
significantly hampering static detection, research on behavior-based malware de-
tection in the past decade gained considerable momentum. Unlike static detection
approaches, behavior-based detection approaches do not use the binary of a mal-
ware sample for profiling and detection but rather detect malware by specifying
or learning typical malicious behavior and then later re-identifying it in unknown
samples. In a nutshell, behavior-based detection approaches aim to detect mali-
cious programs on the basis of issued behavior under the assumption that it sig-
nificantly differs from the behavior of benign programs.

While behavior-based detection approaches can quite significantly differ in terms
of used detection methodology, system scope, or deployment concept, almost all
of them have in common that they build on top of some sort of behavior model.
Behavior models are representations of low-level observable process or system
behavior (system or API calls), typically either employing abstractions with rather
simple topology, like e.g. n-grams, or more complex topology like trees or graphs.



1. Introduction

These approaches make it significantly harder for malware to prevent its detection,
as standard static obfuscation techniques typically barely affect behavior.

However, a rather new challenge is posed by advanced obfuscation techniques
[116, 115, 6] that aim to confuse behavior profiles e.g. by reordering system call!
sequences, injecting bogus sequences of calls, or alternating between semantically
equivalent ones. This has consequences for the detection accuracy of approaches
that operate on behavior models at rather low-abstraction levels that e.g. are di-
rectly based on raw system call traces. Recent studies [6, 116, 115] showed that
many state of the art behavior-based detection concepts, based on system call se-
quence analysis, are particularly sensitive to certain behavior obfuscation transfor-
mations, in many cases rendering them ineffective on highly obfuscated malware.

In contrast, detection approaches that utilize more complex behavior models
at higher abstraction levels are intuitively less likely to be confused by behavior
obfuscation [6]. This is because many changes to the underlying system call traces
often barely or only slightly influence abstracted behavior models. In particular,
approaches that detect malware based on induced data flows seem to be more
promising. This is because data flows, resulting from processes interacting with
system resources, are more stable with respect to alternations of system call traces.

In the context of malware detection, two principle ways of performing data flow
analysis have been proposed. Taint-based data flow analysis concepts usually lever-
age full system emulation and explicitly track the flow of data by means of shadow
memory and taint propagation [151]. System call centric data flow approximation
based approaches usually infer potential flows of data by interpreting system calls
and their according to their known data flow semantics and, by correlating multi-
ple system calls, infer likely data flows through a system [80].

While taint-based approaches thus by construction are more precise than system
call inference based approaches, which usually leads to more accurate malware
classification results, they in most cases induce significant performance penalties
and are thus often very inefficient [151]. Furthermore, taint-based approaches usu-
ally require certain execution environments and thus are complicated to deploy,
which limits their real-world practicality and portability.

System call inference based data flow analysis approaches in contrast are usu-
ally easier to deploy and induce less computational overhead than taint-based ap-
proaches [80]. At the downside, data flow approximation naturally is less precise
than exact taint-based tracking, which leads to reduced detection accuracy.

Both data flow analysis concepts in the context of malware detection thus either
suffer from bad efficiency and portability or from reduced effectiveness which,
depending on the operational context, limits their real-world applicability.

1To remain consistent with the terminology used in literature and to avoid naming confusion, we
use the terms Windows API call, system call, and syscall synonymously in this thesis.




1. Introduction

One specialization of data flow analysis is quantitative data flow analysis that does
not only tackle the question whether or not a flow of data happened between two
entities, but also how much data has been transferred. Quantitative data flow ana-
lysis at system call level thus can be seen as a compromise between precise taint-
based analysis and approximate (possibilistic) system call inference based data
flow analysis. This is, by considering the quantitative dimension for approximate
data flow tracking one can improve analysis precision [89], while still benefiting
from high efficiency and portability of system call centric data flow inference.

To leverage this insight for behavior-based malware detection we propose so-
called Quantitative Data Flow Graphs (QDFGs) to represent quantitative data flows
between system entities, where nodes represent the system entities and directed
weighted edges represent the quantitative flows between them. QDFGs can be
constructed by mapping system events, e.g. system calls, to creations or updates
of edges and nodes according to their data flow semantics. Due to their concise
and abstracting nature with respect to individual system events, we consider QD-
FGs a suitable way of representing complete system activities over time and thus
to act as basis for detection and analysis of malicious behavior induced by mal-
ware. Moreover, the quantitative information inherently encoded in data flow re-
lated system call arguments helps to increase analysis precision and adds another
source of potentially highly characteristic behavior information to the classifica-
tion process, which we assume to improve detection accuracy. We are not aware
of any approach that explicitly models and uses such quantitative data flow infor-
mation for behavior-based malware detection.

In this thesis we investigate the utility of quantitative data flow analysis at the
system call level for behavior-based malware detection. More precisely, we want
to investigate if using quantitative data flow analysis yields more accurate malware
detection results than non-quantitative approaches.




1. Introduction

1.1. Research Description

The goal of the work presented in this thesis is to understand the utility of quan-
titative data flow analysis for behavior-based malware detection. In the context of
malware detection, the behavior of one or more processes is typically captured in
form of traces of issued system calls. In order to lift this low-level representation
of behavior to a higher abstraction level, we translate them into quantifiable data
flows. To do so we interpret system calls according to their data flow semantic as
inducing quantifiable flows of data between different system entities such as pro-
cesses, files, or network sockets. We then aggregate these flows in form of so-called
quantitative data flow graphs (QDFGs) that represent the flows as edges between
nodes that model the source and sink system entities of the flows.

Non-quantitative data flow graphs have already been shown to be useful for
malware detection [113, 114, 151]. In the malware detection domain, we can ob-
serve a correlation between the abstraction level and granularity of information
that is used to model the behavior of malware and the accuracy of respective de-
tection approaches. In particular, building detection approaches upon abstracted
behavior models together with few selected abstract context aspects seems to lead
to better detection accuracy than directly using low-level behavior artifacts [24].

Our work is thus motivated by the expectation that we can improve detection
accuracy by not only taking an abstracted high-level data flow perspective on mal-
ware behavior in that we consider malware-induced data flows from an existential
or possibilistic perspective, i.e. only reason about whether or not data has been
transferred between system entities, but by also taking the quantitative component
of the respective data flows into account, i.e. how much data has potentially been
transferred. More precisely, the intuition is that quantitative data flows induced
by malware significantly differ from data flows that result from benign behavior.
This gives us a rich and characteristic source of high-level context information that
so far has not been tapped by malware detection research. In sum, we hypothe-
size that by using this high-level context information, i.e. quantitative data flow
properties that are inherently embedded in observable program behavior, we can
significantly improve detection accuracy.

To investigate this hypothesis we devised multiple behavior-based detection ap-
proaches that operationalize quantitative data flow graphs as behavior models for
highly accurate, efficient, and robust malware detection. The description and ana-
lysis of these detection approaches will be the core components of this thesis.




1. Introduction

1.1.1. Tackled Problems and Research Goals

The quality of malware detection approaches is typically measured along the lines
of detection effectiveness, efficiency, and robustness: a good malware detection
approach should be able to detect malware with good sensitivity and specificity,
avoiding false positive and false negative classifications as far as possible, and only
imposing a reasonably high performance overhead. Moreover, considering the
increasing prevalence of obfuscated malware, a good detection approach should
also be robust against obfuscation, providing accurate results even for malware
that uses obfuscation or anti-analysis techniques.

The research goals of this work are thus tightly aligned with the following prob-
lems that we, based on a thorough literature review and continuous discussions
with domain experts, deem most important in the context of behavior-based mal-
ware detection:

P1: Behavior-based malware detection approaches yield false positive detection
rates (i.e. goodware mistakenly classified as malware) that are often consid-
ered too high to be useful in real-world operational settings [2].

P2: The accuracy of many state of the art behavior-based malware detection ap-
proaches is significantly impacted by malware obfuscating its behavior [6].

While we by no means claim to be able to solve any of these problems in its en-
tirety, we nevertheless see them as guiding posts for our work. The aim of this the-
sis is thus to at least partially solve the aforementioned problems and contribute
towards the state of the art in behavior-based malware detection.

1.1.2. Research Questions

The aforementioned problems of current malware detection approaches motivate
the following set of research questions, which we will answer in the course of this
thesis:

RQ1: Can quantitative data flow analysis be used for behavior-based malware de-
tection?

RQ2: Can the use of quantitative data flow analysis for malware detection improve
detection accuracy compared to non-quantitative detection?

RQ3: Is our system call based data flow approximation sufficiently precise to yield
highly accurate detection results while being very efficient?

RQ4: Does the quantitative data flow abstraction lead to higher robustness to-
wards behaviorally obfuscated malware than using raw system calls?




1. Introduction

In sum, these research questions can be subsumed under the guiding research
hypothesis tackled by this dissertation, which states that

Quantitative data flow analysis yields better malware detection
accuracy than non-quantitative analysis.

Throughout this thesis we will continuously try to generalize the insights gained
from the approach-specific evaluations in order to answer the introduced research
questions, with the ultimate goal of confirming our main hypothesis.

1.2. Structure and Research Methodology

We approach the aforementioned research goals in five steps in order to answer
the research questions from Section 1.1.2 and investigate our main hypothesis.

To put our work in context, we first give an overview of the most prevalent mal-
ware categories and recap the most important malware detection concepts. After
this, we introduce a generic model to represent system behavior in form of quanti-
tative data flow graphs which are aggregations of quantitative data flows induced
by system calls. Subsequently we introduce four different approaches that lever-
age this model for behavior-based malware detection and discuss how far their
evaluation gives answers to our main research questions, stated in Section 1.1.2.

The detection approaches proposed in this thesis follow two main concepts:
Pattern-based approaches use fixed detection patterns that refer to known ma-
licious behavior that are then matched against captured behavior of unknown
samples to classify them as likely benign or malign. In contrast, metric-based
approaches do not define fixed behavior patterns but rather relate certain QDFG
properties, i.e. graph metrics, to known malware behavior. Sets of graph metrics
are then used to profile recurrent behavior of known goodware and malware with
which we then establish a more flexible notion of behavior similarity.

To investigate the research questions mentioned in Section 1.1.2, we further fol-
low a research methodology where we, for each generic detection concept, first
explore the general feasibility and then assess the conceptional and operational
boundaries building upon the previously gained insights. For the first feasibility
analysis of a detection concept we follow a deductive approach in that we manually
define detection mechanisms, i.e. patterns or metrics referring to known malicious
behavior, and then assess their utility to discriminate malicious from benign sam-
ples in a defined evaluation set consisting of known malware and goodware.

To further investigate the general utility and properties of the different concepts
we then follow an inductive approach where we employ advanced machine learn-
ing and data mining techniques to automatically infer more accurate and elaborate
detection mechanisms from captured behavior of known malware and goodware.




1. Introduction

Afterwards, we discuss how the gained insights and detection approaches can
be operationalized in real world detection settings. For this, we assess and com-
pare the approaches according to a set of common malware detection quality cri-
teria, reflect on their suitability for concrete detection purposes, and discuss their
operational limitations. Finally, we conclude this thesis with a critical reflection on
the level of achievement of the previously defined research goals, discuss gained
insights and learned lessons from a more macroscopic perspective, and offer an
outlook on envisioned future work in this area. Figure 1.1 gives an overview of
the structure of this thesis and the employed research methodology.

Strategy

Deductive Inductive
Pattern-based Pattern-based

Deductive Inductive
Metric-based Metric-based

Figure 1.1.: Structure Overview

Baseline Concept

Some parts of this thesis are based on previous publications co-authored as first
author by the writer of this dissertation. Earlier versions of the system model dis-
cussed in Chapter 3, which underlies all malware detection approaches presented
in this thesis, already have been presented in [144] and partially also in [145].

An earlier version of our basic pattern-based detection approach, described in Sec-
tion 4.1, has already been published in [144]. However, for this thesis we have
extended it with a more elaborate concept to check quantitative properties in de-
tection patterns and present a more comprehensive evaluation. Also, the inductive
extension to the basic pattern-based detection concept, described in Section 4.2, is
an original contribution of this thesis and is unpublished so far.

The concept of profiling QDFGs with graph metrics, described in Section 5.1,
already has been presented in [145]. However, its inductive extension based on
genetic programming, discussed in Section 5.2, has not yet been published and
thus is an original contribution of this thesis as well.




1. Introduction

Finally, an extension of our pattern-based detection concept to visualize and
manually analyze potentially malicious activities has been published in [145]. Also,
a conceptual continuation of our metric-based detection concept that extends pure
detection with risk mitigation means, has already been presented in [143].

Due to unavoidable content overlaps with the author’s previous work, quotes
from the previously mentioned publications within the respective chapters are not
marked explicitly. Instead, in the preface of each chapter we will briefly refer to
the author’s publications that are relevant for the content of the respective chapter.

1.3. Contributions

To the best of our knowledge, we are the first ones to use quantitative data flow
analysis for the behavior-based detection and analysis of malicious software.

This means, we are the first ones to use quantitative data flow information in-
ferred from system call arguments for behavior-based malware detection. In sum,
the main contributions of this thesis are:

* A generic model to represent system behavior as quantitative data flow graphs.
¢ Four distinct detection approaches that operationalize this model for behavior-
based malware detection by

1) manually defining and detecting behavior patterns with quantitative
properties that relate to known malicious behavior.

2) mining quantitative data flow patterns from observed behavior of known
malware and goodware samples.

3) profiling malicious behavior with generic graph metrics on QDFGs.

4) generating effective detection metrics using genetic programming.

A data-centric notion of graph compression to measure pattern utility in the
context of malware behavior graph mining.

¢ A machine learning based concept to approximate graph similarity with sets
of graph metrics over QDFGs.

* A concept to describe graph metrics as functions over primitive graph prop-
erties and a genetic programming scheme to generate metric instances.

Substantial empirical evidence that quantitative data flow analysis outper-
forms non-quantitative analysis in terms of detection effectiveness.




2. Background

In this chapter we briefly introduce the history and genealogy of mal-
ware, give an overview of the two basic categories of malware detection,
and briefly discuss the most prevalent detection models and concepts.

2.1. Malware

Before discussing the core content of this thesis, a novel approach for behavior-
based malware detection with quantitative data flow analysis, we need to set the
background. As this thesis deals with the detection of malicious software, i.e.
malware, we first need to clarify what malware actually is. To this end, we give a
brief overview of the history of malware and then discuss a taxonomy, in order to
categorize different types of malware.

2.1.1. Malware History

John von Neumann was the first to theoretically postulate the concept of a com-
puter virus in the mid 1960s [140]. In his article, von Neumann discussed the pos-
sibility of viral programs, i.e. self-reproducing automata, and thus set the first con-
ceptual baseline for malicious software, long before the first real computer viruses
appeared on the scene. Although at this time no technical interpretation was yet
conceivable, von Neumann'’s theories set the baseline for what in the future would
be called computer virus or more general malware.

It took about ten years until the first concrete technical instantiations of von
Neumann’s abstract concept were developed. The Creeper program, developed by
Bob Thomas in 1971, is considered the first implementation of von Neumann’s
concept [33] and could autonomously spread through the internet’s predecessor
network, the Arpanet. Although Creeper was not a malware, i.e. malicious soft-
ware, in the strict sense (as it was not designed to actually do any harm and even
informed the user about its presence), Creeper can be considered the technological
“father” of all future worms and viruses as it was able to autonomously replicate.

Roughly another decade later, Fred Cohen in his 1984 article [38], and afterwards
also in his PhD thesis [39], first coined the term computer virus for programs “/...]
that can "infect’ other programs by modifying them to include a possibly evolved copy of
itself” [38].



2. Background

With a prototypical instantiation of this concept for Unix operating systems,
Cohen then developed the first actual malware that was intentionally designed to
illegitimately obtain full access rights to a computer system.

This first real malware entailed a so far unbroken series of more or less sophis-
ticated follow-up developments. Chen et al. talk of different waves of malware
outbreaks [33]. The first phase, which Chen considers to roughly span from the
late 1970s to the early 1990s was mainly dominated by malware that was mostly
developed for the sake of curiosity and for experimental purposes. Although sup-
posedly developed with no clear malicious intentions, the first self-spreading in-
ternet worm Morris then was the first one that actually caused substantial damages
and, in the course of a few hours, took down about 10% of all computers that back
then were connected to the internet [129]. The Morris worm can thus be consid-
ered the first real malware as it was the first program that (although most likely
not on purpose) conducted malicious activities.

The second malware wave, that essentially covered the 1990s, was mainly char-
acterized by the upcoming use of polymorphism and encryption by malware to
automatically obfuscate malicious binaries with significant effects on the effective-
ness of prevalent signature-based anti-virus scanners.

In the third wave, which took place between 1999 and 2001, emails replaced
local file-based replication as primary infection and distribution vector. Together
with the increasing growth of the internet this yielded previously unseen propa-
gation rates and hundreds of thousands of infections [26]. Popular malware from
this era like Melissa, PrettyPark, or LoveLetter also were with the first to include
additional functionality to ensure persistent execution, as well as remote system
access and to steal sensitive information.

The main characteristic of the fourth malware wave, which roughly lasted from
2001 to 2009, was the rapidly increasing sophistication of malware that started to
use multiple vulnerabilities and infection vectors to spread, i.e. through instant
messaging or peer-to-peer file sharing applications. Furthermore, malware from
the fourth wave started to implement plug-in functionality to dynamically down-
load additional malicious payload and thus adapted to changing malicious goals
or new detection mechanisms. Popular malware from this period like CodeRed,
Slammer, or Nimda used multiple ways to spread, including replication via email,
actively exploiting known remote system vulnerabilities, copying itself to unpro-
tected network shares, or manipulating webservers to drive-by infect visitors.

With Stuxnet, which was first detected in 2010 and supposedly developed around
2007 [83] to attack SCADA systems and thus sabotage the Iranian nuclear pro-
gram, the advent of so-called Advanced Persistent Threats (APTs) began.

We consider this the fifth malware wave which is characterized by targeted,
highly sophisticated malware, specifically designed to attack certain victims and
typically exceeding the sophistication of commodity malware of previous waves.

10



2. Background

Moreover, in contrast to commodity malware, which is primarily developed by
amateurs or organized criminals for experimental or economic reasons, APTs like
Stuxnet, Duqu, or Flame were likely developed by highly professional development
teams, funded by governmental agencies, for espionage or sabotage purposes.
APTs typically use multiple attack vectors, unknown 0-day vulnerabilities, and
advanced stealth mechanisms to infect specific victims and then prevent detection
and analysis at any cost, which makes them particularly hard to detect [137].

Summarizing the development of malicious software from its beginning until
today, we can say that there has been a shift in motivation to develop malware.
While in the early days malware was mainly developed for sake of curiosity, to-
day’s malware landscape is backed by a highly professionalized industry and
mainly developed to serve economic purposes [154]. Also, over the years there
was a change in infection and propagation models from local replication through
file infection to remote propagation via emails or remote exploits [102]. Finally,
whereas early malware usually did not conceal its presence, modern malware
puts substantial effort into preventing detection, e.g. through passive means like
obfuscation, or active countermeasures like rootkits or anti-debugging functional-
ity [15, 152].

2.1.2. Malware Taxonomy

Now that we have given a brief overview of the history of malware, we will dis-
cuss the different types of malware in more detail. Besides some loose guide-
lines [104] and naming schemes [104], there unfortunately there is no commonly
accepted malware taxonomy or industry standard and almost all anti-malware
vendors have their own schemes to separate different malware categories and fa-
milies [96, 97].

Typical categories separate malware according to used replication mechanism,
malicious functionality, targeted victims, or operational goals. Unfortunately, most
modern malware families employ a variety of functionality that often can even get
updated or extended at runtime, which further complicates clear categorizations.
A clear and unambiguous separation thus often is not possible and the same mal-
ware sample can fall into several categories for different anti-virus vendors.

Nevertheless, there is a recurring core of main malware categories proposed by
different anti-malware vendors and researchers. Most sources at least agree in the
differentiation of commodity malware into Viruses, Worms, and Trojans. Hence,
this is what we will focus on in the following and discuss their behavior specifici-
ties to allow a better understanding of the later introduced behavior-based detec-
tion approaches.

11



2. Background

2.1.2.1. Viruses

Viruses are the oldest form of malware [38]. Their main characteristic is that they
replicate via file infection. That means, viruses usually only replicate locally and
only passively propagate to other systems if removable devices are infected or
infected files are accidentally copied to remote destinations. This, for instance,
happened with one of the first Microsoft Office macro viruses, named Concept,
that was accidentally shipped with originally benign Microsoft software installa-
tion CDs [33]. Although modern malware and APTs still sometimes use file-based
infection vectors for local replication and persistent manifestation, exclusive repli-
cation through file infection is rather rare these days.

Viruses usually replicate by either overwriting or patching benign files. Over-
writing benign files with the same malicious binaries poses the problem of possi-
bly breaking system functionality, if important system executables are overwritten.
Moreover, overwriting legit files with fixed-sized malicious executables makes
them easy to detect. Finally, simply replacing legit binaries with the same mali-
cious executable makes it easy to create detection signatures.

An alternative to naive file replacement is the so-called companion strategy
where instead of replacing a benign file with a malicious one, the file is copied
“next to it” by giving it the same name but a different extension. Exploiting
operation-system-specific execution priorities, a user is then lured into executing
the malicious binary instead of the benign one.

A more advanced local replication strategy, often adopted by viruses, is patch-
ing benign binaries instead of replacing them. This is typically done by adding
new code sections to benign binaries to which the malicious code is written to. By
bending the code entry point of the binary to first point to the malicious code and
only after its execution return to the originally benign content, viruses like Parite
can preserve system functionality, even if sensitive system binaries are infected.

Patching system binaries also has the advantage that the virus itself does not
need to be manually executed in order to perform its malicious actions, but is
automatically executed if the patched executable is invoked. More sophisticated
patching strategies even manipulate other pointers than the file entry point to re-
fer to malicious payload, injected somewhere into the legit binary. This, in con-
junction with binary obfuscation techniques employed on the patched payload,
makes it hard to craft generic detection signatures, especially as many signature-
based scanners for performance reasons only scan the beginning and end of a file.
Even though file-based replication strategies were mainly superseded by network-
based propagation, they experienced a renaissance in APTs like Stuxnet [83].

From a system call behavior perspective, viruses can be recognized by the fact
that they often yield unusually high amounts of file access and write activity to
already exiting known benign binaries.

12



2. Background

2.1.2.2. Worms

With the advent of the internet and increasing numbers of computers that were
connected via network, local replication techniques employed by viruses were in-
creasingly replaced by network-based replication mechanisms. While the prop-
agation rates of viruses were comparably low, as they relied on passive prop-
agation models through external storage devices, infection rates with the first
internet-based worms skyrocketed to hundreds of thousands of new infections
within hours. The Sasser and Blaster internet worms [17] in the early 2000s, for
instances, replicated autonomously by exploiting unknown vulnerabilities in Mi-
crosoft Windows RPC services. As most computers where directly connected to
the internet via modems back then, such worms could spread almost uncontrolled
and reached propagation and infection of previously unseen dimension.

Although occasionally still employed by more current internet worms such as
Conficker, which exploits a known vulnerability in the Windows NetBIOS service,
such active replication via exploitation of operating system vulnerabilities has be-
come rare in the past years. This is likely due to a loss in effectiveness of such at-
tack vectors, as most home computers these days are no longer directly connected
to the internet, but to some extent shielded by home gateway routers. Instead,
more recent worms such as Stration or Waledac [67] rely on propagation via email
or drive-by-download infection through hijacked webservers [102].

From a system call perspective, worms, especially those that autonomously
replicate through active exploitation of remote vulnerabilities, often issue unusual
high amounts of network-related system calls to the same remote ports.

2.1.2.3. Trojans

A more fuzzy malware category are so-called trojan horses, i.e. trojans, often also
referred to as backdoors or remote administration tools (RATs). The main com-
monality of malware that falls into this category is that they usually do not employ
active autonomous self-replication means but rather disguise themselves as legit
software in order to lure users into executing them. The mainly passive distribu-
tion vectors of trojans thus are drive-by-downloads and email attachments.

Most trojans have further functionality to allow remote access to a compromised
system. Often, trojans are only the first stage of multi-stage malware infections and
e.g. reload additional malicious payload and instructions from command-and-
control servers after initial infection. Furthermore, trojans typically implement
means to evade detection and disguise their presence, e.g. through rootkits. The
ZeroAccess trojan, for instance, almost exclusively propagates passively though
drive-by downloads and, directly after infection, installs a kernel level rootkit to
hide its presence from the user and all user mode processes [148].

13



2. Background

A special form of trojans are so-called spyware or information stealers that are
specifically designed to steal sensitive data from infected victims, such as banking
credentials, credit card numbers, or login credentials. The very popular and wide-
spread Zeus [12] trojan construction kit, for instance, was specifically designed for
criminal purposes, i.e. for large-scale online banking fraud. Despite less aggres-
sively spreading via direct attacks on vulnerabilities like the early internet worms,
trojans like Zeus make up for most of today’s malware infections [112].

A fairly new trojan variant is so-called ransomware, sometimes also referred to
as crypto viruses. In contrast to most other trojans that focus on establishing re-
mote access or stealing sensitive data, ransomware, as the name suggests, tries to
force users into paying a ransom to regain access to files that is intentionally pro-
hibited by the ransomware. This is usually done by the ransomware encrypting
potentially sensitive files and demanding the payment of a ransom to obtain the
decryption key and thus regain access to the files, or by locking the user out of the
system and demanding a ransom payment to release the lock.

The famous CryptoLocker ransomware, for instance, infects victims through drive-
by downloads or comes as additional payload of the Zeus trojan. After infection,
it searches the victim computer for potentially sensitive files, such as office docu-
ments or pictures. CryptoLocker then encrypts found sensitive files with a strong
asymmetric crypto-scheme to render the files unusable, unless a private key to de-
crypt them is retrieved through paying a ransom to the malware developers. Other
non-cryptographic ransomware like the Reveton trojan, instead of encrypting sen-
sitive files, simply block access to infected computers, which is again regained
once a ransom has been paid by the user [107].

While trojans, due to their behavioral heterogeneity and lack of autonomous
replication functionality, are considered harder to detect than viruses and worms,
some behavior specificities nevertheless often reveal their presence. Besides more
abstract signs of a trojan infections like overall increased CPU utilization and
slower responsiveness, trojans can often be detected through characteristic sys-
tem call behavior. This can include the manipulation of certain autorun registry
keys, connections to remote servers, followed by the download and execution of
executable binaries, or unusually high interactivity with sensitive files and related
high network interactivity.

14



2. Background

2.1.2.4. Advanced Persistent Threats

So-called Advanced Persistent Threats (APTs) are not a malware class of their own
in the strict sense, as they typically incorporate functionality and behavioral speci-
ficities of other malware classes. Nevertheless, APTs are particularly interesting
from a malware detection perspective, because they are specifically designed to
infect particular victims, unlike commodity malware that usually spreads rather
indiscriminately as wide as possible. This is, while the utility of most commodity
malware, e.g. their achieved revenue, is directly bound to the number of infected
victims, APTs such as Stuxnet, Duqu, or Flame [137] are typically developed for
victim-specific espionage or sabotage purposes and try to avoid collateral dam-
age, as this increases the risk of getting detected and analyzed.

While for commodity malware preventing detection thus only plays a subor-
dinate role and devised anti-detection countermeasures remain rather simplistic,
APTs typically put significant effort into preventing detection and e.g. even delete
themselves upon inadvertent infection of victims that do not fall into the targeted
group. Furthermore, APTs usually employ a wide range of attack and propaga-
tion vectors, often including multiple infection stages and using 0-day exploits,
whereas untargeted commodity malware in comparison implement rather sim-
plistic distribution models.

From a behavioral perspective, the typical multi-stage and multi-vector dis-
tribution models of APTs make their detection extremely difficulat. Moreover,
advanced kernel-level root-kit functionality, commonly employed by APTs [133,
137], effectively disguises malicious activities and thus renders post-infection de-
tection particularly hard. In most cases, detection thus needs to happen during the
first infection stages, when the system is not yet under full control of the APT.

2.2. Malware Detection

Having introduced the most common malware types and their behavioral speci-
ficities, in this section we will discuss how malware detection industry and re-
search tries to cope with the malware threat. As we will see, the increasing so-
phistication of malware over the past decades stimulated an ongoing arms-race
between developers of malware and anti-malware software.

Malware detection approaches can be categorized along various dimensions,
like for instance targeted operating system (e.g. Windows or Android), basic de-
tection model (static vs. dynamic), classification paradigm (rule-based vs. statistics-
based), or scope (e.g. file, process, or system).

Like others [4, 62, 46] we consider malware detection approaches to be either
static or dynamic.

15



2. Background

Hence, we will first give an overview of static approaches as they are still pre-
dominantly used in commercial anti-virus products. The focus of our overview of
different malware detection approaches, however, is on dynamic behavior-based
approaches, to which category the approaches proposed in this thesis also belong.

Note that in this section we only give a broad overview on the state of the art in
malware detection in order to put our work into context, only mentioning the in
our opinion main contributions to the field. A thorough discussion of related work
will then follow for each devised detection approach in Chapter 4 and in Chap-
ter 5. Moreover, as there are few reliable resources available that in-detail elaborate
on the functionality of commercial anti-malware products, the following overview
emphasizes academic work in this area.

2.2.1. Static Detection

Static detection is the oldest way of detecting malicious software, with the first ap-
proaches dating back to the late 1980s [134]. In contrast to dynamic detection ap-
proaches that need to actually execute suspicious samples to classify them, static
detection approaches classify malware samples based solely on their persistent
representation, e.g. Windows PE binary files or other file formats that can contain
malicious code. This distinction has recently become somewhat blurry as mod-
ern static anti-virus engines often employ memory scanning and code emulation
functionality and thus, in a sense, also “virtually” execute a sample before classify-
ing it. Nevertheless, scanning suspicious binaries for patterns that refer to known
malware remains the core functionality of static analysis approaches.

Again, there is no commonly accepted static malware detection taxonomy and
different sources categorize them according to various characteristics, including
applied scanning technique (pattern-, or misuse- vs. anomaly-base), operation
mode (on-access vs. on-demand), evaluation strategy (lazy vs. eager), or abstrac-
tion level (e.g. byte code, control flow, or function call graphs) [62, 46, 134].

We consider these abstraction level the most important and least overlapping
characteristic and thus differentiate between three major pillars of static malware
detection approaches: the string search based category covers the majority of com-
mercially applied detection approaches which operate on the raw binaries without
any further abstraction or interpretation; the semantics based category is mainly aca-
demic and covers approaches that abstract from the concrete binary representation
of malware by inferring their semantics, e.g. on basis of abstracted control flow or
function call graphs which then are used as generic detection signatures.

In the past decades, a plethora of static detection approaches has been proposed.
In the following we will focus our overview on the mentioned main categories
that cover the bulk of commercial and academic static detection approaches and
mention only the seminal or most characteristic works for each category explicitly.

16



2. Background

2.2.1.1. String search based

Early static malware detection approaches were simplistic programs designed to
detect the presence of one specific type of malware. The Creeper virus, for instance,
had the Reaper program as counterpart that itself was a self-replicating worm,
but instead of performing malicious activities, was solely designed to remove all
found Creeper instances [33]. The first actual anti-malware tools that were able to
detect (and often also remove) different malware types emerged with the advent
of the first non-experimental computer viruses for personal computers in the late
1980s and early 1990s [134].

To describe the ensuing development, Peter Szor [134] differentiates between
different generations of (commercial) static malware detection approaches.

First Generation The approaches of the first generation of static malware de-
tection all relied on the same basic principle, the so-called string scanning. This
essentially means that anti-virus software scanned potentially malicious binaries
for byte sequences that characteristically related to known malware. To detect an
instance of the Stoned virus it e.g. was sufficient to scan binaries for the malicious
byte code snippet that implemented the boot sector infection functionality of the
virus. Such byte sequences were usually distinct enough to prevent false posi-
tive matches but generic enough to also capture slight variations of the malware
byte code. Therefore, even such a simple scanning paradigm, although demand-
ing substantial manual analysis effort to extract characteristic byte signatures, was
sufficient to yield high detection effectiveness and precision for non-obfuscated
prevalent viruses at that time.

In order to boost detection efficiency and to avoid having to scan entire files
for matching byte signatures, this scheme was later improved by e.g. only scan-
ning the beginning and end of binary files (top+tail scanning), or computing hash
functions on individual parts of known malicious binaries and then re-identifying
parts in unknown binary samples that had the same hash value.

Although this brough significant efficiency improvements, such lazier scanning
approaches led to increased sensitivity towards changes in malware binaries or
malicious code not being appended or prepended but injected at pseudo-random
places within the infected binary. By simply adding bogus NOP instructions, mal-
ware developers could, for instance, effectively break fixed-sequence byte patterns
and prevent hash-based matching.

To further improve genericity of detection signatures, fixed byte sequence pat-
terns were thus soon replaced with more flexible patterns that included wildcards
and more complex byte grammars in order to also detect updated or slightly modi-
fied versions of malicious binaries that did not exactly match a detection signature.

17



2. Background

Second Generation With the increasing appearance of malware that used sim-
ple obfuscation techniques to alter their binary representation, e.g. by insert-
ing useless NOP sequences or bogus arithmetic operations, the effectiveness of
simple fixed byte pattern scanning approaches steadily decreased. To counteract
this, static malware detection approaches of the second generation implemented
more sophisticated fuzzy byte pattern matching strategies and data normalization.
One commonly used technique, for instance, was the removal of useless NOP se-
quences or other stop-words and the recognition of bogus operations.

Instead of demanding exact matches of byte patterns, more elaborate approaches
allowed a certain deviation from theses patterns, using different edit distance met-
rics to assess the closest similarity of a suspicious binary to a set of known malware
byte patterns. This raised detection robustness, at least against simplistic obfus-
cation techniques, though it brought the cost of risk of increased false positive
classifications.

Current Generation While the simple fuzzy matching and stop-word removal
techniques of the second generation malware detection approaches indeed in-
creased detection robustness against simple code alternation, the advent of ad-
vanced obfuscation techniques put static detection into a severe crisis.

The increasing prevalence of polymorphic and metamorphic malware that used
encryption and packing chains to completely alter their binary representation with
each replication iteration rendered fixed byte patterns essentially useless.

Current generation static analysis approaches cater to this issue in multiple
ways. As many new malware families wrongly implement or use cryptographic
algorithms to alter their binaries or use comparably easy to break custom XOR-
based encryption schemes, modern anti-virus scanners implement generic decryp-
tion routines that e.g. try to automatically infer used encryption keys or brute-
force simple keys to circumvent the effects of encryption on the binary structure.
Furthermore, many current generation approaches feature advanced emulation
and simulation mechanisms in order to “virtually execute” suspicious samples
to obtain the unobfuscated malicious payload. However, metamorphic malware
that uses self-modifying crypto schemes [109] still significantly challenges modern
static detection approaches.

Furthermore, current generation anti-virus scanners, in addition to file-based
detection, often also monitor the memory of suspicious processes for decrypted
and unpacked known malicious code. As malware, at some point, always needs
to decrypt and unpack the payload to be able to execute it, this is a viable strategy
to counteract encryption and packing. Unfortunately, in-memory scanning can
only be done when malware has already been executed and thus can no longer
a-priori prevent infections but rather only ex-post detect them.

18



2. Background

Finally, current generation static anti-malware approaches often include malware-
specific detection heuristics in addition to family-specific detection signatures.
These heuristics scan a binary for code most likely related to malicious functional-
ity, such as encryption or packing chains, or characteristic replication or infection
functionality, and thus indicates malicious intents.

Besides these consecutive improvements of the basic byte pattern string scan-
ning strategy, there have also been some, mainly academic, proposals for more
advanced static byte level detection concepts. These range from proposals to use
entropy analysis on binaries to detect packed and encrypted content that likely
indicates malicious intents [19, 90], concepts to use data mining over n-gram-
tokenized binaries [127, 123, 99], or function references to create fuzzy classifi-
cation models [87, 124], to approaches that statically detect malware based on em-
bedded binary resources like strings or pictures [131, 88].

2.2.1.2. Semantics based

The fact that commercial byte sequence pattern-based anti-virus engines contin-
uously lost in effectiveness in the past decade due to increasing sophistication of
anti-detection countermeasures [52, 136, 35] stimulated research in more advanced
and sophisticated static detection concepts that do not solely rely on syntactic iden-
tification or recurrent byte sequences.

One common alternative to string scanning based detection is the profiling of
known malicious binaries by means of more abstract structural aspects like control
flow or (function) call graphs. As call graphs and control flow graphs both describe
the structure of a program in more abstract and generic terms that is to some extent
independent of concrete binary representations, they are considered more robust
toward accidental or intentional variations of malware binaries [14]. This means,
it is considered “harder for an attacker to radically change the behavior of a malware than
to morph its syntactic structure” [54].

To leverage control flow or function call graphs for static malware detection,
most approaches extract the respective graphs of varying precision from sets of
known malware and e.g. use data mining primitives to infer recurring and thus
characteristic graph patterns [29, 21, 49, 74]. As control flow and call graphs are
typically less influenced by injection of NOP sequences or bogus arithmetic com-
putations, they are more capable of coping with simple binary obfuscation. In a
sense, using more abstract and topological call or control flow graphs instead of
less topological flat byte sequences for detection, can be considered moving from
purely form-focused towards a more semantics-focused detection paradigm [65].

Mihai Christodorescu was among the first to use formal program analysis and
semantic specifications on malware control flow or call graphs for malware detec-
tion purposes, and thus coined the term semantic-based malware detection [37].

19



2. Background

This to a degree extends the idea of malware-specific detection heuristics, but in-
stead of searching binaries for byte sequences that likely relate to generic malicious
behavior, semantics-based approaches infer specifications, i.e. program seman-
tics of known malicious binaries through manual specification, abstract interpre-
tation [116], or data mining [54]. Similar to program verification and (hardware)
model checking, these malware specifications, often referred to as Malspecs [36],
can then be matched against unknown binaries to classify them as malicious, iff
they satisfy one or more of the manually defined or automatically inferred specifi-
cations [75, 36].

Such semantics-based approaches have been shown to significantly outperform
state of the art commercial string search anti-virus detection engines in terms of
general detection effectiveness and robustness towards simple obfuscation trans-
formations like NOP or bogus operation injection, at the cost of up to ten times
lower classification efficiency [37].

2.2.2. Dynamic Detection

In comparison to the field of static malware detection, dynamic malware detection
is much younger and less intensively explored, with the first approaches dating
back to the late 1990s and early 2000s [62].

Unlike static detection approaches that classify malware only according to their
binary representation, the classification decision of dynamic detection approaches,
or more specifically, of dynamic behavior-based detection approaches, is based
on the observable behavior of malware. This means, static approaches have a
representation-focused scope, whereas dynamic approaches have a behavior-focused
scope. Although malware behavior in principle can also be determined statically,
for the sake of brevity we in the following use the term behavior-based whenever
we refer to dynamic behavior-based detection concepts.

In contrast to static approaches that can classify malware samples without actu-
ally executing them, dynamic malware detection approaches always require sam-
ples to be executed and to issue some observable behavior in order to classify
them. This is usually done by executing suspicious samples in controlled and
isolated sandbox execution environments in order to establish a stable analysis
baseline and to prevent analyzed malware from spreading and attacking sensitive
assets. Although there exist a couple of commercial sandbox-based dynamic mal-
ware systems like LastLine Analyst [63], VMRay Analyzer [139], or the VxStream-
Sandbox [126], dynamic analysis is far less common in commercial anti-malware
products than static analysis and still mainly prevalent in academic approaches.

The typical behavior-based detection work-flow is to execute a suspicious sam-
ple within an analysis sandbox, to monitor and record the behavior of the corre-
sponding process(es), and then revert the sandbox to a clean system state.

20



2. Background

Monitored behavior in this context usually means traces of system or API calls
whose execution is typically monitored by reference monitors inside [110, 8, 142]
or outside the virtual machines of the sandbox environment [45, 69, 44, 103], or
even through dedicated non-virtualized bare-metal analysis systems [77, 78].

Unfortunately, this also causes a certain limitation of behavior-based approaches
in that they can only detect active malware. Malware that for some reason is
not executable within the analysis environment or actively defers behavior can,
without additional stimulation measures, not be detected by behavior-based ap-
proaches. Nevertheless, behavior-based detection approaches are more robust to-
wards classical static binary obfuscation, as reordering, substitution, or insertion
of bogus instructions typically has little impact on the induced system call level
behavior [46].

2.2.2.1. System Call Sequence based

Dynamic behavior-based malware detection is very similar to host-based intru-
sion detection. This is, both concepts typically aim to identify malicious activities
based on observed process and system behavior, usually captured in form of sys-
tem call traces. The main difference between the concepts is rather subtle in that
intrusion detection systems mainly focus on detecting motivated attacks, whereas
behavior-based malware detection systems are designed to classify suspicious pro-
grams. From a technological perspective, however, they usually leverage similar
data processing and pattern inference concepts to discriminate benign from likely
malicious behavior, with the main difference of behavior-based malware detection
approaches being mostly sandbox-based, whereas host-level intrusion detection is
usually performed in operational system settings.

This blurry line between the two related concepts makes it hard to clearly deter-
mine the origins of the first behavior-based detection concepts. There nevertheless
is a certain agreement that Forrest et al. were among the first to bring the notion of
self as baseline concept for discriminating malicious from benign behavior [1, 62]
into discussion. The core idea behind Forrest’s early work [51] was loosely based
on basic functional principles of biological immunology as it introduced a sense of
self to operating systems by monitoring normal behavior in terms of syscall traces
issued by benign programs. Deviations from such profiles of normal behavior, i.e.
traces that are not similar to known benign ones, were then considered malicious.

Although this first anomaly-detection concept was primarily designed for in-
trusion detection purposes and, due to the relatively basic trace comparison tech-
niques, was fairly imprecise, it still can be seen as the conceptual “father” of all
subsequent behavior-based malware detection approaches, as it was one of the
first to propose the detection of malicious activities through system call profiling.

21



2. Background

The first dedicated behavior-based malware detection concepts then in essence
transferred the basic concepts from static malware detection, i.e. string [118] and
n-gram-based [119] search, to a system call behavior context.

Although these syscall sequence focused approaches led to increased robust-
ness towards static binary-level obfuscation, recent studies revealed their sensi-
tivity towards certain behavior obfuscation techniques [116, 115, 6]. Hence, dy-
namic system call sequence based approaches share similar limitations as static
byte sequence-based approaches in that the intentional permutation of system call
traces, i.e. through injection of bogus calls, system call reordering, or semantic sub-
stitution, tremendously decreases detection effectiveness [116, 115, 6]. Moreover,
similar to non-semantics-based static detection approaches, system call sequence-
based detection approaches lack an obvious semantic dimension, which prevents
manual validation of classification results and further-reaching malware analysis.

2.2.2.2. System Call Dependency based

System call dependency based dynamic detection approaches are an evolution
of pure system call sequence-based detection approaches and explicitly consider
the semantic relation between different system calls for classification. This is,
while pure sequence-based approaches usually capture system call dependencies
in inferred detection patterns only implicitly, system call dependency based ap-
proaches explicitly model semantic dependencies between system calls.

Semantic dependencies between system calls exist whenever they depend on
each other output- or parameter-wise, i.e. if results from one system call invocation
determine arguments of a later system call. If a process, for instance, issues an
Opentile syscall to obtain a handle to a to-be-read file and then reads data from
this file with a ReadFile call, then there exists a semantic dependency between the
two calls. This is, because for reading from the opened file, the file handle needs to
get passed as argument to the ReadFile system call. Such semantic dependencies
between system calls are either approximated through argument and parameter
correlation [80, 5], or through precise, but expensive taint tracking [151, 3].

Kolbitsch et al. were then among the first to model semantic dependencies be-
tween syscalls as system call dependency graphs, representing system calls as graph
nodes and semantic dependencies among them as edges [80]. By matching syscall
traces of unknown samples with dependency graphs of known malware it was
possible to detect variants of known malware families with high effectiveness.

However, this comparably naive matching approach yielded relatively low ef-
fectiveness on samples from unknown malware families.

The consideration of dependencies between system calls then allowed for fil-
tering certain non-discriminative information and keeping behavior models, i.e.
characteristic behavior graphs, lean, with positive effects on detection precision.

22



2. Background

Follow-up work further improved this concept through more elaborate and ro-
bust sub-graph isomorphism matching [74], by using graph-mining algorithms to
yield more precise and characteristic behavior graphs [50, 49, 32, 54], or through
automata inference to improve behavior model precision [3].

2.2.2.3. Resource Dependency based

While the consideration of system call dependencies led to a further improvement
of detection effectiveness, system call dependency based approaches were still to
some extent sensitive to changes in system call traces like bogus call insertions that
can cause changes in the resulting system call dependency graphs.

To address the limitation of syscall-centric approaches of being sensitive to-
wards variability in system call traces, Bailey et al. [4] proposed to focus classi-
fication on consequences of malicious behavior rather than on the form of the be-
havior itself. This is, they proposed a resource-centric view for reasoning about and
defining characteristic malware behavior instead of a system call-centric view.

The benefits of this new behavior profiling paradigm are intuitively compelling:
while it has been shown that there are multiple ways to implement malicious
functionality, which can be actively exploited by malware to obfuscate their be-
havior [116, 115, 6], there are only limited possibilities to alter the set of system
resources that need to be accessed in order to achieve a specific malicious goal [4].
Bailey further emphasized the utility of resource-centric behavior patterns for fur-
ther analysis in that they “are more invariant and directly useful than abstract code
sequences representing programmatic behavior and can be directly used in assessing the
potential damage incurred, enabling detection and classification of new threats, and assist-
ing in the risk assessment of these threats in mitigation and clean up” [4].

The first dynamic resource-centric approaches clustered similar groups of re-
sources, e.g. files, processes, or registry keys, accessed by known malware samples
into resource-centric behavior fingerprints [4]. Unknown samples were then classi-
tied through the distance of their resource fingerprints to those of known malware.
Follow-up extensions then e.g. used n-gram analysis on accessed resources to ob-
tain more precise behavior models [84].

Finally, the most elaborate concepts from this pillar of dynamic malware detec-
tion approaches use precise but expensive taint-training [151] or less-precise but
considerably faster argument-correlation [114] to express more complex multi-step
resource dependencies in form of resource dependency graphs, or (resource-centric)
data flow graphs. This way, such approaches also cater to the issue of modern
malware distributing malicious behavior among multiple processes by spawn-
ing clone processes or hijacking benign processes to confuse process-centric de-
tectors [117].

23



2. Background

2.2.3. Gap Analysis and Assessment

Considering published studies on the sensitivity of static detection approaches [98]
and dynamic syscall-centric detection approaches [115, 6] against various obfus-
cation transformations, we agree with Bailey et. al. [4] in that dynamic resource-
centric detection approaches at the moment are the best weapon against obfus-
cated polymorphic and metamorphic malware. This has to some extent also been
acknowledged by anti-malware industry, which recently started to move from
purely preventive towards more detective and responsive mechanisms [136].

Nevertheless, current resource-centric approaches still suffer from some issues
concerning detection precision, obfuscation robustness, and classification efficiency.

In this thesis we thus aim to improve this situation by proposing a new behavior
model based on approximated quantitative data flows between system resources
and several approaches that leverage this model for precise, robust, and efficient
malware detection. This is, current resource-centric detection solutions often yield
false positive classifications that are too high for practical purposes, are sensitive
against certain behavior obfuscation techniques, and, especially when based on
full system emulation-based taint-tracking, induce high computational overheads.
In sum, these limitations currently hinder the operationalization of resource-based
malware detection concepts.

Our proposed system model and detection approaches belong to the resource-
focused pillar of dynamic malware detection in that we also model dependencies,
i.e. potential data flows between system entities. However, in contrast to the afore-
mentioned approaches we do so from a quantitative rather than an existential flow
perspective. While taint-based analysis, as discussed before, allows the precise
tracking of data flows at the cost of induced considerable computational over-
heads, bad portability, and thus suffers of limited opertionalizability, system call
based data flow approximation is computationally spoken lean and thus compara-
bly easy to deploy in operational settings, but rather imprecise. Both concepts thus
suffer from limitations that hinder their applicability in real-world operational set-
tings, either because of complicated deployment and bad efficiency, or because of
limited precision.

We expect our concept of system call based data flow approximation with consid-
eration of quantitative data flow aspects to yield a good tradeoff between the precision
and efficiency which contributes towards the real-world applicability of data flow
analysis based malware detection approaches.

To this end we will continuously assess this assumption throughout the course
of this thesis and investigate, whether or not our quantitative perspective indeed
positively influences detection effectiveness, efficiency, and robustness.

24



3. System Model

In this chapter we propose a model to represent the interaction between
different system entities as quantitative data flows that together consti-
tute a quantitative data flow graph. An earlier version of this model was
presented in [144], co-authored as first author by the writer of this thesis.
We then sketch how to leverage this model for behavior-based malware
detection.

Behavior-based malware detection approaches all have in common that they uti-
lize different forms of abstraction of the observed behavior of to be analyzed sam-
ples. As mentioned in Section 2.2, such models and abstraction concepts range
from rather simplistic behavior representations in form of raw system call se-
quences to more sophisticated graph-based concepts like system call dependency
or data flow graphs that encode more complex behavior inter-dependencies.

As approaches that directly leverage raw system calls for detection have shown
to be sensitive to malware behavior obfuscation [6, 115], we propose a more ab-
stract representation of system behavior, i.e. captured system call traces, as quan-
titative data flows. While representing behavior as graphs in itself is conceptually
not new, we put particular emphasis on incorporating quantitative data flow aspects
into our graph-based models. This, as we will later show, has a significant impact
on detection accuracy and robustness.

The main reason to embody this quantitative component into our model is the
intuition that the more information a model captures about the underlying behav-
ior, the better it can be used for discrimination, i.e. malware detection purposes.

In this section we hence present the principal idea of modeling low-level system
events, e.g. system calls, as quantitative data flows. The resulting model will
then be the conceptual basis of all malware detection and analysis approaches
presented in the remainder of this thesis.

To do so, we proceed in two steps. First we introduce a generic model that can
be instantiated for various system types, and that provides a lean data structure
suitable for quantitative data flows analysis. Then, we discuss how this model can
be instantiated for a concrete operational context, which in our case is that of a
typical Microsoft Windows operating system environment.

25



3. System Model

10, ¢4 10, to

20 20
Fy P By o — Fy
10, t3 10, t4 (t1,t3) (ta,ts)
(a) Individual flows (b) Aggregated flows

Figure 3.1.: Data flow abstraction from single system events.

Our core idea is to perform malware detection based on the analysis of system-
wide quantitative data flows. System-wide data flows in this context refer to all
flows of data between different system entities that happened within a specific
time frame e.g. as consequence of the execution of system calls. System entities
denote here all conceptual sources and sinks of data. In the case of operating sys-
tems, this includes resources like processes, sockets, or files. Data flows between
system entities are caused by the execution of specific data flow related events. An
example are file system events that, if called by a process, lead to a (quantifiable)
flow of data between the calling process and the involved file.

3.1. Quantitative Data Flow Graphs

Capturing system behavior as sequences of data flows allows us to reason about
behavior from a more abstracted data flow perspective. However, traces of data
flows are not very handy to process and not ideally suited for being interpreted
by human analysts. In addition to that, data flow traces lack a clear topological
dimension which complicates more complex analysis tasks.

As next step we hence show how sequences of data flows can be aggregated in
form of what we call Quantitative Data Flow Graphs (QDFGs). The nodes of these
graphs represent system resources that were at least once involved in a data flow,
whereas the edges represent the quantified data flows between these entities.

To better understand how QDFGs model system behavior, consider the follow-
ing simple process behavior example. Suppose process P reads 10 Bytes from file
F, then writes them to file F5, and it repeats this process twice. An accurate log of
this events would keep track of all individual system event and their timestamps,
as depicted in Figure 3.1a. As a built-in optimization, we aggregate these flows
into single weighted flows, as depicted in Figure 3.1b, together with a record of
the timestamps of the contributing system events.

