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We consider a new recursive structural equation model where all variables can be written as max-linear
function of their parental node variables and independent noise variables. The model is max-linear in terms
of the noise variables, and its causal structure is represented by a directed acyclic graph. We detail the
relation between the weights of the recursive structural equation model and the coefficients in its max-
linear representation. In particular, we characterize all max-linear models which are generated by a recursive
structural equation model, and show that its max-linear coefficient matrix is the solution of a fixed point
equation. We also find the minimum directed acyclic graph representing the recursive structural equations
of the variables. The model structure introduces a natural order between the node variables and the max-
linear coefficients. This yields representations of the vector components, which are based on the minimum
number of node and noise variables.

Keywords: directed acyclic graph; graphical model; max-linear model; minimal representation; path
analysis; structural equation model

1. Introduction

Graphical models are a popular tool to analyze and visualize conditional independence relations
between random variables (see e.g. Koller and Friedman [8] and Lauritzen [9]). Each node in
a graph indicates a random variable, and the graph encodes conditional independence relations
between the random variables. We focus on directed graphical models, also called Bayesian
networks, where edge orientations come along with an intuitive causal interpretation. The con-
ditional independence relations between the random variables, which are encoded by a directed
acyclic graph (DAG), can be explored using the (directed) Markov property: each variable is
conditionally independent of its non-descendants (excluding the parents) given its parents (cf.
[9], Chapter 3.2).

Despite many areas of applications for directed graphical models, ranging from artificial intel-
ligence, decision support systems, and engineering to genetics, geology, medicine, and finance
(see, e.g., Pourret et al. [13]), graphical modelling of random vectors has mainly been limited to
discrete and Gaussian distributions; see, for example, [8,9]. In the context of risk assessment, risk
exposures are usually modelled by continuous variables, however, the assumption of Gaussianity
leads invariably to severe underestimation of large risks and therefore to unsuitable models.

Recursive structural equation models (recursive SEMs) offer a possibility to construct directed
graphical models; cf. Bollen [2], Pearl [12] and Spirtes et al. [17]. For a given DAG D = (V ,E)

with nodes V = {1, . . . , d} and edges E = {(k, i) : i ∈ V and k ∈ pa(i)} define

Xi = fi(Xpa(i),Zi), i = 1, . . . , d, (1.1)
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where pa(i) denotes the parents of node i in D and fi is a real-valued measurable function;
Z1, . . . ,Zd are independent noise variables. Thus, a recursive SEM is specified by an underlying
causal structure given by a DAG D, the functions fi , and the distributions of Zi for i = 1, . . . , d .
In this setting, the distribution of X = (X1, . . . ,Xd) is uniquely defined by the distributions of
the noise variables and, denoting by nd(i) the non-descendants of node i,

Xi ⊥⊥ Xnd(i)\pa(i) | Xpa(i), i = 1, . . . , d; (1.2)

i.e., the distribution of X is Markov relative to D (see Theorem 1.4.1 and the related discussion
in Pearl [12]). Recently, recursive linear SEMs and generalisations in a Gaussian setting have
received particular attention; see Bühlmann et al. [3], Ernest et al. [7] and references therein.

Our focus is not on sums but on maxima, where natural candidates for the noise distribu-
tions are the extreme value distributions or distributions in their domains of attraction; see, for
example, Resnick [14,15]. We define a recursive max-linear (ML) model X on a DAG D by

Xi :=
∨

k∈pa(i)

ckiXk ∨ ciiZi, i = 1, . . . , d, (1.3)

with independent random variables Z1, . . . ,Zd with support R+ = [0,∞) and positive weights
cki for all i ∈ V and k ∈ pa(i) ∪ {i}.

This new model is motivated by applications to risk analysis, where extreme risks play an
essential role and may propagate through a network. In such a risk setting it is natural to require
the noise variables to have positive infinite support. Moreover, we may think of the edge weights
in (1.3) as relative quantities so that a risk may originate with certain proportions in its different
ancestors.

In this paper, we investigate structural properties as well as graph properties of a recursive ML
model X on a DAG D. We will show that X is a max-linear (ML) model (for background on
ML models in the context of extreme value theory see, for example, de Haan and Ferreira [5],
Chapter 6) in the sense that

Xi =
d∨

j=1

bjiZj , i = 1, . . . , d, (1.4)

with Z1, . . . ,Zd as in (1.3), and B = (bij )d×d is a matrix with non-negative entries. We
call B max-linear (ML) coefficient matrix of X and its entries max-linear (ML) coeffi-
cients.

The ML coefficients of X can be determined by a path analysis of D. Throughout we write
k → i, if there is an edge from k to i in D. We assign a weight to every path p = [j = k0 →
k1 → ·· · → kn = i], which is the product of the edge weights along p multiplied by the weight
of the noise variable Zj (a concept, which goes back to Wright [19]):

dji(p) = ck0,k0ck0,k1 . . . ckn−2,kn−1ckn−1,kn = ck0,k0

n−1∏
l=0

ckl ,kl+1 . (1.5)
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We will show that the ML coefficients are given for i ∈ V by

bji =
∨

p∈Pji

dji(p) for j ∈ an(i),

bii = cii , and bji = 0 for j ∈ V \ (
an(i) ∪ {i}),

(1.6)

where Pji is the set of paths from j to i and an(i) the ancestors of i.
The computation in (1.6) corresponds to the algebraic path problem over the max-times semir-

ing (R+,∨, ·) (see e.g. Mahr [11] and Rote [16]). We present it in matrix form, using the matrix
product over (R+,∨, ·). We apply this concept in the two different situations, where the DAG
D is given, and we test, if a given ML coefficient matrix is consistent with D, but also later on,
when we check, if a given matrix defines a recursive SEM on some unspecified DAG.

From (1.6), it is clear that not all paths are needed for representing X as ML model (1.4). This
perception leads to a complexity reduction of the model in different ways and in different situa-
tions. For every specific component Xi of X only those paths with terminal node i, which carry
the maximum weight, are relevant for its representation (1.4), and we call them max-weighted
paths. All other paths can be disposed of without changing this representation. It is even sufficient
to consider only one in D max-weighted path from every ancestor of i to i. Consequently, Xi

can be represented as component of a recursive ML model on a polytree with node set an(i)∪{i}
and with the same weights and noise variables as in the original representation (1.3).

However, in general none of these individual polytrees represents all components of X in
the sense of (1.3) simultaneously. Still there may be subgraphs of D and weights such that all
components of X have representation (1.3), and we present all such possible subgraphs and
weights. In particular, we characterize the smallest subgraph of this kind, which we call minimum
max-linear (ML) DAG of X, and point out its prominent role.

We show that all DAGs and weights, which represent X as in (1.3) can be identified from the
ML coefficient matrix B of X. In this context, we also give necessary and sufficient conditions
on a matrix to be the ML coefficient matrix of some recursive ML model.

It is a simple but important observation that there is a natural order between the components
of X; from (1.3) we see immediately that Xi ≥ ckiXk holds for all i ∈ V and k ∈ pa(i). For every
component of X and some U ⊆ V we find lower and upper bounds in terms of XU := (Xl, l ∈ U).
Often we do not need all components of XU to compute the best bounds of Xi in terms of
components of XU . If i ∈ U , then an upper and lower bound is given by Xi itself; otherwise, for a
lower bound, we only need to consider a component Xj of XU if j ∈ an(i), but no max-weighted
path from j to i passes through some node in U \ {j}. A similar result and concept applies for
the upper bound of Xi . Thus, the max-weighted paths also lead in this context indirectly to a
complexity reduction. We will also use the max-weighted ancestors of i in U to obtain a minimal
representation of Xi in terms of XU and noise variables.

Our paper is organized as follows. In Section 2, we discuss the max-linearity of a recursive
ML model X and express its ML coefficient matrix in terms of a weighted adjacency matrix of
a corresponding DAG. Section 3 introduces the important notion of a max-weighted path and
studies its consequences for the ML coefficients. In Section 4, we give necessary and sufficient
conditions for a ML model being a recursive ML model on a given DAG. Section 5 is devoted
to the minimum ML DAG of X as the DAG with the minimum number of edges within the class
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of all DAGs representing X in the sense of (1.3). In Section 6, given a set of node variables,
we investigate which information can be gained for the other components of X. This results in
lower and upper bounds for the components. Finally, we derive a minimal representation for the
components of X as max-linear function of a subset of node variables and certain noise variables.

