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�God exists since mathematics is consistent, and

the Devil exists since we cannot prove it.�

(André Weil)1

1[GCG98, p. 251]





Abstract

We characterize speci�c classes of orthogonal polynomials in terms of properties which come
from (or are related to) harmonic and functional analysis such as cohomology. We consider
polynomial hypergroups, which are commutative and come along with a sophisticated harmonic
analysis, and, in the �rst part of the thesis, give a su�cient criterion and a necessary criterion for
their `1-algebras to be weakly amenable. These criteria will be based on growth and smoothness
conditions, asymptotics, shift operators and various further ingredients such as the Plancherel
isomorphism and the fundamental lemma of the calculus of variations. Moreover, we extensively
study point amenability (i.e., the nonexistence of nonzero bounded point derivations w.r.t.
symmetric characters) w.r.t. such `1-algebras. Both of these amenability notions have been
known to correspond to certain problems concerning the derivatives of the underlying orthogonal
polynomials�and to be surprisingly rarely satis�ed; the latter contrasts with L1-algebras of
locally compact groups.

Considering suitable ultraspherical polynomials, we show that there exist polynomial hy-
pergroups whose `1-algebra is weakly amenable but fails to be (right character) amenable,
which solves a problem that has been open for some years. In the second part of the thesis,
we completely characterize point and weak amenability for the classes of Jacobi, symmetric
Pollaczek and associated ultraspherical polynomials (and for two further classes) by identifying
the corresponding parameter regions. Besides our general criteria, each of these classes
requires speci�c analytical techniques: the characterization concerning the Jacobi polyno-
mials makes use of their asymptotics, the Fourier expansions of their derivatives, suitable
approximations and inheritance via homomorphisms. The result for symmetric Pollaczek
polynomials relies on a transformation into a system whose derivatives are more accessible
concerning asymptotic behavior. Our solution for the associated ultraspherical polynomials will
bene�t from a fruitful interplay between hypergeometric and absolutely continuous Fourier series.

The third part of the thesis deals with symmetric, suitably normalized orthogonal polynomial
sequences (Pn(x))n∈N0 within which we characterize the class of ultraspherical polynomials in
terms of certain constancy properties of the Fourier coe�cients belonging to (P ′2n−1(x))n∈N.
Such characterizations may be motivated by amenability considerations, and our result improves
previous work of Lasser�Obermaier in terms of the whole sequence (P ′n(x))n∈N; in fact, we
shall uncover some redundancy. We obtain similar characterizations for the discrete and�more
involved�continuous q-ultraspherical polynomials via (Dq−1P2n−1(x))n∈N and (DqP2n−1(x))n∈N,
respectively, where Dq denotes the q-di�erence operator and Dq denotes the Askey�Wilson
operator; these characterizations sharpen earlier results of Ismail�Obermaier. Finally, we
characterize a large subclass of the continuous q-ultraspherical polynomials via the averag-
ing operator Aq and explicitly show that this characterization does not extend to the whole class.

Besides these main results, the thesis contains several elaborated motivating examples and addi-
tional discussions, recalls important basics, provides background information, and, �nally, brie�y
explains two possible projects w.r.t. postdoctoral research (Outlook).
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Zusammenfassung

Wir charakterisieren spezi�sche Klassen orthogonaler Polynome über Eigenschaften, welche
aus der harmonischen Analysis und Funktionalanalysis wie der Kohomologie kommen (oder
Verwandtschaft dazu aufweisen). Wir betrachten polynomiale Hypergruppen � diese sind
kommutativ und gehen mit einer eleganten harmonischen Analysis einher � und präsentieren
im ersten Teil der Arbeit ein hinreichendes Kriterium sowie ein notwendiges Kriterium dafür,
dass ihre `1-Algebren schwach mittelbar sind. Diese Kriterien gründen auf Wachstums- und
Glattheitsbedingungen, asymptotischem Verhalten, Shift-Operatoren und diversen weiteren
Bestandteilen wie dem Plancherel-Isomorphismus und dem Fundamentallemma der Variation-
srechnung. Des Weiteren untersuchen wir ausgiebig Punktmittelbarkeit (d.h. die Nichtexistenz
nicht-verschwindender beschränkter Punktderivationen bzgl. symmetrischer Charaktere) bzgl.
solcher `1-Algebren. Von beiden dieser Mittelbarkeitsbegri�e war bereits bekannt, dass sie
gewissen Problemstellungen entsprechen, die die Ableitungen der zugrunde liegenden orthog-
onalen Polynome betre�en, sowie dass sie überraschend selten erfüllt sind; letzteres steht im
Kontrast zu L1-Algebren lokalkompakter Gruppen.

Indem wir geeignete ultrasphärische Polynome betrachten, zeigen wir, dass es polynomiale Hy-
pergruppen gibt, deren `1-Algebra schwach mittelbar, jedoch nicht (rechts-Charakter-) mittelbar
ist � was ein Problem löst, dass für einige Jahre o�en gewesen ist. Im zweiten Teil der Arbeit
charakterisieren wir Punktmittelbarkeit und schwache Mittelbarkeit vollständig für die Klassen
der Jacobi-, symmetrischen Pollaczek- und assoziierten ultrasphärischen Polynome (sowie für
zwei weitere Klassen), indem wir die zugehörigen Parameterregionen identi�zieren. Neben
unseren allgemeinen Kriterien benötigt jede dieser Klassen spezi�sche analytische Techniken:
Die die Jacobi-Polynome betre�ende Charakterisierung benutzt deren asymptotisches Verhalten,
die Fourier-Entwicklungen ihrer Ableitungen, geeignete Approximationen sowie Vererbung über
Homomorphismen. Das Resultat für die symmetrischen Pollaczek-Polynome stützt sich auf
eine Transformation in ein System, dessen Ableitungen zugänglicher bzgl. asymptotischen
Verhaltens sind. Unsere Lösung für die assoziierten ultrasphärischen Polynome pro�tiert von
einem fruchtbaren Zusammenspiel zwischen hypergeometrischen Reihen und absolut stetigen
Fourierreihen.

Der dritte Teil der Arbeit befasst sich mit symmetrischen, geeignet normalisierten Folgen
orthogonaler Polynome (Pn(x))n∈N0 , innerhalb derer wir die Klasse der ultrasphärischen Poly-
nome über gewisse Konstantheitseigenschaften der Fourierkoe�zienten, die zu (P ′2n−1(x))n∈N
gehören, charakterisieren. Solche Charakterisierungen können über Mittelbarkeitsbetrachtungen
motiviert werden. Unser Resultat verbessert ein früheres von Lasser�Obermaier, welches die
gesamte Folge (P ′n(x))n∈N in Betracht zog und bzgl. dessen wir eine Redundanz erkennen
werden. Wir erhalten ähnliche Charakterisierungen für die diskreten und � was komplizierter ist
� kontinuierlichen q-ultrasphärischen Polynome über (Dq−1P2n−1(x))n∈N bzw. (DqP2n−1(x))n∈N,
wobei Dq den q-Di�erenzenoperator und Dq den Askey�Wilson-Operator bezeichnet; diese
Charakterisierungen verschärfen frühere Resultate von Ismail�Obermaier. Schlussendlich
charakterisieren wir eine groÿe Teilklasse der kontinuierlichen q-ultrasphärischen Polynome
über den Averaging-Operator Aq und zeigen explizit, dass diese Charakterisierung nicht für die
gesamte Klasse gilt.

Neben diesen Hauptresultaten enthält die Arbeit mehrere ausgearbeitete motivierende Beispiele
und zusätzliche Diskussionen, wiederholt wichtige Grundlagen, stellt Hintergrundinformationen
zur Verfügung und erklärt abschlieÿend kurz zwei mögliche Projekte mit Blick auf Postdoktoran-
denforschung (Outlook).
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Preface and acknowledgments

This work is located at a crossing point between the branches of functional, harmonic and Fourier
analysis on the one hand, and the theory of orthogonal polynomials and special functions on
the other hand. The focus of our research can be divided into three parts, contained in three
corresponding main sections:

� Part I: general results on weak amenability�and on the nonexistence of nonzero bounded
point derivations w.r.t. symmetric characters�concerning `1-algebras of polynomial hy-
pergroups (on N0); weak amenability for `1-algebras corresponding to ultraspherical poly-
nomials, and the solution to the (previously open) problem whether it is possible that a
weakly amenable `1-algebra of a polynomial hypergroup fails to be amenable. See Section 2
and [Kah15].

� Part II: weak amenability�and the nonexistence of nonzero bounded point derivations�
for `1-algebras corresponding to important one-parameter generalizations of the ultraspher-
ical polynomials (Jacobi, symmetric Pollaczek, associated ultraspherical). See Section 3
and [Kah15].

� Part III: new characterizations of ultraspherical, discrete q-ultraspherical and continuous
q-ultraspherical polynomials in terms of the derivative, the q-di�erence operator Dq and
the Askey�Wilson operator Dq, respectively; new characterization of certain continuous
q-ultraspherical polynomials in terms of the averaging operator Aq�and the proof that
the latter characterization does not hold for the whole class of continuous q-ultraspherical
polynomials. See Section 4 and [Kah16].

The main (and most of the further) results of this thesis can be found in the papers
[Kah15, Kah16]; however, the thesis contains also a few results which are not contained in the
papers. For instance, the notes at the end of Section 4.4 are a sharpening of the corresponding
parts in [Kah16]. Furthermore, in Section 3 we now also consider the notions of α-amenability
(or, closely related, ϕ-amenability) and right character amenability (without exception, the
corresponding situations w.r.t. amenability itself are easier to see and have been known before).
Concerning an important step in the proof of Theorem 3.2 (which is also [Kah15, Theorem 4.1]),
we present a faster yet less elementary variant, see Remark 3.1.

The thesis contains several detailed �motivating examples�: Section 2.1 reconsiders weak
amenability for the �minimal� (but nevertheless interesting) example of the Chebyshev poly-
nomials of the �rst kind and discusses arising problems, which motivates our su�ciency
criterion Theorem 2.1 [Kah15, Theorem 2.3]. Via an estimation using Dougall's formula, the
asymptotic behavior of the gamma function, the power mean inequality and the Riemann
zeta function, Section 2.5 applies this su�ciency criterion to the ultraspherical polynomials
corresponding to the parameter region properly between the Chebyshev polynomials of the
�rst kind and the Legendre polynomials. On the one hand, this provides �rst examples of
polynomial hypergroups whose `1-algebra is weakly amenable but fails to be amenable. In
fact, we will even obtain simultaneous failure of right character amenability. On the other
hand, Section 2.5 motivates the considerably more involved approach for Theorem 3.1 [Kah15,
Theorem 3.1] on general Jacobi polynomials. Section 3.1 applies our necessary criterion for
weak amenability, Theorem 2.2 [Kah15, Theorem 2.2], to the �non-ultraspherical� subclass of
the symmetric Pollaczek polynomials in a rather elementary way (via Euler's in�nite product
formula for the complex gamma function, elementary approximation and Stirling's formula).
This result is then improved in Theorem 3.2 towards establishing even the existence of a nonzero
bounded point derivation. Furthermore, it motivates the similar yet no longer elementary
study of the associated ultraspherical polynomials leading to Theorem 3.3 [Kah15, Theorem 5.1].
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With few exceptions, what cannot be found in the main sections of this thesis are the detailed
proofs. Concerning the latter, we explicitly refer to our papers�in which the details are given.
Our motivation for writing Section 2, Section 3 and Section 4 was a twofold one: on the one
hand, the purpose is to provide a thorough overview, including elaborated motivations for our
results (and for our research at all), some background and also some additional information�all
of this in a more extensive way than this would have been possible in the paper versions. On
the other hand, the purpose is to achieve a concise presentation which is limited to outlines
or sketches of those proofs that can be found in the papers [Kah15] and [Kah16] (which are
included in this publication-based dissertation).

The introductory Section 1 starts with the Banach�Tarski paradox and Tarski's theorem as
historical motivation for amenability considerations and recalls some of the most important
amenability notions for groups, hypergroups and�most important for our purposes�Banach
algebras: we particularly recall the notions of amenability (Johnson), weak amenability (Bade�
Curtis�Dales and Johnson), right character amenability (Kaniuth�Lau�Pym and Monfared)
and point amenability (nonexistence of nonzero bounded point derivations w.r.t. symmetric
characters, regarded as a global property). We also recall the most important facts about
(polynomial) hypergroups and their basic harmonic analysis. Very roughly speaking, the main
di�erence between a group and the more general notion of a hypergroup is that the convolution
of two Dirac measures need no longer be a Dirac measure again but still a (more general)
probability measure in the latter case; the algebraic group operations are generalized to the
hypergroup convolution and involution, which are required to satisfy certain compatibility
and non-degeneracy properties. Polynomial hypergroups on N0 were introduced by Lasser in
the 1980s, have a sophisticated harmonic analysis and provide a very rich example class. For
the L1-algebra of a locally compact group G, amenability and right character amenability are
known to correspond to the amenability of G (where Johnson's characterization �G amenable
⇔ L1(G) amenable� can be regarded as basic motivation to consider amenability notions for
Banach algebras), whereas weak amenability and point amenability are always satis�ed. For
the `1-algebra of a polynomial hypergroup, however, the situation is very di�erent: although
each polynomial hypergroup is known to be amenable in the hypergroup sense, even point
amenability of the `1-algebra, which is the weakest of the four abovementioned properties for
Banach algebras, is often not satis�ed. Furthermore, the individual behavior strongly depends
on the inducing sequence (Pn(x))n∈N0 of orthogonal polynomials (or on the orthogonalization
measure µ) and can quickly lead to major challenges in the theory of orthogonal polynomials
and special functions. A very convenient criterion of Lasser (2007) states that the `1-algebra
of a polynomial hypergroup necessarily fails to be amenable whenever the Haar weights tend
to in�nity. This allows to rule out amenability for most of the naturally occurring exam-
ples. Also for right character and point amenability convenient criteria have been available;
concerning point amenability, there is a criterion of Lasser (2009) which relates the existence
of nonzero bounded point derivations to the derivatives of the underlying orthogonal polynomials.

For weak amenability, however the situation has been much worse: even for ultraspherical
polynomials (P

(α)
n (x))n∈N0 , which for α ≥ −1

2 form the surely most prominent example class
for polynomial hypergroups, the situation has been open for the parameter region properly
between the Chebyshev polynomials of the �rst kind and the Legendre polynomials (i.e., for
α ∈

(
−1

2 , 0
)
; as already mentioned above, we will give the solution in Section 2.5). Moreover,

there has not been a convenient criterion for weak amenability. A characterization of Lasser
(2007) in terms of the Fourier coe�cients2 of the (inducing polynomials') derivatives, which
will be precisely recalled in Section 1.4, has su�ered from several general barriers (such as the
requirement of deep�and frequently not explicitly available�knowledge about the inducing

2`Fourier coe�cients' means coe�cients in expansions w.r.t. the basis
{

1∫
RP

2
n(x) dµ(x)

Pn(x) : n ∈ N0

}
.
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orthogonal polynomials, and the requirement to deal with the whole space `∞, despite the fact
that many of the powerful tools of harmonic analysis are restricted to proper subspaces). It
has also su�ered from a lack of applicability: to our knowledge, its su�cient direction has been
successfully applied only to examples where also the stronger notion of amenability holds (e.g.,
to the Chebyshev polynomials of the �rst kind), and its necessary direction has been successfully
applied only to examples where the structure of the underlying orthogonal polynomials is very
speci�c and allows for explicit computations (e.g., to the ultraspherical polynomials for α ≥ 0)
or where one might also argue via point derivations instead (e.g., ultraspherical polynomials for
α ≥ 1

2). The two main results of Section 2 are our su�ciency criterion and our necessary criterion
mentioned above, which are both based on Lasser's characterization but overcome the described
problems in a satisfying way: the su�cient criterion Theorem 2.1 relies on limiting behavior
of orthogonal polynomials, growth conditions, the Plancherel isomorphism and several further
ingredients such as the fundamental lemma of the calculus of variations, and its combination
with inheritance via homomorphisms will turn out to be strong enough to establish weak
amenability whenever this property occurs in the whole classes of Jacobi, symmetric Pollaczek
and associated ultraspherical polynomials. The necessary criterion Theorem 2.2 relies on shift
operators and shows that the `1-algebra cannot be weakly amenable if the orthogonalization
measure does not behave su�ciently �badly�. It will essentially contribute to ruling out weak
amenability when this property fails in the three just mentioned classes. Section 2 provides also
helpful results concerning point amenability of `1-algebras of polynomial hypergroups.

Theorem 3.1, Theorem 3.2 and Theorem 3.3 are the main results of Section 3. They provide
the following characterizations, which are full descriptions of point and weak amenability for the
classes of Jacobi, symmetric Pollaczek and associated ultraspherical polynomials:

� The `1-algebra induced by the Jacobi polynomials (R
(α,β)
n (x))n∈N0 is point amenable if and

only if α < 1
2 , and weakly amenable if and only if α < 0.

� The `1-algebra induced by the symmetric Pollaczek polynomials (Q
(α,λ)
n (x))n∈N0 is point

amenable if and only if α < 1
2 and λ = 0, and weakly amenable if and only if α < 0 and

λ = 0.

� The `1-algebra induced by the associated ultraspherical polynomials (A
(α,ν)
n (x))n∈N0 is

point amenable if and only if α < 1
2 , and weakly amenable if and only if α < 0 and ν = 0.

Concerning the general regions from which the parameters are taken such that a polynomial
hypergroup is induced, and concerning earlier partial results, we refer to Section 3. Besides
applications of general results of Section 2, establishing these characterizations requires speci�c
analytical techniques for each of the three classes. The Jacobi polynomials are tackled via the
Chu�Vandermonde and the Pfa��Saalschütz identity, the Stolz�Cesàro theorem, a technical
induction argument and inheritance via homomorphisms, and via their asymptotics. In contrast
to the purely ultraspherical case considered in Section 2.5, explicit computations seem to be
rather impracticable at some stages�and it will be one of our tasks to avoid them as far as
possible. Our proof concerning point amenability for the symmetric Pollaczek polynomials is
essentially based on a transformation into a system with easier asymptotic behavior, and on
a subsequent estimation of the derivatives at 0. While, for instance, the Jacobi polynomials
can be represented as a terminating 2F1 hypergeometric series in a rather convenient way,
such estimations are much more involved for the symmetric Pollaczek polynomials (for which
expedient explicit computations seem to be out of reach�for instance, in the hypergeometric
representation of the symmetric Pollaczek polynomials, x occurs both in the argument and
in a parameter). Our result on the associated ultraspherical polynomials is based on Euler's
transformation for hypergeometric functions, on the location of the zeros of hypergeometric
functions, on Pringsheim's theorem and on an own result concerning absolute continuity of
Fourier series (which might be of interest of its own). Another important generalization of
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the ultraspherical polynomials, namely the class of continuous q-ultraspherical (or Rogers)
polynomials, has already been known to contain no example such that `1(h) is at least point
amenable. Finally, in Section 3.5 we study two further classes (random walk polynomials and
cosh-polynomials). We note at this stage that two auxiliary results, namely Lemma 2.4 (i) and
Lemma 3.1, can also be found in the author's Master's thesis [Kah12] (the latter with a di�erent
proof, however).

Theorem 3.1, Theorem 3.2 and Theorem 3.3 can also be seen as characterizations of certain
(subclasses of classes of) orthogonal polynomials. Characterizing speci�c orthogonal polyno-
mials has a long history. Section 4 is devoted to another type of such characterizations: as
already mentioned above, the Fourier coe�cients of the derivatives of the underlying orthogonal
polynomials play a crucial role with regard to weak amenability of `1-algebras of polynomial
hypergroups. The simpli�cation of the proof of Theorem 3.1 when restricting oneself to the
purely ultraspherical subcase (as presented in the motivating Section 2.5) is partially reasoned
in the very simple form these Fourier coe�cients take for the ultraspherical polynomials; a more
detailed discussion is given in Section 4.1. In fact, this simple form, a striking constancy prop-
erty, characterizes the ultraspherical polynomials: in 2008, Lasser and Obermaier found that
for a sequence (Pn(x))n∈N0 of symmetric random walk polynomials3 with normalization point
A > 0 (i.e., Pn(A) = 1 (n ∈ N0)) and orthogonalization measure µ the following are equivalent:

(i) Pn(x) = P
(α)
n (x) (n ∈ N0) for some α > −1, (ii) A = 1 and P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N).

Here, (P ∗n(x))n∈N0 is the random walk polynomial sequence w.r.t. the normalization point A
and the measure dµ∗(x) := (A2 − x2) dµ(x) (which is well-de�ned because supp µ ⊆ [−A,A] for
symmetric random walk polynomial sequences). The condition P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N)
is a concise reformulation of the aforementioned constancy property of the Fourier coe�cients.

This result by Lasser and Obermaier has experienced improvements in two directions: on the one
hand, in 2011 Ismail and Obermaier found analogues for the classes of discrete and continuous
q-ultraspherical polynomials (later, Ismail and Simeonov obtained also extensions to symmetric
Al-Salam�Chihara, symmetric Askey�Wilson and symmetric Meixner�Pollaczek polynomials,
and the author's Master's thesis [Kah12] contains suitable extensions to the classes of Jacobi
and generalized Chebyshev polynomials); the characterization of the discrete q-ultraspherical
polynomials (Pn(x;α : q))n∈N0 uses the q-di�erence operator Dq (more precisely, Dq−1), and
the characterization of the continuous q-ultraspherical polynomials (Pn(x;β|q))n∈N0 is in terms
of another q-generalization of the classical derivative, namely in terms of the Askey�Wilson

operator Dq (q ∈ (0, 1); α, β ∈
(

0, 1√
q

)
). On the other hand, we have shown in our Master's

thesis [Kah12] that the Lasser�Obermaier characterization remains valid if (ii) is replaced by
the apparently weaker condition �A = 1 and P ′2n−1(x) = P ′2n−1(1)P ∗2n−2(x) (n ∈ N)�. In fact, it
su�ces to require a constancy property as described above only for odd indices and only at some
carefully chosen points. In contrast to the original Lasser�Obermaier result, this sharpening
does no longer follow from older, more �classical� results of Hahn and Al-Salam�Chihara.

Theorem 4.4 [Kah16, Theorem 2.1] is a modi�cation of the just mentioned result of our Master's
thesis [Kah12]: Theorem 4.4 is no longer restricted to random walk polynomials but considers
more general (symmetric) orthogonal polynomial sequences (Pn(x))n∈N0 . Since this more general
setting does no longer contain a condition which a priori enforces that supp µ ⊆ [−A,A] (or the
boundedness of supp µ, or at least the uniqueness of µ, at all), it also requires a more general
interpretation of the sequence (P ∗n(x))n∈N0 . Since this improvement does not a�ect the actual
proof, however, we shall mainly focus on the classes of discrete and continuous q-ultraspherical
polynomials in Section 4: the main purpose is to sharpen the Ismail�Obermaier results on the

3In this thesis, the expression �random walk polynomials� will be used with two di�erent meanings: the current
meaning, which corresponds to that in Section 4, di�ers from the meaning in Section 3.
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discrete and continuous q-ultraspherical polynomials in the same way as we have been able
to sharpen the Lasser�Obermaier result on purely ultraspherical polynomials in our Master's
thesis [Kah12] and in Theorem 4.4; such a project (as part of the author's dissertation) was
announced in the outlook of [Kah12]. In this context, the two main results are Theorem 4.5
[Kah16, Theorem 2.2] and Theorem 4.6 [Kah16, Theorem 2.3].

While Theorem 4.5 (discrete q-ultraspherical polynomials) can be established via an induction
argument that resembles the proof of Theorem 4.4 (ultraspherical polynomials), Theorem 4.6
(i.e., the analogous characterization of the continuous q-ultraspherical polynomials) requires
additional and more sophisticated strategies. The actual reason for the more technical and
involved argument is that while the product formula for the q-di�erence operator basically
resembles that of the classical derivative, the product formula for the Askey�Wilson operator
essentially relies on an additional operator Aq, an averaging operator. This leads to the problem
that one has to simultaneously tackle (determinacy problems concerning) the additional Fourier
coe�cients w.r.t. this averaging operator. An important idea to overcome this problem is to
consider the functions n 7→ Aq[xPn(x)] and determinacy of corresponding Fourier coe�cients.
Moreover, our proof will rely on a detailed study and some kind of �simultaneous involvement�
of the continuous q-ultraspherical polynomials themselves; the latter yields a conclusion which
avoids further tedious calculations and considerably shortens the argument.

The fourth main result of Section 4, Theorem 4.7 [Kah16, Theorem 2.4], is a characterization of
the continuous q-ultraspherical polynomials with β ≤ 1 in terms of the averaging operator Aq.
Provided q ∈ (0, 1), β ∈ (0, 1], Pn

(√
β

2 + 1
2
√
β

)
= 1 (n ∈ N0) and P2(0) = −β 1−q

1−β2q
, it yields the

equivalence of the following two properties:

(i) Pn(x) = Pn(x;β|q) (n ∈ N0),

(ii) the quotient
∫
RAqPn+1(x)Pn−1(x) dµ(x)∫
RDqPn+1(x)Pn(x) dµ(x)

is independent of n ∈ N.

Again, this will be shown via an induction argument. The second part of Theorem 4.7 states
that this characterization does not hold for the whole class of continuous q-ultraspherical
polynomials; more precisely, the characterization becomes wrong if the condition �β ∈ (0, 1]�

is replaced by the weaker condition �β ∈
(

0, 1√
q

)
� (which worked in Theorem 4.6). We will

establish an explicit counterexample based on the sequence
(
Pn
(
x; 5

4

∣∣1
2

))
n∈N0

.

The thesis concludes with a short outlook on possible future research, with a collection of
important symbols, with the appendix�which, besides the papers [Kah15, Kah16] with the
detailed proofs, the Springer �Copyright Transfer Statement� and the AMS �Consent to Publish�,
includes summaries of the papers�and, �nally, with the references. The BibTeX code of most
of the references was taken from the AMS website (MathSciNet), often with slight adjustments.

Apart from pointing out relations to own works, we deliberately refrain from giving references
in a preface; however, the precise references will be given in the later parts of this thesis.

In the course of our research, we have frequently used mathematical software (Maple)�to get
ideas and conjectures, observe possible simpli�cations, identify possible asymptotic and limiting
or growth behavior, get an idea of numerical values, �check� calculations, plot graphs and so on.
Since we think that it is reasonable and standard in modern mathematics to use such valuable
auxiliary tools for the described purposes, we will refrain from pointing out the single usages
in this thesis. However, we want to emphasize that such mathematical software is not needed
to understand the �nal proofs. The thesis, including our papers [Kah15, Kah16], can be read
without any computer usage; in particular, long calculations have been simpli�ed so far that
they do not require a computer algebra system and can be made by hand (in reasonable time).
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1. From the Banach�Tarski paradox to amenability notions for
hypergroups and orthogonal polynomials

Parts of Section 1 are very similar to our publication [Kah15].

1.1. Historical motivation

In 1924, Banach and Tarski found a result which has become famous far beyond the mathe-
matical community: a ball in R3 can be split into a �nite number of pieces in such a way that
these pieces can be reassembled into two balls of the original size; more generally, given any two
bounded sets A,B ⊆ R3 with nonempty interior, it is possible to split A into �nitely many pieces
and rearrange them to a partition of B, using nothing but rigid motions. In his foreword to
[Wag93], Mycielski calls this `Banach�Tarski paradox' the �most surprising result of theoretical
mathematics� [Wag93, p. xi]. Without any doubt, it is indeed counterintuitive from a physical
point of view, more precisely: it strikingly shows that a mathematical result, in particular a
highly nonconstructive one (in 1964, Solovay showed that the Banach�Tarski paradox is not
contained in ZF or at least in ZF + DC, i.e., ZF + the `axiom of dependent choice', cf. [Wag93,
Chapter 13]), may be far away from being compatible with �everyday experience�, and only of
narrow signi�cance concerning physical theories. From a purely mathematical point of view,
the (very subjective) question whether one �nds the Banach�Tarski paradox surprising or not
may be related to the personal attitude towards the axiom of choice (which, due to Gödel and
Cohen, is logically independent of ZF): the constructivist might argue that a counterintuitive,
or even �unnatural�, axiom should not be expected to produce intuitive theorems, whereas
the formalist, or the �pragmatic� analyst who bene�ts from the Hahn�Banach theorem, from
Alaoglu's theorem and from many other results and concepts which would not be available in
ZF, has to (and will) approve that his kind of mathematics intrinsically enforces phenomena
like the Banach�Tarski paradox (and, in particular, sets which are not Lebesgue-measurable).
Across all factions, however, it should be quite unexpected that�despite the generalizations
to n dimensions, n ≥ 4, are valid [Wag93, Chapter 5]�the Banach�Tarski paradox has no
analogue in R or R2; this is a consequence of Banach's theorem (1923) which shows that the
Lebesgue-measures on R and R2 extend to isometry-invariant �nitely additive measures on
P(R) and P(R2), respectively [Wag93, Corollary 10.9].

The proof of the Banach�Tarski paradox is easier than one might expect; a very readable version,
which does not necessarily require to deal with the extensive background theory, can be found
in the �rst three chapters of [Wag93]. A very helpful tool is the concept of `paradoxical sets' and
`paradoxical groups':

De�nition. Let X be a set, and let G be a group that acts on X. Then a subset E of X is
called `G-paradoxical' if there exist a partition {A1, . . . , Am, B1, . . . , Bn}, m,n ∈ N, of E and
a1, . . . , am, b1, . . . , bn ∈ G such that as well {a1(A1), . . . , am(Am)} as {b1(B1), . . . , bn(Bn)} is a
partition of E. G itself is called `paradoxical' if G is G-paradoxical w.r.t. the left translations.

With this de�nition, the Banach�Tarski paradox�from now on, we refer to the three-dimensional
�standard form� (two balls out of one), and not to the �strong form� (arbitrary bounded sets with
nonempty interior)�reads as follows: every ball in R3 is G3-paradoxical, where G3 denotes the
isometry group of R3. The central part of the proof given in [Wag93] is the following ingredient
[Wag93, Proposition 1.10]:

Proposition 1.1. Let X be a set, and let G be a paradoxical group that acts freely (i.e., without
nontrivial �xed points) on X. Then X is G-paradoxical.

In the proof of Proposition 1.1, the axiom of choice is needed to obtain a partition {g(N) : g ∈ G}
of X, where N ⊆ X and the G-orbits in X intersect at single points; such a�highly
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nonconstructive��coordinate system�, consisting of the orbits on the one hand and the images
of N under the group action on the other hand, allows to transfer a �paradoxical decomposition�
of G to a paradoxical decomposition of X. Based on Proposition 1.1, in [Wag93] the remaining
proof of the Banach�Tarski paradox is done via a speci�c paradoxical subgroup of SO(3) (a free
group of rank 2; partially going back to von Neumann), via the resulting `Hausdor� paradox' for
spheres, via an argument which goes back to Sierpi«ski and makes it possible to handle group
actions with at last countably many �xed points and, �nally, via the transition from spheres
to balls (and the Banach�Schröder�Bernstein theorem if one is interested in the strong form).
Roughly speaking, the overall approach is to obtain a rather explicit decomposition w.r.t. highly
non-explicit �coordinates� provided by the axiom of choice.