QDFGs are then modeled as elements of theset G = Nx Ex Ax (NUE)x A —

Valuez) for a set of nodes, N, a set of edges, E C N x N, a set of attribute names,
A, and a set of labeling functions drawn from (N U E) x A) — ValueAithat map

an attribute a € A4 of a node or an edge to a value drawn from set Value™.

26



3. System Model

Ina QDFG G = (N,E,A,\) € G, nodes N represent data flow related sys-
tem entities and edges E data flows between them. Attributes A are needed to
keep our model flexible enough to be instantiated for various types of systems.
They represent characteristics of data flows and system entities that are important
for malware detection and analysis. Edges, for instance, have an attribute size
that represents the amount of transferred data of the respective flow. The labeling
function A retrieves the value of an attribute assigned to a node or an edge, in this
example the size of the flow that corresponds to an edge.

QDEFGs are intuitively to be read as follows: If there has been a flow of data in-
between the system entities corresponding to two nodes, there is an edge between
these nodes. Data flows are caused by system events. Among other things, this is
the case if a process reads from a file; writes to a registry; or writes to a socket. At
the level of a QDFG, we are not interested precisely which event has caused the
flow. Instead, we model events (src, dst, size,t,\) € £ as tuples where src € N
is the originating system entity, dst € N the destination system entity, size € N is
the amount of transferred data, t € Value®™* is a time-stamp (defined below) and
A holds other attributes of the involved entities. As mentioned above, a runtime
monitor will then observe all events at the operating system level, and use the
characterization of an event by set £ as a data transfer to update a QDFG. QDFGs
hence evolve over time as captured events either cause the creation or the update
of nodes or edges in a data flow graph.

In order to define how exactly the execution of an event modifies a QDFG, we
need some notation for updating attribute assignments. For any node/edge, at-
tribute pair (z,a) € (N U E) x A, we define \[(z,a) <+ v] = X with:

{v if y € dom(\)

N(y) =
(v) Ay) otherwise

We further agree on some syntactic sugar to represent multiple synchronous
updates:

AM(z1,a1) < v1;..5 (g, a) v = (. (A[(z1,a1) « v1]) .. ) [(zk, ag) < vn].
The composition of two labeling functions is defined as:
A1 oA = AN[(z1,a1) < vi5. .5 (@, ak) < vy

where v; = Aa(x;, ;) and (x4, a;) € dom(\y).

We consider the aggregation of flows and system entities to be one distinct fea-
ture of our approach. Such aggregations are needed to keep the resulting graphs
within reasonable limits as illustrated in Figure 3.1.

This in particular means that entities with the same name (e.g. multiple running
instances of the same program) are represented by the same node.

27



3. System Model

Furthermore, flows between the same pair of system entities are represented by
one edge where we simply sum the resulting transferred amount of data rather
than creating two different edges.

In order to aggregate flows caused by similar events between the same entities
edges get assigned a set of time-stamps time € A such that Value®™* C 2N, With
each event that contributes to a flow we thus add this event’s time-stamp to the
time-stamp list of the respective edge. An example for this, depicted in Figure 3.1b,
would be two subsequent WriteFile calls between the same process-file pair, one at
time step 1 and the other at time step 3, where the resulting edge would then be
assigned the set of time-stamps {1, 3}.

Now we can precisely define how an event updates a QDFG by triggering the
graph update function update : G x £ — G, formally specified by:

update(G, (src,dst, s, t, \)) =
N,

E,

AuUdom(\), if ecFE
(e, size) < A(e, size) + s;

(e, time) < (A(e, time) U {t})

!/

N U {sre,dst},

EU {e},

AUdom(X), otherwise
(e, size) < s; ,

(e, time) + {t}]

where e = (sre,dst) and G = (N, E, A, \)

28



3. System Model

3.2. Model Instantiation

To operationalize the concept of malware detection with quantitative data flows
for a concrete system context we now only need to instantiate our generic QDFG-
based system model. In general this implies mapping the abstract entities, i.e.
nodes, of the model to concrete system entities in the targeted operational context.
Furthermore, an operationalization of our abstract model requires the instantiation
of the generic data flow event set £ to concrete system events.

Although we also successfully instantiated our model in an Android mobile
operating system context and showed its utility for the detection of malicious An-
droid apps, this thesis exclusively focuses on the detection of Windows malware.
We therefore in the following discuss the instantiation of our generic system model
to standard Windows operating systems. For details on the Android instantiation
we refer the reader to the respective literature [27].

To operationalize the generic QDFG model to a Windows malware detection
context we need to map abstract QDFG nodes to concrete Windows resources like
processes, files, sockets, or registry entries. We furthermore need to relate Win-
dows API calls that carry an intuitive data flow semantic to respective data flow
events. This Windows instantiation of our generic model will be discussed in the
following.

3.2.0.1. System Entities

Through a preliminary study on data flows induced by interactions of different
processes within Windows operating systems, we identified a set of system re-
sources that can be considered as sources or sinks of data flows, and thus as en-
tities in our generic model. We use the attribute type € A to describe an entity’s
type. For the sake of brevity we later will use its first letter to refer to a specific
entity type, instead of always using its full name, i.e. P instead of Process:

* Processes interact with the file system, registry, and sockets and cause data
flows from or to these entities. Nodes that represent processes are assigned
(P)rocess as value of the type attribute.

¢ Files persistently store data and can be either read or written to by processes.
Nodes that represent files are always implicitly assigned (F)ile as value of the
type attribute.

* Sockets are connection points to remote systems. Processes can either read
or write data from them, causing data flows from or to the respective re-
mote systems. Socket nodes are always assigned (S)ocket as value of the type
attribute.

29



3. System Model

* URLs represent remote (potentially virtual) systems that a process interacts
with through a socket. URLs in essence are our way of modeling data flows
between local processes and resources on remote systems. URL nodes are
assigned (U)rl as value of the type attribute.

* Registry Keys persistently store settings and other Windows configuration
data and can be either read or written to by processes. Nodes that represent
registry keys are assigned (R)egistry as value of the type attribute.

3.2.0.2. System Events

To model interactions that are relevant from a data flow perspective, i.e. have an
obvious data flow semantics, we model several Windows API functions by ab-
stract events. These will be used in the update function of Section 3.1, and thus by
the runtime monitor, to build the QDFG. Due to the considerable complexity of the
Windows API we concentrate on a subset of the Windows API that is commonly
used by malware to interact with system resources. For brevity’s sake we some-
times simplified some aspects of these functions like parameter types (e.g. use file
names instead of file handlers) or enriched them with additional information that
is usually not directly given by the function’s parameters.

In the following we only describe one representative of each type of events
which model all semantically (in terms of induced data flows) equivalent events;
e.g. the WriteFile function that represents all Windows API functions (e.g. Write-
FileEx, WritefileGather, ...) that induce a data flow from a process to a file. In
the actual implementation of our approach we considered and intercepted a wide
range of semantically equivalent events for each class.

File System Operations File manipulation operations are a useful source for cap-
turing malware behavior as most malware, except for very advanced in-memory-
malware, typically need to conduct some file system access operations to conduct
malicious activities. This ranges from simply profiling an infected system to plan
further manifestation or persistence steps, stealing sensitive data, or to actually
manipulate the infected system’s integrity.

* ReadFile(Ex) is used by a process to read a specified amount of bytes from a
file into its memory. This type of events are interesting, as they are typically
employed by malware to steal sensitive information, read dropped binary
images, or in general profile and infected system. We model this as a flow of
data of a defined amount from the read file to the reading process node.
Relevant Parameters: Calling Process (Pc), Source File (Fs), ToReadBytes
(Sr), File Size (SF)

Mapping: (Fs, Pc, Sg,t,0[(Fs, size) «+ Sp|) € €

30



3. System Model

* WriteFile(Ex) Using this function a process can write a specific number of
bytes to a file. File write events are interesting from a malware perspective
as they are used to manipulate an infected system, write dropped malware
binaries to the file system for persistence reasons. We model this as a flow of
data of a defined amount from a process node to the target file node.
Relevant Parameters: Calling Process (FP¢), Destination File (¥p), ToWrite-
Bytes (Sw), File Size (SF)

Mapping: (Pc, Fs, Sw,t,0[(Fp, size) + Sp|) € €

Registry Operations Captured registry access and manipulation operations of a
malware are an important source of information to reason about its basic behavior
and potential targets. Malware often profiles a system by crawling the Windows
registry to get a better picture of the installed software landscape to e.g. find poten-
tial targets for further malicious or sensitive data worth to be stolen. Furthermore,
most modern malware after the initial infection step tries to persistently dig into
the system by dropping additional malicious binaries and ensuring their execution
during start-up through manipulation of respective registry keys.

* RegQueryValue(Ex) Using this function a process reads the value of a spe-
cific registry key. We mainly consider this function as it is typically used
by malware to profile the configuration and state of an infected system. We
model it as a flow of a specific size, determined by the length of the read
registry value, from the respective registry key node to the calling process
node.

Relevant Parameters: Calling Process (Fr), Source Key (K5), ToReadBytes
(Sr)
Mapping: (Kg, Pc, Sg,t,0) € £

* RegSetValue(Ex) Using this function a process can write data to a specific
registry key. It is in so far interesting for us in that it is typically used by mal-
ware to manipulate certain registry keys to e.g. ensure persistent execution
of malicious binaries after system start-up. We model this function as a flow
of a certain amount of data, again determined by the size of the buffer hold-
ing the data that is to be written to the registry key, from the calling process
node to the target registry key node.

Relevant Parameters: Calling Process (Pc), Destination Key (K p), ToWrite-
Bytes (Sw)
Mapping: (Pc, Kg, Sw,t,0) € £

31



3. System Model

Socket Operations Considering that almost all modern malware is internet-based,
monitoring and modeling network related behavior is crucial for accurate classi-
fication. Sockets, or WinSock functions are the standard interface for user mode
processes to communicate with remote systems via network. Malware typically
uses them to conduct all sort of malicious activities, ranging from communica-
tion with remote command-and-control servers to receive new instructions, report
stolen data, or download additional malicious payload, over distribution of spam
and manipulation of online advertisement, to active infection of other systems by
exploiting network-related vulnerabilities.

* Recv Using this function a process can read a specific number of bytes from a
network socket. We capture it as it is the primary way of malware to receive
instructions and data from command-and-control servers. We model it as a
flow of a defined amount, determined by the size of the respective socket
buffer, from a socket node to the calling process node.

Relevant Parameters: Calling Process (Pc), Source Address (IP Port) (Ag),
ToReadBytes (Sgr)
Mapping: (As, Pc, Sg,t,0) € €

* Send Using this function a process can send a specific number of bytes to
a network socket. It is important for us to intercept it to be able to model
network-related self-replication, click fraud, or spamming behavior.
Relevant Parameters: Calling Process (P), Destination Address (IP Port)
(Ap), ToWriteBytes (Sw)

Mapping: (Pc, Ap, Sw,t,0) € €

Process Operations Malware often creates complex fork chains, i.e. spawns
clone processes of the own or additional downloaded malicious binary images to
confuse detection mechanisms and implement update and plug-in functionality.
This typically manifests in the creation of additional processes by the malware.
Furthermore, malware quite often tries to circumvent host-based detection and
firewall systems by hijacking other benign processes, that are usually white-listed
by such approaches, by injecting malicious code into them. By doing this, the
malware can effectively conduct a parasite strategy in the sense of making the for-
merly benign process conducting malicious activities that blend into the original
benign behavior and thus harden detection.

¢ CreateProcess(Ex) Through this function a process can trigger the creation of
another process, using a specific executable file as binary image. Although
there are many ways to create new processes in Windows, we subsume the
most common one under the umbrella of this function. We mainly capture
it to model local self-replication behavior of malware, i.e. the creation of

32



3. System Model

fork chains. The function is modeled by a flow of a specific amount of data,
determined by the size of the binary image of the to be created process, from
the parent process node to the newly create child process node.

Relevant Parameters: Caller Process (Pr), Callee Process (Pp), Binary Name
(F'B), Binary Size (Sp)

Mapping: (Pc, Pp, Sp,t,0[(Pp, size) < Sg]) € £

* ReadProcessMemory Using this function a process can read a specific num-
ber of bytes from the memory of another process. To create hidden inter-
process communication channels to coordinate different malicious processes,
malware often employs IPC schemes that built on top of process memory
read and writes. We model this function as a flow of a fixed amount, de-
termined by the size of the respectively referenced buffer, from the target
process node to the calling process node.

Relevant Parameters: Calling Process (FPc), Source Process (Ps), ToRead-
Bytes (Sr)
Mapping: (Pp, Pc, Sg,t,0) € £

* WriteProcessMemory By this function one process can write a specific num-
ber of bytes to the memory of another one. This is an often used way of
malware trying to write malicious code to other benign processes or imple-
ment some function call interposition based rootkit functionality. We model
this function as a flow of a fixed amount, determined by the size of the refer-
enced write buffer, from the calling process node to the target process node.
Relevant Parameters: Calling Process (Pc), Destination Process (Pp), ToWrite-
Bytes (Sw)

Mapping: (Pc, Pp, Sw,t,0) € £

After having associated a, from a malware perspective interesting, set of Win-
dows resources and WindowAPI functions to the respective conceptual counter-
parts of our abstract QDFG-based system model, we are now set to discuss its
utility for malware detection purposes.

33



3. System Model

3.3. Malware Data Flow Behavior Example

To better understand how we use QDFGs to abstract from low-level system behav-
ior, Figure 3.2 gives a grasp of how a QDFG obtained from monitored behavior of
a system that was infected with the Cleaman malware looks like. The edge size
represents the amount of data transferred between system resources.

The highlighted part of the graph lets us easily visually identify a behavioral
pattern that is typical for so-called dropper malware: the executed malware con-
nects to a remote server and downloads additional payload (1); then it executes
the downloaded payload (2), which then gets loaded into a new malware child
process (3). This malware child process then also connects to the remote server,
most likely to receive additional instructions and update information (4).

This behavior yields several data flows of similar size between the initial drop-
per malware process, the dropped binary file, the remote command-and-control
server, and the created malware child process, which manifests into the addition
of multiple similar-sized edges to the corresponding system QDFG.

As we can see, the characteristic malicious behavior in this example is mainly
captured by the edges with the highest amount of transferred data. We will later
see that this is no coincidence and that focusing on edges that represent high
amounts of data flows in fact is a good heuristic to isolate characteristic malware
behavior.

F>220.164.140)246/apiturls/ F>220.164.140.2@8api/stats/install/
U>220.1641140.246
F>C:/Users/vm1/AppData/Local/Temp/malware @41 25f8acc.exe

$>220.164. 148
F>C:/Windows/S{Slem32/ieframe.dIl

(4)

L>shiaRpi.dil

‘ L>imf@e2.d1l
; I L>ker@132.dIl
_P>F4DS55F7A0000328E000155D6B4EB23C1.exe

L>RASHIAN.DLL Pt S i

L>comeli32.dll
L>sXSIDLL y,
/
F>C:/ProgramData/F4D55F7A155DEB4EB23C1/FAD55F7A0000328E000155D6B4EB23C1

F>C:\Windows/S{Stem32/stdole2.tib L>C:Windows/&Rtem32/ole32.dIl

L>cdimctiz2

Figure 3.2.: Excerpt of infected system QDFG with highlighted malware behavior.

34



4. Pattern-based Detection

In this chapter we discuss how to use QDFG patterns to detect malicious
activities. We do so with a deductive approach that detects pre-defined
patterns of known malicious behavior in unknown samples and an in-
ductive one that mines behavioral commonalities of malware samples to
infer generalized detection patterns. Parts of this chapter are based on
published work [144], co-authored as first author by the writer of this

thesis.
Strategy

v Deductive Inductive
Q Pattern-based : Pattern-based
c :

o ;

(@) o

v :

= :

§ Deductive Inductive
g Metric-based : Metric-based

After having introduced our basic idea of modeling low level behavior of a sys-
tem in form of more abstract quantitative data flow graphs we will now discuss
how to use this model for malware detection purposes.

In principle, there are two basic ways of detecting malicious activities in recorded
system behavior: through statistical anomaly or pattern-based misuse detection [62].
Anomaly-based detection approaches in essence learn a notion of normal system
behavior by monitoring the data flow behavior of known benign programs and
then considering any deviation from that benign baseline as being malicious.

While this concept at first glance seems compelling and various instantiations
at network- or host-level have shown promising results, anomaly detection ap-

35



4. Pattern-based Detection

proaches in highly unstable and noisy operational settings like our anticipated
Windows operating system context still suffer from often unacceptably high false
positive classification rates [2].

For this reason, in this thesis we focus on the second principal concept of ma-
licious activity detection, which is the identification of known malicious behavior
patterns in observed system behavior, i.e. misuse detection. Misuse detection in
comparison to anomaly detection is considered to only provide limited capabili-
ties of detect novel malicious behavior. However, the different misuse detection
approaches proposed in this thesis cater to this problem by incorporating various
fuzzy matching mechanisms that, as we will later see, still to some extent enable
us to detect previously unseen malicious behavior, i.e. unknown malware.

Just like most misuse detection concepts, our first pillar of devised detection
approaches also leverages patterns of known malicious behavior to classify un-
known behavior as malicious or benign. As in our context behavior is modeled
as graphs, we consequently specify and re-identify patterns as graphs. While
pattern-based detection on graphs has been proposed before, e.g. at the level
or control-flow- [21, 28, 29, 37, 85], system-call-dependency- [80, 54, 60, 36], or
resource-dependency-graphs [113, 114, 76, 151], we are the first to do this at the
level of quantitative data flow graphs.

36



4. Pattern-based Detection

4.1. Deductive Pattern-based Detection

Strategy

Deductive Inductive
Pattern-based : Pattern-based

Deductive Inductive
Metric-based : Metric-based

Baseline Concept

4.1.1. Introduction

For our first instantiation of our pattern-based malware detection concept we clas-
sify unknown samples by comparing their observed behavior with predefined pat-
terns of known malicious behavior.

As we will later see, using QDFGs as behavior model for pattern-based detection
renders reordering, injection, and semantic substitution attacks widely ineffective,
as long as they do not alter the structure of the resulting quantitative data flow
graphs, making this approach more resilient against common behavioral obfus-
cation attacks than comparable behavior-based detection approaches [6]. By ag-
gregating semantically similar and related flows between system entities during
the construction of our data flow graphs, we can furthermore keep the underlying
data structures light-weight and efficient. Considering the findings of Fredrikson
et al. [55] that malware detection through behavioral pattern matching in general
cannot be done efficiently, simplifications as used in our approach are particularly
helpful in keeping detection efficiency within reasonable boundaries.

Besides the fact that we use QDFGs as behavior model, the main difference of
our approach to related ones that are based on pattern recognition on graphs is
that we do not only check whether or not a known malicious pattern matches a

37



4. Pattern-based Detection

unknown QDFG, but also impose additional quantitative constraints on how ex-
actly the pattern has to match a QDFG in order for it to be considered malicious.
The basic idea of this approach thus is to improve the detection precision and
reduce false positive classifications by incorporating additional quantitative con-
straints into the pattern identification process and thus making pattern matching
checks more restrictive.

As mentioned in Section 1.2, for the first instantiation of our pattern-based de-
tection concept we follow a deductive methodology in that we first manually spec-
ify patterns of well-known malicious behavior and then, together with additional
quantitative data flow constraints, use them to classify unknown samples. This
is done by executing potentially malicious samples in a customized malware ana-
lysis sandbox [110], record the sample’s behavior in terms of system call traces,
interpret them as QDFGs, and try to identify malicious patterns in them.

The main goal of this first approach was on giving an initial answer to RQ1, i.e.
whether we can operationalize our QDFG model for malware detection, and RQ?2,
if the usage of quantitative information can improve detection effectiveness.

We will then later discuss an extension to this basic detection concept with data
mining and machine learning mechanisms to automatically derive more discrimi-
native patterns from a body of known malware, i.e. follow an inductive instead of
a deductive strategy, to evaluate the feasibility boundaries.

The specific contributions of this approach can be summarized as follows:

1. To the best of our knowledge this is the first approach that makes use of
quantitative data flow analysis for behavior-based detecting malware.

2. We show the feasibility of pattern-based malware detection on QDFGs.

3. We show that the additional quantitative data flow constraints encoded in
the patterns yield a significant improvement of detection effectiveness.

Some parts of this section are based on previous work [144], co-authored as first
author by the writer of this thesis.

38



4. Pattern-based Detection

4.1.2. Approach

Our approach consists of six components that conduct the different data retrieval,
processing, and classification tasks. Figure 4.1 depicts a high-level overview of the
architecture of our approach. In the following we briefly sketch the different tasks
of our approach and associate them to the respective architecture components. In
the subsequent section we will than elaborate on their functionality in more detail.

A)

B)

Malware Sandbox: To obtain behavior profiles of known goodware and mal-
ware samples we need to first execute them in a controlled environment
and record the system calls induced by the respective processes. We do so
using a customized version of the popular open-source malware sandbox
Cuckoo [110]. As the vanilla version of Cuckoo is only capable of monitor-
ing the process and its descendants that refers to the executed malware or
goodware sample, but for our approach we need a full picture of the com-
plete system behavior, we had to substitute its behavior monitor with an
own IAT-patching based user-mode Windows API monitor [146], capable of
full system monitoring. Our monitor furthermore features more advanced
functionality to annotate intercepted system calls with context information
like the size of referenced read or write buffers, which we need for building
our QDFGs. After submitting a sample to the sandbox it gets uploaded and
executed in one of the sandboxes’ virtual machines that are equipped with
our monitoring infrastructure. The behavior of the instrumented systems
then get monitored for a pre-defined period of time after which the VM is
stopped, the recorded API calls written to a log, and the log sent back to the
backend of our infrastructure.

Event Parser: This component implements the data flow semantics described
in Section 3.2.0.2 and translates the system calls from the traces it received
from the Malware Sandbox component to sequences of data flow events that
then get forwarded to the Graph Builder component. The Event Parser also
features functionality to map a wide range of semantically similar Windows
API calls to the basic set of functions described in Section 3.2.0.2 and their
respective data flow semantics. With this we cover a good portion of the
Windows API and consider the respective functions for building the QD-
FGs although we only formalized a very reduced subsets of it. Note that,
although by doing so we were able to capture a wide range of possible mal-
ware behavior, we by no means claim to be able to intercept all possible
Windows API calls. This is because the Windows APl in its current form fea-
tures thousands of different functions that get changed and extended with
almost every major Windows update. We thus deem a full interception and
modeling of the entire Windows API unfeasible within the scope of this the-

39



4. Pattern-based Detection

O)

D)

E)

sis. Although the intercepted functionality is sufficiently comprehensive to
build highly accurate and robust detection models, we are aware that this
still imposes a certain risk of malware circumventing detection.

Graph Builder: The Graph Builder implements our system model and in partic-
ular the graph update function described in Section 3.1. For this it takes the
sequences of data flow events it gets from the Event Parser and incrementally
extends a correspondingly built QDFG by continuously invoking the QDFG
update function. After having processed the entire received data flow event
sequence, the Graph Builder outputs a QDFG that models the behavior of the
corresponding system during the monitored period of time.

Pattern Matcher: The Pattern Matcher can be considered the core component
of our approach as it is in charge of identifying patterns of known malicious
behavior in the captured behavior of unknown samples in order to classify
them. As behavior in our case relates to QDFGs and thus graphs, doing so
essentially boils down to finding sub-graphs in the QDFG of a to be classi-
tied sample that are isomorphic to the graphs, i.e. patterns, associated with
known malicious behavior. This sub-graph isomorphism problem in general
is known to be NP-complete and thus computationally hard. However, bar-
ing in mind that there do exist efficient sub-graph isomorphism algorithms
for specific classes of graphs [48], considering our comparably simple pat-
terns, and anticipating that we had to incorporate more complex quantita-
tive constraints on the actual matching process, for this work we decided
to make use of a modified version of the VF2 algorithm [43]. The Pattern
Matcher itself does not yet consider the quantitative data flow constraints
within the pattern properties for matching but rather forwards all potential
matching pairs of QDFG sub-graphs and patterns and their yet to be checked
quantitative guard properties to the Quantity Analyzer component.

Quantity Analyzer: All our detection patterns, as we will see in the next sec-
tion, specify additional quantitative data flow constraints that must be sat-
isfied by a sub-graph of a to be classified QDFG in order for it to match
the respective pattern. However, our approach allows to enable and dis-
able those properties in order to make the pattern matching more or less re-
strictive. The Quantity Analyzer implements this functionality by taking the
matching decisions from the Pattern Matcher and evaluating the quantitative
data flow properties of the respective patterns on the matching sub-graphs.
Depending on a pre-configurable maximum accepted deviation from these
constraints, the Quantity Analyzer then removes matches from the result set
that do not satisfy the quantitative constraints. By allowing slight deviations
from the quantitative data flow guarding properties we anticipate the prob-

40



4. Pattern-based Detection

Syscalls Data Flows

A) Malware B) Event ’ C) Graph

Sandbox Parser Builder

Pattern
Repository

QDFG

et Patterns
ification, atche
F) Decision C‘Iassmcatlor‘ E) Quantity ‘ | D) Pattern

Point Analyzer Matcher

Figure 4.1.: Architecture

lem of the quantitative guard conditions in some cases being too restrictive
due to inevitable noise that e.g. results from different file encoding or net-
work management overhead.

F) Decision Point: Anticipating that one pattern in itself might not be discrimina-
tive enough to accurately differentiate between malign and benign samples,
we introduced an additional arbiter component that yields the final classifi-
cation decision taking all pattern matching results into account. This is, the
Decision Point only classifies a QDFG, i.e. a sample, as malicious if the respec-
tive pattern matches together satisfy a global meta-property. In our current
implementation this means, that we only consider a QDFG to be malicious
iff at least two patterns from different categories matched it. To again relax
or tighten this final classification decision, we make this matching threshold
adjustable.

This architecture will build the reference for all subsequently discussed detec-
tion approaches and will be customized and extended to fit the specific charac-
teristics of the respective approaches. Keeping the big picture of our detection
approach in mind, in the next section we will now discuss how to specify malware-
specific behavior patterns as properties over QDFGs to be used for the actual clas-
sification of unknown samples.

41



4. Pattern-based Detection

4.1.2.1. Malware Behavior Patterns

Based on the generic system model introduced in Chapter 3 and its instantiation
to Windows operating systems, we can model specific malware detection patterns
that make use of (quantitative) data flows and data flow properties. We used these
for our prototype to detect potentially malicious processes and for the experiments
in Section 4.1.3. These patterns were deductively defined on the basis of commer-
cial malware behavior databases [132], as partially sketched in Section 2.1, and
academic malware analysis reports [9]. In the following, we will say that a “pat-
tern matches” if according to this pattern malware is present.

The basic idea of constructing such patterns is to identify characteristic data
flows and flow properties that correspond to typical high-level behavior of mal-
ware such as “a malicious process tries to replicate itself by infecting other benign bina-
ries”, like e.g. seen for the Parite worm, or “a malicious process tries to replicate itself
via email”, as e.g. common for email worms like MyDoom. These characteristic
data flows or properties than represent a set of potentially malicious activities that
can later be re-identified in data flow graphs of the to be analyzed samples.

Not all of these patterns in themselves are sufficiently specific and expressive
to always discriminate between malware and goodware. An example for this is a
pattern that matches if a process downloads payload from the internet and starts
it as a new process. Although such behavior is typical for so-called dropper mal-
ware that install additional malware (so-called eggs) using this technique, it also
matches the behavior of benign web installers. Yet, by combining several patterns,
we can achieve a sufficient specificity and precision do correctly discriminate be-
tween good- and malware in most cases.

For formally specifying our detection patterns we need a few auxiliary func-
tions in addition to the graph functions defined in 3.1. Because their definition is
standard, we omit a formalization.

Function pre : N x G — 2% computes all immediate predecessor nodes of a

node of the graph. Conversely, suc : N x G — 2N computes the immediate succes-

sors of a node. Functions in,out : N x G — 2¥ compute the set of incoming and
outgoing edges of a node. If Path denotes the set of all finite sequences, function
paths from : N x G — oPath calculates all paths without loops that originate from
a given node n. The intuition is that there is a data flow from n to each node in
the path. Conversely, and finally, function paths;, : N x G — 2P computes all
those paths without loops in the graph that have the argument node as last ele-
ment. We further introduce projections !; with (z1,...,z5)l; = z;for 1 <i <k to
address a specific element y in the i-th position of a sequence Y. To further sim-
plify the description, we define a sub-string function to extend patterns definitions
with string comparisons: ss : S x & — {0, 1} which evaluates to true, iff the first
provided string is a sub-string of the second string parameter.

42



4. Pattern-based Detection

S1 S9 S1 52
a.exe »| Q.€TE a.ere p——>p

51.= 52 51 < 82
(a) Local Replication (b) Network Replication
S1 S4
fieze | 51 a a Q
S92 S3
fn.exe | Sn F

s < s;
=7 81 2> 82 =83 = 84

(c) Binary Infection (d) Reload Payload

Figure 4.2.: Replication patterns

The formalizations of our detection patterns come as predicates ¢ C N x G that
are to be read as follows. If ¢(n,G) is true for some node n in a given QDFG G,
then the patterns corresponding to ¢ suggests that malware is present. This means
that the evaluation must be performed for each node.

We now have a basis for specifying malware-specific (quantitative) data flow
patterns. These patterns will enable us to discriminate between benign and po-
tentially malicious system entities. Typical examples for such patterns include re-
strictions on orders or specific sequences of flows that are characteristic for certain
malware types.

We express such malware data flow patterns as first-order logic predicates on
properties of the introduced QDFGs. The set @,y := ®rcp U Ppyyp1 contains all spec-
ified malware replication and manipulation patterns that model specific classes of
malware behavior. The motivation for our separation of patterns is that we want
to differentiate between patterns that detect replication and those that detect the
system manipulation behavior of a malware. This separation also allows us to in-
crease the detection specificity by combining different types of patterns. Note that
the sets of patterns are not necessarily disjoint.

Each of the following pattern specification consists of a natural language de-
scription of the corresponding flow pattern, and a brief description of the ratio-
nales behind the pattern.

43



4. Pattern-based Detection

In addition we visually illustrated some patterns to give the reader an under-
stand of their structure (see Figure 4.2). Boxes represent file nodes, circles repre-
sent process nodes, and clouds represent socket nodes. We only visualized the
more complex replication patterns and omit a visualization of our manipulation
patterns as they share the same simple 2-nodes-1-edge structure.

The choice of the the following set of detection patterns essentially is motivated
by the goal of capturing the most distinctive behavior characteristics of the com-
mon malware classes, as described in Section 2.1.2. Nevertheless we are aware
that the huge behavioral heterogeneity of today’s malware landscape can likely
not entirely be covered by such a fixed-sized pattern set and thus do not claim to
be comprehensive in this respect. However, we assume to having captured the
most prevalent behavior characteristics and later in Section 4.2 will discuss how to
arbitrarily extend this pattern library by means of behavior mining.

Replication Patterns The patterns in this class capture activities targeting infec-
tion of a local or remote system with malware. That can e.g. be achieved by ap-
pending malicious binaries to a set of benign system programs, injecting malicious
code into other processes, or sending binaries to remote network nodes.

* Local Replication (¢, ,) Matches if a process node has at least one flow from
a file node that has the same name as the process, followed by at least one
flow to another process. To increase the precision of the pattern the amount
of flown data from file to process must be the same as the amount of data that
flows between the two processes (as e.g. observed for Trojans like Agent).
Rationale: This pattern covers characteristic data flows caused by malware
trying to replicate by spawning clone processes from the own binary image.
Formalization:

brepy(n, G) == 3p = (e1,e2,...) € pathsprom(n)e
G.\(n,type) = F N G.\(e1la, type) = P A ss(erla,n)A
G.\(eala, type) = P AN G.\(ey, size) = G.\(ea, size).

* Network Replication (¢..,,) Similar to the local replication pattern, this pat-
tern matches if there exists at least one flow between a process and a file of
similar name and a flow from this process to a network socket. To increase
specificity the amount of data sent to the socket must be at least as big as
the amount of data read from the file (as e.g. observed for Email Worms like
MyDoom).

Rationale: This pattern covers data flows that are typical for a malware that
tries to replicate itself by sending its binary image over the network to infect
remote systems.

44



4. Pattern-based Detection

Formalization:

Prepy(n, G) 1= 3p = (e1,€2,...) € pathsrom(n)e
G.\(n,type) = F AN G.\(e1l2, type) = P A ss(erla, n)A
G.\(eala, type) = S A G.\(e1, size) < G.\(eg, size).

Binary Infection (¢, 4) This pattern matches if there exist multiple flows (at
least two) from a process to executable binary files. To reduce false positives
an additional quantitative constraint is as follows. The amount of transferred
data to the benign executables must be at least as high as the amount of data
from the binary image of the process to the process; and the size of the target
binary files must be greater than 0. This to some extent ensures that at least
the size of the malware image is appended to already existing binaries.
Rationale: These data flows resemble malware activities that are targeted at
replication through infection of other program’s executables. This usually
happens when malware tries to append its own malicious code to other be-
nign binaries (as e.g. observed for Viruses like Parite).

Formalization:

Prepy(n, G) := {(e1,...) € pathsrom(n)]
G.\(n,type) = P A G \(erla, type) = F A ss(“.exe” eqla)A
G.\epls, size) >0} > 2

Download and Start Payload (¢.cp,) This pattern matches if there is a flow
from a socket node to a process node, a flow from this process to a exe-
cutable binary file node, a flow from this file node back to the process node,
and then a flow from this process node to a new process node with a sim-
ilar name as the file node. To increase detection specificity we increase the
additional quantitative constraint that all flows of this pattern must have the
same quantities, except for the first flow from the socket node that may also
be bigger due to additional meta- and network control data. This to some
extent ensures that at least the downloaded size of payload is propagated to
a binary file and then to a new malicious process.

Rationale: This data flow pattern subsumes malware behavior that targets
reloading and executing additional malicious payload from the internet (ob-
served for Droppers as e.g. used by the Conficker virus).

Formalization:

¢rep2(na G) =

dp = (e1,e2,€3,€4,...) € pathsfrom(n)e

G.A(n,type) = S A G.\erla, type) = P A G \(ealo, type) = FA
ss(“.exe” ealy) Nesla = ealy A G A(eqla, type) = PA

G.\(e1, size) > G.\(ez, size) = G.\(es3, size) = G.\(eq, size).

45



4. Pattern-based Detection

Manipulation Patterns This class of patterns contains certain flow patterns that
correlate with specific high-level semantics for activities that fall under the broad
category of manipulation of system integrity or data confidentiality. Such patterns
for example include activities that target leaking sensitive data to untrusted loca-
tions like the internet, modifications of the registry to e.g. add autostart entries, or
opening backdoors for further malicious activities.

* Leak Cached Internet Data (¢,,,1,) Whenever we detect a flow of data from

a dedicated internet cache file (in our prototype identified by the absolute file
path containing either “Cookies” or “Temporary Internet Files” as sub-string) to
a process that then sends data to a socket, this pattern matches. The speci-
ficity of this pattern is increased by demanding that the flow from the leaking
process to the remote socket node must be as least as big as the flow from the
cache file to the process.

Rationale: This pattern captures the data flow behavior of a malicious process
trying to steal potentially sensitive data like cookies from dedicated internet
cache folders by sending them to a remote network location (as e.g. observed
for various samples of the generic Infostealer malware family).
Formalization:

qupll(m G) :=3p = (e1,e2,...) € pathsfrom(n)e
G.\(n,type) = F AN G.\(e1!a, type) = PA
(ss(“Cookie”,n) Vv ss(“Temporary Internet Files”,n))A
G.\(eala, type) = S A G.\(eq, size) < G.\(ea, size).

Spawn Shell (¢.,;,1,) This pattern matches if a command line shell process
node (in Windows identified by the name of the process node containing the
sub-string “cmd.exe”) has an incoming or outgoing data flow connection to at
least one socket. For simplicity’s sake we currently only consider processes
with an indirect connection with a maximum distance of at maximum two
hops to a socket.

Rationale: This pattern describes data flows caused by malware trying to glue
a command shell to a listening socket to open a backdoor (as e.g. observed
for Backdoors like Autorun).

Formalization:

Pmply(n, G) :=3n’ € (pre(n) U suc(n))e
G \(n,type) = S AN G0/, type) = P A ss(“cmd.exe” ,n’).

Deploy System Driver (¢y,;1,) This pattern matches if we detect a flow be-
tween a process and a system driver binary, identified by its name contain-
ing the system driver extension “.sys”, followed by a flow from this system

46



4. Pattern-based Detection

driver file to one of Window’s driver loading utilities (in our current imple-
mentation we consider “wdreg.exe” and “sc.exe”). To increase the specificity
of this pattern we also demand that the flow from the potentially malicious
processes to the system driver file and from the file to the driver loading util-
ity node must be of the same size.

Rationale: Today, many sophisticated malware types make use of root kit
technology to take over full control of a compromised system and hide their
behavior from anti malware software. This pattern thus describes the data
flows that correlate with malware attempts to deploy and load malicious
system drivers to the Windows kernel to inject its root kit functionality (as
e.g. seen for the ZeroAccess root kit).

Formalization:

Preps(n, G) 1= Ip = (e1, e2,...) € pathsrom(n)e
G.\(n,type) = P AN G.\(e1la, type) = F A ss(“.sys”, e1la)A
G.\(eala, type) = P AN G \(eq, size) = G.\(ea, size)A
(ss(“wdreg.exe”, eala) V ss(“sc.exe” esla)).

4.1.2.2. Malware Detection

Having a set of malware-specific behavior patterns at hand, using them to classify
unknown samples, i.e. operationalize them for behavior-based malware detec-
tion, is comparably straight-forward and follows the procedure described in Sec-
tion 4.1.2:

1. Execute the to be analyzed sample in the malware sandbox and record the
API calls issued by all processes running in the monitored system for a de-
fined period of time.

2. Translate the captured API call traces into data flow events and then into a
QDFG.

3. Match the previously described detection patterns against the QDFG, i.e.
evaluate the function malicious on it as described in the following.

4. Evaluate the deviation between the quantitative data flows in the sub-graphs
that structurally matched the patterns and their quantitative constraints.

47



4. Pattern-based Detection

As mentioned before, in our current prototype for a sample to be considered
malicious at least one replication and one manipulation pattern has to match the
QDEFG that models its behavior, which is formally defined the malicious func-
tioned called with the to be classified QDFG G as argument returning 1:

L if Ekbrep € (I)rep 3¢mpl € (I)mpl E|¢qnt € (I)qnt L d Qbrep(na G) A gbmpl(na G)

malicious(n,G) = )
0 otherwise

As mentioned before, in operational contexts there sometimes is some inherent
noise added to buffers or files that has an effect on the sizes of the respectively
modeled nodes and flows. This typically is consequence of the fact that in real
system processes do not only exchange and interact with actual payload, but also
need to conduct some non payload-focused management and control flow opera-
tions like network protocol or file encoding task. If we recall that any system call
that has a data flow semantic contributes to the update of our system model, i.e.
QDEFGs, it becomes clear that such additional behavior can add noise to the sizes
of nodes and edges. If we for example think of a typical network context where
a process needs to conduct a series of protocol handshake actions that all lead to
some sort of data flow between the remote system and the process, a property that
imposes hard equality constraints on respective flows might be, from a semantic
perspective, wrongly prevent a pattern from matching.

To cater to this problem, our approach allow slight deviation from quantitative
constraints that originally demand hard equality. Depending on the acceptable
threshold we thus can effectively control, how restrictive the pattern matching
should be enforced, i.e. how much emphasis should be put on the additional quan-
titative constraints. Proper and suitable values for setting this threshold are then
governed by the concrete detection goals, i.e. if we want to put more emphasis on
achieving high detection rates or more on preventing false positive classifications.

4.1.3. Evaluation

In general, it is difficult to objectively assess the effectiveness of any behavior-
based malware detection technique. This is because experiment outcomes heavily
depend on chosen goodware and malware evaluation sets, malware activity dur-
ing behavior recording, and counter-analysis measures employed by the malware.

To shed light on the general feasibility of our concepts and to evaluate our proto-
type we thus conducted a proof-of-concept study based on a representative set of
goodware and malware. Within this study we investigated the effectiveness and
efficiency of our detection approach. In terms of effectiveness we mainly focused

48



4. Pattern-based Detection

on detection and false positive rates, where detection rate, i.e. true positive rate,
is defined as the fraction of correctly detected malware samples in all analyzed
malware samples, false positive rate by the ratio of gopodware samples, wrongly
classified as malware, within the entire set of analyzed goodware samples, and
accuracy, which is the faction of correctly classified samples within the overall
evaluation data set. In terms of efficiency we analyzed average time it took us to
classify QDFGs of different sizes.

4.1.3.1. Evaluation Setup

To foster the comparability between the different approaches and their contribu-
tions presented in this thesis we strived to consolidate the methodology, data sets,
and operational settings used for the respective evaluation experiments. There-
fore all experiments conducted to evaluate the different approaches made use of
the same or only slightly deviating evaluation setup.

Evaluation Data Set As data source for our populating the evaluation data set
of QDFGs used for our experiments we used about 7000 different known mali-
cious programs and about 500 different known benign applications. The malicious
program samples were taken from a subset of the Malicia malware data set, i.e.
all samples that were executable in the considered evaluation environment, that
comprises of real-world malware samples from more than 500 drive-by download
servers [100]. The respective malware set consists of samples from 18 malware
families, including popular ones like Zeus/Zbot, Spyeye, and Ramnit.

We decided to use this data set for various reasons. First of all it is publicly
available and thus can be used to replicate our experiments and to compare our
results with the performance of other approaches that use the same data set. Fur-
thermore, the malware samples were gathered using a semi-automated approach
to milk a wide range of malicious web site. With this approach a typical malware
infection entry vector via drive-by-downloads is replicated. We thus consider the
obtained set of malware a good snapshot of the real-world threat landscape at the
time where the malware samples were obtained, which allow us to some extent to
reason about the real-world utility of our detection concepts. Finally, the Malicia
data set already comes with labels that represent the joint detection and classifi-
cation results of other malware detection approaches. With this we get a credibly
source of ground truth to compare our classification results to.

Our goodware sample set was composed of popular applications that were
downloaded from www.download.com and a wide range of standard windows
programs, including popular email programs like ThunderBird, browsers like Fire-
Fox, video and graphics tools like Gimp, or VLC Player, and security software like
Avast.

49


www.download.com

4. Pattern-based Detection

With this we aimed at replicating a wide range of settings as they would typi-
cally occur in normal Windows desktop environments.

The exact composition of our evaluation data set is described in Appendix C.

To generate the QDFGs that model the behavior of the evaluation samples, we
then separately executed each sample in a clean virtual machine within the mal-
ware sandbox and recorded the induced system behavior for a period of 5 minutes.
With this we avoided collusion of malware behavior and ensured a comparable
evaluation baseline. To anticipate the fact that goodware usually is more reactive
than malware in that it typically reacts on certain user events, whereas malware
usually automatically conducts most of its behavior, we employed some simple
program stimulation means. To this end we used the standard program stimula-
tion module of Cuckoo [110] which features some very basic user input simulation
and e.g. randomly clicks on user controls, displayed by an executed binary. De-
spite its simplicity, this stimulation strategy was sufficient to yield behavior for
most of the executed samples that was rich enough for further processing.

Unfortunately we were not able to obtain a QDFG for all samples as some of
them did not execute properly within our evaluation environment. We account
this observed effect to compatibility issues between certain malware instances and
our execution environment which, without a deep understanding of the imple-
mentation details of the malware, can hardly be resolved externally.

The complexity of resulting QDFGs that then made up our evaluation data set
ranged between 44 and 1203 edges, with an average of about 500 edges and a stan-
dard deviation of about 250. Figure 4.3 depicts the respective cumulative distri-
bution function of the complexity of the QDFGs over all QDFGs in the evaluation
data set. As we can see, more than 70% of the QDFGs within the evaluation data
set have a size of less than 500 edges and only about 10% are of size 1000 or bigger.

Execution Environment For setting up our execution environment our main goal
was to replicate an operational setting that gets as close as possible to the de-
facto standard of user desktop PCs at the time this thesis was written. To this
end we configured the Cuckoo sandbox environment [110] that we used to exe-
cute and monitor malware and goodware samples to use virtual machines running
Windows 7 SP1 which, at the time this thesis was written, was the globally pre-
dominate operating system on the market with a market share of over 52% [130].
Each Cuckoo sandbox VirtualBox instance got assigned two 2,4GHz CPU cores
and 2GByte of RAM. The malware sandbox itself was then deployed on an Intel
Xeon server powered by 6 physical 2.4GHz cores and equipped with 128GByte of
RAM. The actual classification computations and evaluations of this approach fi-
nally were conducted on a Intel Xeon server powered by 16 physical 3.4GHz cores
and equipped with 128GByte of RAM.

50



4. Pattern-based Detection

100%
90% F/—f—
60% /
50% /J
40% /
30% /
20%
10% /

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
QDFG Size [#Edges]

QDFG Fraction [%]

Figure 4.3.: CDF of QDFG edge size

4.1.3.2. Effectiveness

On the QDFGs from our evaluation data set we conducted the analysis steps de-
scribed in Section 4.1.2, using the patterns described in Section 4.1.2.1 to classify
each QDFG into the categories malicious and benign. To get a baseline for later eval-
uating the impact of considering quantities on classification effectiveness, for our
first experiment we completely ignored the quantitative constraints of the patterns
for matching. For this we disabled the Quantity Analyzer component and directly
forwarded the Pattern Matcher results to the Decision Point to get a final classifica-
tion result irrespective of any constraints on the quantitative data flows tackled by
the patterns. The result of this experiment is depicted in the left part of Table 4.1.

As we can see from the results of this experiment, the detection effectiveness
with about 77% detection rate at 14% false positive rate is not overly good. Nev-
ertheless it shows, that we to some extent can leverage the introduced patterns
to do malware detection on QDFGs, which partially answers our initial research
question RQ1.

51



4. Pattern-based Detection

] H Non-quantitative \ Quantitative
Detection Rate 0.769 0.769
False Positive Rate 0.139 0.046

Table 4.1.: Effectiveness with and without quantitative constraints

Of course, the final goal of this work was to investigate if considering quanti-
tative data flow properties for the classification decision has a positive impact on
the overall detection precision.

To this end we conducted an additional set of experiments to specifically in-
vestigate the effect of the quantitative guard properties within the patterns on the
overall detection precision. To do so we again applied our approach on the evalu-
ation data set, but this time we only considered a pattern to match an evaluation
QDFEFG if also its quantitative guard properties were satisfied. To anticipate side-
effects and noise due to file encoding and network protocol overhead we step-wise
increased the tolerance level of the quantitative properties to also accept not per-
fectly equal data flows until the tolerance level reached a point where the detection
rate started to get compromised.

Comparing the results of the experiments with and without considered quan-
titative constraints we can see that by introducing quantitative flow properties to
the detection properties we can effectively cut the false positives by a factor of

3 ~ -39 for a targeted detection rate of about 77%.

These insights thus to some extent answer our initial research question RQ?2 in
that we could show that, at least for this approach, considering quantitative data
flow properties for classification indeed improved detection effectiveness. Note
again that this first detection approach was mainly designed to investigate the rel-
ative effectiveness impact of quantitative data flow properties and for this reason
was not optimized to yield an as high as possible absolute effectiveness. Naturally
the absolute detection effectiveness results of this first approach are thus not yet
optimal and, as we will see later, can be tremendously improved.

4.1.3.3. Efficiency

A crucial requirement for malware detection approaches is their efficiency as it
has a direct impact on the analysis throughput, i.e. the amount of samples that
can be analyzed during a specific time frame given a fixed set of computational
resources. Considering that anti-malware industry reports having to analyze tens
of thousands malware samples every day [112] it becomes clear that efficiency and
thus scalability is a major concern.

52



4. Pattern-based Detection

160

140

[
N
o

[
o
o

(2]
o

Classification Time [s]
-]
o

40

20

0 200 400 600 800 1000 1200
QDFG Size [#Edges]

Figure 4.4.: Absolute classification time vs. QDFG size

Figure 4.4 depicts the results of efficiency evaluation of our approach where we
for each QDFG in the evaluation data set measured the overall time it took to
classify it as malicious or benign. As we can see, the absolute classification time
seems to at least quadratically grow in the amount of edges. While for small- to
medium-sized QDFGs with less than 500 edges, which make up more than 70% of
the complete evaluation data set, the overall classification time only grew slowly
and at average remained below 6 seconds, to classify graphs with 500 edges or
more, the computation time rapidly increased. In sum, the complete classification
procedure at average could be conducted in under 23 seconds.

Further note that by construction our QDFT graphs typically only grow slowly
under normal usage because of the applied aggregation steps of our model, with
occasional peaks whenever new programs are started or new resources used. This
means that, although exponential with respect to graph size in general, in real-
world operational settings the maximum actual computational complexity is to
some extent bounded.

53



4. Pattern-based Detection

4.1.3.4. Discussion and Threats to Validity

Although using quantitative data flows as abstraction of malware activities, as
we will later see, raises the bar for malware to hide its presence through obfusca-
tion, advanced quantitative malware obfuscation or intentionally delayed behav-
ior might challenge our pattern-based detection concept. We will later discuss the
influence of such advanced behavior obfuscation attempts on the detection robust-
ness of our more advanced detection approaches. We furthermore acknowledge
the threat arising from the so-called base-rate fallacy [2] on the effectiveness of
malware detection approaches, including ours. According to this paradox, even
a relatively low false-positive rate of less than 5% can render an approach inef-
fective if malicious activities are considerably less frequent than benign ones. We
will counteract this threat by proposing more complex and robust matching ap-
proaches (see Chapter 5) that do not rely on fixed patterns and for which we show
that they are to some extent robust against certain types of behavior obfuscation.

In addition, the proposed approach is solely based on static data flow patterns
which only allows us to detect malware that has the specified behavioral charac-
teristics. Although we used a wide range of behavioral descriptions of different
malware families to derive our patterns, new malware could thus simply achieve
its goals in a way that we did not anticipate. To thwart this issue we in Section 4.2
will propose a more elaborate approach to mine characteristic behavior patterns
from a corpus of known malware to obtain larger, more diverse, and more specific
malware detection patterns.

4.1.4. Related Work

In the past decades, a plethora of work has been published in the broad area of
behavior-based malware detection [46] which we already reviewed in Section 2.2.

Since the proposed approach focuses on graph-based malware detection, we in
the following limit ourselves to review malware detection approaches that employ
some sort of graph model to represent malware behavior.

One of the main lines of research on malware detection using graph-based mod-
els bases on the analysis of dependencies and interrelationships between activities
like system call invocations of processes. After the extraction of characteristic call
dependencies of different knowingly malicious processes they can be used to re-
identify certain dependency patterns in unknown behavior graph samples in or-
der to discriminate between malicious and non-malicious processes.

This behavior-focused line of research can be roughly subdivided into the cat-
egories: approaches that are based on the derivation and later re-identification of
potentially malicious system-call-dependency (sub-)graphs [80, 54, 60], approaches
that infer high-level semantics for system-call-dependency graphs [37, 36, 116],

54



4. Pattern-based Detection

and approaches that tackle the data flow aspects of potentially malicious behavior
in terms of interaction with system resources [151, 54, 76, 84, 113, 114].

One of the first call-graph based approaches was proposed by Kolbitsch et al. [80]
who introduced the idea of deriving call-graphs from known malware samples
that represent dependencies between different runtime executions of system calls,
their arguments, and return values and using them as behavioral profiles for later
re-identification in unknown executables. This idea was later refined by clustering
and deriving near-optimal graphs to increase precision [54], or anticipate malware
metamorphism [85].

Although we also base on the construction and analysis of behavioral graphs,
we base our graph generations on quantitative data flows between system entities
rather than on dependencies between single system calls. As we showed in our
evaluation the incorporation of quantitative data flow properties in our graphs has
a significant impact on detection accuracy. Besides quantitative aspects we fur-
thermore differ from clustering approaches as presented by Park et. al. [113, 114]
in that we construct per-system rather than per-process data flow graphs which
widens the detection scope to inter-process behavior.