We use the following notation throughout. For a node i ∈ V , the sets an(i), pa(i), and de(i)
contain the ancestors, parents, and descendants of i in D. Furthermore, we use the notation
An(i) = an(i) ∪ {i}, Pa(i) = pa(i) ∪ {i}, and De(i) = de(i) ∪ {i}. We write U ⊆ V for a non-
empty subset U of nodes, XU = (Xl, l ∈ U), and Uc = V \ U . All our vectors are row vectors.
We also extend the previous notation in a natural way by writing an(U) = ⋃

i∈U an(i), An(U) =
an(U) ∪ U , and so on. For a matrix B with non-negative entries, we write sgn(B) for the matrix
with entries equal to 1, if the corresponding entry in B is positive and 0 else. We denote by 1U the
indicator function of U , and set 1∅ ≡ 0. In general, we consider statements for i ∈ ∅ as invalid.
For arbitrary (possibly random) ai ∈R+, we set

∨
i∈∅ ai = 0 and

∧
i∈∅ ai = ∞.

2. Max-linearity of a recursive max-linear model

For a recursive ML model X on a DAG D = (V ,E), given by (1.3), we derive its max-linear
representation (1.4). We start with our leading example, a recursive ML model on the diamond-
shaped DAG depicted below.

Example 2.1 (Max-linear representation of a recursive ML model). Consider a recursive ML
model X = (X1,X2,X3,X4) on the DAG

D = (V ,E) = ({1,2,3,4},{(1,2), (1,3), (2,4), (3,4)
})

with weights cki for i ∈ V and k ∈ Pa(i). We obtain for the components of X:

X1 = c11Z1

X2 = c12X1 ∨ c22Z2 = c12c11Z1 ∨ c22Z2

X3 = c13X1 ∨ c33Z3 = c13c11Z1 ∨ c33Z3

X4 = c24X2 ∨ c34X3 ∨ c44Z4

= c24(c12c11Z1 ∨ c22Z2)

∨ c34(c13c11Z1 ∨ c33Z3) ∨ c44Z4

= (c24c12c11 ∨ c34c13c11)Z1

∨ c24c22Z2 ∨ c34c33Z3 ∨ c44Z4.

1

2 3

4

Thus X satisfies (1.4) with ML coefficient matrix

B =

⎡
⎢⎢⎣

c11 c11c12 c11c13 c11c12c24 ∨ c11c13c34
0 c22 0 c22c24
0 0 c33 c33c34
0 0 0 c44

⎤
⎥⎥⎦ .
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We observe that the ML coefficients satisfy indeed (1.6). Moreover, B is an upper triangular
matrix, since D is well-ordered (cf. Remark 2.3(ii)).

The following result shows that such a representation can be obtained in general: every com-
ponent of a recursive ML model has a max-linear representation in terms of its ancestral noise
variables and an independent one. It provides a general method to calculate the ML coefficients
by a path analysis as described in (1.5) and (1.6).

Theorem 2.2. Let X be a recursive ML model on a DAG D = (V ,E), and let B = (bij )d×d be
the matrix with entries as defined in (1.6). Then

Xi =
∨

j∈An(i)

bjiZj , i = 1, . . . , d; (2.1)

i.e., B is the ML coefficient matrix of X.

Proof. Without loss of generality we assume throughout this proof that D is well-ordered (cf.
Remark 2.3(ii)). We prove the identity (2.1) by induction on the number of nodes of D. For d = 1
we have by (1.3)

X1 = c11Z1 = b11Z1,

where the last equality holds by (1.6). Suppose that (2.1) holds for a recursive ML model X of
dimension d ; that is,

Xk =
∨

j∈An(k)

bjkZj =
∨

j∈an(k)

∨
p∈Pjk

djk(p)Zj ∨ ckkZk, k = 1, . . . , d.

Now consider a (d +1)-variate recursive ML model. We first investigate the nodes i ∈ {1, . . . , d}.
Since D is well-ordered, we have (d + 1) ∈ V \ pa(i). Hence, it suffices to show representation
(2.1) with respect to the subgraph D[{1, . . . , d}] = ({1, . . . , d},E ∩ ({1, . . . , d} × {1, . . . , d})).
However, this holds by the induction hypothesis. So we can use this representation for i ∈
{1, . . . , d} and (A.1) to obtain

Xd+1 =
∨

k∈pa(d+1)

ck,d+1Xk ∨ cd+1,d+1Zd+1

=
∨

k∈pa(d+1)

∨
j∈an(k)

∨
p∈Pjk

ck,d+1djk(p)Zj ∨
∨

k∈pa(d+1)

ck,d+1ckkZk ∨ cd+1,d+1Zd+1

=
∨

j∈an(d+1)

( ∨
k∈de(j)∩pa(d+1)

∨
p∈Pjk

ck,d+1djk(p)

∨
∨

k∈pa(d+1)∩{j}
ck,d+1ckk

)
Zj ∨ cd+1,d+1Zd+1.
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Observe that every path from some j to d + 1 is of the form p = [j → ·· · → k → d + 1]
for some k ∈ de(j) ∩ pa(d + 1), or an edge j → d + 1 corresponding to j ∈ pa(d + 1). From
(1.5), the path p has weight dj,d+1(p) = djk(p)ck,d+1, and the edge j → d + 1 has weight
dj,d+1([j → d + 1]) = cjj cj,d+1. This yields

Xd+1 =
∨

j∈an(d+1)

∨
p∈Pj,d+1

dj,d+1(p)Zj ∨ cd+1,d+1Zd+1 =
∨

j∈An(d+1)

bj,d+1Zj ,

where we have used that bj,d+1 = ∨
p∈Pj,d+1

dj,d+1(p) for j ∈ an(d + 1) and bd+1,d+1 =
cd+1,d+1. �

By (1.6) the ML coefficient bji of X is different from zero if and only if j ∈ An(i). This
information is contained in the reachability matrix R = (rij )d×d of D, which has entries

rji :=
{

1, if there is a path from j to i, or if j = i,

0, otherwise.

If the jith entry of R is equal to one, then i is reachable from j .

Remark 2.3. Let R be the reachability matrix of D.

(i) The ML coefficient matrix B is a weighted reachability matrix of D; i.e., R = sgn(B).
(ii) The DAG D can be well-ordered, which means that the set V = {1, . . . , d} of nodes can

be linearly ordered in a way compatible with D such that k ∈ pa(i) implies k < i (see, e.g.,
Appendix A of Diestel [6]). If D is well-ordered, then B and R are upper triangular matrices.

Finding the ML coefficient matrix B from D and the weights in (1.3) by a path analysis as
described in (1.5) and (1.6) would be very inefficient. We may, however, compute B by means
of a specific matrix multiplication.

For two non-negative matrices F and G, where the number of columns in F is equal to the
number of rows in G, we define the product � :Rm×n+ ×R

n×p
+ →R

m×p
+ by

(
F = (fij )m×n,G = (gij )n×p

) 
→ F � G :=
(

n∨
k=1

fikgkj

)
m×p

. (2.2)

The triple (R+,∨, ·), which is called max-times or subtropical algebra (see e.g. [11,16]), is an
idempotent semiring with 0 as 0-element and 1 as 1-element. The operation � is therefore a
matrix product over a semiring. Such semirings are fundamental in max-linear systems; for an
introduction see Butkovič [4]. The matrix product � is associative: for F ∈ R

m×n+ , G ∈ R
n×p
+ ,

and H ∈ R
p×q
+ , F � (G�H) = (F �G)�H , and we have (F �G)� = G� �F�. Denoting by

B all d × d matrices with non-negative entries and by ∨ the componentwise maximum between
two matrices, (B,∨,�) is also a semiring with the null matrix as 0-element and the identity
matrix idd×d as 1-element. This semiring is, however, not commutative, since � is in general
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not. Consistent with a matrix product, we define powers recursively: A�0 := idd×d and A�n :=
A�(n−1) � A for A ∈ B and n ∈N.

The matrix product � allows us to represent the ML coefficient matrix B of X in terms of the
weighted adjacency matrix (cij 1pa(j)(i))d×d of D.

Theorem 2.4. Let X be a recursive ML model on a DAG D = (V ,E) with weights cki for i ∈ V

and k ∈ Pa(i) as in (1.3). Define the matrices

A := diag(c11, . . . , cdd),A0 := (
cij 1pa(j)(i)

)
d×d

and A1 := (
ciicij 1pa(j)(i)

)
d×d

.

Then the ML coefficient matrix B of X from Theorem 2.2 has representation

B = A for d = 1 and B = A ∨
d−2∨
k=0

(
A1 � A�k

0

)
for d ≥ 2.

Proof. For d = 1 we know from (1.6) that b11 = c11. Hence, B = A. Now assume that d ≥ 2.
First we show that, if D has a path of length n (a path consisting of n edges) from node j to node
i, then the jith entry of the matrix A1 � A

�(n−1)
0 is equal to the maximum weight of all paths of

lengths n from j to i, otherwise it is zero. The proof is by induction on n.
An edge j → i, which is the only path of length n = 1, has the weight dji([j → i]) = cjj cji .

