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Abstract

In this thesis, we develop and investigate numerical methods for solving nonsmooth op-
timization problems and generalized variational inequalities. A proximal-type fixed point
equation representing the optimality or stationarity conditions forms the basis of the dif-
ferent approaches. The algorithmic framework we focus on uses semismooth Newton steps
for the fixed point equation to enhance an underlying globally convergent descent method.
We present both global and local convergence results and derive an abstract second order
theory that can be used to characterize and to verify the conditions for local convergence.
We conclude with numerical examples demonstrating the efficiency of the proposed methods.

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung und Untersuchung numerischer Verfahren
zur Losung nichtglatter Probleme und verallgemeinerter Variationsungleichungen. Die ver-
schiedenen Verfahrensansétze basieren auf einer Reformulierung der Optimalitéts- oder Sta-
tionaritdtsbedingungen als proximale Fixpunktgleichung. Im Fokus steht die Verwendung
eines semiglatten Newton-Verfahrens, welches ein zugrunde liegendes, global konvergentes
Abstiegsverfahren erweitern und beschleunigen soll. Globale und lokale Konvergenzresultate
werden prasentiert und eine abstrakte Optimalitdtstheorie zweiter Ordnung wird hergeleitet,
die zur Sicherstellung und Uberpriifung schneller, lokaler Konvergenz angewendet werden
kann. Numerische Experimente belegen die Effektivitdt der vorgestellten Verfahren.
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Notations

Sets and operations on sets:

0 the empty set
N set of natural numbers
R set of real numbers
Ry, Ry the sets of nonnegative and positive real numbers
(—00, +00], [—00,+00] | the sets of real extended numbers
B.(z) open ball with radius € > 0 around z w.r.t. the Euclidean norm
By () open ball with radius e > 0 around z w.r.t. the norm |||-|||,
Byy(@,e) ={y:lly -zl <e}
aff S affine hull of the set S C R”
conv S convex hull of §
lin S lineality space of S
sp S, sp{z} linear span of S and {z}
S° polar cone of S
St {x}t orthogonal complement of S and {z}
c S, S closure of S
int .S interior of S
ri S relative interior of S, i.e.,
ri S:={x €S :3¢e>0such that B.(x)Naff S C S}
Rs(x) radial cone of S at z € R”
Ts(z) contingent tangent cone of S at x
Ti(z) inner tangent cone of S at x
Ng(x) normal cone of the set §
Matrices:
i set of symmetric, real n X n matrices
St set of symmetric, real, positive semidefinite n X n matrices
i set of symmetric, real, and positive definite n X n matrices
Amin(M ), Amax (M) smallest and largest eigenvalue of a symmetric matrix M
k(M) condition number of a matrix M




Mz submatrix of a matrix M € R™*™ w.r.t. the index sets
ZcA{l,...m}, JC{l,..,m}

My, Mg i-th row and j-th column of M

diag(x) diagonal matrix with entries diag(z)y;) = @i, i = 1,...,n

sym(M) symmetric part of M, i.e., sym(M) = %(M +MT)

Operations on vectors and matrices:

(-, Euclidean inner product, i.e., (x,y) = > ;| Ty
Il 1l Euclidean norm, i.e., |[z||? = (z, z)
dist(z, S) distance between the point x and the set S, i.e.,
dist(z, S) = infyecs ||z —y|
s |- 1Ay induced A-scalar product and A-norm; for A € S7 , it holds
(,y)n = (2, Ay),  lzlla == (@, 2)a
tr(+) trace of a square matrix
Coams | ey Frobenius inner product and Frobenius-norm of a matrix (we
use (,y = (-, |- || = || - || if the context is clear)

-, partial ordering on the space S”, i.e.,

B-A: & B-AcS}Y,, B=A: B-AcS}
® Hadamard product, i.e., (z®y)i = z; - y;
@ component-wise division, i.e., (z @ y); = ;/yi

In the following, let ¢ : R” — [—oo,+o0], f : R" — R, and F : R” — R™ be arbitrary
functions.

Functions and operations on functions:

dom ¢ effective domain of the function ¢
epi ¢ epigraph of ¢
levy ¢ lower level set of ¢ at level @ € R
lin ¢ lineality space of ¢
gra ¢ graph of a multifunction ® : R” = R™, i.e.,
gra & := {(z,y) e R" xR : y € ®(z)}
F71() the inverse multifunction F~1 : R™ = R”,
FYy)={zreR": F(z) =y}
ts(+) indicator function of the set S
os(+) support function of S
proxg(-) proximity operator of ¢ with parameter matrix A € S ,
envg(-) Moreau envelope of ¢ with parameter matrix A € S} |
PA(x) projection of x onto the set S w.r.t. the A-norm

vi



Derivatives and subdifferentials:

¢ (z3h), ¢\ (x5 h)

o' (x;h), F'(z;h)

@* (x;h), o (z;h)

©F (x5 h)

¢” (w5 h,w),
ol (2 h, w)
O (x; h,w)

(b, w),
@4 (; hyw)
o (x5 hyw)

d®p(x|h) (w)

V@), V*f(z)
DF(z), D*F(z)

OpF(x)
OF (x)
OcF(z)

lower and upper directional derivatives of ¢ at x in the
direction h

directional derivate of ¢, F' at = in the direction h

lower and upper directional epiderivatives of ¢ at x in the
direction h

directional epiderivative of ¢ at x in the direction h

lower and upper (parabolic) second order directional derivatives
of ¢ at x in the directions h, w

(parabolic) second order directional derivative of ¢ at z in the
directions h,w

lower and upper (parabolic) second order directional
epiderivatives of ¢ at x in the directions h, w

(parabolic) second order directional epiderivative of ¢ at = in
the directions h, w

second order subderivative of ¢ at x relative to h in the
direction w

the gradient and the Hessian of f at x
first and second order Fréchet derivative of F' at x; for h € R" it
holds D2F(z)[h, h] € R™ and

D2F(z)[h,h] = (h"V2F(2)h, ..., h T V2EF,,(z)h) "

Bouligand subdifferential of F' at x
Clarke subdifferential of F' at x
C-subdifferential of ' at =
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1. Introduction

In this thesis, we consider and investigate efficient numerical algorithms for solving general
nonsmooth optimization problems of the form

(P) min f(z) + ¢(z),

reR™
where f : R™ — R is a twice continuously differentiable, possibly nonconvex function and
¢ : R™ — (=00, +00] is a convex, proper, and lower semicontinuous mapping,.

The algorithmic framework we focus on is primarily based on the idea to use semismooth
Newton steps for a proximal-type reformulation of the corresponding first order optimality
conditions of the problem (P)),

&) FAx) :x—proxg(a:—A_IVf(a:)) =0, AeSh,,

to augment and accelerate an underlying globally convergent descent method. Unlike other
or more common globalization strategies, we utilize a multidimensional filter mechanism to
monitor the acceptance of the semismooth Newton steps and to achieve both global and local
fast convergence. The presented approach can be naturally extended to solve generalized
variational inequalities of the type

find x € G (dom ¢) such that
(Pyip) (F(2),y — G(2)) + ¢(y) — ¢(G(x)) 20, VyeR",

where the functions F' : R” — R" and G : R” — R" are typically supposed to be continuously
differentiable on an open set that contains the domain G~*(dom ¢). In one of its simplest
forms,

F(z):=Vf(x), G(z):==z,

the generalized variational inequality (Pyip| coincides with an alternative, variational-based
representation of the optimality conditions of problem illustrating the deep connection

between the two problems and (Puyip)).

In the following work, we provide a detailed convergence theory for the different described
methods and for both the convex composite problem and the generalized variational
inequality problem . In contrast to many other convergence analyses, our theory will
cover both convex and nonconvex situations. Moreover, to the best of our knowledge, conver-
gence results for semismooth Newton-type methods and for generalized variational inequalites
seem to be only available in the context of classical variational inequalities, where the
function G again corresponds to the identity mapping and the nonsmooth mapping ¢ is cho-
sen as a specific indicator function of a convex, nonempty, and closed set [121], 120}, 227, [76].
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Besides, a strong emphasis is also put on the investigation and derivation of second order
conditions that allow a rather elegant verification and characterization of the conditions for
local fast convergence and that can be used to analyze the behavior and local structure of
stationary points and of the minimization problem . More specifically, by focusing on the
class of so-called decomposable problems, we derive a new representation of the curvature
that is induced by the nonsmooth function ¢ and show that it can be intrinsically described
by the Fréchet derivative of the proximity operator proxg. We show that this abstract second
order framework can be applied to a large variety of nonsmooth optimization problems and
that it can be systematically extended to more general classes of composite problems.

In recent years, composite-type problems of the form that consist of the sum of a
differentiable and a nonsmooth, but often simpler function have become a quite popular
and ubiquitous tool to model various practical problems and applications, such as, e.g.,
signal and image processing problems, matrix completion problems, or feature selection and
classification problems in machine learning. Typically, the smooth function f is utilized as a
loss function or a data-fitting term to express the difference between estimated values of data
and given measurements. On the other hand, the nonsmooth function ¢ is often chosen as a
highly specialized regularization term to induce a certain desired structure on the iterates of
a method and on the solutions of the problem . In particular, this is the case for, e.g., £1-,
group sparse, or nuclear norm regularizations where a particularly sparse or parsimonious
representation of the data is sought. In the following, we provide several practical examples
demonstrating the broad conceptual applicability and importance of the problem .

Compressive Sensing and £1-minimization. In the last decade, there has been a consider-
able interest in ¢;-regularized minimization problems of the form

min f(@) + pllll,
which can be primarily traced back to the sparsity promoting properties of the £;-norm. The
remarkably universal role and the computational attractiveness of sparse solutions stems from
the fact that in many applications, such as signal or image processing, there exist canonical
sparse representations of the relevant data. In the convex quadratic case f(z) := || Az —b|3,
the ¢1-problem reduces to an ¢;-regularized least squares problem that is closely related to
the so-called basis pursuit problem:

min ||z|l; s.t. Az =b.
TER™

It is known that the basis pursuit problem can be interpreted as a convex relaxation of the
NP-hard problem of finding the sparsest solution of the (in general underdetermined) system
Axr =b:

min ||z|lp s.t. Az =0b.

zeR"

Here, the fp-quasi norm counts the number of nonzeros in z, i.e., ||z||o := |{i : x; # 0}|. Under
appropriate assumptions on the matrix A and on the sparsity of a solution Z, the solutions of
the latter problems coincide and the computationally more tractable ¢1-basis pursuit problem
can be used to reconstruct the signal or solution Z from far less than n measurements. This



fundamental principle is also known as compressed sensing or compressive sensing. Details
and further information can be found in Candés, Romberg, Tao [35] [36, 37] and Donoho [66].
Compressive sensing significantly extended the class of existing data and signal acquisition
methods and has been used in a broad variety of fields, such as compressive imaging [69]
248|, magnetic resonance and computed tomography imaging [141], [142], seismics [137], or
communication [9]. Other recent applications comprise logistic regression [170} 123} 221] or
Laplacian interpolation-based image compression [111], [47].

Group and joint sparsity. In contrast to the £1-regularization, group or joint sparse penalty
terms allow to incorporate and utilize more specific information about the structure of the
sparsity pattern of a solution. In particular, not only single components of a solution T are
required to be zero, but whole groups and clusters of components can be modeled to be zero.
The basic £2-¢1 group sparse problem can be written in the form

S
min f() + 1) gl
i=1

where the groups ¢g; C {1,...,n} are usually chosen as a disjoint partitioning of the set
{1,...,n} but are also allowed to overlap in certain situations. Additionally, if the smooth
loss function f is a quadratic mapping, then the latter problem is referred to as the group
Lasso [262]. This specific type of problem has been used extensively in statistics and ma-
chine learning [262], [7, 115], or biomedical applications [144], [166] throughout the last years.
Furthermore, if the optimization variable is a matrix and if the groups ¢;, i = 1, ..., s, corre-
spond to the different rows of the matrix variable, then the group sparse problem is called
multiple measurement vector (MMV) problem [59] 143, 45] 230}, 243]. Let us note that for
MMV problems other norm constellations or more general group penalizations have been
considered in the literature, see [85], 230] [116]. In infinite dimensions, a similar problem was
analyzed by Herzog et al. [1006, 39] in an optimal control setting. Here, a directional sparsity
term was applied to obtain controls with a striped sparsity pattern.

Other convex composite problems arise in the context of image deconvolution and total
variation minimization [209} I71], 41, 249] 259], semidefinite programming, or recommender
systems and low rank matrix completion [34} [125] B3] [38, 201]. Of course, our brief discussion
is rather incomplete; for a more detailed overview of convex composite problems and different
nonsmooth penalty terms, we refer to Bach et al. [6]. At this point, let us also highlight that
most of the mentioned problems are large scale.

Related work

The steadily growing interest in composite objective functions and nonsmooth optimization
problems of the form has initiated the development and investigation of many different,
numerical methods. Their applicability ranges from very general settings to highly specific
problem formulations, where the functions f and ¢ have a fixed form. Moreover and in
contrast to our proposed globalized semismooth Newton method, a large class of these algo-
rithms is centered on the usage of first order gradient-based information and a strong focus
so far has been on the case where the mapping f is convex. In the following paragraph, we
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give a brief overview of several approaches that can be used to solve the general nonsmooth
optimization problem .

First, the optimality condition immediately leads to the simple and basic fixed point
iteration scheme

(Fp) gttt = plroxé(gvlc — ATV ("), k=0,1,..

If the mapping f is convex and if the parameter matrix A € S7, is chosen via A = Yy
for some 7 > 0, then this iterative procedure is usually referred to as the classical, basic
proximal gradient or forward-backward splitting method and convergence to a fixed point can
be achieved under suitable assumptions on the step size 7 and on the gradient Vf. The
proximal gradient method forms the basis of a broad variety of approaches. In particular,
different variants and extensions of this basic method were analyzed by Combettes, Pesquet,
and Wajs in [54] [52]. Fukushima and Mine [88] studied another variant for nonconvex f and
used an additional line search technique to establish global convergence. Tseng and Yun [230]
refined and extended the theory presented in [88] and developed a general block coordinate
descent method for nonsmooth problems of the type with block-separable structure. In
[200, 265], Qin et al. and Yun et al. proposed several related coordinate descent schemes for
¢1- and group sparse problems. The method SpaRSA [256] uses a nonmonotone line search
technique and (adaptive) Barzilai-Borwein step sizes to accelerate the underlying proximal
gradient method. Recently, Ochs et al. [I78| presented and analyzed the algorithm “iPiano”
that is an extension of the basic proximal gradient scheme for nonconvex problems. Here,
motivated by Polyak’s Heavy ball technique, a so-called inertial term is added to account
for the nonconcexity of f and to enhance the performance of the approach.

A slightly different class of algorithms utilizes two- or multi-stage schemes and extrapo-
lation steps to improve the performance of the underlying proximal gradient method. This
class includes Nesterov’s well-known accelerated gradient methods [168] [169], TwIST [19],
or the fast iterative thresholding algorithm FISTA [I2]. Further methodologies comprise
variants of the alternating direction method of multipliers (ADMM) [01] [71, 93] and the
primal-dual algorithms [42] 192] T05]. While the latter algorithms can be usually applied to
more general problems where both f and ¢ may be nondifferentiable, convergence is often
only achievable under certain convexity assumptions.

Becker, Fadili, and Lee et al. [14} [129] proposed an inexact proximal Newton-type method
to solve convex problems of the form . The method uses the Hessian of the differentiable
function f or a suitable approximation as a parameter matrix,

A= VQf(:Uk),

to accelerate the base algorithm . In [232], a combination of proximal Newton-type
steps and an interior point framework for constrained convex problems is considered. Here,
the parameter matrix A models and approximates the Hessian of an appropriately chosen
(self-concordant) barrier function. In [222] a proximal Newton-type method was used within
a stochastic framework for machine learning problems.

For a more detailed discussion of proximal-based methods we refer to the surveys [6] 53]



184] and the references therein.

Patrinos, Stella, and Bempora [I87] investigate a semismooth Newton method to solve a
forward-backward-based reformulation of the nonsmooth equation . The key idea is to
multiply the function F* with the matrix A(I — A='V2f(z)). The resulting function then
corresponds to the gradient of the so-called forward-backward envelope which can be used
as a merit function and to globalize the semismooth Newton method if the mapping f is
strongly convex. Although this approach is certainly based on similar algorithmic ideas, it
also significantly differs from our proposed semismooth Newton method in that its conver-
gence theory is limited to strongly convex problems. Several other and more specialized
semismooth Newton methods have been proposed in the context of £1- and matrix minimiza-
tion problems. In particular, Byrd et al. [32] present and discuss a family of semismooth
Newton methods for convex ¢;-regularized problems that represents different realizations of
the semismooth Newton method and incorporates block active set and orthant-based meth-
ods, respectively. In [268] 138 117, 119, 260], exploiting the local fast convergence of the
semismooth Newton method, different inexact Newton-type approaches are investigated to
approximately solve inner subproblems of an augmented Lagrangian and a proximal point
method for semidefinite programming and nuclear norm problems.

In infinite dimensions, semismooth Newton methods have been successfully applied to a
variety of nonsmooth composite problems. For instance, Griesse and Lorenz [97] considered
a semismooth Newton method for ¢;-minimization in the Hilbert space f5. Stadler [225]
analyzed a local semismooth Newton method for elliptic optimal control problems with an
L'-cost functional. Moreover, Hans and Raasch [99] developed a globally convergent, damped
B-semismooth Newton method for £1-Tikhonov regularized quadratic problems. Based on the
so-called normal map, Pieper [I91] investigated a globalized semismooth Newton framework
for elliptic and parabolic optimal control problems with an abstract and general regularization
term . Further applications of the local semismooth Newton method can be found, e.g., in
[65] [106].

For more details on generalized variational inequalities and on their applications, we refer
to chapter 6.

Organization and contribution

This thesis is structured as follows. In chapter 2, we provide various definitions, properties,
and concepts from convex and nonsmooth analysis that will form the mathematical basis of
our investigations. Since the nonsmooth function ¢ can be real extended valued in general
(for instance, it can be chosen as an indicator function to model convex constraints), we will
require an appropriate notion of (directional) differentiability to cope with this situation. In
particular, we will see that the classical directional derivative ¢'(x;h) may no longer define
a lower semicontinuous mapping with respect to the considered direction h € R™ and that
several important properties will not hold in such general case. Thus, a focus is set on the
introduction and investigation of so-called (directional) epiderivatives which are based on
Painlevé-Kuratowski- or I'-convergence processes and appropriately generalize and extend
the directional derivative ¢'(z;h). Moreover, since the mapping ¢ is usually assumed to be
convex, these epiderivatives often enjoy a rich calculus and can be connected to the common
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convex subdifferential. Details can be found in section 2.4 and 2.5. Finally, we also present
basic properties of the Clarke subdifferential for vector valued functions and discuss the
concept of semismoothness.

Chapter 3 is concerned with a detailed analysis of the proximity operator proxé and
summarizes its most relevant properties. While many other works concentrate on the classical
definition of the proximity operator with a fixed parameter matrix of the form

A=7711, >0,

we will consider the more general case and investigate the dependence of the proximity opera-
tor on the matrix A in some more detail. Since the proximity operator cannot be expected to
be semismooth in general, we also present and discuss a specific class of functions ¢ for which
semismoothness of the proximity operator proxé can be guaranteed. The corresponding re-
sults were first derived by Bolte et al. [2I] and are provided in section 3.3. Furthermore,
as preparation for chapter 5, we derive several second order properties which are mainly

immediate consequences of the differentiability and convexity of the Moreau envelope.

In chapter 4, we propose and analyze the globalized semismooth Newton method in detail.
At first, we introduce different equivalent first order optimality conditions and derive the
nonsmooth mapping F*. Then, based on [88, 236], we discuss the proximal gradient descent
method that will be used as an underlying base algorithm and analyze its global convergence
properties. Furthermore, the filter mechanism and the filter acceptance test are presented in
detail. Our main contribution in this chapter is the development of a general global and local
convergence theory for the proposed approach. In particular, we will verify that the filter
globalization guarantees global convergence in the sense that every accumulation point of a
generated sequence of iterates is a stationary point of the problem . Moreover, transition
to fast local convergence is shown under rather mild and standard assumptions. Here, the
main requirements are:

e Semismoothness of the proximity operator proxg.
e Uniformly bounded invertibility of the generalized derivatives of the nonsmooth map-

ping FA in a neighborhood of an accumulation point.

e Existence of an accumulation point that is a strict local minimum and an isolated
stationary point of the problem .

Additionally, if the function f is convex, we will also present and investigate a simpler
globalization strategy and prove its efficiency. Let us note that chapter 4 is essentially based
on Milzarek and Ulbrich [I57], where a similar algorithmic framework has been analyzed for
¢1-regularized problems. In this thesis, we generalize and extend the results of [I57], which
were established for ¢1-optimization problems, to the convex composite setting.