A seminal work of the third large pillar of behavioral malware detection was
presented by Christodorescu et al. [37]. The basic idea of these type of approaches
is to give high-level semantics to observed malware behavior. Rather than match-
ing behavior on a purely syntactic and structural level, these approaches try to
extract and re-identify characteristic behavior at a semantic level. Follow-up work
further enriched this idea with formal semantics for identified malware behav-
ior [116]. The semantic perspective of these approaches typically leads to better
resilience against more simple obfuscation like call re-ordering. This is because,
although resulting in mutations of call-graphs and thus challenging normal call-
graph based approaches, such obfuscation attempts do not change the semantic
dimension of the malware behavior and therefore cannot easily trick semantics-
based approaches.

The main commonality with this line of research is that we also base our analysis
on graphs and give high-level semantics for specific of malware behavior patterns.
However, in contrast to the aforementioned approaches we base the construction
of our behavior graphs on the analysis of data rather than control flows. As we will
later see, this abstraction increases the resilience against advanced obfuscation like
permutations between semantically equivalent functionality, which is usually not
given by such approaches [115, 6]. The data flow perspective, as abstraction from
control flows, furthermore reduces the set of sub-graphs or properties we need
to maintain in order to detect malicious activities, which has a positive impact
on detection efficiency. Intuitively, this is because one data flow property often
subsumes multiple control flow properties.

55



4. Pattern-based Detection

The last category of related work tackles the data flow or resource dependency
perspective of malicious behavior. One of the most prominent examples for this
family of approaches is the Panorama system of Yin et al. [151] that leverages dy-
namic data flow analysis for the detection of malicious activities. The basic idea
of Panorama is to profile data flow behavior of malicious processes through fine-
grained system-wide taint analysis and match it against manually specified data
flow properties. Similarly, our approach uses system-wide data flow graphs to
represent process and system behavior and match them against FOL data flow
invariants. However, we make use of quantitative flow aspects to increase invari-
ant specificity and thus detection precision. Moreover, we incorporate dedicated
graph aggregation, simplification, and abstraction steps which helps to keep data
structures lean and maintainable and employ a lean approximate data flow analy-
sis using a user mode system call monitor that at average imposes less than 20 %
overhead [146]. This results in comparably low performance overhead, especially
when compared to expensive taint-tracking approaches like Panorama that yield
performance overheads of up to 2000%. Furthermore, we mainly differ from data
dependency graph based work like the one presented by Lanzi et al. [84], Park et
al. [113, 114], and Elish et al. [47] in that we leverage quantitative data flow aspects
for our analysis and have a system- rather than a program-centric scope.

In sum, the main difference between our work and related contributions is that
to the best of our knowledge we are the first to leverage quantitative data flow
aspects for the behavior-based detection of malware which, as we showed, yields
increased detection accuracy.

4.1.5. Discussion and Conclusion

In this section we have proposed a novel approach to leverage quantitative data
flow analysis and graph analysis for the detection of malicious activities. Through
the specification of patterns in form of malware-specific quantitative data flow
patterns, we can then identify behavior that relate to the presence of malware.

To demonstrate the practicability of our generic system model, we presented
an exemplary instantiation for Microsoft Windows operating systems based on a
prototype that builds on top of a user-mode monitor, capturing process activities
in form of data flows induced by process calls to the Windows API.

Our evaluation on a large and diverse data set showed that our approach is able
to effectively discriminate between malware and goodware with a good detection
rate of up to 77% while maintaining a reasonably low false positive rate of less
than 5%, when using quantitative properties. The evaluation results also indicate
a fair efficiency with the average time to classify an unknown sample remaining
under 23 seconds.

56



4. Pattern-based Detection

In sum, with this approach we could give a first answer to our baseline research
questions RQ1, RQ2, and RQ3 in that we were able to show that QDFGs can be
used for behavior-based malware detection, that the consideration of quantities
improves detection precision by more than 300%, and that our detection approach
is reasonably fast.

Nevertheless, both, the detection effectiveness and efficiency is not optimal and
for instance still yields a rather high number of false positives that, depending on
the operational context, might be considered too high for real-world usage. This
approach is thus more meant as an initial prototype to show the general feasibility
of our basic detection concept. In the subsequent section we will extend it by
means of more complex pattern retrieval and matching functionality to further
improve effectiveness and efficiency.

57



4. Pattern-based Detection

4.2. Inductive Pattern-based Detection

Strategy

Deductive Inductive
Pattern-based : Pattern-based

Deductive Inductive
Metric-based : Metric-based

Baseline Concept

4.2.1. Introduction

In the last section we have seen that we can operationalize our QDFG-based sys-
tem behavior model for malware detection by specifying a set of patterns, i.e.
graphs, that can be associated to typical malware behavior. By scanning QDFGs
of to be classified samples for sub-graphs that are isomorphic to these patterns
we can effectively discriminate between likely malicious and benign behavior and
thus to some extent detect unknown malware. We further saw that by incorpo-
rating additional information about the specific quantitative data flow behavior of
the analyzed samples we could significantly boost detection effectiveness.

While the evaluation of our deductive pattern-based detection approach thus
already gave first answers to our main research questions RQ1 and RQ?2, the pro-
posed concept of using a fixed set of deductively defined detection patterns still
suffers from a couple of limitations when it comes to the real-world applicability
of the approach. First of all, the achieved detection effectiveness is still too low for
most operational settings; even when incorporating quantitative guard properties
the false positive rate remained above 4%.

More problematically is the fact that the deductive pattern-based approach en-
tirely relies on a comparably small fixed set of detection patterns, which makes it
vulnerable to changes in malware behavior.

58



4. Pattern-based Detection

If a malware author for instance would learn about the used detection patterns
he in theory could devise specific anti-analysis countermeasures and e.g. obscure
the behavior and quantitative data flow properties of a malware to prevent it
from matching the fixed detection patterns. This limits the generalizability and
adaptability of the deductive pattern-based detection approach. Finally, as we saw
in Section 4.1.3.3, the approach is comparably expensive in that it needs to perform
a costly full-fledged sub-graph isomorphism and quantitative conformance check
for every patter-QDFG combination which has a negative impact on its scalability.

To tackle these problems and explore the conceptual boundaries of pattern-
based detection using QDFGs we follow our principal research methodology and
propose an inductive extension of our pattern-based detection concept. The main
difference of this inductive extension to the basic deductive pattern-based ap-
proach is that we automatically extract highly discriminative behavior patterns
from corpus of QDFGs of known malicious and benign samples instead of manu-
ally defining a fixed set of patterns.

The most natural way of establishing such repositories of malicious behavior
patterns is to employ some sort of data mining on corpus of known malicious
and benign samples and look for recurring behavior that is more typical for the
analyzed malware samples than for the benign ones. Considering that we use
graphs, i.e. QDEFGs, so represent system and process behavior, this essentially
boils down to using graph mining algorithms for extracting characteristic behavior
patterns. As patterns in our context are (sub-)graphs, for the sake of brevity we in
the following use the terms pattern and sub-graph interchangeably.

Graph mining is a concept that traditionally is mainly used in bioinformatics
to e.g. find characteristic molecule properties or for protein prediction. The core
idea of graph mining is to determine interesting patterns that are shared by a large
portion of the mining data set. Interesting in this context refers to the capability
of the respective patterns to be able to effectively discriminating between different
types of graphs, e.g. different molecule or protein groups in the bioinformatics
domain or malicious or benign samples in our context.

So far, in the domain of malware detection, most approaches that make use of
graph mining determine the utility of a pattern mainly from a frequency point of
view [32, 66,91, 30, 111, 70, 93]. This is, the level of utility of a pattern is determined
depending on how often it appears in all analyzed malware samples, irrespective
of its semantics or structural properties. In consequence, so far, graph mining in
the context of behavior-based malware detection is mainly done using adoptions
of popular frequency-based algorithms like AGM [64], gFSG [82], or GSpan [150].

Recent results from experiments in the molecule (graph) mining domain how-
ever indicated that frequency-based mining in many cases yields significantly less
interesting and thus discriminative patterns than compression-based mining ap-
proaches [71].

59



4. Pattern-based Detection

Unlike frequency-based mining approaches that widely ignore the structure and
complexity of patterns for determining their utility (i.e. likely discriminative ca-
pabilities), compression-based mining approaches do consider the structural com-
plexity of a pattern candidate for determining its utility. Instead of only looking
at the pure number of overall occurrences of a pattern, compression-based mining
algorithms also consider the capability of the pattern to compress the graphs of the
mining set. This is, a pattern that compresses well, i.e. covers a large portion of
most graphs in the mining set, but overall occurs less frequently than another less-
complex pattern with more limited compression capabilities, might still be more
discriminative than the less complex but more frequent one.

To our knowledge, the utility of compression-based graph mining for malware
detection has not yet been investigated and we see good reason to believe that
the insights gained in the molecule mining domain also generalize to the malware
detection domain. This assumption is substantiated by the results we obtained
from a preliminary study where we applied a state of the art frequency-based
mining approach [150] on QDFGs obtained from a large body of malware samples.
The mined patterns, although in principle discriminative, almost entirely referred
to rather simplistic behavior like reading certain system libraries or writing spe-
cific registry keys. Using such simple patterns for malware detection is somewhat
problematic in that they a) likely are very sensitive to even slight changes in the
behavior of the profiled malware families, b) for the same reason comparably easy
to circumvent, and finally c¢) might miss important and more complex malware-
specific behavioral specificities like e.g. self-replication.

Following these reasoning we thus decided to interweave our basic deductive
pattern-based detection approach with advanced compression-based graph min-
ing functionality to replace the originally static and manually set of detection pat-
terns with automatically mined ones. To incorporate the quantitative information
encoded in our QDFGs into the mining process we furthermore propose a graph
compression concept that leverages quantitative data flow information for deter-
mining the utility of a pattern. Having already shown for the deductive pattern-
based approach that the incorporation of such quantitative properties can signif-
icantly improve detection accuracy (see Section 4.1.3.2) we expected the incorpo-
ration of quantitative data flow information into the graph mining process to also
improve detection accuracy.

In sum, the specific contributions of our inductive pattern-based approach can
be summarized as follows:

* To our best knowledge we are the first to use compression-based graph mining
for behavior-based malware detection using quantitative data flow information.

* We show that inductively obtained detection patterns outperform our de-
ductively specified ones in terms of resulting detection accuracy.

60



4. Pattern-based Detection

* We show that patterns obtained using a standard frequency-based mining
approach at average are less effective than the ones obtained from using our
customized compression-based mining approach.

* We show that considering quantitative data flow properties for determin-
ing the utility of a pattern yields more discriminative patterns than binding
pattern utility only to frequency and structural graph properties.

4.2.2. Preliminaries

Before diving into the technical details of our inductive pattern-based detection
approach we first want to provide the reader with a few background information
concerning the concept of graph mining which we deem necessary for the under-
standing of the remainder of this chapter.

Graph mining is a specialization of the more general concept of data mining.
Traditionally, data mining mainly focused on extracting rules and regular patterns
from unstructured or semi-structured data [141]. However, with the availability
of multi-core systems and advent of disciplines like bio-informatics the interest in
also extracting interesting patterns from structured data steadily increased in the
past years. Structuring data in form of graphs is very common in computer sci-
ence and has a very natural applicability to problems in chemistry, biology, and
medicine. Extending the concept of data mining to extract patterns from struc-
tured graph data thus recently received quite some attention. In comparison to
data mining on unstructured data, graph mining is a rather young domain with
the first dedicated algorithms having been proposed in the early 90’s [141]. We can
roughly categorize graph mining algorithms along two dimensions: approximate
vs. exhaustive and frequency- vs. compression-based.

In a nutshell, exhaustive graph mining algorithms evaluate all possible sub-
graph that can be build from a set of to be mined graphs to isolate the ones that
describe best the entire data set. This usually involves computing isomorphisms
between each pattern, i.e. sub-graph candidates, and each graph of the to be mined
set, which boils-down to the NP-complete sub-graph isomorphism problem [43].
Exhaustive graph mining algorithms, although by construction being ensured to
find the optimal discriminative patterns, thus usually suffer from bad scalability
and are very expensive to be run on huge and complex data sets.

Approximate or greedy graph mining algorithms in contrast try to avoid hav-
ing to evaluate the entire search space and usually do not check all possible sub-
graphs for being possibly interesting patterns. Instead, such approaches typically
incorporate domain knowledge or structural heuristics into the search process to
early prune parts of the search space that are unlikely to yield interesting patterns
and thus reduce the numbers of necessary sub-graph isomorphism calculations.

61



4. Pattern-based Detection

As consequence of this heuristic reduction of the search space, greedy algorithms
can not guarantee to provide optimal results in that they might miss potentially
discriminative patterns from parts of the pruned search space.

The common goal of all data mining algorithms is to find “interesting” patterns
in the training data; in the context of graph mining this relates to finding inter-
esting sub-graphs in a set of training graphs. The concrete interpretation of the
notion of interestingness, or utility, of a pattern being interesting heavily depends
on the used mining algorithm. Frequency-based graph mining algorithms like
GSpan [150] or AGM [64] bind the level of utility of a pattern solely on how of-
ten it occurs within the training data, also called the the frequency or support of a
pattern. The complexity or other properties of the patterns themselves are usually
not considered by frequency-based mining approaches.

Compression-based mining approaches like Subdue [71] or GBI [94] in contrast,
while typically also considering pattern frequency, in addition take the structural
complexity of a pattern into account for utility assessment. This is usually done by
evaluating the factor of graph compression that can be achieved when condensing
all isomorphic sub-graphs into one single node. The resulting compression factor,
typically determined by the ratio between the complexity of the uncompressed
and the compressed graph, then determines the pattern’s utility. Correspondingly,
a compression-based graph mining algorithm thus might sometimes favor a less-
frequent but compressive pattern over a more frequently occurring one. Recent
work in the domain of molecule mining indicates that correspondingly obtained
pattern can be of higher interest than those extracted with purely frequency-based
methods [71].

For the inductive extension of our pattern-based detection approach we thus
adopted a greedy compression-based graph mining algorithm [71] which we ex-
pected to provide a good trade-off between effectiveness, i.e. yield highly discrim-
inative patterns, and efficiency, in that it incorporates domain knowledge and ad-
vanced candidate selection to aggressively prune the to be evaluated search space.

62



4. Pattern-based Detection

4.2.3. Approach

Now that we have laid the conceptual foundations underlying our inductive pattern-
based approach we are now set to discuss its technical specificities.

Being an extension to the previously introduced deductive pattern-based ap-
proach the inductive approach, at least for the initial steps, follows the same data
processing procedure. The main differences to the initial deductive pattern-based
concepts are: i) we incorporate a graph mining approach to extract arbitrary com-
plex and large sets of highly discriminative detection patterns, ii) we substitute the
simple rule-based matching and detection procedure of the deductive approach
with a machine learning based matching concept that is capable of identifying
complex relationships between different detection patterns, and iii) we perform
the mining and matching on complexity-reduced process-centric reachability graphs
instead of using the full QDFGs, which has a positive impact on efficiency.

In essence, the inductive extension of our pattern-based detection approach fol-
lows a classical data mining, or more general, soft computing rationale. Like for
most behavior-based malware detection approaches, our core assumption is that
we can detect new malware based on behavioral similarities to already known
malware samples. More precisely, we use a graph mining algorithm to extract
characteristic behavioral patterns from known malware QDFGs to define detec-
tion patterns that are capable of discriminating unknown malware and goodware
with high accuracy. The inductive extension of the pattern-based approach thus in
essence consist of the following steps:

3.1) Data Retrieval: To generate the input data for the mining step we use the same
analysis infrastructure as our deductive pattern-based approach (see Sec-
tion 4.1.2). However, instead of directly using the full obtained system be-
havior QDFGs for mining, we first prune them from all behavior that is not
directly or indirectly related to the to be classified samples. This is, instead of
using the full QDFGs we use the sub-graphs that we obtain from performing
a graph reachability analysis on them and only maintain nodes and edges
that are directly or indirectly reachable from the process node that relates to
the analyzed malware or goodware sample.

3.2) Pattern Mining: On the obtained QDFGs we then run a compression-based
graph mining approach to extract characteristic patterns, i.e. sub-graphs of
known malicious QDFGs. The goal of this step is to establish a repository of
graph patterns that capture the essence of the behavior of known malware
that, following our baseline assumption, we expect to also appear in un-
known malware with a high likelihood. The mined patterns then establish
the basis for all subsequent training and detection steps.

63



4. Pattern-based Detection

A) Malware
Sandbox
I Raw Syscalls
B) Event _Da.tai"’“fs> agaore | 9PFS | [Tp)patter
Parser Builder Miner
| Patterns
Classifier
| Pattern
Training Testing o Repository
Features Features | \I_/
Classification Matches v + Patterns
F) Feature 4_ . __| E)Pattern ‘ N
Generator Matcher

Figure 4.5.: High-level architecture

3.3) Pattern Matching (3.3.1) and Classifier Training (3.3.2): As individual patterns
in themselves most likely are not discriminative enough to accurately differ-
entiate between goodware and malware, we then introduce a second learn-
ing step. For this we again match the mined patterns on the training set and
record which patterns matched on which malware and goodware graphs.
Using this information we then train a supervised classifier to infer complex
relationships between a graph matching certain patterns and it being mali-
cious or benign.

3.4) Detection: The actual classification of unknown samples is then done by
again matching the mined patterns against the sample’s process-centric reach-
ability graph and then passing the obtained matching information to the
trained classifier. Based on the similarity of the unknown sample’s matching
profile with matching profiles of the known goodware and malware sam-
ples from the training set, the classifier then classifies the unknown sample
as benign or likely malicious.

Figure 4.5 depicts a high-level overview of the architecture of our approach, i.e.
the conceptual components that realize the aforementioned training and detection
steps. The solid arrows in the figure mark training activities, the dotted arrows
refer to those that are only relevant for detection, and the semi-dotted lines denote
activities that are relevant for training and detection.

In the following we will elaborate on the different steps in more detail and as-
sociate them with the respective architectural components.

64



4. Pattern-based Detection

€|\ nEl €3 :

0o - —

% £ .# £ p1|p2|p3| M/G £

s 2 aa1|x|o|o| @ ||¥%

Q

@ B L J & g

q6? & 62 3 ass|o|x|x| @3

N = N

(2] m (3]

P3 P o

M . QG3

Training Mined Training Training Trained
QDFGs Patterns QDFGs Features Classifier

Figure 4.6.: High-level overview of complete training procedure

4.2.3.1. Data Retrieval

As mentioned before, the data retrieval process of the inductive pattern-based ap-
proach in wide parts resembles the one of our deductive pattern-based approach
in that we use the same Malware Sandbox (Component A) and Event Parser ((Com-
ponent B)) to generate the baseline QDFGs. However, different to the deductive
pattern-based approach we for performance reasons do not use the full system
behavior QDFGs for training and detection but rather introduce an additional fil-
tering step into the the QDFG building step (Component C). This step filters out
all behavior, i.e. respective edges and nodes, that are not directly or indirectly as-
sociated to the main malware or goodware process corresponding. The obtained
process-centric reachability QDFGs then build the data basis for all subsequent
mining, training, and detection steps.

4.2.3.2. Pattern Mining

Having a sufficiently large set of QDFGs that relate to known malicious and be-
nign samples at hand, we are set to conduct the actual learning part. An overview
of the complete learning procedure of the inductive pattern-based approach is de-
picted in Figure 4.6 and consists of a Pattern Mining, a Pattern Matching or Feature
Generation, and a Classifier Training phase.

The first learning phase has the goal of extracting interesting patterns from the
body generated malware QDFGs. As we want to use these patterns to later detect
unknown malware, “interesting” in our context refers to how malware-specific a
pattern is in the sense of it more likely capturing characteristic malware behavior
than benign one. Subsequently we refer to this interpretation of a pattern being
considered interesting whenever we talk about pattern utility.

65



4. Pattern-based Detection

We will later concretize this notion of pattern utility in Section 4.2.3.2 and Sec-
tion 4.2.3.2 when we introduce the idea of graph compression.

As we capture and abstract from low-level behavior using QDFGs, the most
natural way of obtaining the demanded highly characteristic patterns is to employ
some sort of supervised graph mining algorithm on the labeled training data that
we obtained in the previous step.

Most related malware detection and classification approaches that leverage graph
mining on some soft of behavioral model do so following a frequency-focused ra-
tionale [36, 32, 66, 91, 30, 111, 70, 93]. This is, the utility of a pattern is determined
by how frequent it appears in the training malware set and how seldom it appears
in the goodware set. Properties of the pattern itself like e.g. its structural complex-
ity in most cases are either completely ignored for the computation of the pattern’s
utility or only play a subordinate role.

While occurrence frequency for sure is a useful and important property to de-
termine the utility of a pattern, we argue that by ignoring or at least not equally
considering the structural aspects of the patterns themselves one does not make
use of a lot of interesting information that might lead to extraction of even more
interesting patterns. This insight is backed by results of experiments conducted
in the context of molecule mining [71] that essentially indicate that frequent pat-
terns are not necessarily also very interesting. More precisely, a few slightly less
frequent but more complex patterns might be more interesting than many very
frequently occurring but less complex ones.

We hypothesize that this also might hold for graph patterns in the context of
malware detection. If we recall the basic operation principle of frequency-based
mining algorithms like e.g. GSpan [150] typically operate (see Section 4.2.2) and
consider that most malware for instance loads similar libraries or manipulate the
same registry keys to e.g. ensure persistent execution, it becomes clear that em-
ploying frequency-based mining on malware behavior graphs likely yields very
simple behavior patterns which might be too specific and too easy to circumvent.

Also, the pattern complexity intuitively has a direct impact on the computation-
ally effort needed to conduct all possible isomorphism checks on sub-graphs of
the QDFG. To see why, we consult the example depicted in Figure 4.7. Here the
pattern P2 consists of one black and two white nodes, connected by three edges.
Looking at all possible sub-graphs of QG4 we directly see that there exists only
one 3-node sub-graph that has the same number of nodes of the required type as
the pattern P2, which is a necessary pre-condition for node-induced colored sub-
graph isomorphism. In this case we thus only need to conduct one isomorphism
check to be sure whether and how often P2 is contained in QG4. If P2 would be
less complex and for instance only consist of one black and one white node con-
nected by one edge, there would be at least 6 sub-graphs of QG4 with the same
node count and type as P2 that thus potentially could match P2.

66



4. Pattern-based Detection

QG4 QG4|P2

Figure 4.7.: Example: Graph QG4 compressed by pattern P2.

In this case we would thus need to perform six isomorphism checks instead of
only one with a likely negative effect on the overall detection costs.

Although this example of course does not generalize to all possible matching
scenarios and the mentioned scaling effect highly depends on the structure of the
mined patterns and the to be evaluated graph, it nevertheless motivates the utility
of pattern-centric graph compression to early prune the search space from patterns
of likely little relevance. Moreover, as we will later see, this early pruning of the
search space tremendously improves efficiency as it reduces the number of to be
conducted expensive sub-graph isomorphism checks.

For this reason, the Pattern Miner (Component D) that conducts the pattern min-
ing step of our approach implements a compression-based graph mining algo-
rithm instead of a frequency-based one. More precisely, we implemented a variant
of the Subdue graph mining algorithm proposed in [42] which we customized to
our needs and whose details we will elaborate on in the following.

Unlike exhaustive frequency-based algorithms that scan the entire search space
for pattern evaluation, Subdue is an approximate algorithm in that it only con-
siders those parts of the pattern search space that are likely to yield interesting
patterns. By construction such approximate algorithms in most cases are faster
than approximate ones but might miss some patterns. The choice for using an ap-
proximate algorithm thus introduces some indeterminism to the training process.
However, as we will later show in Section 4.2.4, this choice is well justified as it
yields superior effectiveness with very competitive efficiency.

For brevity’s sake we in the following use the terms positive examples (T'*) to
refer to the malware QDFGs in our training data set and negative examples (T~) to
refer to goodware training QDFGs. In the following we describe the details of the
mining process as well as the scoring functions used for assessing pattern utility,
following the algorithm sketched in Listing 1.

67



4. Pattern-based Detection

Algorithm 1 Abstracted Mining Algorithm

procedure MINEPATTERNS
PCy«+ 0;i<+0
foreacht"in 7" do
PCy + (({init_node(t™)},0,G.A,G.\),0)
while i < k do
PCi_H — PC,J
for each p in PC; do
p’ « extend(p)
PCit1 <+ PCii U{(p', S("))}
PCit1 + [PCit1],
1+ 1+1
return P

Node selection To determine the set of most interesting patterns within the the
malware part of our training set we first have to make a suitable choice for defin-
ing the root nodes of the prospective sub-graph candidates. As we want to mine
process-centric detection patterns, the first step of the mining algorithm is thus to
determine all process nodes of the malware QDFGs in the training set. Recall that
in our data flow model process nodes refer to the monitored processes of a sys-
tem, including the processes that loaded the executed malicious binaries together
with their descendants. As these process nodes refer to the only active entities in
a system, and we identify malware based on observed behavior, it is reasonable
to initialize prospective sub-graph candidates with process nodes as root nodes.
Furthermore, we focus the sub-graph mining to first consider the direct proximity
of the process nodes that loaded the initial malicious binaries, that is we restrict
the set of initial pattern nodes to the set of all initial processes in the entire training
set. In our training data set we respectively mark all process nodes that loaded the
analyzed malicious binaries with a special \(n, init) property.

The initial set of pattern candidates PCy = G x R is thus determined by creating
one singleton pattern per initial process node in the set of all malicious training
QDEFGs T". We index the pattern candidate sets PC,, to denote the corresponding
algorithm iteration it was generated in. As each pattern in the candidate set will
later be assessed regarding its overall discrimination utility, each element of the
set PC is a tuple of a pattern and its utility score.

1.0) = ({n € G.NY,0,G.A,G.N),0)|

PCy = U {( < 7
e G.\(n,type) = Process A G.\(n,init)}

68



4. Pattern-based Detection

Now that we have established an initial population of pattern candidates that
only contain one process node and no edges yet, we are set to enter the pattern
evaluation and evolution loop. Let us reiterate that each pattern p € PCj consists
of an initial process node that usually exists multiple times in the training data set,
but usually their neighborhoods in the different QDFGs might (and usually does)
differ. After some preliminary evaluations on smaller data sets we further decided
to only use the 1%, with respect to the subsequently discussed scoring functions
best-performing initial process nodes to seed the initial pattern candidates to fur-
ther improve mining efficiency.

As reasoning about the compression capabilities of one-node-patterns does not
make much sense (see Section 4.2.3.2 and Section 4.2.3.2), we needed to come up
with an auxiliary way of determining the utility of the initial pattern candidates.
To determine the utility of those singleton-patterns we, depending on the subse-
quently used pattern scoring function, thus either considered the size of the di-
rectly connected edges of the respective process nodes or their edge degree, which
then defines the initial utility of the respective patterns in PC.

After having defined the initial set of pattern candidates we then extend them
in each possible direction by adding an additional node and edge from their re-
spective neighborhood in the training QDFGs. This yields a new set of extended
pattern candidates that then together form the scored pattern candidate set PC; of
the respective algorithm iteration ¢. We then filter the pattern set of all duplicates
and condense all isomorphic patterns into one surrogate pattern.

At this point, the consideration of pattern candidate structure comes into play.
A purely frequency-based mining algorithm would now determine the value of a
pattern only based on how often it appears in the positive training graphs (and
does not appear in the negative examples). In contrast, our pattern utility as-
sessment strategy considers both, the relative frequency and structure of a can-
didate pattern. This is, for each pattern candidate p € G we determine the pat-
tern’s utility through a scoring function S that computes the pattern’s utility as
real number (p, S(p)) € PC;. We consider two different pattern scoring functions
S = Supr U Supc. The Minimum Description Length (MDL) scoring function
Swupr is the standard scoring function of the original Subdue algorithm and con-
siders both, the frequency a pattern occurs within the training data set and the
complexity of the pattern. The Maximum Data Compression (MDC) scoring func-
tion Syrpc catches up the same basic idea of considering structural properties to
determine pattern utility but further extends it by also considering quantitative
data flow properties encoded in the QDFGs. We will discuss the details of those
scoring functions in Section 4.2.3.2 and Section 4.2.3.2.

After having evaluated the utility of each pattern candidate on the entire train-
ing set we sort the resulting pattern candidate set w.r.t. the pattern scores in de-
scending order and only retain the n best patterns for the next iteration.

69



4. Pattern-based Detection

As we thus only consider the n best-performing patterns of a pattern set PC; for
computing the patterns set PC;; of the next iteration, we essentially perform a
heuristic beam search, where n is the size of the search buffer. By construction we
thus only follow the best-performing extension branches of the initial singleton-
node patterns which tremendously cuts down the algorithm’s search space.

This process is then repeated until a defined maximum pattern complexity k
is reached. As a pattern is extended by an edge in each iteration, the maximum
number of iterations to be conducted directly limits the maximum allowed pattern
complexity. In the end, after termination, the algorithm only returns the n glob-
ally best-performing patterns. Note that the members of the final pattern set can
be of different complexity as in some situations simple patterns can outperform
more complex ones and vice versa. Finally, after termination of the mining algo-
rithm, the Pattern Miner (Component D) dumps the final set of scored patterns to
the Pattern Repository for the use by subsequent training and detection steps.

To speed up the computation of the pattern expansion and evaluation step we
could easily distribute the expansion of the different initial singleton pattern in-
stances among different physical processes. As expansion and evaluation of the
different instances are independent of each other we can thus almost arbitrarily
parallelize the algorithm, even among different machines in a cloud or grid set-
ting. For this, the pattern miner component spawns a new process for each initial
singleton pattern instance and continues to expand it.

After all expansions have finished, the main component of the pattern miner
simply combines the results of all processes and filters out the duplicates. Even
though there might be an overlap between pattern candidates in different pro-
cesses during the expansion, we have found out that it is less computationally ex-
pensive to remove the duplicates at the end rather than running more complex
process synchronization mechanisms that avoid redundant pattern exploration
(such as those suggested by original Subdue authors [56]). Using this distribu-
tion paradigm, the parallelization of the mining approach in principle is thus only
constrained by the number of considered initial singleton pattern instances and
available computing resources. Still, independent of the employed scoring func-
tion and parallelization, determining the utility of a pattern candidate implies to
evaluate its occurrence within the positive and negative training graphs.

Checking the presence of a pattern p = (IV, E, A, \) € G in a training QDFG
G = (N',E',A',X) € G boils down to the node-induced sub-graph isomorphism
problem. This is, a pattern p is sub-graph isomorphic to G, i.e. p = G, iff:

1. there exists a sub-graph g of G, i.e. ¢ C G, with:

° Elg — (N”,E”,A”,)\”) c g
° Nl/ g N/

70



4. Pattern-based Detection

° E/l g (Elm (N/l X N//))
e N C N

2. and pis isomorphicto g,i.e. p = g, i.e.

e Jf: N — N with f being bijective

o an,ng e N": (nl,ng) ekl
= (f(m), f(n2)) € E"

e VYne N,Vae A: ANn,a) =A(f(n),a)

Using this definition we introduce the function sg : G x G — 29 that returns all
sub-graphs g of G that are isomorphic to a pattern p, i.e. sg(p,G) = {9 C G|p = ¢}.

Conducting sub-graph isomorphism calculations is the computationally most
expensive step in our approach as the underlying problem is known to be NP-
complete [43]. In fact, the average-case computational complexity of the employed
VE2 algorithm for computing the sub-graph isomorphism between a given pat-
tern candidate and training graph is only quadratic in the maximum complexity
of the training graph and the pattern candidate [43]. Unfortunately, the pattern
expansion in all possible directions, at least in theory, demands that we check
the sub-graph isomorphism relation for each possible pattern-candidate training-
graph pair. The overall theoretical worst-case computational effort for one entire
mining run thus unfortunately is exponential in the number of expansion itera-
tions, i.e. is in O(v? - (|T*| + |T~|) - |PCy|*) with v being the number of nodes of
the most complex training graph, i.e. v = maz({||g.N|| Vg € T'}).

In reality, it is not possible extend each pattern candidate to an arbitrary depth.
Therefore, the exponential factor in reality is rather ¢* with ¢ < |PCy|. Fortunately,
the maximum number of expansions k is constant and usually chosen rather small,
which further reduces the average case complexity. While we have little influence
on the maximum training graph complexity v, we can further cut down the overall
complexity of the algorithm by only considering a smaller sub-set of the entire
training data set for determining the pattern scores. To this end we introduce the
approximation ratio o, which describes the fraction of training graphs that are
considered for the isomorphism checks. Each time we need to evaluate the utility
of a pattern, i.e. we need to calculate the isomorphic sub-graphs in the training set
T =T+ UT~,weonly consider a randomly determined sub-set of size o - |T'|.

By sub-sampling the training set and thus not considering all training graphs for
assessing the utility of a pattern we certainly compromise generalizability of the
respectively computed pattern scores and thus might wrongly prune potentially
interesting pattern candidates.

71



4. Pattern-based Detection

However, our preliminary evaluations revealed that a not too aggressive down-
sampling of the training set barely affects the overall detection accuracy but sig-
nificantly improves mining efficiency. We explain this by most malware samples
from the same family behaving fairly similar. Down-sampling a big enough train-
ing data with a fairly uniform distribution of malware families thus mainly re-
moves redundant behavior, resulting in little effect on the respectively computed
pattern utility scores.

After having discussed the main steps of our mining phase we now will elabo-
rate on the details of the scoring function, i.e. pattern utility computation.

Minimum Description Length (MDL) In the context of compression-based graph
mining scoring functions are used to express the utility of a pattern in terms of de-
scribing well a bigger set of graphs. This is, a scoring function assigns a concrete
semantics to the notion of a pattern “describing well” a graph data set.

The standard scoring function of the employed subdue mining algorithm is
called Minimum Description Length (MDL). The basic idea behind MDL goes back
to the work of Rissanen [120] who, in essence, postulated that the optimal de-
scription for a set of data items is the one that encompasses as many and complex
commonalities within the data set as possible. This is, a optimal description com-
presses the data set as good as possible.

Applied to graph mining this means that a pattern is interesting, i.e. describes
well a set of graphs, if by removing it from each training graph (i.e. removing all
isomorphic sub-graphs) the cumulative complexity of the graph set is reduced. If
we encode the structure of a graph in bits, a good pattern hence compresses the
full graph set so that its encoding after compression needs less bits than before.

An, with respect to a set of graphs G optimal pattern p thus minimizes the term
> gec DL(p)+ DL(g|p), where g|p denotes the graph we obtain when compressing
g with p, and DL is a function to encode the structure of a graph (e.g. its edges
and nodes) in bits. DL is defined as: DL(g) = DLn(g) + DLg(g), with DLy(g)
being the number of bits required to encode the nodes and node labels of a QDFG
g, and DLg(g) the number of bits needed to represent the node interconnections.

Compressing a graph G with a pattern p is then defined by:

Glp =((G.N\ Napp) U {n’ ¢ G.N}, (G.E\ Eayp)
U{(n1,n")|V(n1,n2) € G.E :ny ¢ Ng|p} Ang € Ngip
U{(n',n2)|¥(n1,n2) € G.E : ny ¢ Ngyp } A1 € Ngyp,
G.AGN)
with Ngp, = () ¢ NandEg,= |J ¢F

g'€sg(p,G) g'€sg(p,G)

72



4. Pattern-based Detection

The actual binary encoding of the nodes of a QDFG G and their connection via
edges is then done as follows:

e DLN(G) = |G.N| xlogy |G.N| + |G.N| x (logy |G.A| + logy |codom(G.)\)|) en-
codes the set of nodes N of GG and their respective labeling functions.

* DLE(GQ) = Y ccq.r(2 * logy |G.N|) encodes the edges of a QDFG as list of
tuples of node references. As for the node-induced sub-graph isomorphism
check we do not use edge labels we do not need to encode them.

The actual graph compression is then done by replacing all instances of a pattern
pin g, i.e. all to p isomorphic sub-graphs in g, with a single node while retaining
the original edges. A simple graph compression example is depicted in 4.7.

Finally, for calculating the actual score of a pattern we do not only to consider its
compression capabilities on the positives graph samples but also its compression
effect on the negative examples. A good pattern in this sense should thus highly
compress the positive examples while barely or not at all compressing the negative
ones. The final MDL scoring function is thus defined by:

>, DL(g")+ > DL(g")

Supr(p) = grert o T
DLG)+ 5. DLigp+ 5 (DLly )~ DL )

Maximum Data Compression (MDC) The MDL scoring function already allows
us to consider more of the information contained in the training QDFGs set for
mining than a purely frequency-based mining approach would do. Still we did
not yet make use of all potentially discriminatory aspects embodied in the training
QDEFGs, i.e. we did not yet use the quantitative data flow aspects of the QDFGs.
Following the main hypothesis of this thesis of this quantitative information po-
tentially yielding leading to better detection accuracy, we thus came up with an
extension of the originally only structural notion of compression to also consider
the quantitative data flow information encoded in the training QDFGs.

To this end we propose the Maximum Data Compression (MDC) pattern scoring
function. MDC like MDL does consider both, pattern frequency and pattern com-
plexity. However, unlike MDL that only considers the structural complexity of a
pattern to assess its utility, MDC also considers the cumulative data flow complex-
ity of a pattern candidate. This is, instead of measuring how many edges (and
nodes) get removed by compressing the training graphs by a pattern candidate,
we measure how much data flows get compressed by removing those edges.

73



4. Pattern-based Detection

More precisely, we calculate how big the fraction of the total amount of data
flows associated to the edges removed by compressing a training QDFG with a
pattern candidate is with respect to the total amount of data of all edges of the
uncompressed graph.

The MDC score of a pattern Sy/pc(p) thus calculates the relative amount of
data that is encompassed by the edges removed from a all training graphs when
removing all sub-graphs from them that are isomorphic to the pattern. To this end
we introduce the function QC(p, g) that returns the fraction of data flows that is
removed by compressing a QDFG ¢ with a pattern p, formally defined by:

_ DeeqB\(glp).E 9N (€ si2€)
Yecq.r 9\ e, size)

QC(p,9)

Assigning a positive score to patterns that data-wise compress well the posi-
tive examples and penalizing the data-wise compression of negative examples,
the complete MDC scoring function is thus defined by:

Supc(p) = Y, QC(tY,9)— > QC(t,9)

tteTt tteT—

In sum, the inductive pattern-based mining approach features two distinct scor-
ing functions to assess the utility of mined pattern candidates. The Sy;pr, scoring
function only considers the structural complexity of a pattern candidate to eval-
uate its expected utility, whereas the Sy;pc scoring function also considers its in-
herent data flow complexity.

4.2.3.3. Pattern Matching and Classifier Training

Now that we have established a base of discriminative malware behavior patterns
we in theory could directly use them for the classification of unknown samples
and, like the deductive pattern-based approach, flag a sample as being malicious,
if it contains one or more of the mined malware patterns. However, at this point we
have to again recall how these patterns were generated. As we use soft-computing
algorithms, i.e. a graph mining algorithm, and several approximation and prun-
ing steps we can not be entirely sure that the mined patterns in themselves are
discriminative enough. This in particular means that there is for instance a non
negligible risk of the mined malware patterns also appearing in goodware sam-
ples which, following such a naive detection strategy, would likely lead to high
amounts of false positive classifications.

74



4. Pattern-based Detection

Figure 4.8.: Example for matching procedure.

This observations, together with the insights gained from evaluating the compa-
rably simple matching strategy of our deductive pattern-based approach, suggests
that implementing a naive pattern matching strategy that only looks for the exis-
tence of a malware pattern in unknown samples likely would yield sub-optimal
detection accuracy.

To this end we introduce a second learning phase to our approach that antici-
pates the potential presence of malware patterns in goodware. The core idea of
this second learning phase is to train a classifier on the information obtained from
matching the mined malware patterns on all malware and goodware graphs from
the training set. By this the classifier can learn more complex dependencies be-
tween the occurrence of different patterns in the graph’s being malicious or be-
nign. This to some extent compensates the issue that the mined patterns do not
necessarily only appear in malware QDFGs. In the following we elaborate on the
pattern matching step that yields the feature on whose basis we then train a super-
vised machine learning classifier in the classifier training step.

Pattern Matching The mined patterns together with their assessed utility so far
only give us an aggregated view on the distribution of occurrences on the different
malware and goodware samples in the training graphs. Unfortunately, in order
to build more complex detection models that relate the occurrence of different
patterns in QDFGs to their respective class we need more precise pattern matching
information. To this end we thus again evaluate all mined patterns on all (positive
and negative) examples in the training set. This is done by the Pattern Matcher
(Component E) that for each training graph searches for all sub-graphs that are
isomorphic to the mined patterns.

75



4. Pattern-based Detection

More precisely, the pattern matcher provides us with a mapping between the
mined patterns and the respective isomorphic sub-graphs in the training graphs.
The matching results then allow us to for each pattern training-graph pair record
a) how many sub-graphs in the training example where isomorphic to the pattern
(Frequency Match), and b) which fraction of the overall data flows captured by the
training graph can be “compressed” by removing all matching sub-graphs from it
(Compression Match).

The matching information is then generated by conducting sub-graph isomor-
phism checks between all patterns p € PC}, and all training graphs g € T and then
evaluating the following functions M := Mp U M¢ on the results:

» Frequency Match: Mrg(p,g) = |sg(p, 9)|
e Compression Match: Mc(p,g) = QC(p, g)

While the frequency match function is meant to be used in conjunction with pat-
terns that were mined using GSpan and MDL, the (quantitative data) compression
matching is the natural dual to the MDC scoring function.

Figure 4.8 depicts the outcome of the two matching functions when evaluating
three different patterns on a simple training graph. As we can see from the exam-
ple, the scoring functions applied on the same matching scenario do not necessar-
ily always concur in the distribution of weights of the different matched pattern.
While the frequency matching in this simple example considers the pattern P2 the
most important one and thus assigns it the highest value in the result row, the
compression matching function considers P3 to be the most important pattern.
This means that in fact classifiers trained using different matching functions can
come to different classification conclusion when facing an unknown sample.

Classifier Training After having matched all mined patterns on the positive and
negative training graphs we now have all ingredients for training a supervised ma-
chine learning classifier. For this we organize the matching information obtained
in the previous step in a training feature matrix, which is done by the Feature Gen-
erator (Component F). Each column of this table captures the matching information
for one graph ¢; of from the training set 7. Each element of the column thus is
obtained by evaluating one of the previously mentioned matching functions for
one specific pattern p; from the final mined pattern set PCy. As we our training
set is labeled in the sense of each training QDFG representing the behavior of one
known malware or goodware sample we can label the each feature vector with the
class (benign vs. malicious) of the respective training graph.

76



4. Pattern-based Detection

The training data generation function is then defined by:

M(pi,t1) -+ M(pg,t1) class(t1)
gen(PCy,T) := : : :
M(pl, t|T|) ce M(pk, t|T\) class(t‘T‘)

On the so obtained training data we then finally train a standard supervised ma-
chine learning classifier. Preliminary evaluations on training data obtained from
smaller training sets with different supervised machine learning algorithms in-
dicated that meta learners using decision trees, i.e. RandomForest [18] or Extra-
Trees [58] yielded particular good and stable classification results. We thus chose
to use a standard RandomForest algorithm as classifier for our approach.

In sum, the final classification model thus consists of the trained classifier along
with the set of detection patterns that were used for training.

To give an idea on how a respectively trained classifier in principle looks like,
Figure 4.9 depicts an example of a classification model that we obtain from us-
ing a simple decision tree algorithm for training. Note that this is a deliberately
simplified example as for the actual classification models we use more elaborate
meta-classifiers like RandomForest instead of simple decision trees.

(0:LIBRARY#NAME:imm32.d1l)->(1:PROCESS#INIT)
samples = 9808

/ K
(0PROCESS)->(1 FILE#EXTENSION:dat)

(0:PROCESS)->(2:PROCESS#NAME:cmd) samples = 6380
samples = 3428

/ X
(0:PROCESSHINIT)->(1:FILE#EXTENSION:exe)

(L:FILE#EXTENSION:exe)->(0:PROCESS#INIT) samples = 1853
samples = 1575

/ X
(0PROCESS#INIT)>(1PROCESS)
(1:PROCESS)->(2:PROCESS)

(1PROCESS)->(3FILEAEXTENSION:exe) | | Samples =4
samples = 1571

/N

samples = 340 samples = 1231

Figure 4.9.: Example for generated classification model

77



4. Pattern-based Detection

4.2.3.4. Detection

Having mined a set of discriminative patterns and trained a supervised classifier
on them, the detection phase of our approach is now rather straight forward.

To classify an unknown sample we first follow the same initial steps as done
for the training phase. This is, we take the set of detection patterns contained in
a previously generated classification model and match them against the QDFG of
the to be classified sample. Just as described in Section 4.2.3.3 we then convert
the matching results into a feature vector, using the same matching function that
also was used for generating the training features the classifier contained in the
classification model was trained on. Finally, we pass the obtained feature vector to
the classifier which then returns a classification proposal based on the similarity
of the matching profile with matching profiles of known malware and goodware
from the training set.

4.2.4. Evaluation

To evaluate the effectiveness of the inductive extension of our pattern-based de-
tection approach used the same evaluation setting and data set as used to evaluate
the deductive approach (see Section 4.1.3).

4.2.4.1. Effectiveness

For evaluating the effectiveness of our approach we were mainly interested in in-
vestigating two approach-specific research hypotheses:

(HO) Mined pattern significantly outperform the manually defined ones of the
deductive approach in terms of detection accuracy.

(H1) Using compression-based graph mining for malware pattern extraction yields
better malware detection accuracy then using frequency-based mining.

(H2) Quantitative data flow compression of patterns yields better detection accu-
racy then structure-only compression.

For investigating hypothesis H1, which we consider the main hypothesis that
motivates this work, we aimed at comparing the detection effectiveness of our ap-
proach with other detection approaches that make use of frequency-based graph
mining [36, 32, 66, 91, 30, 111, 70, 93].

Unfortunately, for most of these approaches the used implementations and data
sets were either not publicly available or the contacted authors could not provide
us with operational prototypes. For our experiments we thus had to fall back to
re-implementing the core mining concept shared by most of the approaches.

78



4. Pattern-based Detection

This is, at least for the ones that mentioned the used graph mining algorithms
we could compare the detection performance performance by substituting our
compression-based mining component with a component implementing the re-
spective mining algorithm. A closer look at related work that uses graph mining
revealed that the frequency-based GSpan[150] mining algorithm by far was the
most commonly used one [66, 91, 111, 70, 93] and most other used algorithms
were structurally very similar to GSpan. Finally, another major reason for us to
(at least partially) re-implement related approaches instead of directly comparing
the numbers presented in the respective papers is given by the well-known fact
that machine learning based approaches can be highly sensitive to the number
and nature of used training samples. A direct comparison of numbers produced
on different evaluation data sets would thus likely lead to biased conclusions.

For assessing hypothesis HI we thus evaluated the inductive pattern-based de-
tection approach on our baseline evaluation data set, once using our compression-
based pattern mining component for pattern utility evaluation, and using a pub-
licly available implementation' of the frequency-based GSpan algorithm that was
also used by many of the the mentioned related approaches. The individual evalu-
ations were then conducted through typical 10-fold cross validation experiments.
For each fold of the experiment we trained the approach on 90% of the evaluation
data, i.e. mined interesting patterns and trained the final classifier on this set and
used the so resulting detection model to classify the remaining 10% of the data.

In total we evaluated the following combinations of mining algorithms and
matching functions: a) frequency-based mining with GSpan and frequency match-
ing; b) compression-based mining with MDL and frequency matching; c¢) compression-
based mining with MDC and (data) compression matching.

Malware quite often uses randomized names for dropped files. Extracted pat-
terns that use the full name of a file would likely be too restrictive and only match
very few malware instances. To thwart this issue we thus conducted all aforemen-
tioned experiments using only the file extensions part of the file node labels for
label equivalence matching instead of the full file names.

To avoid biasing the comparison due to unequal baseline data sets we further
set the sub-sampling ratio § of our mining algorithm and configured our GSpan
wrapper to only use 25% of the training part of each fold for training. Considering
that this sub-sampling was done randomly we furthermore repeated each cross
validation experiment 10 times to weed out noise and cut out random side-effects.

'https:/ /www.cs.ucsb.edu/~xyan/software/gSpan.htm

79


https://www.cs.ucsb.edu/~xyan/software/gSpan.htm

4. Pattern-based Detection

To express the aggregated effectiveness of the approaches, we computed the fol-
lowing quality metrics. True positives (TP) refer to malware samples (MW) that
have been correctly classified as malicious, true negatives (TN) to goodware sam-
ples (GW) that were correctly classified as benign, false positives (FP) to goodware
samples incorrectly classified as malicious, and false negatives (FIN) malware sam-
ples that were mistakenly labeled as benign:

¢ Area under ROC Curve (AUC): The AUC is the integral of the area enclosed
by the function graph that we get when plotting the achievable true-positive
rate for different false-positive rate thresholds . A point on this curve can
thus be interpreted as the maximum achievable true positive rate that can be
achieved when accepting a certain number of false positive classifications.
The AUC thus gives us an idea of the best overall performance of an ap-
proach, with 1.0 being the best achievable AUC.

* Best-case Detection Rate (BDR): With this we capture the best-case true pos-
itive rate that can be achieved when fixing the maximum acceptable false
positive rate to a threshold of 0.5%. In other words, the BDR is the value of
the ROC function at 0.005. While we consider this threshold reasonable in
the operational context of a medium-size company, the threshold value es-
sentially is arbitrary. Depending on protection goals and the amount of to be
classified samples, 0.5% false positive classifications might still be considered
too high, or even too restrictive. The rationales of our threshold choice are
based on discussions with domain experts and we thus deem this threshold
useful to ensure a fair operational comparison of settings and approaches.
In contrast to the AUC that, although better capturing the overall quality of
a classifier, does not have an obvious operational interpretation, the BDR is
better suited to express operational effectiveness. In a medium-sized com-
pany environment with 1000 to be classified email attachments per day this
for instance would translate to the question of how many malicious attach-
ments we can correctly identify as malware when accepting an upper bound
of 5 emails wrongly put into quarantine due to incorrect classifications.

The average results and standard deviations of the experiment runs are depicted
in table 4.2. As we can see, the experiment results support the confirmation of our
hypothesis H1 in that, at least on our evaluation data set, the best compression-

based mining approach outperformed the frequency-based mining using GSpan.

AUCyMpc(mp) 0.988 .
= = ~ 4 tter in term
AUCGspan(riy) . 0.952 70 bette €rms

of AUC when using data compression-based mining instead of frequency-based
mining. Interestingly, at least concerning the overall effectiveness in terms of AUC,
structural compression-based mining seemed to perform worse than frequency-
based mining with GSpan.

More precisely, we at least perform

80



4. Pattern-based Detection

[ a) GSpan(Mr) | b) MDL(My) | o) MDC(Mc) |

Avg. AUC 0.952 0.946 0.988
(Std. Dev. o) (0.013) (0.013) (0.018)
Avg. BDR 0.157 0.368 0.957
(Std. Dev. o) (0.069) (0.149) (0.042)

Table 4.2.: Average effectiveness

Looking at the individually achievable detection rates when fixing the maxi-
mum acceptable false positive rate to 0.5% (BDR), the effectiveness differences

between the approaches becomes even more apparent. Concerning the BDR, the

BDRypome) 0957
BDRGSpan(]\lF) T 0157 T

600% better results than the frequency-based GSpan approach. This means, in
particular when targeting low false positive classification rates, our quantitative
data flow compression-based mining approach seems to significantly outperform
frequency-based mining (H1I).

If we look at the individual differences in effectiveness between the structural
compression-based mining experiments and the experiments where we consid-
ered quantitative data flow aspects for mining and matching, we can further-

more see that quantitative data flow compression-based mining at average yields

%gg((%?)) = 8:322 ~ 5% better overall effectiveness, i.e. AUC, than structural com-

quantitative data flow compression-based yielded more then

pression based mining. Again looking at the effectiveness for low false positive

. L BDR
rates, data compression-based mining yields zpn jiztc)) = 0957 ~ 260% better
. .

detection rates than when only considering structural compression.