Since the jith entry of the matrix A1 � A�0
0 = A1 � idd×d = A1 is given by cjj cji1pa(i)(j), the

statement is true for n = 1.
Denote by a0,j i , an,ji , and an+1,j i the jith entry of A0, A1 � A

�(n−1)
0 , and A1 � A�n

0 , re-

spectively. As A1 � A�n
0 = (A1 � A

�(n−1)
0 ) � A0, the jith entry of A1 � A�n

0 is given by

an+1,j i = ∨d
k=1 an,jka0,ki = ∨d

k=1 an,jkcki1pa(i)(k). We obtain from the induction hypothesis
and (1.5) that an,jka0,ki is zero, if D does not contain a path of length n from j to k or the edge
k → i; otherwise it is equal to the maximum weight of all paths which consist of a path of length
n from j to k and the edge k → i. Since every path of length n + 1 from j to i is of this form for
some k ∈ V , the jith entry of A1 � A�n

0 is indeed equal to the maximum weight of all paths of
length n + 1 from j to i if there exists such a path, otherwise it is zero.

Finally, again by (1.6), for i ∈ V and j ∈ an(i), the ML coefficient bji is equal to the maximum
weight of all paths from j to i, and note that due to acyclicity, a path in D is at most of length
d − 1. Thus, if j ∈ an(i) then the jith entry of

∨d−2
k=0 A1 � A�k

0 is equal to bji , otherwise it is
zero. Since by (1.6), bii = cii and bji = 0 for j ∈ V \An(i), the ML coefficient matrix B is given
by

B = A ∨ A1 ∨ (A1 � A0) ∨ (
A1 � A�2

0

) ∨ · · · ∨ (
A1 � A

�(d−2)
0

)
. �

The following has been shown in the proof of Theorem 2.4.

Corollary 2.5. If D has a path of length n from j to i, the jith entry of the matrix A1 �A
�(n−1)
0

is equal to the maximum weight of all paths of length n from j to i, otherwise the entry is zero.
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Summarizing the noise variables of X into the vector Z = (Z1, . . . ,Zd), the representation
(2.1) of X can be written by means of the product � as

X = Z � B =
(

d∨
j=1

bjiZj , i = 1, . . . , d

)
=

( ∨
j∈An(i)

bjiZj , i = 1, . . . , d

)
.

Consequently, the definition of the matrix product � modifies and extends the definition given
in [18], Section 2.1, equation (2).

3. Max-weighted paths

Given a recursive ML model X on a DAG D = (V ,E) with weights cki for i ∈ V , k ∈ Pa(i) and
ML coefficient matrix B = (bij )d×d , we investigate the paths of D and their particular weights,
the implications on the ML coefficients as well as induced subgraph structures leading to reduced
representations of (1.3).

From (1.6) and (2.1), we know that a path p from j to i, whose weight dji(p) is strictly smaller
than bji , does not have any influence on the distribution of X. This fact suggests the following
definition.

Definition 3.1. Let X be a recursive ML model on a DAG D = (V ,E) with path weights as
in (1.5) and ML coefficient matrix B . We call a path p from j to i a max-weighted path if
bji = dji(p).

A prominent example, where all paths are max-weighted, is the following.

Example 3.2 (Polytree). A polytree is a DAG whose underlying undirected graph has no cycles;
polytrees have at most one path between any pair of nodes. Thus, assuming that X is a recursive
ML model on a polytree, all paths must be max-weighted.

The following example indicates the importance and consequences of max-weighted paths.

Example 3.3 (Max-weighted paths, graph reduction). Consider a recursive ML model X =
(X1,X2,X3) on the DAG

D = (V ,E) = ({1,2,3},{(1,2), (1,3), (2,3)
}) 1

2 3

with weights cki for i ∈ V and k ∈ Pa(i) and ML coefficient matrix B . We distinguish between
two situations:
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(1) If c13 > c12c23, then the edge 1 → 3 is the unique max-weighted path from 1 to 3.
(2) If, however, c13 ≤ c12c23, then b13 = c11c12c23 = b12b23

b22
and the path [1 → 2 → 3] is

max-weighted. We obtain in this case

X3 = b13Z1 ∨ b23Z2 ∨ b33Z3 = b23

b22
(b12Z1 ∨ b22Z2) ∨ b33Z3 = c23X2 ∨ b33Z3.

Thus, X is also a recursive ML model on the DAG

DB := ({1,2,3},{(1,2), (2,3)
})

.

Here DB is the DAG with the minimum number of edges such that sgn(B) is its reachability
matrix. By Remark 2.3(i) there cannot be a smaller DAG representing X in the sense of (1.3).

We present some immediate consequences of the path weights in (1.5) and the definition of
max-weighted paths.

Remark 3.4. (i) If there is only one path between two nodes, it is max-weighted.
(ii) Every subpath of a max-weighted path is also max-weighted.

(iii) Every path, which results from a max-weighted path by replacing a subpath with another
max-weighted subpath, is also max-weighted.

To find for some i ∈ V and j ∈ an(i) the ML coefficient bji it suffices to know the weight cjj

of the noise variable Zj and the edge weights along one arbitrary max-weighted path from j to i,
since every max-weighted path from j to i has the same weight. This allows us to represent every
component of X as component of a recursive ML model on a subgraph of D. For this purpose,
we introduce the following definition.

Definition 3.5. Let X be a recursive ML model on a DAG D = (V ,E), and let D = (V ,E) be a
subgraph of D. We denote by pa(i) the parents of node i in D and define

Yi :=
∨

k∈pa(i)

ckiYk ∨ ciiZi, i ∈ V ,

with the same weights and noise variables as in the representation of X in (1.3). We call the
resulting recursive ML model Y = (Yl, l ∈ V ) recursive ML submodel of X induced by D.

We summarize some immediate properties of Y.

Remark 3.6. Let i ∈ V with ancestors an(i) in D. Denote by B = (bij )|V |×|V | the ML coefficient
matrix of Y.

(i) Every path in D has the same weight (1.5) as in D.
(ii) A path of D, which is in D a max-weighted path, is also in D max-weighted.

(iii) For j ∈ an(i), D has one in D max-weighted path from j to i if and only if bji = bji .
(iv) D has one in D max-weighted path from every j ∈ an(i) to i if and only if Xi = Yi .
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By Remark 3.4(ii), for every i ∈ V , there exists a polytree Di of D with node set An(i),
which has exactly one in D max-weighted path from every ancestor of i to i. There may even
exist several such polytrees (cf. Example 3.8 below). We learn from the construction of Di and
Remark 3.4(ii) that indeed every path of Di is in D max-weighted. Therefore, some component
Xj of X coincides by Remark 3.6(iv) with the corresponding one of the recursive ML submodel
of X induced by Di if and only if Di has at least one path from every ancestor of j in D to j . By
construction of Di this property holds obviously for Xi . We summarize this result as follows.

Proposition 3.7. Let X be a recursive ML model on a DAG D = (V ,E). For some i ∈ V and
An(i) in D let Di be a polytree with node set An(i) such that Di has one in D max-weighted path
from every j ∈ an(i) to i. Let Yi = (Yl, l ∈ An(i)) be the recursive ML submodel of X induced
by Di . Then for all j ∈ An(i), which have the same ancestors in Di and D, we have Xj = Yj .

We discuss the recursive ML model from Example 2.1 in the context of Definition 3.1 and
Proposition 3.7.

Example 3.8 (Continuation of Example 2.1: max-weighted paths, polytrees, conditional in-
dependence). For the polytrees as in Proposition 3.7, we identify all max-weighted paths ending
in node 4. By Remark 3.4(i), the paths [2 → 4] and [3 → 4] are max-weighted. For the weights
of the paths [1 → 2 → 4] and [1 → 3 → 4], we have three situations:

c11c12c24 = c11c13c34, c11c12c24 > c11c13c34, and c11c12c24 < c11c13c34.

In the first situation, both paths from 1 to 4 are max-weighted. Thus, there are two different
polytrees having one in D max-weighted path from every ancestor of 4 to 4, namely,

D4,1 = ({1,2,3,4},{(1,2), (2,4), (3,4)
})

and

D4,2 = ({1,2,3,4},{(1,3), (2,4), (3,4)
})

.

In the second situation, the path [1 → 2 → 4] is the unique max-weighted path from 1 to 4
and, hence, D4,1 is the unique polytree as in Proposition 3.7 for node 4. The third situation is
symmetric to the second, such that D4,2 is also such a unique polytree.