Chapter 5 is dedicated to the second order analysis of problem . Our overall goal in
this chapter is to rephrase the conditions for local convergence of the globalized semismooth
Newton method as suitable second order conditions. Based on an abstract and profound
second order framework developed by Bonnans, Cominetti, and Shapiro [23| 24} 27| and con-
centrating on the class of so-called decomposable problems, we derive a pair of no gap second



order conditions that ensure isolated stationarity and local optimality of a stationary point
of . The concept of decomposability was first proposed by Shapiro [217] and is closely
related to the concept of cone-reducible sets in constrained optimization. The considered
class of decomposable problems comprises a large variety of interesting and important ex-
amples, such as polyhedral problems, group sparse problems, nonlinear programming, total
variation imaging, or nuclear norm-regularized problems. For more details we refer to sec-
tion 5.3. Inspired by [212], we show that the strict complementarity condition can be used
to characterize differentiability of the proximity operator proxg if the underlying function
o is decomposable. Furthermore, as already mentioned and as one of our main results, we
derive a new representation of the curvature induced by the nonsmooth function ¢ in terms
of the Moore-Penrose inverse of the Fréchet derivative of the proximity operator proxg. This
formulation is then used to prove that the strict complementarity condition and the second
order sufficient conditions imply invertibility of all generalized derivatives of the nonsmooth
mapping F* at a stationary point. Finally, in section 5.5, we extend these different results
and a second order framework for more general composite problems is presented.

In chapter 6, we show that the described algorithmic prototype can also be utilized to solve
generalized variational inequalities problems of the form . In this case, the underlying
proximal gradient method is substituted by a D-gap function-based descent method that
solves an optimization-based reformulation of the problem . In section 6.1 and 6.2, we
briefly discuss conditions that ensure existence of a solution of problem ([Pyip|) and summarize
the main properties of the D-gap function and of the so-called regularized gap function.
Specifically, we derive several new stationarity results that guarantee global optimality of a
stationary point of the regularized gap or the D-gap function. Similar to chapter 4, a strong
focus is set on the development of a detailed and general convergence theory for the proposed
Newton-type method.

Finally, in chapter 7 we present extensive numerical results for the globalized semismooth
Newton method that was introduced and analyzed in chapter 4. In particular, the perfor-
mance of the method is investigated on convex and nonconvex f;-regularized least squares
problems and on group sparse optimization problems. We will focus on large scale experi-
ments where the application of the Hessian of f is only available as a matrix-free operation
and compare our algorithm with different state-of-the-art methods.






2. Convex and nonsmooth analysis

In this chapter, we state and collect basic definitions, properties, and various concepts from
convex and nonsmooth analysis that will be used repeatedly throughout this thesis.

The next sections are organized as follows. At first, we recall some elementary definitions,
specify notational aspects and discuss helpful properties of tangent cones and sublinear func-
tions. Thereafter, we present several important, theoretical frameworks and results from
convex and variational analysis, such as, e.g., convex conjugation, multifunctions, the con-
vex subdifferential, and subdifferential calculus. Moreover, in section[2.4]and we briefly
introduce the concepts of epi-convergence and directional epidifferentiability. Directional epi-
derivatives are an extension of the classical directional derivatives and turn out to be the
right tool to study real extended valued functions. Here, since we want to consider classes of
optimization problems that generally allow extended valued objective functionals (to model,
e.g., convex constraints), we will need these (epi-)concepts at different parts of this thesis.
For instance, the epi-calculus presented in section will be utilized in section [5| to derive
and discuss general first and second order optimality conditions. Finally, in section and
we present Clarke’s generalized subdifferential and the concept of semismoothness for
possibly nonconvex and nonsmooth functions.

Most of the material that is provided here can be found in the monographs [208, 27, [11].
Furthermore, the overall structure of this introductory chapter is essentially based on |27
Chapter 2|. The work of Bonnans and Shapiro [27]| also includes a broader and deeper
introduction and discussion of the different topics that will be presented in the following
passages. For a more detailed introduction to convex analysis let us refer to [109, 11]. A
quite advanced, systematic study of various subjects and developments in nonsmooth and
variational analysis can be found in the book of Rockafellar and Wets [208]. For more
information on Clarke’s subdifferential see also [50].

2.1. Preliminary definitions and tangent cones

2.1.1. Basics and semicontinuity

Let us start with some elementary definitions.

Definition 2.1.1. Let ¢ : R" — [—00,+00] be a functional. The (effective) domain of ¢ is
defined by
dom ¢ :={z € R" : ¢p(x) < +00}.

The epigraph of ¢ is

epi ¢ :={(z,t) e R" x R: p(z) <t} CR" xR.
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The lower level set of ¢ at level o € R is given by
levg ¢ :i={z € R": p(x) < a}.

The function ¢ is called proper if p(x) # —oc for all x € R™ and dom ¢ # ().
Definition 2.1.2. The function ¢ : R™ — [—00, +00] is said to be lower semicontinuous at
a point x € R™ if

liminf o(z) > @(x), or equivalently liminf ¢(Z) = p(z).

T—x T—x
We say that ¢ is lower semicontinuous, if ¢ is lower semicontinuous at every x € R™.

The following Lemma shows that lower semicontinuity of a function ¢ can be completely
characterized by closedness of its corresponding epigraph epi .

Lemma 2.1.3 (cf. [11, Lemma 1.24]). Let ¢ : R" — [—o0,+00] be given. Then, the
following statements are equivalent:

(i) The function @ is lower semicontinuous.
(ii) The epigraph epi ¢ is closed in R™ x R.

(iii) For every o € R, the level set levy, ¢ is closed in R™.

2.1.2. Tangent cones

A nonempty set S C R” is called cone if we have tx € S for all t > 0 and any x € S. The
polar cone of a set S C R™ is defined via

S :={xeR": (x,y) <0,VyeS}

Clearly, the polar cone is always a closed, convex cone. In this thesis, we will work with the
following, different tangent cones.

Definition 2.1.4 (Tangent cones, cf. [27, Definition 2.54|). Let S C R™ and z € S be
a given set and a given point. The radial cone of S at x is defined by

Rs(x) :={deR":3t,>0,Vtel0t], x+tde S}
Furthermore, the sets

Ts(z) :=={d € R": 3 t;, | 0, dist(z + txd, S) = o(ty)},

T¢(z) :={d € R" : dist(x + td, S) = o(t), t > 0}

are called the contingent (Bouligand) cone and the inner tangent cone, respectively.

Of course, it immediately follows from the latter definition that the sets Rg(x), Ts(x),
and T}(z) are cones. Moreover, if S is a convex, closed set and = € S, then it holds

(2.1.1) Rs(x) = U {t1S—2)} =R, (S —z) and Ts(z) = Th(z) =cl Rs(z).
t>0

10
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Thus, in this situation, the contingent and the inner tangent cone coincide (see [27, Propo-
sition 2.55| for details). Since the closure of a convex set is convex, (2.1.1]) also implies that
the cones Ts(z) and T4(z) are convex sets in this case.

The polar cone of the contingent cone Ts(x) is the so-called normal cone to S at x and we
will write Ng(z) := Tg(z)°. If the set S is convex, then we obtain Ng(z) = Rg(x)°. More-
over, in this situation, using the representation of the radial cone, Ng(z) can be expressed
as follows

Ng(z) :={veR": (v,y—z) <0,VyeS}

If x ¢ S, we will use the convention Ng(z) := (. Let us conclude with an important example.
Example 2.1.5 (cf. [27, Example 2.62]). Let S C R" be a convex, closed cone and let

x € S be arbitrary. Then, it follows Rg(x) = S + sp{z} and, by applying [11, Proposition
6.26], we obtain

Ns(z) = Rs(2)° = [S +sp{a}]® = 57 N [sp{e}]° = $° N {z}

In particular, if K C R™ is a convex, closed set and = € K, y € Ng(x) are arbitrary points,
then this implies

(2.1.2) Ny (@) () = Nic(2)° 0 {y}+ = Tre(2) N {y}~

2.1.3. Sublinear functions and support functions

In the following, we list several relevant definitions and properties of sublinear and support
functions. The results, which will be presented here, are essentially taken from [109]. Rig-
orous proofs and a more detailed overview of sublinear or support functions can be found in
[109, Chapter C|.

Definition 2.1.6. A convex and positively homogeneous mapping ¢ : R" — (—o0,400] is
called a sublinear function. If ¢ s sublinear, then the lineality space of ¢ is defined as the
ltnear subspace
lin ¢ :={z € R" : p(x) + p(—z) = 0}.
Now, suppose that ¢ : R™ — (—o00, +00] is proper. Then, it can be easily shown that ¢ is

sublinear if and only if it is positively homogeneous and subadditive, i.e.,

oz +y) <o) +e(y), YoyeR"

Next, we provide a definition of the support function of a set and collect some basic
properties of support functions.

Definition 2.1.7. Let S C R™ be a nonempty set. The function og : R™ — (—o00, +00]

defined by

x> og(x) :=sup (s, )
ses

1s called the support function of the set S.
Lemma 2.1.8. The support function has the following properties:

11
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(i) Let S C R™ be nonempty. Then, the support function og is a convex, proper, lower
semicontinuous, and positively homogeneous function.

(ii) Let S1,S2 C R™ be two convex, closed sets. The set Sy is a subset of So if and only if
we have og, () < 0g,(x) for all x € R™. Moreover, in this case, it follows dom og, C
dom og, .

(iii) Let S C R™ be a nonempty cone, then it holds dom og C S°.
(iv) The support function of a set S C R™ is finite everywhere if and only if S is bounded.

Proof. The first two parts are elementary and will be omitted. (See, e.g., [109, Proposition
C-2.1.2 and Theorem C-3.3.1]). We continue with a proof of statement (iii). Therefore, let
Z € dom og be arbitrary and assume that z ¢ S°. Then, there exist y € S and € > 0 such
that (Z,y) > e. Since S is a cone, it follows ty € S for all ¢ > 0. This shows

O—S(j) = Sup <i‘,.’IJ> > sup <jvty> > sup te = 400,
zes >0 £>0

which contradicts Z € dom og and finishes the proof. A proof of part (iv) can be found in
[109, Proposition C-2.1.3|. O

The next lemma shows that the support function of a set S C R™ and its corresponding
lineality space can be used to characterize the affine hull of the set S. This result is presented
in [109, Theorem C-2.2.3| and will turn out to be very useful when working with the strict
complementarity condition.

Lemma 2.1.9. Let S C R” be a nonempty, closed, convexr set. Then, s € aff S if and only
if it holds (s,d) = og(d) for all d € lin og.
2.1.4. Robinson’s constraint qualification

Let us consider the optimization problem
min f(z) + o(F(z)).

where f: U — R, F': U — R™ are continuously differentiable functions on a certain open set
U CR"and ¢ : R™ — (—o00,+0o0] is a convex, proper, and lower semicontinuous mapping.
Throughout this thesis, we will work with the following constraint qualification.

Definition 2.1.10. We say that Robinson’s constraint qualification holds at a point T € R™,
F(z) € dom ¢, if the following condition is satisfied

(2.1.3) 0 € int{F(z) + DF(z)R" — dom ¢}.

Robinson’s constraint qualification is stable under small perturbations. In particular, if
condition (2.1.3)) holds at Z (and if f and F are continuously differentiable in a neighborhood
of z), then it also follows

0 € int{F(x) + DF(z)R" — dom ¢}

12
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for all z € R™ in a sufficiently small neighborhood of Z. A proof and discussion of this result
can be found in |27, Section 2.3.4 and Remark 2.88]. We will refer to this property as the
stability property of Robinson’s constraint qualification.

2.2. Convexity and the convex conjugate

At first, we give an equivalent characterization of the continuity of a convex function. The
following theorem combines Theorem 8.29 and Corollary 8.30 in [11].

Theorem 2.2.1. Let ¢ : R" — (—o00,400]| be a convex and proper function. Then, ¢ is
continuous at x € dom @ if and only if x € int dom ¢. Furthermore, in that case, ¢ is also
locally Lipschitz continuous near x and on the whole set int dom .

Definition 2.2.2. Let ¢ : R" — (—o0,+0o0] be given. The convex conjugate or Fenchel
conjugate of ¢ is defined as

@* 1 R" = [—o0, +o0], ¢*(x) = Sup (y,2) —o(y),
yeR™

*

and the biconjugate p** of  is defined as p** := (¢*)".

Next, we state the classical Moreau-Fenchel Theorem that establishes a duality-like relation
between a function ¢ and its conjugate ¢* and biconjugate ¢**.

Theorem 2.2.3 (Moreau-Fenchel, cf. [11, Theorem 13.31]). The convezr conjugate ¢*
of a mapping ¢ : R" — (—o0,+00] is a converz, lower semicontinuous function. Moreover,
if @ itself is a convex, proper, and lower semicontinuous function, then ©* is proper and it
holds p** = .

We proceed with two basic examples.

Example 2.2.4 (Indicator function). Let S C R™ be a convex, nonempty, and closed set
and consider the indicator function

0 ifxeS
tg : R" = (=00, +00], tg(x):= ’
5B o (oo, 4o, 5(a) {+OO o

Then, by Lemma it easily follows that the indicator function tg is convex, proper, and
lower semicontinuous. The convex conjugate of tg is the support function of S, i.e.,

() = sup (s,2) = os(a).

seS
Example 2.2.5 (Dual norms). Let ||-||| : R" — R be a norm on R™. The dual norm |||-|||,
of [[|||| is defined as
(2.2.1) llzlll, := sup (y,z),
llyll<1

13
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i.e., the dual norm is the support function of the ball By (0,1) := {z € R™ : [[|z|| < 1}.

The convex conjugate of the general norm [||-||| can be represented as follows
In particular, if we consider the £,-norm |||, := (37, |2:?)"/? for arbitrary p € (1, 00),

then, for ¢ € (1, 00), % + % = 1, we obtain
(lallp)e = llzlly and Jolly = i, @), ¥ € R

The same relation can also be verified for the ¢;-norm and the maximum norm ||z|/s =
max;—1 ., |z;| or, more generally, for dual matrix norms, such as the spectral and the
nuclear norm.

Proof. Here, we will only briefly prove formula (2.2.2). From the definition of the dual

norm, it immediately follows

(2.2.3) 21l Nllllo = e llz[ll - (y, z) = (z,2), Vze€R™
ylil=

First, let us consider the case |||z]||, < 1. Then, inequality (2.2.3)) implies (z,z) — |||z]]| < 0
for all z € R™ and for the choice z = 0 we obtain |||z|||* = sup,cgn (2, 2) — [||z]]| = 0. On the
other hand, if we have |||z[]|, > 1, then it holds

llzll* = =sup Sup iz m) = [lpzll| = sup - (Ml = 1) = 400,
nw>

as desired. O

2.3. Multifunctions

In the following, we recall several continuity and monotonicity concepts for general, set-valued
multifunctions. The definitions of upper semicontinuity and upper Lipschitz continuity are
taken from [50, Proposition 2.6.2] and [27, Section 2.3|, respectively.

Definition 2.3.1. A multifunction ® : R™ = R™ 4s said to be upper semicontinuous at a
point x € R™, if for any € > 0 there exists 6 > 0 such that

(I)(y) - ‘I>(:L') + Ba(o)v v Y€ B&(:C)

Moreover, the multifunction ® is said to be upper Lipschitzian at z with modulus L > 0, if
there exists & > 0 such that

®(y) C () + Ll — yl| - B1(0), Vy € Bs(x).
Definition 2.3.2. A multifunction ® : R™ = R" is called monotone, if it holds

14
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where gra @ := {(z,u) € R" x R" : u € ®(x)} denotes the graph of P.

2.4. Epi-convergence

Epi-convergence extends the classical pointwise or uniform convergence of a sequence of real
valued functionals (¢,),, ¢, : R = R, v € N| to the extended real valued setting and is
strongly related to the notions of I'- and Mosco-convergence. Simply put, the sequence (¢, ),
is said to epi-converge if the epigraphs epi ¢,, v € N, converge to a certain limit set.

In the following subsection, we give a brief overview of the concept of epi-convergence and
provide some basic definitions and corresponding tools. For more details on set and epi-
convergence we refer to the book of Rockafellar and Wets [208] and the references therein.
We also want to note that the material, which is presented in this subsection, is essentially
based on the chapters 4 and 7 in [208]. As in [208], let us set

NZ#:={N CN:N is infinite} and Ny :={N C N:N\ N is finite}.
We start with the following definition.

Definition 2.4.1 (cf. [208, Definition 4.1]). For a sequence (C,), of subsets of R™ the
outer limit ¢s the set

limsup C, :={z € R": 3 N c N¥, 32 € C, such that z* — x, N 3 v — oo},

v—00

while the inner limit is the set

hH_l)iIlf C,:={xeR":3INCNy, 32"eC, such that z* — z, N > v — oo}.
14 oo

The limit of the sequence (C)), exists if the outer and inner limit sets are equal:

lim C, :=limsup C, =liminf C,.
V—00 V=00 V—00

In Definition [2.4.1], when the limit lim, C, exists and is equal to a set C', then the sequence
(Cy), is said to converge to the set C. Set convergence in this sense is known as Painlevé-
Kuratowski convergence. An exemplary illustration of the set convergence process and of
specific inner and outer limits is given in Figure 2.1} Besides Definition [2.:4.1] there exist
many different, but equivalent characterizations of the inner and outer limit of a sequence of
sets. For instance, one has

V—00 v—oo v—oo V—00

limsup C), = {x liminf dist(z,C)) = O} , liminf C, = {:U : limsup dist(z,C,) = O} .

Other alternative definitions and corresponding discussions can be found in [208]. Finally,
let us mention the following two basic properties:

e It holds liminf, C, C limsup, C,.

15
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Cs

Cy
N 7,
Ca

(a) (b)

Figure 2.1.: Illustration of the Painlevé-Kuratowski convergence of a sequence of sets. In
subfigure (a), the unit disks C,, := {z € R? : ||z|, = 1}, v € N, converge to the
limit set C' = {x € R? : ||z]|oo = 1}. In subfigure (b), an example for a diverging
sequence of sets is given. In particular, in this situation, the outer and inner
limit of (C)), are different sets.

e The inner and outer limit of (C)), are always closed sets. (See [208, Proposition 4.4]).

We continue with the definition of epi-limits and epi-convergence of a sequence of possibly
real extended valued functionals.

Definition 2.4.2 (cf. [208, Definition 7.1]). Let (¢, )., ¢ : R" — (—o0, +00], be a family
of functions. The lower and upper epi-limits of ¢,, as v — oo, are defined as the functions
whose epigraphs are given by the outer and inner limits of the sets epi ., i.e., it holds

epi [e—lim inf gol,} = limsup epi ¢,, and epi [e—lim sup goy] = liminf epi ¢,.
v—hoo V—00 V—00 v—oo

When the two functions e-liminf, ¢, and e-limsup, ¢, coincide, we say that the epi-

limit function ¢ := e-lim, ¢, ezists. Moreover, in this case the sequence (¢, ), is said to

epi-converge to .

Again, there is a large number of alternative expressions and definitions of the lower and
upper epi-limits and of epi-convergence. The following representations will turn out to be
very useful for our calculations and our subsequent analysis. It holds

e-liminf ¢,(z) = lminf ¢,(Z), e-limsup p, (z) = sup liminf ¢, (7),
V—00 V—00, T V—00 (Vk)kENo#o k—o00,T—x
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see, e.g., [208, Exercise 7.3| or section 2.2.3 in [27]. Additionally, these alternative formula-
tions also allow for a local and pointwise conception of epi-convergence. In particular, the
sequence (¢, ), epi-converges at a certain point x € R™ if the upper and lower epi-limit val-
ues e-limsup, ¢, (z) and e-liminf, ¢, (z) coincide at . Next, let us list some important
properties of epi-limits.

e The upper and lower epi-limits of (¢, ), are lower semicontinuous functions.

e If ¢, is positively homogeneous for all ¥ € N, then the functions e-liminf, ¢, and
e-limsup, ¢, are also positively homogeneous, [208, Proposition 7.4].

Now, we present another, essential characterization of epi-convergence.

Lemma 2.4.3 (cf. [208, Proposition 7.2]). Let (¢,)u, ¢u : R™ — (=00, +00], be a given
sequence of functionals. Then, (), epi-converges to ¢ if and only if at each point x € R™
it holds

liminf ¢, (z") > @(x) for every sequence ¥ — x,
(2.4.1) v ./
limsup ¢, (z") < @(x) for some sequence z¥ — x.
V—r00

Clearly, this criterion can also be used for local or pointwise epi-convergence. In this case,
has to be verified only at the points of interest. In the following theorem, we establish
an important connection between epi-convergence and uniform convergence of a sequence of
convex functions (¢, ).

Theorem 2.4.4 (cf. [208, Theorem 7.17]). Let (vy)y, v : R" — (—00, +00], be a given
sequence of convex functions and suppose that (p,), epi-converges to a convez, real valued,
and lower semicontinuous limit function ¢ : R™ — R. Then, (¢,), converges uniformly to ¢
on every compact set C' C R™.

Remark 2.4.5 (cf. [208), Definition 7.12]). Since the functions ¢, are generally extended
real valued, we have to clarify the meaning of uniform convergence of the sequence (¢,), in
Theorem For a function ¢ : R™ — [—00, 400] and arbitrary p > 0, the p-truncation of
 is defined as

—p  ifp(z) <-—p,
lp(x) == § (@) if p(z) € [-p, p),
p if p(x) > p.