These findings confirm our hypothesis H2 in that considering quantitative data
flow aspects for mining indeed seems to improve the quality of mined patterns
and overall accuracy of respectively devised detection models. They further con-
firm our hypothesis HO in that at least the quantitative compression mining results
yielded better accuracy than the deductive pattern-based approach. Furthermore,
these findings again positively answer our main research questions RQ1 and RQ?2
in that we again successfully operationalized our QDFG-based system model for
highly accurate malware detection and in particular showed that the consideration
of quantitative data flow properties significantly improves classification accuracy.

81



4. Pattern-based Detection

| [ aGSpan | b)MDL [ ¢ MDC |
Training Time 13.20s 4473.33s 133.98s
(Std. Dev. o) (0.10s) (754.35s) (6.66s)

Table 4.3.: Average training efficiency

4.2.4.2. Efficiency

As our inductive pattern-based detection approach in contrast to our deductive
pattern-based one consists of a computationally independent training and a de-
tection phase, we also separately consider the computational overhead induced by
the training and by the detection phase. Whereas the mining and training phase in
principle only has to be conducted once and, as discussed in Section 4.2.3.2 can be
offloaded to a powerful multi-core server, the detection phase needs to be re-run
for every to-be classified sample.

The training time includes the computational effort for mining and scoring a
set of detection patterns, as well as training a supervised classifier on them. The
detection phase consist of matching the patterns against the testing graphs and
evaluating the obtained feature vector on the trained classifier.

Considering that GSpan uses graph encoding and tries to avoid expensive iso-
morphism checks while our compression-based approach heavy relies on graph-
isomorphism verification, we expected the frequency-based GSpan approach to
outperform ours in terms of efficiency. In sum we were thus expecting that the
gained effectiveness improvement comes at the cost of efficiency. Table 4.3 summa-
rizes the average training and mining times of the different approaches. As we can
see, the experiment results confirmed this assumption in that the frequency-based
mining with GSpan was more than one order of magnitude faster than the best
compression-based mining experiment. Concretely, frequency-based mining us-
ing GSpan was almost 72‘; 1;;; = 133985 ~ 11 times faster than compression-based

12.20s

mining using MDC and more than AL = 4473335 , 366 times faster than MDL.
GSpan -2Us

We explain the significant difference in performance between MDL and MDC with
the same argument as we explain their effectiveness difference: likely MDC is bet-
ter able to early prune useless pattern candidates from the search space and thus
needs to perform significantly less isomorphism checks than MDL.

For assessing the detection overhead induced by the different approaches we
measured the overall time consumed for matching the patterns of a detection
model against unknown QDEFGs of different size. Recall that, unlike the deduc-
tive pattern-based approach that uses the entire graph for classification, the induc-
tive pattern-based approaches employs some graph pruning steps and only uses
reachability graphs for training and detection (see Section 4.2.3.1).

82



4. Pattern-based Detection

100%

90% /ﬁ

80% I

70% ’
!

60%

50% /
40% /
30% I

Reachability QDFG Fraction [%]

20% /)
10% /
0%
0 50 100 150 200 250 300 350 400 450 500
Reachability QDFG Size [#Edges]

Figure 4.10.: CDF of Reachability-QDFG edge size

This has a considerable impact on the size and complexity of the to be evalu-
ated QDFGs and thus also significantly affects the detection efficiency. Figure 4.10
shows the cumulative distribution of the edge sizes of all reachability-graphs gen-
erated on our baseline evaluation data set. As we can see, more than 97% of the
reachability graphs have 100 edges or less.

As the detection phase is independent of the training approach used for gener-
ating the employed detection model, we only needed to conduct this experiment
once for all reachability QDFGs.

As the time needed to match the obtained testing QDFG vectors against a trained
classifier with at average below 2ms was far below the computational effort needed
to conduct the actual patter matching, we can safely ignore the influence of the
classifier on the overall detection overhead.

From the results depicted in Figure 4.11 we can see that the overall detection
time, at least on our evaluation set, seemed to linearly increase with the complexity
of the to be classified QDFGs and ranged from 6ms to almost 4200ms.

At average, classifying an unknown sample took 102ms.

83



4. Pattern-based Detection

10000 T T T
— Trend
xxx Matching Time )
8000 | i ]
x x x
% x
— 6000} . 1
£ x
E' %
E x < <
= 4000} X & N o x
&% X
w # X x ¥ % x
2000 | -4 % * ) x X ]
*
0 . IFERE
0 100 200 300 400 500

Graph Size [#edges]

Figure 4.11.: Detection time vs. QDFG size

We account the high efficiency and stability with the comparably low average
complexity of the classified reachability-QDFGs (see Figure 4.10). We consider this
comparably low classification efficiency overhead a substantial improvement over
the initial results gained with our deductive pattern-based approach and thus can
also positively answer our main research question RQ3.

4.2.4.3. Threats to Validity

Although we put considerable effort into conducting a sound evaluation and com-
parison with related approaches, there still are some threats to the generalizability
of the gained insights.

Firstly, the inductive extension of our pattern-based detection concept makes
use of approximate soft-computing algorithms whose overall effectiveness are
well-known to be dependent on the amount and structure of the data they were
trained on. While our standard evaluation data set is composed of a wide and di-
verse range of malware samples from different families as well as a representative
and diverse selection of widely used goodware, we can only safely claim that our
approach works well with respect to this particular set of malware and goodware.
The gained insights thus have to be interpreted in the context of our study.

84



4. Pattern-based Detection

Furthermore, supervised machine learning algorithms can suffer from either
over-generalization or over-fitting to the training data. To compensate this threat
we consistently employed repeated 10-fold cross validation experiments for eval-
uating our research hypothesis. We furthermore used a supervised learning algo-
rithm, i.e. RandomForest, for training that is known to be rather robust towards
over-fitting to the training data [18].

Finally, we acknowledge that we introduced a certain bias in the comparison
between our compression-based mining approach and frequency-based mining
approaches in that we did not directly compare the approaches themselves but
only indirectly related them based on a comparison of the used mining algorithms.
Considering that none of the comparison approaches offers publicly available im-
plementations or data sets it was impossible for us to do so and this indirect com-
parison on the same standardized data set was the closest we could get towards
a fair comparison. Nevertheless, there is a strong conceptual similarity between
those approaches and they often employ similar graph mining algorithms.

4.2.5. Related Work

We already discussed the main difference between our approaches and related
work in that we are the only ones to use QDFGs to represent malware behavior.
We thus restrict the following discussion of related work to approaches that also
use graph-based behavior models and employ some sort of data mining.

Christodorescu et al. [36] were within the first to use data mining to obtain
graph-based malware detection patterns. They do so by looking for minimal sub-
graphs of system call dependency graphs of known malware that are not con-
tained in goodware. By this the utility of a mined pattern directly correlates with
how often it appears in the malware and does not appear in the benign set. The
structural complexity of the pattern itself is not considered as long as it is minimal.
Therefore, this approach falls into our category of frequency-based methods.

Chen et al. [32] improve upon this idea by first shrinking the pattern search
space through randomized summaries of to be mined system call dependency
graphs. Through this approximation they, like us, avoid an expensive evaluation
of the entire search space. They thus also make use of graph compression but only
use it to reduce the search space; the pattern utility evaluation is still done entirely
frequency-based and does not anticipate pattern complexity aspects. We thus also
consider their work to fall into the category of frequency-based methods.

The HOLMES detection system proposed by Fredrikson et al. [54] goes along the
same lines as it also relies on system call dependency graph mining but introduces
an aggressive probabilistic sampling of the pattern search space to further improve
detection accuracy.

85



4. Pattern-based Detection

They further propose to employ concept analysis to combine redundant and
semantically similar patterns. To our understanding, their pattern selection does
not directly consider the structural complexity of a pattern and we therefore also
categorize this work into the frequency-based category.

Besides these works that employed rather custom graph-based pattern mining
techniques, there also exists a considerable body of work that in various ways
make use of the frequency-based GSPan [150] graph mining algorithm to extract
characteristic patterns from bodies of malware [91, 66, 111, 70, 93].

We mainly differ from those approaches in two ways: i) we primarily use the
compression capabilities of a pattern to determine its utility, and not its frequency,
and ii) we make use of quantitative data flow aspects embedded in syscall traces,
both of which we showed to positively contribute to detection accuracy.

Park et al. [113, 114] proposed a malware classification method based on so-
called HotPaths, i.e. maximum common sub-graphs on kernel object dependency
graphs, to capture characteristic behavior of individual malware families. As this
approach per se does not make use of dedicated graph mining techniques to con-
struct a HotPath and thus does not fit our categorization scheme, we wanted to
compare its performance against our approach. Unfortunately we were not able
to obtain an implementation of the approach from the authors and thus had to
fall back to re-implementing it following the descriptions in the respective publi-
cations. We then tried to evaluate this implementation on the same data set that
we used for evaluating our approach to assure a fair comparison.

Unfortunately, even when running the implementation on the most powerful
system that we had access to, we did not manage to get the algorithm conclude
and deliver hot-paths for our data set. We account this to the following issues. First
of all, the generation of the HotPaths requires to calculate the maximum common
sub-graph (MCS), which is a well-known NP-complete problem [57], for a huge
number of graphs. The authors in their articles suggest an approximate solution,
where the MCS is calculated sequentially for each subsequent pair of graphs. In
particular, they suggested to use the McGregor algorithm [41] for doing so. How-
ever, using the our implementation of their approach turned out to be computa-
tionally infeasible even on a few graphs of less than 50 nodes of size.

Of cause there is a certain chance that we might have wrongly implemented
their algorithms or did not employ optimizations that were not mentioned in the
article. Nevertheless, even from a purely complexity-theoretical perspective and
comparing our experiences with the practical evaluation of maximum common
sub-graph algorithms by Conte et al. [41] we are highly concerned regarding the
generalizability and scalability of their approach. Also their kernel-object depen-
dency graphs do not take quantitative flows between object into account which,
as our evaluations showed, can have a significant effect on detection accuracy.

86



4. Pattern-based Detection

The main difference between our inductive pattern-based detection approach
and related work, besides the obvious aspect of us being the only ones using QD-
FGs, thus is that we employ a compression-based mining scheme where most re-
lated mining approaches use frequency-based algorithms, which we could show
yields superior detection accuracy.

4.2.6. Discussion and Conclusion

In this section we have proposed a inductive extension of our pattern-based de-
tection approach that replaces the manually defined set of detection patterns of
the deductive approach with highly characteristic behavior patterns, automati-
cally extracted from corpi of known malware QDFGs using graph mining. More
precisely, we proposed a compression-based graph mining algorithm that consid-
ers the quantitative data flow specificities of malware to assess the discrimina-
tory utility of behavior patterns. With this we again successfully operationalized
our QDFG-based behavior model for behavior-based malware detection. Further-
more, we showed that inductively mined patterns significantly outperform deduc-
tively defined ones in terms of efficiency and effectiveness (RQ1,RQ3).

Our evaluations showed that the mined patterns significantly outperform the
manually defined ones used by the deductive pattern-based approach. We fur-
thermore showed that considering the quantitative data flow compression capa-
bilities of patterns for mining yields a 260% higher detection rate at a 0.5% false
positive rate than when only considering structural compression. This positively
answers our main research question RQ?2 in that also for mining malware detection
patterns we could show that considering quantitative data flow properties can im-
prove detection accuracy. Finally, we could also show that our data compression-
based mining approach in comparison to the widely used frequency-based mining
algorithm GSpan yields an absolute detection effectiveness improvement of more
than 4% at the cost of ten times longer mining times.

In sum, with the proposed inductive extension of our pattern-based detection
concept we could further improve the detection effectiveness that can be achieved
using QDFGs as behavior models.

87



4. Pattern-based Detection

88



5. Metric-based Detection

In this chapter we propose an approximate notion of QDFG simi-
larity based on graph metrics as a flexible alternative to sub-graph
isomorphism-based detection. To this end, we discuss a deductive ap-
proach to profile behavior with generic graph metrics and an inductive
extension to this where we use genetic programming to generate complex
graph metrics that are by design effective. Some parts of this chapter are
based on a previous publication [145], co-authored as first author by the
writer of this thesis.

Strategy

Deductive Inductive
Pattern-based : Pattern-based
Deductive Inductive
Metric-based : Metric-based

Baseline Concept

In the last chapter we have seen how our QDFG-based system model can be op-
erationalized for behavior-based malware detection by a-priori defining or mining
characteristic malware behavior patterns and re-identifying them in QDFGs of un-
known samples. With this we did not only show the utility of quantitative data
flow analysis for accurate malware detection, but also that the consideration of
data flow quantities can substantially improve detection effectiveness.

Intuitively, these approaches are also to some extent robust towards noise in
captured behavior traces and simple behavior obfuscation since the QDFGs built
on top of them are not affected by system call splitting or reordering.

89



5. Metric-based Detection

Pa Ga Ga-

Figure 5.1.: Pattern and QDFGs of mutated variants of the same malware family

Programs that intentionally or unintentionally change their behavior in term
of alternations in the sequence of issued system calls usually still yield the same
QDFG representations. This is, because our model, i.e. the graph update function,
is agnostic to relative orders of system calls. The same holds for situations where
programs use several system calls to read a file in multiple small chunks instead
of one “large” system call to read the entire file at once. As long as the total flow
of transferred data remains the same, this has no direct consequence on the struc-
ture of the respectively built QDFGs and the pattern-based detection approaches
operating on to of them.

Nevertheless, strictly pattern-based approaches, like the ones introduced in the
last chapter, are quite sensitive towards more complex behavior changes that also
impact the structure of the corresponding QDFGs. If a QDFG that models behav-
ior of a new version of a malware for instance lacks certain edges or nodes that
were present in previous version of that malware for which we mined or manu-
ally defined detection patterns for, the old patterns might not fit these new graphs
anymore. In consequence, a strict pattern-based detection mechanism might fail to
identify known malign behavior patterns in the behavior graphs of new versions
of a malware although they in essence relate to very similar behavior.

To get a better understanding of this issue we consider a simplified detection
situation, depicted in Figure 5.1, where we want to classify the QDFGs G4 and
G 4» that model the behavior of two malware samples that are descendents, i.e.
extended versions of the same malware family A. Now also consider that we
already obtained a highly characteristic detection pattern P4 that we mined from
the behavior of multiple samples from the initial generation of the malware family
A. So far, the pattern worked well for properly identifying members of family A
and yielded good detection accuracy.

90



5. Metric-based Detection

At his point we need to recall that our pattern-based detection approaches are
based on sub-graph isomorphism checks, i.e. classify new QDFGs by looking for
sub-graphs that are isomorphic to detection pattern graphs that resemble known
malicious behavior. A closer look at the situation depicted in Figure 5.1 however
reveals that the malware graphs G 4» and G 4~ do not have any sub-graphs that
are isomorphic to our detection pattern P4. This is because G 4+ for instance lacks
an edge between the lower two nodes that would be needed to match P4. G4~
in contrast in principle has all necessary edges and nodes, but the edge between
the upper two nodes is inverted in comparison to the corresponding one in the
pattern P4. Both cases would lead to the the same detection result: the sub-graph
isomorphism check would report that G4 and G4~ do not match the detection
pattern and thus are not malicious according to our definition.

This situation is somewhat unfortunate in that G4 and G4~ indeed are ma-
licious and, from a behavioral perspective, are very close to P4. Nevertheless,
they are not isomorphic to each other and our sub-graph isomorphism based ap-
proaches do not cater to such small behavioral deviations. In a sense we can thus
say that checking for sub-graph isomorphism in malware detection in such situa-
tions might be too restrictive and corresponding detection approaches easy to be
fooled by malware that adapts its behavior in a targeted way.

Although this example is of course highly simplified, malware authors typically
do not have full flexibility on changing arbitrary parts of the malware behavior
and thus cannot arbitrarily tamper with the resulting QDFGs, this still reveals a
principal problem with sub-graph isomorphism based detection approaches. Sim-
ilar situations can happen in reality whenever new versions of a malware add to
or restrict the original functionality. This is commonly the case when malware de-
velopers use malware construction kits or reuse program code of old malware to
create new malware variants.

Note that this is not only an issue for our detection approaches, but a principal
problem for all graph isomorphism based detection approaches, irrespective of
whether they use control flow, system call, or resource dependency graphs.

Based on this observation we thus saw a need for a more elaborate detection
concept that caters to such intentional or unintentional deviations in malware be-
havior and employs a more flexible notion of behavioral similarity than our previ-
ous strict sub-graph isomorphism based approaches.

To this end we again re-visit the simplified detection situation scenario depicted
in Figure 5.1. While we already discussed that, at least from a strict isomorphism
perspective, the graphs are different, they still share some non-negligible similar-
ities and only differ in a few aspects. All three graphs for instance have the exact
same number and type of nodes (represented by the node color). Furthermore,
two of the three graphs also have exactly the same number of edges. Finally, all
graphs at least share a common sub-set of edges.

91



5. Metric-based Detection

This intuitively suggests that partial similarity between graphs can be expressed
in terms of graph invariants or metrics like node or edge count.

This observation let us to the question of whether or not we can establish a
flexible notion of graph similarity based on such graph invariants and metrics
that can be incorporated into our malware detection concept and still achieve a
sufficiently high detection accuracy, but with a better robustness towards noise
and changes in behavior profiles.

Looking at this idea from a purely graph theoretical perspective, approximating
similarity with graph metrics also seems natural as the equality of certain graph
invariants and metrics between two different graphs is a necessary precondition
for graph isomorphism. This also likely has a favorable side effect on detection
efficiency as calculating graph metrics typically is of lower computational com-
plexity than checking for full graph isomorphism.

In sum, this in means that we wanted to investigate if we could substitute the
sub-graph isomorphism checks in our approaches by more elaborate and flexible
graph metric based similarity checks while still maintaining a sufficiently high de-
tection accuracy. We were furthermore interested in investigating in how much
such flexible similarity checks lead to an improvement of detection robustness
with respect to structural changes in malware QDFGs and how using this notion
of approximate similarity impacts detection efficiency.

In this chapter we thus investigate the utility of metric-based graph similarity
approximation for doing malware detection on QDFGs. To this end we again fol-
low our basic research methodology in that we first explore the principal utility
of a generic graph metric based notion of similarity in Section 5.1, and then assess
the conceptual boundaries of this concept using more complex and automatically
generated malware-specific graph metrics in Section 5.2.

92



5. Metric-based Detection

5.1. Deductive Metric-based Detection

Strategy

Deductive Inductive
Pattern-based : Pattern-based

Deductive Inductive
Metric-based : Metric-based

Baseline Concept

5.1.1. Introduction

Following our general research methodology to first assess the general feasibil-
ity of a detection concept with statically defined detection mechanisms before ex-
ploring the conceptual boundaries using more elaborate mechanism generation
techniques, the main goal of our first metric-based detection concept is to demon-
strate the principal feasibility of metric-based detection on QDFGs. This is, with
this approach we want to firstly show that graph similarity approximation with
graph metrics is sufficiently precise to substitute sub-graph isomorphism verifi-
cation and thus to be suitable for being used accurate behavior-based malware
detection. This again boils down to RQ1 in that we introduce another concept for
utilizing our QDFG-based system model for malware detection.

As the guiding theme of this thesis is to show the utility of quantitative data flow
analysis for increasing malware detection accuracy, we also want to give answers
to RQ2 and show that by leveraging the quantitative data flow information en-
coded in our QDFGs for metric computation we can improve detection accuracy.
Furthermore, considering the complexity of the respective algorithms we expect
approximate similarity checks with graph metrics to be significantly more efficient
than performing fully-fledged sub-graph isomorphism checks.

93



5. Metric-based Detection

In the introduction of this chapter we already motivated the use of more flexible
and approximate similarity checks on graph metrics with the shortcoming of sub-
graph isomorphism based detection approaches to in some cases be too restrictive
and sensitive towards changes in observed malware behavior. Besides investigat-
ing the accuracy implications of using approximate metric-based similarity checks
instead of hard sub-graph isomorphism we are thus also interested in analyzing
the effects on detection robustness, i.e. give answers to the respective research
question RQ4.

Most new malware families found in the wild today employ some kind of func-
tionality to avoid or harden detection through traditional security measures. Ex-
amples range from rather simplistic attempts to disable known security software
upon infection; over polymorphism and metamorphism techniques to alter and
obfuscate the executable binaries of malware in order to harden detection by signature-
based approaches; up to more sophisticated behavioral obfuscation techniques,
such as mimicry attacks, that aim at altering the runtime behavior to trick behavior-
based detection approaches [152]. One of the biggest challenges of malware detec-
tion research is thus to cope with the threat of stealthy and obfuscated malware
and to counteract their attempts to remain “below the detection radar”.

Recent research showed that already comparably simplistic behavior obfusca-
tion techniques can have a tremendous impact on the accuracy of most state of the
art behavior-based detection approaches [116, 115, 6]. Like others [115], consider-
ing the steadily increasing sophistication of modern malware we thus expect new
malware families to soon employ more complex functionally to obfuscate behav-
ior in a targeted way which will impose a severe threat to most behavior-based
detection approaches.

One goal that we want to achieve with our research and tackle with the approach
proposed in this section thus is to a-priori anticipate potential behavior obfusca-
tion techniques and investigate their impact on the integrity of our QDFG models.
Doing so we aim at coming up with a detection approach that we can show to be
robust at least against the behavior obfuscation techniques that we anticipated. In
sum, with the approach described in the following we thus firstly give answers to
our research question RQ4 in that we want to show that our detection concept is
to some extent robust towards simple behavior obfuscation techniques.

As mentioned before, the main functional principle of the proposed approach is
to use graph metrics, computed on QDFGs as means to come up with a flexible ap-
proximate interpretation of graph similarity which we then use to profile known
malware and goodware behavior. By computing similar metric profiles on QDFGs
of unknown samples and evaluating their distance to the profiles of known mali-
cious and benign samples we then can classify them as more likely being malicious
or benign.

94



5. Metric-based Detection

To come up with such profiles we use a fixed set of simple standard and more
context-specific graph metrics, which we partially took from social network ana-
lysis research and adapted to fit our context. More precisely we use these metric-
based profiles of typical data flow behavior of benign and malicious processes to
train a machine learning classifier. This classifier can then learn a notion of similar-
ity between those profiles that is sufficiently discriminative to accurately separate
malicious from benign QDFGs based on their metric profiles. This is, by matching
a set of metric values of an unclassified QDFG, the classifier can decide whether
the sample is more likely to be malicious or benign based on its similarity to known
goodware and malware metric profiles.

The main difference of this approach to the previous pattern-based ones is thus
that it uses approximate similarity checks based on graph metrics instead of sub-
graph isomorphism verification. As we will later show, this gives us a superior de-
tection robustness, efficiency, and very high accuracy. This concept of approximate
similarity checks also differentiates us from other malware detection approaches
that uses graph models to represent malware behavior [80, 54, 85, 37, 36, 116, 151,
53,76,79, 84,113, 114]. In sum, the contributions of this approach are:

* To the best of our knowledge, this approach is the first one to combine quanti-
tative data flow tracking and graph metrics with machine learning for check-
ing for behavioral similarity of processes in the context of malware detection.

* Our experiments demonstrate the utility of quantitative data flow aspects for
detection precision. In particular we show that the consideration of quanti-
ties in data flow graphs can effectively halve false positive and false negative
rates.

* Our evaluations indicate that our approach is more robust against behav-
ioral obfuscation such as reordering or inserting bogus system calls than ap-
proaches that build on raw system calls such as n-gram based approaches.

* We show that we are able to detect samples from unknown malware families,
i.e. samples from families that our approach was not trained on, with good
accuracy.

Most parts of this section are based on an earlier publication [145], co-authored
as first author by the writer of this thesis.

95



5. Metric-based Detection

5.1.2. Approach

Our initial metric-based detection approach, at least for the first processing steps,
in essence follows the same procedure as the previously described pattern-based
detection approaches: we also first need to execute a sample in our custom mal-
ware sandbox environment, monitor its behavior for a defined time span, translate
the captured system calls into data flow events, and finally generate a QDFG from
them that models the sample’s data flow behavior.

Our core idea is to learn statistical profiles for benign and malicious nodes in
QDEFGs that represent known infected and non-infected systems. We later use
these profiles for matching feature sets of unknown processes against them. The
first difference to the pattern-based detection approaches is in the step that pre-
cedes the QDFG generation. Unlike the previously described pattern-based de-
tection concepts that directly conduct their training or detection steps on those
QDEFGs, or only a-priori reduce training graph complexity for performance rea-
sons, for metric-based detection we need to control and normalize the complexity
of both, the training and the testing graphs in order to create a compatible noise-
reduced training and testing data baseline.

This step is necessary as our metric-based detection concept, i.e. the compu-
tation of our graph metrics, is highly influenced by the complexity of the input
graphs that is e.g. influenced by the number of processes running in the moni-
tored system. To establish a more reliable training baseline and partially weed out
unwanted side-effects from processes that are in no functional relationship to the
actual malicious processes that we want to classify, we thus, just like for the in-
ductive pattern-based approach, create process-centric sub-QDFGs from the main
QDFG of a sample. This is, for each process node within a QDFG we generate
a new QDFG that consists of all nodes and edges directly or indirectly reachable
from this process node. By doing so we create process-centric sub-QDFGs that
only modeled the behavior that was in direct or indirect relationship to the base-
line process.

Such a pre-processing step was not strictly necessary for the pattern-based ap-
proaches as their sub-graph isomorphism based detection concept by construction
only considers the “potentially interesting” parts of the QDFGs and are less biased
by unrelated noise. However, preliminary evaluations of a metric-based prototype
where we did not employ such a pre-processing step indicated that some of the
graph metrics used for profile generation where too sensitive to noise in the QD-
FGs and thus generated poor detection results on data sets with unbalanced graph
complexities. Especially if we recall that our evaluation data set, which we con-
sider to be representative to real world data sets, indeed varies in terms of QDFG
complexity, the necessity of conducting the pre-processing becomes obvious.

96



5. Metric-based Detection

Sandbox

Raw | Events

Data F li D

Event ata Flow| Reachability ~—_ _ |
Interpreter Sxaph > | Graph

P Events Builder Repository )

A

< . oDrGs r
Classifier Q | Sub
Model ub-
. I QDFGs
Classifier ‘ Feat. Feature
(Rnd. Forrest) Generator

Figure 5.2.: High-level Architecture

Besides this reachability graph pre-processing step, the deductive metric-based
detection approach also differs from the pattern-based approaches in that in the
following we do not employ any sort of isomorphism-based graph matching with
fixed or minded detection patterns but rather compute a set of highly descriptive
graph metrics on them whose output values we then feed into a machine learning
classifier to infer generic metric-based profiles for known malicious and benign
behavior.

The overall architecture of this approach, depicted in Figure 5.2, is thus a vari-
ation of our basic architecture, as described in Section 4.1.2. Dashed lines in the
architecture mark components and interactions that are only used in the training
phase. Dotted lines refer to the ones only relevant for detection.

1) Base Data Generation: Just like for the inductive pattern-based approach we
first obtain the base QDFGs that model the full behavior of the monitored
sandbox system where we executed a sample. To this end, we execute a
sample in the instrumented sandbox, capture the system calls issued by all
relevant processes, interpret their data flow semantics, and build the corre-
sponding behavior QDFG. For the obtained base QDFG we then extract the
set of process node and, for each process node, generate a reachability graph
consisting of all reachable nodes and edges. In the training phase of our ap-
proach the so obtained process-centric reachability graphs are then put into
a training graph repository as baseline for the subsequent metric-based pro-
filing steps.

97



5. Metric-based Detection

2) Feature Generation: To establish profiles for known malware and goodware
processes we then compute a set of graph metrics on the corresponding
reachability QDFGs. The respectively computed values for these metrics are
then stored as labeled feature vectors that then get forwarded to our classifier
training component.

3) Classifier Training: We then use the obtained metric vectors, which are labeled
as malicious or benign in correspondence to the known nature of the asso-
ciated process reachability QDFGs, to train a supervised machine learning
classifier. This classifier then generalizes from the individual metric profiles
of the training reachability QDFGs to infer generic relationships between
graph metric profiles and known malicious and benign samples. In a nut-
shell, the classifier thus learns metric profile commonalities of known mali-
cious QDFGs that significantly differ from those of known benign QDFGs.
With this we establish a approximate and flexible metric-based notion of ma-
licious data flow behavior.

4) Detection: We now can simply classify QDFGs of unknown samples by match-
ing their metric profiles against the trained classifier. Based on the similarity
of the metric profile of the unclassified sample to the ones of known good-
ware and malware the classifier will then output a prediction of whether the
analyzed sample more likely is malicious or benign.

Now that we have sketched the architecture of the deductive pattern-based de-
tection approach, we in the following will elaborate on the used graph metrics and
their formal definition, followed by a more detailed explanation of the training and
detection steps.

5.1.2.1. Features

After having decided to approximate QDFG similarity with graph metrics, the
natural next question was which exact graph metrics to be used for our approach.

While investigating the utility of simplistic graph metrics like node or edge
count, as discussed in the intro of this chapter, with mediocre success we saw an
analogy between our QDFGs and communication graphs as they typically appear
in social networks [108, 16].

The analogy between the two is quite obvious: In social network analysis, mem-
bers of a network are typically represented as nodes with relations between them,
e.g. established via communications, mutual interests, or friendship associations
being modeled as edges between the member nodes. These edges can be weighted
to represent the degree of connection between two members, e.g. determined by
the amount of exchanged messages or mutual interests.

98



5. Metric-based Detection

Analogously, in our QDFGs the nodes represent system entities and the edges
between them their interaction, i.e. communication, in form of data flows.

Considering this similarity between social network graphs and quantitative data
flow graphs we thus came up with the idea of leveraging similar graph metrics
that are used for social network analysis for QDFG-based malware analysis. Do-
ing so is intuitively compelling as social network analysis is all about finding in-
teresting properties and sub-structures, i.e. communities within a social network,
while our malware detection concept similarly aims at finding discriminative and
characteristic properties of malware QDFGs.

The following metrics were thus selected using an inductive and a deductive
approach. The inductive selection was done based on a preliminary analysis of
graphs of a small set of malware-infected systems where we applied several stan-
dard metrics from social network analysis and tried to correlate malware activities
with the applied metrics. The deductive selection was performed through an ana-
lysis of standard graph metrics where for each metric we tried to correlate its intu-
ition with typical malware behavior or properties. For instance, malware that tries
to infect other processes or files results in a high connectivity of the corresponding
node to certain types of other nodes. We then assessed whether this hypothesized
correlation also holds in reality by again applying the respective metrics on some
malware QDFGs and then manually investigating similarities.

As we will later use the evaluated graph metrics as input features for training
a supervised machine learning classifier, we in the following will use the terms
(graph) metric and feature synonymously.

We express graph metrics, i.e. features, as functions ¢ € ® that map a QDFG
node to a real number: ¢ : N x G — R. We enrich the QDFG model to store
the value of features as attributes of nodes n in graph G, so A(n,¢) = ¢(n,G).
Additionally, we distinguish between two basic types of graph features, local fea-
tures (®;) and global features (®,4). Local features have a single-hop scope. This
means that they only capture the relationship of a node with its direct neighbors.
Global features in contrast have a multi-hop scope and represent relationships of
one node with all other nodes of a graph. The reason for this distinction is that
we wanted to capture both, direct and indirect behavior behavior of a malware, as
e.g. caused by malware child processes or hijacked benign processes.

99



5. Metric-based Detection

5.1.2.2. Local Features (9;)

To define the features, we need some auxiliary notation. Function dy; : (N x N x
G) — R with ¢ returns the shortest path between two nodes in a graph, where
Y : E — R with ¢(e) = A(e, size) defines the edge distance, or cost, i.e. the
amount of data transferred via this edge.

1. Entropy ¢' € ®, computes the normalized entropy of the distribution of sizes
of all outgoing edges of a process node n € N. The entropy captures the uni-
formity of the distribution of percental flows of all outgoing edges of a node
n.

Rationale: Viruses like Parite infect other executable binaries or processes by in-
jecting or appending their own binary image. The respective subgraphs tend to
have a comparably uniform distribution of specific features of outgoing edges,
because the majority of triggered events by that malware are targeted at the in-
fection with roughly the same size of the events as consequence of them relating
to reading or writing the same binary image.

Computation: Let 5 = (s1,...,5;) and e; € out(n) in s; = % Then we

e/ €out(n)
k

=Y sixlog(si)

. = = i=

define: ¢!(n,G) := NE(8') where NE(3) := e
2. Variance ¢? € ®; expresses the statistical population variance of the distribution
of a certain edge feature for all outgoing edges of a node n € N. A low statisti-
cal variance indicates that most of the elements of the distribution elements are
close to the statistical mean, whereas a high variance indicates a spread of ele-
ments. Due to its similar focus on uniformity of underlying input distributions,
the variance feature is closely correlated with the entropy feature. First evalua-
tions indicated, however, that the entropy metric performed comparably badly
if a node has only a few outgoing edges, but better for larger sets of outgoing
edges. The variance metric seemed to exhibit exactly the inverse characteristics.

Rationale: The motivation is similar to that for entropy: malware often exhibits
outgoing edge distribution characteristics different from benign ones.

Computation:

ZeEout(n) (We) - m Ze’Eout(n) ¢<6/))

2 n =
#*(n. C) fout(n)

100



5. Metric-based Detection

3. Flow Proportion ¢} € ®; captures the proportion of a certain type of outgoing
data flows of a node n € N w.r.t. all outgoing flows of that node. The type
of a flow is determined by the target node’s type of the outgoing edge. We
define different variants of the proportion feature that consider different edge
attributes.

Rationale: Malware processes often exhibit different flow proportion characteris-
tics than goodware. Examples include ransomware or virus processes that have
an irregularly high percentage of outgoing edges that point to file nodes, as they
either encrypt several sensitive files, or infect all executable binary files on the
hard disk.

Computation: Let t € { Process, Registry, File, Socket}.

(e)

e=(src,dst)€out(n),\(dst,type)=t

> Y(e)

ecout(n)

¢3(n,G) =

5.1.2.3. Global Features ($,)

Global features represent the relation between one node and—possibly all—other
nodes of a graph. In contrast to local features, capture the importance of one node
within the overall graph. Note that a crucial feature of global features is the fact
that the weight of edges (given by the size of data flows between them) is con-
sidered when computing the shortest path between nodes (given by the function

(€)).

1. Closeness Centrality ¢! € ®, for a node n € N represents the inverse of
that node’s average distance to all other nodes of the same graph. A high
closeness centrality indicates that the respective node is closely connected to
all other graph nodes [108].

Rationale: High connectivity with other nodes indicates a node manipulat-
ing or infecting other system resources like processes or executable binaries.
Such behavior is typical for viruses like Parite that replicate by infecting
other processes and binaries. This leads to a close connectivity of the cor-
responding malware process node with other process and binary file nodes.

Computation:
N[ -1

dy(n,n', G)
n’€N\{n}

¢4(n’ G) =

101



5. Metric-based Detection

2. Betweenness Centrality ¢° € ®, of a node n € N represents the relative
portion of all shortest paths between all possible pairs of nodes of a graph
that pass through that specific node n. A high betweenness centrality means
that one specific node is part of a multitude of “communications” between
nodes [108].

Rationale: This metric captures how often a process is part of a multi-step
interaction or data flow between other system resources. This is useful to
identify malware aiming at man-in-the-middle attacks to e.g. intercept the
communication of a benign process with a socket, or to manipulate the infor-
mation that a benign process reads into memory, to e.g. infect that process
with malicious code at runtime. We observe such behavior for backdoors,
or more specifically, information-stealers. The respective malware processes
typically have a higher betweenness centrality than benign process nodes.

Computation: The function sp(z,y, G) returns the number of shortest paths
between the nodes = and y in a graph G; sp.(z,y,G) the ones that pass
through node z.

spp(n’,n", Q)

¢5(n7 G) = n’, ’I’Z,/7 G)

n’ 0/ €N:n#n!#£n/ Sp(

5.1.2.4. Training and Model Building Phase

Using the above described QDFG-specific graph metrics we can now establish
generic statistical behavior profiles for the discrimination between benign and po-
tentially malicious process nodes in a graph. As sketched before, the training pro-
cedure consists of four activities: i) event log generation; ii) graph generation;
iii) feature extraction; iv) classifier training. As the first data retrieval and pro-
cessing steps exactly resemble those presented in Section 5.1.2 we omit a detailed
description here. We instead directly jump to the point right after generation of
the baseline QDFGs that capture the full system behavior of a monitored system.

5.1.2.5. Reachability Graph Generation

As explained in the introduction, our metric-based detection approaches demand
a more controlled generation of the training and detection data. We thus first intro-
duce a pre-processing step before continuing to describe the actual training phase
of our approach.

In order to reduce noise and instead of directly using the complete system be-
havior QDFG for training, we generate so-called reachability graphs for all process
nodes in the base QDFGs. Such reachability graphs contain all nodes and edges
that are directly or indirectly reachable form the starting process node.

102



5. Metric-based Detection

By this means we ensure, that the training graphs only contain activities that are
actually triggered by a certain process or of processes that it directly or indirectly
influenced, ignoring all activities that are conducted by non-related processes.

With the so obtained process-centric reachability graphs we then populate the
training graph repository to be used by the subsequent feature extraction step.

5.1.2.6. Feature Extraction

The feature extractor correspondingly computes all features, i.e. the graph metrics
described in Section 5.1.2.1 for all process nodes of the reachability graphs in the
training graph repository. By this we for each process node obtain a set of feature
values that we obtain when evaluating the respective graph metrics on the reach-
ability graph of that process node. Recall that we labeled the known malicious
process and thus also the corresponding graph nodes. We are hence able to la-
bel the resulting process node features as belonging to a known malicious/benign
process, which is a necessary precondition for later training a supervised machine
learning algorithm.

5.1.2.7. Classifier Training

After the feature extraction phase, we are now set to feed the obtained features
into a supervised machine learning algorithm for training.

To this end, we construct a feature vector for each process node of the training
set. Each element of this vector is one of the considered QDFG metrics from Sec-
tion 5.1.2.1, plus one label element representing the known classification (benign
or malign) of the respective process. Each feature vector is thus of size |®| + 1.

We can thus write the resulting training data sets as matrices, where the columns
represent the different used graph features gf)fp € ® together with a distinct process
class label column £ := {malicious, benign} that represents whether the respective
feature set corresponds to a malicious or benign node. The labeling function [ :
N — £ maps such a label to a node. Each row represents the feature values of one
specific process node sample A(n;, qb@ with n; € Niypgin, With b = | Nypgin|, the set
of training process node samples. Correspondingly, the training data generation
function gen : 2V — T generates a training data matrix t € T for a given set of
training process nodes:

Mny,dy) oo M, y)  Um)
gen(Ntrain) =
rn,d)) -+ Ann, @) 1(my)

103



5. Metric-based Detection

Note that we only compute feature vectors for process nodes as we are solely in-
terested in determining whether a specific process that originated from a executed
binary is malicious or not; we thus do not classify a binary itself, but its runtime
representation, i.e. the respective process or its children. By examining the reach-
ability graph associated with a node, it is possible for analysts to investigate the
root cause of infection, as discussed in more detail in Appendix A.

Before coming to the training procedure we need to perform some over-sampling
steps to balance the ratio between malicious and benign samples in the training
data set. Unless the training data roughly contains the same amount of malware
and goodware samples, an over-sampling is necessary to prevent a training bias
due to imbalanced training sets. Such a training bias often happens for imbal-
anced training data sets that do not contain roughly equal amounts of samples
for all to-be learned classes, as many machine learning classification algorithms
tend to put overly much emphasis on the majority class as they try to reduce clas-
sification error while widely ignoring the distribution of classes among all sam-
ples. Such a bias can easily lead to overfit models that perform well in classifying
majority classes but perform bad with respect to accurately classifying minority
classes [31]. This imbalance in class distribution, often referred to as base-rate fal-
lacy [2], is a typical problem for machine learning based intrusion and malware
detection approaches and limits transferability of evaluation results obtained in
lab experiments to reality. By introducing a dedicated over-sampling step into our
training procedure we try to at least partially tackle these problems.

In order to prevent these biases, we apply the Synthetic Minority Oversampling
Technique (SMOTE) [31] to all training feature sets. The basic working principle
of SMOTE is an over-sampling of the minority class (malicious process nodes) by
generating synthetic minority class samples. The over-sampling of the minority
class is performed by performing a nearest-neighbor search to obtain close neigh-
bors of minority class members, randomly selecting a subset of those neighbors,
and finally randomly generating a defined number of synthetic minority samples
on this basis.

Simplistic over-sampling tends to modify training data in a way that leads to
over-fitting of generated classification models as consequence of altering their
statistic properties. SMOTE in contrast does not alter these statistic properties due
to the applied randomization and balancing steps [31]. After synthetically over-
sampling the minority class data, which in our case is are the goodware samples,
we feed the obtained feature data into a machine learning classification algorithm
for training. We can express this training phase as a function 7 : T'x M — C
that takes a training data matrix t € 7" and applies a supervised machine learning
algorithm m € M on that data to generate a classification model ¢ € C : R¥ — £
that is modeled as a function that returns a process node label for a given set of
k = |®| feature values.

104



5. Metric-based Detection

Considering the high number and diversity of the value space of the selected
training features we need a machine learning algorithm that is robust towards
training set diversity and scales well with respect to the number or training fea-
tures. After initial attempts to use simplistic classifiers like naive Bayes with poor
performance in terms of detection precision, we explored more complex algo-
rithms like support vector machines and meta-learners. Particularly good results
were achieved with the Random Forest algorithm [18]. Random Forest is a meta-
or ensemble-learner, which means that it uses several distinct, potentially impre-
cise, classification models and merges their decisions to form a more precise com-
bined decision. More specifically, the Random Forest algorithm constructs a multi-
tude of individual decision trees, called decision forest, based on random selection
of limited feature subsets of the overall feature space.

Due to this randomized feature selection, the Random Forest algorithm is able
to generate a huge variety of distinctly built decision trees. Depending on the
algorithm’s parameters and used feature sets, the generated decision trees in con-
sequence are generated based on completely different feature sets. To infer stable
and precise prediction from these decision trees, the Random Forest then performs
a majority vote on the prediction results of all trees. Due to the resulting inherent
distribution of learning and classification error, the Random Forest algorithm is
particular suited for classification problems with high feature diversity. We thus
identified Random Forest as ideal candidate for the classification problem behind
our detection approach. For this reason the last step of the training procedure is
to feed the sanitized and over-sampled feature set as training data into a Random
Forest learner to generate respective prediction models. These generated models
are then persistently stored into a classifier model repository as basis for subse-
quent detection steps.

5.1.2.8. Detection Phase

We now have a classifier that can predict the class (malicious or benign) of an
unknown process node based on its characteristic local and global graph features.
In a nutshell, for the detection phase we thus only need to build the graph of
a potentially infected system at runtime based on captured events, compute the
characteristic features for each process node in the graph, and match the resulting
feature set against the classifier.

Like for the training phase, we intercept relevant system events at runtime, in-
terpret them in terms of their data flow semantics, and then build the correspond-
ing (reachability) QDFGs for each process. We then compute the characteristic
feature sets for the process nodes of the generated reachability graphs and match
them against the classifier, using the classification model that was generated as
result of the training phase.

105



5. Metric-based Detection

This detection step is modeled as a function 6 : (N x C) — L that determines
the process label for a graph node n € N, using a given classifier ¢ € C: §(n,c) :=
¢(5) where § = s1,...,s;,and each sj corresponds to a feature value computed
by one variant of A(n, ¢},) described in Section 5.1.2.1 for some i and ¢}, € 9.

Consequently, after doing this, all process nodes of these reachability graph are
classified into benign or potentially malicious ones.

5.1.3. Evaluation

For evaluating our deductive metric-based detection approach we implemented
the detection framework depicted in Figure 5.2 and executed it on our standard
evaluation data set, using the same evaluation setup as described in Section 4.1.3.

For the training phase we used a the RandomForest which we configured to
build a forest of 10 distinct decision trees, each using a different randomly deter-
mined subset of the features described in Section 5.1.2.1.

Just like for our previously introduced detection approaches we were mainly
interested in evaluating the general effectiveness (RQ1) and in particular the po-
tential accuracy boost that we get from using quantitative data flow properties
(RQ2). Also we aimed at evaluating the efficiency of our approach; in particular
with respect to the expected performance increase due to the, in comparison to
sub-graph isomorphism, inexpensive computation of graph metrics.

Differently to the evaluations of our pattern-based detection approaches we
were furthermore interested in assessing our initial hypothesis of our approximate
similarity checks through graph metrics leading to an significant improvement in
robustness towards behavior obfuscation.

5.1.3.1. Effectiveness

To evaluate the detection performance of our approach on the obtained feature set
we thus first performed ten times a 10-fold cross validation test. For this tests we
split the entire feature set into two parts, using 90% of the set for training and the
remaining 10% for testing. The sets were randomly generated and the splitting
repeated 10 times for each test to limit bias from specific set compositions. For
each run we built a classification model on basis of the training data and used it
for classifying the remaining test set.

Table 5.1 (a) depicts the average effectiveness quality metrics of the cross validation
experiments. As we can see, the deductive metric-based approach at average can
correctly detect 98 % of the provided malware set with a low false positive rate
of only about 0.5%. The low standard deviations furthermore indicates a good
stability of the results.

106



5. Metric-based Detection

] H a) Real \ b) Fixed \ ¢) Random ‘
Avg. Det. Rate || 0.980 0.980 0.952
(Std. Dev.) (o0 =0.005) | (6 =0.006) | (o =0.009)
Avg. FP Rate 0.005 0.009 0.011
(Std. Dev.) (0 =0.003) | (¢ =0.004) | (¢ =0.004)

Table 5.1.: Effectiveness Quality Metrics

The Receiver Operator Characteristics Curves generated on the basis of the per-
formance of the trained classifiers furthermore revealed an average AUC of 0.984.

This result already answers research question RQ1 for the deductive metric-
based detection approach in that sense as we could show that our concept of us-
ing approximate metric-based profiling on QDFGs indeed leads to highly accurate
detection results. Given these encouraging results we then next wanted to inves-
tigate the concrete influence of the quantitative data flow aspects encoded within
our QDFGs on the overall detection accuracy to answer research question RQ2.

To evaluate our hypothesis, that the consideration of the actual quantitative data
flow information within a QDFG has a significant impact on the effectiveness of
the classification, we performed two more tests. For the first test we replaced the
real quantities associated to the edges of the QDFGs with a globally fixed value of
1. For the second test we performed the edge quantity replacement by associating
varying random quantities to the edges. With this we effectively destroyed the
inherent quantitative information of the QDFGs. For both experiments we again
performed 10-fold cross validation tests to ensure stability of the results. Table 5.1
(b) and (c) depicts the average detection and false positive rates for both settings.

To calculate the relative impact of quantities on the detection effectiveness we
divided the false positive and false negative rate (which is the dual of the detection
rate) for the fixed and randomized quantities experiment by the respective rates
of the experiment with the real quantities.

As we can see, fixing the quantities to a constant value increases the false posi-
tives by a factor of 1.8 (:332). For the randomized quantities experiment we could
observe an even bigger loss of effectiveness. Here the false positives increased by a
factor of 2.3 (%), while also the false negatives increased by a factor of 2.4 ( 1::323
with respect to the experiments with the actual quantities.

These observations thus support the hypothesis about the utility of quantita-
tive information for malware detection and answer our research question RQ2 in
that considering quantitative data flow information for detection indeed improves
classification accuracy. To further fortify this conclusion, we verify the statistical
significance of these finding with a standard two-tailed t-test on the detection and
false positive rates of the different experiments.

107



5. Metric-based Detection

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Detection Rate

Cridex
Zbot

>
<
o
-
©
o

Russkill
Harebot
WinWebSec
SmartHDD
SecurityShield
Ramnit
RansomNoaouy
SpyEye
Cleaman

Figure 5.3.: Detectability of new malware

The resulting p-values were all far below 0.01%, which indicates a high statisti-
cal significance of our observation.

For evaluating our hypothesis that our idea of approximating graph similarity
with graph metrics indeed leads to detection models that cater well to variations
in malware behavior, i.e. that we are able to detect new malware, we performed
an additional classification experiment.

For each experiment run we split our data set into two parts where one. The first
part, which we used for training, contained all goodware samples and the samples
of all malware families except for one. The second set contained all samples from
the remaining family and was used as test set. To avoid categorization bias we
further only considered those families whose samples were all executable in our
evaluation environment. This strategy ensured that the training set did not contain
any samples from the same family that was used for testing. In consequence the
classifier could not gain any knowledge about the to be classified malware family.

With this test procedure we simulated the real-world scenario that our approach
faced a sample from a new malware type that was never seen before and thus
could not be used for training the detection model.

Figure 5.3 depicts the detection rates that could be achieved for the different
malware families. Each bar shows the percentage of all malware samples of a
specific family that could be detected using a classifier that was trained on all
samples from the remaining malware families.

As we can see, our approach in all cases was able to detect samples from un-
known malware families. On average our approach was able to correctly identify
73.68% of the new malware samples; some malware families could even be classi-
fied with 100% correctness.

108



5. Metric-based Detection

These results for this experiment supports our hypothesis that our approach
is capable of detecting new unknown malware and goodware. We account this
effect to the fact that most modern malware shares common distribution and initial
infection functionality, e.g. by using droppers and connecting to command-and-
control servers. Our approach then is likely to identify these common generic
behavior while abstracting from malware family specific noise. This assumption
is also reflected in the fact that for a few malware families we were not able to
detect any sample without prior knowledge of the behavioral characteristics of
that family. In this cases the behavior of the malware samples was too different
to those used for training, e.g. in consequence of entirely different infection and
persistence functionality.

Nevertheless, with these experiments we indicated a certain robustness and
generalizability of the obtained detection models towards noise in the QDFGs. In
the following we will extent this investigation to also assess the prediction stabil-
ity of our approach on malware that adds noise and thus tampers with QDFGs by
intentionally obfuscating and thus randomizing its behavior and by this hopefully
answer our research question RQ4.

109



5. Metric-based Detection

5.1.3.2. Obfuscation Resilience

Approaches that obfuscate the binary image of malware through build-time code
encryption and run-time decryption or code diversification barely have any in-
fluence on the detectability through behavior-based detection approaches as such
code transformations typically do not alter the externally observable program be-
havior. In consequence, by construction our approach, like almost all other behavior-
based detection approaches, is likely to be widely robust to such used code obfus-
cation. This assumption is further supported by the ability of our approach to
detect variants of malware families that were obfuscated through code transfor-
mations. Our evaluations for instance show that we were able to detect 96 of 101
variants of the Harebot trojan from our data set, which is known to employ differ-
ent forms of code obfuscation.

On the other hand, if malware e.g. non-deterministically executes bogus non-
malicious activities or randomly alters between semantically equivalent system
calls to achieve the same behavior, it is intuitive to think that it can effectively trick
common behavioral approaches that base on n-grams profiling and re-identification
as consequence on the unpredictable diverse resulting n-grams. The same holds
for most call-graph based approaches as call-graphs can be easily obfuscated by
altering or reordering system calls.

Our approach is by construction more robust against call reordering or substitu-
tion approaches. This is because reordering of system calls does not alter the cor-
responding QDFGs, and because semantic substitutions typically exhibit similar
data flow properties that result in similar QDFG updates. Moreover, the injection
of bogus calls can change QDFGs, in particular if new edges are created in conse-
quence of e.g. previously untouched system entities being read or written to, or if
certain operations are repeated such that the edge weights are altered.

To empirically evaluate the absolute effects of different types of behavioral ob-
fuscation techniques on the effectiveness of our approach we thus set up a series
of additional experiments.

First, we picked a set of 100 malware and 100 goodware samples as baseline for
our experiments. To reason about the obfuscation resilience of our approach and
related behavioral detection approaches like n-gram based ones we then step-wise
applied behavioral obfuscation transformations on the call traces of these samples
to achieve two typical types of behavior obfuscation, namely re-ordering of calls
and injection of bogus calls.