Being older than 90 years now, the Banach�Tarski paradox has experienced many (deep)
improvements. In 1991, Pawlikowski proved that the Banach�Tarski paradox is already implied
by the Hahn�Banach theorem [Paw91], which is well-known to be weaker than the axiom of
choice (and which is also weaker than Alaoglu's theorem [Lux62, Lux69, Pin72]�Alaoglu's
theorem is known to be still weaker than the axiom of choice [HL71, Lux69]; cf. also [Edw75]).
Much earlier results concern minimizing the number of necessary pieces in the decomposition
(in 1947, Robinson showed that �ve pieces are enough yet also necessary, cf. [Wag93, Chapter
4]) and in�nite versions (even getting a continuum of spheres from one, Sierpi«ski 1945, cf.
[Wag93, Chapter 6]). In 1994, Dougherty and Foreman gave a decomposition using pieces
which have the property of Baire (solution to Marczewski's problem) [DF94]. In 2005, Wilson
established a continuous movement version (solution to de Groot's problem) [Wil05]. Moreover,
the lack of analogues in one or two dimensions suggested another eye-catching question which
became known as Tarski's circle-squaring problem and was answered positively by Laczkovich
in 1990: it is possible to cut a disc into �nitely many pieces and rearrange them to a square
(of necessarily the same area) [Lac90]. Laczkovich's proof uses the axiom of choice and about
1050 pieces, and it shows that the rearrangement can even be done by using only translations;
again there is a recent continuous movement version [Wil05]. Related results are the�much
older�von Neumann paradoxes for the plane and line, see [Wag93, Chapter 7].

More important for our purposes, however, is Tarski's theorem: In the light of the Banach�
Tarski paradox and Banach's theorem, it is an interesting question how the (non)existence of
paradoxical decompositions is related to the existence of �nitely additive measures. The answer
was given by Tarski in 1938 [Wag93, Corollary 9.2]:

Theorem 1.1 (Tarski's theorem). Let X be a set, let G be a group that acts on X, and let E
be a subset of X. The following are equivalent:

(i) E is not G-paradoxical,

(ii) there exists a G-invariant �nitely additive measure ν : P(X)→ [0,∞] with ν(E) = 1.

Of course, the nontrivial direction is �(i) ⇒ (ii)�. Applying Theorem 1.1 to G itself (and the
action via left translations), one obtains [Run02, Corollary 0.2.11]:

Corollary 1.1. Let G be a group. The following are equivalent:

(i) G is not paradoxical,

(ii) there exists a left-invariant �nitely additive measures ν : P(G)→ [0, 1] with ν(G) = 1,

(iii) there exists m ∈ `∞(G)∗ such that 〈δg ∗ φ,m〉 = 〈φ,m〉 (g ∈ G,φ ∈ `∞(G)) and 〈1,m〉 =
‖m‖ = 1; here, ∗ means the convolution of the Dirac measure δg with the function φ (w.r.t.
the discrete topology).

The Banach�Tarski paradox and Tarski's theorem in�uenced various areas of analysis and can
be regarded as origin of a large and fruitful branch of harmonic analysis�the branch which deals
with amenability and related concepts.
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1.2. Amenability notions for groups and Banach algebras

Corollary 1.1 motivates the de�nition of an amenable locally compact group [Run02, De�nition
1.1.1; De�nition 1.1.3; De�nition 1.1.4]:

De�nition 1.1. A locally compact group G is called `amenable' if there exists a left-invariant
`mean' on L∞(G), i.e., m ∈ L∞(G)∗ such that 〈δg ∗ φ,m〉 = 〈φ,m〉 (g ∈ G,φ ∈ L∞(G)) and
〈1,m〉 = ‖m‖ = 1; ∗ means the convolution of the Dirac measure δg with the function φ.

In particular, a locally compact group G is not paradoxical if and only if G is amenable w.r.t.
the discrete topology; if so, then G is also amenable w.r.t. the original topology (making it a
locally compact group) [Run02, Corollary 1.1.10]. The expression �amenable� was introduced
by Day, maybe as a pun (cf. [Run02, Chapter 1.5] for further information).

A left-invariant mean on L∞(G) (G being a locally compact group) can be characterized as
follows [Run02, Proposition 1.1.2]: a linear functional m : L∞(G) → C is a left-invariant
mean on L∞(G) if and only if 〈δg ∗ φ,m〉 = 〈φ,m〉 (g ∈ G,φ ∈ L∞(G)), 〈1,m〉 = 1 and
〈φ,m〉 ≥ 0 (φ ∈ L∞(G) with φ ≥ 0).

There are several su�cient conditions for a locally compact group to be amenable: for instance,
�nite groups, compact groups, solvable (in particular, Abelian) groups, locally �nite groups
(i.e., every �nite set of elements generates a �nite subgroup), and closed subgroups of amenable
groups are amenable; every elementary group is amenable, see [Run02, Chapter 1] and [Wag93,
Chapter 10].

If a locally compact group contains a closed subgroup which is a free group of rank 2, then it is
not amenable [Run02, Corollary 1.2.8]; however, the von Neumann conjecture, i.e., that every
non-amenable group contains a subgroup which is a free group of rank 2, was disproved by
Ol'shanskii in 1980 [Ol′80].

There are several characterizations of amenable groups. For the moment, we restrict ourselves
to the following characterizations in terms of Reiter's conditions P1 and Pp [Rei68, 3.2 and 6 in
Chapter 8] [Pie84, Chapter 2.6] and the Følner condition [Run02, p. 35] [Pie84, Chapter 2.7]:

Proposition 1.2. Let G be a locally compact group. The following are equivalent:

(i) G is amenable,

(ii) G satis�es `Reiter's condition P1', i.e., for every ε > 0 and for every compact subset C
of G, there exists a positive function φ ∈ L1(G) with ‖φ‖1 = 1 such that ‖δg ∗ φ− φ‖1 <
ε (g ∈ C),

(iii) for at least one p ∈ [1,∞), G satis�es `Reiter's condition Pp', i.e., for every ε > 0 and
for every compact subset C of G, there exists a positive function φ ∈ Lp(G) with ‖φ‖p = 1
such that ‖δg ∗ φ− φ‖p < ε (g ∈ C),

(iv) for every p ∈ [1,∞), G satis�es Reiter's condition Pp,

(v) G satis�es the `Følner condition', i.e., for every ε > 0 and for every compact subset C of G,
there exists a Borel subset E of G with 0 < νG(E) <∞ such that νG(gE∆E)

νG(E) < ε (g ∈ C).

In Proposition 1.2 (v), νG denotes the (more precisely, a �xed) left Haar measure of G, and ∆
denotes the symmetric di�erence. Another good reference is the monograph [Pat88]. In the
following, we recall how amenable groups can be characterized in terms of their L1-algebras and
properties which come from cohomology [Dal00].
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Recall that, given a Banach algebra A, a Banach space X is called a `Banach A-bimodule'
if there exist continuous bilinear mappings A × X → X, (a, x) 7→ a • x and (a, x) 7→ x ◦ a,
such that a•(b•x) = ab•x, (x◦a)◦b = x◦ab and a•(x◦b) = (a•x)◦b for all a, b ∈ A and x ∈ X.

Of course, A itself is a Banach A-bimodule (via the algebra multiplication). More interesting,
if X is a Banach A-bimodule, then its dual X∗ becomes a Banach A-bimodule�the `dual
module'�via A×X∗ → X∗, a • f(x) := f(x ◦ a) and f ◦ a(x) := f(a •x) (x ∈ X). Furthermore,
if ϕ ∈ ∆(A), where ∆(A) denotes the `character space' of A (i.e., the set of `characters'�
i.e., nonzero homomorphisms from A into C),4 then C becomes a Banach A-bimodule via
a • x := x ◦ a := ϕ(a)x (a ∈ A, x ∈ C). Following the reference, we denote this Banach
A-bimodule by Cϕ.

If A is commutative, then a Banach A-bimodule X is called a `Banach A-module' if
a • x = x ◦ a (a ∈ A, x ∈ X). Trivially, if A is commutative, then A itself is a Banach A-module,
and if X is a Banach A-module, then so is X∗; furthermore, if ϕ ∈ ∆(A), then Cϕ is a Banach
A-module.

Recall that a linear mapping D from a Banach algebra A into a Banach A-bimodule X is called
a `derivation' if it satis�es the �product rule�

D(ab) = a •D(b) +D(a) ◦ b (a, b ∈ A),

and an `inner derivation' if
D(a) = a • x− x ◦ a (a ∈ A)

for some x ∈ X. Obviously, each inner derivation is a bounded derivation.

These concepts, which belong to cohomology, enabled Johnson to �nd the following characteri-
zation of amenable groups [Joh72]:

Theorem 1.2 (Johnson's characterization). Let G be a locally compact group. The following are
equivalent:

(i) G is amenable,

(ii) for every Banach L1(G)-bimodule X, every bounded derivation from L1(G) into the dual
module X∗ is an inner derivation.

This remarkable result was Johnson's motivation to �extend� the de�nition of amenability to
arbitrary Banach algebras, in the following way [Joh72]:

De�nition. A Banach algebra A is called `amenable' if for every Banach A-bimodule X every
bounded derivation from A into the dual module X∗ is an inner derivation.

There are several ways of characterizing amenable Banach algebras. One of these ways
is via approximate diagonals: a Banach algebra A is amenable if and only if there exists
a `bounded approximate diagonal' for A, i.e., a bounded net (mα)α∈I ⊆ A⊗̂A such that
limα(a · mα − mα · a) = 0 and limα(π(mα)a) = a (a ∈ A); another characterization is in
terms of virtual diagonals: A is amenable if and only if there exists a `virtual diagonal' for
A, i.e.,M ∈ (A⊗̂A)∗∗ such that a·M = M ·a and π∗∗(M)·a = a (a ∈ A) [Run02, Theorem 2.2.4].

The de�nition of an amenable Banach algebra and its characterizations suggest an abundance
of generalizations (or sharpenings). For instance, a Banach algebra A is called `essentially

4If the character space ∆(A) of a (commutative) Banach algebra A is endowed with the Gelfand topology, then
∆(A) is called the `structure space' of A.
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amenable' if the de�ning condition holds at least for `neo-unital' Banach A-bimodules X (i.e.,
A • X ◦ A = X) [GL04]; if a Banach algebra is unital (or at least has a bounded approxi-
mate identity), then the notions of amenability and essential amenability coincide [GL04, p. 231].

A Banach algebra A is called `approximately amenable' if for every Banach A-bimodule X
every bounded derivation from A into the dual module X∗ is the strong limit of a net of inner
derivations [GL04], and A is called `pseudo-amenable' if there exists an approximate diagonal
for A (which need not necessarily be bounded) [GZ07]; if A has a bounded approximate identity,
the notions of approximate amenability and pseudo-amenability coincide [GZ07, Proposition 3.2].

A Banach algebra A is called `pointwise amenable' if for every Banach A-bimodule X, for every
bounded derivation from A into the dual module X∗, and for every a ∈ A, there exists x ∈ X∗
such that D(a) = a • x− x ◦ a [DL10].

A is called `contractible' or `super-amenable' if for every Banach A-bimodule X every bounded
derivation from A into X is an inner derivation [Dal00, Run02].

In this thesis, we shall extensively study the following property [Joh88]:

De�nition. A Banach algebra A is called `weakly amenable' if every bounded derivation from
A into A∗ is an inner derivation.

Concerning weak amenability, there exist several characterizations and generalizations
[Dal00, Run02] again�for instance, considering iterated duals, which yields the notion of
permanent weak amenability: a Banach algebra A is called `permanently weakly amenable' if,
for every n ∈ N, every bounded derivation from A into the nth dual A(n) is an inner derivation;
for commutative Banach algebras, permanent weak amenability reduces to weak amenability
[DGG98]. Trivially, a commutative Banach algebra A is weakly amenable if and only if there
exists no nonzero bounded derivation from A into A∗ [BCD87]. Furthermore, a commutative
Banach algebra A is weakly amenable if and only if for every Banach A-module X every
bounded derivation from A into X is zero [BCD87].

The preceding amenability notions are only an excerpt of the various possibilities, and it is not
our aim to give a complete survey. We note that some of the notions suggest further variations
(e.g., `sequential/uniform/weak-∗ approximate amenability') or reasonable combinations (e.g.,
`approximate weak amenability'); of course, there is an abundance of resulting implications,
surprising coincidences�and open problems. The corresponding literature is extensive.

If A is a commutative Banach algebra, one has the following implications:5 �A contractible�
⇒ (trivial) �A amenable� ⇒ (trivial) �A pointwise amenable� ⇒ [DL10, Theorem 1.5.4] �A
approximately amenable� ⇒ [GZ07, Corollary 3.4] �A pseudo-amenable� ⇒ [GZ07, Corollary
3.7] �A weakly amenable�. Moreover, if A is also semisimple, then there exists no nonzero
continuous derivation from A into A itself (this is a consequence of the Singer�Werner theorem
[Dal00, Corollary 2.7.20]).6 Furthermore: if a Banach algebra A is commutative and contractible,
then A is semisimple and �nite-dimensional [Dal00, Corollary 2.8.49].

Johnson's analogue to Theorem 1.2 w.r.t. weak amenability is the following [Joh91]:

Theorem 1.3. For any locally compact group G, L1(G) is weakly amenable.

5In fact, not all of these implications require commutativity.
6In fact, the following remarkable result holds (as a consequence of a theorem of Thomas [Dal00, Theorem
5.2.48]): if A is a semisimple commutative Banach algebra, then there exists neither a continuous nor a
discontinuous nonzero derivation from A into A.
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A remarkable sharpening of Theorem 1.3 is that L1(G) is permanently weakly amenable for
every locally compact group G [CGZ09, p. 3179]. Moreover, given any locally compact group
G, then essential amenability, approximate amenability and pseudo-amenability of L1(G) are all
equivalent to G being amenable: since every locally compact group has a bounded approximate
identity [Kan09, Chapter 1.3], the assertion reduces to `L1(G) is approximately amenable if and
only if G is amenable', which is shown in [GL04, Theorem 3.2]. The question when L1(G) is
pointwise amenable seems to be open [DL10, p. 13]. L1(G) is contractible if and only if G is
�nite [Run02, Exercise 4.1.7].

We now recall two local concepts of amenability. Let A be a Banach algebra, and let ϕ ∈ ∆(A).

� A is called `ϕ-amenable' if for every Banach A-bimodule X such that a • x = ϕ(a)x (a ∈
A, x ∈ X) every bounded derivation from A into the dual module X∗ is an inner derivation
[KLP08b].

� A linear functional D : A→ C is called a `point derivation on A at ϕ' if

D(ab) = ϕ(a)D(b) + ϕ(b)D(a) (a, b ∈ A)

[Dal00].

Observe that a point derivation on A at ϕ is a derivation from A into Cϕ; it is inner if and only
if it is zero (which, of course, holds without any commutativity assumptions on A).

A being ϕ-amenable is equivalent to the existence of m ∈ A∗∗ such that 〈f · a,m〉 =
ϕ(a) 〈f,m〉 (a ∈ A, f ∈ A∗) and 〈ϕ,m〉 = 1 [KLP08b, p. 85; Theorem 1.1];7 such an m is called
a `ϕ-mean' [KLP08b]. Of course, this reminds to means in the context of amenable groups. In
fact, for any locally compact group G, L1(G) is amenable w.r.t. the trivial character if and only
if G is amenable [KLP08a, p. 942]. The local concept of ϕ-amenability yields the de�nition
of the following global property: A is called `right character amenable' if A is ϕ-amenable for
every ϕ ∈ ∆(A) and A has a bounded right approximate identity [KLP08a, Mon08];8 so L1(G)
is right character amenable if and only if G is amenable.

It is not di�cult to see that if there exists a nonzero bounded point derivation at ϕ ∈ ∆(A),
then A is not ϕ-amenable [KLP08b, Remark 2.4]. Moreover, A fails to be weakly amenable if
there exists a nonzero bounded point derivation for some ϕ ∈ ∆(A) [Dal00, Theorem 2.8.63].

Concerning `1-algebras of polynomial hypergroups, which shall be considered in this thesis, the
theory of ϕ-amenability and point derivations has turned out to be especially rich when one
restricts oneself to characters ϕ ∈ ∆s(A) (`Hermitian character/structure space'), i.e., ϕ ∈ ∆(A)
such that ϕ(a∗) = ϕ(a) (a ∈ A) (provided A is a Banach ∗-algebra), cf. the approaches presented
in [Las09a, Las09b, Las09c]. Therefore, we make the following de�nition (which, despite the
similar name, must not be confused with the notion of pointwise amenability recalled above):

De�nition. We call a Banach ∗-algebra A `point amenable' if for all ϕ ∈ ∆s(A) there exists no
nonzero bounded point derivation on A at ϕ.

With regard to the implications recalled above, we note that a Banach ∗-algebra which is not
point amenable can neither be right character amenable nor weakly amenable.

7f · a ∈ A∗ is de�ned by f · a(b) = f(ab) (b ∈ A).
8Since every amenable Banach algebra has a bounded approximate identity [Dal00, Theorem 2.9.57], every
amenable Banach algebra is also right character amenable.
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1.3. Hypergroups and orthogonal polynomials: some basic harmonic analysis

Motivated by the Banach�Tarski paradox, in Subsection 1.2 we recalled some amenability
properties of locally compact groups G and the corresponding L1-algebras. It is a natural
question to ask whether, and how, results for the group case transfer to generalizations of
groups�one might in particular think of semigroups, and indeed the literature on their harmonic
analysis, including amenability notions, is extensive. In this thesis, we consider a (generally)
very di�erent generalization of locally compact groups: hypergroups. We brie�y recall their
general de�nition and some basics, following the presentation in [BH95]�which is a re�nement
of Jewett's concept [Jew75]; the concepts of Dunkl (1973) and Spector (1975) are similar. Our
central results deal with hypergroups which are discrete; in this case, the hypergroup axioms
simplify and can be found in [Las05], for instance (cf. below).

Let K be a locally compact Hausdor� space, and let C(K), Cb(K) and Cc(K) denote the
sets of (complex-valued) continuous functions on K, bounded continuous functions on K and
continuous functions on K with compact support, respectively. We assume that Cb(K) is
endowed with the ‖.‖∞-norm. Furthermore, Cc(K) shall carry the topology which is obtained
as inductive limit of the spaces CE(K) := {f ∈ Cc(K) : supp f ⊆ E}, E ⊆ K compact, where
each of the spaces CE(K) shall be endowed with the ‖.‖∞-norm.

Let M(K) denote the set of (complex) Radon measures on K, i.e., the set of continuous
linear functionals on Cc(K), and let ‖µ‖ := sup{|µ(f)| : f ∈ Cc(K) with ‖f‖∞ ≤ 1}
for every µ ∈ M(K). Let M+(K) denote the subset of positive measures, let
M b(K) := {µ ∈ M(K) : ‖µ‖ < ∞} denote the set of bounded Radon measures, and,
�nally, let M1(K) := {µ ∈ M(K) : µ ≥ 0 and ‖µ‖ = 1} denote the subset of probability
measures on K. Via integration theory, there are identi�cations with functions on the Borel
σ-algebra on K. We think that the functional analytic approach to hypergroups is a rather
elegant and natural one. The spacesM b(K) and Cb(K) are a dual pair; in the following, M b(K)
shall be endowed with the σ(M b(K), Cb(K)) topology (which is called the `Bernoulli topology').

We assume that the set C(K) := {C ⊆ K : C compact and C 6= ∅} is endowed with the `Michael
topology', the topology on C(K) which is given by the subbasis of all CU (V ) := {C ∈ C(K) :
C ∩ U 6= ∅ and C ⊆ V }, U, V ⊆ K open.

De�nition. A nonvoid locally compact Hausdor� space K, together with a (second) binary op-
eration ω : M b(K)×M b(K)→M b(K) (`convolution') and a mapping .̃ : K → K (`involution'),
is called a `hypergroup' if the following conditions hold:

� ω(δx, δy) ∈ M1(K) and supp ω(δx, δy) ∈ C(K) for every x, y ∈ K, and the mappings
K × K → M1(K), (x, y) 7→ ω(δx, δy) and K × K → C(K), (x, y) 7→ supp ω(δx, δy) are
continuous,

� together with ω, the C-linear space M b(K) is an algebra,

� there exists a (necessarily unique) `unit element' e ∈ K such that ω(δe, δx) = δx =
ω(δx, δe) (x ∈ K),

� .̃ is a homeomorphism and, for all x, y ∈ K, one has ˜̃x = x, ω(δx, δy)(f̃) = ω(δỹ, δx̃)(f)

(f ∈ Cc(K), where f̃ ∈ Cc(K) is de�ned via f̃(x) := f(x̃)), and e ∈ supp ω(δx, δy)⇔ x = ỹ.

If ω makes the C-linear space M b(K) even a commutative algebra, then K is called a `commu-
tative' hypergroup. If K is endowed with the discrete topology, then K is called a `discrete'
hypergroup.

As already mentioned above, the de�nition becomes considerably simpler in the discrete case,
cf. [BH95] and [Las05, p. 56; De�nition 2.1]: a nonvoid set K, together with a mapping ω
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(convolution) which maps K ×K into conv {δk : k ∈ K}, the convex hull9 of Dirac functions on
K, and a bijective mapping .̃ : K → K (involution), is a discrete hypergroup if

� ω is associative, i.e., ∑
k∈K

ω(y, z)(k)ω(x, k) =
∑
k∈K

ω(x, y)(k)ω(k, z)

for all x, y, z ∈ K (note that the sums are �nite),

� there exists a (necessarily unique) unit element e ∈ K such that ω(e, x) = δx = ω(x, e) (x ∈
K),

� for all x, y ∈ K, one has ˜̃x = x, ω(x, y)(k̃) = ω(ỹ, x̃)(k) (k ∈ K), and

e ∈ supp ω(x, y)⇔ x = ỹ. (1.1)

Observe that, in contrast to the original de�nition, we have de�ned the convolution ω (corre-
sponding to a discrete hypergroup) on K ×K rather than on M b(K) ×M b(K)�and mapping
to functions on K rather than to measures in M b(K). On the one hand, we have decided to
do so to keep consistent with the cited literature; on the other hand, it is easy to see that the
two approaches can be identi�ed which each other (identifying x with δx and using bilinear
extensions). We refer to [BH95] and [Las05] for more details.

A (discrete) group G may be considered as a discrete hypergroup via ω(x, y) := δxy and x̃ := x−1

(x, y ∈ G) [Las05, Remark on p. 57]; in an analogous way, each locally compact group may be
considered as a hypergroup via its usual convolution structure [Jew75, p. 17 Proposition 2].
In contrast to the group case, a hypergroup need not have an �algebraic structure� which is
independent from its entire, in particular also �topological� structure: to each locally compact
group corresponds a discrete group (which has the same algebraic properties)�however, if K is
a hypergroup such that for all x, y ∈ K there is an element �xy� in K with ω(δx, δy) = δxy, then
K is already a locally compact group (via (x, y) 7→ xy) [Jew75, p. 17 Proposition 1]. Cf. also
the notes at the beginning of [Jew75, Section 7.1].

Hypergroups are interesting for several reasons. One reason is that they cover many examples
which can be rather di�erent from the group or semigroup setting (for instance, double cosets).
Another�surely not less important�reason is that hypergroups have a rich harmonic analysis.
For any x ∈ K and f ∈ C(K), one can de�ne the `(left) translation' Txf : K → C of f by x via

Txf(y) :=

∫
K
f dω(δx, δy).

10 (1.2)

Note that the right hand side of (1.2) is well-de�ned for every f ∈ C(K) because supp ω(δx, δy)
is compact. If f ∈ Cc(K), then Txf ∈ Cc(K) (x ∈ K). A measure νK ∈ M+(K), νK 6= 0,
such that νK(f) = νK(Txf) (f ∈ Cc(K), x ∈ K) (`left-invariance'), is called a `Haar measure'.
Up to a positive real factor, a Haar measure is unique. For many speci�c types of hypergroups
(for instance, for commutative, compact or discrete hypergroups), the existence of such a Haar
measure is known; particularly for discrete hypergroups, the existence of a Haar measure is
easily seen, and the Haar measure takes a very simple form [Las05, Theorem 2.1]. There is
an article on the arXiv which states that every hypergroup (however, in the sense of Spector)
bears a Haar measure [Cha12] (we shall not make use of this). The translation can be de�ned
for more general functions; we shall need the following: for any p ∈ [1,∞], f ∈ Lp(K) (w.r.t. a

9�nite convex combinations
10To avoid any confusion, we note that our reference [BH95] writes T x instead of Tx, whereas Tx in [BH95] can

mean something di�erent.
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�xed Haar measure) and x ∈ K, one has Txf ∈ Lp(K) (and ‖Txf‖p ≤ ‖f‖p). We refer to the
monograph [BH95] for more details.

We shall not recall the further basic concepts of harmonic analysis on hypergroups in full
generality (anyway, many of these concepts are limited to the commutative case, of course), but
restrict ourselves to those types this thesis mainly deals with, namely to polynomial hypergroups.

Polynomial hypergroups were introduced by Lasser in the 1980s [Las83]. They provide an
abundance of examples for hypergroups which, on the one hand, are very di�erent from groups,
and, on the other hand, nevertheless show a great diversity among themselves: the individual
behavior strongly depends on (Pn(x))n∈N0 , the inducing orthogonal polynomial sequence. All
polynomial hypergroups have in common that many concepts of harmonic analysis and Gelfand
theory take a rather concrete form; hence, one may regard polynomial hypergroups as an elegant
way to study orthogonal polynomials via methods from functional and harmonic analysis.
Of course, one may also think of them as a valuable possibility to obtain many examples in
functional and harmonic analysis�in particular, in the theory of Banach algebras�which come
from the theory of orthogonal polynomials and special functions. In fact, the topic is located at
a fruitful crossing point between the areas. In the following, we refer to [Las83] and [Las05] if
not stated otherwise.

Let a0 > 0, b0 < 1, c0 := 0, (an)n∈N, (cn)n∈N ⊆ (0, 1) and (bn)n∈N ⊆ [0, 1) satisfy an + bn + cn =
1 (n ∈ N0), and let (Pn(x))n∈N0 ⊆ R[x] be a sequence of polynomials that is given by the
three-term recurrence relation P0(x) := 1, P1(x) := 1

a0
(x− b0),

P1(x)Pn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x) (n ∈ N). (1.3)

Trivially, Pn(1) = 1 (n ∈ N0). As a crucial condition for obtaining a hypergroup structure,
additionally assume that `property (P)' holds, i.e., that the linearization coe�cients g(m,n; k)
de�ned by the expansions

Pm(x)Pn(x) =
m+n∑
k=0

g(m,n; k)︸ ︷︷ ︸
!
≥0 (P)

Pk(x) (m,n ∈ N0) (1.4)

are all nonnegative. As a consequence of the theory of orthogonal polynomials, in particular
Favard's theorem (cf. [Chi78, I-Theorem 4.4, II-Theorem 3.1]), (Pn(x))n∈N0 is orthogonal w.r.t.
a unique probability (Borel) measure µ on R with |supp µ| = ∞; the support of µ is contained
in the set

N̂0 :=

{
x ∈ R : sup

n∈N0

|Pn(x)| <∞
}

=

{
x ∈ R : max

n∈N0

|Pn(x)| = 1

}
,

which contains 1 (obvious) and is a compact subset of [1− 2a0, 1].11 Orthogonality yields

g(m,n; |m− n|), g(m,n;m+ n) 6= 0 (m,n ∈ N0) (1.5)

and
g(m,n; k) = 0 (m,n ∈ N0, k < |m− n|), (1.6)

i.e., (1.4) reduces to

Pm(x)Pn(x) =
m+n∑

k=|m−n|

g(m,n; k)︸ ︷︷ ︸
!
≥0 (P)

Pk(x) (m,n ∈ N0)

11The uniqueness of µ is a consequence of the compact support: if there was a di�erent orthogonalization measure
ν, then neither µ nor ν could have compact support, cf. [Chi78, II-Theorem 3.2; II-Theorem 5.6]. Alternatively,
the uniqueness of µ can be obtained directly from the three-term recurrence relation and the conditions on
(an)n∈N0 , (bn)n∈N0 , (cn)n∈N0 ; apply [Chi78, II-Theorem 5.6; IV-Theorem 2.2].
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(which, of course, can be seen as an extension of the three-term recurrence relation (1.3)).
Therefore, one has

m+n∑
k=|m−n|

g(m,n; k) = 1 (m,n ∈ N0). (1.7)

De�ning ω : N0 × N0 → CN0 and .̃ : N0 → N0 by ω(m,n) :=
∑m+n

k=|m−n| g(m,n; k)δk and ñ := n,
property (P) and (1.7) imply that N0 becomes a commutative discrete hypergroup with unit
element 0, a `polynomial hypergroup'; ω maps into conv {δn : n ∈ N0}. If m,n ∈ N0 with
mn 6= 0, then, due to (1.5), supp ω(m,n) has at least two elements (in sharp contrast to the
group case, cf. above). Note that (1.6) (and hence orthogonality) is very important for the
�non-degeneracy property� (1.1) to be satis�ed.

In a series of papers starting with [Szw92b], Szwarc gave several su�cient conditions for the
crucial property (P). [Szw03] provides an abstract characterization of property (P). To our
knowledge, there is no simple and convenient explicit characterization which is just in terms of
(an)n∈N0 , (bn)n∈N0 , (cn)n∈N0 .

Sometimes it is more convenient to consider di�erent normalizations of the polynomials: let
(ρn(x))n∈N0 ⊆ R[x] and (pn(x))n∈N0 ⊆ R[x] denote the sequences of monic and orthonormal12

polynomials corresponding to (Pn(x))n∈N0 , respectively. One has ρ0(x) = p0(x) = 1 and

xρn(x) = ρn+1(x) + βnρn(x) + α2
nρn−1(x) (n ∈ N0),

xpn(x) = αn+1pn+1(x) + βnpn(x) + αnpn−1(x) (n ∈ N0),

where α0 := 0, α1 := a0
√
c1, αn := a0

√
cnan−1 (n ∈ N\{1}), β0 := b0 and

βn := a0bn + b0 (n ∈ N).13 Some of the cited results from [Chi78] use the monic nor-
malization.

For any n ∈ N0, the `translation operator' (or `shift operator') Tn maps a function f : N0 → C
to the translation Tnf : N0 → C of f by n, which reads

Tnf(m) =

m+n∑
k=|m−n|

g(m,n; k)f(k) = Tmf(n) (m ∈ N0).

The Haar measure, normalized such that {0} is mapped to 1, is just the counting measure on N0

weighted by the `Haar weights', i.e., the values of the `Haar function' h : N0 → [1,∞) de�ned by

h(n) =
1∫

RP
2
n(x) dµ(x)

=
1

g(n, n; 0)
= p2

n(1);

obviously, each of the following two conditions is equivalent to the preceding de�nition of h:

� h(0) = 1, h(1) = 1
c1

and

h(n+ 1) =
an
cn+1

h(n) (n ∈ N),

� h(0) = 1 and

g(m,n; k)h(n) = g(m, k;n)h(k) (m,n ∈ N0, k ∈ {|m− n|, . . . ,m+ n}).

12with positive leading coe�cients
13To obtain well-de�nedness in the preceding recurrence relations, we make the�widely common�convention

that (α2
0 = α0 =)0 times something unde�ned shall be 0.
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For p ∈ [1,∞), let the ‖.‖p-norms and the corresponding spaces be de�ned w.r.t. the Haar
measure:

`p(h) := {f : N0 → C : ‖f‖p <∞}

with

‖f‖p :=

( ∞∑
k=0

|f(k)|ph(k)

) 1
p

;

moreover, let `∞(h) := `∞. For any n ∈ N0, Tn is a nonexpansive operator in B(`p(h)) (p ∈
[1,∞]). Trivially, if f ∈ c0, then also Tnf ∈ c0, and if f ∈ c00, then Tnf ∈ c00.14 For any
p ∈ [1,∞) and q := p

p−1 ∈ (1,∞], one has the duality (`p(h))∗ ∼= `q(h) via

〈f, g〉 :=

∞∑
k=0

f(k)g(k)h(k) (f ∈ `p(h), g ∈ `q(h)).

In the same manner, the duality (c0)∗ ∼= `1(h) holds. Note that 〈f, g〉 is also well-de�ned if
g ∈ `1(h) and f ∈ `∞ arbitrary. Concerning inclusions, the following holds: if p, q ∈ [1,∞] with
p ≤ q, then `p(h) ⊆ `q(h) (as the Haar weights are bounded from below by 1).