Then, a sequence (p,), is said to converge uniformly to ¢ on a set S C R™, if, for every
p > 0, the sequence of p-truncations (¢, |,), converges uniformly to ¢|, on S.

2.5. Directional (epi-)derivatives and subdifferentials

Epiderivatives are one of the numerous extensions of the classical directional derivative that
have been developed to study and express differentiability properties of general nonconvex,
nonsmooth and extended real valued functions. As the name already indicates, epiderivatives
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are based on epigraphical convergence processes of certain difference quotients and not on
the common notion of convergence that is used, e.g., in the derivation of classical directional
derivatives. In the following, we introduce and list important definitions and calculation rules
for epiderivatives. Afterwards, we continue with a discussion of the convex subdifferential,
present connections to epidifferentiability and introduce the Clarke subdifferential for general
vector valued functions.

An extensive literature review on epiderivatives and related topics can be found in the
commentaries at the end of the chapters 7 and 8 in [208]. Our terminology for epiderivatives
follows the notation in [27]; more details can be found in the sections 2.2 and 2.4 in [27].
Moreover, the interested reader is once more referred to the chapters 7 and 8 in [208], where
many additional properties and further concepts are provided.

For more information on subdifferential calculus and Clarke’s subdifferential we refer to
[27, [11] and [50, 208, 235).
2.5.1. Directional (epi-)differentiability

Definition 2.5.1. Let ¢ : R" — (—00, +00] and z € dom ¢ be given. The lower and upper
directional derivatives of ¢ at x are defined as

A h) = liminf £ =)
v £10 t ’

and L
¢, (x; h) := limsup pla+th) - gp(w)’
10 t

respectively. We say that ¢ is directionally differentiable at x in direction h if ¢’ (x;h) =
¢ (x;h). In this case, we will use the term ¢'(x;h) to denote the coinciding derivative.

Since ¢ is an extended real valued function, the directional derivative ¢'(x;-) is also an
extended real valued function that can take the values —oo and +oo. Obviously, if for some
h € R™, ¢'(x;h) is finite, then it coincides with the usual directional derivative. If the direc-
tional derivative ¢'(z;h) exists for all h € R™, then the function ¢ is said to be directionally
differentiable at x. We want to point out that the latter definitions do also make sense for
general vector valued functions F': R — R™. Now, let us turn to epidifferentiability.

Definition 2.5.2. Let ¢ : R” — (—o00,+0o0] and x € dom ¢ be given. We define the lower
and upper directional epiderivatives of ¢ at x in the direction h € R™ as follows:

(x + tﬁ) — ()

©¥ (x;h) := liminf L4

)

10, h—h t
teh) —
goﬁ(m;h) = sup lim inf (@ + tih) cp(x)’
(tr)nENy k—00, h—h 173

where Ny denotes the space of all positive real sequences (ty)r converging to zero. We say
that ¢ is directionally epidifferentiable at z in the direction h, if ¥ (z;h) = gpi(z;h). In
this case, the common value will be denoted by o*(z;h).
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2.5. Directional (epi-)derivatives and subdifferentials

Next, we list some important properties of the directional epiderivatives:

e Clearly, the directional epiderivatives goi (z3-), gof (z;-), and @*(z;-) can be interpreted
as epi-limits of the difference quotient functions
p(x +1th) — p(x)

Arp(z)(h) = " for t#0.

In particular, by Lemma  is directionally epidifferentiable at x in the direction
h € R™ if and only if for every sequence (t)k, tx J 0, it holds
likm inf Ay, o(x)(h*) > *(a;h)  for every sequence h* — h,
—00

limsup Ay, o(x)(hF) < p*(z;h)  for some sequence h* — h.

k—o0

As a consequence, the epiderivates goi(x; ), g0¢_ (z;-), and @¥(z;-) are lower semicon-

tinuous and positively homogeneous functions.
e It holds:
pL(xsh) <@i(ash), @t(zih) <@ (xih), @h(ah) < ¢\ (a;h).
e If ¢ is Lipschitz continuous near , then it follows ¢* (x;h) = ¢ (x;h) and goi (x;h) =
¢!, (z; h) for all h € R™.

The following lemma establishes a connection between the different tangent cones of the
epigraph epi ¢ and the epigraphs of the epiderivatives (pi (x;-) and gof (x;-).

Lemma 2.5.3 (cf. [27, Proposition 2.58]). Let ¢ : R" — (—o0,400] be a proper,
extended real valued function and let x € dom ¢ be given. Then, it holds

v
M

ZE,),

x;-).

Tepi (2, 0(7)) = epi ¢
Topi o(, () = epi ¢
Remark 2.5.4. Suppose that ¢ : R" — (—o0,+00] is a convex, proper function and let
x € dom ¢ be arbitrary. Using the convexity of ¢, we readily establish that the epigraph

epi ¢ is convex. Consequently, due to (2.1.1)), the contingent cone Tipi o(x, p(x)) and the

. Z . . . ) . L D
inner tangent cone T¢; (z,¢(x)) coincide and are also convex sets. This implies

ot (x3h) = i (x;h), VheR",

i.e., i is directionally epidifferentiable at z. Moreover, in this case, <p¢(x; -) is a convex, lower
semicontinuous, and positively homogeneous function.

Lemma 2.5.5. Let ¢ : R" — (—00, +00| be a convex and proper function and let x € dom ¢
be arbitrary. Then, ¢ is directionally differentiable at x and it holds

(2.5.1) o +h) — p@) > J(aih) > eHwsh), ¥ heR™
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2. Convex and nonsmooth analysis

Proof. The existence of ¢'(z;-) is shown in [II, Proposition 17.2]. The inequality (2.5.1))
follows immediately from the convexity of ¢ and Remark 2.5.4] O

We continue with several calculation rules.

Lemma 2.5.6 (cf. |27, Proposition 2.136]). Let ¢ : R™ — (—o00, 00| be convex, proper,
and lower semicontinuous and let F' : R" — R™ be a continuously differentiable function.
Suppose that Robinson’s constraint qualification

(2.5.2) 0 € int{F(z) + DF(z)R" — dom ¢}

is satisfied at x € F~1(dom ). Then, the composite function @ o F is directionally epidif-
ferentiable at x and it holds

(2.5.3) (po FYHz;h) = o*(F(x); DF(z)h), Y heR™

Corollary 2.5.7. Let ¢ : R™ — (—o00,400] be convex, proper, and lower semicontinuous
and let f : R® = R, F': R® — R™ be two continuously differentiable functions. Suppose
that Robinson’s constraint qualification is satisfied at x € F~'(dom ¢). Then, the
function o .= f + @ o F is directionally epidifferentiable at x and it holds

(2.5.4) Y (x;h) = V(x)Th+ o (F(z); DF(z)h), Y heR™

Proof. Let us define 0(y,t) := ¢(y) +t and G : R® — R™ x R, G(y) := (F(y), f(y)).
Then, 1 can be written as the composition of the mappings 6 and GG and it is easy to show
that the corresponding assumptions in Lemma are fulfilled. Thus, % is directionally
epidifferentiable at x and, by applying [27, Lemma 2.137] (or by a direct calculation of

04 (y,t;-)), formula (2.5.4) can be established. O

Remark 2.5.8. Let us reconsider the situation of Corollary and suppose that Robin-
son’s constraint qualification is not necessarily satisfied at * € F~!(dom ¢). Clearly, we
then cannot expect that the composite function ) is directionally epidifferentiable or that
the chain rule is valid. However, we are still able to show a somewhat weaker result.
Therefore, let us define Y(y) := Vf(z) y + ¢*(F(z); DF(x)y). Then, it follows

epi ¥ (z;+) C epi T.
In particular, we have
W (2:h) > T(h) = Vf(2) h+ o (F(x); DF(z)h), V¥ heR™

Proof. Let (h,T) € epi wf(x; -) be an arbitrary vector. Then, due to Lemma and
Definition there exist sequences (t)k, tx | 0, h¥ — h, and 7, — 7 such that

(@ + thF) — P(x) <t
Next, a Taylor expansion of f(z + txh*) and F(x + t,h*) at x yields

thf(x)Th + o(F(z) + tkDF(.CL‘)hk +o(tr)) — p(F(z)) < tiT + o(ty).
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2.5. Directional (epi-)derivatives and subdifferentials

Dividing both sides of the latter inequality by ¢ > 0 and taking the limes inferior k — oo,
we obtain

(F(x) + ty DF (x)h* 4 o(ty)) — o(F(x))
123

7> Vf(z)"h+ liminf 7
k—ro00

> V@) h+ liminf  LE@ +th) — o(F(@)) Y(h)
- t10, h—DF(z)h 13 ’

where we used Remark [2.5.4] This shows (h,7) € epi T, which completes the proof. O

Example 2.5.9 (cf. |27, Example 2.67]). Let S C R™ be a convex, nonempty, and closed
set and let us consider ¢ =g and x € S. Then, Definition [2.1.4] and (2.1.1)) imply

¢ (z:h) = trg@)(h), and @ (@;h) = try@m) (h).

2.5.2. The convex subdifferential

Definition 2.5.10. Let ¢ : R™ — (—o0,+00] and = € dom ¢ be given. The subdifferential
of p is the multifunction

Op :R"=R", Op(z):={secR":¢(y) —p(x) > (s,y—z), VycR"}

The function ¢ is called subdifferentiable at x if dp(x) # 0. The elements s € dp(x) are
called subgradients of ¢ at x.

In the following, we list several important properties of the convex subdifferential.

Lemma 2.5.11 (cf. [27, Proposition 2.125 and 2.134]). Let ¢ : R” — (—o0, +o0] be a
convez function and let x € dom ¢ be arbitrary. Then, it holds:

(i) ¢ is subdifferentiable at x if and only if @*(x;0) > —o0, or, equivalently, @*(x;0) = 0.
(i1) If ¢ is subdifferentiable at x, then

‘pi(x; h) = Ssup <)\7 h) = 09yp(x) (h)7
Aedp(x)

i.e., o¥(x;-) is the support function of the subdifferential Op(x).
(i) Suppose that x € ri dom ¢, then ¢ is subdifferentiable at x.

Lemma 2.5.12 (cf. |27, Proposition 2.132], [11, Proposition 16.14]). Let ¢ : R" —
(—00, +00] be convex, proper and let x € dom ¢ be given. Then, it holds:

(i) ¢ is continuous at x if and only if dp(x) is nonempty and bounded.
(i) If ¢ is continuous at x, then there exists € > 0 such that 0p(Be(z)) is bounded.

The following lemma provides an important characterization of convex, proper, lower semi-
continuous, and positively homogeneous functions. A proof can be found in [11} Proposition
14.11 and Proposition 16.18|.
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2. Convex and nonsmooth analysis

Lemma 2.5.13. Let ¢ : R" — (—o00,+00] be a convex, proper, lower semicontinuous, and
positively homogeneous function. Then, ¢ is the support function of the subdifferential dp(0),
i.e., we have

o(T) = ogp)(z), VzeR™

In particular, ¢ is subdifferentiable at 0 and satisfies p(0) = 0.

Let us briefly summarize and recapitulate the last results. Combing Lemma[2.5.11] (i) and
(ii), we see that a convex, proper function ¢ : R™ — (—o0, +0o0] is subdifferentiable at some
x € dom ¢ if and only if its corresponding directional epiderivative II(+) := o*(x; ) is proper.
Hence, by Remark [2.5.4] Lemma is applicable to the mapping IT and, due to Lemma
2.1.8| (ii) and Lemma (ii), we obtain the following essential relation

(2.5.5) OII(0) = Op(x).

Now, let ¢ be also lower semicontinuous and positively homogeneous. Then, by Lemma [2.1.§]
(iv) and Lemma[2.5.12] (i), ¢ is real valued, (i.e., dom ¢ = R"), if and only if ¢ is continuous
at 0. Next, we present a connection between the subdifferentiability of ¢ and its convex
conjugate ¢*.

Lemma 2.5.14 (cf. [11, Theorem 16.23]). Suppose that ¢ : R™ — (—o0, +0o0] is conver,
proper, and lower semicontinuous and let x,s € R™ be arbitrary. Then, the following state-
ments are equivalent:

(i) s € dp(x). (ili) (s,—1) € Nepi o(z, ¢(x)).
(i) = € 05 () (iv) 9(z) +¢7(5) = (z,5).

Next, we present a chain rule for the subdifferential of a composition of convex functions.

Lemma 2.5.15 (cf. [11, Proposition 16.5 and Theorem 16.37]). Let the two functions
f:R™ = (=00, +00] and ¢ : R™ — (—o0, +00] be conver, proper, and lower semicontinuous
and let A € R™*™ be an arbitrary matriz. Furthermore, let us set ¢(x) := f(x)+ ¢(Azx) and
suppose that A(dom f)Ndom ¢ # (). Then, it holds

(2.5.6) Of (x) + ATdg(Azx) C dy(x), Y xe€R™
Additionally, if one of the following regularity conditions
(i) 0 € int{A(dom f) —dom ¢}
(i) A(ri dom f) Nri dom ¢ # ()
is satisfied, then it follows
(2.5.7) o(x) = 0f (x) + ATdg(Azx), V x € R™

We conclude this subsection with two basic and explicit examples.
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2.5. Directional (epi-)derivatives and subdifferentials

Example 2.5.16. Let S C R™ be a convex set. The indicator function tg of S is subdif-
ferentiable at € R™ if and only if x € S. Consequently, the subdifferential of 1g is given
by

() {seR": (s,y—2)<0,VyeS}=Ng(z) ifzels,
ts(x) =
5 0 otherwise.

Example 2.5.17. Let S C R™ be a convex, nonempty, and closed set and consider the
support function og : R” — (—o00, +00]. Then, for all € dom og, it holds

(2.5.8) Jog(z) ={s e S: (s,x) =0g(x)}.

Proof. Due to Example the indicator function ¢g of S is a convex, proper, and lower
semicontinuous function. Thus, using Theorem we have o§(x) = 1§ (x) = 15(x) for all

x € R™. Now, Lemma implies
s € dog(x) <=  og(x)+1s(s) = (s,z).

Clearly, this establishes formula (2.5.8]) and we can conclude the proof. O

2.5.3. The Bouligand and the Clarke subdifferential

In this subsection, we want to derive a subdifferential calculus for vector valued functions of
the type
F:U—R™,

where U C R™ is an open, nonempty set. In this respect, let Qp C U denote the set of
all points € U at which F' is Fréchet differentiable with derivative DF(x) : R" — R™.
Moreover, if the function F' is locally Lipschitz continuous in a neighborhood V' C U of the
point z, then, according to Rademacher’s Theorem, the set V'\Qp has zero Lebesgue measure.
Consequently, every locally Lipschitz continuous function F' : U — R™ is differentiable
almost everywhere. This observation forms the basis of the definition of a generalized notion
of differentiability for vector valued functions.

In the following, we will also use the term DF(x) to denote the corresponding Jacobian
of F at z, i.e., Jp(x) = DF(x) € R™*". Let us start with the definition of the Bouligand
and Clarke subdifferential.

Definition 2.5.18 (Generalized derivatives). Let U C R™ be open, nonempty, x € U,
and let F : U — R™ be Lipschitz continuous in a neighborhood of x. The set

OpF(z) := {M € R™" : 3 (z"),, € QF such that z* — z, DF(z") — M}

1s called Bouligand subdifferential or B-subdifferential of F' at z. The Clarke subdifferential
OF (x) of F at x is defined as the convex hull of OpF(x), i.e., it holds

OF (x) := conv(OgF(x)).

Moreover, the C-subdifferential of F' at x is given by OcF(x) := 0F1(x) X ... X 0F,(x).
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2. Convex and nonsmooth analysis

The next lemma presents some basic properties of the different subdifferentials. A proof
can be found, e.g., in Clarke [50), Proposition 2.6.2].

Lemma 2.5.19 (cf. [238, Proposition 2.2]). Suppose that U C R™ is open and F : U —
R™ is locally Lipschitz continuous near x € U. Then, the following statements hold:

(i) The set OpF(x) is nonempty and compact.
(ii) OF(x) and OcF(x) are convex, nonempty, and compact.
(iii) The multifunctions OgF, OF, and Oc'F are locally bounded and upper semicontinuous.
(iv) OpF(z) C OF(x) C OcF(x).
(v) If F is continuously differentiable near x, then it holds

OpF(z) = OF(z) = 0cF(x) = {DF(z)}.

For a convex functional f : R” — R, it can be shown that Clarke’s subdifferential coincides
with the convex subdifferential f — up to transposition of course (see, e.g., [50, Proposition
2.2.7]). Clearly, this fact (and the discussion at the end of this subsection) indicates that the
Clarke subdifferential is also connected to other differentiability concepts. For instance, in the
real valued case, another directional derivative-type construction, the so-called generalized
directional derivatives, can be used to characterize Clarke’s subdifferential. We refer to [50]
for more information. Moreover, in [208, Chapter 8.C and 9|, these generalized directional
derivatives are studied in an even more general epigraphical framework under the name
reqular subderivatives. Since these deep theoretical concepts are not specifically relevant for
our later analysis, we will not go into detail here.

Let us continue with a sum and a chain rule for the Clarke subdifferential.

Lemma 2.5.20. Let U C R™ be open, nonempty and let F' : U — R™ be continuously
differentiable in a neighborhood of x € U. In addition, suppose that G : U — R™ is locally
Lipschitz continuous near x and let A € R™*™ be an arbitrary, invertible matriz. Then,
setting ® = F + A -G, it follows

0®(z) = DF(z) + A - 0G(x).

Proof. 1t suffices to show dp®(x) = DF(z) + A - OpG(x). However, this equality follows
immediately from the fact that @ is Fréchet differentiable at some point y € R™ if and only
if G is Fréchet differentiable at y. O

Theorem 2.5.21. Let U C R"™ and V C R™ be open, nonempty sets and suppose that
G : U — V is Lipschitz continuous near x € U and F : V — RP is Lipschitz continuous in a
neighborhood of G(z) € V. Then, the composite function ® = F o G is Lipschitz continuous
near x, and it holds

(2.5.9) 0®(x)h C conv{0F(G(x)) o 0G(x)h}, ¥V heR"
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2.5. Directional (epi-)derivatives and subdifferentials

Moreover, if G is continuously differentiable in a neighborhood of z, then formula (2.5.9) can
be further simplified:

(i) If F is real valued, i.e., if we have p = 1, then it holds
(2.5.10) 0®(z) C OF (G(x)) o DG(x).

(i1) In the general case, if, in addition, the linear mapping DG(x) : R™ — R™ is onto, and
F s directionally differentiable at every point in V', then it follows

(2.5.11) 9d(z) = OF (G(z)) o DG(x).

Proof. The first and second part of this Theorem are proven in [50, Corollary 2.6.6 and
Theorem 2.3.10]. The last part can be found in [226, Lemma 2.1]. O

Remark 2.5.22. The conditions in Theorem (1) and (ii) are rather restrictive and, in
general, even if the inner function G is continuously differentiable, we cannot expect that an
equality based representation of the Clarke subdifferential 0®(z) as in is available.
However, if F' and G satisfy the basic assumptions of Theorem at some point z € R"
and if G is continuously differentiable near x, then the following chain rule in terms of the
C-subdifferential of F' does hold:

(2.5.12) 0%(z) C c®(z) C DoF(G(x)) o DG(x).

In applications, such as, e.g., Fischer-Burmeister-based reformulations of KKT-systems, [72]
Proposition 3.1|, the set dcF(G(x)) o DG(x) is often used to construct specific general-
ized derivatives of composite functions, since it typically has a much simpler structure than
Clarke’s subdifferential 0®(z).

Proof. The first inclusion in (2.5.12)) follows from Lemma [2.5.19| (iv). By the definition of
the C-subdifferential, the condition M € 0c®(x) means that the i-th row of M is an element
of Clarke’s subdifferential 0®;(z). Thus, using (2.5.10)), it follows

My € 0%i(z) = 9(F; 0 G)(z) C OF;(G(x)) o DG(x), Vi=1,..,m.

Clearly, this immediately implies (2.5.12)). O

Remark 2.5.23. Another chain rule that guarantees a complete characterization of the
Clarke subdifferential 0®(z) and equality as in is derived in [183, Proposition 7].
There, Pang et al. considered the opposite case, when the outer function F' is continuously
differentiable.

Finally, we present an important differentiability concept that ensures that the Clarke
subdifferential reduces to a singleton and which is generally weaker than continuous differ-
entiability. Following [50] and [208, Section 9.D], a function F': U — R™ with U C R" open
and nonempty, is called strictly differentiable at x € U if

F(z) - F(y) — DF(x)(z — y)

hrn = 07
Y, 2T, YF£2 ”Z - y||
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2. Convex and nonsmooth analysis

where DF(x) denotes the classical Fréchet derivative of F' at x. Before we state Theorem
[2.5.24] let us mention and highlight some properties of strictly differentiable functions.

o If FF: U — R™ is continuously differentiable in a neighborhood of z € U, then F'is
also strictly differentiable at x.

e A function F' : U — R™ is strictly differentiable on an open set V' C U if and only if
F' is continuously differentiable on V.

e The composition of strictly differentiable functions is strictly differentiable.