We did so by developing a behavior obfuscation tool [6] and applying it on the
malware samples of our evaluation set. This tools obfuscates commodity malware
by dynamically instrumenting its behavior at runtime to force it to randomly re-
order its issued system calls or injecting new bogus ones that are not part of the
core behavior.

110



5. Metric-based Detection

By this we could effectively resemble the behavior of malware that actually im-
plements dedicated functionality to obfuscate its behavior.

To investigate the effect of increasing degree of behavior obfuscation, we re-
peated these obfuscation steps 360 times with different configurations for call re-
ordering and injection probabilities, as well as different upper bounds for the
amount of to be reordered or injected calls. We represented the degree of obfus-
cation as Levenshtein Distance between the obfuscated and the non-obfuscated
baseline call traces. More specifically, we computed the average number of in-
sertions, deletions, and substitutions needed to transform the non-obfuscated call
traces into the respectively obfuscated ones. To also get a relative comparison with
other behavioral, raw system call based detection approaches, we conducted these
experiments with measuring both, the detection effectiveness of our approach and
the effectiveness of a typical behavioral detection approach based on n-grams of
unordered system calls without arguments with varying n-gram sizes as e.g. dis-
cussed in [24].

As we can see in Figure 5.4, the ability of the n-gram based approach to cor-
rectly identify malicious processes significantly dropped with increasing obfus-
cation degree. In particular, higher-order n-grams seem to be more sensitive to
behavioral obfuscation than lower-order ones. In contrast to n-gram based ap-
proaches, our approach seems to be considerably more robust and stable towards
behavioral obfuscation. While the effectiveness of the n-gram approaches quickly
dropped quadratically and lost prediction stability when obfuscation transforma-
tions where applied, the effectiveness of our approach at the same time remained
rather stable and only slowly dropped linearly.

In sum, our evaluation indicates that we are rather robust with respect to re-
alistic behavior obfuscation such as random bogus call injection or reordering,
whereas we could show that common n-gram based approaches are considerably
challenged by such obfuscation techniques. This to some extent answers our re-
search question RQ4 in that, at least with respect to the analyzed obfuscation op-
erations, our approach is indeed widely robust towards behavior obfuscation. In
a more recent publication, co-authored by the author of this thesis, we could fur-
ther extend this evaluation to a broader variation of detection approaches for all
of which we could reveal the sensitivity towards behavior obfuscation [6].

111



5. Metric-based Detection

1,00
|}
0,95
% ® 3-grams
-4 0,90 4-grams
c ® 5-grams
-g + 6-grams
© 0,85 7-grams
° ——Poly. (3-grams)
(=] Poly. (4-grams)
0,80 | —Poly. (5-grams)
——Poly. (6-grams)
0,75 Poly. (7-grams)
200 220 240 260 280 300 320 340 360
Obfuscation Degree / Levenshtein Distance
(a) n-gram classifier
1,00
. 3 -
00 ¢ o * * e @ *
o om0 o o w o 00 ORI G0B 00000 W %O WN e NS e o
4,0'95 LR R T A e Pason oy CBCR K o ad s o
g aod
‘(-I: e “NO“‘“’O“:OO ‘:‘00‘0 *» *® o e
o 0,90 LN * e PR ]
s
=i
3 0,85
-
]
[=]
0,80
+ QDFG
0,75

200 220 240 260 280 300 320 340 360
Obfuscation Degree / Levenshtein Distance

(b) QDFG metric classifier

Figure 5.4.: Obfuscation experiments

5.1.3.3. Efficiency

The final set of experiments to evaluate our deductive metric-based detection ap-
proach aimed at assessing its computational efficiency, i.e. answering research
question RQ3. Besides the absolute efficiency of the approach we furthermore
wanted to asses, whether or not our initial assumption holds in that the metric-
based similarity approximation leads to a faster classification than when using
expensive sub-graph isomorphism checks.

To this end we individually measured the computational effort that was spend
for computing our features, i.e. graph metrics, on the different-sized QDFGs in
our evaluation data set, as well as the overall effort to train a classifier on them.
Furthermore, we also measured the absolute computation effort for matching a set
of QDFG features against a trained classifier to get a classification prediction.

112



5. Metric-based Detection

1800

® LocalMetrics

+ GlobalMetrics * o
1600

1400 3

1200

1000

Time [ms]

3 @w® ¢ o @
B smE = =8
300 350 400 450 500

Figure 5.5.: Computation time vs. graph complexity

First of all, we measured the time needed to create the actual detection clas-
sifier which consists of the time needed to calculate the features for all training
graphs (454314ms) and the time needed to train the RandomForest classifier on
them (288ms). Note that the resulting total training time of about 7.6 minutes only
needs to be invested once and does not contribute to the overhead during the de-
tection phase.

As we can deduce from Figure 5.5 the overall detection time of the deductive
metric-based approach at average remained below 39ms. The fact hat the biggest
overhead is induced by global metric computation is not surprising, as most graph
algorithms such the used centrality metrics have a theoretical complexity of O(n?)
to O(n3), with n being the number of nodes in the graph [16]. On the other hand,
the overhead for computing local features remained at an constantly low level
as those features only consider a one-hop neighborhood. Finally, the overhead
induced by matching the generated graph features against the classification model
was below the evaluation precision threshold of 1 ms and thus ignored for this
analysis as it has no noticeable impact on the overall overhead.

113



5. Metric-based Detection

5.1.3.4. Discussion and Threats to Validity

Naturally, the results and insights gained from our experiments need to be put in
the context of our study. First of all the evaluation results were obtained on the
basis of a proof-of-concept prototype with event logs generated in a controlled lab
environment. Therefore, as for all other machine learning based malware detec-
tion approaches, the obtained insights might not generalize to the application of
our approach in real-world settings.

We tried to limit the risk of over-fitting the model to specific sub-sets of the
training data by pro-actively diversifying the training set by selecting a wide and
diverse range of popular malware and goodware samples for our training set. Fur-
thermore, the fact that our cross-validation results show a very low standard de-
viation supports the assumption that we did not over-fit our models.

Furthermore, our deductive metric-based approach also suffers from the same
limitations of generalizability as all other approaches that are based on data ob-
tained from executing malware in controlled sandbox environments. It is known
that modern malware often includes functionality to detect virtualization. There
hence is a risk that we train our classification models on unrealistic malware be-
havior and thus are not able to detect their behavior in real-world scenarios.

Because current malware still mainly focuses on avoiding detection by signa-
ture-based approaches, it rarely employs advanced behavior obfuscation tech-
niques. Although we applied as much randomization as possible for our ob-
fuscation it can of course not be excluded that our artificially provoked obfus-
cations do not adequately reflect real-world obfuscation techniques, or that adver-
saries might come up with more complex behavioral obfuscation operators and
advanced mimicry attacks (for instance by learning benign flows and trying to re-
produce them). Also, for this study we logged malware behavior for a fix period
of time, which might invalidate our result for purposefully stalling malware.

5.1.4. Related Work

Besides the obvious differences between our work and related behavior-based de-
tection approaches in that we are the first and so far only to use quantitative data
flow analysis for detection purposes there also exist few other approaches that also
proposed to use graph metrics for malware detection.

The work of Jang et al. [68] also leverages graph metrics to discriminate malware
from goodware. In contrast to our work, they base the computation of those met-
rics on system call dependency graphs, while our model is based on quantitative
data flow graphs. As we could show, this abstraction improves detection accuracy
and increases the robustness towards behavioral obfuscation which gives us better
resilience than approaches that directly base on raw system calls.

114



5. Metric-based Detection

The work of Mao et al. [92], also published after the conceptual and implemen-
tation work on our approach was done, also leverage graph metrics on system
entity dependency graphs for malware detection. The main difference between
our approach and theirs again is that in contrast to us they do not incorporate any
quantitative flow information and consider metrics from a integrity and confiden-
tiality perspective rather than using them to approximate graph similarity.

In sum, the main technical difference between our work and related contribu-
tions is that we leverage QDFG features rather than raw system calls or system
entity dependency graphs. This makes our approach fast and robust against com-
mon types of behavioral obfuscations, and, due to the additional quantitative di-
mension, we achieve a good detection precision.

5.1.5. Discussion and Conclusion

Summarizing the main contributions and findings of this section we have pre-
sented a novel approach to perform graph metric based malware detection on the
basis of quantitative data flow analysis. By profiling quantitative data flow graphs
with semantically justified graph metrics we propose to establish an approximate
notion of graph similarity. Based on this notion of approximate similarity and a
machine learning algorithm to accordingly learn similarities and differences be-
tween metric profiles of known malicious and benign QDFGs we are then able to
accurately classify unknown samples.

In conclusion, we again showed the general utility of quantitative data flow
analysis for malware detection, but this time using a more advanced metric-based
instead of a isomorphic pattern-based detection technique, which answers our re-
search question RQ1. Furthermore, we showed that our deductive metric-based
approach is more than two times faster than our fastest pattern-(isomorphism)-
based approach (RQ3). Also we could again show that using quantitative data
flow information for computing our graph metrics significantly boosts detection
precision (RQ?2).

Our evaluation furthermore showed that the proposed approach is robust to
certain classes of behavioral obfuscation: by construction the order of system calls
is irrelevant, since they produce the same QDFGs, and more interestingly, random
injection of system calls that potentially modify both the structure and the orig-
inal quantities does not significantly alter the detection effectiveness either. This
answers our research question RQ4 as we could show the superior robustness of
our approach with respect to other common behavior-based detection models.

115



5. Metric-based Detection

5.2. Inductive Metric-based Detection

Strategy

Deductive Inductive
Pattern-based : Pattern-based

Deductive Inductive
Metric-based : Metric-based

Baseline Concept

5.2.1. Introduction

In the last section we showed the general utility of QDFG profiling and approx-
imate similarity checks using graph metrics for behavior-based malware detec-
tion. In particular we showed that using a supervised machine learning classifier,
trained on features obtained from computing a small set of generic graph metrics
on QDFGs of known benign and malicious samples, allows us to classify unknown
malware with high accuracy. Furthermore, our evaluations indicated that metric-
based detection on QDFGs is faster than using pattern-based detection and that
the deductive metric-based detection approach is robust towards common types
of behavior obfuscation.

While the deductive metric-based detection approach in comparison to the pattern-
based ones already improved upon detection accuracy, it still suffers from a couple
of limitations that, as we will later see, hinder it from exploiting the full potential
of metric-based QDFG profiling.

The first limitation is that the deductive metric-based approach leverages only
slightly modified general-purpose graph metrics for profiling. This is, although
we found semantic justifications for them, they originally were not designed for
being used in the context of malware detection and mainly borrowed from related
fields like social network analysis.

116



5. Metric-based Detection

Considering the strong influence of the selection of graph metrics on the overall
detection process we thus argue that it might be more reasonable to, instead of
using generic metrics for profiling, use metrics that were specifically devised to be
used in the context of malware detection. By doing so we expect to achieve higher
detection accuracy.

Another limitation of the deductive metric-based detection approach is that it
uses fixed sets of metrics for detection. In principle it is possible for a malware to
infer the basic functionality of a classifier by iteratively probing it and then devise
targeted countermeasures to confuse it or circumvent detection [61, 11]. The more
predictable and stable a classifier is, the easier it also is to conduct such counter-
analysis techniques. Intuitively, we deem it to be feasible for an attacker or a mal-
ware to probe a classifier that operates on data that was generated from applying
a fixed number graph metrics on QDFGs and thus infer or at least approximate its
decision function with sufficiently high precision to hamper detection. Especially
when considering that the form and structural properties of the profiled QDFGs
are largely under control of an attacker, i.e. a malware with built-in behavior ob-
fuscation and detection evasion mechanisms, or even anticipating that malware
developers would get hands on the exact specification of the used graph metrics,
circumventing fixed-metric based detection approaches to us at least theoretically
seems feasible.

To tackle these limitations we again follow our basic research methodology of
first assessing the general feasibility of a detection concept before exploring its
conceptual boundaries. This means, in this section we propose an inductive ex-
tension to the deductive metric-based detection approach that instead of using
a fixed set of generic graph metrics automatically generates highly characteristic
and arbitrarily complex QDFG metrics that a-priori are designed to be useful in
a malware detection context. With this we mainly pursue the goal of further im-
proving upon detection accuracy, robustness towards behavior obfuscation, and
in particular counter-detection techniques based on machine learning poisoning.

The main motivation behind this inductive extension to the metric-based detec-
tion approach is an analogy that we, like others, see between computer viruses
and viruses in biology in that both try to evade detection by continuously evolv-
ing and adapting its behavior and physical representation [138]. In biology a com-
monly employed and well-proven successful solution to thwart this situation is
to use continuously evolving antibodies to fight continuously mutating viruses.
More precisely, through continuous exposure to viruses biological organisms also
continuously evolve and adapt antibodies to fight them and in a sense remember
which antibody worked well against which virus. The basic idea for our inductive
metric-based approach in essence is thus to mimic this concept and adapt it to our
malware detection context.

117



5. Metric-based Detection

We thus propose to also use a concept that malware often employs to stay below
the radar, i.e. evolution, for the large-scale generation of sets of diverse targeted
QDFG metrics, which we call FrankenMods. By continuously generating and evolv-
ing new FrankenMods we can adapt our metric-based detection concept to better
cater to changes in the malware landscape and find locally optimal performing
sets of detection model, i.e. sets of graph metrics that optimally describe behavior
specificities of given training sets of malware.

The evolutionary and dynamic aspect comes into play when we, in contrast to
our deductive metric-based approach and related metric-based approaches [68, 92]
that rely on fixed sets of graph metrics, automatically generate large and diverse
sets of graph metrics that through evolution and continuous effectiveness assess-
ment by design are ensured to yield high detection effectiveness.

The rationale for this approach is that, while the metrics used in these approaches
usually come with some intuition, their choice essentially is arbitrary. Usually,
it is not known if there are metrics that yield even better discrimination power.
The identification, derivation, and evolution of “better” specialized metrics is then
subject of this section, i.e. main goal of the proposed inductive metric-based ap-
proach. In a nutshell, we obtain these specialized metrics by a genetic program-
ming scheme that first randomly generates sets of metrics, the initial Franken-
Mods; then evaluates their fitness w.r.t. their ability to discriminate known mal-
ware from goodware; and then continuously evolves the best candidates. We see
reason to assume that the combination or mutation of already well performing
(Franken)models, i.e. sets of — in terms of malware detection — already well-
performing graph metrics, potentially yields even better models. The genetic
programming scheme hence evolves the best-performing models of one evolu-
tion round by applying various mutation and combination operations. In the end,
this produces a (at least on the training set) optimally performing diverse set of
detection models. For sake of brevity, we will use the terms “FrankenMod” and
“model” interchangeably in this section.

Malware detection, i.e. finding detection models with good effectiveness, can
be interpreted as an instance of the more general optimization problem of finding
a function (i.e. detection model) that optimizes certain quality characteristics (i.e.
detection effectiveness). From this perspective we consider genetic programming
useful to automatically define and optimize effective malware detection models.
In sum, by replacing the fixed detection metrics from the deductive metric-based
approach by automatically generate and by-design accurate and diverse ones we
aim at further improving the overall accuracy of our metric-based detection con-
cept and substantially improve upon robustness towards behaviorally obfuscated
malware.

118



5. Metric-based Detection

In sum, the contributions of this approach thus are as follows:

* To the best of our knowledge this approach is the first to use a genetic pro-
gramming scheme in the context of behavior-based malware detection.

¢ The inductive metric-based approach is able to automatically generate de-
tection metrics that in absolute terms are up to 6.5% more effective than the
generic ones used by our deductive metric-based approach.

* Automatically generated sets of diverse graph metrics, i.e. FrankenMods,
are up to 9 times more robust towards certain types of behavioral obfuscation
than our deductive metric-based approach.

5.2.2. Preliminaries

Before diving in the description of the actual functionality and architecture of the
inductive metric-based approach we first need to briefly introduce some prelimi-
naries that are fundamental for the understanding of the subsequent parts of this
section. More precisely, in the following we briefly introduce the concept of ge-
netic programming and discuss its utility in the area of malware detection.

Genetic programming leverages concepts from genetic evolution theory for au-
tomatically generating algorithms that solve a defined task as well as possible [7].
Genetic programming specializes genetic algorithms in that it also builds on the
concept of a population item that represents a solution candidate to solve a de-
fined problem, and a fitness function to measure the quality of this solution, i.e.
how well a given population item solves the problem.

Similar to genetic algorithms, genetic programming also uses basic evolutionary
concepts like elite selection, mutation, and mating of population items. The under-
lying baseline assumption is that mutation and mating of already well-performing
items likely yield better performance. However, in contrast to standard genetic al-
gorithms where population items usually are inputs for a given function, typically
in the context of an optimization problem, for genetic programming the popula-
tion items are the functions, or algorithms themselves. Thus, while standard ge-
netic algorithms usually define and evolve solution candidates in form of inputs
to a defined function (fixed functions and variable inputs), genetic programming
typically does the inverse in that they define various functions as population items
which, given specific inputs, solve a defined problem (variable functions and fixed
inputs). Accordingly, in genetic programming, it is common to describe popula-
tion items, i.e. functions, as expression trees. In contrast, for genetic algorithms,
population items are usually represented by simple vectors of function inputs.
Both concepts leverage ideas from biological evolution.

119



5. Metric-based Detection

They mutate and mate different population items, i.e. solution candidates, with
the goal of continuously improving their ability to solve the given problem. The
oracle to assess the quality of a solution candidate is called fitness function, typi-
cally yielding one real number. By mutating and mating only the best-performing
population items in certain settings, such a scheme then can yield better and better
performing solutions to a problem without explicitly specifying how such a solu-
tion should look like. In that sense both concepts follow the same credo, i.e. “I do
not know how a good solution looks like, but I will recognize one when I see it”.

Genetic programming is an interesting concept to be used in the context of mal-
ware detection for the following main reason. Malware detection approaches are
nothing but complex functions that take certain characteristics of a potentially ma-
lign sample as input, e.g. system call traces for dynamic detection approaches or
PE header properties for static approaches. They output a classification of the
sample being more likely malign or benign. The classical malware detection prob-
lem can then be seen as an optimization problem where false predictions are to be
minimized and detection accuracy is to be maximized. With this observation the
relationship between the malware detection problem and genetic programming is
straight-forward: detection algorithms are the population items, and their detec-
tion effectiveness in terms of correct and incorrect classification decisions yields
the fitness function.

5.2.3. Approach

As our inductive metric-based detection approach is an extension to the deductive
metric-based approach, its initial and final processing steps are very similar to that
of the deductive metric-based approach. In a nutshell, with the inductive metric-
based approach we also use sets of graph metrics to profile QDFGs of known ma-
licious and benign samples to establish a fuzzy notion of malicious behavior in
term of characterisitc metric profiles. In contrast to our deductive metric-based
and other metric-based approaches from literature [92, 68] that built upon fixed
sets of manually defined generic graph metrics we aim at automatically generating
detection models, i.e. sets of highly specialized graph metrics, that by design are
effective and efficient for malware detection purposes.

To generate such models we use a genetic programming scheme that randomly
generates FrankenMods, i.e. sets of graph metrics; evaluates their discrimina-
tory power; and then mutates and combines the best-performing models to create
better-performing ones until a defined termination criteria is fulfilled. Just like the
generic graph metric of the deductive metric-based approach, FrankenMods are
then used to profile processes through characteristic feature vectors by evaluating
the metrics on the corresponding QDFGs.

120



5. Metric-based Detection

With these vectors we then train a supervised machine learning classifier that
allows us to classify vectors of unknown process samples as benign or malign. In
essence our inductive metric-based approach thus consists of the following steps:

1) Base Data Generation: Just like for all previously discussed detection approaches,
we first generate a set of full system behavior QDFGs that we build from
the system call traces that we get from executing known malicious and be-
nign samples in our modified malware sandbox. Like for the deductive
metric-based approach we then generate process-centric reachability graphs
for each baseline QDEFG to restrain the training data set to only encompass
behavior that is directly or indirectly related the the executed sample.

2) Model Candidate Generation: In contrast to the deductive metric-based ap-
proach we then do not use a fixed set of generic graph metrics for profil-
ing the reachability QDFGs but instead first create sets of randomly gener-
ated metrics, i.e. the model candidates, as simple functions over basic graph
properties. These metric sets, i.e. FrankenMods, are then applied on the eval-
uation QDFGs to yield numeric feature vectors that then in turn are used to
train a supervised machine learning classifier. Applying a standard cross-
validation scheme where we continuously split the evaluation data set into
non-overlapping training and test sets we then evaluate the individual de-
tection effectiveness and efficiency of each FrankenMod. The effectiveness
and efficiency results on the evaluation data set are then what makes up the
fitness function that we use for the subsequent evolution steps.

3) Model Candidate Evolution: Following the basic assumption of genetic pro-
gramming that mutating and mating population items, in our case Franken-
Mods, that already perform well with a high likelihood yield descendants
of better performance we then continuously evolve the initial model candi-
dates. The iterative evolution and fitness evaluation process then stops once
a certain termination criterion is reached and in the end outputs a set of lo-
cally optimal performing detection FrankenMods, i.e. sets of highly specific
and complex graph metrics, that then are used for the final detection process.

4) Detection: The detection process is very similar to the one of the deductive
metric-based approach in that, to classify a unknown QDFG, we first eval-
uate a FrankenMod, i.e. its graph metrics, on it to yield a numeric feature
vector. To get a classification for the analyzed QDFG we then match the ob-
tained feature vector against the classifier that corresponds to the Franken-
Mod used for generating is.

121



5. Metric-based Detection

) FrankenMod

o o o

o o o O O
O“Ob O'Q S O“O\o

(a) Metric

Figure 5.6.: (a) Metric as binary tree and (b) FrankenMod.

After a more elaborate discussion of the concept FrankenMods and the idea of
representing graph metrics as complex functions over graph properties we in the
following will elaborate on this training and detection procedure in more detail.

5.2.3.1. FrankenMods

As we have already seen in the discussion and evaluation of our deductive metric-
based approach, graph metrics are a useful means to approximate the similarity
of graphs and thus suitable to establish characteristic behavior profiles if a graph,
like our QDFG, model system or process behavior. As one metric in itself is usu-
ally not sufficiently expressive to distinctively separate malign from benign QD-
FGs, we introduce FrankenMods (FMOD) as core concept of this approach to group
multiple metrics in form of ordered sets. We call these sets of metrics FrankenMods
as they are —just like Frankenstein’s monster — created by “gluing together” differ-
ent metrics by means of an evolutionary scheme and then used as models to create
the actual feature vectors. These are used to train a machine learning classifier for
malware detection.

122



5. Metric-based Detection

Listing 5.1: Abstract Syntax in EBNFE.

FMOD = { N , METRIC };

METRIC = PROP
| METRIC , OP , METRIC
| Zt , OoP , METRIC
| METRIC , OP , ZT;
OP = "add" | "Sub" | "mul" | "div" ‘ "log" | "pow";

PROP = PROP_LOC | PROP_GLOB;

IO = "In" | "Out";

CS = "Count"| "Size";

GT = "Avg"|"Sum" |"Prod";

PROP_LOC = " I'_", 10, """, CS, "[",NODE_TYPE,"]";

PROP_GLOB = PROP_LOC , "[", Z* , GT, "1";

NODE_TYPE = "*"|"S"|"P"|"F"|"F_EXE"|"F_SYS"|"F_DLL"|"F_INI";

We define metrics as structures consisting of simple graph properties and con-
stants, composed by different algebraic operators (OP). Graph properties in this
sense capture specific information about the contextual relation between process
nodes within a QDFG and their direct or indirect “neighborhood”, that is, they
are functions I'(G, n) taking as parameters a graph G and a node n € G. Just
like for the deductive metric-based approach we also differentiate between local
properties (PROP_LOC) that capture the relationship of one node with its direct
one-hop neighborhood, and global properties (PROP_GLOB) that capture such in-
formation for a group of related process nodes, i.e. a process and its parent or
child nodes. We will discuss the syntax and formal semantics of such properties
in Section 5.2.3.2 in more detail.

Listing 5.1 provides the abstract syntax of a metric structure. Metrics can be
nested, thus yielding a binary tree with the nodes being constants, properties, or
operators. In order to have a wide range of different properties to define complex
metrics, we further extend them by having subscript and superscript parameters,
and to restrict them to only consider edges connected to certain node types.

Note that global properties are extensions of local ones, and take the distance to
the original node as a parameter. Figure 5.6 (a) shows the tree-representation of an
exemplary metric m = $#*¢[F_Eze] div G2 [P] mul T§4"[P] log 1§24t [P] which, as we
will see later, captures the relation of the amount of data read from .exe files by a
specific process and its child processes.

123




5. Metric-based Detection

Figure 5.6 (b) shows one FrankenMod which is a set of metrics of possibly dif-
ferent complexity and structure.

We now need to give semantics to the defined structures to apply FrankenMods,
i.e. sets of metrics, to nodes of QDFGs in order to obtain vectors of values that can
be used as input for a machine learning classifier. To this end, we introduce the
function eval : (FMOD x G x N) — R* that, for a given node of a given QDFG,
outputs a vector of real numbers by evaluating the metrics m; € M of the given
FrankenMod M on this pair. As it might happen that a particular metric is not
defined for the provided node-graph pair (like division by zero etc.), we introduce
the dummy value L. Formally, eval(M, G, n) := (s1,...,s), with

_ Jv ifv = eval(m;(G,n)) is defined

% 1 otherwise.

Function eval : (METRIC x G x N) — R evaluates a single metric on a given
node-graph pair by recursively evaluating the nested combinations of basic graph
properties that themselves return a real number for a given node-graph pair:

p(G,n) if m = pand p € PROP
eval(my,G,n) + eval(mg, G,n) if m = my add mo
eval(mi,G,n) — eval(mg, G,n) if m = mq subms
eval(m,G,n) := < eval(my, G,n) * eval(mg, G,n)  if m = my mul ms
eval(my,G,n)/eval(ma, G,n)  if m = my div ma

10Geval(ma,cn) (eval(my, G, n))  if m = my log ma

eval(ma,G,n)

eval(my,G,n) if m = my pow ms

with my, mgy € METRIC.

5.2.3.2. Graph Properties

Graph properties (PROP) are the basic facts that we can capture in terms of the
relationship between a node and its direct or indirect neighborhood. In a sense,
together with the introduced basic algebraic operators, properties can be seen as
atomic elements needed to define arbitrarily complex detection metrics. Facts in
this sense are variations of in-degree or out-degree of a process node, as well as
sums of data flows received by or sent to certain types of nodes. Properties map
node-graph pairs to real numbers: p € PROP : (G x N) — R.

Local properties (PROP_LOC) capture facts about the interaction of a process with
its direct, i.e. 1-hop, neighborhood. Global properties (PROP_GLOB) express the
same kind of facts but consider a multi-hop neighborhood of the respective node.

124



5. Metric-based Detection

This distinction is necessary as we are interested in both, the direct context in
which a process is operating, but also — considering that malware often establishes
chains of clone processes to distribute the actual malign behavior — the indirect
context that is given by its parent and child processes.

We can now assign semantics to both types of properties and give rationales
why we consider them relevant in the context of quantitative data flow driven
malware detection.

5.2.3.3. Local Properties

Local properties capture characteristics of the direct neighborhood of a process
node. Examples range from the number of child processes of a specific process,
i.e. number of successor process nodes, to data flow related properties like the
amount of data received from .exe-files, i.e. the sum of the size of all incoming
edges that originate from nodes that refer to .exe-files.

The names of local properties follow the schema in Listing 5.1 that reflects their
semantics. The structure determines whether the property expresses a fact con-
cerning the incoming (In) or outgoing edges (Out) of the to-be-profiled node. It
also determines whether the property expresses a data flow related fact (Flow) or
only a cardinal aspect (Count). Finally, the naming scheme also specifies if all (x)
incoming or outgoing edges of a node should be considered for computing the
property, or if the computation should be constrained to only consider edges that
are attached to certain type of nodes (Node_Type). The semantics of a local prop-
erty pl € PROP_LOC is generically defined as

Me, size)  if pl = D91
ecCE(Gn,t,In)

e, size) if pl = T2¢[t]

pl(G7n) ‘=4 e€CE(G,n,t,0ut)
|CE(G,n,t,In)| if prop_loc = D§ount[{]
|CE(G7 n, ta OUt)’ if pTOp,lOC = Fg?fgnt [t]

where C'E represents the adjacient edges of n connecting to nodes of type ¢t €
NODE_TYPE and direction dir:

CE(G.n.t,dir) = {(sre,n) € in(n, G)|\(sre, type) =t} %f dz:r =1In
{(n,dst) € out(n,G)|\(dst,type) =t} if dir = Out
An example of a local property is I';7*¢[S] that returns the amount of data that a
given process node received from connected sockets, expressed as the sum of the
sizes of the respective incoming edges.

125



5. Metric-based Detection

The choice for this selection of local properties was driven by the insights from a
manual analysis of a wide range of malware QDFGs. We identified a strong corre-
lation between malicious process nodes being highly interconnected with .exe-file
nodes and, at the same time, having many connections to other process nodes (e.g.,
Parite virus). We are aware that this property is shared by certain installer pro-
cesses and thus in itself is not discriminative enough. In consequence, we needed
to extend these properties to allow for a more fine-grained, differentiated profiling
and thus reduce false-positives.

5.2.3.4. Global Properties

Global properties consider a variable k-hop distance around a node. The ratio-
nale is that malware often creates process chains to distribute the malign behavior
among multiple children and grand-children processes. Local properties cannot
capture such distributed behavior. We define global properties as higher-order
functions that take a local property function and a distance bound as argument
but, instead of evaluating it on just one node-graph pair, apply it to the entire
process neighborhood of a given process node.

Regardless of the input, property functions always need to map to one single
real number to ensure feature vectors of constant dimension. Considering that
a naive application of the respective function on an entire process neighborhood
would yield a set of real numbers, we need to map the obtained value set to one
singe real number. We hence first evaluate the function on a defined neighbor-
hood, i.e. on a set of process node-graph pairs, and aggregate the obtained value
sets by either summing (Sum) or multiplying (Prod) them, or by computing their
average (Avg). While this aggregation certainly leads to information loss when
compared to the entire value set, the aggregation is necessary to make global prop-
erties syntactically compatible to local ones. The semantics of a global property
pg € PROP_GLOB is defined as:

pl(G,n') if pg = pl[k, Sum)
n’€NBH(G,n,k)

! : _
pg(G,n) := n/eNBg(G,n,k) pl(G. ) ifpg = pilk, Prod
) pl(G,n')
N BH e if pg = pl[k, Avg]

with pl € PROP_LOC and

126



5. Metric-based Detection

{n} fork =0
NBH(G,n, k) := U NBH(G,n',k —1)Un’ fork >0

n’€(pre(n)Usuc(n))

where \(n, type) = \(n/, type) = Process.
An example is T'§%4"[F][2, Sum]| that computes the total number of files that
were read by a process node, its parent, its great-parent, its children, or its great-

children.

Now that we have set the conceptual foundations for our concept of Franken-
Mods, we can begin to describe how we instantiate and evolve them in order to
continuously evaluate and evolve them with the goal of in the end producing lo-
cally optimal performing detection models.

5.2.3.5. Evolution Process

The complexity of a metric is determined by the depth of its expression tree. The
most simple metric that combines two atoms with one operator is thus of com-
plexity 1. As it is infeasible to generate and evaluate all possible metrics that can
be constructed on the basis of the introduced operators, we cut down the set of
relevant metrics by applying a genetic evolution scheme to randomly determined
subsets of all possible metrics. Evolving them creates increasingly complex de-
scendants with the goal of determining subsets of metrics with close to optimal
detection capabilities. This evolution is repeated until a specific termination crite-
rion is reached.

5.2.3.6. Initialization

In the initialization phase an initial population of k£ FrankenMods is generated
where each FrankenMod consists of [ = 3 randomly generated metrics of com-
plexity n = 1. A metric is generated through random creation of nodes in the
respective expression tree with the node types being uniformly chosen from the
introduced operator and property sets. By starting the evolutionary process with
such simplistic FrankenMods, we can easily investigate the correlation between
FrankenMod complexity and performance, as well as the effect of evolution, by
looking at the performance of the children of the respective simple FrankenMods
in subsequent evolution steps.

127



5. Metric-based Detection

5.2.3.7. Fitness Evaluation

After the definition of an initial population we assess the performance of the in-
dividual members, i.e. FrankenMods, following a similar process as we did use
for evaluating the deductive metric-based approach (see Section 5.1.3.1). In ge-
netic programming terms, in this evaluation step we determine the fitness of each
FrankenMod in terms of discriminating known benign from malign samples. To
this extent we evaluate the generated FrankenMods on a large and diverse la-
beled evaluation data set, consisting of the captured activity of multiple known
benign and malign samples. We do so by computing all metrics contained in each
FrankenMod for each process-centric reachability graph that we can extract from
the sample’s baseline QDFG. For each FrankenMod we thus obtain a list of labeled
vectors, where each vector corresponds to the results of evaluating each metric in-
cluded in the FrankenMod on one specific process node of a QDFG. For the evalu-
ation data set, we know the identity of the respective processes, and we can hence
label the respective vectors accordingly as malign or benign.

We subsequently assess the fitness of a FrankenMod by a standard cross-validation
experiment on the generated labeled vectors by using them as features for training
and testing a supervised machine learning classifier. We perform a 10-fold cross-
validation experiment for each FrankenMod, where we repeatedly take 9/10 of
the generated process vectors for training a Support Vector Machine (SVM) with
Gaussian kernel; and then use the obtained classifier on the instances of the re-
maining 1/10 of the generated process vectors that was not used for training. As
all vectors sets are labeled, we can then assess the fitness of the used Franken-
Mod. We used the AUC of the classifier to measure the fitness of a FrankenMod
as it nicely captures a FrankenMod’s ability to discriminate goodware from mal-
ware with good accuracy. Applying this notion of fitness, we then determine the
fitness of all population members as prerequisite for determining an elite of best-
performing FrankenMods to be considered for the subsequent evolution step.

In addition to determining the fitness of a FrankenMod in terms of its classifi-
cation effectiveness we also evaluate the absolute efficiency of that FrankenMod.
As we can expect a correlation between FrankenMod complexity and model com-
putation time, we also measure the average time it took to evaluate the respective
FrankenMod, i.e. compute it on the training and testing QDFGs. As this efficiency
directly relates to the computational effort that is needed to later use a Franken-
Mod for malware detection, this allows us to reason about the relationship be-
tween FrankenMod efficiency and effectiveness, and potentially also to find an
optimal trade-off between these two quality aspects.

After conducting the evaluation step, each population item (FrankenMod) has
a pair of values associated to it that represent its absolute effectiveness (AUC) and
efficiency (Average Detection Time).

128



5. Metric-based Detection

Finally, to prevent excessive growth of the population with FrankenMods with
little effectiveness, we sort the population with respect to the AUC of the respec-
tive members and prune it by only keeping a fixed number of £’ best-performing
FrankenMods for the next evolution step.

5.2.3.8. Evolution

At this point, we can potentially stop the evolutionary process depending on whether
a defined evolution termination criterion is met. To this extent we evaluate a set of
pre-defined termination criteria on the created and evaluated population. A more
detailed description of potential termination criteria will follow in Section 5.2.3.10.

Following our hypothesis that mutants or combinations of already well-performing
FrankenMods have a high likelihood of performing better than the underlying
base models, we now describe the actual evolution phase. The idea is to apply
a set of evolution operators to an elite subset of the initial population to create
mutants or child metrics from this elite population. To this end we introduce two
different classes of evolution operators: mutation operators that take one metric as
input and return a slightly mutated metric, and cross-over operators, that take two
metrics as input and return a derived metric obtained from mating the two input
metrics. While mutation operators only slightly vary a metric through targeted
structural modifications, crossover operators create entirely new metrics.

To mutate one metric we propose a node- and a tree mutation operator. The
node mutation operator (f) randomly replaces an operator or a property with an-
other randomly determined one. We do so by randomly determining a node of the
metric tree and then, if it is a operator, replace it with a different randomly chosen
one, or, if it is a property, replace it with a different property. Figure 5.7 depicts the
application of the node mutation operator { on a metric m, where one randomly
chosen operator node of m (div) is substituted by a different operator (mul).

t(m)

® ®

5 od o d od o

Figure 5.7.: Example of Node Mutation operator

129



5. Metric-based Detection

The second mutation operator, called tree mutation operator (J) not only flips
single property or operator nodes but rather entire chunks of a metric’s formula,
i.e. branches of the respective metric tree. More specifically, the tree mutation op-
erator randomly picks a node and then flips this node’s child branches. Depending
on the metric complexity, i.e. the size of the respective expression tree, and the po-
sition of the picked target node, this can yield a significant structural change of the
underlying metric. An example is depicted in Figure 5.8.

m 1 (m)

©, g
o oo o

o O O O

Figure 5.8.: Example of Tree Mutation operator

The second group of evolution parameters, the cross-over operators, is used to
mate two metrics to yield a new, hopefully better-performing, metric and consists
of two distinct operators. The combine cross-over operator (><) combines two distinct
parent metrics to form a new child metric that consists of a new operator node of
random type as root and connecting the parent metric trees as left and right child
branches of the new root node.

Figure 5.9 depicts an example were the parent metrics m; and msy are combined
by attaching them as child branches to a newly created log operator.

The set of cross-over operators also contains an add operator (¥) that operates
on FrankenMods instead of concrete metrics. The add cross-over operator takes
a randomly determined metric m; from a randomly determined FrankenMod M’
from the elite population subset and adds it to the FrankenMod M upon which
the add cross-over operator was applied to. Formally, (M) =M U {m;} where
m; € M’ for a randomly chosen M’ # M.

130



5. Metric-based Detection

Figure 5.9.: Example of the Combine Cross-Over operator

Now that we have introduced a set of basic evolution operators, we perform the
evolution steps by iterating over all FrankenMods of a defined elite population.
For each metric of a FrankenMod with a defined probability we pick and apply
one of the previously introduced evolution operators (f,],5<,) or a so-called nop-
operator that does not perform any transformation of the target metric. The to-be-
evolved elite portion of the population is determined by ordering the respective
FrankenMods according to their fitness and then taking the & > 2 best Franken-
Mods as elite population.

By assigning different probabilities of picking a certain evolution (or nop-) op-
erator we can drive the likelihood of a certain metric to get mated with another
metric, to just get mutated, or to not get altered at all. Finally, we feed all gen-
erated mutants and FrankenMod children back to the population and with this
conclude the first evolution round.

5.2.3.9. Iterative Repetition

We now repeat the previous steps by jumping back to the evaluation step 2 to
evaluate the performance of the new generation of FrankenMods. The process
is repeated as long as none of the pre-defined termination criteria are met. Such
termination criteria can either define a certain necessary minimum quality of the
FrankenMods of the elite part of the current population generation, e.g. a de-
fined minimum AUC of the respective FrankenMods, or specify some constrains
on the overall evolution process like a maximum number of evolution steps, i.e.
process iterations, until the evolutionary process has to be terminated. By means
of such termination criteria we can control the evolutionary process in a targeted
way and e.g. prevent uneconomic repetitions of the expensive evolution process
if it is likely that this will not produce significantly better results.

131



5. Metric-based Detection

5.2.3.10. Termination

After the evolutionary process stops, we pick an arbitrary number of Franken-
Mods from the last population generation to be used for the subsequent detection
phase in an IDS. We do so by sorting the respective FrankenMods first on the basis
of their effectiveness (AUC) and then again on basis of their efficiency (Franken-
Mod Computation Time) for all FrankenMods with equal effectiveness. As the
FrankenMods themselves can not directly be leveraged for classifying unknown
samples, we instead output a set of classifiers that we obtain by training a Sup-
port Vector Machine (SVM) with Gaussian kernel on the labeled feature vectors
obtained from applying the respective FrankenMods on the entire QDFG data set
that was also used for the evolution step. Finally, we export those classifiers along
with the respective FrankenMods to be used by our detection component in an
IDS. Note that the metrics used by the generated FrankenMods before exporting
them always get optimized by the employed .NET expression tree compiler by
means of various compiler optimization techniques.

To summarize the core ideas of the evolutionary process, Figure 5.10 depicts an
excerpt of two rounds of a possible run. In round n+1, a new FrankenMod F M3
is created by mating two FrankenMods F'M1 and F'M2 using the W-operator, i.e.
merging the metrics of F'M/ 1 with one metric m5 of F'M2. In the next round, n+2,
the J-operator is applied to F'M 3, yielding the mutant F'}/3’ by inverting the main
branch of its metric m5. We further see how the FrankenMods are evaluated on
the known malign (M) or benign (B) process nodes (p1-p7) of some QDFGs (QG1-
QG3) to yield feature matrices as input for training and evaluating a classifier and
thus determining the FrankenMods’s fitness.

5.2.3.11. Deployment and Detection Phase

After generating and exporting effective and efficient FrankenMods, their actual
operationalization is straight-forward and follows the same basic detection princi-
ple as already discussed for the deductive metric-based approach (see Section 5.1.2.8).
For classifying an unknown QDFG we evaluate one or more of the previously ob-
tained FrankenMods on all process-centric reachability graphs of the respective
baseline QDFG. This process, just as described in Section 5.2.3.5, yields a feature
vector for each process node of the baseline QDFG that is compatible with the ma-
chine learning classifier associated with the respective FrankenMod. By matching
the obtained feature vector against this classifier we then can determine if the pro-
cess (node) is more likely benign or malign based on the similarity of the respective
metric values with the training data.

132



5. Metric-based Detection

p3 O3 @Q‘
Lo o 120
@ C @
QG1 QG2 QG3
Round FrankenMod Feature Data Fitness
FM1 B/M ml m2 m3
pl| @ 0.1 81 03
QGl |p2| @ 02 92 0.7
m1l
o m2 p3| ® 09 16 85
o
B/M ml m2 m3] | 084
m3 QG2 (p4a| ® 06 23 9.8
&) p5| © 0.2 77 04
n Qc.-i3 s
Fm2 B/M m4 m5 m6 m7
ma m5 QGl‘pl © 1462 3 09
mé m7 QG3 e
<>/C>\c> o : :
M3 = FM1 Y Fv2
QG]_ see
m3 m1
= < |ae 0.90
n+1 m2 m5 QG3 e
O .
FM3' = FM3\ {m5} U tm5 Q61
m3 Ml 62
c{O\o o 0.92
n+2 m2 ms'=tms | Q63
o .

Figure 5.10.: Overview and example evolution.

133



5. Metric-based Detection

5.2.4. Evaluation

Considering that the inductive metric-based approach is an extension to our de-
ductive metric-based approach with the goal of improving its effectiveness and
robustness, we in the following mainly focus on assessing the actually achieved ef-
fectiveness and robustness improvement. We furthermore wanted to investigate,
whether the targeted generation of metrics has a positive impact in the induced
computational cost for detection. The used evaluation setup and data set resem-
bled the one discussed in Section 4.1.3.

5.2.4.1. Effectiveness

With respect to effectiveness, we were primarily interested in investigating the
three following research hypothesis:

(H3) Generated metrics, i.e. FrankenMods, yield higher effectiveness than the
generic graph metrics used by the deductive metric-based approach.

(H4) Complex graph metrics in form of polynomials over multiple atomic graph
properties yield higher effectiveness than single atomic graph properties.

(H5) The evolution of well-performing FrankenMods, i.e. their mutation and
combination, is likely to yield even better-performing FrankenMods.

To investigate the first research hypothesis (H3) we assessed the maximum achiev-
able detection effectiveness of FrankenMods and fixed detection models. For this
we first again evaluated the effectiveness of the detection model of the deductive
metric-based approach, which we call generic as it consists of a set of generic graph
metrics (see Section 5.1.2.1), on our evaluation data set. To avoid comparison bias
due to using different machine learning algorithms for both detection approaches,
we replaced the RandomForest classifier that originally was used by the deduc-
tive metric-based approach with the same type of SVM that we also used for the
FrankenMod evolution scheme (see Section 5.2.3.7).

Furthermore, to assess H4, we created another simplistic model of generic graph
metrics, which we call complete, that simply outputs all graph properties described
in Section 5.2.3.2 to be directly used for classification without algebraic composi-
tion. In a sense that can be seen as creating a FrankenMod that consist of metrics
that only consist of atomic graph properties without further composition with al-
gebraic operators. With this we wanted to emphasize the utility of using complex
metrics, as subsets of graph properties combined with algebraic operators, versus
directly using the atomic graph properties for detection.

134



5. Metric-based Detection

1.0

0.9

— T F[- ]
2h- - - - - - - - - T H -

0.8

Fixed Complete (AUC=0.80)

AUC

0.7

o

s

H H Fixed Generic (AUC=0.92) :
|

I T

'

1 -

|

|

|

|

0.6

| S ——

0.5

3t
a4l
5L
6l
7L
8l
ol
10}
11
17+

L1 I
mMm <t n o]
~ — - —

19+

T T T R T TR TR SR N R
O NN N ONOOO O
ANANANANNNANNNNM

m 12
S5 16}
ps)
o

volution Roun

Figure 5.11.: Effectiveness FrankenMods vs. fixed Models

To compare the effectiveness of the generated FrankenMods with the complete
and generic ones, we also applied our inductive evolution-based approach on our
evaluation data set, starting with an initial population of 100 randomly generated
FrankenMods of complexity 1, configured to choose the to be applied evolution
operators uniformly, and set the termination criteria to stop after 30 evolution
rounds. Figure 5.11 depicts the AUC distributions of the respectively generated
populations for all evolution rounds. To directly compare the effectiveness of the
generated FrankenMods against the effectiveness of the fixed detection model and
the complete model we also depict the AUCs of these models in the same graph.

As we can see, the evolution scheme converges after around 19 evolution rounds,
i.e. the standard deviation around the median AUC becomes almost 0. Also we
can see that after round 5, at least one FrankenMod of the population reached the
local optimum of the entire evolution experiment. From the Receiver Operator
Characteristics Curve (ROC) of our best-performing FrankenMod we can further-
more deduce that the best-base detection rate when accepting a maximum of 0.5%
false positives was at 97.1%, with an AUC of 0.986.

Although the median AUC of the generated FrankenMods for the first evolution
steps remains below the AUC that can be achieved with the fixed generic detection
model (0.92), after only 5 evolution steps the AUCs of the generated FrankenMods
already exceed that of the fixed generic model.

135



5. Metric-based Detection

In comparison to the fixed complete model we can see that right from the be-
ginning the performance, i.e. the median AUC, of the generated FrankenMods,
i.e. combinations of randomly selected graph properties with randomly deter-
mined algebraic operators, resides significantly above the AUC of the fixed com-
plete model (0.80). Looking at the AUC of the best-performing FrankenMod, i.e.
the local optimum of this experiment, we can furthermore deduce a maximum

: . o/ (_ AUC_generated—AUC_fized_generic __
improvement of effectiveness of about 6.5% (= AUC finedgeneric =

0.98-0-92) in relation to the AUC of the fixed generic model. In comparison to the
fixed complete model we could achieve an even higher improvement of detec-

tion effectiveness with the evolutionary generated FrankenMods of about 22.5%
(: AUC _generated— AUC _fixed_complete __ 0.98—0.80

AUC_fixzed_complete 0.80

In sum, these observations confirm H3 positively, since we could show that
FrankenMods can significantly outperform fixed ones. In particular we could
show that indeed FrankenMods produced by the inductive metric-based approach
outperform the generic metrics that are used by our deductive metric-based ap-
proach. Furthermore, the significant difference of effectiveness between the Franken-
Mods produced by the evolutionary algorithm and the complete model of atomic
graph properties also answered H4 since we could show that complex graph met-
rics outperform models built on simple graph properties.

Besides confirming our approach-specific research hypotheses, this also again
positively answers our main research question RQ1 in that with this approach we
could further improve the effectiveness of QDFG-based malware detection.

Finally, to also assess our research question RQ?2 for the inductive extension to
our metric-based detection approach, i.e. to show that the consideration of quan-
titative data flow aspects indeed positively influences detection effectiveness we
performed another set of experiments. For these experiments, just like we did
for the evaluation of the deductive metric-based approach (see Section 5.1.3.1), we
either a) artificially fixed the size of all data flows in the evaluation QDFGs by set-
ting the respective edge weights to 1, or b) artificially obscured the data flows by
replacing the real edge weights with random numbers.

With this we effectively destroyed all quantitative data flow information in the
evaluation graphs. On both sets we then applied our normal evolution process
and, just like for the initial real quantity experiments, set the termination criteria
to stop after 30 evaluation rounds. The best-performing generated FrankenMod
then for the fixed quantities case (a) yielded an AUC of 0.978 and a BDR (detec-
tion rate at 0.5% false positive rate) of 61.3% and for the random quantities case
(b) an AUC of 0.977 and a BDR of 56.3%. In both cases the absolute (AUC) and
the operational (BDR) effectiveness of the FrankenMods trained and evaluated on
QDFGs with fixed or random obscured quantities were significantly lower than
the best-performing ones that were generated on QDFGs with real quantities.

136



5. Metric-based Detection

Although the effectiveness improvements when quantities for the inductive metric-
based approach were less substantial than for the deductive metric-based one, the
results also for our inductive metric-based approach positively answer RQ2.

Concerning the utility of our evolution concept, Figure 5.11 already gives us a
preliminary answer to hypothesis H5 as we can see that the evolution scheme pro-
duces FrankenMods with increasing effectiveness with every evolution round. To
investigate this observation in more detail we plotted the lineage graph to depict
the interdependency of the different generated FrankenMods over multiple evolu-
tion rounds. Figure 5.12 shows the lineage graph of all FrankenMods of the above
described evolution experiment.

The nodes in this graph represent the different generated FrankenMods whereas
the edges between them denote their inheritance relation, i.e. whether a Franken-
Mod is the result of mating two other FrankenMods, or if it is just a mutant of
another one. To quickly see a model’s effectiveness within the lineage graph we
use the color of the lineage graph nodes to represent the AUC of the respective
FrankenMods - the darker the node, the lower the effectiveness, i.e. AUC, of the
respective FrankenMod. The layout of the lineage graph correspondingly reflects
the “age” of the FrankenMod as distance from the FrankenMods from the first
round. With this the layout algorithm positions FrankenMods that were created in
the first evaluation rounds more closely to the center of the lineage graph, whereas
the perimeter is populated by nodes that represent FrankenMods that were created
in the last evolution rounds. Note that for presentation reasons we only consid-
ered the models generated within the first 23 evolution rounds.

Looking at the actual lineage graph depicted in Figure 5.12 we can see that the
average model effectiveness improves with increasing age. In particular, looking
at the highlighted lineage of one of the best-performing nodes reveals that indeed
the mutation and mating of models from earlier stages of the evolution process
mainly yields better-performing ones, thus confirming our hypothesis H5.

5.2.4.2. Efficiency

For investigating the efficiency of our approach we compared the relation between
the detection efficiency of using the generic detection metrics employed by the de-
ductive metric-based approach and the FrankenMods generated by the inductive
metric-based one. For this we first evaluated the detection efficiency of the induc-
tive metric-based approach, i.e., how expensive it is to employ the generated mod-
els for detection; and then the generation efficiency, i.e. how much computational
effort is needed to conclude one evolution round to output a set of models with a
target effectiveness.

137



5. Metric-based Detection

Figure 5.12.: FrankenMod lineage graph

As we already discussed in Section 5.1.3.3, the generic graph metrics used by
the deductive metric-based approach are of either quadratic or cubic complexity
w.r.t. the number of edges of the reachability QDFG of the to-be-classified pro-
cess node, rendering the theoretical worst-case complexity of the respective fixed
generic model to be in O(e?) with e being the edge count of the respective QDFG.

Looking more closely at the algorithmic structure of the graph properties used
by the inductive metric-based approach reveals that the local properties are of
linear complexity w.r.t. the number of incoming and outgoing edges of a to-be-
classified process node and the global properties are of linear complexity w.r.t.
the transitively reachable edges of a node determined by the (fixed) depth of the
respective recursive algorithm.