Given f ∈ `p(h) and g ∈ `q(h), where p ∈ [1,∞], q := p
p−1 ∈ [1,∞], the `convolution' f ∗ g :

N0 → C of f and g is de�ned by
f ∗ g(n) := 〈Tnf, g〉 .

The following hold:

f ∗ g ∈ `∞,
f ∗ g = g ∗ f, (1.8)

f ∈ `1(h)⇒ f ∗ g ∈ `q(h) and ‖f ∗ g‖q ≤ ‖f‖1 ‖g‖q .

We note that if 1 < p, q < ∞, then (1.8) (i.e., the commutativity of the convolution) is shown
in [Las05]. If f ∈ `1(h) and g ∈ `∞, one can establish (1.8) in the following way: �rst, it can be
seen elementarily from the de�nitions that the convolution commutes if f ∈ c00. Then, one uses
an approximation argument and the fact that, for any f ∈ `1(h), ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞ and
‖g ∗ f‖∞ ≤ ‖f‖1 ‖g‖∞.

De�ning (εn)n∈N0 ⊆ c00 via the expansions

Pn(x) =

n∑
k=0

εn(k)Pk(x)h(k), εn(n+ 1) := εn(n+ 2) := . . . := 0 (n ∈ N0, x ∈ R),

or, equivalently, via

εn =
1

h(n)
δn (n ∈ N0),

it is obvious that ‖εn‖1 = 1 and

εm ∗ εn =

m+n∑
k=|m−n|

g(m,n; k)εk, εn ∗ g = Tng

for all m,n ∈ N0, g ∈ `∞; therefore, the convolution ∗ can be seen as an extension of the
hypergroup convolution ω.

14As widely common, we denote by c0 and c00 the subspaces of `∞ which consist of the null sequences and the
sequences with �nite support, respectively.
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Endowing `2(h) with the inner product `2(h) × `2(h) → C, (f, g) 7→ 〈f, g〉, `2(h) becomes a
Hilbert space.

Endowing `1(h) with the convolution ∗ and complex conjugation (as involution), `1(h) becomes
a semisimple commutative Banach ∗-algebra with unit ε0 = δ0, the ``1-algebra' of the polynomial
hypergroup. `1(h) acts on the (unital) Banach `1(h)-module `p(h) by convolution for each
p ∈ [1,∞], and `∞ is the dual module of `1(h), see [Las07] or [Las09c].

The structure space ∆(`1(h)) of `1(h) can be identi�ed with

X b(N0) :=

{
z ∈ C : sup

n∈N0

|Pn(z)| <∞
}

=

{
z ∈ C : max

n∈N0

|Pn(z)| = 1

}
via the homeomorphism X b(N0)→ ∆(`1(h)), z 7→ ϕz,

ϕz(f) :=
∞∑
k=0

f(k)Pk(z)h(k) (f ∈ `1(h)).

In the same way, N̂0 = X b(N0)∩R can be identi�ed with the Hermitian structure space ∆s(`
1(h)).

Given any f ∈ `1(h), under this identi�cation the Gelfand transform of f , restricted to ∆s(`
1(h)),

becomes the `Fourier transform' f̂ : N̂0 → C of f ,

f̂(x) :=
∞∑
k=0

f(k)Pk(x)h(k);

one has f̂ ∈ C(N̂0),
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1 and

f̂ ∗ g = f̂ ĝ (f, g ∈ `1(h)). (1.9)

The mapping .̂ : `1(h) → C(N̂0), f 7→ f̂ is called the `Fourier transformation' on `1(h). The
Fourier transformation is injective: if f ∈ `1(h) and f̂ |supp µ = 0, then f = 0.15

We need to recall another identi�cation: given any x ∈ N̂0, the (`symmetric') `character'16

xα ∈ `∞\{0} belonging to x is de�ned by

xα(n) := Pn(x) (n ∈ N0).

One has
Tm xα(n) = xα(m) xα(n) (m,n ∈ N0) (1.10)

and, which is obvious,
|xα(n)| ≤ 1 (n ∈ N0).

The map ϑ : N̂0 → {xα : x ∈ N̂0}, ϑ(x) := xα is a bijection, and endowing {xα : x ∈ N̂0} with the
topology inherited from N̂0 via ϑ (this is the topology of pointwise convergence), the Plancherel�
Levitan theorem yields a unique regular positive bounded Borel measure π on {xα : x ∈ N̂0}
with

‖f‖22 =

∫
|f̂ ◦ ϑ−1|2 dπ (f ∈ `1(h)).

15Identifying ∆(`1(h)) with X b(N0), the Gelfand transform of a function f ∈ `1(h) becomes Ff : X b(N0) → C,
Ff(z) :=

∑∞
k=0 f(k)Pk(z)h(k); sometimes, also Ff is called `Fourier transform' of f (and F is called `Fourier

transformation', too). For our purposes, we only need f̂ = Ff |N̂0
, however.

16The expression �symmetric character� (or �Hermitian character�) is used both for the elements of the Hermitian
structure space ∆s(`

1(h)), i.e., for the symmetric characters in the �Banach algebraic sense�, and for the
symmetric characters in the �hypergroup sense�, whose de�nition is recalled now. Of course, these notions can
be identi�ed with each other (since both of them can be identi�ed with elements of N̂0 ⊆ R, see below).
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π is called Plancherel measure, and there exists exactly one isometric isomorphism from `2(h)

to L2({xα : x ∈ N̂0}, π) such that the image of f ∈ `1(h) and f̂ ◦ ϑ−1 coincide as elements of
L2({xα : x ∈ N̂0}, π); this isometric isomorphism is called the Plancherel isomorphism. Under
the identi�cation ϑ, the Plancherel measure π reduces to the orthogonalization measure µ, and
the Plancherel isomorphism to the (uniquely determined) isometric isomorphism P : `2(h) →
L2(R, µ) which satis�es

f̂ = P(f) (f ∈ `1(h))

in L2(R, µ). Therefore, it is justi�ed to use the names `Plancherel measure' and `Plancherel
isomorphism' also for µ and P, respectively, which shall be done throughout this thesis. The
inverse Plancherel isomorphism P−1 satis�es

P−1(F )(k) =

∫
R
F (x)Pk(x) dµ(x) (F ∈ L2(R, µ), k ∈ N0).

One has
P(f ∗ g) = P(f)P(g) (f ∈ `1(h), g ∈ `2(h)),

which follows from (1.9) by approximation.

Some of the many known explicit examples such that N̂0 $ X b(N0) and 1 /∈ supp µ (hence, in
particular, also supp µ $ N̂0) can be found in Section 3.3 and Section 3.5. Recall that such
properties are very di�erent from Abelian locally compact groups.

1.4. Hypergroups and orthogonal polynomials: various types of amenability

Concerning (generalized notions of) amenability for polynomial (or other) hypergroups, there
exist several approaches�which, on the one hand, very naturally arise from their group
analogues because many of the concepts we recalled in Subsection 1.2 can be transferred to
hypergroups in a reasonable and frequently straight forward way, but, on the other hand, need
(and in most cases do) no longer bear the equivalences or rather general results which are valid
in the group case. We divide these di�erent approaches into two parts (which, of course, are not
independent from each other): transference of means (and Reiter's conditions, Følner condition
and so on)�and considerations of the L1-algebras (which can be of very di�erent type compared
to L1-algebras of locally compact groups).

In the following, let K be a hypergroup which has a (�xed) Haar measure.

Means w.r.t. hypergroups are extensively studied in [Ska92]. Eight years earlier, some results
and basic de�nitions were already given in S. Wolfenstetter's dissertation [Wol84]. The following
de�nition is taken from [Ska92] and the straight forward analogue to De�nition 1.1:

De�nition 1.2. K is called `amenable' if there exists a left-invariant `mean' on L∞(K), i.e.,
m ∈ L∞(K)∗ such that 〈Txφ,m〉 = 〈φ,m〉 (x ∈ K,φ ∈ L∞(K)) and 〈1,m〉 = ‖m‖ = 1.

Each commutative hypergroup is amenable (this follows from the Markov�Kakutani �xed point
theorem) [Ska92, Example 3.3 (a)], and, easier to see, each compact hypergroup is amenable
[Ska92, Example 3.3 (b)]. Moreover, closed subgroups of amenable hypergroups are amenable
[Ska92, Proposition 3.5].

In view of Proposition 1.2, we note that K is amenable if and only if K satis�es Reiter's
condition P1 [Ska92, Theorem 4.1].17 However, this is not equivalent to the corresponding
condition P2 being satis�ed; Reiter's condition P2 w.r.t. hypergroups, which is stronger than

17`Reiter's condition Pp', p ∈ [1,∞), means that for every ε > 0 and for every compact subset C of K there exists
a positive function φ ∈ Lp(K) with ‖φ‖p = 1 such that ‖Txφ− φ‖p < ε (x ∈ C) [Ska92, LS11].
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P1 [Ska92, Theorem 4.3; Example 4.6], is also studied in [FL00] (in a modi�ed way). Further
noteworthy references concerning (modi�ed) Reiter's condition(s) in the context of hypergroups
are [FLS04, FLS05, Geb92, LS11]. [HHL10] deals with a Følner type condition and strongly
translation-invariant means on polynomial hypergroups, cf. also [Hof12]. Strongly invariant
means on commutative hypergroups are studied in [LO12].

If the L1-algebra ([BH95]; we omit recalling the precise general de�nition, since in this thesis
we shall concentrate on `1-algebras of polynomial hypergroups18) of a hypergroup is amenable,
then the hypergroup is amenable [Ska92, Proposition 4.9]. The converse is not true: in fact,
an amenable hypergroup need not even have a point amenable L1-algebra, which can easily be
seen from our results presented in Section 3 (but has been known before, see various examples
in [Las09b], for instance).

From now on, we restrict ourselves to polynomial hypergroups again, induced by sequences
(Pn(x))n∈N0 as in Subsection 1.3. Since these are commutative, they are all amenable and hence
satisfy Reiter's condition P1. Moreover, [Ska92, Lemma 4.5] clari�es the situation w.r.t. Reiter's
condition P2: P2 is satis�ed if and only if 1 ∈ supp µ (further characterizations of this property
are given in [LOW13, LS11]). Since these results on amenability in the hypergroup sense and
on Reiter's conditions are already very satisfying and since there is a considerable amount of
literature on these topics (cf. above), we shall from now on focus on amenability properties
which concern the Banach algebra `1(h).

Since `1(h) is a commutative, unital and semisimple (and, obviously, in�nite-dimensional) Banach
∗-algebra, one has the following (cf. Subsection 1.2):

� `1(h) is never contractible,

� the notions of amenability and essential amenability coincide for `1(h),

� the notions of weak amenability and permanent weak amenability coincide for `1(h),

� if `1(h) is weakly amenable or right character amenable, then `1(h) is also point amenable,

� there exists no nonzero derivation from `1(h) into `1(h).

There are interesting necessary criteria for amenability of `1(h):

Theorem 1.4. If `1(h) is amenable, then both of the following hold:

(i) h(n) 6→ ∞ (n→∞) [Las07, Theorem 3],

(ii) there exists some ε > 0 such that for all x, y ∈ N̂0 with x 6= y there is some f ∈ `1(h) with
‖f‖1 = 1 and |f̂(x)− f̂(y)| ≥ ε [Las09c, Proposition 1].

(i) is very convenient. (ii), which is a consequence of a result of Gourdeau [Gou89], seems to be
less convenient�however, it is interesting because it provides a kind of separation result.

Most of the naturally occurring examples satisfy h(n) → ∞ (n → ∞) and hence do not
have amenable `1-algebras. A property which has extensively been studied is the notion of
α-amenability [Las09a], coming from the notion of ϕ-amenability:

De�nition. Let α ∈ {xα : x ∈ N̂0}. `1(h) is called `α-amenable' if one (and hence every) of the
following equivalent conditions holds:

18As common in the group case, we write �`1� when explicitly referring to the discrete topology, and �L1�
otherwise.

14



(i) `1(h) is ϕ-amenable with ϕ ∈ ∆s(`
1(h)) given by

ϕ(f) :=
∞∑
k=0

α(k)f(k)h(k) (f ∈ `1(h)),

(ii) there exists m ∈ (`∞)∗ such that 〈Tnf,m〉 = α(n) 〈f,m〉 (n ∈ N0, f ∈ `∞) and 〈α,m〉 = 1
(such an m is called an `α-mean'),

(iii) there is some M ≥ 1 such that `Reiter's condition P1(α,M)' holds, i.e., for every
ε > 0 and for every �nite subset C of N0, there exists f ∈ `1(h) with ‖f‖1 ≤ M and∑∞

k=0 α(k)f(k)h(k) = 1 such that ‖Tnf − α(n)f‖1 < ε (n ∈ C).19

Consequently, if X b(N0)\N̂0 = ∅, then `1(h) is right character amenable if and only if `1(h)

is α-amenable for every α ∈ {xα : x ∈ N̂0}. In contrast to amenable groups, right character
amenability of `1(h) need not be satis�ed although every polynomial hypergroup is amenable
in the hypergroup sense (see [Las09c, p. 792], for instance; we will obtain further examples in
Section 3). However, `1(h) is always 1-amenable, i.e., α-amenable w.r.t. the trivial character α =

1α; as in the group case, this obviously just corresponds to the amenability (of each polynomial
hypergroup�amenability in the hypergroup sense) [Las09a]. A characterization of α-amenability
in terms of the `Glicksberg�Reiter property' is given in [Las09a]. Several further investigations
have been made; we just mention [FLS04, FLS05, LP10] and that there are some works by
Azimifard, including [Azi10] and [Azi09] (arXiv). The following [FLS04, Theorem 4.4] is of
particular interest:

Theorem 1.5. If x ∈ N̂0 with µ(x) = 0 and `1(h) is xα-amenable, then Pn(x) 6→ 0 (n→∞).

[FLS04, Theorem 4.10], which should be compared to Theorem 1.4 (i), tells:

Proposition 1.3. Assume that (Pn(x))n∈N0 is of `Nevai class M(0, 1)', i.e., αn → 1
2 (n → ∞)

and βn → 0 (n → ∞) (cf. the recurrence relation for the orthonormal sequence (pn(x))n∈N0),
20

and assume also that (Pn(x))n∈N0 is of `bounded variation type', i.e.,
∑∞

n=1(|αn+1−αn|+ |βn+1−
βn|) < ∞. Then (−1, 1) ⊆ N̂0, and: if x ∈ (−1, 1) and `1(h) is xα-amenable, then h(n) 6→
∞ (n→∞).

Moreover, from [FLS04, Proposition 4.2] one easily obtains the following useful result concerning

−1α-amenability (cf. [FLS04, Example 4.6; Remark 4.8]):

Proposition 1.4. If bn ≡ 0 and h(n)∑n
k=0 h(k)

→ 0 (n → ∞), then −1 ∈ N̂0 and `1(h) is −1α-
amenable.

Identifying ∆s(`
1(h)) with N̂0, a point derivation w.r.t. a Hermitian character becomes a linear

functional Dx : `1(h)→ C satisfying

Dx(f ∗ g) = f̂(x)Dx(g) + ĝ(x)Dx(f) (f, g ∈ `1(h)),

where x ∈ N̂0 is �xed [Las09b]. Therefore, it is justi�ed to call such Dx `point derivation' (on
`1(h) at x) again, which shall be done throughout the thesis. Using the notation of [Las09b],
we write �Dx 6= 0 exists� if there is a nonzero bounded point derivation at x, and �Dx = 0�
otherwise. Hence, `1(h) is point amenable if and only if Dx = 0 for all x ∈ N̂0.

19Concerning (iii), there exists a simpler characterization in terms of T1 (instead of Tn), see [FLS04, Theorem
4.1].

20Nevai class M(0, 1) has some interesting consequences for polynomial hypergroups�for instance, concerning
connection coe�cients [LR93].

15



The identi�cations yield that if x ∈ N̂0 and Dx 6= 0 exists, then `1(h) is neither weakly amenable
nor xα-amenable. Concerning the latter, [Las09b, Proposition 5] provides a slight improvement.

Given x ∈ N̂0, it can be rather di�cult�and require deep knowledge about the underlying
orthogonal polynomial sequence (Pn(x))n∈N0�to see whether Dx 6= 0 exists or Dx = 0. Never-
theless, there are some trivial cases: one always has D1 = 0, and if bn ≡ 0, then −1 ∈ N̂0 and
D−1 = 0 [Las09b, Proposition 3]. The following characterization [Las09b, Theorem 1] relates
the existence of nonzero bounded point derivations to the sequence (P ′n(x))n∈N0 of derivatives,
which makes it extremely useful:

Theorem 1.6. If x ∈ N̂0, then Dx 6= 0 exists if and only if {P ′n(x) : n ∈ N0} is bounded. Hence,
`1(h) is point amenable if and only if {P ′n(x) : n ∈ N0} is unbounded for all x ∈ N̂0.

In [Las09b], several more criteria are presented, involving spectral sets, homomorphisms,
growth conditions, Nevai class M(0, 1) and bounded variation type (cf. Proposition 1.3). More
important for our purposes, however, is Lasser's analogue to Theorem 1.6 concerning weak
amenability (Theorem 1.7 below), which involves the Fourier coe�cients associated with P ′n(x):

let (κn)n∈N0 ⊆ c00 be de�ned via the expansions

κ0 := 0, P ′n(x) =

n−1∑
k=0

κn(k)Pk(x)h(k), κn(n) := κn(n+ 1) := . . . := 0 (n ∈ N, x ∈ R),

or, equivalently, via
κn = P−1(P ′n) (n ∈ N0).

Remark 1.1. Compared to [Las07] (and also [Las09c]), our sequence (κn)n∈N0 coincides with
Lasser's original de�nition up to the constant factor a0.

The following is [Las07, Theorem 2] (or [Las09c, Theorem 2]):

Theorem 1.7. `1(h) is weakly amenable if and only if {‖κn ∗ ϕ‖∞ : n ∈ N0} is unbounded for
all ϕ ∈ `∞\{0}.

There are two special situations in which the failure of weak amenability may be seen rather
quickly from Theorem 1.7:

� (κn)n∈N0 is explicitly known and easily seen to be uniformly bounded (i.e., {‖κn‖∞ :
n ∈ N0} = {‖κn ∗ ε0‖∞ : n ∈ N0} is bounded). For instance, this is the case for the

ultraspherical polynomials (P
(α)
n (x))n∈N0 with α ≥ 0 (see [Las07, Corollary 1]). Recall

that, given some α > −1, (P
(α)
n (x))n∈N0 is given by its orthogonalization measure

dµ(x) =
Γ(2α+ 2)

22α+1Γ(α+ 1)2
(1− x2)αχ(−1,1)(x) dx (1.11)

and the normalization P (α)
n (1) = 1 (n ∈ N0),21 or, equivalently, in terms of

bn ≡ 0, an ≡ 1− bn − cn, cn :=
n

2n+ 2α+ 1
(n ∈ N);

property (P) holds (and hence a polynomial hypergroup is induced) if and only if α ≥ −1
2 ,

and the Haar weights are given by h(0) = 1 and

h(n) =
(2n+ 2α+ 1)(2α+ 2)n−1

n!
(n ∈ N); (1.12)

21We use the following (widely common) notation: for any subset A ⊆ R let χA : R → {0, 1} be de�ned by

χA(x) :=

{
1, x ∈ A,
0, else.
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moreover, N̂0 = X b(N0) = supp µ = [−1, 1] [Las05, Section 6].22 One has

‖κn‖∞ =
2n+ 2α+ 1

h(n)
(n ∈ N) (1.13)

[Las07, (10); (11)]. It is obvious that

h(n) = Θ(n2α+1) (n→∞), i.e., h(n) = O(n2α+1) (n→∞) and lim inf
n→∞

|h(n)|
n2α+1

> 0

(1.14)
(cf. also (2.25) in Section 2.5). Hence, {‖κn‖∞ : n ∈ N0} is bounded if and only if α ≥ 0.

For α = −1
2 , one obtains the Chebyshev polynomials of the �rst kind (Tn(x))n∈N0 , i.e.,

P
(− 1

2)
n (x) = Tn(x) (n ∈ N0);

this is the only example among the ultraspherical polynomials such that `1(h) is even
amenable ([Las07, Corollary 3], Theorem 1.4 (i)).23 The problem of weak amenability for
the parameter region α ∈

(
−1

2 , 0
)
, which was suggested in [Las09c, Section 3] and has been

open for some years, shall be solved in this thesis, see Section 2.5; note that, by (1.13),
‖κn‖∞ → ∞ (n → ∞) in this case. For α = 0, one gets the Legendre polynomials; for
α = 1

2 , one has the Chebyshev polynomials of the second kind.

� {‖κn ∗ ϕ‖∞ : n ∈ N0} is bounded for some ϕ ∈ {xα : x ∈ N̂0}; since, due to (1.10), xα ∗
κn(m) =

∑n
k=0 Tm xα(k)κn(k)h(k) = Pm(x)

∑n
k=0 κn(k)Pk(x)h(k) = Pm(x)P ′n(x) for each

x ∈ N̂0 and m,n ∈ N0, and since consequently ‖κn ∗ xα‖∞ = |P ′n(x)|, the boundedness of
{‖κn ∗ xα‖∞ : n ∈ N0} corresponds to the existence of a nonzero bounded point derivation
at x (due to Theorem 1.6) [Kah15, Section 1]. In other words: the general implication
�weakly amenable ⇒ point amenable� (cf. Subsection 1.2) reduces to the fact that point
amenability is equivalent to the unboundedness of {‖κn ∗ ϕ‖∞ : n ∈ N0} for all ϕ ∈ {xα :

x ∈ N̂0}, which is a proper subset of `∞\{0},24 whereas weak amenability is equivalent to
the unboundedness of {‖κn ∗ ϕ‖∞ : n ∈ N0} for all ϕ ∈ `∞\{0}, regardless of whether ϕ is
a character or not.

In general, a direct application of Theorem 1.7 may be very di�cult and require deep knowledge
about the concrete sequence (Pn(x))n∈N0 , however; several problems occur: on the one hand,
in many interesting examples explicit formulas for (κn)n∈N0 and the convolution (which relies
on the linearization coe�cients g(m,n; k)) are not available or at least cumbersome�therefore,
explicit computations are tedious or, in many cases, even impossible. On the other hand, the
space `∞ is �too large� to be �manageable� via the basic concepts of harmonic analysis�many
of these are limited to `1(h) (or at least `2(h)) or to {xα : x ∈ N̂0}.

Apart from this thesis (and our corresponding paper [Kah15]), we are aware of only one example
to which Theorem 1.7 has successfully been applied in order to establish weak amenability: this
is the sequence (Tn(x))n∈N0 of Chebyshev polynomials of the �rst kind [Las07, Corollary 2], for
which both (κn)n∈N0 and ∗ take a very convenient form�but, as already recalled above, `1(h)

22The reference contains a typo concerning the Haar weights�the correct formula (1.12) can be obtained from
(3.2) by setting α = β.

23Further examples of polynomial hypergroups such that `1(h) is amenable are provided by the Bernstein�Szeg®
polynomials [LP10].

24That {xα : x ∈ N̂0} is indeed a proper subset of `∞\{0} can be seen as follows: for instance, ε0 /∈ {xα : x ∈ N̂0}�
for otherwise one would have 0 = P1(x) = P2(x) = . . . for some x ∈ N̂0, which contradicts orthogonality [Chi78,
I-Theorem 5.3]. (Of course, an even easier argument to see that the subset is proper would be to take into

account that {xα : x ∈ N̂0} ⊆ {ϕ ∈ `∞ : ϕ(0) = 1}.)
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is even known to be amenable (with completely di�erent proofs using approximate diagonals).
Despite the latter fact, the proof of [Las07, Corollary 2] is interesting concerning generalizations,
cf. [Las07, remark after the proof of Corollary 3]. We refer to Section 2.1 below for a modi�ed
version which will indeed serve as a kind of motivation for the research presented in Section 2.2,
Section 2.5 and Section 3.2.

It is one of the purposes of this thesis to deduce a necessary criterion which can be as �easy� to
check as the convenient necessary criteria for amenability and α-amenability (and hence right
character amenability) recalled above, and to deduce a su�cient criterion which, in particular,
enables us to solve a problem which has been open for some years, namely whether �`1(h) weakly
amenable� already implies �`1(h) amenable� (or at least �`1(h) right character amenable�).
Concerning this problem, our su�cient criterion will enable us to give explicit examples such
that these implications do not hold (for instance, the abovementioned ultraspherical polynomials
for the parameter region α ∈

(
−1

2 , 0
)
will turn out to be suitable examples, see Section 2.5).

These might also be the �rst examples of commutative, non-compact hypergroups in general
which have such properties.

The related question whether there exists a polynomial hypergroup such that `1(h) is point
amenable but fails to be weakly amenable and right character amenable has already been
answered positively by [Las07, Las09b, Las09c], also in terms of ultraspherical polynomials: on
the one hand, the ultraspherical polynomials yield point amenable `1(h) if and only if α < 1

2
(where Dx 6= 0 exists for each x ∈ (−1, 1) if α ≥ 1

2) [Las09b, Corollary 1]. On the other hand,
the ultraspherical polynomials yield right character amenable `1(h) if and only if α = −1

2
[Las09c, p. 792]�then, `1(h) is also amenable (Chebyshev polynomials of the �rst kind).
Finally, recall that `1(h) fails to be weakly amenable if α ≥ 0 (cf. above).

The little q-Legendre polynomials [Las05, Section 6] provide an example of a polynomial hyper-
group such that `1(h) is right character amenable yet non-amenable, see [Las09c, p. 792].

Remark. We note at this stage that in the references [FLS04, Las07, Las09b, Las09c], which
we cite frequently in this thesis, the additional assumption b0 ≥ 0 was made. However, none
of the results we cite becomes false if this additional assumption is dropped (easy to see; the
assumption b0 ≥ 0 has no meaning). The class of Jacobi polynomials, see Section 3, contains
examples where b0 < 0.
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2. Point and weak amenability of `1-algebras of polynomial
hypergroups: general results

Parts of Section 2 are very similar to our publication [Kah15].

If not stated otherwise, let (Pn(x))n∈N0 always be as in Section 1.3 (without further speci�cation).

2.1. Motivating example: Chebyshev polynomials of the �rst kind reconsidered

We de�ne (fn)n∈N0 ⊆ c00 by

p2
n(x) =

2n∑
k=0

fn(k)Pk(x)h(k), fn(2n+ 1) := fn(2n+ 2) := . . . := 0 (n ∈ N0, x ∈ R),

or, equivalently, by
fn = P−1(p2

n) (n ∈ N0), (2.1)

and we de�ne (Fn)n∈N0 ⊆ c00 by

Fn :=
1

n+ 1

n∑
k=0

fk (n ∈ N0). (2.2)

It is easy to see that fn and Fn are nonnegative, and that fn is explicitly given by

fn(k) =

{
g(n, k;n), k ≤ 2n,

0, else.
(2.3)

Moreover, for the sake of brevity, we de�ne σ : N→ R\{0} by

σ(n) := κn(n− 1).

In the following, we consider the simplest example of a polynomial hypergroup on N0; this is pro-

vided by the Chebyshev polynomials of the �rst kind, i.e., (Tn(x))n∈N0 =

(
P

(− 1
2)

n (x)

)
n∈N0

. The

Chebyshev polynomials of the �rst kind are given via the simplest possible recurrence coe�cients:
bn ≡ 0 and an = cn = 1

2 (n ∈ N). The orthogonalization measure reduces to dµ(x) = ωT (x) dx,
where ωT : R→ [0,∞),

ωT (x) :=
1

π
(1− x2)−

1
2χ(−1,1)(x). (2.4)

One has
cos(nx) = Tn(cosx) (n ∈ N0, x ∈ C) (2.5)

[AS64, 22.3.15],

g(m,n; k) =
1

2
[δ|m−n|(k) + δm+n(k)] (m,n ∈ N0, k ∈ {|m− n|, . . . ,m+ n}), (2.6)

and the Haar function reduces to

h(n) = 2− δ0(n) (n ∈ N0). (2.7)

All of these basics are well-known. (fn)n∈N0 (via (2.3) and (2.6)), (Fn)n∈N0 and σ are explicitly
given by

fn =

{
ε0, n = 0,

ε0 + ε2n, else,
(2.8)

Fn =
n

n+ 1
ε0 +

1

n+ 1

n∑
k=0

ε2k,

σ(n) = n.
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Moreover, one has

κn = σ(n)

bn−1
2 c∑

k=0

h(n− 1− 2k)εn−1−2k (n ∈ N) (2.9)

[Las07, p. 186]. We now give a�more generalizable�variant to [Las07, Corollary 2] concerning
the proof of weak amenability of the Banach algebra `1(h) that corresponds to the Chebyshev
polynomials of the �rst kind. This variant can be regarded as motivation for our su�cient
criterion presented in the next subsection. As in [Las07], we use Theorem 1.7. Hence, let ϕ ∈ `∞
such that {‖κn ∗ ϕ‖∞ : n ∈ N0} is bounded, and let C := supn∈N0

‖κn ∗ ϕ‖∞. We divide our
proof into four steps:

Step 1: it is shown in [Las07, proof of Corollary 2] that (in our notation)

κn+1 ∗ εn − κn ∗ εn+1 = σ(n+ 1)Fn (n ∈ N0). (2.10)

Consequently, ‖Fn ∗ ϕ‖∞ ≤
2C
n+1 (n ∈ N0), and therefore

‖Fn ∗ ϕ‖∞ → 0 (n→∞). (2.11)

Step 2: let T := supn∈N
σ(n+2)
σ(n) (= 3). Using (2.9), for every n ∈ N the following calculation

holds:
κn+2 ∗ ϕ(0)

σ(n+ 2)
− κn ∗ ϕ(0)

σ(n)
= h(n+ 1)Tn+1ϕ(0) = h(n+ 1)ϕ(n+ 1). (2.12)

Consequently,

(n+ 2)|ϕ(n+ 1)| = 1

2

∣∣∣∣κn+2 ∗ ϕ(0)− σ(n+ 2)

σ(n)
κn ∗ ϕ(0)

∣∣∣∣ ≤ 1

2
(C + TC) = 2C, (2.13)

which implies that
ϕ ∈ O(n−1) ⊆ c0. (2.14)

Step 3: let
F := ε0. (2.15)

Obviously, fn → F (n→∞) pointwise and

sup
n∈N0

‖fn‖1 <∞. (2.16)

Hence, (Fn)n∈N0 converges to F pointwise (even uniformly), and

sup
n∈N0

‖Fn‖1 <∞. (2.17)

Now given any m ∈ N0, we can use that Tm is nonexpansive w.r.t. the ‖.‖p-norms to conclude

that TmFn
∗
⇀ TmF w.r.t. σ(`1(h), c0) [CP03, p. 405; p. 413], which, in view of Step 2, yields

Fn ∗ ϕ(m) = 〈TmFn, ϕ〉 → 〈TmF,ϕ〉 = F ∗ ϕ(m) (n → ∞), i.e., Fn ∗ ϕ converges to F ∗ ϕ
pointwise. With Step 1, we obtain from this that

‖Fn ∗ ϕ− F ∗ ϕ‖∞ → 0 (n→∞), (2.18)

and,

Step 4, that F ∗ϕ = 0, i.e., ϕ = 0 (since F = ε0). Using Theorem 1.7, we see that `1(h) is indeed
weakly amenable. Note that, blowing up the conclusion at the beginning of the present Step 4,
it reads

(∀m ∈ N0 : 〈TmF,ϕ〉 = 0)⇒ ϕ = 0. (2.19)
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We note again that `1(h) is even amenable [Las07, Corollary 3] (or also [Wol84, Proposition
5.4.4])�so the preceding proof of weak amenability is interesting only in view of possible gener-
alizations to other, more complicated polynomial hypergroups. We chose our presentation with a
view to such generalizations (and, to this end, inserted (2.18) and (2.19), which the reader might
have found clumsy and needless at �rst sight). Searching for generalizations, it is remarkable
that Step 1 (both the result (2.11) and the central argument (2.10)) holds in large generality
whenever σ(n)→∞ (n→∞), see the next subsection. Besides this observation, however, again
several problems occur:

� Problem 1: Step 2 essentially relied on the (very) special structure of the Chebyshev
polynomials of the �rst kind: the important intermediate result (2.14) was due to the
simple explicit formula for the sequence (κn)n∈N (2.9) (and also due to the �niteness of T ).