Further properties and more information on strictly differentiable functions can be found
in |50, Section 2.2], [208] Section 9.C-9.D], or [67, 1D.6-1D.8§].

Theorem 2.5.24. Let U C R™ be open and nonempty. A function F : U — R is strictly
differentiable at x € U if and only if F is locally Lipschitz continuous near x and Clarke’s
subdifferential OF (x) reduces to a singleton.

Proof. In the real valued case m = 1, this result is presented in [50], Proposition 2.2.4]. In
the more general case, we have to use a connection between the Clarke subdifferential and
the so-called graphical or Mordukhovich coderivative D*F(z) : R™ = R™ of F' at x. Since
a full definition of Mordukhovich’s coderivative requires the introduction of several more
specific tools and concepts, such as, e.g., the limiting or basic normal cone to the graph of
F', we want to refer to [208, Section 8.G| and [158, Definition 1.32] for a detailed discussion.
However, if F' is locally Lipschitz continuous near z, then [208, Theorem 9.62| provides the
following characterization

conv D*F(z)(y) = conv {MTy M e 53F($)} = {MTy M e 8F(:c)} :

Thus, in this situation, Clarke’s subdifferential OF (z) is a singleton if and only if the coderiva-
tive mapping D*F'(x) is single-valued. The rest of the proof now follows from [208, Exercise
9.25] or [158, Theorem 3.66|. O

2.6. Semismoothness

The concept of semimoothness was originally introduced and developed by Mifflin [148]
for real valued functionals. Later, Qi [197] and Qi and Sun [199] extended this notion
to general mappings between finite dimensional spaces. The importance and popularity of
semismoothness can be traced back to the fact that Newton’s method applied to the nonlinear
and possibly nonsmooth equation

F(z)=0

is well-defined and can be shown to converge locally at least g-superlinearily under suitable
conditions, if the function F' : R™ — R is semismooth. Clearly, this generalizes the classical
Newton method and enlarges the overall applicability of Newton-type methods to many
different and broad classes of problems.
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2.6. Semismoothness

In the following, we state some basic definitions and give an overview of the concept of
semismoothness in the context of nonsmooth equations. More details on semismoothness and
the semismooth Newton method can be found in [197, 199, [198]. Extensions to the infinite
dimensional setting are presented in the book [238] by Ulbrich.

In the literature, a large number of different yet equivalent definitions of semismoothness
is available. Here, we will only give one of these definitions (see, e.g., [I83, Theorem 5| or
[238, Proposition 2.7]), that will turn out to be the most useful version for the convergence
analysis of our semismooth Newton-type method later on. The original definition of Mifflin
and various other, equivalent formulations, as well as corresponding proofs and discussions
can be found in [199] [182] [198, [I83] 238].

Definition 2.6.1 (Semismoothness). Let U C R™ be an open and nonempty set. A
function F : U — R™ is said to be semismooth at x € U, if F' is Lipschitz continuous in a
neighborhood of x, directionally differentiable ot x, and for all h € R™ it holds

(2.6.1) sup |F(z+ h) — F(z) — Mh|| = o(||h]]) as h— 0.
MedF(z+h)

If F is semismooth at all x € U, then F is called semismooth (on U ).
Let us list some elementary and well-known examples of semismooth functions.
e Convex, real valued functions are semismooth, [148, Proposition 3|.

e Piecewise continuously differentiable functions, such as, e.g., the £1- or £,,-norm, are
semismooth. For more details we refer to [211] and [238, Section 2.5.3].

o If F:U — R™, U C R" open, is continuously differentiable in a neighborhood of some
point x € U, then F is semismooth at x, see [148] Proposition 4].

Next, we present the concept of a-order semismoothness, which is a natural extension of
semismoothness of a function. Higher order semismoothness was introduced by Qi and Sun
in [199] to achieve a better, local convergence rate of the semismooth Newton method.

Definition 2.6.2 (a-order semismoothness). Let U C R™ be open, nonempty and let
F : U — R™ be given. For 0 < a < 1, the function F is called a-order semismooth at
x € U, if F is locally Lipschitz continuous near x, directionally differentiable at x, and for

all h € R™ it holds

(2.6.2) |F(x+ h) — F(x) — F'(z,h)| = O(|p|'"™™) as h — 0,

and

(2.6.3) sup |F(z +h) — F(z) — Mh| = O(||n||*™®) as h — 0.
MEF (z-+h)

The function F is said to be a-order semismooth (on U), if F' is a-order semismooth at all
points x € U.
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2. Convex and nonsmooth analysis

Remark 2.6.3. The condition (2.6.2)) is known as a-order B-differentiability. Again, there
exist several other formulations of a-order semismoothness, see, e.g., [238, Definition 2.13
and Proposition 2.14].

Finally, let us present some calculation rules and properties of semismooth functions. We
start with a useful, equivalent characterization of (a-order) semismoothness. A proof of this
result can be found in [I99, Corollary 2.4] and [238] Proposition 2.10 and Proposition 2.17].

Lemma 2.6.4. Let U C R” be open, nonempty and 0 < o < 1. Then, the mapping
F : U — R™ is (a-order) semismooth at x € U if and only if each component function
F,:U—R,i=1,..,m, is (a-order) semismooth at x.

Next, we give a chain rule for semismooth functions.

Theorem 2.6.5. Let U C R™ and V C R™ be open, nonempty sets and 0 < o < 1. Suppose
that G : U — V is (a-order) semismooth at x € U and that F : 'V — RP is (a-order)
semismooth at G(z) with G(U) C V. Then, the composite mapping F o G : U — RP is
(a-order) semismooth at x.

Proof. In [148, Theorem 5|, it is shown that the composition of two semismooth functions
f:R™ = R and G : R® — R™ is again a semismooth mapping. Clearly, by using Lemma
this yields the more general result in Theorem [2.6.5} see also Lemma 18 in [79]. A

chain rule for a-order semismooth functions is studied in [79, Theorem 19|. O

Remark 2.6.6. Additionally, let us assume that the function G is continuously differentiable
in a neighborhood of 2. Then, by combining Lemma[2.6.4 and Theorem[2.6.5] it can be easily
shown that the composite function F' o G is also (a-order) semismooth with respect to the
possibly larger set dc F(G(z))DG(z), i.e., it holds

I(F o G)(x + h) = (F o G)(x) = Mh[| = o(|[n]])

uniformly for all M € 0cF(G(x + h))DG(x + h), as h — 0.

It is well-known that a Fréchet differentiable function is not necessarily semismooth. The
following theorem shows that the combination of semismoothness and Fréchet differentiability
implies some kind of higher regularity of the considered function. Theorem [2.6.7] is based
on some very recent results of Movahedian [165] and will be an essential component of our
second order and nonsingularity analysis in section [5.4

Theorem 2.6.7. Let U C R™ be open, nonempty and let F : U — R™ be Fréchet differen-
tiable and semismooth at x € U. Then, F is strictly differentiable at x and OF (z) reduces to
a singleton.

Proof. Due to Theorem it suffices to show that OF(x) reduces to a singleton. Very
recently, in [I65, Theorem 4.3], it has been established that Mordukhovich’s coderivative
and the so-called linear coderivative of F at z, see [233] 234], coincide if F is locally Lip-
schitz continuous, directionally differentiable, and semismooth at z. Now, applying [234,
Corollary 2.10] and [233, Proposition 2.14|, the Fréchet differentiability of F' implies that the
linear coderivative of F' at = reduces to the classical Fréchet derivative DF(x) and it follows
D*F(z)(y) = {DF(x)"y} for all y € R". Clearly, as in the proof of Theorem this
yields 0F(x) = {DF(z)}. O
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3. The proximity operator

The proximity operator was originally introduced and studied by Moreau in his seminal works
[161], 162}, [163] and has become a popular tool in many different fields of research over the
last decades. More specifically, due to its manifold applicabilities in nonsmooth optimization,
the proximity operator has been intensively used to design and develop general numerical
algorithms, such as fixed point and descent-based methods [54} 88, 236], proximal (quasi)-
Newton approaches [14], [129], and alternating or primal-dual schemes [91] 71, [136] [42]. In
the following sections, we will introduce the proximity operator, give examples and discuss
several important properties. Most of the statements presented here can be found in the
paper of Combettes and Wajs [54], where essential features and calculation rules for proximity
operators are provided and derived. Further results can also be found in the book [IT]. For
more information on corresponding numerical methods and applications of the proximity
operator we refer to the reviews and monographs [6l, 53, [I84] and the references therein.

3.1. Definitions and basic properties

Let A € S}, be an arbitrary symmetric, positive definite matrix and let ¢ : R™ — (—00, 4-00]
be a convex, proper, and lower semicontinuous function, then the Moreau- Yosida regulariza-
tion or Moreau envelope of ¢ is defined as

. 1
(3.1.1) envg :R" - R, env$($) = Inin o(y) + §||$ —ylX,

where ||z|[po = \/(z,z)a, z € R", is the norm induced by the Euclidean scalar product
(-, 94 : R"XR" - R, (x,y)a := (Az,y) = (z, Ay). For every x € R" the minimum in (3.1.1)
is attained at the unique point proxg(x) that is characterized by the optimality condition

(3.1.2) proxg(a:) cx—AT- 8g0(prox£(a:)),

where d¢ denotes the convex subdifferential of ¢. The function

1
proxé :R" — R, proxg(m) = arg]glin o(y) + 5”:{: —ylx
yeR”

is called prozimity operator of . Usually, the matrix A is chosen as a fixed one-dimensional
parameter by setting A = %I for some A > 0. This leads to the classical proximity operator

17 . 1
prox} (z) = argmin o(y) + 5 [l — yll3,
yGRn 2)\
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3. The proximity operator

which is typically abbreviated by prox,,, (). In the following, we will discuss characteristic
properties of the proximity operator proxfz for arbitrary parameter matrices A € S’ ;. More-
over, we will also treat the proximity operator as a function of A and establish more general
results, which are simple extensions of the classical ones, but, to the best of our knowledge,
do not seem to be completely available in the literature so far. We will use the notations

envy, : R" x §" = R, envy(z,A) = envg(m)

and
prox,, : R" x 8" — R", prox,(z,A) := proxg(x),

when the Moreau envelope and the proximity operator are explicitly understood as functions
of x and A, i.e., when the parameter matrix A is not fixed. Let us start with some important
continuity results of proximity operators.

Lemma 3.1.1 (cf. [163], [564, Lemma 2.4]). Let ¢ : R" — (—o00,400] be a conver,
proper, and lower semicontinuous function and let A € S't | be an arbitrary symmetric and
positive definite matrixz. Then, proxg and I — proxg are A-firmly nonexpansive operators,
i.e., it holds

IT(@) - T@)I3 < (T(2) = T(W),x = y)a, ¥ 2,y R,

forT = proxg and T =1 — proxf,}.

Proof. We follow the proof of Lemma 2.4 in [54] and set T' = proxé7 then for x,y € R™
the optimality condition (3.1.2)) implies

> (z— proxg(a:), proxg(y) - proxfz(a:))/\,
p(prox(z)) — @(proxA(y)) > (y — prox(y), prox(z) — prox}(y))a-

>
=

{so(proxs,(y)) — p(proxA(z))

Adding those two inequalities, we obtain

IproxA(a) — prox(u)[; + v — o, prox(z) — prox’(y))a < 0.

Using the last result, we can easily establish the second assertion

I(1 = prox})(z) = (I —prox})(W)IIA < Nz =yl — (¥ — y, prox}(z) — prox(y))a
((z — proxi(x)) — (y — prox(y)), = — Y)a,
as desired. O

Let A € S}, be arbitrary and suppose that 7" is a A-firmly nonexpansive operator. Then,
Lemma [3:1.1] implies

IT(z) = T)|X < 1A% (T(2) = TW))2 - A2 (& = y)ll2 = |T() = T®)]la - |z — ylla

for all x,y € R™. Thus, every A-firmly nonexpansive mapping is also a A-nonexpansive
mapping, i.e., it is a Lipschitz continuous function with modulus 1 with respect to the norm
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3.1. Definitions and basic properties

| - la. Moreover, by using
(3.1:3) Amin(8) - 212 < 1213 < Amax(8) - 2%,V z € R,

it immediately follows that a A-nonexpansive mapping is also Lipschitz continuous with
respect to the Euclidean norm with modulus \/ Amax(A)/Amin(A). The following lemma
shows that the proximity operator preserves its local Lipschitz continuity when it is treated
as a function of the parameter matrix A.

Lemma 3.1.2. Let ¢ : R" — (—o00,+00] be a convex, proper, and lower semicontinuous
function and let x € R"™ be arbitrary but fizred. Then, for every compact subset K C S’}
there exists a constant L = L(p,z,K) such that

[prox! (z) — proxh?(z)|| < L+ |Ay — Ag|lp, ¥V Ay, Ay € K.

In particular, the prozimity operator prox, (z,-) : S™ — R™ is Lipschitz continuous on every
compact subset K C S |

Proof. Let K C S'', be a compact set. Then, due to the compactness of ', there exist
AM > A > 0 such that Ayl = A = N\, 1 for all A € K. Let us define p := proxi;MI(x) and
let A € K be arbitrary. Using envg(az) < envéM I(z) and applying the optimality condition

(3.1.2)) for p, we obtain

1 1
proxd(@) — af? < - env (@) - w(proxi(@)
AMm (- I
< (- nproxd(a) - ) + gl ?)

>\M _ A 1,
< 2 (I~ elloroxd(o) ~ ol - gl al?).

Rearranging the terms and solving the resulting inequality for ||prox£(az) — x| yields the
following bounds

A Am A Am
o (1— 1—W> up—xu<uprox<>—xus;nj(1+ 1—W) Ip = al

Thus, since the upper bound does only depend on \,,, A\ys, and x, the term Hproxﬁ,(

is bounded for all A € K. For convenience, let us set

z) —af

A Am
CI:C((,O,I',IC) :)\J\/l(l+ 1_)\]\4> ||p_$||

The remaining arguments of the proof follow the basic ideas and techniques presented in
[230, Lemma 3|. An almost identical and a related result can also be found in [210, Lemma
3] and [129] Proposition 3.6|, respectively. Now, let A1, Ay € IC be arbitrary and let us deﬁne
pli= proxA (x) —x, i = 1,2. Then, using characterization ) for = + p! and x + p?, we
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3. The proximity operator

obtain the following inequalities:

ol +p?) — e +p') = = p'p* = p)a,,
pla+p') —pl@+p*) = =% p' —P*)1,
Combining those two inequalities, we readily get
(3.1.4) (p'p" = p)ay < 00" = PP)ne

Next, adding the term —(p?, p! — p?)x, on both sides of (3.1.4), it follows

Ip' = P13, < % (A2 — A" —p?))
1 1 _1
= (A, 2(A2— A1) P2 AZ(p' = p%) < A 2 (A2 — A1) - pP|lIp" — PP

where we used the symmetry and invertibility of A;. Consequently, due to the boundedness
of p? and Ay = A\, I, we can infer

Amax(A] %) C
Irox} (a) = prox(a)] = " =21 < 2 2] 1 = Aalle < 41— Aol

N

as desired. O

Remark 3.1.3. Let us make some comments on Lemma [3.1.20 If (Ay)x € S, is a sequence
of matrices that converges to some A € S'f |, then Lemma §L2 implies that the proximity
operators prox () converge to prox{; (z) for every fixed x € R™. In other words, a sequence

)
of minimizers of the functionals 6x(y) := ¢(y) + %HCL’ - ?JH?\k converges to a minimizer of the

limit functional 6(y) := ¢(y)+ 4[|z —y||3. This quite remarkable property can be traced back
to the fact that the sequence of functionals (0 )y epi- or I'-converges to # in our situation.
Figure illustrates this effect for two different, explicit examples.

The following corollary is an easy consequence of Lemma [3.1.2

Corollary 3.1.4. Let ¢ : R" — (—o00,+00] be a convez, proper, and lower semicontinuous
Junction. Then, the prozimily operator prox, : R™ x 8" — R" us Lipschitz continuous on
every compact subset K C R™ x S | and continuous on R™ x ST , .

Next, we discuss differentiability properties of the Moreau envelope env,. Let us note,
that smoothness of envg was already derived by Moreau in [I63] Proposition 7.d]. The proof
of Lemma is based on the proof in [90, Satz 6.38|.

Lemma 3.1.5. Let ¢ : R" — (—o00,400] be a convex, proper, and lower semicontinuous
function. Then, the Moreau envelope of ¢ is continuously differentiable on R™ x St | and its
partial derivatives satisfy

Veenvy(z,A) = Ax — proxg(aj)), Vaenvy(z,A) = %(m — proxg(a:))(a: - proxg(x))T

for all (x,A) € R" x S . Moreover, for every arbitrary but fixed A € S, the Moreau

envelope envg 18 convex on R™.
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3.1. Definitions and basic properties

Figure 3.1.: Illustration of the convergence of a sequence of proximity operators (proxg’C (Z))k
for different parameter matrices Ax and for two different choices of ¢. In subfig-
ure (a) the ¢;-regularization ¢(z) := ||z||1 was used; in subfigure (b) the so-called
Burg entropy function

o 2 ) =In(x;) ifz; >0,
o) = flz), flz:):= {+OO 2o

=1

was used (see, e.g., [54, Example 2.18|). The parameter matrices Ay converge to
the identity matrix I. Orange point: fixed reference point. Ellipses: visualization
of the different unit disks {x € R? : ||z||n, = 1}. Gray points: plot of the
corresponding proximity operators proxé’v (7).

Proof. Let us define 6(z,y, A) := ¢(y) + ||z — y||3 and let [k, H] € R" x S" be arbitrary.
Then, for all £ > 0 sufficiently small, the parameter matrix A 4+¢H is symmetric and positive
definite. Thus, the Moreau envelope env,(z + th, A + tH) is well-defined and it holds

envy(x +th,A+tH) —env,(z,A) < 60(z + th, proxfz(ac), A+tH) — 6(x, proxi;(x), A)
1

1
A A
= 5@+ th) = prox (@) [34m — 5l — proxg(@)|3

¢ A A
= 5o = proxg(@)[7 +t - (v — proxz(x), h)a + O(t*).
Please note, that the term “|| - |4 is just used as an abbreviation for ||y||%, = y' Hy and

does not necessarily correspond to a norm since H is not assumed to be positive definite.
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3. The proximity operator

Now, the latter estimate shows

(3.1.5) lim sup envy(z +th, A —|—ttH) —envy(z,A)
£10

< S llz — proxg(2)|[3 + (A(z — prox(@)), h).

N |

Similarly, we can derive a lower bound

envy(z +th,A+tH) —envy(x, A)
> 0(x + th, proxngH(a: +th),A+tH) — 0(x, proxf;HH(a; +th),A)

1 1

= Sl + th) — prox; ™ (@ + th) |3 i — 5 llv — proxg ™ (w + th)|}
t

= 5”3: - proxg'”H(a: +th) |5+t (x — prongrtH(:r: +th), h)a + O(t?).

This establishes

(3.1.6) i inf envy(x +th, A +tH) — envy(z, A)
o 10 t

1
> S llw = proxg (2)|I7 + (A — prox3(x)), h),

where we used the continuity of the proximity operator prox,. Combining (3.1.5)), (3.1.6)),

and
|l = prox(z)[|3 = tr((x — prox}(z))(x — prox}(z)) " H),

it follows that the Moreau envelope of ¢ is directionally differentiable at (x, A) in the direction
[h, H] and its derivative is given by

envfp(x, A;[h, H]) = (A(x — proxg(x)), h) + %tr((m — proxg(:v))(:n — proxfg(w))TH).

Since the direction [h, H] € R" x S" was arbitrary and env(,(x, A; [k, H]) is linear and contin-
uous in [h, H], the Moreau envelope env,, is Fréchet differentiable and the gradient of env,,
satisfies

Veenvy(z,A) = A(x — proxg(m)), Vaenvy(z,A) = %(w - proxg(:c))(:c - proxg(x))T.

Furthermore, using the continuity of the proximity operator prox,,, we infer that envy, is even
continuously differentiable on R™ x S . To prove the convexity of the Moreau envelope, we
use the fact, that a continuously differentiable function is convex if and only if its gradient
is a monotone mapping. Hence, let A € S", be fixed and let z,y € R" be arbitrary. Then,
applying Lemma it follows

(Veenvy(z,A) — Veenvy(y,A),z —y) = ((x — proxg(x)) —(y— proxg(y)), x—y)a > 0.

Consequently, we conclude that envfz : R™ — R is a convex function. [J
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Remark 3.1.6. We will often use the notation

Venvg (x) := Vgenvy(x, A)

to denote the partial derivative Vg env,(z, A) or the gradient of env?, when the parame-

ter matrix A is fixed. Moreover, rewriting the optimality condition (3.1.2), we obtain the
following, useful property of the gradient of the Moreau envelope

(3.1.7) Venvf}7 (x) € 8g0(pr0xf>7 (x)).