Now let Y1 = (Y1,1, Y1,2, Y1,3, Y1,4) and Y2 = (Y2,1, Y2,2, Y2,3, Y2,4) be the recursive ML sub-
models of X induced by D4,1 and D4,2. The distributions of X, Y1, and Y2 are Markov relative to
D, D4,1, and D4,2, respectively. For a DAG, the local Markov property as specified in (1.2), is by
Proposition 4 of Lauritzen et al. [10] equivalent to the global Markov property (for a definition
see Corollary 3.23 of [9]). Using this property, we find

Y1,1 ⊥⊥ Y1,4 | Y1,2 and Y2,1 ⊥⊥ Y2,4 | Y2,3.

If the path [1 → 2 → 4] is max-weighted, we have by Proposition 3.7 that

Y1,1 = X1, Y1,2 = X2, and Y1,4 = X4,
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hence, X1 ⊥⊥ X4 | X2. Accordingly, if [1 → 3 → 4] is max-weighted, then

Y2,1 = X1, Y2,3 = X3, and Y2,4 = X4,

and X1 ⊥⊥ X4 | X3 holds. Since the only conditional independence property encoded in D by the
(global) Markov property is X1 ⊥⊥ X4 | X2, X3, we can identify additional conditional indepen-
dence properties of X from the polytrees in Proposition 3.7.

Remark 3.9. (i) Assume the situation of Proposition 3.7. Let Vi be the set of all nodes in An(i),
which have the same ancestors in D and Di . Since the distributions of X and Y are Markov
relative to D and Di , respectively, conditional independence properties of X are encoded in D
and of Y in Di . By Proposition 3.7, the conditional independence relations between subvectors
of YVi

= (Yl, l ∈ Vi), which we can read off from Di , hold also between the corresponding
subvectors of X. Since missing edges correspond to conditional independence properties, and Di

is a subgraph of D, we can often identify additional conditional independence properties of X
from Di .

(ii) From (i) or Example 3.8 we learn that a recursive ML model on a DAG D is in general not
faithful; that is, not all its conditional independence properties are encoded in D by the (global)
Markov property.

As can be seen from Examples 3.3 and 3.8, any reduction of a recursive ML model depends
on the existence of max-weighted paths that pass through specific nodes. The following result
shows how we can obtain this information from its ML coefficient matrix.

Theorem 3.10. Let X be a recursive ML model on a DAG D = (V ,E) with ML coefficient
matrix B . Let further U ⊆ V , i ∈ V and j ∈ an(i), and recall from Remark 2.3(i) that bji > 0.

(a) There is a max-weighted path from j to i, which passes through some node in U if and
only if

bji =
∨

k∈De(j)∩U∩An(i)

bjkbki

bkk

. (3.1)

(b) No max-weighted path from j to i passes through some node in U if and only if

bji >
∨

k∈De(j)∩U∩An(i)

bjkbki

bkk

. (3.2)

This holds also for U = ∅.

Proof. First assume that De(j) ∩ U ∩ An(i) = ∅. Thus no path, hence also no max-weighted
path, from j to i passes through some node in U , and it suffices to verify (b). Since the right-hand
side of (3.2) is zero if and only if De(j)∩U ∩ An(i) =∅, and the ML coefficient bji is positive,
(b) is proven for this case (including the case that U =∅).
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Now assume that De(j) ∩ U ∩ An(i) = {k}, which implies that there is a path from j to i

passing through k ∈ U . If k = i or k = j , there is obviously a max-weighted path from j to i

passing through i or j and (3.1) is always valid.
Next, assume that k ∈ V \ {i, j}, and let p1 and p2 be max-weighted paths from j to k and

from k to i; respectively. Denote by p the path from j to i consisting of the subpaths p1 and p2.
By (1.5) and the definition of a max-weighted path we obtain

dji(p) = 1

ckk

djk(p1)dki(p2) = bjkbki

bkk

.

Since p is max-weighted if and only if bji = dji(p), and this is not the case if and only if bji >

dji(p), we have shown (a) and (b) for the situation of De(j) ∩ U ∩ An(i) = {k}. In particular, it

follows that bji ≥ bjkbki

bkk
for all k ∈ De(j) ∩ U ∩ An(i).

Assume now that De(j)∩U ∩An(i) contains more than one element, and that a max-weighted
path from j to i passes through some node k ∈ U . We know from above that this is equivalent to

bji = bjkbki

bkk

and bji ≥ bjlbli

bll

for all l ∈ (
De(j) ∩ U ∩ An(i)

) \ {k},

which is again equivalent to (3.1). Similarly, we obtain (b). �

Remark 3.11. Recall the matrix product � from (2.2) and let R be the reachability matrix of D.
We obtain from R = sgn(B) (Remark 2.3(i)) that for i, j ∈ V

∨
k∈De(j)∩U∩An(i)

bjkbki

bkk

=
d∨

k=1

bjkbki

bkk

1U(k) =:
d∨

k=1

bjkbU,ki

is the jith entry of the matrix B �BU with BU = (bU,ij )d×d . Thus, we may decide whether there
is a max-weighted path between two nodes that passes through some node in U by comparing the
entries of the matrices B and B � BU . Such use of the matrix product � can be made at various
points throughout the paper, for instance, in Remark 5.2(ii), Theorem 5.3, and Lemma 6.3(b).

The following corollary gives an important property of the ML coefficients. The first part has
been shown in the proof of Theorem 3.10, the second part follows from Remark 2.3(i).

Corollary 3.12. For all i ∈ V , k ∈ An(i), and j ∈ An(k), bji ≥ bjkbki

bkk
> 0. Indeed, bji ≥ bjkbki

bkk

holds for all i, j, k ∈ V .

We learn immediately from (1.3) that ckiXk ≤ Xi for all i ∈ V and k ∈ pa(i). From Corol-
lary 3.12, we find such inequalities also for components, whose nodes are not connected by an
edge but by a path of arbitrary length.

Corollary 3.13. For all i ∈ V and j ∈ An(i), we have
bji

bjj
Xj ≤ Xi .
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Proof. Note that An(j) ⊆ An(i). Using the max-linear representation (2.1) of Xi and Xj as well
as Corollary 3.12, we obtain

Xi =
∨

l∈An(i)

bliZl ≥
∨

l∈An(j)

bliZl ≥
∨

l∈An(j)

blj bji

bjj

Zj = bji

bjj

∨
l∈An(j)

bljZj = bji

bjj

Xj .
�

4. ML coefficients leading to a recursive ML model on a given
DAG

Recall the definition of a ML model given in (1.4). From Theorem 2.2, we know that every
recursive ML model is max-linear. In this section we provide necessary and sufficient conditions
on a ML model to be a recursive ML model on a given DAG D.

It can be shown that every ML model, which is a recursive SEM as given in (1.1) with unspec-
ified functions f1, . . . , fd , must be a recursive ML model. That a recursive ML model is also a
recursive SEM follows immediately from its recursive definition. To summarize, a ML model
can be represented as a recursive SEM (1.1) on a DAG D if and only if it has a recursive ML
representation (1.3) relative to the same DAG D.

Motivated by Remark 2.3(i), in what follows we assume that sgn(B) is the reachability matrix
R of D. In our investigation the DAG with the minimum number of edges, such that R = sgn(B),
will play an important role. This has already been indicated in Example 3.3.

We give a general definition of the DAG with the minimum number of edges that represents
the same reachability relation as a given DAG.

Definition 4.1. Let D = (V ,E) be a DAG. The DAG Dtr = (V ,Etr) is the transitive reduction
of D if the following holds:

(a) Dtr has a path from node j to node i if and only if D has a path from j to i, and
(b) there is no graph with less edges than Dtr satisfying condition (a).

Since we work with finite DAGs throughout, the transitive reduction is unique and is also a
subgraph of the original DAG. The transitive reduction of a DAG can be obtained by successively
examining its edges, in any order, and deleting an edge k → i, if it contains a path from k to i

which does not include this edge. For these properties and further details see, e.g., Aho et al. [1].
In what follows, we need the notion of patr(i), the parents of i in Dtr.

We present necessary and sufficient conditions on B to be the ML coefficient matrix of a
recursive ML model on D.

Theorem 4.2. Let D = (V ,E) be a DAG with reachability matrix R and X a ML model as in
(1.4) with ML coefficient matrix B such that sgn(B) = R. Define

A := diag(b11, . . . , bdd) and A0 :=
(

bij

bii

1pa(j)(i)

)
d×d

.
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Then X is a recursive ML model on D if and only if the following fixed point equation holds:

B = A ∨ B � A0, (4.1)

where � is the matrix product from (2.2). In this case,

Xi =
∨

k∈pa(i)

bki

bkk

Xk ∨ biiZi, i = 1, . . . , d.

Proof. First, we investigate the fixed point equation (4.1) and compute the jith entry of B �A0.
By definition, together with sgn(B) = R, it is equal to

d∨
k=1

bjkbki

bkk

1pa(i)(k) =
∨

k∈De(j)∩pa(i)

bjkbki

bkk

.