� Problem 2: Step 3 made use of the existence of a simple weak-∗ limit F (2.15) of the
sequence (Fn)n∈N0 w.r.t. σ(`1(h), c0). In general, such a limit need not exist at all: the
Banach�Steinhaus theorem yields that (2.17) is necessary for the existence of a weak-∗
limit, and in Subsection 2.5 we shall see examples such that (2.17) is violated (ultraspher-
ical polynomials for α > −1

2). Although a pointwise�and even uniform�limit (which,
without suitable further information, is of little worth, of course) exists under rather gen-
eral conditions, see the notes at the end of Subsection 2.2, it need not be of �simple�
structure (or at least explicitly available) in general. All in all, a reasonable generalization
of (2.18) will be one of the main tasks.

� Problem 3: even if one comes up to a situation which can be compared to the beginning
of Step 4, the implication in (2.19) might be false or at least very nontrivial, depending on
F : it might happen that the set {TmF : m ∈ N0} is simply �not large enough� to allow
the conclusion. Therefore, also Step 4 essentially relied on the special structure of the
Chebyshev polynomials of the �rst kind.

In the next subsection, we shall present the announced su�cient criterion for weak amenability
of `1(h). The Chebyshev weight ωT (2.4) will play a crucial role because it naturally arises when
considering the limiting behavior of orthogonal polynomials.

2.2. Establishing weak amenability: growth conditions and asymptotics

We give a su�cient criterion whose combination with inheritance via homomorphisms shall allow
us to establish weak amenability of `1(h) for all of those Jacobi, symmetric Pollaczek and asso-
ciated ultraspherical polynomial sequences such that weak amenability of `1(h) holds. Before,
the only known example in this class was the sequence (Tn(x))n∈N0 of Chebyshev polynomi-
als of the �rst kind. As already outlined in the previous subsection, Step 1 of our motivating
example (which considered just these Chebyshev polynomials of the �rst kind) generalizes with-
out noteworthy di�culties: the proof of the following Lemma 2.1, which is [Kah15, Lemma
2.2] in our corresponding paper, is based on ideas of [Las07, Section 2, in part. Corollary 2],
puts them into a more general framework, and uses, as already done in [Las07], the well-known
`Christo�el�Darboux formula' which states that

1

a0cnh(n)

n−1∑
k=0

h(k)P 2
k (x) = P ′n(x)Pn−1(x)− P ′n−1(x)Pn(x) (2.20)

for every n ∈ N and x ∈ R (cf. [Las07, (12)]).

Lemma 2.1. Let ϕ ∈ `∞ such that {‖κn ∗ ϕ‖∞ : n ∈ N0} is bounded. If σ(n) → ∞ (n → ∞),
then ‖Fn ∗ ϕ‖∞ → 0 (n→∞).
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Roughly speaking, Problem 1, Problem 2 and Problem 3 described at the end of the previous
subsection can be overcome with the following approach:
(1) do not overcome Problem 1 in generality, but make (2.14)�more precisely, a stronger
form of (2.14) which imposes also properly sublinear growth of h and therefore yields both
O(n−1) ⊆ `2(h) and, as needed to apply Lemma 2.1, σ(n) → ∞ (n → ∞) (see Lemma 2.4 (i)
below)�a condition.
(2) Overcome Problem 2 by considering a weak limit F of the sequence (Fn)n∈N0 =(

1
n+1

∑n
k=0 fk

)
n∈N0

w.r.t. σ(`2(h), `2(h)) instead of a weak-∗ limit w.r.t. σ(`1(h), c0). This

exists under considerably�and suitably�more general growth conditions than (2.16), and our
further strategy will not require to know it in an explicit form. Our central idea is to consider
asymptotics and to use a result which goes back to Nevai and yields that�under suitable
conditions�the polynomials p2

n(x) (which coincide with the functions f̂n(x) on N̂0) increasingly
rapidly �oscillate� around a certain weak limit as n ∈ N0 increases. This limit involves the
Chebyshev weight ωT (2.4).
(3) Overcome Problem 3 via Hilbert space methods and the fundamental lemma of the calculus
of variations [Dac04, Theorem 1.24].

The following auxiliary results correspond to [Kah15, Lemma 2.3] (Lemma 2.2) and [Kah15,
Lemma 2.4] (Lemma 2.3).

Lemma 2.2. If µ is absolutely continuous25 and supp µ = [−1, 1], and if furthermore
µ′ > 0 a.e. in [−1, 1] and supn∈N0

∫
Rp

4
n(x) dµ(x) < ∞, then ωT

µ′ ∈ L2(R, µ) and∥∥∥Fn ∗ ϕ− P−1
(
ωT
µ′

)
∗ ϕ
∥∥∥
∞
→ 0 (n→∞) for all ϕ ∈ `2(h).26

Lemma 2.3. Under the conditions of Lemma 2.2, the set
{
TmP−1

(
ωT
µ′

)
: m ∈ N0

}
is total in

the Hilbert space `2(h).

Establishing theses lemmas is the actual work on the way to our su�cient criterion. The
details are given in our paper [Kah15]. Besides the ingredients outlined above, our proof makes
massive use of another result on asymptotic behavior (taken from Nevai's work [Nev79]), of a
suitable weak convergence argument [BC09, Corollary A.8.8], of the Plancherel isomorphism, of
appropriate approximation arguments, and, which is a consequence of the hypergroup structure
(cf. Section 1.3), of the uniform boundedness of {Pn(x) : n ∈ N0} on supp µ. Concerning
Nevai's asymptotic result recalled above, our proof uses a version which is presented in [MNT87,
Theorem 12.1] and provides a suitable strong convergence for the arithmetic means. Our
strategy makes essential use of the additional regularity conditions on µ.

Based on Lemma 2.1, Lemma 2.2 and Lemma 2.3, we obtain the following su�ciency criterion,
which is [Kah15, Theorem 2.3]:

Theorem 2.1. If each of the conditions

(i) {‖κn ∗ ϕ‖∞ : n ∈ N0} is unbounded for all ϕ ∈ `∞\O(n−1),

(ii) µ is absolutely continuous, supp µ = [−1, 1], µ′ > 0 a.e. in [−1, 1],

(iii) h(n) = O(nα) (as n→∞) for some α ∈ [0, 1),

25If not stated otherwise, absolute continuity of the orthogonalization measure µ, the Radon�Nikodym derivative
µ′, as well as singular parts and so on, are always meant w.r.t. the Lebesgue�Borel measure on R.

26Of course, the expression � ωT
µ′ ∈ L2(R, µ)� has to be interpreted in the sense that there exists a (unique) element

of L2(R, µ) that contains every Borel measurable continuation of the µ-a.e. de�ned quotient ωT
µ′ to R, and this

element of L2(R, µ) shall then be denoted by ωT
µ′ again. In the following, we shall use this notation without

further explanation.

22



(iv) supn∈N0

∫
Rp

4
n(x) dµ(x) <∞

holds, then `1(h) is weakly amenable.

When applying Theorem 2.1 to examples later in this thesis, we will check condition (i) by
verifying even the unboundedness of {|κn ∗ ϕ(0)| : n ∈ N0} for every ϕ ∈ `∞\O(n−1); cf. also
the motivating Subsection 2.1.

Obviously, condition (iv) of Theorem 2.1 is equivalent to the boundedness of {‖fn‖2 : n ∈ N0}.

Using the lemmas, the proof of Theorem 2.1 can be done by transferring the conclusion of our
motivating example in Subsection 2.1.

For the sake of completeness, we note that condition (ii) of Theorem 2.1 (i.e., that µ is
absolutely continuous and in the `Erd®s class') has some interesting consequences by itself. On
the one hand, it yields N̂0 = [−1, 1]: [Nev86, Theorem 4.5.6] tells that h(n)∑n−1

k=0 h(k)
→ 0 (n→∞);

therefore, h is of subexponential growth, which then implies N̂0 = X b(N0) = supp µ = [−1, 1]
as a consequence of [Las05, Corollary 6.1].27 On the other hand, it yields the existence of
a pointwise limit F ∈ `∞ of the sequence (fn)n∈N0 , which then is also the uniform limit
of (Fn)n∈N0 : this is a consequence of [MNT87, Theorem 11.1; Theorem 12.1]. Another con-
sequence of Theorem 2.1 (ii) is that (Pn(x))n∈N0 is of Nevai classM(0, 1) [Nev86, Theorem 4.5.7].

A di�erent su�cient criterion for weak amenability of `1(h) was given via [Per11a, Proposition
2.19]; it involves the inverses of the functions Fn (in our notation) in `1(h) and the norms

∥∥F−1
n

∥∥
1

(n ∈ N0; cf. [Per11a, De�nition 2.11]). Even if the existence of these inverses is guaranteed,28

it may be very di�cult to estimate the norms
∥∥F−1

n

∥∥
1
. This problem, and the resulting lack of

satisfying applicability, has already been pointed out in [Per11a]; to our knowledge, applications
on concrete examples have not been given.

2.3. Ruling out weak amenability: shift operators and smoothness conditions

As recalled in Section 1.4, the Banach algebra `1(h) that corresponds to the sequence of ul-

traspherical polynomials (P
(α)
n (x))n∈N0 with α ≥ 0 can be seen to be not weakly amenable by

realizing that (κn)n∈N0 , which is explicitly known and of exactly the same structure as (2.9)
(cf. Subsection 2.5 below), is uniformly bounded [Las07, Corollary 1]. In view of (2.9) (or,
more precisely, its analogue (2.26) below), this just means that σ is bounded. Observe that
the �critical value� α = 0 (which corresponds to the Legendre polynomials) has an interesting
meaning concerning the orthogonalization measure (1.11): if α ≥ 0, then the Radon�Nikodym
derivative µ′ is continuous on [−1, 1] and continuously di�erentiable on (−1, 1), whereas if α < 0,
then µ′ behaves �worse�. Theses observations yield the following questions concerning a general
polynomial hypergroup:

� Is the boundedness of σ equivalent to the boundedness of {‖κn‖∞ : n ∈ N0}? (Trivially,
the boundedness of σ is necessary for the boundedness of {‖κn‖∞ : n ∈ N0}.)

� Is {‖κn‖∞ : n ∈ N0} automatically bounded�and hence `1(h) not weakly amenable�
whenever µ′ is su�ciently �smooth�?

27An interesting characterization of N̂0 = X b(N0) = supp µ is given in [Per11b].
28For instance, this is satis�ed if h is of subexponential growth because then N̂0 = X b(N0) = supp µ [Las05,

Corollary 6.1] and F̂n > 0 on N̂0, so the existence follows from well-known general Gelfand theory. In particular,
the existence of the inverses F−1

n (n ∈ N0) would be guaranteed under the conditions of our su�ciency criterion
Theorem 2.1. We note that there exists an interesting generalization of the cited ingredient [Las05, Corollary
6.1], see [BH95, Theorem 2.5.12] and [BH95, Corollary 2.5.13] (which correspond to results of Vogel [Vog87]
and Voit [Voi88]), and cf. [Las05, Lemma 6.2].
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If the answer to the �rst question was positive, this would be very convenient because the
computation of σ is much easier than the computation of the whole sequence (κn)n∈N0 , see
Lemma 2.4 (i) below. However, the answer is negative, see the notes at the end of Section 3.2.
Nevertheless, the �rst part of Theorem 2.2 below provides a closely related characterization which
involves the values κn(0) (instead of σ(n) = κn(n− 1)); for brevity, let τ : N0 → R be de�ned by

τ(n) := κn(0).

The computation of τ is more involved than that of σ, but it can still be considerably easier
than the computation of the whole sequence (κn)n∈N. In fact, Lemma 2.4 (ii) and (iii) will
give explicit recurrence relations for τ ; in Section 3.5, we shall apply these to the class of
cosh-polynomials.

The answer to the second question (�µ′ su�ciently `smooth' ⇒ {‖κn‖∞ : n ∈ N0} bounded?�)
will turn out to be positive, which yields a necessary criterion for weak amenability which is as
short as the necessary criteria for amenability, α-amenability and right character amenability
recalled in Section 1.4. In the following, we state the announced results, which are [Kah15,
Lemma 2.1] and [Kah15, Theorem 2.2].

Lemma 2.4. The following hold:

(i) σ is explicitly given by

σ(n) =
n

a0cnh(n)
(n ∈ N).

(ii) τ satis�es the following coupled system of recursions: τ(0) = 0, τ(1) = 1
a0
,

τ(2n) = − 1

g(n, n; 2n)

2n−1∑
k=1

g(n, n; k)τ(k) (n ∈ N),

τ(2n+ 1) =
1

g(n, n+ 1; 2n+ 1)

[
n+ 1

a0anh(n)
−

2n∑
k=1

g(n, n+ 1; k)τ(k)

]
(n ∈ N).

(iii) If bn ≡ 0 (symmetric case), then τ satis�es τ(2n) = 0 (n ∈ N0) and the recurrence relation
τ(1) = 1,

τ(2n+ 1) =
1

g(n, n+ 1; 2n+ 1)

[
n+ 1

anh(n)
−

n∑
k=1

g(n, n+ 1; 2k − 1)τ(2k − 1)

]
(n ∈ N).

(iv) For each n ∈ N0 the representation

κn = χ{0,...,n}Tnτ

holds.

(v) If bn ≡ 0, then κ2n−1(2k + 1) = κ2n(2k) = 0 (n ∈ N, k ∈ N0).

Theorem 2.2. {‖κn‖∞ : n ∈ N0} is bounded if and only if τ is bounded. If `1(h) is weakly
amenable, then

(i) τ is unbounded;

moreover, if `1(h) is weakly amenable (or, more generally, if (i) holds), then

(ii) µ has a singular part or µ′ is not absolutely continuous (as a function) on
[min supp µ,max supp µ].
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The detailed proofs are given in our paper [Kah15].

We note that Lemma 2.4 (i), which is also contained in the author's Master's thesis [Kah12],
is immediate from integrating the Christo�el�Darboux formula (2.20) w.r.t. µ; under the
additional assumption of symmetry (i.e., bn ≡ 0, which we have not supposed), this result is
already contained in [LO08]�with a completely di�erent proof, however, which was generalized
to a proof of the full assertion of Lemma 2.4 (i) by E. Perreiter then (who found Lemma 2.4 (i)
independently of the author).

Lemma 2.4 (iv), which relates (κn)n∈N0 to τ via the shift operators Tn, is the central tool
for establishing Lemma 2.4 (ii) and (iii). Moreover, from Lemma 2.4 (iv) the necessity of the
boundedness of {‖κn‖∞ : n ∈ N0} for the boundedness of τ (the su�ciency is trivial) can be
seen as follows: if τ is bounded, then

‖τ‖∞ ≥ sup
n∈N0

‖Tnτ‖∞ ≥ sup
n∈N0

‖κn‖∞

because, as a consequence of the hypergroup structure, the shift operators Tn are nonexpansive
on `∞ (see Section 1.3). The proof of Theorem 2.2 (ii) relies on Theorem 2.2 (i), an integration
by parts argument and the uniform boundedness of {Pn(x) : n ∈ N0} on supp µ. With regard
to Theorem 2.2 (ii), it is interesting to observe that there are polynomial hypergroups whose
orthogonalization measure µ is even purely discrete�an explicit example is provided by the little
q-Legendre polynomials [Las05, Section 6]. As we already have recalled, the little q-Legendre
polynomials yield right character amenable yet non-amenable `1(h).

Considering the ultraspherical polynomials again, (1.11) and (1.14) show that if µ′ is absolutely
continuous on [−1, 1], then h is of at least linear growth. Via Theorem 2.2, this generalizes to the
following observation for arbitrary polynomial hypergroups: if µ is absolutely continuous and µ′

is absolutely continuous on the convex hull of supp µ, then τ�and hence σ�is bounded due to
Theorem 2.2; in view of Lemma 2.4, this is only possible if h has at least linear growth. Compare
this to the conditions of the su�ciency criterion Theorem 2.1.

2.4. Inheritance via homomorphisms and results on point amenability

As already mentioned, [Las09b] contains many results on point amenability of `1(h). In this
subsection, we give some additional criteria. The following proposition, which corresponds to
[Kah15, Proposition 2.1], gives two necessary criteria in the symmetric case (i.e., bn ≡ 0):

Proposition 2.1. Let bn ≡ 0.

(i) If cnan−1 ≤ 1
4 (n ∈ N), then N̂0 = [−1, 1] and Dx 6= 0 exists for all x ∈ (−1, 1). Hence, if

`1(h) is point amenable, then cnan−1 >
1
4 for some n ∈ N.

(ii) If lim supn→∞ cn <
1
2 , then 0 ∈ N̂0 and D0 6= 0 exists. Hence, if `1(h) is point amenable,

then lim supn→∞ cn ≥ 1
2 .

Proposition 2.1 (i) �isolates� an argument which is in principle already contained in [Las09b,
Example 7] and which is based on nonnegativity of the connection coe�cients to the Chebyshev

polynomials of the second kind

(
P

( 1
2)

n (x)

)
n∈N0

(cf. [Ask71, Theorem 1] or [Szw92a, Theorem 2]).

The argument essentially uses that�as we already have recalled�the set

{
d

dxP
( 1
2)

n (x) : n ∈ N0

}
is bounded for every x ∈ (−1, 1) (and that one has N̂0 = X b(N0) = supp µ = [−1, 1] for the
Chebyshev polynomials of the second kind). The proof of Proposition 2.1 (ii) shows that the
condition lim supn→∞ cn < 1

2 enforces both {Pn(0) : n ∈ N0} and {P ′n(0) : n ∈ N0} to be
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bounded; hence, one can apply Theorem 1.6.

The following �inheritance via homomorphisms� result due to Lasser and Perreiter concerning
weak amenability is from [LP10, in part. Theorem 2.2 and Proposition 3.1].

Theorem 2.3. Let (P̃n(x))n∈N0 induce another polynomial hypergroup on N0, and let h̃ denote
the corresponding Haar function. Let for each n ∈ N0 the connection coe�cients Cn(0), . . . , Cn(n)

be de�ned by Pn(x) =
∑n

k=0Cn(k)P̃k(x), and assume that
∑n

k=0 |Cn(k)| ≤ C (n ∈ N0) for some
�xed C > 0. Then there exists a continuous homomorphism of Banach algebras with dense range
from `1(h) into `1(h̃), and if `1(h) is weakly amenable, then so is `1(h̃).

We have the following analogue to Theorem 2.3 for point amenability [Kah15, Proposition 2.2]:

Proposition 2.2. Under the conditions of Theorem 2.3, let
˜̂N0 refer to (P̃n(x))n∈N0. Then the

following holds: if x ∈ ˜̂N0 and Dx 6= 0 exists on `1(h̃), then x ∈ N̂0 and Dx 6= 0 exists on `1(h).
In particular: if `1(h) is point amenable, then so is `1(h̃).

Proposition 2.2 is an extension of [Las09b, Proposition 6] (but can be established in the same
way).

The detailed proofs are given in our paper [Kah15].

2.5. A �rst application of the su�cient criterion: ultraspherical polynomials and
the solution to the problem �amenability vs. weak amenability�

We consider the ultraspherical polynomials (P
(α)
n (x))n∈N0 for α ∈

(
−1

2 , 0
)
and, as a �rst appli-

cation of Theorem 2.1, prove that `1(h) is weakly amenable in this case. This is much simpler
than the generalization to Jacobi polynomials presented in Section 3.2. We preliminarily note
that (fn)n∈N0 (2.1) is explicitly given by fn|N0\{0,2,...,2n} = 0 and

fn(2k) =
(2k)!

(
α+ 1

2

)2
k

(2α+ 1)2k(k!)2

(
n+ α+ 1

2

) (
α+ 1

2

)
n−k n!(2α+ 1)n+k(

n+ k + α+ 1
2

)
(n− k)!(2α+ 1)n

(
α+ 1

2

)
n+k

(n ∈ N0, k ∈ {0, . . . , n}).

(2.21)
This is a consequence of (2.3) and the explicit formula for the linearization coe�cients g(m,n; k)
for the ultraspherical polynomials (Dougall's formula), which reads, for any m,n ∈ N0,

g(m,n; k) =j!

(
α+

1

2

)
j

(
m

j

)(
n

j

)

×

(
m+ n+ α+ 1

2 − 2j
) (
α+ 1

2

)
m−j

(
α+ 1

2

)
n−j (2α+ 1)m+n−j(

m+ n+ α+ 1
2 − j

) (
α+ 1

2

)
m+n−j (2α+ 1)m(2α+ 1)n

(2.22)

if k = m+n−2j with j ∈ {0, . . . ,min{m,n}}, and g(m,n; k) = 0, else, cf. [Las83, Section 3 (a)]
or [Las05, p. 97], or also [AAR99, Theorem 6.8.2] or [Ask75, (5.7)] (the latter references contain
some interesting historical notes concerning Dougall's formula). With

(x)p =
Γ(x+ p)

Γ(x)
(p ∈ R, x > max{0,−p}), (2.23)

after some rearrangements and cancellations (2.21) may be rewritten as

fn(2k) =
Γ(2α+ 1)

Γ
(
α+ 1

2

)2 (n+ α+
1

2

)
(n+ 2α+ 1)−2α(2k + 2α+ 1)−2α(k + 1)2

α− 1
2

× (n− k + 1)α− 1
2

(
n+ k + α+

3

2

)
α− 1

2

(n ∈ N0, k ∈ {0, . . . , n}).
(2.24)
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In the same way, we can rewrite (1.12) as

h(n) =
2n+ 2α+ 1

Γ(2α+ 2)
(n+ 1)2α (n ∈ N0). (2.25)

Having in mind the motivating example given in Subsection 2.1, i.e., the Chebyshev polynomials
of the �rst kind, we note that Step 2 easily transfers to the new situation: as analogue to (2.9),
one has

κn = σ(n)

bn−1
2 c∑

k=0

h(n− 1− 2k)εn−1−2k (n ∈ N) (2.26)

with

σ(n) =
n!

(2α+ 2)n−1
(n ∈ N)

[Las07, (10); (11)], and for any ϕ ∈ `∞ such that {‖κn ∗ ϕ‖∞ : n ∈ N0} is bounded, we can argue

as follows: let C := supn∈N0
‖κn ∗ ϕ‖∞ and T := supn∈N

σ(n+2)
σ(n) = supn∈N

(n+2)(n+1)
(n+2α+2)(n+2α+1)(< 3).

Via (2.26), we obtain an equation which reads exactly as (2.12). Using Lemma 2.4 (i), we get

(n+ 2)|ϕ(n+ 1)| = an+1

∣∣∣∣κn+2 ∗ ϕ(0)− σ(n+ 2)

σ(n)
κn ∗ ϕ(0)

∣∣∣∣ ≤ C + TC ≤ 4C

for each n ∈ N. Hence, ϕ ∈ O(n−1).

However, it is not possible to transfer Step 3: since the asymptotic behavior of the gamma
function yields the well-known limit

(x)p
xp
→ 1 (x→∞)

(cf. (2.23)), (2.24) and (2.25) imply that lim infn→∞
fn(2n)h(2n)

nα+
1
2

> 0. Consequently,

‖fn‖1 → ∞ (n → ∞) and also ‖Fn‖1 ≥
1

n+1

∑n
k=0 fk(2k)h(2k) → ∞ (n → ∞). The latter

shows that (Fn)n∈N0 cannot have a weak-∗ limit w.r.t. σ(`1(h), c0), however (cf. Problem 2 in
Subsection 2.1).

Nevertheless, we can prove that a satisfactory replacement�namely condition (iv) of Theo-
rem 2.1�holds (condition (i) of Theorem 2.1 has already been established above, and condition
(ii) and condition (iii) are obviously satis�ed from (1.11) and (1.12)): using (2.24) and the
asymptotic behavior of the gamma function, there exists C1 > 0 such that, for all n ∈ N0 and
k ∈ {0, . . . , n}, the estimation

fn(2k) ≤C1

(
n+ α+

1

2

)
(n+ 2α+ 1)−2α(2k + 2α+ 1)−2α(k + 1)2α−1

× (n− k + 1)α−
1
2

(
n+ k + α+

3

2

)α− 1
2

≤

≤2C1(n+ 2)(n+ 2)−2α(k + 1)−2α(k + 1)2α−1

× [(n+ 2)− (k + 1)]α−
1
2 (n+ k + 1)α−

1
2 =

=
2C1

k + 1
(n+ 2)1−2α[(n+ 2)− (k + 1)]α−

1
2 (n+ k + 1)α−

1
2 ≤

≤ 6C1

k + 1

(
(n+ 2)2

(n+ 2)2 − (k + 1)2

) 1
2
−α
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holds, where the last inequality relies on 1
n+k+1 ≤

3
(n+2)+(k+1) . Thus, taking into account the

growth of h (1.14), we see that there exists C2 > 0 such that, for all n ∈ N0 and k ∈ {0, . . . , n},

fn(2k)2h(2k) ≤ C2

(
(n+ 2)2

(k + 1)[(n+ 2)2 − (k + 1)2]

)1−2α

=

= C2

[
1

k + 1
+

k + 1

(n+ 2)2 − (k + 1)2

]1−2α

≤

≤ C2

[
1

k + 1
+

1

n+ 1− k

]1−2α

≤

≤ 2C2

[
1

(k + 1)1−2α
+

1

(n+ 1− k)1−2α

]
,

where the last estimation uses the power mean inequality. Hence, we can conclude that∫
R
p4
n(x) dµ(x) = ‖fn‖22 ≤ 2C2

n∑
k=0

[
1

(k + 1)1−2α
+

1

(n+ 1− k)1−2α

]
< 4C2ζ(1− 2α)

for every n ∈ N0, and obtain from our su�cient criterion Theorem 2.1 that `1(h) is not weakly
amenable.

Since h(n)→∞ (n→∞), `1(h) is not amenable due to Theorem 1.4 (i). For arbitrary α > −1
2 ,

`1(h) is xα-amenable if and only if x = ±1 [Las09c, p. 792]. However, recall that `1(h) is point
amenable if and only if α < 1

2 .

Remark 2.1. Of course, (2.24) and (2.25) hold true for any α > −1
2 , and (fn)n∈N0 converges

pointwise to F ∈ `∞ given by F |N0\{0,2,...,2n} = 0 and

F (2k) =
Γ(2α+ 1)

Γ
(
α+ 1

2

)2 (2k + 2α+ 1)−2α(k + 1)2
α− 1

2

(k ∈ {0, . . . , n}).

There is some Cα > 0 such that, for each N ∈ N,

N∑
k=1

F (2k)2h(2k) =

=
Γ(2α+ 1)2

Γ
(
α+ 1

2

)4
Γ(2α+ 2)

N∑
k=1

(2k + 2α+ 1)2
−2α(k + 1)4

α− 1
2

(4k + 2α+ 1)(2k + 1)2α ≥

≥ Cα
N∑
k=1

k2α−1.

Therefore, if α ≥ 0, then ‖F‖22 = ∞, which yields supn∈N0
‖fn‖2 = ∞ (due to the Eberlein�

Smulian theorem, or due to the sequential version of Alaoglu's theorem) or, in other words, that
condition (iv) of Theorem 2.1 is violated. Obviously, also condition (iii) is violated if α ≥ 0;
however neither condition (ii) (obvious) nor condition (i) is violated: concerning the latter, one
can transfer the proof for α < 0 given in this subsection.

Remark 2.2. As should be expected, the motivating example studied in Subsection 2.1 (Cheby-
shev polynomials of the �rst kind) can easily be reobtained from our su�cient criterion Theo-
rem 2.1: w.r.t. condition (i) we refer to the short calculation given in Subsection 2.1 (Step 2);
condition (ii) and condition (iii) are obviously satis�ed from (2.4) and (2.7). That condition (iv)
is satis�ed, too, follows trivially from (2.8).
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3. Complete characterizations of point and weak amenability for
speci�c classes

Parts of Section 3 are very similar to our publication [Kah15].

In Section 2.5, we solved the problem of weak amenability for the class of ultraspherical polyno-
mials. In the present section, we extend this result to important one-parameter generalizations
of the ultraspherical polynomials, namely to the classes of Jacobi, symmetric Pollaczek and as-
sociated ultraspherical polynomials. We give complete characterizations of both point and weak
amenability of the `1-algebras by specifying the corresponding parameter regions. In the fol-
lowing, we recall some basics and refer to [Las83, Sections 3 (a), (b)] and [Las94, Sections 3,
4].

� Given α, β > −1, the sequence (R
(α,β)
n (x))n∈N0 of Jacobi polynomials which corresponds

to α and β is determined by its orthogonalization measure

dµ(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βχ(−1,1)(x) dx

and the normalization R(α,β)
n (1) = 1 (n ∈ N0), or, equivalently, via

a0 =
2α+ 2

α+ β + 2
, an =

(α+ β + 2)(n+ α+ 1)(n+ α+ β + 1)

(α+ 1)(2n+ α+ β + 1)(2n+ α+ β + 2)
(n ∈ N),

cn =
(α+ β + 2)n(n+ β)

(α+ 1)(2n+ α+ β)(2n+ α+ β + 1)
(n ∈ N),

bn ≡ 1− an − cn.

(3.1)

The corresponding parameter region DP ⊆ (− 1,∞)2 such that property (P) holds if and
only if (α, β) ∈ DP is

DP =

{
(α, β) ∈

[
−1

2
,∞
)
× (−1,∞) : α ≥ β, a(a+ 5)(a+ 3)2 ≥ (a2 − 7a− 24)b2

}
,

where a = α+ β + 1 and b = α− β [Gas70, Theorem 1]; one has h(0) = 1 and

h(n) =
(2n+ α+ β + 1)(α+ β + 2)n−1(α+ 1)n

n!(β + 1)n
(n ∈ N). (3.2)

The hypergeometric representation of the Jacobi polynomials reads

R(α,β)
n (x) = 2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣ 1− x
2

)
(n ∈ N0)

[KLS10, (9.8.1)].

� Given α > −1
2 , λ ≥ 0, the sequence (Q

(α,λ)
n (x))n∈N0 of symmetric Pollaczek polynomials

which corresponds to α and λ is determined by its orthogonalization measure

dµ(x) = Cα,λ(1− x2)αe
λx(2 arccos x−π)√

1−x2

∣∣∣∣Γ(α+
1

2
+

iλx√
1− x2

)∣∣∣∣2 χ(−1,1)(x) dx, (3.3)

where Cα,λ > 0 is a constant such that µ has total mass 1, and the normalization

Q
(α,λ)
n (1) = 1 (n ∈ N0). Equivalently, (Q

(α,λ)
n (x))n∈N0 is given via

bn ≡ 0, an ≡ 1− bn − cn, cn :=
n

2n+ 2α+ 2λ+ 1

∑n−1
k=0

(
n−1
k

) (2λ)k

(2α+1)k∑n
k=0

(
n
k

) (2λ)k

(2α+1)k

(n ∈ N).
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The parameter region

DQ :=

{
(α, λ) ∈

(
−1

2
,∞
)
× [0,∞) : (P) holds for (Q(α,λ)

n (x))n∈N0

}
satis�es

{
(α, λ) ∈

(
−1

2 ,∞
)
× [0,∞) : α ≥ 0 or λ < α+ 1

2

}
⊆ DQ, and one has

h(n) =
(2n+ 2α+ 2λ+ 1)(2α+ 1)n

(2α+ 2λ+ 1)n!

[
n∑
k=0

(
n

k

)
(2λ)k

(2α+ 1)k

]2

(n ∈ N0) (3.4)

and

αn =

√
n(n+ 2α)

(2n+ 2α+ 2λ+ 1)(2n+ 2α+ 2λ− 1)
(n ∈ N0), βn ≡ 0. (3.5)

The hypergeometric representation reads

Q(α,λ)
n (x) =

(x+ i
√

1− x2)n∑n
k=0

(
n
k

) (2λ)k

(2α+1)k

× 2F1

(
−n, α+ 1

2 + iλx√
1−x2

2α+ 1

∣∣∣∣∣ 2− 2x2 + 2ix
√

1− x2

)
(n ∈ N0, x ∈ (−1, 1))

(3.6)

[Chi78, Chapter VI �5].