3.2. Proximal calculus and examples

Next, we present some basic tools and rules for the computation of proximity operators. In
particular, we will also discuss the decomposition principle of Moreau that establishes a link
between the proximity operator of a function and the proximity operator of its corresponding
convex conjugate.

Lemma 3.2.1. Let ¢ : R" — (—o0,400]| be a convex, proper, and lower semicontinuous
function and let x € R", A € S, be given. Then, the following hold:

(i) Let us define (-) :== ¢(- — b), b € R"™. Then, it follows proxﬁ(:r) =b+ proxg(x —b).

(ii) Let us define y(-) :== ¢(-/p), p € R*"\{0}. Then, it follows proxfz(az) =p prox&%(x/p).
Proof. The proof is exactly as in [54, Lemma 2.6]. O

The following composition formula extends Theorem 3.1 in [I47] to the class of real ex-
tended valued functions and to proximity operators with matrix parameters.

Lemma 3.2.2. Let ¢ : R™ — (—o00,400] be a convex, proper, and lower semicontinuous
Junction and let v € R", A € S, be arbitrary. Furthermore, let A € R™*" be given and
suppose that one of the following regularity conditions

(i) 0 € int{AR" — dom ¢}
(i) AR™Nri dom ¢ # ()
is satisfied. Set y(z) := @(Ax), then it holds

(3.2.1) proxg(:c) =z—A'ATTy, TeST,

if and only if v is a fized point of the operator (I — proxg) o H,, where H, : R" — R",
H,(v) := Az + (I — AANTATT).

Proof. The proof is a simple extension of the proof in [147]. For the sake of completeness,
we adapt the proof given in [I47] for the more general setting of Lemma Due to (3.1.2)
and Lemma [2.5.15] it follows

x — proxﬁ(:v) eAl. 8¢(prox$(m)) =A"L. AT&p(Aproxfz(m)).
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3. The proximity operator

Hence, for any arbitrary parameter matrix I' € S, , there exists v € ™1 - 8¢(Aprox$(x))
such that
proxfz\)(:v) =r—ATATTY

and we obtain

vel . 8¢(Aprox$(x)) = Aproxg(a:) € Aproxg(a:) +ov-T71. 8@(Apr0x$(az))
= Aproxfz(a:) = proxg (Aproxfz (z) +v)
— Az —AANTTATTw = proxg(HI(v))

= v=I- proxE)(Hx(v)).

Conversely, assume that v is a fixed point of the mapping (I — prox};) o H,, then the above
argumentation establishes the following implication:

vel 1. 9p(Az — AN LA Tw)
—  ATwe ATop(A(x — ATATTW)) = dp(z — AP ATTw).

Obviously, the last inclusion can be rearranged such that optimality condition (|3.1.2)) is again
applicable. This finally yields prox{z (r)=2—A"'ATTw. O

Remark 3.2.3. If the matrices A and A satisfy AA"TAT € S, then both regularity
conditions in Lemma are fulfilled and equation (3.2.1)) can be simplified to
(x) =2 — ATAT(AATAT) YAz — proxUATTAD T (Az)).

A
ProX 4

In addition, if A is orthogonal, i.e., if it holds ATA = AAT = I € R™ ™, then the above
formula reduces to

plroxA

poa(T) = AT proxAsa’ (Ax).

©

In particular, in the case A = A\I, we recover the two well-known composition formulae

proxi;{jA(a?) =x— AT (AAT)(Az — plroxfzg(AATr1 (Ax))

and

proxéﬁA(ac) = ATprOX;\,I(Ax),

respectively.

Lemma 3.2.4. Let (Ij)p=1,.. .~ C {1,...,n} be a sequence of N distinct sets such that
N
U Iy ={1,...,n} and ng:=|Zx| #0, Vk=1,..,N.
k=1

Furthermore, for k = 1,..,N, let (¢r)k=1,..N, ¢k : R™ — (—o0,+00], be a family of
convex, proper, and lower semicontinuous functions and let Ay, € ST, be given. Let us define

36
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o) =N | op(zz,) and A € R™",

Ay ifk=1¢,
A[IkIIZ] = {O ey 1<k, ¢<N.

Then, it holds
(3.2.2) proxg(m)jk = proxfg’; (xz,), Vk=1,..,N.

Proof. We only give a sketch of the proof and refer to [54, Lemma 2.9] for further details.
Clearly, ¢ is a convex, proper, and lower semicontinuous function and we have A € S7 .
Now, using

8@(%11, ...,:L’ZN) = 8g01(x11) X ... X &pN(azIN),

(see, e.g., [11l Proposition 16.8] or [54, Lemma 2.1]), the statement (3.2.2)) easily follows from
a block-wise application of optimality condition (3.1.2)). O

Theorem 3.2.5 (Moreau’s decomposition principle). Let ¢ : R" — (—o0,+00] be a
convex, proper, and lower semicontinuous function and let A € S, be arbitrary. Then, for
all x € R™, it holds

(3.2.3) x = prox{,}(x) + AL proxgﬁ:l(/\m),
and
(3.2.4) go(prox/@\(x)) + " (proxf,};l(Aw)) = <pr0x£(ac), proxf;;l(Aa?»,

where p* denotes the convex conjugate of .

Proof. A proof of (3.2.3) can be found in [14, Lemma 5—B.1]. To prove the second
assertion, we proceed as in [54, Lemma 2.10]. By reformulating the equation (3.2.3) and

using (3.1.7)), we obtain
proxg;l (Az) = A(x — proxg(m)) = Venvg(x) € 890(pr0xg(x)).

Due to Lemma [2.5.14] this is equivalent to (3.2.4). O
The following result was established by Yu in [261].

Theorem 3.2.6. Let @1, ps : R" — (—o0, +00] be two convex, proper and lower semicontin-
uous functions and let A € S} | be arbitrary. If 1 and @2 satisfy

(3.2.5) Opa(z) C 8g02(prox£1 (x)), VaxeR"
then the following composition rule holds for all x € R™:
(3.2.6) plroxglﬂj2 (x) = (proxg1 o proxgz)(x).

Proof. The proof is just a minor, mainly “notational” extension of the proof of Theorem 1
in [261]. Therefore, we will omit the proof. O
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Examples

In this subsection we want to derive some explicit formulae for proximity operators by using
the calculation rules we have just presented. We mainly concentrate on examples that will
be relevant in the subsequent sections or in our numerical considerations at the end of this
thesis. More computational results and a broader overview of explicitly known proximity
operators can be found in [54] 6] [53].

Example 3.2.7 (Classical projection). Let K C R™ be a convex, nonempty, and closed
set and let A € S’ | be arbitrary. Then, it holds

1 1
A . : A
prox (z) = argmin 1xc(y) + 37—y} = argmin _flz — yl} = PR (z).

yeR” yeK
In particular, if A = AI for some A > 0, then the proximity operator of the indicator function
Lk coincides with the classical, orthogonal projection onto the set K.

Example 3.2.8 (Norms and homogeneous functions). Let |||-||| : R — R be a norm
on R"™ and let y > 0, A € S}, be arbitrary. Then, by applying Theorem [3.2.5 and Example

we obtain

- AL _ -1
(3.2.7) proxﬁm_m(x) =z —pA? ~proxm.m* (Az/p) =2 — A" .Pglll-mo(ov#) (Ax).

In the special case A = 11, A > 0, formula ([3.2.7)) can be used to derive and calculate a large
number of important proximity operators. For instance, if we consider the ¢1- or £3-norm,
then (3.2.7)) reduces to the two well-known shrinkage operators

1

=7 .
prox,\., (z) = prox*”.Hl (2) = = — Pl (z) = sign(z) © max{|z| — pA, 0},

1
ir T
prOXuAH‘HQ(x) = PTOX;”.HQ(JU) = — PBHAHQ(O,M/\) (x) = m -max{||x|l2 — u, 0},
where the application of the sign function sign(-) and the absolute value | - | is understood

component-wise. Now, suppose that ¢ : R” — (—o0,+00] is a convex, proper, lower semi-
continuous, and positively homogeneous function. Using Lemma [2.5.13] Theorem [2.2.3| and

we obtain the following extension of formula (3.2.7)

_ - . —1
(3.2.8) proxﬁg,(:c) =z —pA? -proxggqj (Az/p) =2 — A1 -Pﬁaw(o)(Am).

1
(0)
Example 3.2.9 (Constraints and ¢;-norm). Let a,b € [—00, +00]™ be such that a; < b;
for all ¢ = 1,...,n. Additionally, let us exclude the degenerate situations a; = b; = —oo or
a; = b; = 400, i.e., let us suppose that the sets [a;, b;] "R are nonempty for all i. Now, let
A€ R}, and p > 0 be arbitrary and let us set A = diag(1 @ A\) € S,. The aim of this
example is to compute the proximity operator of the composite function

p(x) = pllzll + b (@)
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3.2. Proximal calculus and examples

Clearly, we are in the setting of Lemma i.e., the proximity operator proxf,}(ac) can be
computed component-wise. Moreover, due to

{+1} if z; >0, by if x; > b;,
a’xZ’ = [—1, +1] if z; =0, prox}[{l;\fbi] (xz) = P[ai7bi] (IZ) =qx ifx e [ai, bi] NR,
{-1}  ifx <0, a;p iz <a,

we immediately see that Theorem is applicable when 0 € [a;, b;]. Since the absolute

value reduces to a differentiable function when a; > 0 or b; < 0, the proximity operator
1/\i

rox
p Bl 1+ 6]

(x;) can be computed directly in these cases; it holds:

Pl bi] (Ti — pAi) if a; > 0,
1/A; e .
proxu{.|+L[aiybi](xi) = 4 Pla; bi] (proxu‘/_| (z;)) if 0 € [ay, b,
Plasbi) (Ti + 1Ai) if b; < 0.

In summary, after some more (easy) manipulations, we obtain the composition formula
A A
prox,, (‘T) = P[a,b] (prOX””-Hl (l’)) = P[a,b] (x - ,P[fu)\,,u)\] (CE‘))

The following example concludes this subsection and is a bit more sophisticated.

Example 3.2.10 (Epigraphical projection). We want to analyze the proximity operator
that is characterized by the optimization problem

B

@ P
2

(3.2.9) min

(¥7)ERXR 2 (t=7)? st [lAy—bll2 <7,

2
lz —yllz +
where a, 8 > 0, A € R™*"™, and b € R™ are given. Clearly, if & = 3, then the optimal
solution of the latter minimization problem is given by the projection onto the set K :=
{(z,t) e R"" x R : ||Az — b||2 < t}. Projections of this type usually occur as subproblems or
subroutines in so-called basis pursuit problems which have the following form:

(3.2.10) min Q(z) s.t. [[Az —bl2 <o.

Here, Q2 : R™ — R is a general sparsity-inducing penalization and o > 0 estimates the level of
noise in the (possibly noisy) measurements b. Later, in our numerical comparison in chapter
7, we will use the computational results of this example to derive an Alternating Direction

Method of Multipliers (ADMM) for an optimization problem of the form (3.2.10) with a
group-sparse penalty function. Now, defining

L al, 0 (n+1)x (n+1) _ A0 (m+1)x(n+1)
A'_<0 5>€R , B_OleR ,

and
(Y, 7) = tepi .Y — b:7),

39



3. The proximity operator

we see that the optimal solution of (3.2.9) is given by the proximity operator prox? 0o gz, ).

Moreover, if the matrix A satisfies AA—r = I, then, using Lemma 1| (i) and Remark -
we can derive a closed form formula for this proximity operator. In particular, it holds

et~ ()~ (4 9) () b tse o)

and
(y,7) if lyll2 <,
+
PR @) = B 4 iyl i — Sllylla < < [lylle,
(0,0) if 3 < ~2lyllo.

A detailed verification of the epigraph formula can be found, e.g., in [87, Proposition 3.3|.

3.3. Semismoothness and second order properties

As motivated in our introduction, proximity operators play an essential role in deriving first
order necessary conditions for optimization problems of the form

(3.3.1) min f(z) +¢(z),

where f : R" — R is smooth and ¢ : R" — (—o00,400| is a convex, proper, and lower
semicontinuous function. In particular, as we will see in the next chapter, the proximal
framework can be utilized to reformulate these optimality conditions as nonsmooth, proximal-
based equations that include the proximity operator of the mapping ¢. Consequently, this
subsection is dedicated to analyze the semismoothness and the second order properties of
the proximity operator proxfz and to investigate whether the semismooth Newton method

can be applied to solve the problem ([3.3.1)).

Unfortunately, in general, the proximity operator cannot be expected to be a semismooth
function. More specifically, Kruskal [127], and Shapiro [214], constructed a three- and two-
dimensional example of a convex, closed set K such that the corresponding projection oper-
ator Pk () is not directionally differentiable at some point = ¢ K.

Although the analysis of the differentiability properties of the metric projection Py is a
very classical field of research, see, e.g., [260}, 80, 213] 212], general results that establish and
guarantee the semismoothness of the projection Py are rather limited and often necessitate
a special and specific structure of the convex, closed set K C R™. For instance, in [75],
Facchinei and Pang studied the metric projection onto sets of the form

(3.3.2) K :={x e R": g(x) <0},

where each component function g; : R® — R, ¢ = 1,...,m, is assumed to be convex and
twice continuously differentiable. Under the Sequentially Bounded Constraint Qualification
(SBCQ) and the Constant Rank Constraint Qualification (CRCQ), Facchinei and Pang es-
tablished directional differentiability and piecewise smoothness of the projection operator
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3.3. Semismoothness and second order properties

Px, respectively. Moreover, in a similar fashion and applying the CRCQ, Sun and Han [228]
and Mifflin et al. [149] have shown that the proximity operator of a piecewise C2-function
and of the maximum of a finite collection of convex C?-functions is again a piecewise smooth
and hence, a semismooth function. Extensions using weaker constraint qualifications were
considered, e.g., in [I146]. For a more detailed discussion of the metric projection, we refer to
[75, Chapter 4| and the references therein.

In general, if the nonsmooth function ¢ does not possess a certain piecewise structure,
much fewer results are available. However, Meng, Sun, and Zhao [145] showed that, under
a mild regularity condition, semismoothness of the proximity operator proxgl can be traced
back to semismoothness of the metric projection onto the epigraph of . In [146], this result
was further refined and it was shown that piecewise smoothness of the epigraphical projec-
tion Pepi, implies piecewise smoothness of the corresponding proximity operator. (See also
the recent work [48] for another connection between the proximity operator proxéf and the
epigraphical projection Pepi,). Thus, the analysis of the semismoothness of the proximity
operator can be completely shifted to a respective investigation of the projection operator
Pepip- Unfortunately, in many situations, the epigraph epi ¢ will not be representable as
a set of the form with a smooth function g and the known results for metric pro-
jections are not applicable. Nonetheless, these different results and observations initiated
a “renewed” discussion and an intensive study of differentiability properties of certain epi-
graphical projections. In particular, in the area of low-rank matrix optimization and matrix
cone programming, new and profound results were established by Ding et al. [63, 64]; see

also [118] 44 [119] for recent applications.

In the following, we will briefly introduce the classes of so-called semialgebraic and tame
functions. In their seminal work [21], Bolte, Daniilidis and Lewis, showed that semialgebraic
and tame functions are semismooth. Moreover, these two classes of functions provide an
extensive calculus and, remarkably, it also follows that the proximity operator of a semial-
gebraic function is an a-order semismooth function for some o > 0. The material in the
following subsection is primarily based on [114], 21| and on the observations in [63].

Semialgebraic and tame functions

We will now sketch the main definitions and theorems for tame functions and present some
basic calculation rules for semialgebraic functions. More details can be found in [114, 21].
Furthermore, for a more algebraic and geometric interpretation of semialgebraic functions
and tameness, we refer to the work of van den Dries and Coste [244], 57, [58].

Definition 3.3.1 (o-minimal structure, cf. [57, 21]). An o-minimal structure on
(R,+,-) is a sequence O = (Oy)y of collections O, n € N, of definable subsets of R"
satisfying the following axioms

(i) For every n € N, the collection Oy, is closed under Boolean operations (finite intersec-
tions, unions, and complements).

(ii) If A€ O,, and B € O,,, then A x B belongs to Op .

(iii) If m: R"™' 5 R, 7(21, ..., Tny Tng1) := (1, ..., 2y, is the canonical projection onto R™,
then for any set A € Op4q it holds (A) € O,,.
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3. The proximity operator

(iv) O,, contains the family of algebraic subsets of R™. In particular, every set of the form
{z € R" : p(z) = 0}, where p: R™ — R is a polynomial function, belongs to Oy,.

(v) The elements of O1 are exactly the finite unions of open intervals and points.

A mapping F : U C R" — R™ is said to be definable in O if its graph is definable in O as a
subset of R™ x R™,

Definition 3.3.2 (Tame functions, cf. |21, Definition 2]|). A set A C R" is called
tame if for every r > 0, there exists an o-minimal structure O over (R,+,-), such that the
intersection AN[—r,r|" is definable in this structure. A mapping F: U C R™ — R™ is called
tame if its graph gra F' is tame as a subset of R™ x R™.

Let us mention that a tame function is not necessarily definable in an o-minimal structure
O. For instance, the sine function, sin : R — R, is tame but not definable in every o-minimal
structure. This can be easily seen by noticing that the set 7(gra sin NR x {0}) violates part
(v) of Definition [3.3.1]

The class SA of so-called semialgebraic objects is of special interest since it forms the
smallest o-minimal structure on (R, +,-), see [57, Exercise 1.7|. Here, a set A C R™ is said
to be semialgebraic if it can be written as a finite intersection and union of polynomial sets,
ie., if

P q
A= {z eR" : pij(x) =0, gij(z) <0}, p,g€eN,
j=li=1

where p;j,¢i; : R® — R are polynomial functions on R". A mapping is called semialgebraic
if its graph is semialgebraic. Let us note that for semialgebraic objects, the projection axiom
(iii) in Definition[3.3.1]is a consequence of the Tarski-Seidenberg principle [244,58]. Before we
discuss the connection between semialgebraic functions, semismoothness, and the proximity
operator, we want to state some basic properties of semialgebraic sets and functions. Clearly,
by Definition the finite union, intersection, and difference of semialgebraic sets is also
a semialgebraic set. Besides, it holds:

e The closure, the interior, and the boundary of a semialgebraic set are semialgebraic.

e Let F': R" — R™ be a semialgebraic mapping and let B C R™ be a semialgebraic set.
Then, the set F~!(B) is semialgebraic.

e The sum and composition of semialgebraic functions is again a semialgebraic function.

e Let f: R"™ x R™ — R be semialgebraic, then the function ¢ : R* — R, p(x) :=
inf,crm f(z,y) is also semialgebraic.

The proof of these properties heavily relies on the fact that the class SA is an o-minimal
structure. In particular, item (iii) in Definition will constantly be used to derive and
formulate rather elegant proofs. To facilitate the understanding of the concept and of the
overall mechanism of semialgebraic sets and mappings, we want to briefly verify the latter
three statements.
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3.3. Semismoothness and second order properties

Proof. First of all, by induction, it easily follows that if A € R"™™ is a semialgebraic set
and if
TR SR w(21, o, Zns Znd 1y oo Zngm) = (215 ey Zn)s

is the projection onto the first n components of z € R™"*™ then m(A) is also a semialgebraic
set. (Actually, this is one of several, basic formulations of the Tarski-Seidenberg Theorem).
Now, let F': R™ — R™ be a semialgebraic function and let B € R be a semialgebraic set.
Then, the set F~!(B) can be rewritten as follows

F_I(B) =m(gra F N R" X B),  7(21, .y Zns Zntly ooy Zntm) = (21, ooy 2n)-

Thus, the preimage F~!(B) is semialgebraic. Next, let us suppose that G : R® — R™ is
another semialgebraic mapping. Then, it holds

gra F+G=m(B1 N By N B3), T(21, -y Zntms Zntmt1ls s Znt3m) = (21 ey Zntm)s

where the sets B;, i = 1,2,3, are given by By := {(z,y,u,v) € R . y =y + v}, By :=
{(z,y,u,v) € R"3™ : (z, u) € gra F}, and B3 := {(z,y,u,v) € R : (z,v) € gra G}.
Since the sets Bo, B3 are semialgebraic and B is an algebraic set, it follows that F'+ G is a
semialgebraic mapping. The argumentation for the composition of two functions is similar.
Specifically, if H : RP — R" is a semialgebraic function, then the graph of F' o H can be
written as

gra FoH =n({(x,y,2) e RFE x R™ x R" : (x,2) € gra H, (z,y) € gra F'})

with 7(21, ..., Zptms Zptm+1s - Zptman) = (21, ..., Zp+m). Hence, the composition F o H is
again a semialgebraic function. Finally, let us prove the last statement and let us consider
the graph of the marginal function ¢:

gra o = {(r,7) € R xR 7 = o(a) = inf [(a,)}
={(z,7) eR"xR:Ve >0, 3y € R™, such that f(z,y) <7+¢}.
Now, let us define b : R” x R x R x R™ — R, b(x,7,¢,y) := f(z,y) — T — €, and
B:={(z,7,6,y) ER" X R xR x R™: b(x,T,¢,y) <0}.
Then apparently, the set B can be written as
B =m3(grab N R™ T2 xR,

where 73(21, ..., Zm4n+2s Zmtn+3) = (21, .-y Zm+n+2) is the canonical projection onto the first
n 4+ m + 2 components of z € R™+"+3_ Since f is assumed to be a semialgebraic function, it
immediately follows that the graph of b and the set B are semialgebraic sets. Moreover, by
setting

Wl(zlv ooy Bn41 ZTLJrQ) = (Zla Sx3) Zn+1)7 7T2(Zlﬂ ooy Bn425 B3 e Zm+n+2) = (zlv x3) Zn+2)7
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the graph gra ¢ can be represented as follows
gra o =R" xR\ m ({(z,7,6) e R" x RxR:e>0}\ m(B)).