We have De(j) ∩ pa(i) = ∅ for j ∈ V \ an(i) and De(j) ∩ pa(i) = de(j) ∩ pa(i) for j ∈ an(i) \
pa(i). Moreover, for j ∈ patr(i), using that de(j) ∩ pa(i) = ∅, we obtain De(j) ∩ pa(i) = {i}.
Thus, taking also the matrix A into account, (4.1) is equivalent to

bji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j ∈ V \ An(i),

bii , if j = i,∨
k∈de(j)∩pa(i)

bjkbki

bkk

, if j ∈ an(i) \ pa(i),

bji ∨
∨

k∈de(j)∩pa(i)

bjkbki

bkk

, if j ∈ pa(i) \ patr(i),

bji, if j ∈ patr(i)

for all i, j ∈ V . In this equation, the first row is automatically satisfied, since R = sgn(B), also
the second and the last one hold trivially. To summarize, the fixed point equation (4.1) is satisfied
if and only if for all i ∈ V the following identities hold:

bji =
∨

k∈de(j)∩pa(i)

bjkbki

bkk

for all j ∈ an(i) \ pa(i), (4.2)

bji = bji ∨
∨

k∈de(j)∩pa(i)

bjkbki

bkk

for all j ∈ pa(i) \ patr(i). (4.3)

Thus, it suffices to show that X is a recursive ML model on D if and only if (4.2) and (4.3) hold
for all i ∈ V .

First, assume that X is a recursive ML model on D, and let i ∈ V and j ∈ an(i). Since every
path from j to i passes through at least one parent node of i, there must be a max-weighted
path from j to i passing through some node in pa(i). Using (3.1) with U = pa(i) and noting
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that j ∈ De(j) ∩ U ∩ An(i) = De(j) ∩ pa(i), we find for j ∈ an(i) \ pa(i) equation (4.2) and for
j ∈ pa(i) \ patr(i) equation (4.3).

For the converse statement, assume that (4.2) and (4.3) hold. For j ∈ patr(i) we have de(j) ∩
pa(i) =∅, such that the right-hand side of (4.3) is equal to bji . Thus (4.3) holds for all j ∈ pa(i).
Since sgn(B) = R, we have Xi = ∨d

j=1 bjiZj = ∨
j∈An(i) bjiZj . We split up the index set and

use (4.2) in the first place and (4.3) for all j ∈ pa(i) in the second place to obtain

Xi =
∨

j∈an(i)\pa(i)

bjiZj ∨
∨

j∈pa(i)

bjiZj ∨ biiZi

=
∨

j∈an(i)\pa(i)

∨
k∈de(j)∩pa(i)

bjkbki

bkk

Zj

∨
∨

j∈pa(i)

bjiZj ∨
∨

j∈pa(i)

∨
k∈de(j)∩pa(i)

bjkbki

bkk

Zj ∨ biiZi

=
∨

j∈an(i)

∨
k∈de(j)∩pa(i)

bjkbki

bkk

Zj ∨
∨

j∈pa(i)

bjiZj ∨ biiZi .

Interchanging the first two maximum operators by (A.1) yields

Xi =
∨

k∈pa(i)

∨
j∈an(k)

bjkbki

bkk

Zj ∨
∨

k∈pa(i)

bkiZk ∨ biiZi

=
∨

k∈pa(i)

bki

bkk

( ∨
j∈an(k)

bjkZj ∨ bkkZk

)
∨ biiZi

=
∨

k∈pa(i)

bki

bkk

Xk ∨ biiZi .

�

In the proof of Theorem 4.2 we have shown that, under the required conditions, the fixed point
equation (4.1) holds if and only if (4.2) and (4.3) hold for all nodes. We summarize this in part
(a) of the following corollary. Part (b) has also been verified in the proof of Theorem 4.2. The
final statement is based on the fact that for k ∈ pa(i) we have de(k) ∩ pa(i) = ∅ if and only if
k ∈ patr(i).

Corollary 4.3. (a) Assume the situation of Theorem 4.2. Then X is a recursive ML model on D
if and only if for every i ∈ V ,

bji =
∨

k∈de(j)∩pa(i)

bjkbki

bkk

for all j ∈ an(i) \ pa(i) (4.4)

bji ≥
∨

k∈de(j)∩pa(i)

bjkbki

bkk

for all j ∈ pa(i) \ patr(i). (4.5)
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(b) Let X be a recursive ML model on a DAG D = (V ,E) with ML coefficient matrix B . Then
for every i ∈ V and k ∈ pa(i),

bki ≥
∨

l∈de(k)∩pa(i)

bklbli

bll

.

Moreover, the right-hand side is equal to 0 if and only if k ∈ patr(i), and in this case the inequality
is strict.

By (4.4) and (4.5) exactly those ML coefficients bji for i ∈ V and j ∈ an(i), such that j → i

is an edge in Dtr, do not have to meet any specific conditions apart from being positive.
In summary, given a DAG D with d nodes, both Theorem 4.2 and Corollary 4.3(a) characterize

all ML coefficient matrices of any recursive ML model possible on D as all non-negative d × d

matrices that are weighted reachability matrices of D and satisfy (4.1), equivalently (4.4) and
(4.5). If we can verify these two properties for a non-negative d × d matrix B , then it is the ML
coefficient matrix of a recursive ML model on D, and weights in its representation (1.3) are given
by cki = bki

bkk
for k ∈ pa(i) and cii = bii .

5. Graph reduction for a recursive max-linear model

From Proposition 3.7, we know that every component of a recursive ML model X on a DAG
D = (V ,E) satisfies (1.3) on a subgraph of D. These subgraphs, however, usually vary from
one component to another. On the other hand, we know from Example 3.3 that the whole vector
X may also be a recursive ML model on a subgraph of D. This raises the question of finding
the smallest subgraph of D such that X is a recursive ML model on this DAG. We define and
characterize this minimum DAG before we point out its prominent role in the class of all DAGs
representing X in the sense of (1.3).

Definition 5.1. Let X be a recursive ML model on a DAG D = (V ,E) with ML coefficient
matrix B . We call the DAG

DB = (
V,EB

) :=
(

V,

{
(k, i) ∈ E : bki >

∨
l∈de(k)∩pa(i)

bklbli

bll

})
(5.1)

the minimum max-linear (ML) DAG of X.

We summarize some properties of DB as follows.

Remark 5.2. (i) The minimum ML DAG DB = (V ,EB) is a subgraph of the original DAG
D = (V ,E). Observe from Corollary 4.3(b) that the transitive reduction Dtr = (V ,Etr) of D is
also a subgraph of D. In summary, we have Etr ⊆ EB ⊆ E. This implies that the DAGs DB and
D have the same reachability matrix, which is sgn(B) by Remark 2.3(i).
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(ii) By Theorem 3.10(b) the minimum ML DAG DB contains exactly those edges k → i of D,
where no max-weighted path from k to i passes through some node in pa(i) \ {k}. This means
that DB has an edge k → i if and only if it is the only max-weighted path from k to i in D. The
DAG DB can be obtained from D by deleting an edge k → i, if D contains a max-weighted path
from k to i, which does not include this edge. Note the analogy to finding the transitive reduction
Dtr of D described below Definition 4.1. An algorithm is by comparison of ML coefficients and
motivated by Corollary 4.3(b): for all i ∈ V and k ∈ pa(i) \ patr(i) remove the edge k → i from
D if

bki =
∨

l∈de(k)∩pa(i)

bklbli

bll

.

The method described in Remark 5.2(ii) determines DB from D and the ML coefficient ma-
trix B . Indeed, we can also identify DB directly from B without knowing D.

Theorem 5.3. Let X be a recursive ML model with ML coefficient matrix B . Then the minimum
ML DAG of X can be represented as

DB =
(

V,

{
(k, i) ∈ V × V : k �= i and bki >

d∨
l=1
l �=i,k

bklbli

bll

})
; (5.2)

in particular, DB is identifiable from B .

Proof. Let D be a DAG, which represents X in the sense of (1.3). Such a DAG exists by the
definition of a recursive ML model. We show that the edge set in (5.2) coincides with EB as
defined in (5.1). Assume first that (k, i) is contained in the edge set in (5.2). Since sgn(B) is the
reachability matrix of D (cf. Remark 2.3(i)), we have

bki >

d∨
l=1
l �=i,k

bklbli

bll

=
∨

l∈de(k)∩an(i)

bklbli

bll

. (5.3)

Since the right-hand side of (5.3) is non-negative, we must have bki > 0 and, hence, k ∈ an(i). By
Theorem 3.10(b) no max-weighted path from k to i passes through some node in V \ {i, k}. Thus
the edge k → i must be the only max-weighted path from k to i and, hence, by Remark 5.2(ii) it
must be an edge in EB as in (5.1).