� Given α > −1
2 , ν ≥ 0, the sequence (A

(α,ν)
n (x))n∈N0 of associated ultraspherical polynomials

which corresponds to α and ν is determined by its orthogonalization measure

dµ(x) = Cα,ν
(1− x2)α∣∣∣∣2F1

(
1
2 − α, ν
α+ ν + 1

2

∣∣∣∣ 2x2 − 1 + 2ix
√

1− x2

)∣∣∣∣2
χ(−1,1)(x) dx =

= Cα,ν
(1− x2)α∣∣∣∣2F1

(
1
2 − α, ν
α+ ν + 1

2

∣∣∣∣ e2i arccosx

)∣∣∣∣2
χ(−1,1)(x) dx,

(3.7)

where Cα,ν > 0 is a constant such that µ has total mass 1, and the normalization A(α,ν)
n (1) =

1 (n ∈ N0). Equivalently, (A
(α,ν)
n (x))n∈N0 is determined via

bn ≡ 0, an ≡ 1− bn − cn,

∀n ∈ N : cn :=


(n+ν)(2α+ν)n+1−(n+2α+ν)(ν)n+1

(2n+2α+2ν+1)[(2α+ν)n+1−(ν)n+1] , α 6= 0,

n+ν
2n+2ν+1

∑n−1
k=0

1
k+ν∑n

k=0
1

k+ν

, α = 0, ν > 0,

n
2n+1 , α = ν = 0.

(3.8)

Property (P) is satis�ed without any restrictions on the parameter region, and one has

h(n) =


2n+2α+2ν+1

4α2(2α+2ν+1)(ν+1)n(2α+ν+1)n
[(2α+ ν)n+1 − (ν)n+1]2, α 6= 0,

2n+2ν+1
2ν+1

(
ν
∑n

k=0
1

k+ν

)2
, α = 0, ν > 0,

2n+ 1, α = ν = 0

(3.9)

for each n ∈ N0. Moreover,

αn =

√
(n+ ν)(n+ 2α+ ν)

(2n+ 2α+ 2ν + 1)(2n+ 2α+ 2ν − 1)
(n ∈ N0), βn ≡ 0. (3.10)
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Each of these classes satis�es N̂0 = X b(N0) = supp µ = [−1, 1]. Hence, Reiter's condition

P2 is satis�ed. Obviously, (R
(α,α)
n (x))n∈N0 = (Q

(α,0)
n (x))n∈N0 = (A

(α,0)
n (x))n∈N0 for every α > −1

2 .

Another important generalization of the ultraspherical polynomials which leads to polynomial
hypergroups is (a suitable subclass of) the class of continuous q-ultraspherical (or Rogers)
polynomials [Las83, Section 3 (c)], cf. also Section 4 (up to normalization). It contains
the ultraspherical polynomials as limiting cases but does not yield examples such that
`1(h) is at least point amenable�in fact, Dx = 0 for x = ±1 and Dx 6= 0 exists for each
x ∈ (−1, 1) = N̂0\{−1, 1} (cf. [Las09b, Section 4] or, more precisely, Theorem 1.6, [Las09b,
Theorem 2] and [Vog87, Section 4.5]).

In [FLS04, Example 4.6], it is shown that if Pn(x) = R
(α,β)
n (x) (n ∈ N0) with (α, β) ∈ DP

and α > −1
2 , then `

1(h) is not xα-amenable for every x ∈ (−1, 1)�and `1(h) is −1α-amenable
if and only if α = β (ultraspherical polynomials, cf. Section 2.5); in particular, `1(h) is not
right character amenable, and consequently not amenable. The latter is also obvious from
Theorem 1.4 (i) and (3.2). The case α = β = −1

2 corresponds to the Chebyshev polynomials of
the �rst kind again, for which `1(h) is amenable.

If Pn(x) = Q
(α,λ)
n (x) (n ∈ N0) with (α, λ) ∈ DQ, or if Pn(x) = A

(α,ν)
n (x) (n ∈ N0) with

α > −1
2 , ν ≥ 0, then Theorem 1.4 (i), (3.4) and (3.9) show that `1(h) fails to be amenable. We

improve this result and clarify the situation concerning α-amenability. Due to (3.5) and (3.10),
in both cases (Pn(x))n∈N0 is of Nevai classM(0, 1) and of bounded variation type (concerning the
associated ultraspherical polynomials see also [Las09b, Example 4] for this). Moreover, bn ≡ 0

and h(n)∑n
k=0 h(k)

→ 0 (n→∞) (cf. [Las94, Theorem 4.1] and [Las94, Theorem 3.1]). Hence, due to

Proposition 1.3 and Proposition 1.4, `1(h) is xα-amenable if and only if x = ±1. Of course, this
immediately yields analogous results concerning ϕ-amenability. In particular, `1(h) also fails to
be right character amenable.29

3.1. A �rst application of the necessary criterion: weak amenability and
smoothness for symmetric Pollaczek polynomials

As another kind of motivating example, we give a precise description of the parameter region ⊆
DQ for which (Q

(α,λ)
n (x))n∈N0 bears a weakly amenable `1-algebra; since the special case of purely

ultraspherical polynomials has been clari�ed in Section 2.5, we may assume that (α, λ) ∈ DQ

with λ > 0 from now on. In the following, we show that µ′ ∈ C1(R) then (which can be regarded
as an interesting elementary calculus exercise). Hence, `1(h) fails to be weakly amenable as a
consequence of our necessary criterion Theorem 2.2. We decompose µ′|(−1,1) = Cα,λvf ◦ g with
v : (−1, 1)→ R, f : R→ R and g : (−1, 1)→ R,

v(x) := (1− x2)αe
λx(2 arccos x−π)√

1−x2 , f(x) :=

∣∣∣∣Γ(α+
1

2
+ iλx

)∣∣∣∣2 , g(x) :=
x√

1− x2

(3.3). Since

v′(x) =
e
λx(2 arccos x−π)√

1−x2

(1− x2)2

[
(−2αx

√
1− x2 − 2λx

√
1− x2 − λπ + 2λ arccosx)(1− x2)α+ 1

2

]
29These results concerning α-amenability for the Pollaczek and associated ultraspherical polynomials correct and

extend earlier results of Azimifard on the Pollaczek and associated Legendre polynomials [Azi10, (III); (IV)].
In [Azi10, (III); (IV)], the special case x = −1 is overlooked; moreover, [Azi10, (III)] cites a wrong formula for
the Haar weights of the associated Legendre polynomials.
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for x ∈ (−1, 1), we see that

|v′(x)| ≤ e
λx(2 arccos x−π)√

1−x2

(1− x2)2
≤ e

− λ√
1−x2

(1− x2)2

if 1−|x| is su�ciently small. Consequently, v ∈ C1(−1, 1) and limx→±1 v
′(x) = 0 = limx→±1 v(x).

We now study the function f . Euler's in�nite product formula for the complex gamma function
states that

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

(z ∈ C,−z /∈ N0)

[GK97, Proposition 15.1.6], and it is a consequence of this that

|Γ(x+ iy)|2 = Γ(x)2
∞∏
n=0

(x+ n)2

(x+ n)2 + y2
(x, y ∈ R,−(x+ iy) /∈ N0) (3.11)

[AS64, 6.1.25]. From (3.11) we obtain that

log f(x) = 2 log Γ

(
α+

1

2

)
+
∞∑
n=0

log

(
α+ 1

2 + n
)2(

α+ 1
2 + n

)2
+ λ2x2︸ ︷︷ ︸

=:γn(x)

(x ∈ R).

Since γn : R→ R, x 7→ γn(x), is continuously di�erentiable for each n ∈ N0 with

γ′n(x) =
−2λ2x(

α+ 1
2 + n

)2
+ λ2x2

(x ∈ R),

and since the series
∑∞

n=0 γ
′
n(x) converges uniformly on compact intervals, we see that log f ∈

C1(R) and
d

dx
log f(x) = −2λ2x

∞∑
n=0

1(
α+ 1

2 + n
)2

+ λ2x2
(x ∈ R).

Consequently, f ∈ C1(R) with

f ′(x) = −2λ2xf(x)

∞∑
n=0

1(
α+ 1

2 + n
)2

+ λ2x2
(x ∈ R).

In particular, we have established the existence of a constant C1 > 0 such that |f ′(x)| ≤
C1|x|f(x) (x ∈ R) and hence obtain

|(f ◦ g)′(x)| ≤ C1|g(x)|f ◦ g(x)|g′(x)| = C1
|x|

(1− x2)2
f ◦ g(x) (x ∈ (−1, 1)). (3.12)

As a consequence of (a well-known variant of) Stirling's formula [AAR99, Corollary 1.4.4], there
is a constant C2 > 0 such that

|f ◦ g(x)| ≤ C2|g(x)|2αe−λπ|g(x)| (x ∈ (−1, 1));

in view of (3.12), this yields a constant C3 > 0 such that

|(f ◦ g)′(x)| ≤ C3|g(x)|2α+4e−λπ|g(x)|

if x ∈ (−1, 1) is such that 1− |x| is su�ciently small. So we can conclude that f ◦ g ∈ C1(−1, 1)
and limx→±1(f ◦ g)′(x) = 0 = limx→±1 f ◦ g(x); putting all together, we see that indeed
µ′ ∈ C1(R), and that, due to Theorem 2.2, {‖κn‖∞ : n ∈ N0} is bounded and `1(h) fails to be
weakly amenable.

In Subsection 3.3, we shall see that `1(h) even fails to be point amenable whenever λ > 0�with
a considerably more involved argument, however.
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3.2. Jacobi polynomials: transition from the purely ultraspherical case, and how
to avoid dealing with a 9F8

Our main result on Jacobi polynomials is the following theorem, which corresponds to [Kah15,
Theorem 3.1] and gives complete characterizations concerning point and weak amenability.

Theorem 3.1. Let (α, β) ∈ DP , and let Pn(x) = R
(α,β)
n (x) (n ∈ N0). Then `1(h) is

(i) point amenable if and only if α < 1
2 (where Dx 6= 0 exists for each x ∈ (−1, 1) if α ≥ 1

2
and D−1 6= 0 exists if and only if α ≥ β + 2),

(ii) weakly amenable if and only if α < 0.

Our proof of Theorem 3.1 relies on four lemmas, and we use the following notation:

∆ := {(α, β) ∈ DP : α+ β + 1 ≥ 0}

and

φn := R(α,β)
n (−1) = (−1)n

(β + 1)n
(α+ 1)n

(n ∈ N0).

Of course, φn depends on α, β > −1. The explicit formula for φn follows from the second equation
in [Ism09, (4.1.6)] (note that our normalization does not coincide with that used in [Ism09], cf.
the �rst equation in [Ism09, (4.1.6)]). The asymptotics of the gamma function yield

φn = Θ(nβ−α) (n→∞). (3.13)

The �rst lemma [Kah15, Lemma 3.1] gives an explicit formula for the sequence (κn)n∈N and
generalizes (2.9) and (2.26).

Lemma 3.1. If (α, β) ∈ DP and Pn(x) = R
(α,β)
n (x) (n ∈ N0), then

κn(k) = σ(n)
φn − φk
φn − φn−1

(n ∈ N, k ∈ {0, . . . , n}). (3.14)

Concerning asymptotic behavior, we obtain from (3.2), Lemma 2.4 (i), Lemma 3.1 and (3.13):

h(n) = Θ(n2α+1), σ(n) = Θ(n−2α), τ(n) =

{
Θ(n−α−β), α 6= β,

O(n−2α), α = β
(3.15)

as n→∞.

In Section 2.5, we saw that Step 2 of Section 2.1 easily transfers from the Chebyshev polyno-
mials of the �rst kind to arbitrary ultraspherical polynomials. It is considerably more involved
(and the most technical part of Theorem 3.1) to obtain an analogue for non-symmetric Jacobi
polynomials�i.e., to verify condition (i) of Theorem 2.1 (as far as a veri�cation is necessary for
our proof of Theorem 3.1; in fact, we shall see that it is not necessary to deal with the whole set
{(α, β) ∈ DP : α < 0} but it su�ces to consider a proper subset and, after a successful applica-
tion of Theorem 2.1 to this subset, to use inheritance via homomorphisms). Our second lemma
[Kah15, Lemma 3.2] provides an auxiliary function which will become a crucial tool concerning
the just outlined strategy.

Lemma 3.2. If (α, β) ∈ DP , α 6= β, and Pn(x) = R
(α,β)
n (x) (n ∈ N0), then the function

η : N→ [0,∞),

η(n) :=
n+ 2

h(n+ 1)

n∑
k=0

h(k)

k + 1

∣∣∣∣ κn+2(k)

σ(n+ 2)
− κn(k)τ(n+ 2)

τ(n)σ(n+ 2)

∣∣∣∣ ,
is well-de�ned and satis�es limn→∞ η(n) = α−β

2α+1 .
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Concerning condition (iv) of Theorem 2.1, we have the following [Kah15, Lemma 3.3]:

Lemma 3.3. If (α, β) ∈ DP , α < 0, and Pn(x) = R
(α,β)
n (x) (n ∈ N0), then

supn∈N0

∫
Rp

4
n(x) dµ(x) <∞.

Finally, the fourth lemma [Kah15, Lemma 3.4] is helpful w.r.t. inheritance via homomorphisms�
more precisely, w.r.t. applications of Theorem 2.3 and Proposition 2.2.

Lemma 3.4. Let (α, β), (γ, δ) ∈ DP , and let for each n ∈ N0 the connec-
tion coe�cients CPn (α, β; γ, δ)(0), . . . , CPn (α, β; γ, δ)(n) be de�ned by R

(α,β)
n (x) =∑n

k=0C
P
n (α, β; γ, δ)(k)R

(γ,δ)
k (x). Then each of the following conditions is su�cient for

the existence of some C > 0 such that
∑n

k=0 |CPn (α, β; γ, δ)(k)| ≤ C (n ∈ N0): (A) γ ≤ α and
δ = β, (B) γ = α and δ ≥ β, (C) γ = α− ξ and δ = β − ξ for some ξ ≥ 0.

Lemma 3.1 can be established very quickly via the Jacobi forward shift

d

dx
R(α,β)
n (x) =

n(n+ α+ β + 1)

2α+ 2
R

(α+1,β+1)
n−1 (x) (n ∈ N) (3.16)

[Ism09, (4.1.6); (4.2.2)],30 the connection coe�cients w.r.t. the original sequence [Ism09, Section
9.1] (cf. also [Doh02]) and several ingredients from the theory of hypergeometric series (certain
contiguous relations, Chu�Vandermonde identity [AAR99, Corollary 2.2.3], Pfa��Saalschütz
identity [AAR99, Theorem 2.2.6]). This way is presented in our paper [Kah15]. A very similar
argument is used in [IS12]. Another direct proof is contained in the author's Master's thesis and
based on kernel polynomials [Kah12, Section 3.4.2]. Alternatively, one could also use induction
and a general recurrence relation for the sequence (κn)n∈N0 , cf. [Las07, (5)] and Remark 1.1,
and cf. also (4.12) and (4.21) in Section 4 (which studies a di�erent setting, however). This was
done by E. Perreiter (independently of the author). Lemma 3.2 is a consequence of Lemma 3.1
and the Stolz�Cesàro theorem. Lemma 3.3 relies on ideas from [Sze75, Chapter 7.34] and
suitable asymptotics of the Jacobi polynomials (which follow from [Sze75, Chapter 7.32] and
are consequences of a formula of Mehler�Heine type and a formula of Darboux, or also of a
formula of Hilb's type). If β ≥ −1

2 , the polynomials p4
n(x) (n ∈ N0) even have a µ-integrable

majorant on (−1, 1)�namely the function R → [0,∞), x 7→ C
(1−x)2α+1(1+x)2β+1χ(−1,1)(x), with

C ∈ R independent of x. This is a consequence of [NEM94, Theorem 1] (which, however, is for
non-symmetric Jacobi polynomials a rather deep result that has led to the Erdélyi�Magnus�
Nevai conjecture which deals with the occurring constants C). Lemma 3.4 follows from results
of [Bav71]. (B) and its proof via [Bav71] are already contained in E. Perreiter's dissertation
[Per11a, Corollary 3.12].

Trying to prove Lemma 3.3 in a way which directly imitates the strategy presented in Section 2.5
for the purely ultraspherical case, i.e., transforming∫

R
p4
n(x) dµ(x) =

2n∑
k=0

[g(n, k;n)]2h(k) (n ∈ N0)

via (2.3) and estimating the right hand sides from above by using explicit formulas for the
linearization coe�cients g(m,n; k), would be a �rather bad idea�: for non-symmetric (and
�non-special�) Jacobi polynomials, these formulas are much more complicated than Dougall's
formula (2.22)�Rahman's formula, for instance, which works (and explicitly shows property

30In contrast to (3.16), the Jacobi backward shift reads

(1− x2)
d

dx
R(α+1,β+1)
n (x) = (2α+ 2)

[
R

(α,β)
1 (x)R(α+1,β+1)

n (x)−R(α,β)
n+1 (x)

]
(n ∈ N0), (3.17)

cf. [Ism09, (4.1.6); (4.2.5)] and (3.1). We shall refer to this later.
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(P)) for the pairs (α, β) ∈ ∆, involves a 9F8 hypergeometric series [Rah81].

In view of earlier results (cf. [Las09b, Section 4]), concerning Theorem 3.1 (i) it is just left to us
to establish point amenability for (α, β) ∈ DP \∆. Of course, this will follow from Theorem 3.1
(ii). More directly, it can be obtained from Proposition 2.2 and Lemma 3.4: if (α, β) ∈ DP \∆,
then (α+ ξ, β) ∈ ∆ for some ξ ∈

(
0,−α+ 1

2

)
.

The failure of weak amenability for α ≥ 0 was shown in E. Perreiter's dissertation [Per11a,
Corollary 3.12]; the proof corresponds to an application of Theorem 2.3 (inheritance via
homomorphisms), Lemma 3.4 (B) and the failure of weak amenability for the ultraspherical
polynomials corresponding to α.

The di�cult part concerning the proof of Theorem 3.1 (ii) is to establish weak amenability for
α < 0. In view of Theorem 2.3 and Lemma 3.4, we may additionally assume that (α, β) is located
in the interior of ∆. In this situation, the conditions of our su�ciency criterion Theorem 2.1
can be seen to be satis�ed: (ii) and (iii) are clear, (iv) is a consequence of Lemma 3.3, and our
proof of the remaining condition (i) can be outlined as follows:

let ϕ ∈ `∞ such that {‖κn ∗ ϕ‖∞ : n ∈ N0} is bounded, let C := supn∈N0
‖κn ∗ ϕ‖∞, let η be

as in Lemma 3.2, let S := limn→∞ η(n) < 1 (the latter is a consequence of Lemma 3.2), let

T := supn∈N

∣∣∣ τ(n+2)
τ(n)

∣∣∣ <∞ (this follows from (3.15); with regard to well-de�nedness of quotients

containing τ(n), note that we have τ(n) 6= 0 (n ∈ N) because α 6= β), let N ∈ N such that

η(n) ≤ S+1
2 for all n ∈ N with n ≥ N , and, �nally, let M := max

(
(N + 1) ‖ϕ‖∞ ,

4+4T
1−S C

)
.

Then use induction on n to show that

|ϕ(n)| ≤ M

n+ 1

for each n ∈ N0. This is the tedious non-symmetric analogue to Step 2 in Section 2.1 (and to
the easier�still symmetric�generalization contained in Section 2.5). As in Section 2.1 and in
Section 2.5, the details rely on a consideration of (κn ∗ ϕ(0))n∈N0 .

The detailed proofs of Theorem 3.1 and the four lemmas can be found in our paper [Kah15].

In contrast to Abelian locally compact groups, for arbitrary polynomial hypergroups there is
no Pontryagin duality (despite their commutativity): in fact, the only polynomial hypergroups
for which N̂0 is a hypergroup w.r.t. pointwise multiplication and complex conjugation (and
which are also `Pontryagin' then [BH95, Proposition 2.4.18])�cf. [BH95, Chapter 2.4] for the

precise de�nitions and some properties�correspond to Jacobi polynomials (R
(α,β)
n (x))n∈N0 with

(α, β) ∈ DP such that either β ≥ −1
2 or α + β ≥ 0 [CS90] [BH95, Section 3.6]. Combining this

with Theorem 3.1, we see that each of the cases �`1(h) amenable�, �`1(h) weakly amenable but
not right character amenable�, �`1(h) point amenable but neither right character amenable nor
weakly amenable� and �`1(h) not point amenable� can occur even in the class of Pontryagin
polynomial hypergroups.

Theorem 3.1 has also some interesting consequences w.r.t. our general results presented in
Section 2:

� Theorem 2.2 tells that the boundedness of the set {‖κn‖∞ : n ∈ N0} is equivalent to the
boundedness of the single function τ . However, as outlined in Section 2.3, this is in general
not equivalent to the boundedness of σ (whose computation would be considerably easier,

see Lemma 2.4 (i)): if, for example, Pn(x) = R
(α,β)
n (x) (n ∈ N0) with α > 0, β > −1 and

α+ β < 0, then τ(n)→∞ (n→∞) but σ(n)→ 0 (n→∞). This follows from (3.15).
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� (i) of our necessity criterion Theorem 2.2, i.e., the unboundedness of τ , is not su�cient for
weak amenability of `1(h). We can take the examples of the previous item to see this. In
particular, (ii) of Theorem 2.2, i.e., that µ is not absolutely continuous (as a measure) or µ′

is not absolutely continuous on the convex hull of supp µ (as a function), is not su�cient for
weak amenability. Recall that the conditions of our su�ciency criterion Theorem 2.1 can
be regarded as a suitable sharpening of (ii) of Theorem 2.2 (and also of (i) of Theorem 2.2);
cf. the note at the end of Section 2.3.

� If α and β are chosen from the smaller region α ≥ 1
2 , β > −1, α + β < 0, and if still

Pn(x) = R
(α,β)
n (x) (n ∈ N0), then `1(h) is not even point amenable (in fact, there exist

nonzero bounded point derivations at every x ∈ (−1, 1)). Thus condition (i) (and hence
condition (ii)) of Theorem 2.2 is also not su�cient for point amenability of `1(h).

� Finally, (ii) (and therefore (i)) of Theorem 2.2 is not necessary for point amenability of

`1(h): if 0 ≤ α < 1
2 and Pn(x) = P

(α)
n (x) (n ∈ N0), then `1(h) is point amenable (already

due to [Las09b, Corollary 1]), but (ii) of Theorem 2.2 is not satis�ed. The same examples
show that neither condition (iii) nor condition (iv) of Theorem 2.1 is necessary for point
amenability of `1(h) (cf. the notes at the end of Section 2.5, in part. Remark 2.1). The little
q-Legendre polynomials provide examples which show that condition (ii) of Theorem 2.1
is not necessary for point amenability of `1(h) (cf. the notes at the end of Section 2.3).

� With regard to the comment at the end of Section 2.3, we note that if (ii) of Theorem 2.2
is satis�ed, then h can nevertheless be of superlinear growth (see the examples above).

3.3. Symmetric Pollaczek polynomials: transformations and estimations of the
derivatives

In the motivating Subsection 3.1, we used Theorem 2.2 to rule out weak amenability for all
Pollaczek polynomials (Q

(α,λ)
n (x))n∈N0 with (α, λ) ∈ DQ, λ > 0. As announced in Subsection 3.1,

we now sharpen this result and show that even point amenability fails in this situation. The
following is [Kah15, Theorem 4.1].

Theorem 3.2. Let (α, λ) ∈ DQ and Pn(x) = Q
(α,λ)
n (x) (n ∈ N0). Then `1(h) is

(i) point amenable if and only if α < 1
2 and λ = 0,

(ii) weakly amenable if and only if α < 0 and λ = 0.

(ii) is completely contained in the earlier parts of this thesis. Concerning the proof of (i), we
distinguish three cases: the case α < 1

2 and λ = 0 corresponds just to point amenability of

ultraspherical polynomials [Las09b, Corollary 1]. The case α+ λ ≥
√

8α+5
2 − 1 can be solved by

extending an argument which has been given in [Las09b, Example 7] for (the subcase) α+λ ≥ 1.
This argument corresponds to our Proposition 2.1 (i).

The remaining case 0 < λ < −α+
√

8α+5
2 − 1 is much more interesting and the actual di�culty

in the proof of Theorem 3.2 (i): neither (i) nor (ii) of Proposition 2.1 applies;31 our strategy
will be quite di�erent and can be outlined as the following idea: �rst transform the Pollaczek
polynomials into a system of orthogonal polynomials which is closely related yet more convenient
(particularly with regard to asymptotic behavior)�then, based on this transformation, show
that the derivatives of the Pollaczek polynomials are bounded at 0, which yields a nonzero
bounded point derivation due to Theorem 1.6.

31A very fast yet not trivial way to see that limn→∞ cn = 1
2
(in the whole class of symmetric Pollaczek polynomials)

would be to apply a relationship to the Laguerre polynomials [Las94, Section 4] and Perron's formula in the
complex plane [Sze75, Theorem 8.22.3].
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The more convenient class we have in mind is the class of random walk polynomials32, cf. [Las83,
Section 3 (d)] [Las94, Sections 6, 7] in the following: given a ≥ 1 and b ≥ 0, the sequence

(S
(a,b)
n (x))n∈N0 of random walk polynomials which corresponds to a and b is determined by its

orthogonalization measure

dµ(x) = Ca,b[4a− (a+ 1)2x2]
b
2a
− 1

2 exp

(a− 1)bx
[
2 arccos

(
a+1
2
√
a
x
)
− π

]
2a
√

4a− (a+ 1)2x2


×

∣∣∣∣∣Γ
(
b

2a
+

i(a− 1)bx

2a
√

4a− (a+ 1)2x2

)∣∣∣∣∣
2

χ(− 2
√
a

a+1
, 2
√
a

a+1

)(x) dx

if b > 0 and

dµ(x) = Ca,0

√
4a− (a+ 1)2x2

1− x2
χ(− 2

√
a

a+1
, 2
√
a

a+1

)(x) dx

if b = 0, with suitable Ca,b, Ca,0 > 0,33 and the normalization S
(a,b)
n (1) = 1 (n ∈ N0)�or,

equivalently, but in a much simpler form, via

bn ≡ 0, an ≡ 1− bn − cn, cn :=
n

(a+ 1)n+ b
(n ∈ N). (3.18)

Obviously,

S(1,b)
n (x) = P

( b−1
2 )

n (x) (b ≥ 0, n ∈ N0). (3.19)

Property (P) holds for all a ≥ 1 and b ≥ 0, and one has N̂0 = [−1, 1] and

X b(N0) =

{
z ∈ C :

∣∣∣∣z − 2
√
a

a+ 1

∣∣∣∣+

∣∣∣∣z +
2
√
a

a+ 1

∣∣∣∣ ≤ 2

}
.

The Haar weights satisfy h(0) = 1 and

h(n) =

{
an( ba)

n
[(a+1)n+b]

bn! , b > 0,

(a+ 1)an−1, b = 0
(3.20)

for n ∈ N. The relationship to the Pollaczek polynomials reads as follows:

S(a,b)
n (x) =

Q
( b
2a
− 1

2
,b( 1

a+1
− 1

2a))
n

(
a+1
2
√
a
x
)

Q
( b
2a
− 1

2
,b( 1

a+1
− 1

2a))
n

(
a+1
2
√
a

) (n ∈ N0) (3.21)

and

Q(α,λ)
n (x) =

S
( 2α+2λ+1
2α−2λ+1

,(2α+1) 2α+2λ+1
2α−2λ+1)

n

(√
1−

(
2λ

2α+1

)2
x

)

S
( 2α+2λ+1
2α−2λ+1

,(2α+1) 2α+2λ+1
2α−2λ+1)

n

(√
1−

(
2λ

2α+1

)2
) (n ∈ N0), (3.22)

provided a ≥ 1, b > 0 in (3.21), and α > −1
2 , 0 ≤ λ < α + 1

2 in (3.22) (the denominators are
nonzero).

The following lemma [Kah15, Lemma 4.1] is our central auxiliary tool:

32Concerning the relation to random walks, we refer to [AI84, Section 6]. To avoid confusions, we note that
in Section 4 we will use the expression �random walk polynomials� in a rather di�erent, much more general
manner.

33We note that the case b > 0 is stated with a typo in [Las94, Section 7]. That our formula is the correct one can
be seen from the proof of [Las94, Theorem (7.1)]; cf. also [AI84, Section 6].
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Lemma 3.5. Let α > −1
2 , 0 ≤ λ < α+ 1

2 . Let

ρ :=

√
1−

(
2λ

2α+ 1

)2

, γ :=

√
2α− 2λ+ 1

2α+ 2λ+ 1
,

and let

sn :=
(2α+ 2λ+ 1)(n+ 2α+ 1)

(2α+ 1)(2n+ 2α+ 2λ+ 1)
, tn := 1− sn =

(2α− 2λ+ 1)n

(2α+ 1)(2n+ 2α+ 2λ+ 1)
(n ∈ N).

Then the recurrence relation ψ1 := ρ,

ψn+1 :=
ρψn − tn
snψn

(n ∈ N),

de�nes a sequence (ψn)n∈N ⊆ [γ,∞) which satis�es

ψn ≥
2λn+ 2α+ 1

2λn+ 2α− 2λ+ 1
γ

for each n ∈ N.

Its elementary proof can be found in our paper [Kah15]. Based on Lemma 3.5, the proof of the

remaining case 0 < λ < −α +
√

8α+5
2 − 1 (Theorem 3.2 (i)) can be sketched as follows: since

λ < α+ 1
2 , we can set Sn(x) := S

(a,b)
n (x) with a := 2α+2λ+1

2α−2λ+1 > 1 and b := (2α + 1)2α+2λ+1
2α−2λ+1 > 0.

In the following, we use the notation of Lemma 3.5. (3.22) yields

P ′n(0) = ρ
S′n(0)

Sn(ρ)
(n ∈ N0),

and one has S0(x) = 1, S1(x) = x,

xSn(x) = snSn+1(x) + tnSn−1(x) (n ∈ N).

It can be seen from the latter recurrence relation that

S′n(0) = O(nγn) (n→∞). (3.23)

Furthermore, this recurrence relation implies that Sn(ρ) =
∏n
k=1 ψk (n ∈ N)�hence, as a conse-

quence of Lemma 3.5, we obtain

1

Sn(ρ)
= O(n−1γ−n) (n→∞). (3.24)

Putting all together, we can conclude that {P ′n(0) : n ∈ N0} is bounded and apply Theorem 1.6
as desired. The details are given in our paper [Kah15].

Remark 3.1. Concerning the case 0 < λ < −α+
√

8α+5
2 − 1 (Theorem 3.2 (i)), we observe:

(i) Comparing the random walk polynomials to the symmetric Pollaczek polynomials, we
could bene�t from the random walk polynomials in a twofold way. On the one hand,
their recurrence coe�cients are of considerably easier structure. On the other hand�and
more important, while limn→∞ cn = limn→∞ an for the whole class of symmetric Pollaczek
polynomials, the two limits are obviously di�erent for the non-ultraspherical random walk
polynomials: it was the latter property which enabled us to estimate (S′n(0))n∈N0 (cf.
(3.23)).

38



(ii) With regard to the proof of (3.24), there is a variant which does not require to use
Lemma 3.5 (nevertheless, we still use the notation of the lemma): applying [AI84, Sec-
tion 6, in part. (6.30)], we obtain

1

Sn(ρ)
= Θ(nα+ 1

4γ−ne−
√

8λn) (n→∞), (3.25)

which obviously yields (3.24). However, the proof of (3.25) via the cited ingredient is much
less elementary than the proof of our Lemma 3.5; [AI84, (6.30)] relies on a relationship
to the Laguerre polynomials and Perron's formula in the complex plane [Sze75, Theorem
8.22.3].