Let us note that this construction basically expresses the quantifiers “V”’ and “3’ as set
operations. Since the involved sets are all semialgebraic, this clearly proves our claim. O

The next result establishes semismoothness of semialgebraic and tame functions and was
first presented by Bolte, Daniilidis, and Lewis in [2I, Theorem 1 and Remark 4]; see also
[114] for an alternative proof.

Theorem 3.3.3. Let F' : R" — R™ be a locally Lipschitz continuous mapping. Then, the
following statements hold:

(i) If the function F' is tame, then F is semismooth.
(ii) If F is semialgebraic, then F is a-order semismooth for some o > 0.

As in the work of Ding [63], we can now derive semismoothness of the proximity operator
proxé of a semialgebraic function.

Corollary 3.3.4. Let ¢ : R" — (—o00,+00| be a convex, proper, lower semicontinuous,
and semialgebraic function and let A € S't be an arbitrary parameter matriz. Then, the
proximity operator pl“OXf; :R™ — R"™ is a semialgebraic mapping and a-order semismooth for
some a > 0.

Proof. Due to Theorem [3.3.3] it suffices to show that the proximity operator is a semialge-
braic function. Since the Moreau envelope envg is the marginal function of the semialgebraic
mapping

1
0:R"xR" >R, 0(z,y) = oy) + 5o - yli,

A
)

can be represented as follows

it immediately follows that env:} is semialgebraic. Furthermore, the graph of the proximity

A

operator prox,

gra proxg ={(z,y) e R" xR" : §(x,y) = envfg(aj)}.

A
)

is a semialgebraic mapping. O

Since the functions 6 and env

A
»

Using the calculus of semialgebraic mappings and the Courant-Fischer maz-min principle,
it is possible to show that the absolute value of a real number and the k-th eigenvalue or
singular value of a matrix are semialgebraic functions. This implies that the £,-norms and
the Schatten-p norms are semialgebraic for all p € [1,00)NQ and p = oo. Specifically, the ¢1-
norm, the TV-regularization and the nuclear norm are examples of semialgebraic functions.
We refer to Karow [122], Section 3.1] for detailed proofs.

are semialgebraic, this clearly implies that the proximity
operator prox

Thus, in summary, we have seen that the class of semialgebraic functions is rather broad
and enjoys a rich calculus. Moreover, nearly every application and example considered in
this thesis can be treated within the framework of semialgebraic mappings. Finally, let us
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3.3. Semismoothness and second order properties

also note that the abstract and general results of this subsection can be further extended to
the larger o-minimal structure of the so-called globally subanalytic functions, see [20] and the
references therein.

Second order properties of the proximity operator

In the following paragraph, motivated by the results in [110} [145], we want to discuss and
derive certain second order properties of the proximity operator which will be obligatory for
the second order analysis of optimization problems later on.

As usual, let A € S, be arbitrary and let ¢ : R" — (—o00,+00] be a convex, proper,
and lower semicontinuous mapping. In Lemma [3.1.1] and the subsequent discussion, it was
shown that the proximity operator proxg is a Lipschitz continuous function. Thus, due to
the Theorem of Rademacher, the function proxé is Fréchet differentiable almost everywhere.
Let QQ C R™ denote the set of all points at which the proximity operator proxﬁ is Fréchet
differentiable. Then, the following statements are true:

A

e The function env,,

is twice Fréchet differentiable on Qg.
o Forall z € Qg the matrix ADproxg(m‘) is symmetric and positive semidefinite.
e Forall z € Qfg the matrix A(I — Dproxg (x)) is symmetric and positive semidefinite.

Let us briefly verify the latter properties. The first result follows immediately from Lemma

By setting

1
T(x) =S ll=]} - envi(a),

the symmetry of the matrix ADproxg (z) follows from the identity V2T (z) = ADproxﬁ(x),
for x € Qf;, and the well-known fact that a twice Fréchet differentiable function possesses a
symmetric Hessian; see, e.g., [62, Theorem 8.12.2 and 8.12.3]. Now, let z € Qg, h € R™, be
arbitrary and let ¢ > 0 be sufficiently small. Then, due to Lemma [3.1.1] we have

0< Hproxg (x+th) — proxg (z)||3 < <pr0x£ (x+th) — proxg (x), Ath)
= <Dpr0x£(x) -th, Ath) + o(t?),

where we used the Fréchet differentiability of proxé on Qé. Dividing both sides of the latter
inequality by ¢? and taking the limit ¢ | 0, we establish

(h, ADproxy(z)h) >0, V heR".
To prove the third assertion, we first use

2. A A A
VZenvy(x) = A(I — Dprox;(z)), Ve Q.

Thus, as in the second part, the matrix A(I — Dproxf}7 (z)) has to be symmetric. Moreover,

A

(7)) is a direct consequence of the convexity of

the positive semidefiniteness of A(I — Dprox
A

the Moreau envelope env,;.
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Let us recall that the Bouligand subdifferential of the proximity operator proxg at x € R”
is defined as follows

8Bpr0x$(x) = {M e R™":3 (z*), Qg such that =¥ — =, Dproxg(xk) — M}.

Now, a simple continuity argument and Lemma show that the last two properties do
also hold for every generalized derivative M € QBproxf},(a:) of the Bouligand subdifferential of
proxg. In the following Lemma, we summarize our observations and present an analogue and
final result for the Clarke subdifferential of the proximity operator proxfg. Let us mention that
Meng, Sun, and Zhao [145] have already established a similar result for metric projections
onto convex, nonempty, and closed sets.

Lemma 3.3.5. Let ¢ : R" — (—o00,+00] be a convex, proper, and lower semicontinuous
function and let A € S}, and v € R™ be arbitrary. Then, for every V € 8prox$(:1:) C R™*m,
the following statements are true:

(i) The matrices AV and A(I — V') are symmetric and positive semidefinite.
(ii) It holds (Vh,A(I —V)h) >0 for all h € R™.
Proof. The first part is an immediate consequence of 8proxfg(m) = conv aBpl“OX{; (z) and

Lemma [2.5.20] The proof of the second part is identical to the proof of [145 Proposition 1]
and will be omitted here. OJ

Let us note, that the symmetry of the matrix AV, V € aproxg(:v), can be used to calculate
the transposed of V. In particular, it holds
(3.3.3) VIi=VIAA T =(AV)TAT = AVA™Y, and V =A"WTA.

We conclude this section with a structural property of the directional derivative of the prox-
imity operator. This result is a straightforward extension of [I32 Corollary 2.6].

Lemma 3.3.6. Let ¢ : R" — (—o00,+00] be a convex, proper, and lower semicontinuous
function and let A € S't . be arbitrary. Suppose that proxg 1s directionally differentiable at
some point x € R™, then it holds

(proxg)'(w; h) € N3¢(proxé(x))(VenV£($))a vV h e R".

Proof. For the sake of completeness, let us recapitulate the proof presented in [I32]. Let
h € R™ be arbitrary and ¢ > 0. Due to the monotonicity of the convex subdifferential dip
and Venvé(x +th) € 8@(pr0x£(m +th)), it holds

A A A A
(Venvy, (z + th) — A, prox,,(x + th) — prox,(z)) >0, V A € dp(prox,()).
Using the continuity of Venvﬁ and the directional differentiability of proxg, it follows

(Venvi(z) — X, (prox})'(; h))

>0

=1 A —
i Venv,,(z +th) — A,

proxg (x +th) — proxg(m) >
t
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for all A € Ggo(proxg(:r)) and hence, (proxg)’(x; h) € Naw(pmxé(x))(Venvé(x)). O
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4. A globalized semismooth Newton
method for nonsmooth optimization
problems

In this chapter, we propose and investigate a semismooth Newton method for general non-
smooth optimization problems of the form

(P) min  f(z) + () = P(z),

T€R™
where f : R® — R is twice continuously differentiable, possibly nonconvex and ¢ : R" —
(—00, +00] is a convex, proper, and lower semicontinuous mapping.

The proposed algorithm generalizes the semismooth Newton method for ¢;-regularized
optimization problems that was presented and analyzed by Milzarek and Ulbrich in [I57]. In
particular, by exploiting the properties of the proximity operator, we will modify and extend
the algorithmic framework and the convergence theory given in [I57] to the more general
class of nonsmooth minimization problems .

As in [I57], we will combine the efficiency of filter globalization techniques with the fast
local convergence properties of the semismooth Newton method [197, 199] to construct an
overall globally and locally fast converging algorithm. Our approach is primarily based on
the idea to obtain trial steps from semismooth Newton steps for a nonsmooth reformulation

&) FA(x)zm—proxg(:r—A_1Vf(3:)):O, AeSh,

of the first order optimality conditions of (P]). The acceptance of these steps is controlled by
a multidimensional filter globalization technique. If the semismooth Newton step is not ac-
cepted, then a suitably chosen descent step is performed. The main requirement is that these
alternative steps ensure global convergence in the case where only finitely many semismooth
Newton steps are taken. Here, we choose a proximal gradient method with an Armijo-type
line search, which was first introduced by Fukushima and Mine [88], for this purpose. The
nonsmooth function F» : R — R™ arising in will be derived in section

We use a globalization technique that is based on a multidimensional filter framework.
Originally, the filter concept was developed by Fletcher and Leyffer [83] in order to globalize
SQP methods for nonlinear programming problems without using penalty functions. The
original version of the filter method works with a two dimensional filter, where each entry
consists of the objective function value and a measure for the constraint violation at a
given point. The filter globalization concept has rapidly established itself as one of the
most important and efficient globalization techniques in nonlinear programming. For further
details we refer to [84] 82, 240]. Gould, Leyffer, and Toint modified this concept in [95] and
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proposed a multidimensional filter to globalize (Gauss-)Newton-based methods for nonlinear
equations and least squares problems. In [96] Gould, Sainvitu, and Toint adapted this
approach to an unconstrained minimization problem by applying the method to the gradient
of the objective function. Our method can be viewed as an extension of this idea to the
general setting of the nonsmooth optimization problem .

Under assumptions comparable to those of other state-of-the-art methods, we prove for
our algorithm that every accumulation point of the generated sequence is a stationary point.
Furthermore, under suitable second order conditions, transition to g-superlinear local con-
vergence is shown. In contrast to many other analyses, we consider not only the case of
convex f, but also address the general situation of a nonconvex function f. Moreover, in
the subsequent chapter, we also provide a profound and detailed discussion of abstract and
different second order-type conditions for problem . In particular, for a certain class of
nonsmooth functions ¢, we will show that the semismoothness of the proximity operator
proxf,}, a (no gap) second order sufficient condition and the strict complementarity condition

guarantees fast local convergence of the semismooth Newton method.

Let us note that the following sections are essentially based on the work [157] and that
several parts have already appeared in similar form in [I57] for the ¢;-regularized setting.

This chapter is organized as follows. In section we specify different optimality con-
ditions for the nonsmooth minimization problem and derive the nonsmooth equation
. In the sections we state the assumptions under which we prove convergence
and discuss some preliminaries concerning the properties of the proximal gradient method
as well as the theoretic introduction and examination of the multidimensional filter method.
We then continue with the presentation of the main approach. In section we prove our
results on global and local convergence of the algorithm. Finally, the mentioned second order
framework for the nonsmooth problem can be found in chapter

4.1. First order optimality conditions

We now derive first order optimality conditions for the nonsmooth optimization problem
. Therefore, suppose that f : R” — R is a continuously differentiable function, ¢ : R™ —
(—o0, +0o0] is a convex, proper, and lower semicontinuous mapping and let us assume that
Z € dom ¢ is a local solution of problem . Then, for all d € R™ and all £ > 0 sufficiently
small it holds

(x4 td) —(x) > 0.
This shows that the directional epiderivative wf (Z; d) must be nonnegative for all d € R™.

Furthermore, by using the convexity of ¢, it follows

ot (3:d) < i o f(z+td) - f(7) + sO((lt— )z + t(z +d)) — ¢(7)
< (@ +d) - o(z) + lim in f@ t‘? — /@)
= (T +d) — 9(2) + V/(2)'d,
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which directly implies —V f(Z) € 0¢(Z). Next, let A € S| be an arbitrary symmetric and
positive definite matrix. Then, the latter condition is clearly equivalent to

Tex—AVE) - A Op(z)
and by invoking equation (3.1.2)), this just means

(4.1.1) T = proxy(z — AV f(z)).

Finally, let us assume that T satisfies the fixed point-type equation and let us set
z:= T — A"'Vf(Z). Then, rearranging the terms in and in the definition of z, we
obtain

T = proxé(é) and Vf(proxg(i)) +A(Z - proxg(i)) =0.

Of course, in the general, nonconvex case, we cannot expect that these different conditions
are sufficient to guarantee optimality. However, they can be used to characterize stationarity
of a feasible point.

Definition 4.1.1 (Stationarity). A feasible point & € dom ¢ is called stationary point of
the problem if it holds

(4.1.2) Y (z:d) >0, VdeR™

In the following, we collect our different reformulations of the stationarity condition (4.1.2))
and summarize our previous discussion.

Lemma 4.1.2. Let f : R™ = R be a continuously differentiable function and let ¢ : R" —
(—00, +00] be a convex, proper, and lower semicontinuous mapping. Furthermore, assume
that £ € dom ¢ is a stationary point of problem . Then, the following conditions are
mutually equivalent:

(i) For all d € R™ it holds " (z;d) > 0.
(ii) It holds 0 € V f(Z) + 0p(T).
(iii) For any A € ST, the following fized point-type equation is satisfied
FMNz) =z — prox}(z — A"V f(z)) = 0.

(iv) Let A € S be arbitrary. Then, the vector z =& — A1V f(Z) is a zero of the so-called
normal map FA :R" — R,

nor

FA () := Vf(proxg(,%)) +A(z— proxg(f)) =0.

Proof. So far, we have already shown (i) = (ii) < (iii) = (v). To complete the proof,
let us suppose that Z is a zero of the Normal map F2 . By setting 7 := proxg(é), we
readily obtain z =z — A~'Vf(Z) and FNz) =7 — proxg(é) = 0. Since the conditions (ii)
and (iii) are already known to be equivalent, we also see that this result does not depend
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4. A globalized semismooth Newton method for nonsmooth optimization problems

on the specific choice of A. Now, let us turn to the direction “(ii) = (i)”. The inclusion
—Vf(z) € 0p(z) implies that ¢ is subdifferentiable at Z. In this case, II(-) := @*(Z;) is a
convex, proper, lower semicontinuous, and positively homogeneous mapping and by ,
we obtain OII(0) = dp(z). Thus, applying Remark we can infer

0< V(@) (d—-0)+TI(d) —TI(0) = Vf(2)"d + p*(#;d) < ¥ (7:d), VdeR"

This concludes the proof. O

As already mentioned, our strategy and overall goal is to develop a globally and locally
fast converging, semismooth Newton method to solve the nonsmooth equation

(4.1.3) FMx) :x—proxg(x—A_IVf(m)) =

Clearly, Lemma justifies this approach since each solution of (4.1.3) corresponds to a
stationary point of our initial problem .

In the remainder of this section, we will discuss several useful properties of the nonsmooth
function F*. The next statement shows that |FA(x)|| does not grow too much when the
parameter matrix A changes. This result was first established by Tseng and Yun in [236].

Lemma 4.1.3. Let f : R™ — R be a continuously differentiable function and let ¢ : R™ —
(—00, +00] be a convex, proper, and lower semicontinuous mapping. Moreover, let A1, Ay €
Sty be two arbztmry symmetric, positive definite matrices. Then, for all x € R™ and for

W=A, 2A1A 2, it follows

1+ )\max + \/1 mln ) + )\max(W)Q )\maX(A2)
2 )\min(Al)

1 ()] < 122 ().

Proof. We refer to [236, Lemma 3| for a detailed proof. Let us briefly remark that in
[236, Lemma 3| the additional restriction “z € dom ¢ = dom P” is made. This assumption
is not really necessary since, in the proof the “crucial”, possibly extended valued function

“© = P” is only evaluated at appropriate proximity operators that are always contained in
dom ¢ =dom P. O

Remark 4.1.4. Let A € S, be given and let (A); C ST, be a family of symmetric,
positive definite matrices. Suppose that there exist constants Ay; > A, > 0 such that

Al = Ag = Ao, ¥V keN.

Then, it easily follows

AmaX(A) -3 Amin(A)
1> A 2AA 2
m - )\JV[ mm(A)

1 Am

for all k£ € N, and, due to Lemma [4.1.3] we obtain the following bounds

(4.1.4) A [FM @)l < (IFM (@) < X-[1F (@)
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4.1. First order optimality conditions

for all k € N, z € R™ and some constants A\, A > 0, which do not depend on k or A;. Thus,
if the parameter matrices Ay remain in a bounded set, the latter inequalities imply:

FAaPYy 50 = FM@P) =0, k- o

As a consequence, the parameter matrix A is allowed to change in each iteration. Hence,
adaptive update schemes such as the well-known Barzilai-Borwein step size rule, [10], or
other techniques can be applied.

Lemma 4.1.5. Suppose that f and ¢ satisfy the assumptions in Lemma and let
A1, Ao € S, be arbitrary. Then, for all x € R™, it holds

1 2 1 2
(4.1.5) IFY () — F*2(2)]| < mll(/\z — A)FR2()]].

Proof. The proof uses the same techniques and ideas as the proof of [236, Lemma 3;

see also [210, Lemma 3| and [129, Proposition 3.6] for related results. Using x — FYi(x) =

proxgi (x — AZIVf(a:)) € dom ¢, for ¢ = 1,2, and the characterization of the proximity

operator , we obtain
oz — FP2(2)) — p(o — FM(2)) 2 (MFYM (2) = Vf(2), FM(2) = F*(2)),
o(a — FM(2)) — pla — FA2(2)) > (AF2(2) — V(x), P2 (x) — PN (2)).
Adding those two inequalities yields
(MFM () — AgF22 (), FM () — F22(2)) <0
and

1 (2) = F*2 ()]}, (A2 — A F"2 (), PN (2) — F% ()

I(A2 — A FA2 (@) || F* (2) — FA2(2)])-

Finally, by applying (3.1.3)), we establish inequality (4.1.5). O

The next lemma provides a connection between the nonsmooth function F(z) and the
normal map F2 (z) and generalizes a result of Facchinei and Pang for variational inequalities;

see [5, Proposition 1.5.14].

<
<

Lemma 4.1.6. Let f and ¢ satisfy the assumptions in Lemma[{.1.3 and let A € ST, be an
arbitrary symmetric, positive definite matrixz. Moreover, let x € dom @ be given and suppose
that ¢ is subdifferentiable at x. Then, it holds

1P (@)la < dist(=V f(x),0p(2)) s+ = inf {|[Fe(2)][a-1 : @ = prox(2)}.
Proof. Let x —y € dom ¢ be arbitrary. As in the proof of Lemma [4.1.5| we obtain

(AFMa) = Vf(2), F(2) —y)
IFM@)IIR — (F" (@) = ATV f(@),y)a — (Vf(2), FH(x)).

(e —y) =z — FH(x))

v
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Now, setting y = 0 it follows

IFY@)IR < (Vf(), FY@) + e(@) — p(proxg (e — AV f(2)))
< (VS(2) + o, FA ) < IV f(2) +olla-1 [FA ()]l

for all v € dp(x). Thus, by taking the infimum over all such v € d¢(x) and by using
x = proxg(z) — xcz-AN1op(z) <= Alz—2z)€dp(z),
we establish the following estimate

IFM@)lla < inf [[Vf(2) + 0]y
vEDp(x)

= dist(~V f(2), Dp(x))r-1 = inf {[E(2)lla-1 : 7 = prox(z)},

as desired. O

4.2. Algorithmic framework

In this section, we present the different algorithmic components of our globalized semismooth
Newton method in detail.

In particular, in subsection |4.2.2] we propose and investigate a proximal gradient method
that will be used as an underlying base algorithm and that was first analyzed by Fukushima,
Mine [88] and Tseng, Yun [236]. As in [230], we incorporate an Armijo-type linesearch to
guarantee descent and global convergence of the iterates generated by the proximal gradient
method. Afterwards, in section [4.2.3] we introduce a multidimensional filter framework that
controls the acceptance of the Newton iterates and suitably connects the proximal gradi-
ent method and the semismooth Newton approach. In contrast to most other convergence
analyses for convex composite algorithms, we will consider both the general nonconvex case
and the convex case. Taking account of the possible effects of the nonconvexity, we augment
our basic combination of semismooth Newton and proximal gradient steps by adding cer-
tain growth conditions. In subsection [£.2.4] we present these growth conditions and the full
algorithm in detail. Moreover, we also give examples that illustrate the application of the
semismooth Newton method in practise.