For the converse, let (k, i) ∈ EB . Since by Remark 5.2(ii) this edge is the only max-weighted
path from k to i, no max-weighted path passes through some node in V \ {i, k}. This is by
Theorem 3.10(b) equivalent to (5.3) and (k, i) belongs to the edge set in (5.2). �

We characterize all DAGs and specify all weights such that X satisfies (1.3). The minimum ML
DAG DB of X will be the smallest DAG of this kind and has unique weights in representation
(1.3) in the sense that all irrelevant weights are set to zero. We can add any edge k → i into
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DB with weight cki ∈ (0,
bki

bkk
] representing X again in the sense of (1.3) as long as the graph

represents the same reachability relation as DB . As a consequence, to find B by a path analysis
as described in (1.5) and (1.6) it suffices to know DB and the weights in representation (1.3)
relative to DB .

Theorem 5.4. Let X be a recursive ML model with ML coefficient matrix B . Let further DB =
(V ,EB) be the minimum ML DAG of X and paB(i) the parents of node i in DB .

(a) The minimum ML DAG DB of X is the DAG with the minimum number of edges such
that X satisfies (1.3). The weights in (1.3) are uniquely given by cii = bii and cki = bki

bkk
for i ∈ V

and k ∈ paB(i).
(b) Every DAG with node set V that has at least the edges of DB and the same reachability

matrix as DB represents X in the sense of (1.3) with weights given for all i ∈ V by

cii = bii , cki = bki

bkk

for k ∈ paB(i) and

cki ∈
(

0,
bki

bkk

]
for k ∈ pa(i) \ paB(i).

There are no further DAGs and weights such that X has representation (1.3).

Proof. (a) Let D be a DAG and cki for i ∈ V and k ∈ Pa(i) weights such that X has representa-
tion (1.3). By Remark 5.2(i) DB is a subgraph of D.

First, we prove that X is a recursive ML model on DB with weights cki for i ∈ V and k ∈
PaB(i) by showing that all components of X coincide with those of the recursive ML submodel
of X induced by DB (see Definition 3.5). By Remark 3.6(iv), it suffices to verify for all i ∈ V

and j ∈ an(i) that DB has one in D max-weighted path from j to i. Among all max-weighted
paths from j to i in D, let p be one with maximum length, and assume that p includes an edge,
say k → l, which is not contained in DB . The DAG D has by Remark 5.2(ii), however, a max-
weighted path p1 from k to l, which does not include the edge k → l. Note that p1 consists of
more edges than the path [k → l]. Thus by replacing in p the edge k → l by p1 we obtain by
Remark 3.4(iii) a max-weighted path from j to i consisting of more edges than p. Since this a
contradiction to the fact that p has maximum length among all max-weighted paths from j to i,
p must be in DB .

Since every edge k → i in DB is by Remark 5.2(ii) the only max-weighted path from k to
i in D, the weights in (1.3) are uniquely given, and we have by Definition 3.1 and (1.5) that
bki = ckkcki = bkkcki , which implies cki = bki

bkk
. For the same reason, there cannot be a DAG with

less edges than DB such that X has representation (1.3).
(b) First we show that X satisfies (1.3) relative to a DAG D with the properties and weights

cki for i ∈ V and k ∈ Pa(i) (the parents in D). Note that the DAG DB is a subgraph of D and
both DAGs have the same reachability relation. Since X is by part (a) a recursive ML model on
DB , we may use Corollary 3.13 with the ancestors in DB : for every i ∈ V and k ∈ pa(i), since k
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is an ancestor of i in DB and bki

bkk
≥ cki , we have

Xi ≥ bki

bkk

Xk ≥ ckiXk.

With this we obtain from representation (1.3) of Xi relative to DB that

Xi =
∨

k∈paB(i)

ckiXi ∨ ciiZi =
∨

k∈paB(i)

ckiXk ∨
∨

k∈pa(i)\paB(i)

ckiXk ∨ ciiZi,

which is (1.3) relative to D.
It remains to show that there are no further DAGs and weights such that X has representation

(1.3). From Remark 5.2(i), every DAG that represents X in the sense of (1.3) must have the same
reachability matrix as DB and must contain at least the edges of DB . By (1.5) and (1.6) the
weights in representation (1.3) of X have to satisfy cki ≤ bki

bkk
for all i ∈ V and k ∈ pa(i). The

statement follows, since the weights cki are by part (a) uniquely with respect to DB . �

As explained before Theorem 5.4, we can add edges into DB , while keeping the same reach-
ability relation and still having representation (1.3) for X. In what follows, we will use the DAG
with the maximum number of edges with this properties.

Definition 5.5. Let D = (V ,E) be a DAG. The transitive closure Dtc = (V ,Etc) of D is the
DAG that has an edge j → i if and only if D has a path from j to i.

The transitive reduction is essentially the inverse operation of the transitive closure: for the
transitive reduction one reduces the number of edges and for the transitive closure one adds
edges, while maintaining the identical reachability relation. The transitive reduction of a DAG D
is a subgraph of D, and D is again a subgraph of the transitive closure. Moreover, all DAGs with
the same reachability matrix have the same transitive reduction and the same transitive closure,
and every node has in all such DAGs the same ancestors and descendants.

The following is a consequence of Theorem 5.4(b) and Remark 2.3(i).

Corollary 5.6. The recursive ML model X is also a recursive ML model on the transitive closure
of every DAG with reachability matrix sgn(B).

We use this corollary to obtain necessary and sufficient conditions on a ML coefficient matrix
B as in (1.4) to be the ML coefficient matrix of a recursive ML model. In contrast to Theorem 4.2
and Corollary 4.3(a), we do not require that B belongs to a specific given DAG.

Theorem 5.7. Let X be a ML model as in (1.4) with ML coefficient matrix B such that sgn(B)

is the reachability matrix of some DAG. Define

A := diag(b11, . . . , bdd), B0 :=
(

bij

bii

)
d×d

and Atc
0 := B0 − idd×d,
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where idd×d denotes the identity matrix. Then X is a recursive ML model if and only if the
following fixed point equation holds:

B = B � B0, which is equivalent to B = A ∨ B � Atc
0 , (5.4)

where � is the matrix product from (2.2).

Proof. Let Dtc be the transitive closure of a DAG with node set V = {1, . . . , d} and reachability
matrix sgn(B). For i ∈ V we denote by by pa(i) and an(i) the parents and ancestors of node i in
Dtc, respectively, and observe from the definition of Dtc that an(i) = pa(i) for all i ∈ V .

First, we show that X is a recursive ML model if and only if the fixed point equation B =
A ∨ B � Atc

0 holds. By Corollary 5.6 X is a recursive ML model if and only if it is a recursive
ML model on Dtc. By Theorem 4.2, it suffices to show that Atc

0 is equal to the weighted adjacency

matrix A0 = (
bij

bii
1pa(j)(i))d×d . Since B0 is a weighted reachability matrix of Dtc, we obtain

Atc
0 = B0 − idd×d =

(
bij

bii

1an(j)(i)

)
d×d

=
(

bij

bii

1pa(j)(i)

)
d×d

.

It remains to show that B � B0 = A ∨ B � Atc
0 . By the definition of the matrix product � the

jith entry of A ∨ B � Atc
0 is equal to

bji1{i}(j) ∨
d∨

k=1

bjk

(
bki

bkk

− 1{i}(k)

)
= bji1{i}(j) ∨

d∨
k=1
k �=i

bjkbki

bkk

= bji1{i}(j) ∨
d∨

k=1
k �=i,j

bjkbki

bkk

∨ bji1V \{i}(j)

=
d∨

k=1

bjkbki

bkk

,

which is the jith entry of the matrix B � B0. �

A non-negative symmetric matrix is by Theorem 5.7 a ML coefficient matrix of a recursive ML
model if and only if it is a weighted reachability matrix of a DAG and satisfies (5.4). Assume that
we have verified these properties for a matrix B . In order to find now all recursive ML models
which have ML coefficient matrix B we can first use (5.2) to derive the minimum ML DAG
DB from B and then Theorem 5.4(b) to find all DAGs and weights as in (1.3) such that (1.6)
holds.
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6. Backward and forward information in a recursive ML model

We investigate relations between the components of a recursive ML model X on a DAG D =
(V ,E) with ML coefficient matrix B . More precisely, we apply our previous results to identify
those components of X which provide maximal information on some other component.

We know already from Corollary 3.13 that Xi ≤ bii

bil
Xl for all i ∈ V and l ∈ De(i) so that for

some node set U ⊆ V and all i ∈ V ,

∨
j∈An(i)∩U

bji

bjj

Xj ≤ Xi ≤
∧

l∈De(i)∩U

bii

bil

Xl. (6.1)

The values of the bounds in (6.1) can often be found as the maximum and minimum over a
smaller number of nodes in U . We illustrate this by the following example.