Note that for assessing the worst-case complexity of an algorithm, or in our case
of a detection model, constant factors like the number or type of operators used
to combine multiple graph properties in form of metrics, or the number of used
graph properties itself do not play a role.

138



5. Metric-based Detection

Therefore, the worst-case computational complexity of a model generated by
our approach is bounded by the complexity of the most expensive graph property
and thus in the worst case still is linear in the number of QDFG edges, i.e. remains
within O(e).

Recall that in Section 5.2.4.1 we already defined a (complete) model that uses
all atomic graph properties for detection. For assessing the actual performance
of a maximum complex model on real-world data we thus could simply measure
the computational effort needed for applying this fixed complete model on real-
world QDFGs. Intuitively, we would thus assume the actual computational effort
needed to evaluate evolutionary generated FrankenMods to reside below the cost
of evaluating the fixed complete model.

To verify this assumption we thus measured the time it took to evaluate evo-
lutionary generated models of different complexity, i.e. from different evolution
rounds, as well as for applying the considered complete and generic models on
our evaluation data set.

Figure 5.13 depicts the time needed to evaluate the different model types on all
reachability QDFGs (of different size) that originated from the entire evaluation
set. While the small picture in the upper left part of the figure depicts the full
range of average detection times of all approaches, the compete figure only shows
the part of the scale that was relevant for the generic metric and the FrankenMod
experiments to emphasize the difference between them.

As we can see, the complete metrics are significantly more expensive than the
generic metrics or the generated ones, i.e. Frankenmods, and quickly go in the
order of hundreds of milliseconds even for small graphs. The time difference be-
tween the generic and the generated metrics in comparison is rather small with
a slight efficiency advantage of generic metrics over generated FrankenMods for
graphs with less than 250 edges. Only for graphs bigger than this, the generated
FrankenMod metrics outperform the generic ones.

In sum, the FrankenMod metrics at average took 54 ms to evaluate and thus

were about 1.4 times (= t”?ffn rankenlMod — ggmi) slower than the generic metrics.
generic

By looking at the slope of the polynomials that we fit on the detection time
distributions of the different approaches we can further reason about their scal-

ability. Here the detection time of the generic metrics grows about 1.8 times (=

l : -
o OPCaencric 038y fagter than the detection time of our generated Franken-
slope prankenMod 0.21

Mods. This reflects in significantly different detection times for the biggest graphs

maz(timegeneric) _ _ 340ms
max(timeFrankenl\/Iod) 167ms

longer to classify with generic metrics than with our FrankenMods.

From these experiments we can deduce that, although at average performing
slightly worse than the generic ones, the generated metrics are substantially faster
on bigger-sized graphs.

in our evaluation set that took more than 2 times (=

139



5. Metric-based Detection

350 ‘
— Complete
300 - - FrankenMods|-
------ Generic
250| o |
[
Toold] O TR
c 200*\' 0 100 200 300 400 500 i
Qe
'E 1508 A e 4
A e -=""
..... t -
1007 + 4 * +$ ““““ :‘_—— .
r +q+ WL -
R "ﬁf: ; s - A.t R + o+
&, A = T + *
50 . & e A A, 1
-y 'y
ety .
B R
0 100 200 300 400 500

Graph Size [#edges]

Figure 5.13.: Detection time vs. QDFG size

We account this effect to the fact that the quadratic or cubic complexity of the
generic centrality metrics only kicks in for complex graphs, whereas for smaller
graphs they are comparably cheap to compute. The evolutionary process, i.e. the
fitness evaluation to assess the generated FrankenMod metrics in contrast takes
their global performance on all graph sizes into account and thus likely favors
metrics that also perform well on bigger-sized graphs.

Finally, for evaluating the generation time efficiency of our approach, i.e. to as-
sess how long it takes to generate a stable population of a defined target effective-
ness, we measured the average computation time a evolution round took to con-
clude. The absolute computational effort depends on various factors like model
complexity, population size, or size of the evaluation data set and can thus not be
generalized to all possible configurations. Nevertheless, investigating the devel-
opment of computational demands in-between different evolution steps gives us
insights into the overall scalability of the approach.

Figure 5.14 shows a stacked bar chart for the corresponding measurements within
our evaluation setting. The bars indicate the amount of time spent to generate and
evaluate all models of one population generation, i.e. the time needed to complete
one evolution round. The gray part of the bars represent the time needed to com-
pute all models of one generation on the entire evaluation data set, whereas the

140



5. Metric-based Detection

400 ‘ ‘ ‘ ——

Il Evaluation
EE Computation|]

350

300
250
200
150

Time [CPU-mins]

100
50

0

A NM TN ONW0O

10
11

Figure 5.14.: Duration of evolution rounds

black parts refer to the time spent for evaluating the respective models, i.e. deter-
mining the model fitness with cross-validation on the data obtained from the pre-
vious model computation step. Note that with time we refer to CPU time. Given
that the generation and evaluation of models can be parallelized we can almost
linearly cut down the execution time with the number of available CPU cores.

Generating and evaluating the initial population took about 4 CPU hours with
1/3 of the time for model computation and 2/3 for the model fitness evalua-
tion; generating the features for all evaluation graphs (404878 ms) and training
an SVN on them (14547ms) at average took about 7 minutes. The following evo-
lution rounds then increasingly take longer to conclude with a proportional shift
of model computation vs. evaluation time. This can be explained by the fact that
more complex models resulting from the proceeding evolutionary process take
more time to compute and evaluate than more simple models from earlier rounds.
Interestingly though, we can see a drop of overall time needed to conclude a evo-
lution round after the 5th evolution round. This drop is explained in that after 5
rounds the evolutionary algorithm produced enough more simple and effective
models to be able kick out the worst-perfroming ones from the previous rounds.
This tooth-chain pattern is then repeated in irregular intervals. Looking at the
generated models, we could always verify the aforementioned reasoning.

If we correlate these insights with the development of population effectiveness
over the different evolution rounds we can furthermore deduce that the first neu-
ralgic point, i.e. the point where for the first time the median population effec-

141



5. Metric-based Detection

tiveness exceeded that of the fixed generic model (solid vertical line), is reached
after about 28 hours of computation time. The second interesting point, where
for the first time all of a generation exhibit almost the maximum achievable ef-
fectiveness (dashed vertical line), is reached after about 83 hours of computation
time after which the accumulated population effectiveness does not significantly
increase anymore.

In sum, we can conclude that it takes the inductive metric-based approach only
about 28 hours of CPU time to generate 100 distinct targeted detection models that
all outperform the generic metrics used by our deductive metric-based approach
in terms of effectiveness. Note again that the entire evolution process can be par-
allelized and completely conducted offline on powerful machines or even grids
to almost arbitrarily cut down the needed model generation (real) time. These
insights again give answers to our main research question RQ3 in that using gen-
erated FrankenMods on QDFGs yields a comparably high detection efficiency.

5.2.4.3. Robustness

As final step of our evaluation we investigated the robustness of our generated
FrankenMods with respect to behavior obfuscation, i.e. give answers to our main
research question RQ4. More precisely we wanted to know how hard it is to con-
fuse FrankenMods by applying targeted obfuscation transformations on the struc-
ture of the respective QDFGs and the quantitative information on the edges.

We envision that one way of of evading detection by our approaches would
be to tamper with the structure of QDFGs, i.e. forcing the creation of edges by
pseudo-randomly interacting with bogus system resources that are not needed to
conduct the actual malign activities. Such a behavior would make the QDFG of
a malware look substantially different with every new execution and thus would
make it hard for the training phase of a classifier to learn a characteristic profile.

Furthermore, considering that QDFG-based approaches also make heavy use of
the quantitative information on the edges, a malware with targeted compression
actions or with unnecessary repeated interaction with the same system entities
could effectively tamper the respective quantitative information on the edges and
thus likely influence the detection effectiveness of respective models. We hypoth-
esize that FrankenMods are less sensitive to behavioral obfuscation that aims at confusing
the profile building and training phases than the generic graph metric used by the deduc-
tive metric-based approach (H6).

To investigate this issue we first need to obtain a set of QDFGs that reflect the
application of such behavioral obfuscation attempts. Unfortunately we are not
aware of malware that already employs such highly targeted behavioral obfusca-
tion mechanism in the sense of intentionally randomizing issued system call traces
with the defined goal of confusing behavioral detection approaches like ours.

142



5. Metric-based Detection

Hence, we instead use simulation results where we directly applied transforma-
tions on unobfuscated QDFGs to resemble such obfuscation techniques. For this
we applied two type of graph transformations on a new data set consisting QD-
FGs from 929 malware samples and 42 goodware samples that we obtained from
extracting known benign and malign email attachments sent to an email server
under our control, which we labeled using the www.virustotal.com database. As
a side-effect of using a data set different to our baseline evaluation data set for this
experiment we were able to validate the effectiveness of the generated Franken-
Mods on a data set as we would find it in a real-world operational settings.

For the actual obfuscation experiments we then took these QDFGs and stepwise
obfuscated them by either randomly creating new edges to simulate issued bo-
gus system calls (structural obfuscation) or by tampering the quantitative informa-
tion on the edges by multiplying the edge weights with a factor randomly picked
from the interval (0, 2] to resemble compression or inflation. For every obfuscation
round we thus either randomly added a new edge to each QDFG of the previous
obfuscation round or randomly modified the weight of a randomly determined
edge. This procedure was then repeated 100 times. For investigating the effects
of such obfuscation operations on the effectiveness of our approach for each ob-
fuscation round we then performed the same kind of cross-validation experiments
that we used for evaluating the effectiveness of the FrankenMods on unobfuscated
QDFGs (see Section 5.2.4.1), i.e. training and testing on the obfuscated data.

To confirm H6 we performed this experiment for the deductive metric model,
the complete atomic property model, and one of the best-performing generated
FrankenMods obtained during the effectiveness evaluation. The right part of Fig-
ure 5.15 depicts the results of the structural obfuscation experiments, the left part
shows the respective results for quantitative obfuscation, with obfuscation degree
referring to the number of tampered or added edges.

Recall that the obfuscation experiment was done on a data set different to our
normal evaluation data set. This is why the respective baseline effectiveness for
unobfuscated graphs (obfuscation degree 0) differs as well. Moreover, note that
with this experiment we tested and trained on obfuscated graphs, whereas for the
robustness experiments of the deductive metric-based approach we trained on un-
obfuscated data and only classified obfuscated graphs. With this changed setting
we want to anticipate the problem that in real-world settings we probably would
not be able to get a baseline set of unobfuscated malware samples for training and
thus would need to deal with obfuscated malware samples during training phase.

As we can deduce from Figure 5.15, the FrankenMod is significantly less affected
by both, structural and quantitative obfuscation transformations, than the fixed
models. This first of all reflects in a generally better effectiveness of the Franken-
Mod in comparison to the metric from the deductive metric-based approach, as
well as a significantly higher prediction stability.

143


www.virustotal.com

5. Metric-based Detection

itative Structural

SN LT
0.9+
b {
A ﬁx A ‘Y % Yy b > (
O 0.8 Y™ :,'.i"‘ &' i 'H"‘» 4 '1/ ! {2, ‘;
-) ¢ y X
< 0.7}
0.6 8
05 I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Obfuscation Degree
= Fixed - Complete > FrankenMod »—x< Fixed - Generic]

Figure 5.15.: Effectiveness vs. obfuscation degree

While the effectiveness of the FrankenMod remains rather stable, widely inde-
pendent of the applied obfuscation degree, the effectiveness of the fixed generic
model becomes quite unstable when training on behaviorally obfuscated data.

Comparing the average standard deviation of the model’s effectiveness, which
we consider a useful metric to measure its prediction stability, i.e. ability to de-
liver stably good effectiveness even on obfuscated malware, we can see that for
the quantitative obfuscation experiments the FrankenMod is almost 5 times (=

o(AUC _fized_generic) _ 0.032 : io-) .
SATC genorated) . = 0:007) more stable than the deductive metric-based model;

for structural obfuscation the difference in stability between the two type of mod-

els becomes even more apparent with the FrankenMod being here almost 9 times

more stable than the deductive metric-based metrics (= U(f(ig gﬁjﬁﬁ Z?:g)z A — 3:000).

Interestingly, the structural obfuscation experiment conveys a steady increase
of detection effectiveness of the fixed generic model with growing obfuscation de-
gree. We explain this effect with the fact that the generic graph centrality metrics
leveraged by the deductive metric-based approach by construction perform bet-
ter for complex graphs than for sparsely connected ones. This caused the obfus-
cated malware, whose QDFGs we artificially made more complex with the applied
structural obfuscation transformations, to look more distinct from goodware.

What we can furthermore see is that the effectiveness of the complete model
of atomic properties tremendously suffers from obfuscation and performs only
slightly better than random guessing with comparably bad prediction stability.

144



5. Metric-based Detection

This shows that the combination of several graph properties with complex met-
rics not only outperforms the generic metrics from our deductive metric-based
approach but also works significantly better than simplistic models that directly
use all atomic graph properties for detection.

Finally, from the results of the initial obfuscation round where no obfuscation
transformations were applied yet, we can also see that the generated FrankenMod
shows similar or even better effectiveness on an entirely different data set as when
evaluated on our main evaluation data set. This indicates a certain generalizabil-
ity and stability of our findings in the sense that FrankenMods stably yield good
detection effectiveness on completely disjunctive evaluation data sets. In sum,
with these experiments we could confirm hypothesis H6 since we showed that
FrankenMods are less affected by behavioral obfuscation than fixed generic ones.
We also once more could positively answer our main research question RQ# in
that we could show that our enhanced QDFG-metric based detection concept is
also robust towards behavior obfuscation during training time.

5.2.4.4. Discussion and Threats to Validity

While with our evaluation we were able to confirm all approach-specific research
hypothesis, the insights gained, as for all our approaches, must be interpreted in
the context of the experiment setting. For instance it is a well-known fact that the
effectiveness of machine-learning based malware detection approaches is highly
influenced by the quality of underlying training and testing data set [86, 121]. If the
evaluation set is too small or does not adequately mirror the real-world malware
landscape then the conducted experiments might not well reflect the real-world
detection performance of an approach.

Although we use machine learning, we tried to weed out most of these issues
by using a diversely composed publicly available data set for the baseline eval-
uation which ensures reproducibility of our experiments. Furthermore, we also
evaluated the effectiveness of the on a data set completely distinct to the baseline
evaluation set that we obtained by extracting up-to-date malware and goodware
samples from real-world email traffic which to some extent shows that the induc-
tive metric-based approach generalizes to malware samples found in the wild.

Nevertheless there always remains a risk of an approach only working effec-
tively on the evaluated malware families and not on specific families that e.g. em-
ploy advanced targeted obfuscation or evasion techniques. While we evaluated
the inductive metric-based approach on a selection of such obfuscation threats that
we consider realistic in our context, it is possible that we did not anticipate certain
attacks or obfuscation techniques that could effectively confuse our FrankenMods.

On the other hand, genetic algorithms are known to have a risk of optimizing
towards local optima or to over-fit on the training data.

145



5. Metric-based Detection

Although we tried to counter this threat by constantly employing cross-randomly-
seeded validation experiments on a big data set and later using a second disjunc-
tive data set for validation this risk can not be ruled out.

Furthermore, one could argue that instead of using a comparably complex ge-
netic programming scheme we could as well have used a leaner evolutionary con-
cept like hill climbing to generate models completely at random until a certain
amount of models with a minimum effectiveness has been generated. While this
argument seems to be intuitively compelling, we have to recall that in our context
we lack the necessary preconditions to use more simple evolutionary concepts
since our population members are not interrelated through an obvious topology.
In other words, it is not clear how to determine successors for a given initial model,
i.e. how to find a way of extending them in a semantically justifiable way. Genetic
programming in contrast provides a justifiable methodology to stepwise evolve
and combine models.

Generating models in an unguided randomized manner further has the disad-
vantage that, by construction, such a process has no asymptotic behavior, i.e. we
would not know if and when we would reach an (at least) local optimum. As we
could show in our evaluation, the employment of a genetic programming scheme
in contrast leads to such an asymptotic behavior as it is likely to generate better
performing models through evolution of already well-performing ones and thus
intuitively at average is likely to produce sets of fixed size of effective models with
a defined minimum effectiveness faster than with unguided random generation.

Our selection of operators reflects the ones that are typically used for genetic
programming schemes [7]. Although we did not perform a thorough sensitivity
analysis we could not identify any significant impact of the applied operators on
the overall effectiveness of the generated FrankenMods but only on the conver-
gence behavior of the evolutionary process. We thus believe that our operators are
meaningful in that they are at least able to produce FrankenMods that outperform
the generic metrics used by the deductive metric-based approach.

146



5. Metric-based Detection

5.2.5. Related Work

As for all our approaches, the main difference to related work is that we use quan-
titative data flow graphs instead of control flow-, system-call-dependency-, or
non-quantitative data flow graphs. This, as we now showed several times, has
a positive effect on detection accuracy.

Furthermore, the main conceptual difference between to our deductive metric-
based approach and other work that uses graph metrics [68, 92] is that our induc-
tive metric-based approach does not rely on a fixed set of generic graph metrics,
whose effect could be learned and counteracted by malware, but rather generates
arbitrarily large and diverse sets of targeted detection models, i.e. sets of custom
metrics, that, as we could show, are far harder to be confused by typical behavioral
obfuscation.

Besides work that employs evolutionary concepts for generating malware [106,
105, 25] there also exists some work that uses genetic algorithms for malware de-
tection. Such approaches mainly leverage genetic algorithms for feature selection
or in general for optimizing detection classifiers [128, 153, 25, 72], whereas we use
genetic programming to directly create and evolve targeted detection models.

Probably closest to our inductive metric-based approach is the work of Kim et
al. [73] who employ a genetic algorithm to mutate and evolve detection patterns
in form of variable dependency graphs to cut-down isomorphism check search
space. Their work differs to ours in multiple ways. Firstly, their approach is static
whereas ours is dynamic in that they use variable dependency graphs based at
binary level whereas we operate on QDFGs obtained from system call traces. Re-
calling that static approaches have been shown to be more sensitive to obfusca-
tion than dynamic ones we see reasonable arguments to expect our approach to
be more robust than theirs. Furthermore, they use a standard genetic algorithm
scheme with graph nodes being the to be evolved chromosomes. We instead em-
ploy an advanced genetic programming scheme with a defined semantic model to
directly create semantically meaningful and justifiable detection model in form of
sets of graph metrics that allows credibility checks of issued detection decisions.

The work of Blount et al. [13] is similar to ours in that they also use a evolution-
ary concept to generate dynamic detection signatures. However, they differ to us
in that they mutate and evolve Boolean expressions on resources typically tackled
by malware whereas we employ a more complex genetic programming scheme to
generate detection models in form of QDFG metrics. While it is fairly simple for
a malware to avoid profiling and detection by such simple resource name based
signatures, e.g. by randomizing the names of written resources, we showed that it
is far harder to confuse QDFG metric based detection models.

147



5. Metric-based Detection

In sum, our inductive metric-based approach mainly differs from related work
in that we are to our best knowledge the first ones to use genetic programming for
the targeted generation of graph metrics for dynamic malware detection. Further-
more, in contrast to related graph metric based approaches, we do not rely on fixed
sets of generic metrics for detection but rather generate, mutate, and deploy arbi-
trary large and diverse sets of optimized custom graph metrics that we showed
to be more robust towards certain types of behavioral obfuscation and at average
yield better effectiveness and efficiency than using fixed sets of generic metrics.

5.2.6. Discussion and Conclusion

In sum, with our inductive metric-based detection approach we further pushed
the effectiveness, robustness, and efficiency that can be achieved using QDFGs as
malware behavior model and thus again positively answered our initial research
questions RQ1-4. For this we proposed a novel concept for the targeted and au-
tomated generation of highly specialized graph metrics through genetic program-
ming to be used for highly accurate, robust, and efficient malware detection. We
achieve this by representing metrics as complex functions that combine simple
graph properties with basic algebraic operators and mutate them. As fitness func-
tion for defining the effectiveness of the generated sets of metrics we evaluate
their discrimination capabilities on a diverse labeled data set via repeated cross-
validation experiments. The evolutionary process is repeated until a defined ter-
mination criterion, e.g. a targeted average performance, is reached.

Our experiments furthermore showed that our inductively generated metrics
are up to 6.5% more effective than the generic graph metrics used by our deduc-
tive metric-based approach and perform up to 1.8 times better when considering
quantitative data flow information than without. Also, our experiments indicate
that FrankenMods are up to 9 times more robust than the generic metrics used
by our deductive metric-based approach in terms of achieving highly accurate de-
tection results when being trained on obfuscated data. Unfortunately this gain of
effectiveness and robustness comes at the cost of a slightly reduced detection ef-
ficiency on smaller-sized graphs. For bigger-sized ones however, the inductivly
generated FrankenMod metrics turned out to be more efficient and scalable than
the generic ones.

148



6. Assessment and Operationalization

In this chapter we critically assess the devised detection approaches
with respect to common malware detection quality attributes, carve out
strengths and weaknesses, and relate them to our initial research ques-
tions. We also show how to operationalize our approaches for different
detection settings and reason about their real-world utility.

6.1. Assessment

In the last chapters we have introduced four different approaches to operational-
ize our generic quantitative data flow system model for behavior-based malware
detection. For each approach, we have already locally discussed the individual
contributions, as well as their relation to our initial research questions and main
hypothesis. In the following, we will again discuss and compare the different ap-
proaches with respect to common malware detection quality goals from a more
general perspective, extend the discussion of their strengths and weaknesses, as
well as reflecting on their utility for specific detection purposes and deployment
settings. As we have evaluated all approaches within the same evaluation envi-
ronment, using the same baseline evaluation data set, we at least to some extent
can compare their detection effectiveness and efficiency, which we consider the
most important malware detection quality criteria. As it is not possible to opti-
mize all quality criteria simultaneously, this assessment and comparison will give
us important insights to reason about the suitability of our approaches achieving
certain detection goals.

6.1.1. Effectiveness

The most important criterion to assess the quality of a malware detection approach
is its effectiveness in accurately separating malicious from benign software. By
comparing the effectiveness of the different approaches and assessing them from
a more macroscopic perspective, we intend to finally answer our main research
questions (see Section 1.1.2). Recall that behavior-based malware detection effec-
tiveness can only be measured with respect to a given set of known benign and
malicious samples, analyzed within a certain execution environment.

149



6. Assessment and Operationalization

We thus subsequently summarize the detection effectiveness of our approach on
a common evaluation data set, analyzed within the same execution environment
(see Section 4.1.3.1).

To this end we focus on investigating the following aspects more deeply:

RQ1: How accurately can the different approaches separate malicious from benign
samples based on their respective QDFGs?

RQ2: To which extent is the effectiveness of the different approaches improved
when we consider quantitative data flow aspects for training and detection?

RQ4: In how far is the detection effectiveness of the different approaches influ-
enced by typical behavior obfuscation techniques?

6.1.1.1. Absolute

For machine learning based approaches, assessing the detection effectiveness boils
down to reasoning about false positive (benign software mistakenly classified as
malicious) and false negative (malware mislabeled as goodware) classifications.
As for classical malware detection we are in a two-class classification setting, the
two measures interrelate and usually cannot be optimized at the same time. If we,
for instance, want to optimize the false positive rate of an approach, i.e. reduce the
number of falsely classified goodware, we typically need to strengthen our notion
of something being malicious to avoid corner-cases to get misclassified. Usually
this directly impacts the ability of the approach to correctly classify malware that
behaves very similar to goodware. This is because by tightening malware behav-
ior patterns or profiles, respectively trained classifiers are more likely to classify
corner-cases as benign then as malicious to avoid false positives.

Conversely, optimizing an approach for high detection rates, i.e. avoiding false
negatives as much as possible, typically has a direct impact on the resulting false
positive rate, as corner-cases are more likely to be classified as malicious than be-
nign. This usually leads to more frequently occurring cases in which goodware
that behaves very similar to malware (e.g. web installers that behave very similar
to dropper malware) is wrongly classified as malicious.

For the summarizing discussion of the effectiveness of our detection approaches
we thus consider both: a generic effectiveness metric to assess the overall effective-
ness of an approach, and a more operational metric to reason about the detection
effectiveness in a tradeoff-setting that we consider realistic for most real-world de-
tection purposes. To this end, we again look at the Area Under the Receiver Operator
Characteristics Curve (AUC) which we, as discussed in Section 4.2.4.1, consider an
ideal measure to express the overall effectiveness of an approach in one number,
generalizing from individual false positive to false negative tradeoffs.

150



6. Assessment and Operationalization

While the AUC thus to some extent allows us to compare the general effective-
ness of different approaches, due to the abstraction from individual relationships
between false positives and false negatives it does not give us a clear and handy
idea of the performance in a specific operational context. Being a non-linear met-
ric, a 10% higher AUC, for instance, does not necessarily also imply a 10% higher
detection rate for a given target false positive rate. In fact, two classifiers of which
one detection-rate-wise performs very poorly for small false positive rates, but
yields very low false negative rates when accepting some false positives, might
have the same AUC as an approach that already performs well for comparably
small false positive rates but does not significantly improve for higher amounts of
false positives. Furthermore, AUC for highly effective classifiers is a very sensi-
tive metric with difference between already very well performing classifiers only
reflecting in subtle changes to the AUC value. In sum, this means that while AUC
is a useful measure to compare absolute effectiveness, AUC in itself does not tell
us a lot about effectiveness in concrete operational settings.

To compensate this, we propose the Best Detection Rate (BDR) metric which rep-
resents one point on the ROC curve, i.e. the detection rate that can be achieved
when accepting a maximum false positive of 0.5%. While this threshold in essence
is arbitrary and in reality would need to be aligned with concrete security de-
mands and risk profiles, discussions with several domain experts confirmed that
this is a reasonably realistic assumption to work with.

Table 6.1 summarizes the best AUCs that we were able to achieve when applying
the different approaches to our baseline evaluation data set (see Section 4.1.3.1).
Note that the deductive pattern-based approach is not included in this table as
it does not make use of any form of machine learning and does not feature any
adjustable thresholds, which is essential for reasoning about AUC.

H Deductive \ Inductive
Pattern-based || — 0.988
Metric-based 0.984 0.986

Table 6.1.: Absolute effectiveness (AUC)

What we can deduce from Table 6.1 is that all our machine learning based ap-
proaches perform similarly in terms of absolute AUC effectiveness, with the induc-
tive pattern-based approach performing slightly better and the deductive metric-
based approach performing a bit worse than the inductive metric-based one.

Interestingly, this exactly inverses when we look at the operational BDR effec-
tiveness, as the deductive metric-based detection approach outperforms the in-
ductive pattern-based one here. Still, we can observe that for both, AUC and BDR,
all machine learning based approaches yield very similar performances.

151



6. Assessment and Operationalization

H Deductive \ Inductive
Pattern-based || < 77% ~ 96%
Metric-based ~ 98% ~ 97%

Table 6.2.: Absolute effectiveness (BDR)

We can further see that all our machine learning based approaches substantially
outperform our basic deductive pattern-based approach. Finally, this overview
also shows that in terms of absolute effectiveness the inductive extensions al-
ways outperform the corresponding basic deductive approaches. At this point, we
need to recall that for technical reasons our deductive and inductive metric-based
approaches use different machine learning classifiers which significantly impacts
their detection effectiveness and thus biases direct comparison. However, in Sec-
tion 5.2.4.1 we have already evaluated the effectiveness of both approaches when
using the same SVM classifier and have shown that in this case the inductively
generated metrics significantly outperformed the deductively specified generic
ones.

Furthermore, we again need to recall that the genetic programming scheme
used by our inductive metric-based approaches optimizes the generated metrics
towards achieved AUC. By this, the evolutionary process tries to assure a har-
monic compromise between false positive and false negative classifications and
thus always favors balanced over extreme classification distributions. This is, the
evolutionary scheme will always prefer “conservative” metrics that yield consis-
tently low false positive and low false negative rates over more “radical” met-
rics that, although at average performing wore than the conservative metrics,
for some configurations yield higher detection rate or lower false positive rate
peaks. The inductive metric-based approach thus is designed to generate arbitrar-
ily large amounts of metrics with a very high average level of absolute effective-
ness, but at the same time by construction very unlikely produces outstandingly
well-performing metrics — in particular, metrics that significantly outperform the
deductively defined ones.

In sum, these results emphasize the utility of our QDFG-based system model for
highly accurate malware detection. Given the consistently high level of detection
effectiveness that we were able to achieve using conceptually completely different
detection approaches, we are finally able to positively answer our initial research
question RQ1 in that QDFG-based system behavior abstraction is indeed highly
suitable for malware detection purposes.

152



6. Assessment and Operationalization

6.1.1.2. Quantitative Improvement

In order to assess research question RQ2 and to confirm our guiding research hy-
pothesis that the consideration of quantitative data flow aspects improves detec-
tion effectiveness, we again revisit all devised approaches and recap to which ex-
tent quantities improved their effectiveness.

For each approach, we determined the maximum effectiveness improvement
by comparing the detection or false positive rate that could be achieved with and
without considering quantitative data flow information. To avoid comparison bias
for the quantitative and non-quantitative experiments, we furthermore either fixed
the detection or false positive rate as invariant comparison baseline and only in-
vestigated the effects of quantity on the non-fixed metric.

H Deductive \ Inductive
Pattern-based || ~ 3.0z ~ 2.6x
Metric-based ~ 2.2x ~ 1.8z

Table 6.3.: Effectiveness improvement through quantities

Table 6.3 gives an overview of the respectively achieved effectiveness improve-
ment factors. As we can see, the biggest relative effectiveness improvement when
using quantitative data flow information was achieved by the deductive pattern-
based approach. By incorporating quantitative data flow properties into the detec-
tion patterns, we were able to decrease the false positive rate by more than a factor
of 3. We account this, in comparison to the other detection approaches, higher rel-
ative improvement of detection effectiveness to the significantly lower absolute ef-
fectiveness of the deductive pattern-based approach. For all other approaches, the
relative detection effectiveness improvement of using quantities revolved around
1.8 to 2.6 times the effectiveness when not using quantities.

Interestingly, the pattern-based approaches in general seemed to benefit slightly
more from the incorporation of quantities into the training and detection processes
than the metric-based ones. An explanation for this is the at average slightly lower
absolute detection effectiveness of the pattern-based approaches. This is, in rela-
tive terms it is significantly easier to improve upon mediocre absolute effectiveness
than it is to outperform an approach with already very high effectiveness.

Nevertheless, we were able to substantially improve the detection effectiveness
of all approaches when incorporating quantitative data flow aspects into the train-
ing or classification process. Besides positively answering our main research ques-
tion RQ2, this also strongly confirms our main hypothesis that “quantitative data
flow analysis at average yields better malware detection accuracy than non-quantitative
data flow analysis”.

153



6. Assessment and Operationalization

We consider this the most valuable contribution of this thesis, as we were able
to show the utility of quantitative data flow information for multiple conceptually
different detection approaches, which suggests a certain generalizability of the in-
sights gained.

6.1.1.3. Robustness

Besides assessing the absolute effectiveness of using our QDFG-based system model
and approaches on normal malware, we were also interested in investigating their
robustness. Robustness in this context manifests in the ability of respectively de-
vised detection approaches to maintain a consistently high detection effective-
ness even when malware employs simple behavior obfuscation. Recent stud-
ies [116, 115, 6] revealed that many state of the art behavior-based approaches
that leverage raw system call traces for malware detection are sensitive towards
behavior obfuscation that leads to random re-ordering or insertion of system calls.
A high obfuscation robustness of our detection approaches would thus not only in
absolute terms yield better detection effectiveness but also improve upon the state
of the art.

In Section 4.1.1 we have already discussed the robustness of our QDFG-based
system model towards slight variations in behavior profiles and simple behavior
obfuscation operations from a more conceptual perspective. As we recall from Sec-
tion 3.1, the order of system calls in a recorded behavior trace, i.e. the respectively
induced data flows, does not impact the generation of the respective QDFGs. This
by construction gives our QDFG-based model and the respectively devised detec-
tion approaches an inherent robustness towards trace permutations, i.e. volitional
or accidental system call reordering.

In terms of robustness against obfuscation through randomized injection of bo-
gus system calls in the beginning of Chapter 5 we already discussed the sensitivity
of our pattern-based approaches towards resulting non-deterministic creation of
QDFG edges from a theoretical point of view. More precisely, we have shown
that, at least in theory, mined or manually specified detection patterns could be
circumvented by certain manipulations to the structural integrity of QDFGs.

However, while our pattern-based approaches thus can to some extent be con-
sidered vulnerable to such forms of behavior obfuscation, this is not true for our
metric-based approaches. In Section 5.1.3.1, we have empirically shown that our
metric-based detection concept is widely robust against simple injection and re-
ordering obfuscation transformations and maintains a consistently high detec-
tion effectiveness, even when having to classify behaviorally obfuscated malware.
Moreover, we have shown that in terms of obfuscation robustness our metric-
based detection concept even outperforms a widely used detection concept of pro-
filing behavior in form of system call n-grams.

154



6. Assessment and Operationalization

In sum, with these insights we can positively answer research question RQ4 in
that we were even able to show that our most advanced detection approaches are
to wide extents robust towards the considered behavior obfuscations, but also that
they outperform several other state of the art detection concepts.

6.1.2. Efficiency

In order to reason about the operational efficiency of our detection approaches,
we distinguish between two different aspects: the training efficiency refers to
the computational effort that needs to be spent for generating a detection model,
whereas the detection efficiency refers to the time needed for classifying an un-
known QDFG, i.e. obtaining a feature vector and matching it against the trained
classifier.

Note that for this comparative assessment we were only interested in investi-
gating the individual differences in the computational effort of training and clas-
sifying unknown QDFGs. As the computational effort of executing and capturing
the behavior of a sample, as well as generating the corresponding QDFG (which
at average took less than 10 ms) was the same for all approaches, we deliberately
did not consider the effort of producing the raw data for this evaluation.

6.1.2.1. Training

In general, it is not easy to objectively compare the training or model generation
time of the different detection approaches. This is partially because it is not en-
tirely clear how to determine the actual time needed to generate a new set of de-
tection patterns or metrics and train the respective machine learning classifier. In
particular, for our inductive approaches we do not have any common termination
criteria for the mining or the evolution process, which raises the question of which
time span to consider as generation time.

To this end, for this evaluation we decided to define the generation or training
time as the time needed to produce the locally best-performing detection model,
i.e. the ones used as baseline for the effectiveness assessment (see 6.1.1.1). For
our inductive metric-based approach, for instance, it took about 1640 minutes to
generate a detection model, i.e. a FrankenMod, with a effectiveness that was not
exceeded in subsequent evolution steps. For the inductive pattern-based approach
this point was reached after slightly over 2 minutes, which is the time it took the
mining component to extract a set of highly characteristic graph patterns and train
a classier on the respectively obtained matching results.

What we can deduce from the training efficiency overview in Table 6.4 is that
our inductive metric-based approach with more than 27 hours by far takes the
longest to generate the first locally optimal performing detection model.

155



6. Assessment and Operationalization

H Deductive \ Inductive
Pattern-based || - 2.23
Metric-based 7.62 1640

Table 6.4.: Training efficiency [min]

We account this to the high complexity of the fitness function evaluation which
repeatedly needs to be conducted for each generated model, each training graph,
and for each evolution round.

Interestingly, the training efficiency of the inductive pattern-based approach,
i.e. the time required for mining a locally optimal performing set of detection
patterns and training the respective classifier, only took about 2 minutes and was
thus more than 3 times faster than training the deductive metric-based approach.
We attribute this to the aggressive sub-sampling and pattern candidate pruning of
the employed MDC graph mining algorithm. This means, the mining component
only needs to analyze a small fraction of the entire training set to extract a set
of patterns that best describes the training set while the deductive metric-based
approach needs to analyze all QDFGs in the training set.

Finally, our deductive pattern-based approach, at least in terms of training effi-
ciency, is the fastest, as it is not machine learning based and thus does not need a
dedicated training procedure.

6.1.2.2. Detection

More important than the training efficiency is the efficiency of the detection or
classification process, as it has a direct impact on the scalability and potential app-
lication areas of an approach. While the training usually only needs to be con-
ducted once and can be offloaded to powerful servers, the detection phase needs
to be conducted for each to be classified sample and typically cannot be offloaded.

While all our machine learning based detection approaches operate on reacha-
bility graphs and thus do not need to evaluate the detection patterns or metrics on
the full-sized QDFGs, our initial deductive pattern-based approach was evaluated
on full QDFGs only. As this would induce an unfair bias to the comparison of
the detection efficiency, we first had to also evaluate the deductive pattern-based
approach on reachability graphs instead of full QDFGs before we could compare
the results. The impact on detection efficiency was tremendous, as classifying a
reachability QDFG at average could be done more than one order of magnitude
faster than classifying a full-sized QDFG and only took a bit more than 1 instead
of 23 seconds.

156



6. Assessment and Operationalization

H Deductive \ Inductive
Pattern-based 1340 102
Metric-based 39 54

Table 6.5.: Average detection efficiency [ms]

Nevertheless, as we can see in Table 6.5, the deductive pattern-based detection
approach was still more than one order of magnitude slower than all other ap-
proaches. This can be explained by the fact that we had to develop an own un-
optimized implementation of the VF2 sub-graph isomorphism algorithm [48] to
introduce quantitative guard properties into the pattern matching process, which
likely induced a substantial computational overhead.

A comparison with the results of the inductive pattern-based approach, where
the sub-graph isomorphism checks are independent of flow quantities and con-
ducted using a standard optimized VF2 algorithm, fortifies this assumption as
here the detection only took about 10% of time of the deductive approach.

Finally, looking at the performance of the metric-based approaches, we can say
that metric-based detection was at least 2 times faster than pattern-based detec-
tion. Considering the comparably good or even better effectiveness of the metric-
based approaches over the pattern-based ones, we can conclude that we indeed
found a cheap approximation of graph similarity that is sufficiently precise to yield
high detection accuracy, which in sum positively answers research question RQ3.

6.1.3. Summary and Discussion

Summarizing the insights gained we can say that there is no significant difference
in absolute detection effectiveness (AUC) between our machine learning based
approaches that operate on patterns or metrics on QDFGs. In terms of opera-
tional effectiveness (BDR) we could identify a slight advantage of metric-based
approaches over pattern-based ones. However, we could observe a substantial im-
provement of effectiveness when moving from pure rule-based detection, i.e. de-
ductive pattern-based detection, to soft-computing supported detection schemes,
as e.g. employed by our inductive pattern-based and our metric-based approaches.
This is an interesting insight and to some extent suggests that malware behavior
might be too diverse or the differences to closely related benign activities too sub-
tle to be accurately captured with only a small set of generic detection heuristics.

Furthermore, our pattern-based approaches seemed to benefit slightly more from
using quantitative data flow information than our metric-based ones. This can par-
tially be explained by the slightly higher operational effectiveness of metric-based
approaches, which is relatively harder to improve upon.

157



6. Assessment and Operationalization

Although we only empirically evaluated the actual obfuscation robustness of
our metric-based approaches, following the arguments given at the beginning
of Section 4.2, we see good reasons to assume that metric-based approaches are
more robust towards simple behavior obfuscation transformations than pattern-
based ones.

In terms of detection efficiency, we could see a clear advantage of the metric-
based approaches over the pattern-based ones. This is not surprising as the base-
line problems, i.e. metric computation vs. sub-graph isomorphism, of the de-
tection concepts are in different complexity classes. This suggests that our metric-
based approaches scale better with bigger graph sizes than the pattern-based ones.

Furthermore, one important difference between our metric-based and the pattern-
based approaches is that they lack a clear semantic interpretation. While at least
our deductively defined detection patterns come with a defined semantic justi-
fication, the used graph metrics in combination lack such obvious and human-
understandable semantics. This has a substantial and non-negligible impact on
the understandability of classification decisions issued by the approaches to hu-
man analysts. While the pattern-based approaches at least to some extent allow a
human analyst to follow the line of reasoning that leads to a classification decision
and thus verify and learn from them, understanding and manually verifying the
machine learning supported classification decisions of metric-based approaches is
tedious. This poses a problem to post-detection root-cause and impact analysis.

To put the effectiveness and efficiency of our detection approaches into a broader
context, we finally compare our results with the respective ones of closely related
approaches, proposed in literature. We focus this comparison on two approaches
from literature that we consider to be the closest to our work and that are within
the most cited ones in the field.

In particular we compare our approaches with the taint-tracking based Panorama
system of Yin et al. [151] as they, like us, leverage data flow analysis for malware
detection. However, in contrast to us they use precise full system emulation based
taint-tracking to capture data flows, while we approximate potential data flows on
the grounds of system call interpretation and correlation.

Furthermore, we compare our work with that of Kolbitsch et al. [80] who were
within the first to use system call based data flow approximation for malware
detection. The main difference to their work is that we consider data flows from a
quantitative perspective, whereas they only take an possibilistic view.

In general it is hard to objectively compare different malware detection ap-
proaches, especially when they were evaluated on entirely different malware and
goodware data sets and execution environments. The following comparative dis-
cussion is thus more meant to give the reader a qualitative means to assess global
effectiveness and efficiency or our work in the light of closely related approaches
and not to conduct a exact quantitative comparison and ranking.

158



6. Assessment and Operationalization

The Panorama system of Yin et al. [151] was evaluated on a data set consisting
of only 42 malware and goodware samples. On this data set the Panorama system
was able to correctly identify all malware samples, i.e. yielded a detection rate
of 100%. At the same time Panorama incorrectly labeled 3 out of 56 goodware
samples as malware and thus yielded a false positive classification rate of more
than 5%. Although on this evaluation data set the Panorama system thus yielded
a slightly better detection rate than our best approaches (100% vs. 98%), we thus
significantly outperform Panorama in terms of false positive rates (5.4% vs. 0.5%).

Note again that our approaches were evaluated on a data set almost 100 times
as big as the one used to evaluate Panorama. This needs to be considered when in-
terpreting the relative differences in detection effectiveness. Moreover, Panorama
induced an average computational overhead of more than 800% and hence was
substantially slower than our approaches (~ 30%, see Section B.1.2.2).

In comparing to the closely related non-quantitative data flow approximation
approach of Kolbitsch et al. [80], which was evaluated on 300 malware and a not
further specified number of goodware samples, we can furthermore say that we
perform significantly better in correctly classifying malware samples, i.e. detec-
tion rate (64% vs. 98%). This becomes even more apparent if malware samples
from families that were not used for training are to be classified. Here we at aver-
age correctly classified 74% of the unknown malware samples, whereas they were
only able to correctly label about 23% of the samples. In terms of false positives
the numbers presented in [80] suggest that they perform slightly better than us
and did not yield any false positives on their data set, whereas our approaches at
average misclassified 0.5% of the benign samples.

Again, these numbers need to be interpreted with care, considering the different
data sets and unclear size and composition of the goodware set that was used
to evaluate Kolbitsch’s approach. In terms of caused computational overhead,
Kolbitsch et al. also perform better than us and at average only induce an overhead
of about 18%, whereas we induce an average overhead of 30%.

As none of the related approaches was thoroughly evaluated in terms of ob-
fuscation robustness it is hard to make any sound statements on their resilience
and to compare them with our approaches in this respect. However, considering
our obfuscation robustness results (see Section 5.1.3.2 and Section 5.2.4.3) we see
good reasons to assume that our quantitative approaches are more robust than the
related non-quantitative ones.

Considering these global comparison results we can conclude that the efficiency
and effectiveness our approaches is at least competitive to the state of the art. In
particular we can say that it seems that our quantitative concept yields a good
compromise between precise taint-tracking based and approximate system call
data flow inference approaches in that we seem to be slightly less precise than
taint-based approaches, but significantly more efficient and portable.

159



6. Assessment and Operationalization

At the same time the comparison results suggest that we are slightly less ef-
ficient, but more effective than non-quantitative data flow approximation based
approaches. As stressed before, this of course depends on a comparability of eval-
uation data sets and environments which is not necessarily given.

In the next section we will now discuss how the differences between our ap-
proaches affect their operationalization and utility for concrete detection settings.

6.2. Operationalization

For malware detection, just like in most IT security settings, a generic 100% ef-
fective solution is neither possible nor really needed [122]. Especially when con-
sidering inevitable interrelations between different quality attributes such as ef-
fectiveness, efficiency, and robustness, it becomes clear that the optimal detection
solution depends on the concrete deployment settings, i.e. detection goals and
constraints. We differentiate between two orthogonal detection settings: offline,
where training and detection are both done on data obtained from isolated exe-
cution of samples in controlled sandbox environments, and online, where training
might still be conducted on the basis of sandbox data, but detection is done at run-
time on incrementally built graphs of unconstrained size and complexity. While
this thesis mainly focuses on showing the general utility of quantitative data flow
analysis for malware detection in controlled environments, we subsequently will
argue why we consider our detection approaches to also generalize to online de-
tection settings.

6.2.1. Offline Detection

An example of a typical offline detection setting are email attachment anti-virus
scanners. Such scanners usually intercept and scan emails and their attachments
on the email server by either statically analyzing them on the fly or executing
suspicious attachments in malware sandboxes to dynamically assess their threat
potential. Usually, the classification of email attachments can almost arbitrarily be
parallelized and offloaded to powerful grids, as there is no interdependency be-
tween different (attachment) samples that needs to be considered for classification.
Detection efficiency thus only plays a subordinate role in such settings as long as
intercepted emails are not delayed unreasonably long.

Emails these days are one of the primary means [102] of distributing commodity
malware with the main goal of infecting as many victims as possible. An email
attachment scanner thus is likely to be exposed to a large and diverse number
of the most current malware samples, which raises the need for robust detection
mechanisms.

160



6. Assessment and Operationalization

Given these comparably low demands on detection efficiency, high effective-
ness and robustness requirements, in such a scenario one would typically strive
for deploying a detection approach with the highest possible detection rate and
robustness, irrespective of the induced computational costs.

Applied to our approaches, this would suggest that our inductive metric-based
approach fits offline detection settings best as it yields the highest detection effec-
tiveness and robustness. Moreover, by combining several detection (Franken)models
with an additional arbitration scheme, it would likely be possible to further in-
crease detection effectiveness and robustness at the cost of classification efficiency.

Finally, from a conceptual perspective, it would also be possible to combine
all approaches, i.e. metric- and pattern-based ones, through a meta-classification
scheme. Such a hybrid combined approach could, for instance, be realized by
matching all detection approaches against a set of labeled training samples, turn
their individual classification results, i.e. their numeric classification confidence,
into feature vectors, on which we then could train a combined supervised machine
learning classifier. This classifier then essentially would learn complex dependen-
cies between the individual class predictions of the single detection approaches
and the actual class of a training sample and thus merge the predictions of all de-
tection approaches into a combined classification decision. The assumption here
would be that a joined classifier, in terms of effectiveness, performs better than
the individual ones, at the cost of decreased detection efficiency. While we have
already started to investigate the utility of such hybrid detection models with en-
couraging results, we leave their thorough analysis to future work.

6.2.2. Online Detection

In contrast, in online detection settings, computational resources are comparably
sparse and the demands on system reactiveness usually higher. Unlike in offline
detection settings, where suspicious samples can be executed and monitored in
an isolated and controlled environment for a fixed period of time, this normally is
not possible in online detection settings. In typical online detection settings, e.g.
for desktop malware detection, we have to continuously monitor system behavior
in uncontrolled or semi-controlled environments to be able to timely raise alarms
or conduct appropriate countermeasures. Performing behavior-based detection
in such settings thus underlies a series of performance constraints and must not
significantly compromise user experience. This is, one must find an acceptable
trade-off between detection effectiveness, efficiency, and robustness.

From an efficiency perspective this therefore would suggest using one of our
metric-based approaches as they offer the best efficiency-effectiveness tradeoft.
However, we need to recall a series of constraints and limitations of the metric-
based approaches that affect their direct utility for online detection.

161



6. Assessment and Operationalization

Figure 6.1.: Graph splitting strategy

First of all, our metric-based approaches are trained on features derived from
behavior of malware and goodware executed in isolation in controlled sandbox
environments, observed for a fixed period of time. Second, we need to recall that
the global graph metrics used by the metric-based approaches are sensitive to-
wards changes in baseline graph size and complexity. However, in a continuous
monitoring setting in heterogeneous desktop environments, neither the observa-
tion time nor the number and types of interacting processes is typically fixed.

Metric-based detection models that were trained on fixed-length behavior of
systems, with in essence only one main active process, thus would be likely to
perform rather bad on completely open systems with multiple interacting process
and non-fixed profiling time spans. This poses certain problems to the direct in-
stantiation of our metric-based detection concept to online detection settings, due
to incongruent graph baselines between training and detection time. One way of,
at least partially, coping with the problem of incompatible graph baselines would
be to artificially establish a consistent baseline by means of graph slicing.

In online detection settings, QDFGs that model observed system behavior grow
continuously, in contrast to the fixed-sized training QDFGs. To nevertheless en-
sure a certain baseline compatibility, we could continuously slice the growing
runtime QDFGs into sub-graphs that, just like the training graphs, capture the
system’s behavior for a fixed time interval. Through a simple sliding window
splitting scheme we would then obtain streams of sub-graphs of the runtime QD-
FGs that share the same observation time baseline as the training graphs and thus
could be matched against metric profiles obtained from fixed-sized training traces.

An example of such a graph splitting strategy is depicted in Figure 6.1. For
simplicity we use a small time-frame size of three events and a sample rate of
one newly generated sub-graph per time-stamp. Each region corresponds to one
generated sub-graph of time length three, starting with the time interval [1, 3|, then
[2,4], followed by [3, 5].

162



6. Assessment and Operationalization

The main emphasis of this thesis is on showing the general utility of quantitative
data flow analysis and thus mainly focuses on controlled sandbox deployment
settings. Nevertheless, we see good reasons to assume that with such a graph
splitting strategy we could also operationalize our metric-based concept for online
detection settings. However, although we had first positive experiences with a
simple splitting concept for metric-based online detection (see Appendix B), we
leave a thorough analysis to future work.

While our metric-based approach thus, due to dependencies on a common QDFG
baseline, can not be directly operationalized for online detection, our pattern-
based concepts are considerably easier to instantiate for online detection purposes.
The main reason for this is that, unlike our fuzzy metric-based similarity approx-
imation, our pattern-based approaches work with strict sub-graph isomorphism,
which by construction is agnostic to the complexity and time baseline of to be
classified QDFGs. Hence, although we mine patterns from behavior that was ob-
tained from monitoring malware and goodware executed in a controlled sandbox
environment for a fixed period of time, obtained and manually defined detection
patterns in principle can also be detected in graphs with a completely different
time baseline. As long as a pattern also occurs in an arbitrarily large and com-
plex runtime graph, it is possible to use for classification. However, when using
machine learning in addition to pure pattern matching, as our inductive pattern-
based approach does, the additional noise in runtime graphs with different time
scope than the training graphs can negatively affect classification accuracy.

In addition to that pattern-based detection, as discussed in Section 6.1.2, badly
scales with increasing graph complexity. A runtime QDFG that models the be-
havior of a highly interactive system, despite employed graph simplification and
aggregation means, can have several thousand edges which, as we saw in Sec-
tion 4.1.3.3, can lead to classification times up to a couple of minutes. As this is
prohibitive for most online detection purposes, for operationalizing our pattern-
based concept we also need to employ some additional detection complexity re-
duction means to remain sufficiently efficient for online detection. This could ei-
ther be done by using a similar graph slicing scheme, as proposed for metric-based
online detection, or e.g. by marking already evaluated parts of the runtime graph
to avoid redundant matching.

Although we have already prototypically implemented a basic graph splitting
scheme and successfully shown its utility for online pattern-based detection (see
Appendix A), the development of more elaborate online detection concepts is out-
side the scope of this thesis and thus left for future work.

Summarizing the discussion on operationalizing our detection approaches, we
see their main utility for offline sandbox-based detection. While we have sketched
the possibility of also operationalizing them for online detection, more research
effort will be needed to address expected effectiveness and efficiency issues.