Besides, we also propose a specialized method for convex problems that has an easier
structure and converges under similar assumptions. More specifically, if f is convex and if
the nonsmooth function ¢ is positively homogeneous and real valued, then an abstract con-
vergence result can be established without specifying any algorithmic details. This extends
a similar result of Milzarek and Ulbrich [157] for convex ¢;-regularized problems.

We start with a brief discussion of our basic assumptions.
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4.2. Algorithmic framework

4.2.1. Assumptions

The following conditions summarize our assumptions for proving that every accumulation
point of the proposed algorithm is a stationary point.

Assumption 4.2.1. Let f : R" — R be given and let ¢ : R" — (—o00,+00] be a conver,
proper, and lower semicontinuous function. Furthermore, let us assume that there exists an
open, convex set dom ¢ C Q C R"™ such that:

(A.1) The function f is continuously differentiable on SQ.

(A.2) The gradient mapping V f : Q@ — R™ is Lipschitz continuous on dom ¢ with modulus
Lf > 0.

(A.3) The mapping f is twice continuously differentiable on €.

We will also wutilize the following condition. Let (Ay)r C S, be a family of symmetric,
positive definite parameter matrices, then we assume:

(B) There exist 0 < Ay, < App such that Apgl = Ay = A\ I for all k € N.

Next, we consider a specialized version of Assumption [4.2.1}

Assumption 4.2.2. Let f : R"™ — R be given and let ¢ : R™ — (—o00,400] be a conver,
proper, and lower semicontinuous mapping. Furthermore, let us assume that there exists an
open, convex set dom @ C Q C R"™ such that:

(C.1) The function f:Q — R is conver.
(C.2) The objective function 1) is coercive on 2.
(C.3) The function ¢ : R™ — R is real valued and positively homogeneous.

In the following, we want show that for a general class of algorithms comprising those
investigated in this thesis, the assumptions (A.1), (B), and (C.1)-(C.3) imply boundedness
of an arbitrary sequence (z¥);, of iterates satisfying FM (2*) — 0, as k — oo. We start with
a discussion of the compactness of the level sets of 1.

Lemma 4.2.3. Let @ C R" and f : Q — R satisfy condition (C.1), then the following
statements are equivalent:

(i) For every a € R the level set levy 1 is compact.
(ii) There exists @ € R such that the level set levg ¥ is nonempty and compact.

(iii) For some & € R, the level set levg 1 is nonempty and for every T € levg 1 there exists
¥, R > 0 such that

P(x) 2 () + |z —zf|, Ve Bg(0)

(iv) The function v is coercive on §Q, i.e., limyeq ||z 00 ¥(2) = +00.
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Proof. At first, let us suppose, that the level sets lev, 9, @ € R, are all compact. Since
the function ¢ is proper, there exists { € dom ¢ and, consequently, the level set levy, ) ¥
is nonempty and compact. Now, let us assume that levg 1 is nonempty and compact for a
certain & € R. Due to the compactness of levg 1 and the Theorem of Weierstrass, we can
expand the level set levg 9 by a small strip without leaving €, i.e., there exists é > 0 such
that

Ls:={x+d:xzeclevgp, deR", ||d|| <o}

is still contained in © (but not necessarily in dom ). Let I' := 9Ls denote the boundary of
L and let us fix an arbitrary point & € levg 1. Using the compactness of I' and Weierstrass’s
Theorem, we can find € > 0 such that

() > inf Y(y) > Y(x)+e, Vael.
yel’

(In the case I'Mdom ¢ = (), this inequality is obviously fulfilled). Further, there exists r > 0
with maxgcr ||z — Z|| = 7. Next, let t € (0,1) and z € T" be arbitrary and let us consider the
point x = T + %(z — ). Then, the convexity of ¢ implies

¥(z) =tz + (1 -1)z) < () + (1 - )y().

o~z
==l

By combining the latter properties with the estimate + = > 1||z —z||, we can establish

the following growth rate:

(12.1) w<m>>j;<w<a-c>+e>+<1—1>w<@>zw@>+jnx—zn, VaeQ\L.

Clearly, this shows that condition (iii) is satisfied. Moreover, since (iii) immediately implies
condition (iv), we only need to verify the direction “(iv) = (i)” to finish the proof of this
Lemma. However, since the equivalence of condition (i) and (iv) is already well-known for a
more general setting, see, e.g., [T Proposition 11.11], we are done here. O

Now, we want to prove that every sequence (z¥), C Q that satisfies F*#(2%) — 0, as
k — oo, has to be automatically bounded. We will see that the real valuedness and positive
homogeneity of ¢ plays a central role in the proof of this claim.

Lemma 4.2.4. Let Q CR", f: Q — R, and the mapping ¢ : R™ — R satisfy the conditions
(A.1), (C.1)~(C.3), and let the sequences (z*), C Q, (Ay)x C S%, be arbitrary. Moreover,
suppose that condition (B) holds and that the sequence (F™(x*));, converges to 0 as k — oc.
Then, (%) remains in a bounded set Qy C R™.

Proof. Due to Lemma [£.2.3] there exist a point Z € dom ¢ = R™ and a suitable constant
¥ > 0 such that

(4.2.2) f(@) = f(Z) 2 o(Z) — () + 9|7 — x|

for all z € R™ sufficiently large. To prove that (z¥); is bounded, assume in contrary that
there exists a subsequence (z*)x, of (z¥), with ||z*|| — oo as K1 3 k — co. Then, we have
(FM(2%)g, — 0 and, by applying the calculation rule (3.2.8)), assumption (B), and the
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4.2. Algorithmic framework

compactness of 9p(0) (see Lemma [2.5.12] (i) and the discussion after Lemma [2.5.13]), there
exists another subsequence (2¥)g, of (z¥)g, such that

—1

(4.2.3) Vf(zF) = A FM (2F) — 7’§£<0) (Ara® — V(") = g and  g* € 0p(0),
as Ko 3 k — co. Now, let k € Ky be sufficiently large and let us define
pF =2k — P (gk) = proxg’C (zF — A;1Vf(:1:k)),

—1

0" = ALFM () = V() = Py (A — T ()

Then, we obtain the following estimate

() — p(FA¥(ah))

(A
< g4 Pt = FU b)) + (@) — o(at)
B |z — ¥
p(0") + f@h) = f(@) _ (") + (VF(ah), 2" — 7)
- |z — k|| - |z — k||
o) — (2t = P (b)) — (g, P () — ) 4+ (AP (a8), 0% — )
|z — ¥
kY k *( k Ag LIZk — 7
< (P(p ) ﬁf(f x)k_ﬁ ¥ (q )) + quH . HFHx(_ ikH H + )\M . HFAk(xk)”,

where we used the subadditivity of ¢, the convexity of f, Moreau’s decomposition principle
(3.2.4) and inequality (4.2.2). Next, let us further define

(= Imax .
= max ]

Due to ¢*(¢*) = a(’g(p(o)(qk) = L&P(O)(qk) = 0 and by taking the limit Ko > & — oo, we
establish the contradiction

J= lim {ﬁ+ww—wwmwﬁq

K33k—00 |z — =¥

FAx (2F) — 7|
< i g - |[FA% (gF mx”— = 0.
<_m£gm{ﬂfu @)+

Hence, the sequence (z*), is bounded, as desired. O

Remark 4.2.5. If the set  is bounded, i.e., if the effective domain dom ¢ is bounded, then
we can use a much easier and more direct argumentation. In particular, due to the simple
fact

k= proxg’c (z* — AI:IVf(a;k)) €dom ¢, VkeN,

we immediately see that the sequence (2¥); has to be bounded in this situation. Moreover,
this argument does also clearly not depend on the convexity of f.
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Lemma 4.2.6. Let Q C R", f:Q — R, and the function ¢ : R™ — R satisfy the conditions
(A.1), (C.1)~(C.3), and consider the sequences (z*)p C Q, (Ax)r € S".. Suppose that
assumption (B) holds and let the sets Kp U Ky be a disjoint partitioning of N such that
Y(a®) < YaFY) for all k € Kp and either Ky is finite (or empty) or FM(z*) — 0 for
Kn 2k — co. Then, the sequence of iterates (x*);, remains in a compact set Qo C R™.

Proof. Due to Lemma [£.2.3] all level sets of the objective function ¢ are compact. Hence,
it suffices to show that all iterates are contained in an appropriate level set levy ¥. If the
set Ky is finite, then, due to 1 (x*) < o (xF~1) for all k € Kp, we obtain 2* € lev, 1 for all
k > 0, where o := max{¢(z"); r € {0} UKxn}. Next, Lemma shows that (z%)x, is
bounded, if K contains infinitely many elements. Further, there holds

AL
IV £ (") = [|ARF™ (2") + Pyt

8@(0)(Akxk B Vf(:ck))H < /\MHFAk(‘Tk)H + Gmax;

where gmax := maxX,epp(0) lg]| and we used the compactness of dp(0). By applying the
subdifferential inequality for the convex functions f and ¢ and Example [2.5.17, we obtain

(@F) —¥(y) < (Vf(@h), 2" —y) + 0p,0)(2") — o(y)
< |NIVFE) 12" =yl + gmaxl|z® = yll < Oar[|[FY (25)] + 2gmax) [|2F — vl

for some fixed y € dom ¢. Since the sequence (z¥)x,, is bounded, we see that

.: k
a: ke%ﬁj(lcjv (") < oo.

From ) (2*) < ¢ (2*~1) for all k € Kp we thus conclude that z* € lev, 4 for all k > 0. O

4.2.2. A proximal gradient method with an Armijo-type linesearch technique

We now consider a globalized proximal gradient method that we use for the step generation
whenever the semismooth Newton step is not accepted. It is advantageous to analyze this
method separately before proceeding the development and investigation of the final overall
algorithm.

Let 2 denote the current iterate and let d* := —F™ (2F) be a direction that is generated
by the fixed point-type equation . Then, the globalized proximal point method calculates
2Pt = 2% 4+ 5,.d*, where the step size oy, is controlled by a quasi-Armijo rule. The details
are formulated in Algorithm 1. We use the following notation:

u(a®) = o = AV f(b), AR = (T (F)TFM (R) + p(prox (u(a?)) — o (")

In the following, we will show that Algorithm 1 is a globally convergent descent method.
Further properties of Algorithm 1 will be discussed later together with the convergence
analysis of our main approach.

Let us mention that over the last years the proximal gradient method has established itself
as one of the most common and basic first order methods for convex composite problems.
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4.2. Algorithmic framework

Algorithm 1: Proximal gradient method with quasi-Armijo rule

so Initialization: Choose 2" € dom ¢, Ag € St ., and 3,7 € (0,1). Set iteration k := 0.

while FM(2%) £ 0 do
s1 Compute a new direction d* = —FA¢ (2%) = proxg’C (u(z®)) — =

s2 Choose a maximal quasi-Armijo step size o € {1, 3, 82,....} with
V(P + o) d®) < p(aF) + oy AP

S3 Set zFt! = 2% + 01.d* and choose A1 €ST .

| k<« k+1.

Moreover, besides Algorithm 1, many variants and alternative approaches have been pro-
posed and developed. For instance, the so-called BB-methods, which combine nonmonotone
linesearch techniques and the Barzilai-Borwein spectral approach [267, [10], represent a popu-
lar and frequently used class of extended proximal gradient methods. Here, characteristically,
the parameter matrix Ay, is chosen via Ay = (A% 5,) 71 or Ay = (A% 5,) 71, where

jk—l)Tjk—l k—l)T k—1

Moy o= T M= ST
(TF-1)Tgh1 (GF )T 1
and 7F~1 = gF — k1 gh—l .= V f(2¥) — Vf(2¥!). These nonmonotone variants of Algo-
rithm 1 have been successfully implemented in many different algorithms, as, e.g., SpaRSA
[256], FPC-AS, [254], TVAL3 [130], or curvilinear search methods [252], 251]. In this work,
we will focus on the very basic version of the proximal gradient method that guarantees
descent in the objective function at each iteration to facilitate the convergence analysis of

the augmented semismooth Newton method.

Let us start with the following descent property.

Lemma 4.2.7 (Descent directions). Let assumption (A.1) hold and let the sequences
(2%)x and (d¥)y be generated by Algorithm 1. Then for all k > 0 it holds

2
AP < Iy, = ~IIF™M)1R, -

Proof. At first, let us note that the update formula in step S3 of Algorithm 1 and o, € [0, 1]
imply 2* € dom ¢ for all k € N. Thus, due to assumption (A.1), the terms u(z*) and V f(2*)
are well-defined for all k. Next, using the characterization (3.1.2)) of the proximity operator

proxgk (u(z¥)) and Lemma , we obtain

AR < (v f(h), FA* (2F)) + (Venvg’“(u(xk)),proxfj’f (u(z)) — )
= —(Vf(a"), FM (%)) — (A FM (2h) = Vf(ab), FM (%) = = FM (M]3,

as desired. O
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Lemma 4.2.8. Suppose that the assumptions (A.1)—(A.2) and condition (B) hold and let
the sequences (z¥) and (d¥)y be generated by Algorithm 1. Then, there exists a constant
¢ >0 for all k € N with

(4.2.4) Y(aF + od®) < (a®) + oyAF for all o € [0,¢].

Proof. Apparently o = 0 fulfills (4.2.4). So, let us consider o € (0, 1] sufficiently small,
then we obtain for arbitrary but fixed k¥ € N

Y(ah +od") — () JAF < f(a* + od") — f(z")

g g

< [ (V46 01d) ~ V) TE A (1))
0
L

< (Fo-mt=n) 1P

where we used the convexity of ¢, Lemma and assumption (B). At this point, let us
emphasize that the convexity of the set dom ¢ and o,t € [0, 1] imply

—Vi(k) @ 4 (1 y)ak

2 +otd® = (1 —to)a® + to - proxg’“ (u(z¥)) edom p C Q, VkeN.

Hence, the expression V f(z* + otd*) is well-defined for all k. Moreover, the quasi-Armijo
condition (4.2.4) is satisfied whenever

USC::min{Ml_w,l}.

Ly
O

Remark 4.2.9. Lemma shows that every step size sequence (oy); generated by Al-
gorithm 1, is uniformly bounded from below (whenever our assumptions hold). To be more
precise, we have

(4.2.5) op>BC>0, Vk>0.

The following convergence result was first established by Tseng and Yun [236]. In contrast
to many other convergence analyses, Lipschitz continuity of the gradient V f or boundedness
of the iterates is not required.

Theorem 4.2.10 (Global convergence). Suppose that the assumptions (A.1) and (B)
are satisfied and let the sequences (z*)y, and (Ay)g be generated by Algorithm 1. Then, every
accumulation point * of (x*), satisfies FMz*) =0, A € S% |, and is thus a stationary point
of the nonsmooth problem .

Proof. This theorem is an application of a more general result of Tseng and Yun; see
[236, Theorem 1b|. For the sake of completeness, we also provide a simplified proof in the

Appendix O
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4.2.3. A multidimensional filter framework

We adopt the multidimensional filter globalization concept of [95, [96] and tailor it to a
semismooth Newton method for solving the equation

(4.2.6) FMz)=0, AesSt,.

We will apply the filter to accept or reject semismooth Newton steps. The filter value
corresponding to a point # € R™ is given by 0(z), where the filter function 6 : R — RE is
continuous and satisfies

(4.2.7) col FA ()]l < 10(2)lloo < Coll FA ()]

oo

with constants 0 < ¢y < Cy. This ensures that (6(x¥));, is bounded if and only if the sequence
(FA(2*)); is bounded and that the filter function @ and the function F* have the same set of
zeros. Hence, T is a stationary point of the minimization problem if and only if (z) = 0.
Next, we give a typical example for a filter function 6.

Example 4.2.11. A standard approach for choosing 6 (with many possible variants) is to de-
compose {1,...,n} into p possibly overlapping nonempty sets Z; with U§:1 Z; ={1,2,...,n}.
The function 6 is then defined as

1 1 2\ /2
4.2.8 0:(x) = ——||FM )| = ([ — F-Ax> , Vijedl,..,p}
128 0= e IF W (372, j € {1}
This choice satisfies condition (4.2.7) with ¢y := 1/4/max; |Z;| and Cp := 1. The selection
of p and of the set Z; can be based on the characteristics of the problem. For instance, if we
choose p = n and Z; = {j}, then we obtain

0@) = (FM@)], |B @), - | PR @)

Remark 4.2.12. Since we are also interested in situations where the parameter matrix A
depends on the current iteration k, it is natural to ask whether the filter concept does also
work for sequences of the form (F™(2%)),. Clearly, if the parameter matrices (Ay); satisfy
assumption (B), then Lemma is applicable and the boundedness condition will
also hold for F2(zF),

co 2 (2) oo < 10(2°)]loo < Coll FA* (2|,

but of course with other constants 0 < ¢y < Cy. Furthermore, in Example the matrix
A can also be replaced by an arbitrary and changing parameter matrix A, € S, k € N.
Thus, the filter function need not be necessarily restricted to fixed parameter matrices.
However, to emphasize the dependency of the filter function and the filter values on A, we
will also work with the following notational variant

6:R" xS, = RE,  (z,A) — 0(x,A).
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10 + 10+

ot
T
wt

0 “’) 1‘0 1‘5 0
(a) v7=0 (b) v£ € {0,0.01,0.05,0.1,0.2,0.4}

Figure 4.1.: Example of a two-dimensional filter and of the filter acceptance criterion. In
subfigure (a), the acceptance test is illustrated for vz = 0. In particular,
each point that lies above the orange line is dominated by a filter entry and is
not acceptable to the filter. In subfigure (b), the same situation is shown for
different values of vyr.

In particular, this extension of the filter function will turn out to be useful when comparing
different filter values 0(z*) = 0(z*, Ay) and 0(z**1) = 0(xFT1, Ap,1). Since we will always
work with bounded parameter matrices, our following discussion focuses on the basic defini-
tion of the filter function that does not explicitly include the parameter matrix A. Moreover,
if the filter concept is used within an algorithmic framework, we will adhere to the convention

O(x*) = 0(zF, Ay).

Now, assume that a filter function 8 : R™ — Rﬁ has been chosen (e.g., according to
for some p < n). At iteration k, the filter F, C RE is a finite collection of filter entries
q € R where usually (and in our context always) each ¢ € Fj corresponds to a point
x € R", via ¢ = 0(z) and the points z are selected iterates zt, ¢ < k, of the method to be
globalized. In our case, these points are a subset of the iterates generated by semismooth
Newton steps for (4.2.6)). Similar to [95], we define an acceptance criterion for a point z.

Definition 4.2.13 (Filter acceptance criterion). A point x € R™ is said to be acceptable
to the filter F, C RE \ {0} 4f

(4.2.9) max (¢j — 0;(x)) = 77 6(q,0(2))

holds for all g € Fy. Here, vr € (0,1) is fized and ¢ : Rﬁ X Rﬁ — Ry is continuous and
satisfies for all q € R‘ﬁ_

(4.2.10) g,9) =0 = ¢=0.

If the new iterate zFt! € R” is acceptable to the current filter Fi, we can, if we wish,
update the filter by adding 6(x**1) to the filter: Fj 1 := Fr U {6(x*1)}. If the filter is
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(a) (b)

Figure 4.2.: Example of a three-dimensional filter. The subfigures visualize the acceptance
criterion (4.2.11)) for v = 0 from two different perspectives. The coloring
changes with the norm of the respective points.

not updated, then we set Fri1 := Fi. After each update the filter can be scanned for
redundant entries that no longer have influence on the acceptance rule and consequently can
be removed. More details can be found in [95]. Returning to the acceptance rule, there are
many suitable choices for the function 6. Here, we will work with §(q,0(x)) := [|0(x)]| -
Then, the corresponding acceptance test

(4:2.11) max (g~ 0,(2)) = #10() e V€
ensures the uniform boundedness of the filter entries. The filter concept yields convergence
in the following sense.