The strategy presented in Subsection 3.1 to rule out weak amenability whenever λ > 0 and
the strategy presented in the current subsection to even rule out point amenability for those
λ show that {‖κn‖∞ : n ∈ N0} and {P ′n(0) : n ∈ N0} are bounded�without the need of
explicit computations of κn (n ∈ N0), or ‖κn‖∞ (n ∈ N0), and P ′n(0) (n ∈ N0). Such explicit
computations seem to be out of reach for this example class (which, concerning κn (n ∈ N0),
contrasts with the Jacobi polynomials studied in Subsection 3.2): this shows the worth of the
(general) necessity result Theorem 2.2 and the worth of the (concrete) transformation into the
random walk polynomials combined with the asymptotic approach. In particular, we think that
trying to estimate P ′n(0) (n ∈ N0) via (3.6) (or via similar hypergeometric representations for
the random walk polynomials, cf. [AI84, Section 6]) would not be a better idea.

As a consequence of Theorem 3.2, we see that even the combination of bn ≡ 0, the existence of
an n ∈ N with cnan−1 >

1
4 and the condition lim supn→∞ cn ≥ 1

2 (cf. Proposition 2.1) is not
su�cient for point amenability.

Point and weak amenability for the random walk polynomials themselves will be characterized
in Subsection 3.5.

3.4. Associated ultraspherical polynomials: interplay between hypergeometric
and absolutely continuous Fourier series

Concerning the class of associated ultraspherical polynomials, point and weak amenability can
be characterized as follows [Kah15, Theorem 5.1]:

Theorem 3.3. Let α > −1
2 , ν ≥ 0, and Pn(x) = A

(α,ν)
n (x) (n ∈ N0). Then `1(h) is

(i) point amenable if and only if α < 1
2 (where Dx 6= 0 exists for each x ∈ (−1, 1) if α ≥ 1

2 but
D−1 = 0 always),

(ii) weakly amenable if and only if α < 0 and ν = 0.

The �if� part of (i) is shown in [Las09b, Example 4].34 The �only if� part, as well as the stronger
assertion stated in the brackets, can be seen via Proposition 2.1 (i); this is motivated by [Ask71,
Section 3].35 Taking into account (i) and the earlier results of this thesis, it remains to rule
out weak amenability for the parameter region α < 1

2 , ν > 0. The subcase α ≥ 0 is not very
di�cult and can be tackled by an homomorphism inheritance argument�more precisely, via the
nonnegativity of the connection coe�cients to the ultraspherical polynomials {P (α)

n (x) : n ∈ N0}
34We note that the reference contains a small mistake: in general, we do not have h(n) = O(n2α+1) (n→∞) as

stated in [Las09b, Example 4], but h(n) = O(n2|α|+1) if α 6= 0 and h(n) = O(nγ) for every γ > 1 if α = 0, cf.
(3.9). One does not have h(n) = O(n) in the latter case (except if ν = 0). This mistake does not a�ect the
conclusion, however.

35To avoid possible confusions, we note that the parametrization in [Ask71, Section 3] is slightly di�erent from
ours: the parameter µ in [Ask71, Section 3] corresponds to our parameter ν, whereas ν in the reference
corresponds to α+ 1

2
in our notation.
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(see [Ask71, Section 3]) and Theorem 2.3; the special case α = 0 has already been solved in
[LP10, Corollary 3.4] by using this method.

The subcase α < 0 is the actual di�culty in the proof of Theorem 3.3 (ii)�here, the connection

coe�cients to {P (α)
n (x) : n ∈ N0} are still nonnegative [Ask71, Section 3], but the `1-algebra

which corresponds to these ultraspherical polynomials is, as we already have seen, weakly
amenable, and therefore the formerly successful homomorphism inheritance argument breaks
down. Instead, our strategy for α < 0 (which shall be assumed from now on) is based
on our necessity criterion Theorem 2.2. The strategy uses a similar decomposition of the
Radon�Nikodym derivative (which shall turn out to be absolutely continuous on [−1, 1]) as in
the motivating Subsection 3.1; however, this is considerably more involved than ruling out weak
amenability for the Pollaczek �counterparts� which were considered in Subsection 3.1. In the
following, we give a brief sketch.

Since the numerators in (3.7) have singularities at the boundary of supp µ, we �rst use Euler's
transformation formula for hypergeometric functions [AAR99, Theorem 2.2.5] to rewrite (3.7) as

dµ(x) = 16−αCα,ν
(1− x2)−α∣∣∣∣2F1

(
2α+ ν, α+ 1

2
α+ ν + 1

2

∣∣∣∣ e2i arccosx

)∣∣∣∣2
χ(−1,1)(x) dx. (3.26)

Now, at least the numerator is absolutely continuous on [−1, 1]. Concerning the denomina-

tor of (3.26) and well-de�nedness, we note that 2F1

(
2α+ ν, α+ 1

2
α+ ν + 1

2

∣∣∣∣ .) is absolutely convergent

[AAR99, Theorem 2.1.2] and nonzero [Run71] on the unit circle. Observe that the denominator
has also a meaning with respect to Fourier series. We shall crucially bene�t from a fruitful
interplay between hypergeometric and Fourier series, and we need the following auxiliary result
on absolute continuity [Kah15, Lemma 5.1]:

Lemma 3.6. Let (γn)n∈N0 ⊆ R such that
∑∞

n=0 |γn| < ∞, and assume that there exists an
N ∈ N0 such that 0 ≤ γn+1 ≤ n

n+1γn whenever n ≥ N . Then

(i) both functions Fc, Fs : [0, 2π] → R, Fc(x) :=
∑∞

n=0 γn cos(nx), Fs(x) :=
∑∞

n=1 γn sin(nx),
are absolutely continuous,

(ii) the function G : [0, 2π]→ R, G(x) :=
∣∣∑∞

n=0 γne
−inx∣∣2, is absolutely continuous.

Our proof of Lemma 3.6 makes use of an idea presented in [Tri68], various ingredients from
the theory of trigonometric and Fourier series (in particular [Bar64, Chapters I�11, I�23;
X�2-Theorem 1]) and Pringsheim's theorem. Having in mind the many already existing,
frequently more elementary results on smoothness properties of Fourier series vs. decays of the
corresponding coe�cients, Lemma 3.6 might have some value of its own.

Turning back to the proof of Theorem 3.3 (ii) (failure of weak amenability for the case α < 0,
ν > 0) and now decomposing µ′|[−1,1] = 16−αCα,ν

v
f◦g with v : [−1, 1] → R, f : [0, 2π] → R and

g : [−1, 1]→ [0, 2π],

v(x) := (1− x2)−α, f(x) :=

∣∣∣∣2F1

(
2α+ ν, α+ 1

2
α+ ν + 1

2

∣∣∣∣ e−ix)∣∣∣∣2 , g(x) := 2π − 2 arccosx,

�rst recall that v is absolutely continuous. De�ning

γn :=
(2α+ ν)n

(
α+ 1

2

)
n(

α+ ν + 1
2

)
n
n!

(n ∈ N0),
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we see that γn = O(n2α−1) (as n → ∞) and that at least one of the sequences (γn)n∈N0 or
(−γn)n∈N0 satis�es the conditions of Lemma 3.6. Hence, f is also absolutely continuous (and
nonzero). Since g is absolutely continuous and increasing, we �nally obtain that µ′|[−1,1] is
absolutely continuous. Hence, we can establish the boundedness of {‖κn‖∞ : n ∈ N0}�and
consequently rule out weak amenability of `1(h)�via Theorem 2.2, as desired. As in the
previous subsection, an explicit computation of κn (n ∈ N0) or ‖κn‖∞ (n ∈ N0) seems to be out
of reach, which shows the advantage of the approach provided by Theorem 2.2 via the (at this
stage explicitly known) orthogonalization measure.

Again, the detailed proofs can be found in our paper [Kah15].

Albeit the previous strategy works for every pair (α, ν) ∈
(
−1

2 , 0
)
×(0,∞), a simpler argument is

available for the subregion ful�lling ν ≥ −2α: as an immediate consequence of (3.7) and (3.26),
or also from (3.8), one has

A(α,ν)
n (x) = A(−α,2α+ν)

n (x) (n ∈ N0)

then; so if ν ≥ −2α, the failure of weak amenability of `1(h) follows already from the easier
parts of Theorem 3.3.

Comparing the classes of Jacobi, symmetric Pollaczek and associated ultraspherical polynomials
to their common subclass, i.e., the ultraspherical polynomials, the three main results of this
section�which are Theorem 3.1, Theorem 3.2 and Theorem 3.3�yield the following observations:

� both point and weak amenability are independent of the additional parameter (`β') of the
Jacobi polynomials; the main task concerning the proof of Theorem 3.1 was establishing
weak amenability for all (α, β) ∈ DP with α < 0;

� both point and weak amenability depend on the additional parameter (`λ') of the symmetric
Pollaczek polynomials; the main task concerning the proof of Theorem 3.2 was ruling out
point amenability for all (α, λ) ∈ DQ with 0 < λ < −α+

√
8α+5
2 − 1;

� weak amenability depends on the additional parameter (`ν') of the associated ultraspherical
polynomials, but point amenability is independent of this additional parameter; the most
interesting part concerning the proof of Theorem 3.3 was ruling out weak amenability for
all (α, ν) ∈

(
−1

2 , 0
)
× (0,∞) with ν < −2α.

The behavior with regard to amenability, right character amenability and xα-amenability for x ∈
(−1, 1] does not depend on the additional parameters, and the behavior w.r.t. −1α-amenability
depends on β but is independent of λ and µ, see the notes before Subsection 3.1.

3.5. Further classes: random walk polynomials and cosh-polynomials

Concerning the random walk polynomials, which were considered in Subsection 3.3 as an auxiliary
tool, point and weak amenability can be characterized as follows [Kah15, Proposition 4.1]:

Proposition 3.1. Let a ≥ 1, b ≥ 0, and Pn(x) = S
(a,b)
n (x) (n ∈ N0). Then `1(h) is

(i) point amenable if and only if a = 1 and b < 2,

(ii) weakly amenable if and only if a = 1 and b < 1.

Based on the earlier results of this thesis, the proof is not di�cult. It bene�ts from the very
simple recurrence coe�cients (3.18) and our Proposition 2.1 (ii). The details are given in our
paper [Kah15].
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We additionally note that a short calculation yields that (only) in the special case a+ b ≥ 3 also
Proposition 2.1 (i) applies, which yields the stronger result that Dx 6= 0 exists for all x ∈ (−1, 1)
then.

The failure of point amenability for the special cases Pn(x) = S
(a,0)
n (x) (n ∈ N0) with a > 1

(these are the Cartier�Dunau polynomials, which are connected with homogeneous trees [Las83,
Section 3 (d)] [Las94, Sections 6, 7]) was already obtained in [Las09b, Example 5] by explicitly
computing the derivatives at x = 0�hence, Proposition 3.1 extends that result; in contrast
to [Las09b, Example 5], we have avoided such explicit computations. The failure of weak
amenability can also be seen as in Subsection 3.1, i.e., via Theorem 2.2. However, in sharp
contrast to the closely related symmetric Pollaczek polynomials, for the pairs (a, b) with a > 1
and b > 0 it is indeed the easier variant to rule out weak amenability via ruling out point
amenability. In view of (3.20) and Theorem 1.4 (i), `1(h) is amenable if and only if a = 1 and
b = 0 (Chebyshev polynomials of the �rst kind). As a consequence of Proposition 3.1, (3.19)
and [Las09c, p. 792], this improves to the observation that the case a = 1, b = 0 is also the only
one such that `1(h) is right character amenable. Reiter's condition P2 is satis�ed if and only
if and only if a = 1 (because the latter is equivalent to 1 ∈ supp µ), i.e., for the ultraspherical
polynomials.

Another interesting example is the class of cosh-polynomials; the following basics can be found in
[Las05, Section 6]: given a ≥ 0, the sequence (Ψ

(a)
n (x))n∈N0 of cosh-polynomials that corresponds

to a is determined by its orthogonalization measure

dµ(x) = Ca
1√

1− x2 cosh2 a
χ(− 1

cosh a
, 1
cosh a)(x) dx,

Ca > 0 suitable, and the normalization Ψ
(a)
n (1) = 1 (n ∈ N0). Equivalently, (Ψ

(a)
n (x))n∈N0 is

given by

bn ≡ 0, an ≡ 1− bn − cn, cn :=
cosh(a(n− 1))

2 cosh(an) cosh a
(n ∈ N).

Independently of a, property (P) is ful�lled, and the linearization coe�cients take a very easy
form:

g(m,n; k) =
cosh(ak)

2 cosh(am) cosh(an)
[δ|m−n|(k) + δm+n(k)] (m,n ∈ N0, k ∈ {|m− n|, . . . ,m+ n}).

The Haar weights satisfy

h(n) = [2− δ0(n)] cosh2(an) (n ∈ N0).

Moreover, N̂0 = [−1, 1] and

X b(N0) =

{
z ∈ C :

∣∣∣∣z − 1

cosh a

∣∣∣∣+

∣∣∣∣z +
1

cosh a

∣∣∣∣ ≤ 2

}
.

We have the following, which is [Kah15, Proposition 6.1], concerning amenability notions:

Proposition 3.2. Let a ≥ 0 and Pn(x) = Ψ
(a)
n (x) (n ∈ N0). The following are equivalent: (i)

a = 0, (ii) `1(h) is amenable, (iii) `1(h) is weakly amenable, (iv) `1(h) is point amenable.

Further equivalent conditions (which, in contrast to (i) � (iv), have not been contained in our
paper [Kah15], however) are �(v) `1(h) is right character amenable� and �(vi) Reiter's condition
P2 is satis�ed�; recall that the latter is equivalent to 1 ∈ supp µ. The case a = 0 yields the
Chebyshev polynomials of the �rst kind again. Since the most implications are trivial, it just
remains to show that (iv) implies (i), which is immediate from our Proposition 2.1 (ii) (note that
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cn → 1
1+e2a

as n → ∞). In the special case cosh a ≥
√

2, also Proposition 2.1 (i) applies (note

that c1a0 = 1
2 cosh2 a

and cnan−1 = 1
4 cosh2 a

(n ≥ 2)). Another variant follows from Theorem 1.6
and the explicit values

|P ′n(0)| =

{
0, n ∈ N0 even,
n cosh a
cosh(an) , n ∈ N0 odd

(3.27)

(easy to see). Concerning the failure of weak amenability for a > 0, we can also explicitly
compute

τ(n) =

{
0, n ∈ N0 even,
n cosh a
cosh(an) , n ∈ N0 odd

(3.28)

via Lemma 2.4 (iii) and then apply Theorem 2.2 (i). Comparing (3.28) to (3.27), we get∫
RP
′
n(x) dµ(x) = τ(n) = |P ′n(0)| (n ∈ N0); this is rather striking because there is no general

implication between the boundedness of τ and the boundedness of {P ′n(0) : n ∈ N0} (cf. the
classes considered at the end of Subsection 3.2).
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4. Characterizations of ultraspherical and q-ultraspherical
polynomials

Parts of Section 4 are very similar to our publication [Kah16].

4.1. Weak amenability reconsidered and a characterization of ultraspherical
polynomials

Recall that deducing weak amenability of `1(h) for (P
(α)
n (x))n∈N0 , −1

2 < α < 0, from The-
orem 2.1�see Section 2.5�was considerably easier than the full Jacobi analogue given in
Theorem 3.1, primarily for the following two reasons: on the one hand, condition (iv) of
Theorem 2.1 could be checked in a rather elementary way, based on the Plancherel isomorphism
and a convenient explicit formula for the linearization coe�cients g(n, 2k;n) (Dougall's formula),
and without the need to consider asymptotics. On the other hand, condition (i) of Theorem 2.1
could be veri�ed as fast as for the Chebyshev polynomials of the �rst kind�due to the very
simple form of the sequence (κn)n∈N0 , see (2.26), which can be reformulated as the observation
that all of the functions κ2n−1|{0,2,...,2n−2}, κ2n−1|{1,3,...,2n−1}(= 0), κ2n|{0,2,...,2n−2}(= 0) and
κ2n|{1,3,...,2n−1} are constant for each n ∈ N.

The equations κ2n−1|{1,3,...,2n−1} = 0 and κ2n|{0,2,...,2n−2} = 0 (n ∈ N) are consequences of the
symmetry (bn ≡ 0, µ symmetric). However, the constancy of the functions κ2n−1|{0,2,...,2n−2}
and κ2n|{1,3,...,2n−1} (n ∈ N) is a striking property of the ultraspherical polynomials: in
fact, the ultraspherical polynomials can be characterized via such properties. The �rst such
characterization is due to Lasser and Obermaier [LO08]. It has been generalized to the classes of
discrete and continuous q-ultraspherical polynomials by Ismail and Obermaier [IO11]; moreover,
a re�nement of the original Lasser�Obermaier result has been given in the author's Master's
thesis [Kah12, Theorem 4.1 (i); Corollary 4.1 (i)]�Theorem 4.4 below, which is [Kah16,
Theorem 2.1], is a modi�cation of the result of the Master's thesis [Kah12, Theorem 4.1 (i);
Corollary 4.1 (i)]. In the following, we shall precisely recall these results. We �rst recall some
basic theory and introduce some basic notation.

Throughout the section, we consider sequences (Pn(x))n∈N0 ⊆ R[x] of polynomials given by a
recurrence relation of the form P0(x) = 1,

xPn(x) = anPn+1(x) + cnPn−1(x) (n ∈ N0), (4.1)

where A > 0, c0 := 0, (cn)n∈N ⊆ R, an := A − cn (n ∈ N0) and cnan−1 > 0 (n ∈ N).36 As
a consequence of Favard's theorem and further standard results from the theory of orthogonal
polynomials (cf. [Chi78, I-Theorem 4.1, I-Theorem 4.4, II-Exercise 1.2, II-Theorem 3.1]), this
is equivalent to orthogonality w.r.t. a symmetric probability (Borel) measure µ on R with
|supp µ| =∞ and the normalization Pn(A) = 1 (n ∈ N0).37

If additionally
(cn)n∈N ⊆ (0, A) (RW)

holds, then (Pn(x))n∈N0 is called a (symmetric) random walk polynomial sequence (`RWPS').38

36Again, we make the widely common convention that (c0 =)0 times something unde�ned shall be 0.
37Concerning the existence of symmetric µ, cf. [Chi78, I-Theorem 4.3] and [Chi82, p. 332]; note that if

(Pn(x))n∈N0 satis�es (4.1) and is orthogonal w.r.t. some (not necessarily symmetric) µ, then (Pn(x))n∈N0

is also orthogonal w.r.t. the measure ν, ν(A) := µ(−A) (A Borel subset of R), so (Pn(x))n∈N0 is orthogonal
w.r.t. the symmetric measure 1

2
[µ+ ν].

38Concerning the relation to random walks, we refer to [CSvD98, vDS93]. In contrast to some authors, we do not
generally require that A = 1 when using the expression RWPS. Moreover, to avoid any confusion, we mention
again that the expression �random walk polynomials� (or �random walk polynomial sequence�) as used in the
present section is much more general than the corresponding expression used in Section 3.
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This is equivalent to supp µ ⊆ [−A,A].39 In this case, µ is necessarily unique (not only among
the symmetric orthogonalization measures�if there were any two di�erent orthogonalization
measures, then none of them could have compact support, cf. [Chi78, II-Theorem 3.2;
II-Theorem 5.6] again). Consequently, dµ∗(x) := (A2 − x2) dµ(x) uniquely de�nes a symmetric
�nite (Borel) measure µ∗ on R with |supp µ∗| = ∞ and supp µ∗ ⊆ [−A,A], and we get a
corresponding symmetric RWPS (P ∗n(x))n∈N0 with P ∗n(A) = 1 (n ∈ N0).

Of course, the ultraspherical polynomials (P
(α)
n (x))n∈N0 are an example of a symmetric RWPS

(for any α > −1).

As usual, we denote by (Un(x))n∈N0 the Chebyshev polynomials of the second kind (normalized

such that Un(1) = n+ 1), i.e., Un(x) = (n+ 1)P
( 1
2)

n (x) =
∑bn2 c

k=0 (2− δn−2k,0)Tn−2k(x) (n ∈ N0)
[AS64, 22.2.5; 22.12.2; 22.12.3]; moreover, let U−1(x) := 0. It is well-known that

sin((n+ 1)x) = Un(cosx) sinx (n ∈ N0, x ∈ C) (4.2)

[AS64, 22.3.16].

Given q ∈ (0, 1) and α, β ∈
(

0, 1√
q

)
, the corresponding�suitably normalized�sequences of dis-

crete q-ultraspherical (or symmetric big q-Jacobi) polynomials (Pn(x;α : q))n∈N0 and continuous
q-ultraspherical polynomials (or Rogers polynomials; in essence, symmetric continuous q-Jacobi
polynomials) (Pn(x;β|q))n∈N0 are de�ned via A = α

√
q,

cn = α
√
q

1− qn

1− α2q2n
(4.3)

(n ∈ N) and A =
√
β

2 + 1
2
√
β
,

cn =

√
β

2

1− qn

1− βqn
(4.4)

(n ∈ N), respectively [IO11]. Obviously, both the discrete q-ultraspherical polynomials (Pn(x;α :
q))n∈N0 and the continuous q-ultraspherical polynomials (Pn(x;β|q))n∈N0 are also examples of
symmetric RWPS. The ultraspherical polynomials are limiting cases because

lim
q→1

Pn(x; qα+ 1
2 : q) = P (α)

n (x)

and
lim
q→1

Pn(x; qα+ 1
2 |q) = P (α)

n (x) (4.5)

for every α > −1, n ∈ N0 and x ∈ R; moreover, Tn(x) = Pn(x; 1|q) and

Un(x) = Un

(√
q

2 + 1
2
√
q

)
Pn(x; q|q) (n ∈ N0) [KLS10]. Since we will not need them, we

omit the explicit formulas for the orthogonalization measures. The orthogonalization measure
µ of (Pn(x;α : q))n∈N0 is purely discrete and satis�es max supp µ = A [IO11]. If β ≤ 1,
the orthogonalization measure µ of (Pn(x;β|q))n∈N0 is absolutely continuous (w.r.t. the
Lebesgue�Borel measure on R) and supp µ = [−1, 1], whereas if β > 1, then point measures
appear at ±A and max supp µ = A > 1 [IO11]. Further information about these classes can be

39If (Pn(x))n∈N0 ⊆ R[x] is a symmetric RWPS, then, as an[Pn+1(x) − Pn(x)] = (x − A)Pn(x) + cn[Pn(x) −
Pn−1(x)] (n ∈ N0) by (4.1), we have Pn(x) ≥ Pn−1(x) ≥ 1 for all x ≥ A and n ∈ N (which follows via
(RW) and induction). This, however, implies that all zeros of the polynomials Pn(x) (n ∈ N) are located
in (−A,A)�due to the latter, supp µ ⊆ [−A,A] [Chi78, II-Theorem 3.2; II-Theorem 5.6]. This argument
is motivated by a similar one in the author's Master's thesis [Kah12]. The reverse direction is contained in
[LO08, p. 2493, p. 2494]�the slightly di�erent setting w.r.t. the normalization point A does not a�ect the
validity of the argument given in [LO08]. Cf. also [CSvD98, vDS93].
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found in [Ism09, IO11, KLS10]. The latter reference contains the full (q-)Askey scheme.

Similarly as in Section 1.3, we de�ne h : N0 → (0,∞) by

h(n) :=
1∫

RP
2
n(x) dµ(x)

=

{
1, n = 0,∏n
j=1

aj−1

cj
, else

[IO11]. Concerning well-de�nedness of h, note that, although µ need not be unique if (RW) does
not hold, the values of

∫
RP (x) dµ(x), P (x) ∈ R[x], are always uniquely determined: expand

P (x) in the basis {Pn(x) : n ∈ N0} and use orthogonality.

Let (Qn(x))n∈N0 ⊆ R[x] be de�ned by Qn(x) :=
∑bn2 c

k=0 h(n − 2k)Pn−2k(x) (n ∈ N0). The
following calculation makes use of our convention that (c0 =)0 times something unde�ned shall
be 0, which helps to avoid clumsy case di�erentiations. Due to (4.1), for every n ≥ 2 we have

(A2 − x2)Qn(x) =

=

bn2 c∑
k=0

h(n− 2k)(A2 − an−2kcn−2k+1 − cn−2kan−2k−1)Pn−2k(x)

−
bn2 c∑
k=0

h(n− 2k)an−2kan−2k+1Pn−2k+2(x)−
bn2 c∑
k=0

h(n− 2k)cn−2kcn−2k−1Pn−2k−2(x) =

=

bn2 c∑
k=0

h(n− 2k)(A2 − an−2kcn−2k+1 − cn−2kan−2k−1)Pn−2k(x)

−
bn2 c−1∑
k=0

h(n− 2k − 2)an−2k−2an−2k−1Pn−2k(x)− h(n)anan+1Pn+2(x)

−
bn2 c+1∑
k=0

h(n− 2k + 2)cn−2k+2cn−2k+1Pn−2k(x) + h(n+ 2)cn+2cn+1Pn(x).

Using the product formula for h and the fact that cn−2k−1cn−2k = 0 if k =
⌊
n
2

⌋
and

cn−2k+2cn−2k+1 = 0 if k =
⌊
n
2

⌋
+ 1, we get

(A2 − x2)Qn(x) =

=

bn2 c∑
k=0

h(n− 2k)(A2 − an−2kcn−2k+1 − cn−2kan−2k−1)Pn−2k(x)

−
bn2 c∑
k=0

h(n− 2k)cn−2k−1cn−2kPn−2k(x)− h(n)anan+1Pn+2(x)

−
bn2 c∑
k=0

h(n− 2k)an−2k+1an−2kPn−2k(x) + h(n)an+1anPn(x).

Since A2 − an−2kcn−2k+1 − cn−2kan−2k−1 − cn−2k−1cn−2k − an−2k+1an−2k = 0 for every k ∈{
0, . . . ,

⌊
n
2

⌋}
, we �nally obtain that

(A2 − x2)Qn(x) = −h(n)anan+1[Pn+2(x)− Pn(x)] (n ∈ N0); (4.6)

the validity for n = 0 and n = 1 is obvious. Alternatively, (4.6) could be established by a
twofold application of a �non-con�uent� version of the Christo�el�Darboux formula (cf. [Chi78,
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I-Theorem 4.5]) to the quotient Pn+2(x)−Pn(x)
A2−x2 .

Now if (Pn(x))n∈N0 ⊆ R[x] is a symmetric RWPS, then (A2 − x2)P ∗n(x) is orthogonal to Pk(x)
w.r.t. µ for every n ∈ N0 and k ∈ N0\{n, n + 2}; this is immediate consequence of the
de�nition, the symmetry of the measures and the equation

∫
R(A

2 − x2)P ∗n(x)Pk(x) dµ(x) =∫
RP
∗
n(x)Pk(x) dµ∗(x). Hence, (4.6) yields P ∗n(x) = Qn(x)

Qn(A) (n ∈ N0), i.e.,

P ∗n(x) =

∑bn2 c
k=0 h(n− 2k)Pn−2k(x)∑bn2 c

k=0 h(n− 2k)
(n ∈ N0). (4.7)

If (Pn(x))n∈N0 ⊆ R[x] is a symmetric RWPS, then it would also be possible to establish
(4.7) by directly showing that the right hand side de�nes a sequence of polynomials which
is orthogonal w.r.t. µ∗; a similar argument has been used in the author's Master's thesis [Kah12].

We now take (4.7) to extend the de�nition of (P ∗n(x))n∈N0 to the general case (i.e., (RW) is not
required). This extension also preserves the orthogonality of (A2 − x2)P ∗n(x) and Pk(x) w.r.t. µ
(n ∈ N0, k ∈ N0\{n, n+ 2}), which now is a consequence of (4.6).

In the following, we do not require (Pn(x))n∈N0 to be an RWPS unless explicitly stated otherwise.

It is well-known that
d

dx
Tn(x) = nUn−1(x) (n ∈ N0) (4.8)

[KLS10, (9.8.45)]. Thus, if Pn(x) = Tn(x) (n ∈ N0), then A = 1 and P ′n(x) = P ′n(1)P ∗n−1(x)
(n ∈ N). Obviously, the latter is just a reformulation of (A = 1 and) the constancy of all functions
κ2n−1|{0,2,...,2n−2} and κ2n|{1,3,...,2n−1} (n ∈ N), where, as in Section 1.4, for each n ∈ N0 we de�ne
κn : N0 → R by

κn(k) :=

∫
R
P ′n(x)Pk(x) dµ(x).

The Lasser�Obermaier result mentioned above characterizes the symmetric RWPS that share
this property [LO08, Lemma 1; Theorem 1]:

Theorem 4.1. If (RW) holds, then the following are equivalent:

(i) Pn(x) = P

(
1

2c1
− 3

2

)
n (x) (n ∈ N0),

(ii) A = 1 and P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N).

The Ismail�Obermaier analogues for the classes of discrete and continuous q-ultraspherical poly-
nomials mentioned above use suitable q-generalizations of the classical derivative:

� for q ∈ (0,∞)\{1}, the `q-di�erence operator' Dq : R[x] → R[x] is given by DqP (x) =
P (x)−P (qx)

x−qx (x 6= 0),

� for q ∈ (0, 1), the (linear) `Askey�Wilson operator' Dq : R[x] → R[x] is de�ned via a
q-extension of (4.8), namely by

DqTn(x) =
q
n
2 − q−

n
2

√
q − 1√

q

Un−1(x) (n ∈ N0); (4.9)

so if Pn(x) = Tn(x) (n ∈ N0), then DqPn(x) = DqPn(1)P ∗n−1(x) (n ∈ N).
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Both Dq and Dq contain the classical derivative d
dx as limiting case q → 1. These basics, as

well as further information about Dq and Dq, can be found in [Ism09] or [IO11]. Concerning
Theorem 4.2 and Theorem 4.3 below, we note that Theorem 4.2 is contained in [IO11, Theorem
4.1] and that Theorem 4.3 is contained in [IO11, Theorem 5.2].

Theorem 4.2. Let q ∈ (0, 1), α ∈
(

0, 1√
q

)
, A = α

√
q; moreover, let c1 = α

√
q 1−q

1−α2q2
. Then the

following are equivalent:

(i) Pn(x) = Pn(x;α : q) (n ∈ N0),

(ii) Dq−1Pn(x) = Dq−1Pn(A)P ∗n−1(x) (n ∈ N).

Theorem 4.3. Let q ∈ (0, 1), β ∈
(

0, 1√
q

)
and A =

√
β

2 + 1
2
√
β
; assume c1 =

√
β

2
1−q

1−βq . Then the
following are equivalent:

(i) Pn(x) = Pn(x;β|q) (n ∈ N0),

(ii) DqPn(x) = DqPn(A)P ∗n−1(x) (n ∈ N).

To be precise, we note that the special case β = 1 (Chebyshev polynomials of the �rst kind),
which occurs very naturally in our normalization but only as limiting case in the �standard�
normalization of the continuous q-ultraspherical polynomials [KLS10], has been excluded in the
original version of [IO11, Theorem 5.2]�however, the proof given in [IO11] extends to this case.