163



6. Assessment and Operationalization

164



7. Conclusion

As a consequence of the increasing growth and sophistication of the malware un-
derground economy, malware detection remains a very relevant topic and an ac-
tive area of research, with many still widely unsolved challenges [112, 22, 154, 59].

In this thesis we contribute towards solving some of them by showing how quan-
titative data flow information gathered at system call level can be leveraged (RQ1) for
highly accurate (RQ2), robust (RQ4), and efficient (RQ3) malware detection.

To this end, we have introduced a novel model to represent system behavior
(see Chapter 3) as so-called quantitative data flow graphs (QDFGs). QDFGs are
generated by interpreting observed system calls according to their (quantitative)
data flow semantics. This is, we analyze how much data flow takes places between
different entities of a system, such as files, processes, sockets, or registry entries,
has flown as consequence of an issued system call. This information is inferred
from relevant system call arguments like e.g. the size of read or write buffers.
Correspondingly, the nodes of a QDFG represent system entities that at least once
were involved in a data flow, and edges model aggregated data flows between
those entities.

This abstraction from low-level details of the underlying system call traces, such
as order or amount of issued calls, yields lean and robust behavior models that,
as we have later empirically validated, are widely robust towards noise and inten-
tional behavior obfuscation. Furthermore, the aggregation of semantically related
data flows in comparison to maintaining the full trace information reduced the
amount of data needed to capture the behavior of a system for a given time span.

In order to show the utility of this model for behavior-based malware detec-
tion, we then presented four different QDFG-based detection approaches based on
two different classification concepts: pattern-based detection, where recurring mali-
cious behavior is codified into patterns that are used to classify unknown samples
(see Chapter 4), and metric-based detection where we profile QDFGs with sets of
graph metrics to establish a flexible notion of behavior similarity (see Chapter 5).
Both basic concepts were first instantiated in a deductive way, using manually de-
fined detection patterns and generic graph metrics, and then inductively extended
with automatically extracted detection patterns and generated graph metrics.

Finally, we presented a comparative assessment of all devised approaches and
discussed their suitability for typical malware detection settings.

165



7. Conclusion

7.1. Gained Insights

In sum, with these QDFG-based detection approaches and their evaluation on a
big and diverse data set in a representative sandbox environment we were able to
answer our initial research questions by showing that:

RQ1: Our QDFG-based system model can be utilized for highly accurate malware
detection with an up to 98% detection rate and less than 0.5% false positives.

RQ2: The consideration of quantitative data flow properties for training and de-
tection improves effectiveness by up to 300%.

RQ3: QDFG-based malware detection can be done very efficiently; our metric-
based detection approach can classify an unknown QDFG in less than 40ms.

RQ4: QDFG-based detection approaches are widely robust against simple behav-
ior obfuscation transformations and in particular can outperform state of the
art detection approaches that rely on raw system call traces.

These results furthermore confirm our main hypothesis in that we, at least for
our evaluation setting, have shown that quantitative data flow analysis indeed yields
better malware detection accuracy than non-quantitative analysis.

We need to recall though that a perfect general-purpose malware detection ap-
proach cannot exist [40, 34]. In behavior-based detection terms this is because a
perfect detection model would essentially need to be functionally equivalent to all
possible malware programs. Semantic equivalence is a non-trivial property and,
according to Rice’s theorem, in general computationally undecidable.

Furthermore, there is no commonly agreed upon consensus on what malware
actually is. Taken together that means that behavior-based malware detection can
only be done best-effort and example-based. That means, we can only devise de-
tection models that locally optimally separate known malware samples and be-
nign ones. By making them as flexible as possible without compromising accuracy
on the training set, we then need to assume that respectively generated detection
models to some extent also generalize to unknown malware.

While our cross-validation experiments indicate a certain generalizability of our
approaches, we, like all other malware detection approaches, cannot claim that
our evaluation results necessarily reflect real-world effectiveness. Furthermore,
not only after recently revealed cases of advanced targeted malware like Stuxnet,
Duqu, or Regin using highly sophisticated anti-analysis and anti-detection tech-
niques [83, 133, 10, 137], we know that, given enough time and resources, it is
always possible for experienced malware developers to hamper detection, espe-
cially when the functionality of used detection mechanisms is well-known.

166



7. Conclusion

Although we put some effort into making our behavior models and detection
approaches robust against typical behavior obfuscation transformations and also
anticipated some generic quantitative attacks, we are aware that, given enough
knowledge about their functionality, it might also be possible to confuse our clas-
sifiers. Still, our evaluations indicate that in comparison to closely related work
we significantly raised the bar for malware to evade detection.

On a more abstract level, we have learned that there is an inevitable trade-off
between detection quality characteristics that can only be resolved with respect
to concrete operational security goals and constraints. This is, there likely is no
one-size-fits-all solution that optimally suits all detection purposes. Also, we have
learned that static rule-based detection models are probably not suited to coping
with the heterogeneity and behavioral diversity of modern malware. In contrast,
we strictly believe that soft-computing based approaches that can be re-trained on
new malware families once starting to become ineffective, or even dynamically
adapt to new threat landscapes, are better suited to deal with ever more sophisti-
cated malware.

7.2. Future Work

Although with the presented detection approaches we were able to show the gen-
eral utility of quantitative data flow analysis for malware detection and thus met
the set research goals of this thesis, there is still room for improvement and follow-
up work. We envision possible future work in terms of further generalizing our
detection concept, improving effectiveness through combined or hybrid detection
strategies, operationalizing the proposed approaches for online detection, and im-
proving the detection infrastructure and process, which we in the following will
discuss in more detail.

Generalization AsMS Windows operating systems are still prevalent in the busi-
ness and consumer desktop market segment [130], they are also the primary tar-
gets of commodity malware [112]. As the primary aim of this thesis was to show
the general utility of quantitative data flow analysis for malware detection, it was a
logical choice to also focus our approaches and evaluations on Windows malware.

Nevertheless, in the past years we could observe a significant rise of mobile mal-
ware, i.e. malware that runs on and targets Android operating systems. As our
QDFG-based system model is not bound to one specific operating system and in
principle can also be instantiated for systems other than Windows, we see the in-
stantiation of our generic model for Android operating systems and the according
adaptation of our detection approaches as logical next steps.

167



7. Conclusion

Besides the non-trivial effort of modeling Android operating system specifici-
ties, profiling and detecting the behavior of Android malware with QDFGs poses
some new challenges as Android malware is significantly more reactive than Win-
dows malware and thus demands more sophisticated stimulation strategies to
trigger meaningful behavior. Moreover, Android malware often comes as re-packaged
goodware and thus blends into seemingly benign behavior, which makes it signif-
icantly harder to separate benign from malign behavior.

Although we have with some success adapted our deductive metric-based ap-
proach for Android [27], the effectiveness was significantly below that of the Windows-
based versions. To achieve similar effectiveness, we would need to develop more
elaborate graph splitting and training procedures to reduce training data noise.

Combined and Hybrid Detection Approaches Besides generalizing our system
model and detection approaches to other operating systems, we in Section 6.2.1
already sketched the idea of combining our approaches to improve classification
effectiveness and robustness. We see good reasons to assume that the combination
of several detection approaches, i.e. our deductive metric and deductive pattern-
based approaches, might yield improved detection effectiveness.

This, for instance, could be done with a simple arbiter scheme on the different
approaches’ classification predictions and then, depending on the detection goals,
optimizing detection or false positive rates by either disjunctive or conjunctive
combinations of the results. Instead, we could also combine different detection
approaches by means of a meta-learning scheme that is trained on the individual
predictions of different approaches to infer joint classification models. First tests
on combining different metric-based detection approaches already indicated that
the combination of different approaches or detection models indeed can improve
effectiveness at the cost of decreased efficiency. Finally, we would expect hybrid
combination of pattern- and metric-based approaches to even further improve de-
tection effectiveness and robustness, under the assumption that graph metrics and
patterns can be defined in a non-overlapping way.

Online Detection As already briefly discussed in Section 6.2.2, the detection ap-
proaches proposed in this thesis were mainly developed and evaluated for typical
offline sandbox detection settings. While this was sufficient for showing the prin-
ciple utility of quantitative data flow analysis for malware detection, the utility of
the presented approaches for online detection purposes was not evaluated in this
thesis and likely needs some more adaptation effort. Although, in Appendix A
and Appendix B we have prototypically shown that our basic concepts, at least
for specific detection use cases, can be extended for online detection, we leave a
comprehensive extension to future work.

168



7. Conclusion

Furthermore, it would be interesting to investigate the possibility of at least par-
tially shifting the training phase to runtime rather than design time. This is, by
continuously re-training the devised detection approaches on previously classified
data with high classification consensus among different detection approaches, we
would enable a certain self-adaptivity of the detection mechanisms to changes in
the threat landscape. This, for instance, could be done by incorporating some sort
of feedback loop into hybrid approaches that trigger the re-training of all individ-
ual approaches once the classification consensus among them falls below a defined
minimum confidence threshold. Furthermore, our inductive metric-based model
generation procedure could probably be adapted to continuously creating new de-
tection models at runtime and evaluating their effectiveness on live samples while
using the other detection approaches as ground truth oracles.

Infrastructure and Process Finally, as the emphasis of this thesis was on the con-
ceptual contribution of showing the general utility of quantitative data flow ana-
lysis and less on the technical infrastructure to retrieve the raw data, we see room
for follow-up work in this matter. Malware these days is often environment sensi-
tive and adapts its behavior when it realizes that it is being executed and analyzed
in artificial sandbox settings. Although we have already introduced basic coun-
termeasures to tackle this issue, e.g. by using simplistic user behavior simulation
scripts, replacing the standard sandbox monitor with our custom developed and
more stealthy one, and preparing the virtual execution environment to obscure vir-
tualization indicators that are well-known to be analyzed by malware, we expect
more advanced stimulation strategies and more elaborate execution environments
to further improve detection effectiveness.

Moreover, we are convinced that a comprehensive malware mitigation strategy
should always encompass detection and analysis. Although automated detection
mechanisms can filter potentially harmful samples, there is always a chance that
some of them slip through. Hence, infections can never be ruled out with absolute
certainty. To still be able to react to potentially unwanted consequences, ex-post
analysis can help to understand infection entry points and estimate induced dam-
ages to contain current and prevent future infections. Our graph-based behavior
model is an ideal basis for extending pure detection with further-reaching analysis
and visualization means, as reasoning about root causes and impact of infections
essentially boils down to graph reachability analysis. This is, our detection ap-
proaches can flag suspicious process nodes from which we can perform backward
or forward reachability analysis to reveal potential infection sources, i.e. malicious
network locations or files that might have caused the infection, or estimate poten-
tially compromised resources, e.g. dropped or infected files.

169



7. Conclusion

Although we have shown that our detection concepts can in principle be ex-
tended by additional means to allow visual root-cause and infection analysis by
human experts (see Appendix A), and discussed how to link our basic metric-
based detection concept to risk assessment and incident response strategies (see Ap-
pendix B), devising a holistic process to detect, analyze, and mitigate potentially
malicious behavior is out of the scope of this thesis and thus left to future work.
Also, a thorough analysis and comparison of the semantic dimension of deduc-
tively defined and inductively mined detection patterns is left to future work.

170



Bibliography

(1]

(2]

(3]

[4]

[7]

(8]
[9]

[10]

Uwe Aickelin, Julie Greensmith, and Jamie Twycross. Immune system ap-
proaches to intrusion detection—a review. In Artificial Immune Systems, pages
316-329. Springer, 2004.

Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detec-
tion. ACM Transactions on Information and System Security (TISSEC), 3(3):186—
205, 2000.

Domagoj Babi¢, Daniel Reynaud, and Dawn Song. Malware analysis with
tree automata inference. In Computer Aided Verification, pages 116-131.
Springer, 2011.

Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jaha-
nian, and Jose Nazario. Automated classification and analysis of internet
malware. In Recent advances in intrusion detection, pages 178-197. Springer,
2007.

Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. Efficient detection of split personalities
in malware. In NDSS, 2010.

Sebastian Banescu, Tobias Wiichner, Alei Salem, Marius Guggenmos, Martin
Ochoa, and Alexander Pretschner. An empirical evaluation framework for
malware behavior obfuscation. In International Conference on Malicious and
Unwanted Software (MALCON), 2015.

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone.
Genetic programming: an introduction, volume 1. Morgan Kaufmann San Fran-
cisco, 1998.

Ulrich Bayer. TTAnalyze: A tool for analyzing malware.

Ulrich Bayer. Large-Scale Dynamic Malware Analysis. PhD thesis, Technische
Universitat Wien, 2009.

Boldizsar Bencsath, Gabor Pek, Levente Buttyan, and Mark Felegyhazi.
Duqu: A stuxnet-like malware found in the wild. www.crysys.hu/
publications/files /bencsathPBF11duqu.pdf, December 2015.

171


www.crysys.hu/publications/files/bencsathPBF11duqu.pdf
www.crysys.hu/publications/files/bencsathPBF11duqu.pdf

Bibliography

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Srndi¢, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In Machine Learning and Knowledge
Discovery in Databases, pages 387—402. Springer, 2013.

[12] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha,
Amr Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the
zeus botnet crimeware toolkit. In Privacy Security and Trust (PST), 2010 Eighth
Annual International Conference on, pages 31-38. IEEE, 2010.

[13] Jonathan J Blount, Daniel R Tauritz, Samuel Mulder, et al. Adaptive rule-
based malware detection employing learning classifier systems: A proof of
concept. In Computer Software and Applications Conference Workshops (COMP-
SACW), 2011 IEEE 35th Annual, pages 110-115. IEEE, 2011.

[14] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control
flow graphs as malware signatures. In International workshop on the Theory of
Computer Viruses, 2007.

[15] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for meta-
morphic viruses. Journal in Computer Virology, 4(3):211-220, 2008.

[16] Ulrik Brandes. A faster algorithm for betweenness centrality*. Journal of
Mathematical Sociology, 25(2):163-177, 2001.

[17] Matthew Braverman. Win32/blaster: a case study from microsoft’s perspec-
tive. In Proceedings of the Virus Bulletin International Conference, 2005.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[19] Ismael Briones and Aitor Gomez. Graphs, entropy and grid computing:
Automatic comparison of malware. In Virus bulletin conference, pages 1-12.
Citeseer, 2008.

[20] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn
Song, and Heng Yin. Automatically identifying trigger-based behavior in
malware. In Botnet Detection, pages 65-88. Springer, 2008.

[21] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-
mutating malware using control-flow graph matching. In Detection of Intru-
sions and Malware & Vulnerability Assessment, pages 129-143. Springer, 2006.

[22] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring
pay-per-install: the commoditization of malware distribution. In Proceedings
of the 20th USENIX conference on Security, pages 13—-13. USENIX Association,
2011.

172



Bibliography

[23] Juan Caballero, Min Gyung Kang, Shobha Venkataraman, Dawn Song,
Pongsin Poosankam, and Avrim Blum. Fig: Automatic fingerprint gener-
ation. 2007.

[24] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mi-
hai Christodorescu, and Engin Kirda. A quantitative study of accuracy in
system call-based malware detection. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 122-132. ACM, 2012.

[25] Andrea Cani, Marco Gaudesi, Ernesto Sanchez, Giovanni Squillero, and Al-
berto Tonda. Towards automated malware creation: code generation and
code integration. In Proceedings of the 29th Annual ACM Symposium on Ap-
plied Computing, pages 157-160. ACM, 2014.

[26] Stephen Cass. Anatomy of malice [computer viruses]. Spectrum, IEEE,
38(11):56-60, 2001.

[27] John Henry Castellanos, Tobias Wiichner, Martin Ochoa, and Sandra Rueda.
Q-floid: Android malware detection with quantitative data flow graphs. In
SG-CRC, 2016.

[28] Silvio Cesare and Yang Xiang. Classification of malware using structured
control flow. In Proceedings of the Eighth Australasian Symposium on Parallel
and Distributed Computing-Volume 107, pages 61-70. Australian Computer
Society, Inc., 2010.

[29] Silvio Cesare and Yang Xiang. Malware variant detection using similarity
search over sets of control flow graphs. In Trust, Security and Privacy in Com-
puting and Communications (TrustCom), 2011 IEEE 10th International Confer-
ence on, pages 181-189. IEEE, 2011.

[30] Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and
Christos Faloutsos. Polonium: Tera-scale graph mining and inference for
malware detection. In SIAM International Conference on Data Mining, 2011.

[31] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. J. of Arti-
ficial Intelligence Research, 16(1):321-357, 2002.

[32] Chen Chen, Cindy X Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng
Yan, and Jiawei Han. Mining graph patterns efficiently via randomized sum-
maries. Proceedings of the VLDB Endowment, 2(1):742-753, 2009.

[33] Thomas M. Chen and Jean marc Robert. The evolution of viruses and
worms. In Statistical Methods in Computer, 2004.

173



Bibliography

[34] David M Chess and Steve R White. An undetectable computer virus. In
Proceedings of Virus Bulletin Conference, volume 5, 2000.

[35] Mihai Christodorescu and Somesh Jha. Testing malware detectors. ACM
SIGSOFT Software Engineering Notes, 29(4):34—44, 2004.

[36] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining spec-
ifications of malicious behavior. In Proceedings of the 1st India software engi-
neering conference, pages 5-14. ACM, 2008.

[37] Mihai Christodorescu, Somesh Jha, Sanjit Seshia, Dawn Song, Randal E
Bryant, et al. Semantics-aware malware detection. In Security and Privacy,
2005 IEEE Symposium on, pages 32-46. IEEE, 2005.

[38] Fred Cohen. Computer viruses: theory and experiments. 1984.

[39] Fred Cohen. Computer Viruses. PhD thesis, University of southern california,
1986.

[40] Fred Cohen. Computational aspects of computer viruses. Computers & Secu-
rity, 8(4):297-298, 1989.

[41] Donatello Conte, Pasquale Foggia, and Mario Vento. Challenging complex-
ity of maximum common subgraph detection algorithms: A performance
analysis of three algorithms on a wide database of graphs. Journal of Graph
Algorithms Applications, 2007.

[42] Diane J. Cook and Lawrence B. Holder. Substructure discovery using min-
imum description length and background knowledge. Journal of Artificial
Intelligence Research, 1994.

[43] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)
graph isomorphism algorithm for matching large graphs. Transactions on
Pattern Analysis and Machine Intelligence, pages 1367-1372, 2004.

[44] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the
15th ACM conference on Computer and communications security, pages 51-62.
ACM, 2008.

[45] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and
Wenke Lee. Virtuoso: Narrowing the semantic gap in virtual machine in-
trospection. In Security and Privacy (SP), 2011 IEEE Symposium on, pages
297-312. IEEE, 2011.

174



Bibliography

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A
survey on automated dynamic malware-analysis techniques and tools. ACM
Computing Surveys (CSUR), page 6, 2012.

Karim O Elish, D Yao, and Barbara G Ryder. User-centric dependence ana-
lysis for identifying malicious mobile apps. In Workshop on Mobile Security
Technologies, 2012.

David Eppstein. Subgraph isomorphism in planar graphs and related prob-
lems. In SODA, volume 95, pages 632-640. World Scientific, 1995.

Mojtaba Eskandari and Sattar Hashemi. Metamorphic malware detection
using control flow graph mining. International Journal of Computer Science
and Network Security, 11(12):1-6, 2011.

Parvez Faruki, Vijay Laxmi, Manoj Singh Gaur, and P Vinod. Mining con-
trol flow graph as api call-grams to detect portable executable malware. In
Proceedings of the Fifth International Conference on Security of Information and
Networks, pages 130-137. ACM, 2012.

Stephanie Forrest, Steven Hofmeyr, Aniln Somayaji, Thomas Longstaff, et al.
A sense of self for unix processes. Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on, pages 120-128, 1996.

Thomas Fox-Brewster. Netflix is dumping anti-virus, presages death of
an industry. http://www.forbes.com/sites/thomasbrewster/2015/08/26/
netflix-and-death-of-anti-virus/, December 2015.

Matt Fredrikson, Mihai Christodorescu, Jonathon Giffin, and Somesh Jhas.
A declarative framework for intrusion analysis. In Cyber Situational Aware-
ness, pages 179-200. 2010.

Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and
Xifeng Yan. Synthesizing near-optimal malware specifications from suspi-
cious behaviors. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
45-60. IEEE, 2010.

Matthew Fredrikson, Mihai Christodorescu, and Somesh Jha. Dynamic
behavior matching: A complexity analysis and new approximation algo-
rithms. Automated Deduction-CADE-23, pages 252-267, 2011.

Gehad M Galal, Diane ] Cook, and Lawrence B Holder. Exploiting paral-
lelism in a structural scientific discovery system to improve scalability. Jour-
nal of the Association for Information Science and Technology, 50(1):65, 1999.

175


http://www.forbes.com/sites/thomasbrewster/2015/08/26/netflix-and-death-of-anti-virus/
http://www.forbes.com/sites/thomasbrewster/2015/08/26/netflix-and-death-of-anti-virus/

Bibliography

[57] Michael Garey and David Johnson. Computers and intractability: a guide
to the theory of np- completeness. San Francisco, LA: Freeman, 1979.

[58] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3-42, 2006.

[59] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning more about
the underground economy: A case-study of keyloggers and dropzones. In
Computer Security—ESORICS 2009, pages 1-18. Springer, 2009.

[60] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware indexing
using function-call graphs. In Proceedings of the 16th ACM conference on Com-
puter and communications security, pages 611-620. ACM, 2009.

[61] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. Adversarial machine learning. In Proceedings of the 4th ACM work-
shop on Security and artificial intelligence, pages 43-58. ACM, 2011.

[62] Nwokedi Idika and Aditya P Mathur. A survey of malware detection tech-
niques. Purdue University, 48, 2007.

[63] Lastline Inc. Lastline analyst. www.lastline.com/documents/
Lastline- Analyst-Datasheet.pdf, January 2016.

[64] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based
algorithm for mining frequent substructures from graph data. In Principles
of Data Mining and Knowledge Discovery. 2000.

[65] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of mal-
ware: from a survey towards an established taxonomy. Journal in computer
Virology, 4(3):251-266, 2008.

[66] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. Jack-
straws: picking command and control connections from bot traffic. In Pro-
ceedings of the 20th USENIX conference on Security, pages 29-29. USENIX As-
sociation, 2011.

[67] Dae-il Jang, Minsoo Kim, Hyun-chul Jung, and Bong-Nam Noh. Analysis
of http2p botnet: case study waledac. In Communications (MICC), 2009 IEEE
9th Malaysia International Conference on, pages 409-412. IEEE, 2009.

[68] Jae-wook Jang, Jiyoung Woo, Jaesung Yun, and Huy Kang Kim. Mal-
netminer: malware classification based on social network analysis of call
graph. In Proceedings of the companion publication of the 23rd international
conference on World wide web companion, pages 731-734. International World
Wide Web Conferences Steering Committee, 2014.

176


www.lastline.com/documents/Lastline-Analyst-Datasheet.pdf
www.lastline.com/documents/Lastline-Analyst-Datasheet.pdf

Bibliography

[69] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection
through vmm-based out-of-the-box semantic view reconstruction. In Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pages 128-138. ACM, 2007.

[70] Fatemeh Karbalaie, Ashkan Sami, and Mansour Ahmadi. Semantic mal-
ware detection by deploying graph mining. International Journal of Computer
Science Issues, 9(1):1694-0814, 2012.

[71] Nikhil S Ketkar, Lawrence B Holder, and Diane ] Cook. Subdue:
Compression-based frequent pattern discovery in graph data. In Proceed-
ings of the 1st international workshop on open source data mining: frequent pattern
mining implementations, 2005.

[72] Jinhyun Kim and Byung-Ro Moon. Disguised malware script detection sys-
tem using hybrid genetic algorithm. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 182-187. ACM, 2013.

[73] Keehyung Kim and Byung-Ro Moon. Malware detection based on depen-
dency graph using hybrid genetic algorithm. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 1211-1218. ACM,
2010.

[74] Joris Kinable and Orestis Kostakis. Malware classification based on call
graph clustering. Journal in computer virology, 7(4):233-245, 2011.

[75] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut
Veith. Detecting malicious code by model checking. In Detection of intru-
sions and malware, and vulnerability assessment, pages 174-187. Springer, 2005.

[76] Samuel T King and Peter M Chen. Backtracking intrusions. In ACM SIGOPS
Operating Systems Review, pages 223-236, 2003.

[77] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox: efficient
malware analysis on bare-metal. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 403—-412. ACM, 2011.

[78] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: bare-
metal analysis-based evasive malware detection. In Proceedings of the 23rd
USENIX Security Symposium, 2014.

[79] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and
Richard Kemmerer. Behavior-based spyware detection. In USENIX Secu-
rity Symposium, volume 6, 2006.

177



Bibliography

[80] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware
detection at the end host. In USENIX Security Symposium, pages 351-366,
2009.

[81] Marc Kiihrer, Christian Rossow, and Thorsten Holz. Paint it black: Evaluat-
ing the effectiveness of malware blacklists. In Research in Attacks, Intrusions
and Defenses, pages 1-21. Springer, 2014.

[82] Michihiro Kuramochi and George Karypis. Discovering frequent geometric
subgraphs. Information Systems, 32(8):1101-1120, 2007.

[83] David Kushner. The real story of stuxnet. spectrum.ieee.org/telecom/
security /the-real-story-of-stuxnet, December 2015.

[84] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodor-
escu, and Engin Kirda. Accessminer: using system-centric models for mal-
ware protection. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 399—412. ACM, 2010.

[85] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. Detecting metamorphic mal-
wares using code graphs. In Proceedings of the 2010 ACM symposium on applied
computing, pages 1970-1977. ACM, 2010.

[86] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On challenges in eval-
uating malware clustering. In Recent Advances in Intrusion Detection, pages
238-255. Springer, 2010.

[87] Wei-Jen Li, Ke Wang, Salvatore ] Stolfo, and Benjamin Herzog. Fileprints:
Identifying file types by n-gram analysis. In Information Assurance Workshop,
2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pages 64-71. IEEE,
2005.

[88] Alexander Long, Joshua Saxe, and Robert Gove. Detecting malware samples
with similar image sets. In Proceedings of the Eleventh Workshop on Visualiza-
tion for Cyber Security, pages 88-95. ACM, 2014.

[89] Enrico Lovat, Johan Oudinet, and Alexander Pretschner. On quantitative
dynamic data flow tracking. In Proceedings of the 4th ACM conference on Data
and application security and privacy, pages 211-222. ACM, 2014.

[90] Robert Lyda and James Hamrock. Using entropy analysis to find encrypted
and packed malware. IEEE Security & Privacy, (2):40-45, 2007.

178


spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet

Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Hugo Daniel Macedo and Tayssir Touili. Mining malware specifications
through static reachability analysis. In Computer Security—-ESORICS 2013,
pages 517-535. Springer, 2013.

Weixuan Mao, Zhongmin Cai, Xiaohong Guan, and Don Towsley. Centrality
metrics of importance in access behaviors and malware detections. In Pro-
ceedings of the 30th Annual Computer Security Applications Conference, pages
376-385. ACM, 2014.

Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra. Classifying an-
droid malware through subgraph mining. In Data Privacy Management and
Autonomous Spontaneous Security. 2014.

Takashi Matsuda, Hiroshi Motoda, Tetsuya Yoshida, and Takashi Washio.
Mining patterns from structured data by beam-wise graph-based induction.
In Discovery Science, 2002.

McAfee. The economic impact of cybercrime and cyber es-
pionage. http:/ /www.mcafee.com/mx/resources/reports/
rp-economic-impact-cybercrime.pdf, 2013.

Aziz Mohaisen and Omar Alrawi. Av-meter: An evaluation of antivirus
scans and labels. In Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 112-131. Springer, 2014.

Aziz Mohaisen, Omar Alrawi, Matt Larson, and Danny McPherson. To-
wards a methodical evaluation of antivirus scans and labels. In Information
Security Applications, pages 231-241. Springer, 2014.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static ana-
lysis for malware detection. In Computer security applications conference, 2007.
ACSAC 2007. Twenty-third annual, pages 421-430. IEEE, 2007.

Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina Gitel-
man, Shlomi Dolev, and Yuval Elovici. Unknown malcode detection using
opcode representation. In Intelligence and Security Informatics, pages 204-215.
Springer, 2008.

Antonio Nappa, M Zubair Rafique, and Juan Caballero. Driving in the
cloud: An analysis of drive-by download operations and abuse reporting.
In Detection of Intrusions and Malware, and Vulnerability Assessment, pages 1-
20. Springer, 2013.

179


http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime.pdf
http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime.pdf

Bibliography

[101] Antonio Nappa, Zhaoyan Xu, M Zubair Rafique, Juan Caballero, and Guofei
Gu. Cyberprobe: Towards internet-scale active detection of malicious
servers. In Network and Distributed System Security Symposium, 2014.

[102] Mark E] Newman, Stephanie Forrest, and Justin Balthrop. Email networks
and the spread of computer viruses. Physical Review E, 66(3):035101, 2002.

[103] Anh M Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T
King, and Hai D Nguyen. Mavmm: Lightweight and purpose built vmmm
for malware analysis. In Computer Security Applications Conference, 2009. AC-
SAC’09. Annual, pages 441-450. IEEE, 2009.

[104] NIST. Guide to malware incident prevention and handling. November 2005.

[105] Sadia Noreen, Shafaq Murtaza, M Shafiq, and Muddassar Farooq. Using for-
mal grammar and genetic operators to evolve malware. In Recent Advances
in Intrusion Detection, pages 374-375. Springer, 2009.

[106] Sadia Noreen, Shafaq Murtaza, M Zubair Shafiq, and Muddassar Farooq.
Evolvable malware. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1569-1576. ACM, 2009.

[107] Gavin O’Gorman and Geoff McDonald. Ransomware: a growing menace.
Symantec Corporation, 2012.

[108] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. Ranking of closeness cen-
trality for large-scale social networks. In Frontiers in Algorithmics, pages 186—
195. Springer, 2008.

[109] Philip O’Kane, Sakir Sezer, and Keiran McLaughlin. Obfuscation: The hid-
den malware. Security & Privacy, IEEE, 9(5):41-47, 2011.

[110] Digit Oktavianto and Igbal Muhardianto. Cuckoo Malware Analysis. Packt
Pbl. Ltd, 2013.

[111] Sirinda Palahan, Domagoj Babi¢, Swarat Chaudhuri, and Daniel Kifer. Ex-
traction of statistically significant malware behaviors. In Proceedings of the
29th Annual Computer Security Applications Conference, pages 69-78. ACM,
2013.

[112] PandaLabs. Pandalabs annual report 2014. http://www.pandasecurity.
com/mediacenter/src/uploads/2015/02 /Pandalabs2014-DEF2-en.pdf,
February 2015.

180


http://www.pandasecurity.com/mediacenter/src/uploads/2015/02/Pandalabs2014-DEF2-en.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2015/02/Pandalabs2014-DEF2-en.pdf

Bibliography

[113] Younghee Park and Douglas Reeves. Deriving common malware behavior
through graph clustering. In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, pages 497-502. ACM, 2011.

[114] Younghee Park, Douglas S Reeves, and Mark Stamp. Deriving common
malware behavior through graph clustering. Computers & Security, 39:419—
430, 2013.

[115] Romain Péchoux and Thanh Dinh Ta. A categorical treatment of malicious
behavioral obfuscation. In Theory and Applications of Models of Computation,
pages 280-299. Springer, 2014.

[116] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray.
A semantics-based approach to malware detection. ACM SIGPLAN Notices,
42(1):377-388, 2007.

[117] Marco Ramilli, Matt Bishop, and Shining Sun. Multiprocess malware. In Ma-
licious and Unwanted Software (MALWARE), 2011 6th International Conference
on, pages 8-13. IEEE, 2011.

[118] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Diissel, and Pavel
Laskov. Learning and classification of malware behavior. In Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 108-125. Springer,
2008.

[119] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-
tomatic analysis of malware behavior using machine learning. Journal of
Computer Security, 19(4):639-668, 2011.

[120] Jorma Rissanen. Modeling by shortest data description. Automatica, 1978.

[121] Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen. Prudent

practices for designing malware experiments: Status quo and outlook. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages 65-79. IEEE, 2012.

[122] Ravi Sandhu. Good-enough security: Toward a pragmatic business-driven
discipline. IEEE Internet Computing, (1):66—68, 2003.

[123] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Op-
code sequences as representation of executables for data-mining-based un-
known malware detection. Information Sciences, 231:64-82, 2013.

[124] Matthew G Schultz, Eleazar Eskin, Erez Zadok, and Salvatore ] Stolfo. Data
mining methods for detection of new malicious executables. In Security and

181



Bibliography

Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38—49.
IEEE, 2001.

[125] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th inter-
national conference on World wide web, pages 1177-1178. ACM, 2010.

[126] Payload Security. Vxstream sandbox. http://www.payload-security.com/
products/vxstream-sandbox, January 2016.

[127] M Zubair Shafiq, Syed Ali Khayam, and Muddassar Farooq. Embedded
malware detection using markov n-grams. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 88-107. Springer, 2008.

[128] M Zubair Shafiq, S Momina Tabish, and Muddassar Farooq. On the appro-
priateness of evolutionary rule learning algorithms for malware detection.
In Proceedings of the 11th Annual Conference Companion on Genetic and Evolu-
tionary Computation Conference: Late Breaking Papers, pages 2609-2616. ACM,
2009.

[129] Eugene H Spafford. The internet worm program: An analysis. ACM SIG-
COMM Computer Communication Review, 19(1):17-57, 1989.

[130] Statista. Os market share. http://www.statista.com/statistics/218089/
global-market-share-of-windows-7, September 2015.

[131] Salvatore J Stolfo, Ke Wang, and Wei-Jen Li. Towards stealthy malware de-
tection. In Malware Detection, pages 231-249. Springer, 2007.

[132] Symantec. = Malware database.  http://www.symantec.com/security_
response, November 2013.

[133] Symantec. = Regin: Top-tier espionage tool enables stealthy surveil-
lance. http:/ /www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/regin-analysis.pdf, August 2015.

[134] Peter Szor. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005.

[135] Adrian Tang, Simha Sethumadhavan, and Salvatore ] Stolfo. Unsupervised
anomaly-based malware detection using hardware features. In RAID. 2014.

[136] TheGuardian. Antivirus  software is dead. http:
/ /www.theguardian.com/technology/2014/may/06/
antivirus-software-fails-catch-attacks-security-expert-symantec, Octo-
ber 2014.

182


http://www.payload-security.com/products/vxstream-sandbox
http://www.payload-security.com/products/vxstream-sandbox
http://www.statista.com/statistics/218089/global-market-share-of-windows-7
http://www.statista.com/statistics/218089/global-market-share-of-windows-7
http://www.symantec.com/security_response
http://www.symantec.com/security_response
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
http://www.theguardian.com/technology/2014/may/06/antivirus-software-fails-catch-attacks-security-expert-symantec
http://www.theguardian.com/technology/2014/may/06/antivirus-software-fails-catch-attacks-security-expert-symantec
http://www.theguardian.com/technology/2014/may/06/antivirus-software-fails-catch-attacks-security-expert-symantec

Bibliography

[137] Nikos Virvilis and Dimitris Gritzalis. The big four-what we did wrong in
advanced persistent threat detection? In Awvailability, Reliability and Security
(ARES), 2013 Eighth International Conference on, pages 248-254. IEEE, 2013.

[138] Vasileios Vlachos, Diomidis Spinellis, and Stefanos Androutsellis-Theotokis.
Biological aspects of computer virology. In Next Generation Society. Techno-
logical and Legal Issues. 2010.

[139] VMRay. Vmray analyzer. www.vmray.com/wp-content/uploads/2016/
01/VMRay_Analyzer.pdf, January 2016.

[140] John Von Neumann, Arthur W Burks, et al. Theory of self-reproducing au-
tomata. IEEE Transactions on Neural Networks, 5(1):3—-14, 1966.

[141] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data
mining. ACM SigKDD Explorations Newsletter, 2003.

[142] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dy-
namic malware analysis using cwsandbox. IEEE Security & Privacy, (2):32-
39, 2007.

[143] Tobias Wiichner, Martin Ochoa, Mojdeh Golagha, Gaurav Srivastava,
Thomas Schreck, and Alexander Pretschner. Malflow: Identification of c&c
servers through host-based data flow profiling. In Proceedings of the 2016
ACM symposium on applied computing, 2016.

[144] Tobias Wiichner, Martin Ochoa, and Alexander Pretschner. Malware detec-
tion with quantitative data flow graphs. In Proceedings of the 9th ACM sym-
posium on Information, computer and communications security, pages 271-282.
ACM, 2014.

[145] Tobias Wiichner, Martin Ochoa, and Alexander Pretschner. Robust and ef-
fective malware detection through quantitative data flow graph metrics. In
Magnus Almgren, Vincenzo Gulisano, and Federico Maggi, editors, Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, volume 9148 of
Lecture Notes in Computer Science, pages 98-118. Springer International Pub-
lishing, 2015.

[146] Tobias Wiichner and Alexander Pretschner. Data loss prevention based on
data-driven usage control. In Software Reliability Engineering (ISSRE), 2012
IEEE 23rd International Symposium on, pages 151-160. IEEE, 2012.

[147] Tobias Wiichner, Alexander Pretschner, and Martin Ochoa. Davast: data-
centric system level activity visualization. In Proceedings of the Eleventh Work-
shop on Visualization for Cyber Security, pages 25-32. ACM, 2014.

183


www.vmray.com/wp-content/uploads/2016/01/VMRay_Analyzer.pdf
www.vmray.com/wp-content/uploads/2016/01/VMRay_Analyzer.pdf

Bibliography

[148] James Wyke. The zeroaccess botnet-mining and fraud for massive financial
gain. Sophos Technical Paper, 2012.

[149] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang Yang, Juan Ca-
ballero, and Guofei Gu. Autoprobe: Towards automatic active malicious
server probing using dynamic binary analysis. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages
179-190. ACM, 2014.

[150] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern min-
ing. In Data Mining, 2002.

[151] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. Panorama: capturing system-wide information flow for malware de-
tection and analysis. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 116-127. ACM, 2007.

[152] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief sur-
vey. In 2010 International conference on broadband, wireless computing, commu-
nication and applications, pages 297-300. IEEE, 2010.

[153] Mohd Najwadi Yusoff and Aman Jantan. Optimizing decision tree in mal-
ware classification system by using genetic algorithm. Journal. of New Com-
puter Architectures and their Appl., 2011.

[154] Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui Han,
and Wei Zou. Studying malicious websites and the underground economy
on the chinese web. In Managing Information Risk and the Economics of Secu-
rity, 2009.

184



Appendix

185






A. Analysis and Visualization

A.1. Pattern-based Analysis and Visualization

In this section we show how our basic pattern-based detection concept can be
extended by additional visualization means to support ex-post analysis of de-
tected potentially malicious activities by human security experts. To this end,
we propose DAVAST, a novel analysis system that builds on top of our pattern-
based detection approach and represents detected suspicious activities at different
levels of abstraction. By linking those representations we allow for a seamless
purpose-driven analysis, starting from a high-level overview on system activities
and step-wise going to a more fine-grained representation of associated low-level
data flows. Besides extending our pattern-based detection concept with analysis
and visualization means we with this also show, how pattern-based detection can
be done online within a live system, while in Chapter 4 and Chapter 5 we focused
on malware detection in offline sandbox settings.

Most parts of this section are based on a previous publication of the author [147].

A.1.1. Approach

To support human analysis we do not only want to model low-level interactions
as data flows, but also give more high-level semantics to sequences of flows and
thus to sub-graphs. We do so by either reusing the already semantically annotated
patterns from our deductive pattern-based approach (see Section 4.1.2.1), or by
applying our inductive pattern-based approach (see Section 4.2) on samples from
similar malware or goodware families to mine family-specific behavior patterns.

This results in a repository with patterns for benign and malign activities that
are interesting from a analysis perspective. Just like for our pattern-based detec-
tion approaches we then make use of a modified version of the VF2 algorithm [43]
to annotate sub-graphs of new QDFGs with the respective high-level activity se-
mantics of the matching pattern. In this way, we can trace activities through dif-
ferent layers of abstraction as a basis for all subsequent visualization steps.

Our approach is based on two pillars: i) the runtime interception of system calls,
data flow interpretation, and QDFG generation, and the re-identification of known
benign and malign data flow patterns in these graphs; ii) a multi-view representa-
tion of the captured system activities, enriched and annotated with context infor-

187



A. Analysis and Visualization

mation and inferred high-level interpretations of low-level system call activities
on the basis of defined data flow patterns.

We see good arguments that our data centric system-wide view on system in-
teractions is more intuitive to human analysts than approaches that focus on raw
uninterpreted system calls without context information. By abstracting from con-
crete system calls we can achieve a significant reduction of data complexity and are
able to filter activities that are more likely to pertain to relevant system activities
from less relevant ones. The system-wide data flow perspective furthermore not
only allows for identifying known (benign or malign) activity patterns or activity
anomalies. It also enables analysts to perform more far-reaching ex-post analy-
sis by tracking the flow of data from or to suspicious processes to e.g. assess the
extent potential damages or estimate the amount of potentially leaked data.

Finally, our multi-view visualization concept aims at representing all relevant
information that can be obtained from the inference and analysis steps in a purpose-
specific way. This allows us to provide the right level of abstraction for different
analysis use cases. Our tool can present a coarse-grained timeline view of all cap-
tured activities for a quick overview on the system state; or a detailed data flow
graph based visualization of all activities during a defined time interval for an
in-depth analysis of detected malign and benign activities.

A.1.1.1. Architecture

The DAVAST system consists of two subsystem, an event monitoring component
deployed at a to be monitored system, and the actual DAVAST analysis and vi-
sualization system running on the analyst’s side (Figure A.1). The event monitor
component intercepts all relevant Windows API calls issued by any process in the
monitored system and then either forwards these events to the DAVAST system in
real-time, or stores them locally for offline processing in form of event trace logs.
In consequence, DAVAST supports two operation modes: In the online mode, the
DAVAST system continuously receives and processes events sent from a moni-
tored system; and analyzes and visualizes them on the fly. In the offline mode,
DAVAST allows to load previously recorded event traces for ex-post analysis.

We implemented the two distinct operation modes to anticipate the require-
ments of several typical security analysis tasks. The online mode is well-suited
for online forensic purposes like analyzing the activities on a infected system, in
order to assess whether it has been infected by a malware or compromised by an
attacker and to analyze attacker or malware behavior.

The offline mode is better suited for use cases where permanent human obser-
vation and analysis of system activities is not necessary. Examples include settings
where the monitor component is permanently installed on workstations that are
prone to be attacked or infected by malware, servers that offer important services

188



A. Analysis and Visualization

Event
Monitor Event Log

Monitor
Raw Events

Event Data Flow ' Graph QDFG ' Graph
Interpreter Events Builder Splitter

Activity Tree View QDFGsl

| |

I ’ ‘

i |

! l

| . . . !

! ’ Timeline View [ Pattern
i ! Matcher
! ’ Graph View |

i |

i |

i P . |

| ’ Statistics View ' Analysis

! Visualizer . Engine | Patterns
i |

Figure A.1.: Architecture

or host sensitive data, or dedicated honeypots. In such cases, the permanently
installed monitor can be configured to continuously store all intercepted system
calls of the monitored systems at a secured location. Later on, they can be batch-
processed by DAVAST’s analysis engine in defined time intervals. If the engine
then detects suspicious data flow patterns in the graphs built from these logs, they
are flagged for further analysis by a human analyst. The analyst can then use the
DAVAST visualizer; in order to manually verify the reported suspicion, to elimi-
nate false positives, or to perform further-reaching analysis steps. In this way, the
involvement of expensive human analysts can be reduced. At the same time, it
is possible to refine the automated pattern-detection-based analysis with a more
intelligent and flexible manual analysis by an experienced human operator.

The architecture of the DAVAST system is depicted in Figure A.1. Depending
on the operation mode, raw system call events are received from the Event Monitor
component, or they are loaded from a recorded Event Log. These events are then
interpreted by the Event Interpreter with respect to their data flow semantics and
forwarded to the Graph Builder that aggregates them into a QDFG.

Despite event aggregation and graph simplification steps, real-world QDFGs
quickly grow large with several thousand nodes end edges. For efficient process-

189



A. Analysis and Visualization

ing and visualization that is comprehensible to human operators, DAVAST uses a
Graph Splitter component. It splits the full graph into approximately equal-sized
graph slices that capture the activities of a configurable time interval.

After splitting, the QDFG slices are forwarded to the Pattern Matcher component.
This component tries to match each slice against a list of loaded predefined data
flow Patterns that pertain to known benign or malign activities. This step is at the
core our approach, as it annotates matching sub-graphs of the QDFG slices with
inferred high-level activities. Enriching QDFGs with high-level semantics allows
to trace between different levels of abstraction for detected activities, from a high-
level activity description down to corresponding low-level sub-graphs.

The annotated slices are then pushed to the Activity Model, along with addi-
tional context information like corresponding time intervals, hierarchical relations
between different (sub-)activities, level of confidence of the predicted activity, and
a flag whether it is considered malign or benign. Finally, the different views of the
Visualizer component visualize projections of the data stored in the Activity Model.

A.1.1.2. Visualization and Interaction

The purpose of DAVAST’s visualization concept is to offer the human operator just
the right level of granularity and abstraction that he needs for a specific security
analysis task. To achieve this, the Visualizer of DAVAST is implemented as a plug-
in system. Plug-ins can access the Activity Model and even manipulate it to some
extent. The current DAVAST prototype comprises four distinct views that aim at
different typical security analysis tasks and goals. Because of defined interfaces
and a clear Model-View-Controller architecture, it is comparably easy to extend
DAVAST with additional views.

The views themselves are projections of the Activity Model data as they usu-
ally only load specific types and dimensions of information from the model. The
Activity-Tree View for example uses the inferred high-level activity semantics and
the information about respective activity relations and hierarchies and association
of activities to time intervals from the model. On the other hand, it ignores the
structure of the respective QDFG slices. In contrast, the Timeline View uses infor-
mation about top-level activities, and ignores hierarchical relations.

Due to the shared data model, all views are connected to each other. This allows
traceability through different representations of activities. For instance, if a user
clicks on one top-level activity in the Timeline View, the corresponding top-level
event in the Activity-Tree View is highlighted to visually connect multiple repre-
sentations of the same concept. Correspondingly, if the user double-clicks on an
activity in the Activity-Tree View, the system opens a Graph View window that visu-
alizes the graph slice that corresponds to the selected activity.

190



A. Analysis and Visualization

0 Forensic Cockpit - olEN|

Main Filters Settings

Activity Trees | Timeline | Statistics

4 (4) 10.07.2014 05:52:47 - 10.07.2014 05:53:43
4 network (05:52:47 - 05:53:43) [#SS = 2]

4 network_browsing (05:52:47 - 05:53:43) [#S5 = 2] Decomposed benign activity
network_browsing_HTTP (05:52:47 - 05:53:43) [#SS = 1]
network_browsing_HTTPS (05:52:47 - 05:53:43) [#SS = 1]

4 (5) 10.07.2014 05:52:52 - 10.07.2014 05:52:59
4 network (05:52:52 - 05:52:59) [#SS = 2]
4 network_browsing (05:52:52 - 05:52:59) [#SS = 1]
network_browsing_HTTPS (05:52:52 - 05:52:59) [#SS = 1]

4 (6) 10.07.2014 05:52:57 - 10.07.2014 05:53:43

network (05:52:57 - 05:53:43) [#SS = 3]
4 (7) 10.07.2014 05:53:03 - 10.07.2014 05:53:07

4 network (05:53:03 - 05:53:07) [#SS = 3]
4 network_browsing (05:53:03 - 05:53:07) [#SS = 1]
4 network_browsing_HTTP (05:53:03 - 05:53:07) [#SS = 1]
network_browsing_HTTP_FLASH (05:53:03 - 05:53:07) [#SS = 1]

malicious-RemoteShell (05:53:03 - 05:53:07) [#SS = 2]
4 (8) 10.07.2014 05:53:22 - 10.07.2014 05:53:22 Malign activity detected

unknown (05:53:22 - 05:53:22) [#SS = 1]

Figure A.2.: Activity-Tree View

A.1.1.3. Activity Tree View

The purpose of the Activity-Tree View is to visualize the hierarchical relation be-
tween different activities. It depicts the list of time intervals, stored in the Activ-
ity Model, each denoted by a time interval number, a start, and an end time, and
populates each time interval item with the activities associated with this interval.
Instead of representing all contained activities in a flat way, the Activity-Tree View
hierarchically nests related activities according to the activity hierarchy informa-
tion stored in the Activity Model.

Figure A.2 shows an example of such a decomposition where DAVAST detected
a network activity within time interval 4. The corresponding more specific sub-
activities indicate that this network activity in fact was a browsing activity, further
refined into HTTP and HTTPS activities.

DAVAST colors activities in green if they pertain to benign activities, and in red
if they relate to known malicious ones. For each activity, we show a prediction
confidence level that represents the number of occurrences of the corresponding
activity data flow pattern in the associated QDFG slice. If DAVAST identified mul-
tiple distinct activities during one time interval, this confidence number allows
the human analyst to reason about the dominance and temporal proportion of one
specific activity with respect to the other activities within the same time frame.

The Activity-Tree View concept is useful in situations where a human analysts
wants to get a coarse-grained overview of all captured activities, with the possi-
bility to get more detailed information about specific activities on demand.

191



A. Analysis and Visualization

W Forensic Cockpit = =

Main Filters Settings

network

57 58 59 ) 1 2 3 4 5 6 7 8 9 10
49 50 51 52 TE 54 55 56 57
03 04 05 | 06 o7 08 09
8 9 10 ) 11 12 13

Figure A.3.: Timeline View

By default, DAVAST initially only shows the top-level activities within each time
frame and hides all sub-activities. These can be decomposed step-by-step along
the hierarchy by expanding the respective sub-activities. Moreover, as mentioned
before, the analyst can always open the respective Graph View to analyze the cor-
responding QDFG slice and thus the lowest level of interaction.

An example for such a setting is a scenario where the human analysts wants to
analyze the system behavior of a system that he suspects to be compromised, but
does not exactly know how and when it was attacked. Even if no known malign
pattern matched one of the QDFG slices, the analyst can step through the time
intervals and decompose interesting activities to isolate and then further analyze
potential infection or attack entry points.

A.1.1.4. Timeline View

The purpose of the Timeline View is to give a human analyst a quick overview on
the “healthiness” of a system.

In contrast to the Activity-Tree View, the Timeline View does not show hierarchical
relationships between detected activities. However, it allows a more convenient
way to browse through the timeline and get an overview of the proportion of po-
tentially benign and malign activities over time. To that end, the Timeline View con-

192



A. Analysis and Visualization

tains a view where top-level events stored in the Activity Model are visualized in
chronological order. Four timeline band controls allow the user to browse through
the timeline with various degrees of precision. The top-most timeline band de-
picts and controls the seconds of the timeline, the one below depicts the minutes,
followed by the bands relating to hours and days. Similar to the Activity-Tree View,
the system highlights potentially malicious activities in red, and benign ones in
green. A colored bar visualizes the absolute event duration, independent of time
intervals, whereas the Activity-Tree View only depicts the relative duration of an ac-
tivity within the considered slice of the graph. Multiple activities during the same
period of time are stacked on each other. The activity with the highest confidence
level or dominance is placed on top. Activities with lower dominance are placed
below, in a descending order. A zooming function allows the user to control how
many activities are displayed on the view panel at one time to e.g. get a coarse
birds-eye view on the overall system health.

Figure A.3 shows a Timeline View of a potentially infected system. In this exam-
ple we can see that both a benign network and a malign RemoteShell activity started
on 10.07.2014 05:53:03, and that the malign activity lasted for about 7 seconds,
whereas the benign network activity was ongoing.

A.1.1.5. Statistics View

The intention of the Statistics View is to provide aggregated statistical information
about all activities detected within the monitored period of time. This allows ana-
lysts to quickly identify anomalies in the activity profile that are likely to correlate
with unwanted system behavior, as a consequence of attacks or infections.