Example 6.1 (Continuation of Examples 2.1 and 3.8: bounds). For U = {1,2} and i = 4 we
find by (6.1) the lower bound

b14

b11
X1 ∨ b24

b22
X2 ≤ X4. (6.2)

We discuss the lower bound and distinguish between two cases.
First, assume that the path [1 → 2 → 4] is max-weighted, which is by Theorem 3.10(a) equiv-

alent to b14 = b12b24
b22

. From Corollary 3.13 or (6.1) we obtain

b12

b11
X1 ≤ X2, equivalently

b14

b11
X1 ≤ b24

b22
X2.

Therefore, the lower bound of X4 in (6.2) is always b24
b22

X2.
Now assume that the path [1 → 2 → 4] is not max-weighted. Since this is the only path from

1 to 4 passing through node 2, this is by Theorem 3.10(b) equivalent to b14 > b12b24
b22

. From the

max-linear representation (2.1) of X1 and X2 we have b24
b22

X2 < b14
b11

X1 if and only if

b12b24

b22
Z1 ∨ b24Z2 < b14Z1, equivalently b24Z2 < b14Z1.

The event {b24Z2 < b14Z1} has positive probability, since Z1 and Z2 are independent with sup-
port R+, giving b14

b11
X1 as lower bound. But also the event { b14

b11
X1 ≤ b24

b22
X2} has positive prob-

ability, giving the lower bound b24
b22

X2. Thus, only in the first case the number of nodes in the
lower bound in (6.1) can be reduces.

We will find that a node j ∈ An(i) ∩ U is relevant for the lower bound in (6.1) if no max-
weighted path from j to i passes through some other node in U . Observe that this includes
the observation made in Example 6.1. The nodes in the upper bound of (6.1) have a similar
characterization. We present a formal definition of these particular ancestors and descendants,
characterize them below in Lemma 6.3, and give an example afterwards.
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Definition 6.2. Let X be a recursive ML model on a DAG D = (V ,E), U ⊆ V and i ∈ V .

(a) We call a node j ∈ An(i) ∩ U lowest max-weighted ancestor of i in U , if no max-
weighted path from j to i passes through some node in U \ {j}. We denote the set of the lowest
max-weighted ancestors of i in U by AnU

low(i).
(b) We call a node l ∈ De(i) ∩ U highest max-weighted descendant of i in U , if no max-

weighted path from i to l passes through some node in U \ {l}. We denote the set of the highest
max-weighted descendants of i in U by DeU

high(i).

For i ∈ U we find that the only lowest max-weighted ancestor and the only highest max-
weighted descendant of i in U is the node i itself. For i ∈ Uc = V \U a simple characterization of
AnU

low(i) and DeU
high(i) is given next; this allows us to identify these nodes via the ML coefficient

matrix of X.

Lemma 6.3. Let X be a recursive ML model on a DAG D = (V ,E), U ⊆ V and i ∈ V .

(a) If i ∈ U , then AnU
low(i) = DeU

high(i) = {i}.
(b) If i ∈ Uc, then

AnU
low(i) =

{
j ∈ an(i) ∩ U : bji >

∨
k∈de(j)∩U∩an(i)

bjkbki

bkk

}
, (6.3)

DeU
high(i) =

{
l ∈ de(i) ∩ U : bil >

∨
k∈de(i)∩U∩an(l)

bikbkl

bkk

}
. (6.4)

Proof. (a) follows immediately from the definition.
(b) Since i ∈ Uc, we have by Definition 6.2(a) that AnU

low(i) ⊆ an(i) ∩ U . For j ∈ an(i) ∩ U

we know from Theorem 3.10(b) that no max-weighted path from j to i passes through some
node in U \ {j} if and only if

bji >
∨

k∈de(j)∩U∩an(i)

bjkbki

bkk

,

where we have used that i ∈ Uc. Similarly, we obtain (6.4). �

Example 6.4 (Continuation of Examples 2.1, 3.8, and 6.1: AnU
low(4)). In order to find the

lowest max-weighted ancestors of node 4 in U = {1,2}, first observe that the only max-weighted
path [2 → 4] from 2 to 4 does not pass through any node in U \ {2}. Therefore, we have by
Definition 6.2(a) that 2 ∈ AnU

low(4). For node 1 we consider – as in Example 6.1 – two cases and
use (6.3):

(1) If b14 = b12b24
b22

, then AnU
low(4) = {2}.

(2) If b14 > b12b24
b22

, then AnU
low(4) = {1,2}.

Comparing this with Example 6.1 shows that the lower bound of X4 in (6.2) is always realized
by some lowest max-weighted ancestor of node 4 in U .
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We prove that the lower and upper bounds in (6.1) are always realized by some lowest max-
weighted ancestor and highest max-weighted descendant in U , respectively. For the lower bound,
this is based on the fact that between all nodes and their ancestors in U there is always a max-
weighted path, which contains a lowest max-weighted ancestor in U . For the upper bound, we
use the existence of a max-weighted path between all nodes and their descendants in U that
passes through some highest max-weighted descendant in U . Before we state the modified lower
and upper bounds in Proposition 6.6, we provide a useful characterization for a path analysis,
which includes these statements.

Lemma 6.5. Let X be a recursive ML model on a DAG D = (V ,E). Furthermore, let U ⊆ V ,
i ∈ V , j ∈ an(i), and l ∈ de(i).

(a) D has a max-weighted path from j to i passing through some node in U if and only if it
has a max-weighted path from j to i passing through some node in AnU

low(i).
(b) D has a max-weighted path from i to l passing through some node in U if and only if it

has a max-weighted path from i to l passing through some node in DeU
high(i).

Proof. We only show (a); part (b) can be proved analogously. Assume that a max-weighted path
from j to i passes through some node in AnU

low(i). Since AnU
low(i) ⊆ U , there is obviously also a

max-weighted path from j to i that passes through some node in U .
For the converse, we may assume that i ∈ Uc , since by Lemma 6.3(a) AnU

low(i) = {i} for i ∈ U

and hence every max-weighted path contains a node in AnU
low(i). Among all max-weighted paths

from j to i let p be one with maximum number of nodes in U . Denote by k1 the lowest node
on p contained in U ; i.e., the subpath of p from k1 to i contains no other node of U . Assume
that k1 /∈ AnU

low(i). Since k1 ∈ U and i ∈ Uc , there is by Definition 6.2(a) a max-weighted path
p1 from k1 to i that passes through some node k2 ∈ U with k2 �= k1. Thus, by replacing in p

the subpath from k1 to i by p1 we obtain by Remark 3.4(iii) a max-weighted path from j to i

containing more nodes in U than p. This is however a contradiction. Hence, k1 ∈ AnU
low(i), and

p is a max-weighted path from j to i that passes through some node in AnU
low(i). �

Proposition 6.6. Let X be a recursive ML model on a DAG D = (V ,E) with ML coefficient
matrix B . Let U ⊆ V and i ∈ V . Then

∨
j∈An(i)∩U

bji

bjj

Xj =
∨

j∈AnU
low(i)

bji

bjj

Xj and

∧
l∈De(i)∩U

bii

bil

Xl =
∧

l∈DeU
high(i)

bii

bil

Xl.

(6.5)

Proof. Note from Definition 6.2(a) that AnU
low(i) ⊆ An(i) ∩ U . To show the first equality take

some k ∈ (An(i) ∩ U) \ AnU
low(i). Observe from Lemma 6.3(a) that k �= i and, hence, k ∈

an(i) ∩ U . By Lemma 6.5(a) there must be a max-weighted path from k to i, which passes
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through some node j ∈ AnU
low(i). By (3.1) and Corollary 3.13, we obtain

bki

bkk

Xk = bkj bji

bkkbjj

Xk ≤ bji

bjj

Xj . (6.6)

Since for all k ∈ (An(i) ∩ U) \ AnU
low(i) there exists some j ∈ AnU

low(i) such that (6.6) holds, the
first equality of (6.5) follows. The second equality may be verified analogously. �

So far, for every component of X, we have identified a lower and upper bound in terms of
the components of XU = (Xl, l ∈ U). However, we cannot say anything about the quality of the
bounds. For instance, we do not know in which situation a component attains one of the bounds.
We clarify this by writing all components of X as max-linear functions of the components of XU

and certain noise variables. There are many such representations, since we can always include
non-relevant ancestral components with appropriate ML coefficients as we know from Corol-
lary 3.13. To find the relevant components of XU and noise variables, we focus on those with the
minimum number of components of XU and the minimum number of noise variables. For i ∈ V ,
we denote by anU

nmw(i) the set of all j ∈ an(i) such that no max-weighted path from j to i passes
through some node in U . By Theorem 3.10(b), we have

anU
nmw(i) =

{
j ∈ an(i) : bji >

∨
k∈De(j)∩U∩An(i)

bjkbki

bkk

}
. (6.7)

Since j ∈ an(i)\anU
nmw(i) if and only if there is a max-weighted path from j to i passing through

some node in U , we obtain from Theorem 3.10(a)

an(i) \ anU
nmw(i) =

{
j ∈ an(i) : bji =

∨
k∈De(j)∩U∩An(i)

bjkbki

bkk

}
. (6.8)

Theorem 6.7. Let X be a recursive ML model on a DAG D with ML coefficient matrix B , and
let U ⊆ V . Furthermore, let AnU

low(i) be the lowest max-weighted ancestors of node i in U as in
Definition 6.2(a), and define AnU

nmw(i) := (anU
nmw(i) ∪ {i}) ∩ Uc. Then for every i ∈ V ,

Xi =
∨

k∈AnU
low(i)

bki

bkk

Xk ∨
∨

j∈AnU
nmw(i)

bjiZj . (6.9)

This representation of Xi as a max-linear function of the components of XU and noise variables
involves the minimum number of components of XU and the minimum number of noise variables.