Remark 4.1. Note that if Pn(x) = P
(α)
n (x) (n ∈ N0) with α > −1, then, up to normalization,

(P ′n(x))n∈N coincides with (P
(α+1)
n−1 (x))n∈N; in the same way, if Pn(x) = Pn(x;α : q) (n ∈ N0) with

q ∈ (0, 1) and α ∈
(

0, 1√
q

)
, then (Dq−1Pn(x))n∈N corresponds to (Pn−1(x;αq : q))n∈N, and if

Pn(x) = Pn(x;β|q) (n ∈ N0) with q ∈ (0, 1) and β ∈
(

0, 1√
q

)
, then (DqPn(x))n∈N corresponds to

(Pn−1(x;βq|q))n∈N. These are the corresponding �forward shifts� (which should also be regarded
as some motivation for Theorem 4.1, Theorem 4.2 and Theorem 4.3), cf. (3.16), [IO11, (2.10)] and
[KLS10, (14.10.23)]. In each case, we have coincidence with (P ∗n−1(x))n∈N (up to normalization).
Consequently, the classes are �preserved� by the corresponding operators (and by the passage from
µ to µ∗). If Dq−1 was replaced by Dq, this would become wrong (because DqP (x) = Dq−1P (qx)

for every P (x) ∈ R[x] and because it is easy to see that there is no α̃ ∈
(

0, 1√
q

)
such that

(Pn(qx;αq : q))n∈N0 = (Pn(x; α̃ : q))n∈N0). Furthermore, it is interesting to observe that the
orthogonalization measure of (DqPn(x;β|q))n∈N is always absolutely continuous and has support
[−1, 1] (because βq < 1).

Characterizing families of orthogonal polynomials by speci�c properties has a long history,
including an extensive literature ([AS90] provides a valuable survey up to 1990). The inter-
esting, �characterizing� direction �(ii) ⇒ (i)� in Theorem 4.1 can also be obtained from older
characterization results: one possibility is to apply a famous contribution of Hahn which tells
that only the `classical' orthogonal polynomials possess derivatives which form orthogonal
polynomial sequences again [Hah35]40�note that the ultraspherical polynomials are the only
classical polynomials such that µ has compact support and µ is symmetric (cf. [Chi78, Chapter
V �2]). Similarly, one may also use a related (yet independent) characterization of the classical
orthogonal polynomials given by Al-Salam and Chihara [ASC72].41 This result of Al-Salam�
Chihara and the result of Hahn have analogues for the q-di�erence operator Dq [DG06, Hah49].
However, it seems to be open whether there are also analogues for the Askey�Wilson operator

40In fact, this characterization might have been discovered already around 50 years earlier by Sonine, cf. [Ism09,
p. 528].

41The relationship between Theorem 4.1 and the cited results of Hahn [Hah35] and Al-Salam�Chihara [ASC72]
was already observed in our Master's thesis [Kah12].
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Dq [Ism09, Conjecture 24.7.8, Conjecture 24.7.10]. Therefore, Theorem 4.3 �(ii) ⇒ (i)� is of
particular interest.

In [IS12], Ismail and Simeonov gave extensions to other classes, including symmetric Al-
Salam�Chihara, symmetric Askey�Wilson and symmetric Meixner�Pollaczek polynomials (with
suitably chosen corresponding operators). Moreover, the author's Master's thesis [Kah12] con-
tains suitable extensions of Theorem 4.1 to the generalized Chebyshev polynomials (quadratic
transformations of the Jacobi polynomials in the sense of [Chi78, Chapter V �2 (G)], suitably
normalized) and to the Jacobi polynomials themselves (which, of course, involves asymmetry).
The extension to the generalized Chebyshev polynomials is in terms of the property �A = 1
and P ′2n(x) = P ′2n(1)P ∗2n−1(x) (n ∈ N)� (or even weaker conditions) [Kah12, Theorem 4.1 (ii);
Corollary 4.1 (ii)]. The extension to the Jacobi polynomials is motivated by (3.14), (3.16),
kernel polynomials and quadratic transformations [Kah12, Theorem 4.1 (iii); Corollary 4.1
(iii)].42 Furthermore, our Master's thesis [Kah12] contains analogues which are motivated by
the (Jacobi) backward shift (3.17) (cf. Remark 4.1 above).

In our Master's thesis [Kah12], under the additional assumption (RW) we showed the following
sharpened version of Theorem 4.1:

Theorem 4.4. Let α > −1, A = 1 and c1 = 1
2α+3 . Then the following are equivalent:

(i) Pn(x) = P
(α)
n (x) (n ∈ N0),

(ii) P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N),

(iii) P ′2n−1(x) = P ′2n−1(1)P ∗2n−2(x) (n ∈ N),

(iv) (1− x2)P ′n(x) is orthogonal to P0(x), . . . , Pn−2(x) (n ≥ 2),

(v) (1− x2)P ′2n−1(x) is orthogonal to P0(x), P2(x), . . . , P2n−4(x) (n ≥ 2),

(vi) one has
κ2n+1(2n− 2) = σ(2n+ 1) (n ∈ N),

and for every n ∈ N there is a k ∈ {0, . . . , n− 1} such that

κ2n+3(2k) = σ(2n+ 3).

As in Section 2.1, we write σ : N→ R\{0},

σ(n) := κn(n− 1).

Since Theorem 4.4, which corresponds to [Kah16, Theorem 2.1], does not assume (RW) to hold
and consequently works with an a priori considerably more general meaning of (P ∗n(x))n∈N0

((RW) is obtained as a consequence of (i) � (vi) then), it can be seen as an improvement of
the result of the Master's thesis [Kah12, Theorem 4.1 (i); Corollary 4.1 (i)]. However, this
improvement does not a�ect the actual proof�hence, the proof is omitted at this stage, and
we just make the following few notes: the characterization (iii) shows that in Theorem 4.1
the constancy of the functions κ2n|{1,3,...,2n−1} (n ∈ N) is redundant; it su�ces to require the
constancy for the odd indices, i.e., the constancy of the functions κ2n−1|{0,2,...,2n−2} (n ∈ N).
(iv) and (v) have the advantage to be �stable� w.r.t. renormalization of (Pn(x))n∈N0 . In (vi),
which is the apparently weakest condition and hence provides the strongest characterization,
the functions κn have to be considered only for odd indices and only at some carefully chosen
points.

42We think about publishing these results in a future paper.
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In contrast to Theorem 4.1, Theorem 4.4 is no longer a consequence of the results of Hahn and
Al-Salam�Chihara mentioned above. The proof of Theorem 4.4 can be found in [Kah16].

In this thesis, we present analogous improvements of Theorem 4.2 and Theorem 4.3. Moreover,
we shall give a characterization of a subclass of the continuous q-ultraspherical polynomials in
terms of the `averaging operator' Aq : R[x] → R[x], which, for every q ∈ (0, 1), is given by
linearity and the de�ning equation

AqTn(x) =
q
n
2 + q−

n
2

2
Tn(x) (n ∈ N0) (4.10)

[IO11]. We shall also see that this characterization in terms of Aq will not transfer to the whole
class of continuous q-ultraspherical polynomials.

4.2. A characterization of discrete q-ultraspherical polynomials in terms of the
q-di�erence operator

Let A and (Pn(x))n∈N0 be as in Subsection 4.1 (property (RW) is not required), and let q ∈
(0, 1). As analogue to (κn)n∈N0 , and following [IO11] (yet with di�erent notation), we consider
the Fourier coe�cients associated with the q-di�erence operator Dq−1 : for every n ∈ N0, let
κn(. : q) : N0 → R be given by

κn(k : q) :=

∫
R
Dq−1Pn(x)Pk(x) dµ(x).

It is obvious that κn(k : q) = 0 if k ≥ n or if n − k is even. As analogue to σ, we de�ne
σ(. : q) : N→ R\{0},

σ(n : q) := κn(n− 1 : q).

The following theorem [Kah16, Theorem 2.2] is the analogue to Theorem 4.4.

Theorem 4.5. Under the conditions of Theorem 4.2, the following are equivalent:

(i) Pn(x) = Pn(x;α : q) (n ∈ N0),

(ii) Dq−1Pn(x) = Dq−1Pn(A)P ∗n−1(x) (n ∈ N),

(iii) Dq−1P2n−1(x) = Dq−1P2n−1(A)P ∗2n−2(x) (n ∈ N),

(iv) (A2 − x2)Dq−1Pn(x) is orthogonal to P0(x), . . . , Pn−2(x) (n ≥ 2),

(v) (A2 − x2)Dq−1P2n−1(x) is orthogonal to P0(x), P2(x), . . . , P2n−4(x) (n ≥ 2),

(vi) one has
κ2n+1(2n− 2 : q) = σ(2n+ 1 : q) (n ∈ N),

and for every n ∈ N there is a k ∈ {0, . . . , n− 1} such that

κ2n+3(2k : q) = σ(2n+ 3 : q).

Since the details of the proof of Theorem 4.5 were omitted in our paper [Kah16] (because the
proof is rather similar to the proof of Theorem 4.4�which, however, has been omitted in this
thesis, cf. above), we want to give these details here. We preliminarily note two important
(general) relations: on the one hand, the analogue to Lemma 2.4 (i) is

σ(n : q) = q1−n 1− qn

1− q
1

cnh(n)
,

σ(n : q)

σ(n+ 1 : q)
= q

1− qn

1− qn+1

an
cn

(n ∈ N) (4.11)
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[IO11, proof of Theorem 4.1].43 On the other hand, (κn(. : q))n∈N0 satis�es the recurrence
relation κ0(. : q) = 0,

anκn+1(k : q) + cnκn−1(k : q) =
1

q
[akκn(k + 1 : q) + ckκn(k − 1 : q)] +

δn,k
h(n)

(n, k ∈ N0) (4.12)

[IO11, proof of Theorem 4.1], which relies on the product rule

Dq[PQ](x) = P (x)DqQ(x) +Q(qx)DqP (x) (P (x), Q(x) ∈ R[x])

[Ism09, (11.4.15)] for Dq.

We now come to the proof of Theorem 4.5. The direction �(i) ⇒ (ii)� is a part of Theorem 4.2,
the implications �(ii) ⇒ (iii)� and �(iii) ⇒ (vi)� are trivial. Moreover, (iv) and (v) are obvious
reformulations of (ii) and (iii), respectively. It is left to establish �(vi) ⇒ (i)�: we use induction
to show that (4.3) is satis�ed for all n ∈ N if (vi) is assumed to hold. The validity for n = 1 is
an assumption of the theorem. Furthermore, (4.12) implies

a2σ(3 : q) + c2σ(1 : q) =
A

q
σ(2 : q),

which yields
A

q
=

1

q

1− q3

1− q2
c2 + q

1− q
1− q2

a1

c1
c2 =

1

q

1− α2q4

1− q2
c2

as a consequence of (4.11). Hence, (4.3) is shown for n = 2. Now let n ∈ N be arbitrary but �xed,
and assume that 1, . . . , 2n ful�ll (4.3). Choose k ∈ {0, . . . , n−1} such that κ2n+3(2k : q) = σ(2n+
3 : q). Since κ2n(. : q) and κ2n+1(. : q) are uniquely determined by c1, . . . , c2n, we obtain from
the direction �(i) ⇒ (ii)� (or from Theorem 4.2) that κ2n(2j − 1 : q) = σ(2n : q) (j ∈ {1, . . . , n})
and κ2n+1(2j − 2 : q) = σ(2n+ 1 : q) (j ∈ {1, . . . , n+ 1}). Then (4.12) yields

a2n+1κ2n+2(2k + 1 : q) + c2n+1σ(2n : q) =
A

q
σ(2n+ 1 : q), (4.13)

a2n+1κ2n+2(2n− 1 : q) + c2n+1σ(2n : q) =
A

q
σ(2n+ 1 : q), (4.14)

a2n+2σ(2n+ 3 : q) + c2n+2σ(2n+ 1 : q) =
a2k

q
κ2n+2(2k + 1 : q) +

c2k

q
κ2n+2(2k − 1 : q), (4.15)

a2n+2σ(2n+ 3 : q) + c2n+2σ(2n+ 1 : q) =
a2n

q
σ(2n+ 2 : q) +

c2n

q
κ2n+2(2n− 1 : q). (4.16)

We distinguish two cases:
Case 1: k 6= 0. (4.12) yields

a2n+1κ2n+2(2k − 1 : q) + c2n+1σ(2n : q) =
A

q
σ(2n+ 1 : q).

43 With regard to the precise relation between (4.11) and Lemma 2.4 (i), we note that the latter would read

σ(n) =
n

cnh(n)
(n ∈ N)

in the present setting�which can be seen in the same way as in Section 2.3, however. Concerning the variant
using the Christo�el�Darboux formula (cf. (2.20)), take into account that the Christo�el�Darboux formula
reads

1

cnh(n)

n−1∑
k=0

h(k)P 2
k (x) = P ′n(x)Pn−1(x)− P ′n−1(x)Pn(x) (n ∈ N, x ∈ R)

now (cf. [Chi78, I-Theorem 4.6]). Comparing the present setting and the setting which was underlying the
original version of Lemma 2.4 (i), the role of a0 is a rather di�erent one: while in the �rst case a0 = A is the
normalization point of the sequence (Pn(x))n∈N0 , in the latter case the normalization point was always 1 and
any a0 6= 1 caused asymmetry.
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Combining this with (4.13) and (4.14), we get κ2n+2(2k+1 : q) = κ2n+2(2k−1 : q) = κ2n+2(2n−
1 : q). Hence, (4.15) reduces to

a2n+2σ(2n+ 3 : q) + c2n+2σ(2n+ 1 : q) =
A

q
κ2n+2(2n− 1 : q). (4.17)

Case 2: k = 0. Here, (4.15) reads a2n+2σ(2n + 3 : q) + c2n+2σ(2n + 1 : q) = A
q κ2n+2(1 : q).

Since (4.13) and (4.14) imply that κ2n+2(1 : q) = κ2n+2(2n− 1 : q), this reduces to (4.17), too.

Note that both in Case 1 and Case 2 the former dependence on k has vanished. We now combine
(4.16) and (4.17) and obtain that κ2n+2(2n − 1 : q) = σ(2n + 2 : q). Consequently, (4.14) and
(4.17) simplify to

a2n+1σ(2n+ 2 : q) + c2n+1σ(2n : q) =
A

q
σ(2n+ 1 : q), (4.18)

a2n+2σ(2n+ 3 : q) + c2n+2σ(2n+ 1 : q) =
A

q
σ(2n+ 2 : q). (4.19)

Applying (4.11) another time, we can deduce from (4.18) that

A

q
=

1

q

1− q2n+2

1− q2n+1
c2n+1 + q

1− q2n

1− q2n+1

a2n

c2n
c2n+1 =

1

q

1− α2q4n+2

1− q2n+1
c2n+1,

which shows that (4.3) is satis�ed for 2n+ 1. Knowing this, we �nally can apply (4.11) to (4.19)
and obtain

A

q
=

1

q

1− q2n+3

1− q2n+2
c2n+2 + q

1− q2n+1

1− q2n+2

a2n+1

c2n+1
c2n+2 =

1

q

1− α2q4n+4

1− q2n+2
c2n+2.

So (4.3) holds true for 2n+ 2, too, which �nishes the induction.

4.3. A characterization of continuous q-ultraspherical polynomials in terms of
the Askey�Wilson operator

Let A and (Pn(x))n∈N0 be as in Subsection 4.1 again (property (RW) not required), and let
q ∈ (0, 1). Following [IO11], we consider as well the Fourier coe�cients w.r.t. the Askey�Wilson
operator Dq as the Fourier coe�cients w.r.t. the averaging operator Aq and use the following
notation: for every n ∈ N0, let κn(.|q) : N0 → R and αn(.|q) : N0 → R be de�ned by

κn(k|q) :=

∫
R
DqPn(x)Pk(x) dµ(x),

αn(k|q) :=

∫
R
AqPn(x)Pk(x) dµ(x).

Obviously, κn(k|q) = 0 if k ≥ n or if n − k is even, and αn(k|q) = 0 if k ≥ n + 1 or if n − k is
odd. As analogue to σ and σ(. : q), we write σ(.|q) : N→ R\{0},

σ(n|q) := κn(n− 1|q).

We have the following analogue [Kah16, Theorem 2.3] to Theorem 4.4 and Theorem 4.5:

Theorem 4.6. Under the conditions of Theorem 4.3, the following are equivalent:

(i) Pn(x) = Pn(x;β|q) (n ∈ N0),

(ii) DqPn(x) = DqPn(A)P ∗n−1(x) (n ∈ N),

(iii) DqP2n−1(x) = DqP2n−1(A)P ∗2n−2(x) (n ∈ N),
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(iv) (A2 − x2)DqPn(x) is orthogonal to P0(x), . . . , Pn−2(x) (n ≥ 2),

(v) (A2 − x2)DqP2n−1(x) is orthogonal to P0(x), P2(x), . . . , P2n−4(x) (n ≥ 2),

(vi) one has
κ2n+1(2n− 2|q) = σ(2n+ 1|q) (n ∈ N),

and for every n ∈ N there is a k ∈ {0, . . . , n− 1} such that

κ2n+3(2k|q) = σ(2n+ 3|q).

The analogue to Lemma 2.4 (i) and (4.11) is

σ(n|q) = q
1−n
2

1− qn

1− q
1

cnh(n)
,

σ(n|q)
σ(n+ 1|q)

=
√
q

1− qn

1− qn+1

an
cn

(n ∈ N) (4.20)

[IO11, proof of Theorem 5.2].44 The analogue to (4.12) is

anκn+1(k|q) + cnκn−1(k|q) =

(√
q

2
+

1

2
√
q

)
[akκn(k + 1|q) + ckκn(k − 1|q)] + αn(k|q)

(n, k ∈ N0)

(4.21)

[IO11, proof of Theorem 5.2]; the latter relies on the product rule

Dq[PQ](x) = DqP (x)AqQ(x) +AqP (x)DqQ(x) (P (x), Q(x) ∈ R[x])

[Ism09, (12.1.22)] for Dq.

The proof of Theorem 4.6 is considerably more involved than the proof of Theorem 4.5 (or
Theorem 4.4, which can be established by just �copying� the proof of Theorem 4.5 given in the
previous subsection): this is due to the fact that (4.21) is considerably more complicated than
(4.12) because (4.21) simultaneously involves the Fourier coe�cients w.r.t. Aq, i.e., (αn(.|q))n∈N0 .
To overcome this di�culty, we need several more preliminaries. First, we need the (general)
relations

αn(n|q) =
q
n
2 + q−

n
2

2h(n)
(n ∈ N0), (4.22)

αn(n− 2|q) =
(1− q)

(
q
n−2
2 − q−

n
2

)
2︸ ︷︷ ︸

=:Dn

n
4 −

∑n−1
k=1 ak−1ck

h(n− 2)an−2an−1
(n ≥ 2) (4.23)

[IO11, Lemma 5.1].45 Next, we introduce auxiliary functions βn(.|q) : {0, . . . , n− 2} → R,

βn(k|q) :=

∫
R
Aq[xPn(x)]Pk(x) dµ(x) (n ≥ 2),

and use the following result:

Lemma 4.1. For each n ∈ N, the recursion coe�cients c1, . . . , cn determine αn+1(.|q)|{0,...,n}
and βn+1(.|q) uniquely.

The proof of Lemma 4.1, which is [Kah16, Lemma 3.1], can be found in our paper [Kah16].
Finally, we shall need the following:

44Take into account Footnote 43.
45Without going into detail, we note at this stage that the proof of [IO11, Lemma 5.1] given in the cited reference

contains a little mistake concerning the case n = 2. It can easily be corrected by a short calculation.
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Lemma 4.2. Let β ∈
(

0, 1√
q

)
and Pn(x) = Pn(x;β|q) (n ∈ N0). Then

αn+1(n+ 1− 2k|q)
σ(n+ 1|q)

=
(β − 1)(1− q)

4
√
βq

for each n ∈ N and k ∈
{

1, . . . ,
⌊
n+1

2

⌋}
.

Our proof of Lemma 4.2, which is [Kah16, Lemma 3.2] and makes use of Theorem 4.3, can be
found in [Kah16], too; the special case k = 1 is already contained in [IO11, proof of Theorem 5.2].

We now give a brief sketch of the proof of Theorem 4.6; the details can be found in our paper
[Kah16]. As in the proof of Theorem 4.5, the non-obvious part is the implication �(vi) ⇒ (i)�,
and we use induction to show that (vi) implies that (4.4) is satis�ed for all n ∈ N. The validity
for n = 1 is clear. Hence, applying the �rst part of Lemma 4.1 and also Lemma 4.2, we have

α2(0|q) =
(β − 1)(1− q)

4
√
βq

σ(2|q).

Now (4.21) yields

a2σ(3|q) + c2σ(1|q) =

(√
q

2
+

1

2
√
q

)
Aσ(2|q) + α2(0|q) =

1

2

(√
β

q
+

√
q

β

)
σ(2|q);

applying (4.20), we get

1

2

(√
β

q
+

√
q

β

)
=

1− q3

√
q(1− q2)

c2 +

√
q

1 + q

a1

c1
c2 =

(√
β

q
+

√
q

β

)
1− βq2

√
β(1− q2)

c2.

Consequently, (4.4) holds true for n = 2. Let n ∈ N be arbitrary but �xed, assume that 1, . . . , 2n
satisfy (4.4), and choose k ∈ {0, . . . , n − 1} such that κ2n+3(2k|q) = σ(2n + 3|q). In a similar
way as in the proof of Theorem 4.5�and taking into account as well the �rst part of Lemma 4.1
as Lemma 4.2�we obtain

a2n+2σ(2n+ 3|q) + c2n+2σ(2n+ 1|q) =

=

(√
q

2
+

1

2
√
q

)
[a2nσ(2n+ 2|q) + c2nκ2n+2(2n− 1|q)] + α2n+2(2n|q),

(4.24)

and

a2n+2σ(2n+ 3|q) + c2n+2σ(2n+ 1|q) =

(√
q

2
+

1

2
√
q

)
Aκ2n+2(2n− 1|q) + α2n+2(2k|q), (4.25)

as analogues to (4.16) and (4.17).

At this stage, an important di�erence to the proof of Theorem 4.5 occurs: in contrast to (4.17),
in (4.25) the dependence on k has not vanished. Furthermore, α2n+2(2k|q) in (4.25) is not
determined by the induction hypothesis (i.e., c1, . . . , c2n), nor is α2n+2(2n|q) in (4.24). In contrast
to the proof of Theorem 4.5 and the equations (4.16) and (4.17), (4.24) and (4.25) do not
immediately yield the (potentially helpful) conclusion κ2n+2(2n−1|q) = σ(2n+2|q) (nevertheless,
the latter will turn out to be true later). These circumstances are the actual di�culty in the
proof of Theorem 4.6. The key idea to overcome these problems consists of the following three
ingredients:

� via (4.23), relate α2n+2(2n|q) to α2n+1(2n − 1|q), which�due to the �rst part of
Lemma 4.1�is determined by the induction hypothesis;
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� consider the auxiliary function β2n+1(.|q), apply the induction hypothesis and the second
part of Lemma 4.1 to β2n+1(2k|q) and relate it to α2n+2(2k|q) via a2n+1α2n+2(2k|q) =
β2n+1(2k|q)− c2n+1α2n(2k|q);

� simultaneously involve the sequence (Pn(x;β|q))n∈N0 of continuous q-ultraspherical poly-
nomials itself�from now on, we write an additional tilde when explicitly referring to

(Pn(x;β|q))n∈N0 (in particular, c̃2n+1

(
=
√
β

2
1−q2n+1

1−βq2n+1

)
).

Without going into detail, we note that this approach yields

a2n+1α2n+2(2n|q)
σ(2n+ 1|q)

=
(1− q)2

2q
a2n︸ ︷︷ ︸

=:A1(n)

c2n+1 +
(β − 1)(1− q)

4
√
βq

D2n+2

D2n+1
c2n −

(1− q)2

8q︸ ︷︷ ︸
=:A2(n)

(4.26)

and

a2n+1α2n+2(2k|q)
σ(2n+ 1|q)

=−(β − 1)(1− q)
4
√
β

1− q2n

1− q2n+1

a2n

c2n︸ ︷︷ ︸
=:A3(n)

c2n+1

+
(β − 1)(1− q)

4
√
β(q − q2n+2)

[
(1− q2n+2) + (q − q2n+1)

a2n

c2n

]
c̃2n+1︸ ︷︷ ︸

=:A4(n)

.

(4.27)

Moreover (again we skip any details), the di�erence of (4.24) and (4.25) simpli�es to

a2n+1α2n+2(2n|q)
σ(2n+ 1|q)

− a2n+1α2n+2(2k|q)
σ(2n+ 1|q)

=

= − q + 1

2(q − q2n+2)
a2n

[
(1− q2n+2) + (q − q2n+1)

a2n

c2n

]
︸ ︷︷ ︸

=:A5(n)

c2n+1 +
(β + q)(q + 1)

4q
√
β

a2n︸ ︷︷ ︸
=:A6(n)

.
(4.28)

Combining (4.26), (4.27) and (4.28), we obtain

[A1(n)−A3(n)−A5(n)]c2n+1 = −[A2(n)−A4(n)−A6(n)], (4.29)

where the former dependence on k has vanished now. A1(n), . . . , A6(n) are determined by the
induction hypothesis, and

A1(n)−A3(n)−A5(n) 6= 0 (4.30)

(the latter can be seen by a short elementary calculation). Hence, we could compute c2n+1 as
the quotient −A2(n)−A4(n)−A6(n)

A1(n)−A3(n)−A5(n) , which�after tedious calculations�would yield the desired
result.

However, also a much faster argument is available at this stage: as an immediate consequence
of the already veri�ed direction �(i) ⇒ (vi)� (or of Theorem 4.3), the argument up to this point
would remain valid if (Pn(x))n∈N0 was replaced by (Pn(x;β|q))n∈N0 ; hence, (4.29) would remain
valid if c2n+1 was replaced by c̃2n+1. So

[A1(n)−A3(n)−A5(n)](c2n+1 − c̃2n+1) = 0.

Consequently, c2n+1 = c̃2n+1, i.e., (4.4) is valid for 2n+ 1.46

46This �replacement argument� has another advantage: it would not even have been necessary to compute A2(n),

A4(n) and A6(n) as above; instead, it would have been enough to observe that
a2n+1α2n+2(2n|q)

σ(2n+1|q) −A1(n)c2n+1,
a2n+1α2n+2(2k|q)

σ(2n+1|q) − A3(n)c2n+1 and
a2n+1α2n+2(2n|q)

σ(2n+1|q) − a2n+1α2n+2(2k|q)
σ(2n+1|q) − A5(n)c2n+1 are �xed by c1, . . . , c2n.

The values of A1(n), A3(n) and A5(n) (which are also determined by c1, . . . , c2n) are only needed to show
(4.30).
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Since besides c1, . . . , c2n also c2n+1 is known now, Lemma 4.1 and Lemma 4.2 imply that both
(4.24) and (4.25) reduce to

a2n+2σ(2n+ 3|q) + c2n+2σ(2n+ 1|q) =
1

2

(√
β

q
+

√
q

β

)
σ(2n+ 2|q). (4.31)

Following the remaining proof of Theorem 4.5, we can deduce from (4.31) that (4.4) is valid for
2n+ 2, too, which �nishes the induction.

4.4. A characterization of continuous q-ultraspherical polynomials in terms of
the averaging operator

Let A and (Pn(x))n∈N0 be as in Subsection 4.1 another time (property (RW) not required), let
q ∈ (0, 1) again, and use the notation of the previous subsection. The following theorem [Kah16,
Theorem 2.4] is the announced characterization in terms of the averaging operator Aq:

Theorem 4.7. Under the conditions of Theorem 4.3 and the additional assumption that β ≤ 1,
the following are equivalent:

(i) Pn(x) = Pn(x;β|q) (n ∈ N0),

(ii) the quotient αn+1(n−1|q)
σ(n+1|q)

(
=
∫
RAqPn+1(x)Pn−1(x) dµ(x)∫
RDqPn+1(x)Pn(x) dµ(x)

)
is independent of n ∈ N.

If the condition β ≤ 1 is dropped, then only �(i) ⇒ (ii)� remains valid.

Besides the averaging operator Aq, Theorem 4.7 involves σ(n + 1|q) (and consequently the
Askey�Wilson operator Dq). However, recall that σ(n + 1|q) can be expressed in terms of the
recurrence coe�cients in a considerably more convenient way than the analogue concerning
αn+1(n−1|q), cf. (4.20) and (4.23). Therefore, we think it is indeed justi�ed to call Theorem 4.7
a characterization �in terms of the averaging operator�.

We brie�y sketch the proof of Theorem 4.7 (and refer to our paper [Kah16] for the details again):
�rst not imposing the additional condition β ≤ 1, the implication �(i) ⇒ (ii)� is an obvious
consequence of Lemma 4.2, and�using (4.20) and (4.23)�we can reformulate (ii) as[

an +
1− β

2
√
β(1− q)

1− qn+2

1− qn+1

]
cn+1 =

1

4
+

1− β
2
√
β(1− q)

1− qn+1

1− qn
cn (n ∈ N). (4.32)

Now assume that (ii) is satis�ed, and also that β ≤ 1. We use induction to verify (4.4) for all
n ∈ N: this is clear for n = 1, so let n ∈ N be arbitrary but �xed and assume (4.4) to be satis�ed
for n. Short calculations yield

an +
1− β

2
√
β(1− q)

1− qn+2

1− qn+1
=

1− βqn+1

2
√
β(1− qn+1)

2− q − qn+1 − (1 + qn − 2qn+1)β

(1− q)(1− βqn)
(4.33)

and
1

4
+

1− β
2
√
β(1− q)

1− qn+1

1− qn
cn =

2− q − qn+1 − (1 + qn − 2qn+1)β

4(1− q)(1− βqn)
. (4.34)

Since β ≤ 1, we have
2− q − qn+1 − (1 + qn − 2qn+1)β 6= 0. (4.35)

Hence, combining (4.32), (4.33), (4.34) and (4.35), we obtain that (4.4) is also valid for n + 1,
which �nishes the induction.
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Concerning the second part of the theorem (i.e., that �(ii) ⇒ (i)� is not generally true if the

additional assumption β ≤ 1 is dropped), via A := 9
4
√

5
, c1 :=

√
5

3 , c2 := 1
2 ,

cn+1 :=

√
5− 2n+1−1

2n−1 cn

9− 4
√

5cn − 2n+2−1
2n+1−1

(n ≥ 2)

one can recursively de�ne a symmetric RWPS (Pn(x))n∈N0 such that, putting q := 1
2 and β := 5

4 ,
the conditions of Theorem 4.3 and (ii) are satis�ed. However, (Pn(x))n∈N0 6= (Pn(x;β|q))n∈N0

because c2 = 1
2 6=

3
√

5
11 =

√
β

2
1−q2

1−βq2 (cf. (4.4)).

Remark 4.2. Although the condition β ≤ 1 cannot be completely removed, the equivalence �(i)
⇔ (ii)� of Theorem 4.7 remains valid if β ≤ 1 is replaced by one of the weaker conditions

∀n ∈ N :
2− q − qn+1

1 + qn − 2qn+1
6= β,

∀n ∈ N :

(
2− q − qn+1

1 + qn − 2qn+1
= β ⇒ cn+1 =

√
β

2

1− qn+1

1− βqn+1

)
,

cf. the detailed proof of Theorem 4.7 given in our paper [Kah16]. Since the function

(0,∞) → (1,∞), x 7→ 2−q−qx+1

1+qx−2qx+1 is strictly increasing, there exists at most one n ∈ N such

that 2−q−qn+1

1+qn−2qn+1 = β, and if β ≤ 1, then there is none.