In a nutshell, this view provides information to analysts to perform manual vi-
sual anomaly detection. This extends DAVAST’s “hard” pattern matching func-
tionality, based on fixed data flow patterns, with “soft” human anomaly detection
capabilities, primarily based on intuition.

To this end, the Statistics View visualizes the proportion between different activi-
ties over time (usually, more than one activity is taking place at a time). The x-axis
represents the time interval number as defined in the Activity Model. The y-axis
depicts the relative proportion of one event type in comparison to all other since
the beginning of the monitoring period. More precisely, the proportion is defined
as the number of occurrences of events assigned to a given activity type divided
by the absolute number of occurrences of all events in the observation period.

Figure A.4 depicts the statistics of a typical browsing session. The browsing
session starts with an activity peak that reflects a database reading access of the
browser. This is the browser initialization phase where configuration data is loaded
from a local file-based database. Subsequently, we can see that the browsing ses-
sion constantly consists of about 45% retrieval of pictures via HTTP, of about 30%

193



A. Analysis and Visualization

0 Forensic Cockpit - o lEN

Main Filters Settings

Activity Trees | Timeline | Statistics

Activities
db-access_read
M network_browsing_HTTP_PICTURE
M network_browsing_HTTP_IS
04 network_browsing_HTTP
M network_browsing_HTTPS
M db-access_write

Activity Type Ratio

'L 78 732 485 ]
Timeframe.

Figure A.4.: Statistics View

retrieval of JavaScript code, and of less than 5% HTTPS communication and inter-
action with the local browser database.

Due to the highly aggregated way of representing activity information, this
views is a good starting point for forensic investigations. In a forensic scenario,
a security analyst can use the Statistics View to spot anomalies in the operation of
a monitored system with respect to isolated time intervals that potentially contain
attacker or malware activity. Examples of such anomalies include irregularly dom-
inant HTTPS activity of an enterprise workstation during non-working lunch time
or other non-working hours. During these hours, it can with some confidence be
ruled out that the activities are caused by legitimate usage.

Even if no explicitly defined malicious data flow pattern matched the under-
lying QDFGs, such an initial suspicion, as consequence of a visually identified
behavioral anomaly, can still be the starting point for more detailed investigations
using the Activity-Tree View or the Graph View.

A.1.1.6. Graph View

The Graph View is DAVAST’s most central view as it provides a visualization of
the core QDFG-based model that captures all system interactions during the mon-
itored period of time. The Graph View provides the highest level of detail and

194



A. Analysis and Visualization

[ EI l 2

(c) Graph slice of one time interval (d) Graph slice showing node details

Figure A.5.: Graph View

195



A. Analysis and Visualization

Selected Timestamp: 30.06.2014 02:30:58.517 -colEd [ Selected Timestamp: 30.06.2014 02:30:59.352 - oEN 0 Selected Timestamp: 30.06.2014 02:30:59.685 - oEN

P> firefox.exe F>bookmarks-2014-06-30-1json

(a) Timestep t (b) Timestep t+1 (c) Timestep t+2

Figure A.6.: Graph View - Chronologically browsing through interactions

most-fine grained visualization to the human analyst.

Its goal is to provide information about all low-level interactions in a detailed
way, but thanks to the data flow abstraction, in a concise and comprehensible man-
ner. To access the Graph View, the user can either double-click on a (sub-) activity
in the Activity-Tree View to only visualize the graph slice that pertains to a specific
time interval (Figure A.5c), or open the full graph view that visualizes the QDFG
of the entire monitored time span (Figure A.5a).

The reason for this distinction is that QDFGs can become huge. In many cases
their sheer size renders them useless to be analyzed by humans if they are visual-
ized in entirety. While the full graph view is good to get an overview on the entire
system interaction landscape and to quickly track interactions across time interval
boundaries, the time interval graph view is more suited to analyze specific inter-
actions within a bounded period of time. These time interval boundaries can be
enlarged and shrank at runtime. This gives users full control on the amount of
visualized data flow interactions within one window.

For the same reason, the Graph View features a special zooming control in the
lower right corner of the graph view window that allows to conveniently zoom
in and out within a full graph or a graph slice (Figure A.5a). For higher zooming
degrees an embedded mini-map that always shows the entire graph context with
the currently zoomed part of the graph highlighted limits the risk of the user from
getting lost while browsing through the graph (Figure A.5b).

To give the graph visualization an intuitive appearance, we use a modified linlog
layouting algorithm that arranges the nodes and edges in a way that the graph
builds so-called process islands. These refer to small circle-shaped sub-graphs of
closely connected nodes that pertain to the interactions of one specific process. In
these sub-graphs the node in the center of the circle represents the currently acting
process. Passive resources that this process interacts with, including files, sockets,
or registry keys, are located on the periphery of the circle.

196



A. Analysis and Visualization

We visualize the amount of data by the edge’s thickness. This gives the human
analyst additional means to assess the importance and consequences of a specific
sequence of interactions on the basis of transferred data amounts. In forensic use-
cases, for instance, this helps the analyst assess the dimension of a potential data
leakage. Edges are also labeled with the time stamps of the underlying data flow
events that were aggregated into that edge.

As can be seen in Figure A.5a, the different process islands are sparsely intercon-
nected. This is a result from processes comparably rarely exchanging data with
each other, while they more often interact with distinct sets of passive system enti-
ties. If processes exchange data with each other, this rarely happens through direct
memory access between communication partners, but much more often via shared
files, or socket communication. In the graph, this is represented by intermediate
socket or file nodes between pairs of communicating processes.

To relate high-level activities to the corresponding sub-graphs in the QDFG vi-
sualization, DAVAST assigns a unique color to each activity and paints the respec-
tive nodes and edges with this color, if they are part of the corresponding data flow
pattern (Figure A.5c). In cases where an edge or node relates to multiple activity
patterns, it is painted with a stripe pattern containing all relevant activity colors.

For the special case where one or more nodes and edges are detected to be as-
sociated with a known malign activity pattern, these edges and nodes are colored
in red. All other nodes and edges are visually faded by ignoring their associated
activity colors, and painted in a light gray instead. This directly draws the atten-
tion of the human operator to the interactions that are considered malicious (Fig-
ure A.8). For presentation purposes, all node labels are kept as short as possible
to prevent overly large nodes. This means that for file nodes, instead of directly
showing the fully qualified name of the file, only the file name without its path is
depicted within the node. When interested in all details of a specific node, users
can expand a details panel (Figure A.5d), which contains all available context in-
formation associated with the node, including a colored activity legend to clarify
the color-activity mapping.

To further increase the usability and comprehensibility of the Graph View the
visualization in a purpose-driven way, DAVAST features extensive filtering capa-
bilities to e.g. filter certain node or edge types from the visualization, or to assign
visual tags to single nodes that are persistently maintained throughout all graph
slices to help to track and quickly identify nodes in-between different slices.

As additional means to track flows of data across individual graph slices, DAVAST
includes a reachability analysis feature. For each node in a graph slice, a user can
trigger a reachability analysis, which generates a new graph that only contains
nodes and edges that are directly or indirectly reachable by the selected source
node, under consideration of the inherent temporal information associated with
the graph edges. This analysis can also be conducted in backward mode where

197



A. Analysis and Visualization

the new graph contains all nodes and edges that can directly or indirectly reach
the selected target node. The reachability analysis usually reduces graph com-
plexity quite a lot as it filters all nodes that are irrelevant for a specific sequence
of flows and thus eases comprehensibility of the visualization. We consider this
to be a useful tool for forensic purposes whenever one e.g. wants to asses the
worst-case impact of a potentially malicious process (forward analysis), or wants
to isolate potential sources of a suspected infected file (backward analysis).
Finally, DAVAST’s Graph View also includes a so-called TimeMachine mode where
users can browse through the temporal dimension of the graph in a step-by-step
manner. This is done via a keyboard-controlled step-by-step construction of the
currently active graph slice. If the TimeMachine mode is active, the Graph View ini-
tially only shows the edge and connected nodes with the smallest time stamp in
the corresponding time interval. By repeatedly pushing the arrow keys, the user
can add or remove additional edges at the granularity of single time stamps. The
current edge is colored gold, which allows to conveniently follow the sequence
of interactions over time. Figure A.6 shows an slice in time machine mode that
visualizes the interaction of a Firefox browser process with other system entities.

A.1.2. Application

In the following we present three scenarios where our approach can be useful
to understand malicious behavior. In particular we show, how the visualization
supports manual root-cause analysis or verification of reported alarms.

Drive-by Malware Infection An increasing threat is the proliferation of so-called
drive-by malware infection attacks. To evaluate the usefulness of our approach,
we locally installed a malicious web application exploiting a Flash vulnerability,
resulting in a drive-by infection. The matched pattern corresponds to the process
iexplorer.exe binding a shell (cmd.exe) to it, which is considered as mali-
cious. This is detected by our approach, which allows analysts to understand the
infection process as depicted in Figure A.7.

Email Worm Infection In this scenario we open a malicious compressed attach-
ment with Thunderbird. We then decompress the file and execute it, resulting in
an infection. As depicted in Figure A.8, we see that the malicious process repli-
cates itself, which is detected by our library of malicious behaviour patterns. The
replication pattern checks if process creates child processes or executable files of
roughly the same size of the originator. A human analyst can then understand the
root cause and the steps before the infection, since the pattern highlights the flow

198



A. Analysis and Visualization

0 GraphWindow = =

s

5»131.150.48.21:1024

e

Priguplore exe

O}

nHT LA 1]htm

52231453 54:80

® )

Figure A.7.: Drive-by malware infection

of data from Thunderbird until the self-replication. In the example, process node
invoice.exe creates two new processes named cpsdv.exe.

Data Leakage For forensics purposes, we consider the following scenario: an in-
sider or attacker tries to copy big amounts of sensitive data to a remote server. If
such transfers only rarely happen, which likely is the case for cases of data theft,
a typical Statistics View for such a scenario would likely look as depicted in Fig-
ure A.9. While the ratios of most benign activities are almost constant, we can
clearly see two spikes for the HTTP_Upload activity pattern. We consider such a
profile typical for cases of irregular data leakage and easy to spot by human ana-
lysts. Such an initial suspicion based on the Statistics View can then be a starting
point for further investigations, for instance by exploring the related Graph View.

199



A. Analysis and Visualization

P>thunderbird.exe 16 _ F=Alle Nachrichten.msf

F>invoice.exe

O

Activities
network_browsing_HTTP_Upload
network_browsing HTTP_PICTURE]
network browsing HTTP_IS
network brawsing HTTP

network browsing HTTPS

db-access_write

Figure A.9.: Data leakage

200



B. From Detection to Mitigation

B.1. Metric-based Risk Assessment and Mitigation

In this section we discuss an approach, which we call MalFlow, to extend our
basic metric-based detection concept with mechanisms to quantitatively reason
about the security risk that is posed by detected potentially malicious behavior.
Although, the approach proposed in this section slightly changes the detection set-
ting as if focuses on the detection and risk classification of command-and-control
servers rather than malware, it still uses the same baseline idea of profiling ma-
licious activities as quantitative data flows at host level. Besides showing that
our basic metric-based detection concept can be enriched by additional means for
quantitative risk assessment, we also discuss how we can use this risk information
to propose appropriate mitigation action, i.e. incident response strategies. Finally,
with this approach we again show that our originally offline detection focused
metric-based profiling concept can also be internationalized for online detection.

An extension of parts of this work already has been presented in a publica-
tion [143], co-authored as first author by the writer of this thesis.

B.1.1. Approach

Adopting our basic QDFG-based behavior modeling concept (see Chapter 3), we
use QDFG metrics that capture the network communication activity between pro-
cesses of a system and remote network locations, build a clustering scheme on
labeled metric sets, and then obtain clusters of domains with similar data flow
characteristics, i.e. similar network-centric metric profiles. These clusters get as-
signed a numeric threat level, roughly capturing the ratio and threat potential of
different kinds of known malign and benign domains associated to the clusters.
With this technique we can assign risk levels to unknown domains that then can
be used to decide upon triggering fine-grained risk-dependent incident response
actions. The risk is calculated based on the distance of the feature vectors to the
centroids of the different clusters and their respective threat levels.

In contrast to related work [23, 101, 149] this approach is entirely based on quan-
titatively profiling network-related activity captured at the host-/system-call level.
This allows us to analyze the interactivity of individual processes with potentially
malicious domains and remote resources independent of specific communication

201



B. From Detection to Mitigation

protocols or network topologies and can be seamlessly integrated into standard
dynamic malware analysis sandbox environments. Finally, our approach allows
to conduct fine-grained incident response strategies based on assessed risk of iden-
tified potentially malign domains, independent of concrete communication proto-
cols. We consider our approach to be more precise and targeted than approaches
that use network-level monitors, since it allows us to inhibit communication at a
per-processes, or even per-socket level if malign behavior is detected. In contrast,
network-based approaches reason about entire hosts, IP address ranges, or ports
in such cases and are considerably less precise and more intrusive.
We now describe the different steps of the in more detail:

1.

The initial steps are similar to the raw data generation process described
in Section 4.1.2. First we execute malware samples in a sandbox environment
that captures network related API calls. These are interpreted as (quantifi-
able) data flows between the malware process, its established sockets, the
contacted domains, and the resources at the remote endpoint that the mal-
ware interacts with. All data flows are aggregated as QDFGs.

. Given a set of such QDFGs, each node of the domain type is profiled in terms

of temporal characteristic data flow metrics, such as average number of bytes
sent and received, or the number of accessed remote resources.

. Using a set of features from a large body of malware samples we then employ

a (unsupervised) clustering algorithm that outputs clusters of communica-
tions with domains with similar data flow behavior.

To assess the potential risk that arises from communicating with the domains
of a cluster, we annotate them according to domain blacklists. To do so, we
obtain lists of known malign domains by interfacing with popular blacklist
services like the Google SafeBrowsing APL

. Knowledge about known malign domains is used to estimate the overall

threat potential for the computed domain clusters. Following the hypothesis
that domains with similar data flow profiles share similar threat levels (e.g.
because they are all referring to addresses of C&C servers and thus show
typical malware communication behavior), we infer the overall cluster threat
potential (severity) based on the threat potential of its known members.

Interpreting the distance between unclassified feature sets and the clusters
as risk scores, we perform targeted risk mitigation strategies by selecting ap-
propriate risk-based incident response actions based on predefined profiles.

The upper-right part of Figure B.1 shows our high level server-side architecture.
Solid lines depict the steps of the training phase, whereas dashed lines represent

202



B. From Detection to Mitigation

- Malware QDFG Feature
Analysis Sandbox > Builder ) Generator
Samples

Training Features

|
Domain ’ Clustering Unclassified Domain

F r
Blacklist eatures
~ Clusters w.

CTPs +

. Classification — —— ‘Match
C B eaor Manager Acti
QDFG ger [ dAction | Update 3
+ N :
— Match* - Risk

o

08

odel

Feature
Generator

— =

Risk Model +
Incident Response
Mapping

Client

Domains w.
Risk Score

Server

Figure B.1.: Architecture

classification steps. The semi-dashed lines in the upper right part denote process-
ing steps used for both, training and classification. In the following we describe
the different steps of this process in more detail.

B.1.1.1. Step 1: Network Behavior Extraction with Dynamic Malware Analysis

To obtain the raw data needed for profiling malware interaction with C&C servers,
we follow the same procedure as described in Section 4.1.2.

MalFlow is based on the interpretation of data flows between malware and con-
tacted domains at the system call level. We hence only capture networking-related
system and API calls issued by the executed malware samples or processes that
interacted with them. We decided to directly profile the malicious samples at the
Windows API level for two reasons: first, directly capturing network activity by
intercepting system calls allows us to selectively capture network activities of spe-
cific processes and thus significantly reduce to-be-processed data and noise. This
is hard to achieve with monitors at the network level. Second, if the monitor is
deployed at the host level, the interception of network-related system calls for

203



B. From Detection to Mitigation

individual processes allows us to inhibit further malign network activity at a per-
process rather than at a per-machine level.

In addition to our standard raw data retrieval, we obtain fine-grained network-
ing information like the domain of a remote endpoint and requested or manipu-
lated resources by having our monitor inspect the buffers of the respective send
or recv WinSock function calls. We apply specifically crafted protocol information
inference techniques on the buffers to extract meta-information from the buffers
for several standard internet protocols. For instance, we try to identify patterns
that correspond to domain or IP strings within the buffer, both in the raw buffer
content and in base64-decoded interpretations.

B.1.1.2. Step 2: Network-focused QDFG Features

The network-related system call traces obtained in the previous step give rise to
the corresponding QDFGs as basis for data flow profiling by applying the Win-
dows instantiation of our generic system model (see Section 3.2) to the system
calls of the captured traces.

The actual profiling of system behavior in terms of features on QDFGs works
similar to that of our metric-based approaches Section 5.1.2. In contrast, however,
we are interested in the changes of behavior over time instead of looking only at
the behavior at one specific point in time. For that reason we capture the behavior
over time rather than only at a single point. We thus generate one QDFG every n
events, similar to the temporal features of [135]. Sampling the activity at only one
specific moment in time would likely miss a lot of characteristic behavioral infor-
mation (e.g. due to dormant functionality). Using multiple sampling points over
time and looking at incremental differences solves this problem to some extent.

One way of capturing structural differences of QDFGs over time is to calculate
characteristic graph properties like in-degree and out-degree of interesting nodes
or edge (weight) distributions. As we are interested in changes of the communi-
cation behavior of a process with different network endpoints, we calculate such
properties for all domain nodes that we want to classify.

More specifically, for each domain node we compute the number of connected
sockets and files, which relates to requested or manipulated remote files, respec-
tively to involved local processes. We consider both nodes connected with outgo-
ing edges and incoming edges. Table B.1 surveys all considered feature types.

Features can be seen as functions on QDFG nodes and edges. As we need to
encode the temporal information of all QDFG steps for all features in one feature
vector, we sequentially store all calculated feature values as elements of a vector
f € R" where n = |Features| x |Steps|.

The intuition behind the used features and their temporal scope is that we ex-
pect the data flow profiles of interaction with malign endpoints to look substan-

204



B. From Detection to Mitigation

Feature H In Out
Number of sockets receiving Number of sockets §end1ng
Degreesocke data from remote endpoint data to remote endpoint.
Number of files requested Number of‘files sent to re-
Degreerie from remote endpoint. mote endpoint.
Number of events that con- | Number of events that con-
Events tributed to an in-flow to a re- | tributed to an out-flow to a
mote endpoint. remote endpoint.
Apg, Flow Average incoming bytes per | Average outgoing bytes per
VY- Buent event. event.

Table B.1.: Overview of used temporal QDFG Features

tially different from communication with benign endpoints. An example for such
a behavioral difference is connectivity tests with a benign website like google.com
that should be reachable if the infected host is connected to the internet. After a
successful connectivity test, the malware then periodically communicates with its
command and control server to receive new instructions or upload stolen data.

The respective data flow profiles for the interactivity with the benign website
would then likely indicate a steep increase of the transferred data to the respec-
tive domains in the beginning, followed by a long period of silence, as the benign
domain only needs to be contacted once. In contrast, the malign C&C communi-
cation would require periodic interaction and thus would lead to a more “spiky”
data flow profile. This situation is depicted in Figure B.2, showing data from the
real-world execution traces of a malware sample.

4000 Malign (pianetapollo.com) 4000 Benign (google.com)
3000 . s 3000 —————————— e —
2000 2000 /, -----
-
1000 1000 1'4’/‘
2
0 0 T
t0 t1 t2 t3 t4 t0 tl t2 t3 t4
——InWeight(Total) ==-Avg.Data/Event(In) = Avg.Data/Event(Out) —InWeight(Total) ==-Avg.Data/Event(In) = Avg.Data/Event(Out)

Figure B.2.: Temporal Features for Malign and Benign Domains

205


google.com

B. From Detection to Mitigation

B.1.1.3. Step 3: Training Phase

After generating QDFGs and their respective data flow features for captured event
traces of a large body of (likely malign) executables, we are now ready to train the
machine learning core of our approach. In principle, one could do that with the
help of a standard supervised machine learning scheme, fed with features sets
for interactivity with certain domains, labeled by matching those domains with
blacklists /whitelists of known malign/benign domains.

Unfortunately, such domain lists are inherently incomplete [81], quickly become
outdated, and thus would often provide incorrect labels to the feature sets. This
is for instance caused by malign domains taken down by authorities, domains
not anymore used by malware, or blacklists not being able to keep the pace with
malware developers that register hundreds to thousands new websites every day.
Trained on such imprecise information for labeling the training feature sets, a clas-
sifier would likely incorrectly classify unknown feature samples.

Therefore, our approach instead relies on an unsupervised clustering technique
that takes unlabeled feature sets as input and outputs clusters of samples with ap-
proximately similar data flow behaviors. More specifically, we use Mini Batch
k-means, a faster approximate version of the more expensive k-means cluster-
ing [125], to obtain clusters based on aggregation of instances that are located at a
similar distance around a cluster centroid. This notion of distance of an instance,
i.e. a set of features corresponding to a domain instance, to a certain cluster is later
needed as the first component (i.e. likelihood) for calculating individual distance-
based risk scores.

B.1.1.4. Step 4: Classification and threat potential

We want to assign a so-called threat potential to domain clusters. This cluster threat
potential represents the weighted potential security threat that arises from com-
municating with the members of this cluster and will thus be later used as the
second component (i.e. severity) of the per-sample risk score calculation.

We first need to obtain additional information for a cluster. We do so by match-
ing the cluster members” domains against various malware domain blacklists. For
our prototype, we use the APIs offered by popular blacklisting services like Google
SafeBrowsing and malwaredomains.com. We differentiate between two classes of
domains: domains that had a match in a blacklist, denoted by malign, and unknown
domains that we did not find in a blacklist.

Formally, let D be a set of domains. Domains d € D have a type v € I' =
{malign, unknown}. 7 : D — T returns the type of a given domain. Let ¢ € C
be one specific cluster drawn from a set of clusters, C. Each cluster is a set of
pairs of domains and their respective features ¢ € (D x R™)"™. The threat level of a

206


malwaredomains.com

B. From Detection to Mitigation

domain captures the estimated threat that arises in a specific deployment context
(i.e. one company or organization) if communication with a potentially malign
or unknown domain is not controlled or blocked, respectively. For known malign
domains we assign a positive threat level and for unknown domains a zero threat
level. We thus model the threat level by ¢t/ := I' — Z. One simple threat level
function is tl(malign) = 1 and #(unknown) = 0.

The exact threat levels for the different classes manually need to be set once
to match the protection goals within a specific context. They can substantially
differ for different operational contexts. In some companies, where undetected se-
curity incidents are considered significantly worse than the denial of legitimate
actions, one might assign a very high threat level to known malign sites with
the risk of producing false positives (i.e. blocking legit actions). In contrast, in
companies where even slight interference with legitimate workflows is consid-
ered prohibitive, reducing false positives would be an important goal which can
be achieved by assigning smaller threat levels to malign domains.

We then calculate the threat potential for each cluster ¢ € C as the average of
the cluster members’ individual threat levels. We compute the average in order
to explicitly address the problem that the individual domain class labels and thus
their individual threat levels might not be up-to-date and reliable and thus, when
taken alone, do not provide enough reliable training information.

This definition of a cluster’s threat potential means that the threat potential gets
higher the more known malign and less unknown members it has. To project the
cluster threat potential levels to an [0, 1] interval, we divide each individual cluster
threat potential by the size of the cluster. The cluster threat potential, ctp := C —
[0, 1], is thus defined as ctp(c) := ﬁ Y, frec tUT(d)).

This way, in contrast to directly using the labels obtained from blacklists for
supervised classification, we distribute the risk induced by potentially incorrect
labels among the different clusters. This makes the corresponding predictions less
sensitive towards noisy and partially incorrect training data.

B.1.1.5. Step 5: Risk Assessment Phase

With the trained classifier and the ctp-annotated clusters we can now assign mean-
ingful risk scores to unknown domain samples. To classify an unknown sample,
i.e. calculate its risk level, we determine the cluster with the highest similarity of
its member’s data flow profiles, i.e. (data flow) feature sets, and the profile of the
sample to be classified.

To this end, we compute the distance of each cluster’s centroid to the feature set
of the sample to be classified. As we use a variant of the k-means algorithm for
clustering, centroids in our case refer to the mean of the feature vectors belonging
to a cluster. As a consequence, we can use the Euclidean distance between the

207



B. From Detection to Mitigation

Figure B.3.: 2-dimensional projection of clusters and their centroids.

samples feature vector and the clusters’ centroids.
More precisely, we define the distance |||, : R” x C' — [0, 1] of a sample, repre-
sented by its feature vector s € R", to any cluster ¢ € C as follows:

s — centroid(c) ||2)

ol
Isll, := mm(l, N

where centroid : C' — R" is the centroid vector of a cluster, and |||, is the Eu-
clidean distance. As for ctp, we want to project the distance to an interval between
0 and 1. We do so by normalizing each distance by the diameter NV of the smallest
sphere containing all clusters. Since there could be samples whose distance to a
centroid is greater than IV, we set 1 as the maximum possible distance. As an ex-
ample, the point s in the 2-dimensional projection of Figure B.3 is relatively close
to the centroid of c; but relatively far from the centroid of ¢;.

The actual risk score is then classically computed as “likelihood times severity”.
Intuitively, the smaller the distance to a high risk cluster, the higher is the overall
risk. This leads us to using the complement of the normalized distance to represent
the likelihood. It is also intuitive to choose the risk associated with the closest
cluster to the sample. The risk assessment risk : R” — [0,1] is thus computed
as risk(s) = (1 — ||sl|) x ctp(¢), where ¢ is the cluster closest to sample s, i.e.,
VeeC sl < sl

By applying this classification strategy we are now able to determine individual

208



B. From Detection to Mitigation

risk scores for unclassified domain communication data flow profiles that we later
use for reasoning about appropriate incident response actions.

B.1.1.6. Step 6: Deployment Modes and Incident Response

Our approach can now classify unknown domain samples and annotate them with
risk scores. We need to map this risk to specific incident response actions.

Malflow supports the definition of so-called incident response profiles (IRP). These
map risk score intervals to incident response actions for an identified malign net-
work activity risk. Such actions include: reporting the potential threat to security
responsibles, forwarding the traffic associated with a detected malign domain to
a sinkholing server, blocking further communication with this domain, or even
killing the respective We describe IRPs as partial functions i#rp € IRP : R — A
that return a specific incident response action a € A if a provided risk score r
is within a certain interval. An example for such a profile irp; € IRP would
be: irp;(r) = lIgnore if 0.0 < r < 0.2, irp;(r) = Notify if 0.2 < r < 0.5 and
irp,(r) = Block if 0.5 < r < 1.0.

To operationalize this process, MalFlow supports two distinct deployment modes:
server-only and client-server deployment. For server-only deployment, we per-
form all previously discussed training and classification steps directly at the server
where the malware sandbox is deployed. The obtained classification results are
then used to e.g. populate proxy blacklists to a-priori block the identified ma-
lign domains or notify security responsibles upon detected connection attempts to
these domains. This deployment model bears the benefit of full centralization and
easy integration into a typical dynamic malware analysis process. The downside
is that it does not allow to conduct precise per-process incident response actions
at the client side.

This is overcome by MalFlow’s client-server deployment model where domain
classification and risk mitigation are pushed to the endpoints. Rather than for-
warding the identified malign domains to proxy blacklists, the server merely gen-
erates and provides the classification and risk models according to the process
described above — classification of new domains is done by the clients.

To this end, clients periodically receive updated classification models from the
MalFlow server along with the risk mitigation mappings. To monitor the system
for potential malign network communication, the clients run the same custom IAT-
patching based function call interposition monitor, that w that gets injected into
each user-mode process within before its start-up. After injection, this monitor
intercepts all network-related calls to the WindowsAPI, i.e. WinSock functions
like Socket, recv, or send. Intercepted events are forwarded to the QDFG and
feature generation component. The classification manager matches these feature
sets against the classification model, which it received from the MalFlow server,

209



B. From Detection to Mitigation

and calculates the respective risk score for the contacted remote endpoint.

Together with the pre-defined IRPs, the risk score determines the incident re-
sponse action for the identified potential threat. Depending on the IRP, compensat-
ing actions can reach from simple notifications to security responsibles, inhibition
of subsequent calls to an identified malign domain, modification of the respective
calls to partially forward traffic to a sinkhole server, or even terminating the issu-
ing process to contain further damage. A high-level description of the client-side
architecture is depicted in the lower-left part of Figure B.1.

Lazy vs. greedy modes. MalFlow clients can be configured in two modes: lazy,
where the client only captures events for a fixed initial time window after estab-
lishing a networking session, and greedy, where events are intercepted continu-
ously, employing a sliding window scheme over the captured event traces to en-
sure an evaluation baseline that is compatible to the one used for training. While
the greedy mode is more reliable in that it covers more network interaction, it is
more expensive as it requires continuous interception of events.

In contrast, the lazy mode is leaner and significantly less expensive as the mon-
itors only intercept API calls for a fixed period until automatically unloading the
costly interception mechanisms. On the other hand, this mode might miss events
that happen after the initial monitored time window and thus fail to detect delayed
malign network activity. However, our evaluations on a large set of malware re-
vealed that only few malware families implement some form of time-triggered
functionality. The choice of the appropriate detection mode thus depends on the
protection goals and performance constraints.

B.1.2. Evaluation

We conducted experiments for both the server and the client components of a pro-
totypical implementation. The server-side experiments, i.e. the training steps,
were conducted on an Intel Xeon 12-core 3.5GHz machine with 64GByte of RAM.
The client side was evaluated on a machine equipped with two physical 2.8GHz
Intel i7 cores and 8GByte of RAM.

In this setting we executed about 11.000 malware samples as evaluation baseline
in our sandbox and recorded their behavior for 5 minutes.

For profiling data flows, we captured 5 sample points, one per minute. Calcu-
lating 8 features per sample point yielded 40 (= 8 Features x 5 Steps)-dimensional
feature vectors. Their threat level was determined by matching the respective do-
mains against a blacklist with about 70.000 entries. In total we obtained a set of
2035 distinct domain-feature vectors out of which the blacklist matching revealed
261 to refer to known (active) compromised servers.

210



B. From Detection to Mitigation

B.1.2.1. Effectiveness

We now want to investigate MalFlow’s ability to discriminate known malign from
likely benign ones based on the risk values computed from the data flow profiles.
To this extent, we performed a 10-fold cross validation evaluation where we re-
peatedly trained our system with 90% parts of the data set and used the resulting
risk model to calculate risk values for the remaining 10% of the data set. Doing so
ensured that no knowledge about the testing samples was leaked to the training
phase, i.e., disjoint testing and training sets.

The goal for this experiment was to find a partitioning of the risk value space
that discriminated best between known malign domains from likely benign ones.
This means that we aimed at finding a good risk threshold 6 € [0, 1] for which in
the optimal case the risk values of all known malign samples remained above and
the risk values of all likely benign ones remained below.

To investigate the discrimination ability for different thresholds § we calculated
the classification performance in terms of recall and precision. We denote benign
domains incorrectly classified as malign as false positives fp, correctly classified
malign (benign) domains as true positives fp (true negatives tn), and benign labels
wrongly classified as malign as false negatives fn. Precision and recall are defined
by precision = tp/(tp + fp) and recall = tp/(tp + fn).

Note that we use domain blacklists to check the correctness of our prediction.
More precisely, we evaluate the performance of our classification in terms of con-
gruence of the predictions with the results from matching the domains against
popular domain blacklists. Given that such blacklists are incomplete [81], there is
a chance that some of the testing domains are in fact malign and mislabeled.

This has some consequences for the interpretation of our evaluation results. As
we cannot say with absolute certainty that a domain in fact is malign or benign, a
disagreement between predicted class and ground-truth class does not necessar-
ily constitute an incorrect prediction. In particular, cases in which our approach
predicted, from the viewpoint of the blacklist matching, a benign domain to be
malign, do not necessarily need to be real false positives. As we are thus in the
malign vs. likely-benign setting rather than in the malign vs. benign setting, the
subsequently presented precision and recall measures need to be interpreted as
lower bounds.

Figure B.4 shows the relationship between precision and recall for different clus-
ter counts. As we can see, we can achieve a recall of at least 0.78 when fixing the
precision to 0.98. This means that we are able to detect at least 78% of all known
malign domains with little risk of benign domains being misclassified as malign.
Again note that this is a conservative estimation under the assumption that all
domains that were not included in a blacklist were in fact benign.

211



B. From Detection to Mitigation

10 S —

0.9
0.8
0.7

06 L Vi e RO

Precision

0.4

0.3

0.2+

0.1+

0.0

1 L L 1 1

00 01 02 03 04 05 06 0.7 08 09 1.0

Recall

Figure B.4.: MalFlow effectiveness

B.1.2.2. Efficiency

For the efficiency evaluation we analyzed the computational effort for the server
and the client side components. We also investigated the impact of running our
client-side prototype on the overall system performance.

While less important for server-only deployment settings, the introduced over-
head for monitoring network-related events with a system call monitor at host-
level potentially has a significant impact on system performance at client side in
client-server deployments.

To reason about the absolute and relative performance overhead we conducted
a series of performance measurement experiments in a typical client environment
(clients are more resource-limited than servers). For these experiments we simu-
lated typical networking scenarios like browsing a website or downloading files
from a remote server with varying file sizes. All experiments were conducted both
on a standard Windows 7 SP1 installation and in the same system with our client
component running.

To minimize noise when observing the effect of the client-side monitoring in-
frastructure, we used a Windows version of the wget command to query a web-
server for specific websites and different-sized files. More specifically, we loaded
the www.google.com and the www.cnn.com main pages and downloaded differ-
ent files between 0.1 and 100 MByte of size from a big webspace hosting provider.

212


www.google.com
www.cnn.com

B. From Detection to Mitigation

’ Tal‘get H Thorm [ms]‘ Linon [ms] ‘ Agps ‘ Arer ‘
www.google.com || 288 2162 1874 7.52
www.cnn.com 504 2632 2128 5.22
0.1MByte 258 2113 1885 8.21
1MByte 414 2320 1906 5.60
10MByte 936 2835 1899 3.03
100MByte 6907 8289 1382 1.20

Table B.2.: Average Monitoring Overhead at the Client Side

To weed out environmental influences we repeated each experiment 100 times.

We measured the average durations for both the unmonitored (7,0ry,) and the
monitored (7},0,) settings, as well as the absolute (Aups = Trnon — Thorm) and rela-
tive (A, = TA%) overheads, shown in Table B.2.

norm

To get an idea about the bootstrapping overhead we also measured the start-up
time for running wget with and without our monitor running. Our client compo-
nent needed 1917ms in average to hook into a newly created process. Although
the relative overhead of up to 7 times the normal execution time seems prohibitive
for short-living processes, this overhead is barely noticeable for longer-living pro-
cesses (the evaluations for such longer-term networking activities only show a
relative overhead of 1.2). Considering that by default (in lazy mode) we capture
a network connection for about 5 minutes, the 100MByte experiment gives us the
closest hint on the actual overhead that would be introduced in an operative set-
ting. By subtracting the duration of the unhooked from the hooked experiment,
we get an average absolute overhead of 8289ms — 6907ms = 1382ms. As the data
flow profile features used by MalFlow are properties of the respective QDFGs, the
computational effort is directly determined by the size of the respective graphs.
Within the considered data set the average graph size was 10 edges (ranging from
3 to 75 with 0=4), resulting in an average total feature effort of about 22ms (rang-
ing from 6 to 95 with o=11). Looking at the effects of increasing graph sizes on the
feature computation time, we could infer that the relative computation time per
edge remained roughly constant, i.e., independent of the graph size.

For evaluating the computational effort of our training phase we measured the
total time spent on different-sized training set sizes and varying cluster counts.
While the cluster threat potential calculation boils down to hash-table lookups
with linear complexity, finding an optimal cluster partitioning with vanilla k-
means is NP-hard. However, for the employed approximate variant of k-means
the actual complexity is within O(k * n * s), with k being the number of clusters, n
the number of instances, and s their dimensionality.

213



B. From Detection to Mitigation

Interestingly, our experiments only revealed a measurable correlation between
computation time and cluster count, but not between sample count and over-
all training time. We explain this with the relatively small number of clustering
instances in our setting in comparison to the several orders of magnitude big-
ger sample sizes that the employed clustering algorithm was originally designed
for [125]. Considering various cluster counts, training our approach on the full
data set at average took 62ms (ranging from 22 to 90 with 0=20).

As the bulk of the risk calculation consists of calculating the Euclidean distance
of a sample to all cluster centroids, the effort is linear with respect to the number
of clusters. Considering the small number of clusters and the comparably low di-
mensionality of the vectors in our setting, the resulting overhead at average was
3ms (ranging from 1.5 to 7.1 with 6=0.8). When compared to the monitoring over-
head, this is negligible.

In sum, classifying a network connection at the client side would thus on aver-
age take 1382ms + 5 x 22ms 4 3ms = 1495ms. This amounts to a relative overhead
of about 30% w.r.t. a monitoring window of 5min (= W), which, of
course depending on the operational context, we consider an acceptable cost for
being able to perform fine-grained real-time risk-based enforcement.

B.1.2.3. Threats to Validity and Limitations

While we could show that our approach performs well in discriminating domains
with reasonable computational overhead, we are aware of some limitations of our
evaluation. As usual with machine-learning approaches to malware, we cannot
claim that our results generalize to malware found in the wild or to other data
sets. An objective evaluation of this generalizability is very hard to achieve.

As discussed before, the usefulness of the effectiveness results highly depends
on the reliability of the ground truth database, i.e. the coverage of the employed
domain blacklists. A bad coverage possibly leads to effectiveness reported to be
lower than it actually is. We tried to counteract this threat by feeding our blacklist
with data from diverse sources, including public domain blacklist services like
Google’s SafeBrowsing service.

Our current prototype profiles malware network interaction with a user-mode
hook to intercept calls issued to the WinSock library. Kernel-mode malware, or
more generically, malware that does not use the WinSock library can thus not be
profiled by our current prototype. We did some experiments using a kernel-driver
based on SSDT patching technology instead of user-mode hooking in which we
were able to intercept even such malware. However, we deem the necessarily
introduced overhead and stability issues not justified considering that the vast
majority of commodity malware uses WinSock for networking.

Finally, our current prototype only considers the first 5 minutes of activity of a

214



B. From Detection to Mitigation

malware for training. Although we barely saw time-triggers in the analyzed mal-
ware set, there is a risk of malware delaying the actual malign behavior and thus
subverting our training scope. One can to some extent counteract this threat by
extending the monitoring period for generating the training features at the cost of
increased profiling time and thus reduced malware analysis throughput. Also uti-
lizing stimulus-response techniques, e.g. finding and removing sleep-based time
triggers [20], would to some extent limit this risk.

215



B. From Detection to Mitigation

216



C. Evaluation Data Set

C.1. Malware

To foster comparability with other detection approaches we decided to use a pub-
licly available malware collection, named Malicia [100], for populating our eval-
uation data set. These samples were obtained by milking 500 different drive-by
download servers for 11 months in 2011, i.e. automatically connecting to them and
crawling them for potentially malicious binaries. To label the obtained binaries,
i.e. to establish our ground truth, a combination of static analysis (on embedded
icons) and dynamic analysis (on captured network traffic) was used [100].

In sum, this left us with 6991 distinct malware samples from 18 different mal-
ware families, as listed in the following:

Malware Family Samples

Cleaman 25
Cridex 50
Cutwail 2
DPRN 1
Fakeav 5
Harebot 35
Ramnit 4
RansomNoaouy 4
Reveton 7
Russkill 1
SecurityShield 112
Smarthdd 47
Spyeye 4
Ufasoft-bitcoin 3
Winwebsec 4234
WinRescue 4
Zbot 1572
Zeroaccess 881

217



C. Evaluation Data Set

C.2. Goodware

To obtain a representative and diverse set of benign Windows applications for our
evaluations we followed two data retrieval strategies: 1) we downloaded the 50
most popular free software packages from www.download.com and extracted all
executable binaries from the downloaded archives, and 2) we crawled 3 Windows
7 installations of researchers in our working group for all executable binaries.

In total we obtained 481 distinct goodware samples, which we subdivided into
five different categories: Console Applications are windows programs that often do
not require any sort of user input and do not feature any graphical user inter-
face, GUI Applications that usually react on user input provided via graphical user
interfaces, Installers that semi-autonomously install software on a computer, and
Internet Applications that interact with remote computers via a network connection.
While the distinction between the categories is not clear-cut, this categorization is
intended to draw a picture of the diversity of evaluated benign software samples.

The distribution of samples over this categories looks as follows:

Malware Family Samples
Console Applications 278
GUI Applications 114
Installers 52
Internet Applications 37

In detail we evaluated the following benign applications:

7zip, 7-Zip, A Note, Abakt, AdapterTroubleshooter, Adaware, AddInUtil, Agent,
Aitagent, Analysis, Anote, Append, Appidcertstorecheck, Appidpolicyconverter,
Arp, Ascsetup, Aspnet_wp, AstroGrep, Astrogrep, At, Audacity, Audiodg, Autoit,
Avast, Avg, AxInstUI, Baaupdate, Bamital, Bckgzm, BdeUISrv, BdeUnlockWizard,
Bfsve, BitLockerWizard, BitLockerWizardElev, Bitsadmin, Bthudtask, CamStudio,
Carberp, Cbeplay, Ccsetup, Cdrtfe, Change, Charmap, Chess, Chgport, Chkdsk,
Chkntfs, Cideamon, Cipher, Clamav, ClamWin, Cleanmgr, Clickonce_bootstrap,
Clip, Cmak, Cmbins, Cmdl132, Cmmon32, Comp, Compact, CompMgmtLauncher,
ComputerDefaults, ComSvcConfig, Consent, Control, Convert, Csc, Csrstub, Ctf-
mon, Cttune, Cvtres, Dcomcnfg, DCplusplus, Debug, Defrag, Delegate_execute,
DeviceEject, DfdWiz, Dialer, Diantz, Dinotify, DiskCleaner, Diskperf, Diskraid,
DisplaySwitch, Djoin, Doskey, Dpapimig, DpiScaling, Drivermax, Driverquery,
DVDMaker, Dvdplay, Dvdupgrd, Dw20, Dwm, Dwwin, Dxdiag, Dxpserver, Edlin,
EdmGen, Efsui, Ehexthost, Ehprivjob, Ehrecvr, Ehsched, Ehvid, EjectUSB, Email -
thunderbird, EMule, Eraser-6, Esentutl, Eudcsettings, Eventvwr, Evntwin, Explorer,
ExtExport, Extrac32, Fastopen, FaXcooL, Fc, FileZilla, Find, Findstr, Finger, Fire-
fox, FlickLearningWizard, Fontview, Forfiles, FreeFileSync, FreeOTFE, Fsquirt, Fsu-
til, Fxscover, Gdi, Gimp, GOMPlayer, GoogleChromePortable_34.0.1847.137__online-

218


www.download.com

C. Evaluation Data Set

.paf, GoogleUpdate, GoogleUpdateSetup, Gpscript, HelpPane, Hfs, Hotspotshield,
Httpfileserver, Hwrcomp, Icacls, Idmanager, le4uinit, IEExec, Iexplore, lisrstas,
lissetup, Ilasm, ImagingDevices, Imjpdsvr, Imjppdmg, Imfpuex, Imjpuexc, Im-
scprop, Imtcprop, Inetinfo, InfDefaultInstall, Infocard, InstallUtil, Ipconfig, Irftp,
Iscsicli, Iscsicpl, Isintsup, JkDefrag, JkDefragStarter, Journal, JPEGView, KeeP-
ass, Krnl386, Ktmutil, Label, Libreoffice, Lightscreen, Lpq, Lpr, Lpremove, Lsass,
MagicMailMonitor, Magnify, Makecab, Man, Manycam, Mcbuilder, Mcspad, Mc-
tadmin, Mcx2Prov, McxTask, MdRes, Mem, MigAutoPlay, MigRegDB, MigSetup,
Migwiz, MineSweeper, Mobsync, Mofcomp, Mount, Mountvol, MpSigStub, Mgbkup,
Mgtgsve, Msg, Mshta, Msiexec, MuCommander, Mucommander, MuiUnattend,
MxdwGc, Napstat, Narrator, Nbtstat, Ndadmin, Netl, NETFXRepair, NetProj,
Newdev, Nfsadmin, Nfsclnt, Ngen, Nlsfunc, Nltest, Nslookup, Ntprint, Odbcad32,
Oobeldr, Openfiles, P2phost, Pathping, Pcalua, Pcawrk, Pcwrun, Perfmon, Pid-
gin, Ping, Pipanel, PkgMgr, Planner, Plasrv, PnPUnattend, PnPutil, PostMig, Pow-
erLoader, PresentationFontCache, PresentationHost, PrintBrm, PrintBrmEngine,
Psxss, PurblePlace, PushPrinterConnections, Python, Python_icon, Pythonw, Qapp-
srv, QBittorrent, Qtorrent, Raserver, Rdpshell, Rdrleakdiag, Re, Recover, Redir,
Reg, RegAsm, Regedt32, Regini, RegisterMCEApp, RegSvcs, Regsvr32, Regtlibv12,
Rekeywiz, Replace, RMActivate, RMActivate_isv, RMActivate_ssp, RMActivate_-
ssp-isv, RmClient, Robocopy, Rqc, Rrinstaller, Rssowl, Runas, Rundll32, Rwinsta,
Sapisvr, SBEServer, SciTE, Sdbinst, Sdchange, Sdiagnhost, SearchProtocolHost, Se-
cEdit, Secinit, Services, SetupSNK, Setupsqm, Setver, Setx, Sfc, Shrpubw, Shut-
down, Shvlzm, Sigverif, SMConfiglnstaller, Smi2smir, SndVol, SoundRecorder,
SpeechUXTutorial, SpeechUXWiz, SpiderSolitaire, Spinstall, Spoolsv, Sppsvc, Star-
Dict, Startup Manager, StikyNot, SumatraPDF, sumatrapdf, Svclni, SyncHost, Synkron,
Sysedit, Syskey, Sysprep, Systeminfo, SystemPropertiesAdvanced, SystemProper-
tiesHardware, SystemPropertiesProtection, TabTip, TapiUnattend, Taskhost, Taskkill,
Telnet, Thunderbird, Timeout, Tintsvr, Tracert, Tscon, Tsdiscon, Tskill, TSTheme,
Twunk_16, Twunk_32, Tzupd, Ul0Detect, Umount, UniExtract, Uniextract, Un-
regmp2, Upnpcont, User, Userinit, VaultSysUi, VBoxDrvInst, VBoxService, VBox-
Tray, VBoxWHQLFake, Vds, Vdsldr, VideoLAN, Videolan, Videoservicethief, Vlc,
Vssadmin, Wabmig, WatAdminSvc, Wbadmin, Wbengine, WerFaultSecure, Wex-
tract, Wfs, Windeploy, Windirstat, Windirstat, WindowsAnytimeUpgrade, Win-
dowsAnytimeUpgradeui, Winhlp32, Wininst-7.1, Wininst-8.0, WinMgmt, Winon,
Winrarx64, Winrs, Winrshost, WinSAT, Winspool, Wksprt, Wlrmdr, WmiApSrv,
WMIC, Wmlaunch, Wmpconfig, Wmpdmc, Wmpenc, Wmplayer, Wmpnetwk,
WMPSideShowGadget, WOWEXEC, Wrar500, Write, WsatConfig, WSManHTTP-
Config, Wsmprovhost, WSOphp, Wuapp, Wusa, X86_microsoft-windows-basic-
misc-tools_6.1.7600.16385_none_expand, X86_microsoft-windows-dns-client_6.1.7601.-
17514 none_dnscacheugc, X86_microsoft-windows-htmlhelp_6.1.7600.16385_none._-
hh, X86_microsoft-windows-i..i_initiator_service_6.1.7601.17514 none_iscsicli, X86_-

219



C. Evaluation Data Set

microsoft-windows-international-core_6.1.7601.17514_none_muiunattend, X86_microsoft-
windows-msauditevt_6.1.7600.16385_none_auditpol 83c870f4, X86_microsoft-windows-
networkbridge_6.1.7600.16385_none_bridgeunattend, X86_microsoft-windows-ntvdm-
system32_6.1.7601.17514_none_append, X86_microsoft-windows-ntvdm-system32_-
6.1.7601.17514_none_csrstub, X86_microsoft-windows-ntvdm-system32_6.1.7601.17514 _-
none_debug, X86_microsoft-windows-ntvdm-system32_6.1.7601.17514_none_dosx,
X86_microsoft-windows-ntvdm-system32_6.1.7601.17514_none_drwatson, X86_microsoft-
windows-ntvdm-system32_6.1.7601.17514_none_edlin, X86_microsoft-windows-ntvdm-
system32_6.1.7601.17514_none_fastopen, X86_microsoft-windows-ntvdm-system32 _-
6.1.7601.17514 none_gdi, X86_microsoft-windows-ntvdm-system32_6.1.7601.17514 _-
none_krnl386, X86_microsoft-windows-ntvdm-system32_6.1.7601.17514_none_mem,
X86_microsoft-windows-ntvdm-system32_6.1.7601.17514_none_mscdexnt, X86_microsoft-
windows-ntvdm-system32_6.1.7601.17514_none_ntvdm, X86_microsoft-windows-
ntvdm-system32_6.1.7601.17514 none_setver, X86_microsoft-windows-ntvdm-system32 _-
6.1.7601.17514_none_user, X86_microsoft-windows-p.installerandprintui_6.1.7601.17514 -
none_printui, X86_microsoft-windows-p.unterinfrastructure_6.1.7601.17514_none._-
lodctr, X86_microsoft-windows-p.unterinfrastructure_6.1.7601.17514_none_unlodctr,
X86_microsoft-windows-recdisc-main_6.1.7601.17514 _none_recdisc, X86_microsoft-
windows-sessionQviewer_6.1.7600.16385_none_uiOdetect, X86_microsoft-windows-
t.localsessionmanager_6.1.7601.17514_1sm, X86_microsoft-windows-tcpip_6.1.7601.17514 -
none_netiougc, X86_microsoft-windows-winon-tools_6.1.7600.16385_none_mpnotify,
X86_microsoft-windows-winon-tools_6.1.7600.16385_none_wlrmdr, X86_microsoft-
windows-wmi-core-svc_6.1.7601.17514_none_winmgmt, Xcopy, Xscite, XVideoSer-
viceThief, Xwizard, Youtubedownloader

220



	Acknowledgments
	Abstract
	Zusammenfassung
	Outline of this Thesis
	Introduction
	Research Description
	Tackled Problems and Research Goals
	Research Questions

	Structure and Research Methodology
	Contributions

	Background
	Malware
	Malware History
	Malware Taxonomy

	Malware Detection
	Static Detection
	Dynamic Detection
	Gap Analysis and Assessment


	System Model
	Quantitative Data Flow Graphs
	Model Instantiation
	Malware Data Flow Behavior Example

	Pattern-based Detection
	Deductive Pattern-based Detection
	Introduction
	Approach
	Evaluation
	Related Work
	Discussion and Conclusion

	Inductive Pattern-based Detection
	Introduction
	Preliminaries
	Approach
	Evaluation
	Related Work
	Discussion and Conclusion


	Metric-based Detection
	Deductive Metric-based Detection
	Introduction
	Approach
	Evaluation
	Related Work
	Discussion and Conclusion

	Inductive Metric-based Detection
	Introduction
	Preliminaries
	Approach
	Evaluation
	Related Work
	Discussion and Conclusion


	Assessment and Operationalization
	Assessment
	Effectiveness
	Efficiency
	Summary and Discussion

	Operationalization
	Offline Detection
	Online Detection


	Conclusion
	Gained Insights
	Future Work

	Bibliography
	Appendix
	Analysis and Visualization
	Pattern-based Analysis and Visualization
	Approach
	Application


	From Detection to Mitigation
	Metric-based Risk Assessment and Mitigation
	Approach
	Evaluation


	Evaluation Data Set
	Malware
	Goodware