Proof. We distinguish between nodes i ∈ U and i ∈ Uc . For i ∈ U we know from Lemma 6.3(a)
that AnU

low(i) = {i}. Furthermore, we have AnU
nmw(i) =∅, since i ∈ U and every path, hence also

every max-weighted path, from some j ∈ an(i) to i passes through some node in U , namely i

itself. Thus we obtain (6.9). The second statement is obvious.
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Now assume that i ∈ Uc, and note that in this case AnU
nmw(i) = anU

nmw(i) ∪ {i}. Applying the
first equality in (6.5) and (2.1) as well as (A.2) in a second step to interchange the first two
maximum operators, we have

∨
k∈AnU

low(i)

bki

bkk

Xk =
∨

k∈an(i)∩U

bki

bkk

( ∨
j∈An(k)

bjkZj

)

=
∨

j∈an(i)

∨
k∈De(j)∩an(i)∩U

bjkbki

bkk

Zj .

(6.10)

We split up the set an(i) into anU
nmw(i) and an(i) \ anU

nmw(i) as well as the set AnU
nmw(i) into

anU
nmw(i) and {i} to obtain that the right-hand side of (6.9) is equal to

∨
j∈an(i)\anU

nmw(i)

∨
k∈De(j)∩an(i)∩U

bjkbki

bkk

Zj

∨
∨

j∈anU
nmw(i)

( ∨
k∈De(j)∩an(i)∩U

bjkbki

bkk

∨ bji

)
Zj ∨ biiZi .

Noting that i ∈ Uc when using (6.8) and (6.7) yields∨
j∈an(i)\anU

nmw(i)

bjiZj ∨
∨

j∈anU
nmw(i)

bjiZj ∨ biiZi =
∨

j∈An(i)

bjiZj = Xi.

In order to verify that for i ∈ Uc (6.9) is the representation of Xi with the minimum number of
components of XU and the minimum number of noise variables, we prove that each term on the
right-hand side of (6.9) has to appear, since otherwise some noise variable Zj in representation
(2.1) of Xi would have a weight strictly less than bji . We compare the noise variables on the
right-hand sides of (6.9) and (6.10). Since biiZi does not appear in (6.10), it has to appear in (6.9).
For j ∈ anU

nmw(i) it follows from (6.7) that if Zj appears in (6.10), then with a coefficient strictly
less than bji . The maximum over AnU

nmw(i) must therefore appear in (6.9). Definition 6.2(a)
implies that no max-weighted path from j ∈ AnU

low(i) to i passes through some node in de(j) ∩
an(i) ∩ U . Thus observe from (6.10) and (3.2) that only the term

bji

bjj
Xj provides Zj with the

weight bji in (6.9) and the term
bji

bjj
Xj has to appear in (6.9). �

We use Theorem 6.7 to obtain for every component Xi of X a minimal representation in terms
of the components of Xpa(i) and noise variables.

Corollary 6.8. Let DB be the minimum ML DAG of X as in Definition 5.1 with parents paB(i)

of node i in DB . Then for all i ∈ V we have Anpa(i)
low (i) = paB(i) and

Xi =
∨

k∈paB(i)

bki

bkk

Xk ∨ biiZi =
∨

k∈paB(i)

ckiXk ∨ ciiZi . (6.11)
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Proof. Recall from (5.1) that

paB(i) =
{
k ∈ pa(i) : bki >

∨
l de(k)∩pa(i)

bklbli

bll

}
,

and observe from this and (6.3) that Anpa(i)
low (i) = paB(i). Since every path from j ∈ an(i) to i

passes through some node in pa(i), there is always a max-weighted path from j to i containing
some node of pa(i). Hence, Anpa(i)

nmw(i) = (anpa(i)
nmw(i)∪ {i})∩ (pa(i))c = {i}. Thus, we obtain from

(6.9) the first equality in (6.11). For the second, recall from Theorem 5.4(a) that bii = cii and
bki

bkk
= cki for k ∈ paB(i). �

Remark 6.9. Representation (6.11) complements Theorem 5.4(a); we find again that the mini-
mum ML DAG DB yields the minimal representation of X as a recursive ML model.

The following example illustrates and discusses representation (6.9).

Example 6.10 (Continuation of Examples 2.1, 3.8, 6.1, and 6.4: minimal representation of
X4 by X1, X2 and X2). We consider again U = {1,2} and i = 4. Obviously, there are max-
weighted paths from 1 and 2 to 4 passing through some node in U = {1,2}. Hence, 1,2 ∈ an(4)\
anU

nmw(4). Since no max-weighted path from 3 to 4 passes through 1 or 2, we have AnU
nmw(4) =

(anU
nmw(4) ∪ {4}) ∩ Uc = {3,4}. In Example 6.4, we have already determined the set AnU

low(4)

depending on the ML coefficients. Thus, we distinguish again between two cases:

(1) If b14 = b12b24
b22

, then X4 = b24
b22

X2 ∨ b34Z3 ∨ b44Z4.
We want to remark that the conditional independence properties of X are reflected in this

representation: from Example 3.8 we know that X1 ⊥⊥ X4 | X2, if the path [1 → 2 → 3] is max-
weighted, which is the case here. So it is obvious that X1 does not need to appear in the minimal
representation of X4 as max-linear function of X1 and X2.

(2) If b14 > b12b24
b22

, then X4 = b14
b11

X1 ∨ b24
b22

X2 ∨ b34Z3 ∨ b44Z4.

In particular, b14
b11

X1 > b24
b22

X2 is possible with positive probability; in (1) this is not possible
(see Example 6.1).

For U = {2} and i = 4 we have AnU
low(4) = {2}. Similarly as above we obtain that 2 ∈ an(4) \

anU
nmw(4) and 3,4 ∈ AnU

nmw(4). It remains to discuss node 1, which gives rise to the same two
cases as above:

(1) If the path [1 → 2 → 4] is max-weighted, then X4 = b24
b22

X2 ∨ b34Z3 ∨ b44Z4.

(2) If the path [1 → 2 → 4] is not max-weighted, then X4 = b24
b22

X2 ∨b14Z1 ∨b34Z3 ∨b44Z4.

Such minimal representations become relevant, when X is partially observed. If, for example, X2

is observed and B is known, then the prediction problem of X4 can be solved by (conditional)
simulation of the relevant noise variables and direct computation of X4. In case (1) we need to
simulate independent Z3, Z4, whereas in case (2) additionally Z1 has to be simulated conditioned
on X2. We will discuss such prediction problems in a subsequent paper.
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Appendix A: An auxiliary lemma

Lemma A.1. Let D = (V ,E) be a DAG and U ⊆ V . For non-negative functions a(i, j, k),
i, j, k ∈ V , we have for all i ∈ V ,∨

k∈pa(i)

∨
j∈an(k)

a(i, j, k) =
∨

j∈an(i)

∨
k∈de(j)∩pa(i)

a(i, j, k), (A.1)

∨
k∈an(i)∩U

∨
j∈An(k)

a(i, j, k) =
∨

j∈an(i)

∨
k∈De(j)∩an(i)∩U

a(i, j, k). (A.2)

Proof. Since we take maxima, we only have to prove that each combination of nodes (k, j) on
the left-hand side appears also on the right-hand side and vice versa. In order to prove (A.1), it
suffices to show that

k ∈ pa(i) and j ∈ an(k) if and only if j ∈ an(i) and k ∈ de(j) ∩ pa(i).

By observing that an(pa(i)) ⊆ an(i) and j ∈ an(k) if and only if k ∈ de(j) this equivalence is
obvious. Equation (A.2) is proved in the same way. �
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