Remark 4.3. The ultraspherical polynomials appear as limiting cases of as well the discrete as
the continuous q-ultraspherical polynomials (cf. Subsection 4.1); consequently, it is a natural
question to ask whether Theorem 4.5 or Theorem 4.6 implies Theorem 4.4 by just �taking the
limit� q → 1. However, there is no obvious reason why the �characterizing� directions �(vi) ⇒
(i)� should remain valid if one passes to limits. The same is the case w.r.t. the original results of
Lasser�Obermaier and Ismail�Obermaier: the directions �(ii)⇒ (i)� of Theorem 4.1, Theorem 4.2
and Theorem 4.3 are mutually independent from each other.
In this context, we make the following observation w.r.t. Theorem 4.7: let α > −1. There exists
some q0 ∈ [0, 1) such that 2−q−qn+1

1+qn−2qn+1 6= qα+ 1
2 for all n ∈ N and q ∈ (q0, 1).47 Hence, if q ∈ (q0, 1),

if A =

√
qα+

1
2

2 + 1

2

√
qα+

1
2

, if c1 =

√
qα+

1
2

2
1−q

1−qα+
3
2
and if αn+1(n−1|q)

σ(n+1|q) is independent of n ∈ N, then

Pn(x) = Pn(x; qα+ 1
2 |q) (n ∈ N0) as a consequence of Theorem 4.7 and Remark 4.2.48 Despite

the fact that limq→1 Pn(x; qα+ 1
2 |q) = P

(α)
n (x) (n ∈ N0, x ∈ R) (4.5), the �limiting conditions�

A = 1, c1 = 1
2α+3 and �0 is independent of n ∈ N� do not enforce that Pn(x) = P

(α)
n (x) (n ∈ N0),

of course. Since the limiting case of Theorem 4.7 (ii) is a trivial property that is always true
(because Aq becomes the identity as q → 1), one has no analogue to Theorem 4.7 for the class
of ultraspherical polynomials.

47This can be seen as follows: let u, v : (0, 1) → R be de�ned by u(q) := 2 − q − qα+
1
2 , v(q) := q + qα+

1
2 −

2qα+
3
2 . Since limq→1 u(q) = limq→1 v(q) = 0, and since u and v are continuously di�erentiable on (0, 1) with

limq→1 u
′(q) = limq→1 v

′(q) = −α − 3
2
< 0, there exists some q∗0 ∈ (0, 1) such that u(q) > 0 and v(q) > 0

for all q ∈ [q∗0 , 1). Now consider the function w : [q∗0 , 1) → R, w(q) :=
log

u(q)
v(q)

log q
. After several applications of

L'Hôpital's rule, one sees that w converges to a real number if q → 1 (in fact, limq→1 w(q) = − 4α+2
2α+3

). So w is
bounded; in particular, there exists some N ∈ N such that n > w(q) for all q ∈ [q∗0 , 1) and n ∈ N with n > N .

The latter is easily seen to imply that 2−q−qn+1

1+qn−2qn+1 > qα+
1
2 for all q ∈ [q∗0 , 1) and n ∈ N with n > N . Since

each of the functions (0, 1) → R, q 7→ 2−q−qn+1

1+qn−2qn+1 − qα+
1
2 , n ∈ {1, . . . , N}, has at most �nitely many zeros,

we obtain indeed some q0 ∈ [0, 1) with the desired property.
48In the special case α ≥ − 1

2
, the argument considerably simpli�es because qα+

1
2 ≤ 1 then; consequently, one

can apply Theorem 4.7 in its original formulation (and does not have to take into account Remark 4.2), and
one may choose q0 = 0.
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Outlook

One of the things that make science and research so interesting and exciting is that every solved
problem immediately leads to new questions. This short section is devoted to some suggestions
for future research. We �rst present some ideas without going into detail, and then brie�y
discuss two selected problems from which we think that they are of particular interest�and
which we plan to solve in the course of our postdoctoral research.

In Section 2, we considered polynomial hypergroups and obtained a su�cient criterion (Theo-
rem 2.1) and a necessary criterion (Theorem 2.2) for weak amenability of their `1-algebras `1(h).
This enabled us to characterize weak amenability (and also point amenability) for the classes of
Jacobi polynomials (Theorem 3.1), symmetric Pollaczek polynomials (Theorem 3.2), associated
ultraspherical polynomials (Theorem 3.3), random walk polynomials (in the sense of Section 3;
Proposition 3.1) and cosh-polynomials (Proposition 3.2). Also the notions of amenability
and right character amenability are solved problems concerning theses classes, cf. Section 3.
However, it would be interesting to clarify the situation w.r.t. approximate amenability (which,
since `1(h) is commutative and unital, coincides with pseudo-amenability and implies weak
amenability), w.r.t. pointwise amenability (which implies approximate amenability at this
stage) or w.r.t. other amenability notions for Banach algebras (cf. Section 1.2 and Section 1.4).
Recall that the problem of pointwise amenability seems to be open even for L1-algebras of
locally compact groups.

It would also be interesting to study more general structures (for instance, hypergroups
which are not located at the fruitful crossing point to the theory of orthogonal polynomials),
or to study further examples of polynomial hypergroups. Concerning the latter, there is a
very interesting class which comes from q-calculus and for which property (P), as well as
right character amenability of `1(h), are known to hold: this is the class of little q-Legendre
polynomials, and we shall discuss it in some more detail below (as the �rst of the two selected
problems mentioned above).

Recall that, in accordance with previous research on polynomial hypergroups and their
`1-algebras, we considered point derivations (and also the concepts of α- and ϕ-amenability)
w.r.t. Hermitian characters. There are good reasons for this restriction: on the one hand,
the general theory and the available harmonic analysis becomes richer (cf. Abelian locally
compact groups). On the other hand, for our main examples (Jacobi, symmetric Pollaczek
and associated ultraspherical polynomials) all characters are Hermitian. Nevertheless, the
general question about non-symmetric characters suggests interesting problems: for instance,
it is an interesting question to ask whether there holds a more general version�concerning
non-symmetric characters�of the full assertion of Proposition 2.1 (i) (whose proof essentially
relied on the boundedness of the derivatives of the Chebyshev polynomials of the second kind

at each x ∈ (−1, 1)): since the set

{
d

dxP
( 1
2)

n (x) : n ∈ N0

}
is unbounded for every x ∈ C\(−1, 1)

(use (3.16) and the fact that N̂0 = X b(N0) = supp µ = [−1, 1] for the sequence

(
P

( 3
2)

n (x)

)
n∈N0

),

at least the proof of Proposition 2.1 (i) breaks down as soon as one does not restrict oneself
to Hermitian characters. Moreover, we cannot draw any conclusion concerning the size of
X b(N0)\N̂0 (because the equalities N̂0 = X b(N0) = supp µ = [−1, 1] are also valid for the
Chebyshev polynomials of the second kind).

With regard to Theorem 4.5, Theorem 4.6 and Theorem 4.7: results of our Master's thesis
[Kah12] (cf. Section 4.1) suggest to look for generalizations to suitable q-analogues of the Jacobi
and generalized Chebyshev polynomials, and the results of Ismail�Simeonov [IS12] suggest to
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look for generalizations to symmetric Al-Salam�Chihara, symmetric Askey�Wilson, symmetric
Meixner�Pollaczek or more abstract symmetric orthogonal polynomials. In particular, we plan
to establish a characterization which is motivated by a certain q-extension of the generalized
Chebyshev polynomials considered in [Mej10] (as another possible part of our PostDoc research).
Our Master's thesis [Kah12] also suggests research motivated by the �backward shift analogues�
(cf. [KLS10, (14.5.9)] and [KLS10, (14.10.25)], and cf. Section 4.1). However, we are even
more interested in another type of generalization�which is very di�erent from the situations
studied in [IS12] and [Kah12]: this problem concerns sieved orthogonal polynomials and certain
�limiting operators� of Dq and Aq; we shall discuss it in some more detail below (as the second
of the two selected problems mentioned above).

We now come to the announced details:

� Concerning both our su�cient criterion Theorem 2.1 and our necessary criterion The-
orem 2.2 for weak amenability of `1-algebras of polynomial hypergroups, absolute
continuity of the orthogonalization measure plays a crucial role. For instance, the
proof of Theorem 2.1 relied on the fundamental lemma of the calculus of variations,
and the proof of Theorem 2.2 made use of an integration by parts argument for the
Radon�Nikodym derivatives. Considering purely discrete orthogonalization measures, the
proof of Theorem 2.1 breaks down for several reasons; for instance, an application of the
essential ingredient [MNT87, Theorem 12.1] on limiting behavior is no longer possible.

An important example of a polynomial hypergroup with purely discrete orthogonalization
measure is provided by the little q-Legendre polynomials: given q ∈ (0, 1), the corre-
sponding sequence (Rn(x; q))n∈N0 of little q-Legendre polynomials is determined by the
orthogonalization measure

µ(x) =

{
qn(1− q), x = 1− qn with n ∈ N0,

0, else

and the normalization Rn(1; q) = 1 (n ∈ N0), or, equivalently, via

a0 =
1

q + 1
, an = qn

(1 + q)(1− qn+1)

(1− q2n+1)(1 + qn+1)
(n ∈ N),

cn = qn
(1 + q)(1− qn)

(1− q2n+1)(1 + qn)
(n ∈ N),

bn ≡ 1− an − cn.

(4.36)

Property (P) is always satis�ed, so a polynomial hypergroup is induced. One has

h(n) =
1

qn
1− q2n+1

1− q
(n ∈ N0) (4.37)

and N̂0 = X b(N0) = supp µ = {1}∪ {1− qn : n ∈ N0}. Consequently, Reiter's condition P2

is satis�ed. These basics are taken from [KLS10, Section 14.12.1], [Las05, Section 6] and
[Las09b, Example 3]. Applying Lemma 2.4 (i), we obtain

σ(n) =
(1− q)(1 + qn)

1− qn
n (n ∈ N). (4.38)

As we already have recalled, the corresponding `1-algebra `1(h) is right character amenable
(and consequently point amenable, cf. also [Las09b, Example 3]) yet non-amenable; while
right character amenability follows from the fact that the hypergroup is `of strong compact
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type' [FLS05], non-amenability is an immediate consequence of (4.37) and Theorem 1.4 (i).

Obviously, our su�ciency criterion Theorem 2.1 cannot be applied to establish weak
amenability of `1(h). Moreover, the situation is consistent with our necessary criterion
Theorem 2.2: in view of (4.38) and the �rst part of Theorem 2.2, neither (i) nor (ii) of
Theorem 2.2 is violated.

Recall that our strategy for the proof of Theorem 2.1 relied on the sequence (Fn)n∈N0 ⊆ c00

(cf. (2.1) and (2.2)), on a speci�c certain limit F of this sequence (speci�c in the sense
that the limit contains adequate information about the individual underlying sequence
of orthogonal polynomials), and on a density argument concerning the linear span of
the set {TmF : m ∈ N0}. Concerning the little q-Legendre polynomials, this approach
breaks down at least for the following two reasons: on the one hand, (4.36) yields that
(Rn(x; q))n∈N0 is of `Nevai class M(1, 0)', i.e., αn → 0 (n → ∞) and βn → 1 (n → ∞)
(cf. the recurrence relation for the orthonormal sequence (pn(x))n∈N0). Applying another
result of Nevai on limiting behavior [Nev79, Lemma 4.2.9, Theorem 4.2.10], this implies
that (Fn)n∈N0 converges pointwise to the trivial character 1α�however, the trivial
character is not speci�c to (Rn(x; q))n∈N0 in any way; in other words: passing to the limit
is accompanied by a considerable loss of information. On the other hand, and this is the
even more serious aspect, Tm 1α = 1α for every m ∈ N0 (1.10)�consequently, the linear
span of {Tm 1α : m ∈ N0} is only one-dimensional.

For these reasons, we think that the question of whether the little q-Legendre polynomi-
als bear weakly amenable `1-algebras or not is a rather nontrivial one. We plan to solve
this problem with completely di�erent methods�as a possible project for our PostDoc
research�and do not go into further detail at this stage; we just mention that we have the
conjecture that the `1-algebras are weakly amenable, and that we think that the asymp-
totics of the little q-Legendre polynomials [IW82] will play a crucial role for the solution.49

� Let (Pn(x))n∈N0 ⊆ R[x] be a symmetric RWPS (in the sense of Section 4) with normaliza-
tion point 1, i.e., (Pn(x))n∈N0 is given by a recurrence relation of the form P0(x) = 1,

xPn(x) = anPn+1(x) + cnPn−1(x) (n ∈ N0),

where c0 := 0, (cn)n∈N ⊆ (0, 1) and an := 1−cn (n ∈ N0). Let k ∈ N, and let (Pn(x; k))n∈N0

denote the `k-sieved RWPS' which corresponds to (Pn(x))n∈N0 , i.e., P0(x; k) = 1 and

xPn(x; k) = a(n; k)Pn+1(x; k) + c(n; k)Pn−1(x; k) (n ∈ N0)

with

c(n; k) :=

{
cn
k
, k|n,

1
2 , else

and a(n; k) := 1− c(n; k) (n ∈ N0); sometimes the additional expression �of the �rst kind�
is used.50 Sieved RWPS have been studied in [GVA88] and in [IL92] (the latter being part
of a series of papers by Ismail et al.), for instance.

49Note that if the conjecture is true, one obtains as an obvious consequence that not all of the conditions (i) �
(iv) of our su�ciency criterion Theorem 2.1 are necessary for weak amenability of `1(h) (cf. the notes at the
end of Section 3.2).

50However, the expression �of the �rst kind� does also appear with a di�erent meaning (in the context of certain
sieved polynomials).
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If Pn(x) = P
(α)
n (x) (n ∈ N0) for some α > −1, then (Pn(x; k))n∈N0 is given by

Pn(x; k) = lim
s→1

Pn

(
x; sαk+ k

2 |se
2πi
k

)
(4.39)

for every n ∈ N0 and x ∈ R [ASAA84], and we write (P
(α)
n (x; k))n∈N0 for these `k-sieved

ultraspherical polynomials'. Of course, (4.39) requires a more general de�nition of the
continuous q-ultraspherical polynomials (Pn(x;β|q))n∈N0 than considered in Section 4
(in particular, allowing q to be non-real, and allowing the moment functionals to be not
necessarily restricted to the positive-de�nite case; we refrain from going into too much
detail at this stage). Observe that (4.39) generalizes (4.5).

Having in mind (4.39), in view of Theorem 4.1 and Theorem 4.3 it is a natural question
to ask whether there exists an analogous characterization of the k-sieved ultraspherical
polynomials in terms of the �k-sieved Askey�Wilson operator� Dk : R[x]→ R[x] which we
introduce via

DkTn(x) := lim
s→1

(√
se

2πi
k

)n
−
(√

se
2πi
k

)−n
√
se

2πi
k − 1√

se
2πi
k

Un−1(x) = Un−1

(∣∣∣cos
π

k

∣∣∣)Un−1(x) (n ∈ N0)

(cf. (4.9) and (4.2)) and linear extension. Moreover, in view of Theorem 4.7 it is an
interesting problem whether there exists an analogous characterization of the k-sieved
ultraspherical polynomials in terms of the �k-sieved averaging operator� Ak : R[x]→ R[x]
which we introduce via

AkTn(x) := lim
s→1

(√
se

2πi
k

)n
+
(√

se
2πi
k

)−n
2

Tn(x) = Tn

(∣∣∣cos
π

k

∣∣∣)Tn(x) (n ∈ N0)

(cf. (4.10) and (2.5)) and linear extension.

For k ≥ 2, which shall be assumed from now on,51 at �rst sight it might indeed seem
reasonable to expect such analogous characterizations in terms of Dk and Ak.

However, these �sieved operators� are very di�erent from d
dx , Dq and Aq�and also from Dq,

and from the operators corresponding to the Ismail�Simeonov characterizations in [IS12]�
for the reason that Dk and Ak have in�nite-dimensional kernels (because Un−1

(∣∣cos πk
∣∣) =

Un−1

(
cos πk

)
becomes zero for in�nitely many n ∈ N0 (4.2), as well as Tn

(∣∣cos πk
∣∣) =

Tn
(
cos πk

)
becomes zero for in�nitely many n ∈ N0 (2.5)). This important observation

gives reason to expect a certain loss of information, or, in other words, an additional degree
of freedom. We plan to solve this problem as another possible project for our PostDoc
research and hence do not go into further detail at this stage; we just mention that we
have the conjecture that (still assuming k ≥ 2) analogues of Theorem 4.1, Theorem 4.3
and Theorem 4.7 do not yield characterizations of the k-sieved ultraspherical polynomials
but characterizations of arbitrary k-sieved RWPS.52

51The case k = 1 is obvious because D1 = d
dx

(4.8) and A1 = id: while there is a characterization of the 1-
sieved ultraspherical polynomials�i.e., the ultraspherical polynomials themselves�in terms of D1, namely
just Theorem 4.1 itself, there is no analogue to Theorem 4.7 in terms of A1 (cf. also Remark 4.3). Note that
the formal limit �D∞� coincides with D1, as well as �A∞� coincides with A1.

52We call a symmetric RWPS `k-sieved' (without further speci�cation) if it is k-sieved w.r.t. another symmetric
RWPS (or, equivalently, if cn = 1

2
if k 6 |n).
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Symbols

In the following, we collect some symbols that have occurred in this thesis. It is not the purpose
to give details at this stage, nor is it the purpose to mention any occurring symbol or to mention
any possible meaning a symbol may have in the course of the thesis, which would become
rather clumsy. For instance, there are various meanings of �∗� or �〈., .〉�, and it would not seem
reasonable to collect all of them: on the contrary, various meanings become clear out of context.

The text of the thesis contains the precise de�nitions and hence can be read independently of
the following collection. The purpose of the tables is to just provide a concise presentation
which�if desired�may help the reader to recall important notation (with meanings as they are
�typical� in important parts of the thesis).

To achieve this aim, we give short, �informal� explanations on the one hand, and refer to the
page numbers for corresponding precise information on the other hand.

Polynomial hypergroups and their basic harmonic analysis

Symbol Informal Precise

Pn(x) underlying orthogonal polynomials p. 9
an, bn, cn recurrence coe�cients p. 9
µ orthogonalization (and Plancherel) measure p. 9
ρn(x) monic version of the polynomials p. 10
pn(x) orthonormal version of the polynomials p. 10
αn, βn recurrence coe�cients (cf. monic/orthonormal versions) p. 10
g(m,n; k) linearization coe�cients (products) p. 9
(P) property (P) p. 9
ω hypergroup convolution p. 10
.̃ hypergroup involution p. 10
Tn translation/shift operator p. 10
h Haar function p. 10
‖.‖p ‖.‖p-norm (w.r.t. Haar measure) p. 11
`p(h) `p-space (w.r.t. Haar measure) p. 11
〈f, g〉 duality relation p. 11
∗ convolution p. 11
`1(h) `1-algebra of the polynomial hypergroup p. 12
X b(N0) (homeomorphic to) structure space of `1(h) p. 12
N̂0 (homeomorphic to) Hermitian structure space of `1(h) p. 9

xα (symmetric/Hermitian) character p. 12
.̂ Fourier transformation (w.r.t. N̂0) p. 12
P Plancherel isomorphism p. 13
Dx point derivation p. 15
Pp Reiter's condition Pp p. 13
M(0, 1) Nevai class M(0, 1) p. 15
M(1, 0) Nevai class M(1, 0) p. 60
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(Symmetric) orthogonal and random walk polynomial sequences

Symbol Informal Precise

Pn(x) (symmetric) orthogonal polynomials p. 44
A normalization point p. 44
an, cn recurrence coe�cients p. 44
µ orthogonalization measure p. 44
h(n) 1∫

RP
2
n(x) dµ(x)

p. 46

(RW) property (RW) p. 44
RWPS (symmetric) random walk polynomial sequence p. 44
µ∗ (A2 − x2) dµ(x) p. 45

P ∗n(x) orthogonal polynomials w.r.t. µ∗;
∑bn2 c
k=0 h(n−2k)Pn−2k(x)∑bn2 c

k=0 h(n−2k)
p. 45; p. 47

Pn(x; k) sieved polynomials p. 60
a(n; k), c(n; k) sieved recurrence coe�cients p. 60

Spaces of functions/measures

Symbol Informal Precise

C(K) (complex-valued) continuous functions p. 7
Cb(K) bounded continuous functions p. 7
Cc(K) continuous functions with compact support p. 7
CE(K) f ∈ Cc(K) with supp f ⊆ E p. 7
M(K) (complex) Radon measures p. 7
M+(K) positive Radon measures p. 7
M b(K) bounded Radon measures p. 7
M1(K) probability measures p. 7
c0 null sequences p. 11
c00 sequences with �nite support p. 11
∆(A) character/structure space p. 4; p. 4
∆s(A) Hermitian character/structure space p. 6

Operators and expansions

Symbol Informal Precise

εn Fourier coe�cients associated with Pn(x) p. 11
fn Fourier coe�cients associated with p2

n(x) p. 19
Fn arithmetic mean of f0, . . . , fn p. 19
κn Fourier coe�cients associated with P ′n(x) p. 16; p. 47
σ(n) κn evaluated at n− 1 p. 19; p. 49
τ(n) κn evaluated at 0 p. 24
Dq q-di�erence operator p. 47
κn(. : q) Fourier coe�cients associated with Dq−1Pn(x) p. 50
σ(n : q) κn(. : q) evaluated at n− 1 p. 50
Dq Askey�Wilson operator p. 47
κn(.|q) Fourier coe�cients associated with DqPn(x) p. 52
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σ(n|q) κn(.|q) evaluated at n− 1 p. 52
Aq averaging operator p. 50
αn(.|q) Fourier coe�cients associated with AqPn(x) p. 52
βn(.|q) Fourier coe�cients associated with Aq[xPn(x)] p. 53
Dk sieved Askey�Wilson operator p. 61
Ak sieved averaging operator p. 61

Speci�c classes of orthogonal polynomials

Symbol Informal Precise

R
(α,β)
n (x) Jacobi p. 29

DP parameter region property (P) holds for Jacobi p. 29
∆ suitable subregion of DP p. 33

φn R
(α,β)
n (x) evaluated at x = −1 p. 33

P
(α)
n (x) ultraspherical p. 16
Tn(x) Chebyshev of the �rst kind p. 17
ωT Chebyshev weight p. 19
Un(x) Chebyshev of the second kind p. 45

Q
(α,λ)
n (x) symmetric Pollaczek p. 29

DQ parameter region property (P) holds for symmetric Pollaczek p. 30

A
(α,ν)
n (x) associated ultraspherical p. 30

Pn(x;α : q) discrete q-ultraspherical p. 45
Pn(x;β|q) continuous q-ultraspherical p. 45

P
(α)
n (x; k) sieved ultraspherical p. 61

S
(a,b)
n (x) random walk (in the sense of Section 3) p. 37

Ψ
(a)
n (x) cosh p. 42

Rn(x; q) little q-Legendre p. 59

Miscellaneous

Symbol Informal Precise

•, ◦ module actions p. 4
Cϕ C as module via ϕ (character) p. 4
C(K) nonvoid compact subsets p. 7
conv convex hull p. 8
χA(x) 1 if x ∈ A, 0 else p. 16

R[x] denotes the polynomial ring over R (and the corresponding R-linear space).

As usual, (.)p and pFq denote the Pochhammer symbol (or shifted factorial) and the hypergeo-
metric series (or hypergeometric function), respectively.

As usual, δ and a subscript means a Dirac measure (point mass) or a Dirac function (it becomes
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clear out of context whether a Dirac measure or a Dirac function shall be meant). We also use
the well-known Kronecker delta.

For the sake of completeness and to avoid any confusion, we note that the set N shall not contain
0 (if 0 shall be contained, we write N0).
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A. Publication [Kah15]

A.1. Summary

In our paper [Kah15] (sole author), we study two amenability properties for `1-algebras of
polynomial hypergroups: on the one hand, we are interested in `weak amenability' of these
`1-algebras, i.e., in the nonexistence of nonzero bounded derivations into `∞; on the other
hand, we consider the nonexistence of nonzero bounded point derivations w.r.t. symmetric
characters (regarded as a global property, `point amenability'). Originally coming from abstract
harmonic and functional analysis (cohomology), it is known that these properties correspond
to questions concerning the derivatives of the underlying orthogonal polynomials (Pn(x))n∈N0

and concerning certain associated Fourier coe�cients (Lasser 2007, 2009). Despite these rather
concrete correspondencies, deciding whether a given polynomial hypergroup bears a weakly or
point amenable `1-algebra requires often deep knowledge about (Pn(x))n∈N0 .

Polynomial hypergroups are interesting for several reasons. In our opinion, the most important
motivation for considering these structures is that they o�er an elegant possibility to study
orthogonal polynomials via methods from functional and harmonic analysis�in particular, via
the machinery provided by Gelfand theory; for instance, the Hermitian characters can be iden-
ti�ed with a compact subset of R which contains the support of the orthogonalization measure.
On the other side of the coin, polynomial hypergroups provide an abundance of interesting
hypergroups (and corresponding L1-algebras) which are based on the theory of orthogonal
polynomials and special functions, and which are very di�erent from any locally compact group.
For instance, even point amenability�which is the weaker of the two amenability properties
we focus on in [Kah15]�is often not satis�ed for `1-algebras of polynomial hypergroups (in
contrast to the group case). The results of [Kah15] can be divided into two parts: in Section
2, we give some general results on point and weak amenability of `1-algebras of polynomial
hypergroups, whereas from Section 3 on we consider concrete examples and, in particular,
obtain characterizations of these amenability properties for the classes of Jacobi polynomials
(Theorem 3.1), symmetric Pollaczek polynomials (Theorem 4.1) and associated ultraspherical
polynomials (Theorem 5.1) as main results�by identifying the corresponding parameter regions
in each case. In doing so, we shall also obtain examples of polynomial hypergroups with weakly
amenable but non-amenable `1-algebra (e.g., certain ultraspherical polynomials), which solves a
problem which has been open for some years.

The main results of Section 2 are a necessary criterion (Theorem 2.2) and a su�cient criterion
(Theorem 2.3) for weak amenability; later in the paper, we will apply these to situations where
more explicit computations seem to be out of reach. The criteria and their proofs use shift oper-
ators, certain regularity and smoothness conditions on the orthogonalization measures, growth
conditions (e.g., on the Haar measures), certain limiting behavior of orthogonal polynomials,
the Plancherel isomorphism and several further ingredients such as suitable approximation, ex-
pansion and convergence arguments or the fundamental lemma of the calculus of variations.
Concerning Theorem 3.1, Theorem 4.1 and Theorem 5.1, every result requires its own speci�c
analytical techniques from the theory of orthogonal polynomials and special functions. Theorem
3.1 is based on our su�cient criterion Theorem 2.3, suitable transformation formulas for hy-
pergeometric series, the Stolz�Cesàro theorem, the asymptotics of the Jacobi polynomials, and
inheritance via homomorphisms. Theorem 4.1 uses a transformation of the Pollaczek polynomials
into a related system whose asymptotics are easier to handle (`random walk polynomials'). The-
orem 5.1 relies on our necessary criterion Theorem 2.2, on the interplay between hypergeometric
and Fourier series, on Pringsheim's theorem, and on the location of the zeros of hypergeometric
functions. Besides these main results, [Kah15] contains necessary criteria for point amenabil-
ity of `1-algebras of polynomial hypergroups. Moreover, we characterize both point and weak
amenability for the classes of random walk polynomials (cf. above) and cosh-polynomials.
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A.2. �Copyright Transfer Statement� Springer and included publication

Our paper �Orthogonal polynomials and point and weak amenability of `1-algebras of polynomial hypergroups�
[Kah15] was �rst published in Constructive Approximation in Constr. Approx. 42 (2015), no. 1, 31�63,
MR3361450, DOI: http://dx.doi.org/10.1007/s00365-014-9246-2, published by Springer Science+Business Me-
dia New York. The author respects the following �Copyright Transfer Statement�. Springer holds the copyright
of [Kah15]. However, the �Copyright Transfer Statement� explicitly permits the author to include the �nal
published journal article in other publications (such as his dissertation). The author gratefully acknowledges
the possibility provided by Springer Science+Business Media New York to include [Kah15] in his dissertation.
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B. Publication [Kah16]

B.1. Summary

In our paper [Kah16] (sole author), we �nd new characterizations for the classes of ultraspherical,
discrete q-ultraspherical and continuous q-ultraspherical polynomials. We consider orthogonal
polynomial sequences (Pn(x))n∈N0 which are assumed to be normalized such that Pn(A) = 1 (n ∈
N0) for some A > 0 and to be orthogonal w.r.t. a symmetric probability (Borel) measure µ on
R with |supp µ| = ∞. Writing h : N0 → (0,∞), h(n) := 1∫

RP
2
n(x) dµ(x)

, we de�ne (P ∗n(x))n∈N0 by

the expansions

P ∗n(x) =

∑bn2 c
k=0 h(n− 2k)Pn−2k(x)∑bn2 c

k=0 h(n− 2k)
(n ∈ N0);

if supp µ ⊆ [−A,A] (which we do not generally assume), then dµ∗(x) := (A2 − x2) dµ(x) de�nes
a measure and (P ∗n(x))n∈N0 is orthogonal w.r.t. µ∗. If A = 1 and supp µ ⊆ [−1, 1], then a result
of Lasser and Obermaier (2008) yields that (Pn(x))n∈N0 belongs to the class of ultraspherical
polynomials if and only if P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N). Later, Ismail and Obermaier (2011)
found a suitable extension to the class of discrete q-ultraspherical polynomials in terms of the
`q-di�erence operator' Dq instead of the classical derivative d

dx (more precisely, in terms of
Dq−1), and they found an extension to the class of continuous q-ultraspherical polynomials in
terms of the `Askey�Wilson operator' Dq, which is another q-analogue of d

dx (q ∈ (0, 1); these
Ismail�Obermaier results did not presume that supp µ ⊆ [−A,A]).

In Theorem 2.1, which is the �rst main result of [Kah16], we sharpen the Lasser�Obermaier
result and show that the characterization remains valid if �P ′n(x) = P ′n(1)P ∗n−1(x) (n ∈ N)�
is replaced by the apparently weaker condition �P ′2n−1(x) = P ′2n−1(1)P ∗2n−2(x) (n ∈ N)�; in
fact, it su�ces to require a constancy property of certain, carefully chosen Fourier coe�cients
belonging to the derivatives P ′2n−1(x) (n ∈ N) (furthermore, the condition �supp µ ⊆ [−1, 1]�
can be weakened to �x > 1⇒ P2(x) 6= 0�). While the original Lasser�Obermaier result can also
be obtained from older, more �classical� results of Hahn or Al-Salam�Chihara, this is no longer
the case for our sharpening.

The further main results of [Kah16] are Theorem 2.2, Theorem 2.3 and Theorem 2.4. Theorem
2.2 and Theorem 2.3 provide analogous sharpenings of the Ismail�Obermaier characterizations
of the discrete and continuous q-ultraspherical polynomials, respectively. In fact, we shall see
that the same redundancy holds. However, while Theorem 2.2 can be established by more
or less �copying� the induction argument of Theorem 2.1, the proof of Theorem 2.3 requires
considerably more e�ort because the product formula for the Askey�Wilson operator Dq
additionally involves the `averaging operator' Aq and because the proof of Theorem 2.3 requires
to simultaneously tackle (determinacy problems concerning) the Fourier coe�cients w.r.t. Aq.
We shall overcome this problem by studying determinacy of Fourier coe�cients belonging to
the functions n 7→ Aq[xPn(x)], and by a kind of �simultaneous involvement� of the continuous
q-ultraspherical polynomials themselves (this approach will also help to avoid some tedious
calculations).

Finally, Theorem 2.4 provides a characterization via Aq of those continuous q-ultraspherical
polynomials whose corresponding orthogonalization measure is absolutely continuous (w.r.t. the
Lebesgue�Borel measure on R). Theorem 2.4 also shows that this characterization in terms of
Aq does not extend to the whole class of continuous q-ultraspherical polynomials (we shall give
an explicit counterexample).
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B.2. �Consent to publish� AMS and included publication

Our paper �Characterizations of ultraspherical polynomials and their q-analogues� [Kah16] was �rst published
in Proceedings of the American Mathematical Society in Proc. Amer. Math. Soc. 144 (2016), no. 1, 87�
101, MR3415579, electronically published on September 4, 2015, DOI: http://dx.doi.org/10.1090/proc/12640
(to appear in print), published by American Mathematical Society. The author electronically signed the
following �Consent to Publish�. The American Mathematical Society holds the copyright of [Kah16]. However,
the �Consent to Publish� explicitly permits the author to use (part or all of) the work in his own future
publications. The author gratefully acknowledges the possibility provided by the American Mathematical
Society, Providence, RI to include [Kah16] in his dissertation.
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