Lemma 4.2.14. Let 0 : R — RE be a filter function and let § : RY. x R — Ry satisfy
condition . Furthermore, let (xF)x be an infinite subsequence of iterates such that
(0(2%)) e e is bounded, z* is acceptable to Fy_ for all k € K\ {0} and the filter is updated,
i.e., Fr, = Fr_1 U{0(x")}, for all k € K. Then it holds

Proof. Since the sequence (6(z*)), . is bounded, there exists a subsequence (6(z*¢)),,
ke € K, that converges to an accumulation point 6* € Rﬁ. Since #(z**) is acceptable to
Frp—1 2 Fr,_, 2 {0(2Fe-1)}, there holds

max (6(4-1) — 65(a™)) > 7z 6(8(a*1), 6(4).
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Taking the limit £ — oo, we obtain

= *_ 0% > * 0*
0 lfgjagxp (9] 0]) = ’7.7:5<9 76 )7
where we used the continuity of §. Applying the second part of condition (4.2.10)), the last
equation implies 0* = 0. O

Remark 4.2.15. If we choose 6(q,0(z)) := [|0(x)||, as in (4.2.11]), Lemma4.2.14 holds with-

out explicitly assuming the boundedness of the filter entries. In fact, since z* is acceptable
to Fr_1 we then have, for all ¢ € Fj_q, that
10 o < max (4= (@) < gl

Lemma [4.2.14] can be regarded as the essence of the multidimensional filter framework
[95 06]. The general idea to apply this concept is as follows: If a globally convergent base
algorithm is given (in our case the proximal gradient method with quasi-Armijo step size
rule) and an additional method for computing steps (in our case the semismooth Newton)
shall be incorporated, then we can use the filter to control acceptance of the latter steps
while resorting to steps of the base algorithm, otherwise. Then, any subsequence of points
generated by filter steps tends to stationarity. If only finitely many filter steps are taken,
then global convergence follows from the properties of the base algorithm. This implies that
there exists a subsequence approaching stationarity. To prove that every accumulation point
is stationary, the tricky part is the situation where infinitely many filter steps take place
but only finitely many iterates resulting from filter steps are contained in the convergent
subsequence. In this case it is required to show that the intermediate filter steps do not
affect the convergence of the base algorithm.

We will formulate an algorithm of the described type in the next section. In the following
sections we then will prove that all limit points are stationary along the lines just described.

4.2.4. The full algorithm

We now derive a semismooth Newton method for the minimization problem for both
convex and nonconvex f. The method uses the following nonsmooth equation form of the
optimality conditions:

(4.2.12) FMz) =2 —prox(z — A™'Vf(z)) =0, AeSt,.
This results in the nonsmooth Newton system
(4.2.13) M(a*)s* = —FM (%), A, est,,

where M (2*) denotes a generalized derivative of FA in 2* and the parameter matrices Ay
may be chosen differently or adaptively in each iteration.

In chapter 3, we have seen that the class of functions ¢ that guarantees semismoothness
of the proximity operator proxgk and thus of F is quite large and contains many well-
known and important examples, such as the ¢1-, £o- or the nuclear norm. However, further
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structural information about the proximity operator proxgk are needed to explicitly construct
and choose an appropriate set of generalized derivatives M (a:k) In the following, we want
to assume that a suitable realization of M (x¥) is always available.

Before we state the full algorithm, let us consider several concrete examples to illustrate
the semismooth Newton step (4.2.15) and the construction of M (z¥).

Example 4.2.16 (¢;-optimization). In the following, we consider an ¢;-regularized opti-
mization problem of the form

min f(x) + pl|z]1,
rER?

where f : R®™ — R is a twice continuously differentiable function and 1 > 0 is a regularization
parameter. Let A € R’ be arbitrary and let us set A := diag(1 ® A). Then, due to the
separability of the ¢;-norm and by using Example and equation (3.2.7]), we obtain

(4.2.14) FMa) = ATV (@) + Pl (@ — ATV f(2)) = 0.
This results in the nonsmooth Newton system
(4.2.15) M(z%)s* = —FM o),

where M (2*) denotes a generalized derivative of F* in 2. Since the function F is piecewise
continuously differentiable, it is also semismooth at all z € R", see, e.g., [211]. Furthermore,

setting u(z) := x — A~'V f(x) and applying Remark [2.5.22] it holds

OF (x) = A2 f(2) + O(P_ i unn © u) ()
C ATV F(@) + APl e (@) o (I — AIV2f(x)).

In particular, choosing
(4.2.16) M(zx) := (I — D(z))A"'V?f(z) + D(z),

where the diagonal matrix D(z) is defined component-wise

=0 if |ui(x)] > pAi,

we have that M (z) is the Jacobian of one of the smooth active pieces that define F* at z.
Denoting by dpw F2(z) the collection of all these M (), there holds dp F* () C dpw F ()
and F? is semismooth w.r.t. dpy FA. More specifically, there holds

I @+ 5) = F(2) — M(z + 5)|| = o(|ls]))

uniformly for all M (x 4 s) € Opw F(x + s) as s — 0; see [124] and Remark In our
numerical comparison, we will work with the unique choice for M (z) that results when we
select D(z)p;) = 1 in the case |u;(z)| = pi.
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Example 4.2.17 (Constrained /;-optimization). Next, we discuss the following ¢;-type
optimization problem,
min f(z) + pllz|i + tap(2)-

This problem is a simple extension of the previous example with additional box constraints.
Again, f : R™ — R is supposed to be twice continuously differentiable and we have a,b €
[—00, +00]™, u > 0. Moreover, we set A := diag(1@\) for A € R" . Then, by using Example

the proximity operator prox3(z), ¢(z) := pl|z|1 + tj4(x), is given by
proxg (.T) = 7)[a,b] (‘T - ,P[—,u)\,,u)\}"(‘r))'

Thus, setting u(z) := 2 — A~V f(x), we obtain

FMa) = 2 — P (w(@) — Pl g (w(@))).

Since this function is again piecewise continuously differentiable, it is semismooth on R™ and
we can reuse the basic construction of Example [£.2.16] In particular, since the projections in
FA(z) are applied component-wise, we can utilize [50, Theorem 2.3.9] and Theorem
(i) to construct a generalized derivative of FA at z. It holds

O(Pla, ;) 0 wi)(x) C conv(IPpg, ] (wi(z)) © Owi(x))
C conv(9Pg, b, (wi()) (1= OPpx, yun (ui () - Vui(2) ") = Di() Vug(x)
where w(x) := u(x) — P_, un (u(x)) and the set D;(z) C R is defined via
=0 if wi(z) & lai,bi] V |ui(x)] < p,

dEDi(zr) <= 0 ¢=1 if wi(z) € (a;, b)) A |Jui(x)] > pA,
€[0,1] otherwise.

Clearly, due to dFA(z) € 0cFMz) € T — Di(2)Vur(x)T X ... x Dp(x)Vu,(z)T, this leads
to the following possible choice of generalized derivatives

M(z) =1 — D(z)(I - A~'V?f(z)), D(z)= diag(éy,...,d,)

with §; € D;(z) for all i = 1,...,n and the corresponding semismooth Newton system has the
form
M (z%)s* = —FA(2").

Furthermore, similar to Remark or [79, Theorem 19], it can be shown that the function
FA is also semismooth w.r.t. the possibly larger set T —Dy(z)Vuy(z)" x ... x Dy (2)Vuy(z) T

Example 4.2.18 (Group sparse optimization). Here, we consider optimization problems
with a group sparse penalty term

s
xIIElﬁ{ITlL f($) + Zl WingiH% wi > Oa L= 1> ey 5y
1=
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where f : R” — R is again a twice continuously differentiable function and the index sets
gi, i =1,...,s form a disjoint partitioning of the set {1,...,n}. Moreover, let A € R be an
arbitrary vector and let us define the parameter matrix A € S

LI .f . — .
(4.2.17) Aggr =132 "7 vi<ij<s
Y 0 if i # 4,

Then, due to Lemma [3.2.4] the proximity operator associated with ¢(z) := > 7 | willzg ]2
and A can be computed group-wise via

AT ,
proxg(:c)gi = proxwz“.HZ(JUgi)a Vi=1,..s.

Consequently, by using Example and equation , we obtain
FNa)g, = NV F(@)g; + Pryy 0w (@ = AV F(@)g,), Vi=1,.08,
and the semismooth Newton equation is given by
M(z%)s* = —FAah).

As usual, the matrix M (z*) denotes a suitable generalized derivative of F* at x*. Further-
more, since the mapping ¢ is the sum of semialgebraic functions, Corollary [3:3:4] implies that
FA is semismooth on R™. Now, let us set v = u(z) :=  — A~V f(z). In our numerical
comparison in chapter 7, we will work with the following generalized derivatives

M(x) := (I — D(z))A"'V?f(z) + D(z),

where the matrix D(z) is defined block-wise via

=1 if [lug,ll2 < wiki,
T . 1 . .
D(@)igig;) =0, D(@)igig: 4 € {I — tugug, 2t € {0’ W}} if [Jug, l2 = wii,
iAi i\ .
- m N ||:)9¢ |§ugiu; if Hugz”2 > wiAi,

for all 1 <i4,j5 < s and ¢ # j. In particular, it immediately follows

D(x)[gigi] S 807)3”4\\2(07%)\1')(“91)’ Vi=1,...,s.

Hence, as in Example [4.2.16] and by Remark [2.5.22] and [2.6.6] this specific choice yields a
suitable set of generalized derivatives and does again not affect the semismoothness of F.

We now continue with the description of our algorithmic approach.

For a given semismooth Newton step s* the decision on accepting zF + sF as new iterate
is based on the filter framework presented in the last section. Consequently, we accept the
trial point z* 4+ s¥ whenever it is acceptable for the current filter Fy, i.e., whenever the filter

value 0(z% 4 s¥) = 0(aF + s*, A1) satisfies the acceptance test ([{.2.11)).
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Algorithm 2: Semismooth Newton Method with Multi-Dimensional Filter Globalization
so Initialization: Choose an initial point 2% € dom ¢, Ag € St.,7>0,8,7€(0,1)
(quasi-Armijo parameters), vr € (0,1), F_; = () (filter parameters) and «; > 0 for
i€{1,2,3}, € (0,1). Set k:=0, ¢y := 00, py := 00. Set iteration k := 0.
while FA*(2%) # 0 do
s1 If k = 0 or 2¥ was obtained in step S3, add 6(z*) to the filter: F = Fr_1 U {0(x*)}.
Otherwise, set Fj = Fj_1. Choose Apy1 € ST ,.

S2 Compute the semismooth Newton step s* via M (z*)s® = —F™ (2F). If this is not
possible go to step S4.

S3 Set xF*t1 = 2F + s¥ and check if ¥+ lies in dom ¢ and is acceptable for the filter Fy:

0. k+1 > 0. k+1 Y X
12, (= ) 207 g, BT, Y

If 2%*1 is acceptable for Fj, and either f is convex or (4.2.18) holds or (4.2.19) holds,
set Ypr1 = Yg, pre1 = min{py, |[F2+1(2F+1)||} and skip step S4 and S5.
S4 Compute the direction d* = —F™ (2*) and choose a maximal quasi-Armijo step
on € {1, 5,82, 8%, .} C (0,1] satisfying
Y(aF + opd®) < () + oy AP

S5 Set 2F 1 = 2% + opd®, Ypy1 = Y (@), and pry1 = pr.

| k<« k+1.

In the convex case, if the trial point z* + s* satisfies all conditions and is contained in
dom ¢, we accept the Newton step, set z¥T! = 2F 4 s* update the filter Fj 1 = FrU{0(2*)}
and start the next iteration. Otherwise we reject the Newton step and perform a step of the
globalized proximal gradient method 2*+1 = z¥ + 0.d*. In the nonconvex case, we require
additional conditions for accepting a Newton step. Details are given below. The resulting
method is summarized in Algorithm 2.

The algorithm contains two conditions (4.2.18) and (4.2.19)) in step S4, and requires that
one of the two has to hold if f is not convex. We now introduce these condition. Before
doing so, however, we stress that these conditions are only required in the nonconvex case
and only if we want to prove that every accumulation point of (), is stationary. If we
are satisfied with the existence of at least one stationary accumulation point of (x*), then
the conditions (4.2.18) or (4.2.19)) are not required. We now state these two limited growth
conditions for ||[FA+1(2* + s*)|| and for ¢ (x* + s*):

(4.2.18) [P (@M < oy and (2" < p(a?) + al\/HFA’“(zk)H||FA’““(IU’“+1)||,
(4.2.19) D) < g+ ag| P (2P [Pres

Let us further note that the latter growth conditions are chosen to control the -descent
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of the Newton steps z¥ 4 s* in a way such that global convergence of Algorithm 2 can
be established without any additional restrictions. In the convex setting, if the conditions
and are not used in Algorithm 2, we have to assume boundedness of the
sequence of iterates (a:k)k and existence of an optimal solution of to cope with this
missing controllability. For our subsequent analysis, we introduce the sets

Kp:={k: 2¥ was generated by the proximal gradient method},
Ky := {k : 2* was generated by the Newton method}.

Consequently, this means k + 1 € Kp if and only if 25T = 2* + 0,d* was obtained in step
S5 and k + 1 € Ky if and only if 2¥t! = 2¥ + s* was obtained in step S3 before going to
step S5 .

It holds
— : FAi )
P = el g I
and ¢, = Y(zt?®), where £p(k) := max(Kp N {1,...,k}) is the index of the last proximal
gradient iteration. The trial point 2* 4+ s* is accepted as new iterate if it is acceptable for the
current filter Fj, and additionally satisfies one of the above conditions (4.2.18)) or (4.2.19)).

Remark 4.2.19. The condition ¢t € dom ¢ in step S3 of Algorithm 2 is needed to ensure
well-definedness of the underlying proximal gradient method and of the growth conditions.
In particular, it may happen that the Newton method generates an infeasible iterate z*+1
with 9 (2¥+1) = oo that is acceptable to the filter. Clearly, without the additional constraint
¥t € dom ¢, the quasi-Armijo condition in step S4 then cannot be satisfied and conse-
quently, our algorithmic mechanism cannot guarantee global convergence in this case. Let
us note that if the domain dom ¢ is closed, then feasibility of the Newton iterates can be
achieved via the following projection operation

2" = Paom @(ﬂsk + sk).

Since the metric projection Pyom o is a nonexpansive operator, this will not affect the local
convergence properties of the semismooth Newton method, see, e.g., [237]. Of course, this
infeasibility problem arises from our specific globalization strategy. In chapter 6, we introduce
a D-gap function for generalized variational inequalities that can be used as a real valued,
smooth merit function for the optimality system and for problem . Recently, in
[187], Patrinos et al. proposed another merit function-based globalization for the semismooth
Newton method when f is strongly convex. These two different merit function approaches
circumvent the unfavourable feasibility issues and can be used to design alternative base
algorithms to substitute the proximal gradient method.

Remark 4.2.20. Clearly, the new parameter matrix Ay, can also be calculated after step
S3 (or S5) of Algorithm 2. In this case, the acceptance test in step S3 is performed w.r.t. to
the old parameter matrix Ay, i.e., the filter values 8(z**1) = 0(2**1, A;) then depend on Ay
and the growth conditions have to be adjusted accordingly. While this allows a computation
of the next parameter matrix Ay, based on the new iterate z**! this also requires the
computation of FM (zFT1) and FM+1(gF+1), If the parameter matrices (Ag)p stay in a
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4. A globalized semismooth Newton method for nonsmooth optimization problems

compact set I C S |, i.e., if assumption (B) is satisfied, this adjustment will not affect our
convergence theory.

4.3. Convergence analysis

4.3.1. Global convergence

This section focuses on the analysis of the convergence behaviour of our main approach.

Lemma 4.3.1. Let the assumptions (A.1) and (B) hold and let (z*)y and (Ay)x be generated
by Algorithm 2. Consider a subsequence (x*)x that converges to x* and contains infinitely
many iterates resulting from semismooth Newton steps, i.e., |K N Ky| = co. Then z* is a
stationary point.

Proof By assumption, there exists an infinite set K C Ky such that (2*)x — 2*. Due
to the structure of Algorithm 2 and by Remark [4.2.T5] all assumptions of Lemma [£.2.14] are
satisfied. Hence,

lim A(zF) = lim 6(z* Ay) =0.
K3>k—o0 K3k—o0

Thus, by ([#.2.7) or Remark |4.2.12 we conclude (F*(2*))x — 0 and Remark and the

continuity of the proximity operator yield F(z*) = 0, for some arbitrary A € St,. 0O

Theorem 4.3.2. Let the assumptions (A.1)—(A.2) and condition (B) be satisfied and let the
sequences (z%)g, (Ap)k be generated by Algorithm 2. Furthermore, suppose that the sequence
of iterates (x*), stays in a bounded set Qo C Q. Then, every accumulation point of (x*)y, is
a stationary point of problem .

Proof. Let z* € R™ be any accumulation point of the sequence (x*) and let (z%), be a
corresponding subsequence that converges to z*.

The strategy of the proof is based on a rigorous discussion of the occurrence and number
of Newton and proximal gradient iterates in (z*) and (z*)x. We start with two simpler cases
that can be readily established by using Theorem and Lemma The remaining
part of the proof is concerned with the case that (z*)x contains only finitely many Newton
iterations while infinitely many Newton iterates were generated. Here, we want to show
that the possibly negative effect of the intermediate Newton steps is controlled by the filter
conditions in a way that convergence of the subsequence (z¥)g can always be guaranteed.
Consequently, we analyze several subcases that correspond to different filter (acceptance)
constellations of the intermediate steps.

The proof of Theoremis similar to the proof of [I57, Theorem 4.2|, where convergence
of Algorithm 2 is shown for the specific choice ¢(z) = pllz||1. In contrast to [I57], the
boundedness of the sequence of iterates (x*);, is only needed in one specific sub-case in order
to guarantee and control boundedness of the terms || F2 () || for k € Kp. In Remark ,
we present two alternative strategies that allow to circumvent this additional boundedness
assumption.

Case 1: |K N Ky| = oo. Then the claim follows directly from Lemma
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Case 2: |[K NKy| < oo, |[Kn| < co. In this case we just compute a finite number of
Newton iterations, i.e., there exists kg € N such that & € KCp holds for all £ > ky. Hence, we
can apply the convergence result of Theorem for the quasi-Armijo proximal gradient
method to complete the proof in this case.

The discussion of the remaining case heavily depends on the acceptance criteria in step
S3 of the algorithm and consequently we have to distinguish several more subcases.

Case 3: [K NKn| < 00, |Kn| = 00. Since we perform infinitely many Newton steps, the
sequence (FM(2F)) Ky converges to zero by Lemma But since only finitely many such
z* are contained in the sequence (z*), the challenge is to show that the convergence of the
proximal gradient method is not disrupted by the intermediate Newton steps, which might

not always result in 1-descent.

At first, we introduce several useful constants and derive preparatory estimates that will
be needed in our subsequent investigation. Assumption (A.2) yields the Lipschitz constant
Ly for Vf on Q. Thus, for all ApfI = A = Ay, I, we obtain the Lipschitz constant 1+ Lf/\;l1
for u(x) = x — A"V f(z) on Q. Since the proximity operator prox’ is A-nonexpansive, an

)
easy computation yields that F*(z) = x — proxé(u(:z;)) is Lipschitz continuous on Q with

modulus ) .
Co =14+ (M A)2 + L\ ).

Hence, due to Assumption (B) and Remark 4.1.4] there exists a constant X = X( A, Aas)
such that

(4.3.1) [ FAL (" | < [FA ()] + Co - onlld®]| < (X+ Co)|FH ()| =: Co[| A (2P)]

for all k + 1 € Kp. Moreover, for all k + 1 € Ky, using that 2*T! is acceptable to F,, we
obtain from Remark [4.2.15]

n n
(432) [P (@] < VI (@) o < L0 < L g, Vg€ e

Let ko := min . Then, there holds (z*0) € Fj, for all k > ko, and thus
(4.3.3) | A ()| < ﬁ”ﬂxko)”m = Cy, VEkeKy, k> k.
FCo

Additionally, using the boundedness of (z*);, Remark and the Lipschitz continuity of
the residual function F, there also exists C3 > 0 such that

(4.3.4) |FM (M) < Cs, YEkeKp, k> k.

Further, let (i;);>0 enumerate all elements of the set {k € ICp : k > ko} in increasing order.
Then the set J := {j : i; € K} contains infinitely many indices. Defining

r—1

S(r) =) ((a") = (')

J=0
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we will use the telescope sum

P(20) — p(z*) > (z") — liminf (z') = liminf %(r).

JI3r—o0 Jo3r—o00

Our approach consists in deriving a lower bound for the right hand side that would exceed
the left hand side as J 3 r — oo unless (F (2%)) g, — 0.

Therefore, we will discuss the difference (%) — v(2%+1) of two consecutive proximal
gradient iterates (with possibly other iterates in between). We define the index subsets

Y ={kekn: z¥ satisfies (4.2.18) }, K5 = {keKn: zF satisfies (4.2.19)}.

and the function
ng : N—= N, ng(k) =Ky N{ko+1,...,k}.

Note that kg is the index of the very first iterate %0 obtained by a Newton step. We then
have

(4.3.5) [P @) < B pgy, ¥ k € K.

We now consider j > 0 and derive a lower bound for v (z%) — t(2%+1). To this end, we
distinguish several cases. For abbreviation, let £ := i, k := 441 — 1.

Sub-case 1: k=1 (ie., k,k+1€ Kp):
Applying Lemma Lemma and inequality (4.3.1)), we obtain

Am
P(a) () 2~k 2 il > ol P )P > S N ()
1

Denoting by Ji the set of all j > 0 for which this case occurs (recall £ = i;), we see
that X1(r) :== > ;e j<T(¢(xij) — (2%+1)) is bounded below as r — oo. Furthermore,
liminf 5,00 21(7) < 00 requires either |J;| < 0o or

liminf F79+1(z%+) = lim F 7+ (2%+1) = 0.
J13j—00 J13j—0

Sub-case 2: €<kEICb
Using the same arguments as in sub-case 1, , and ¥_1 = 9(z*), we obtain:

¥(at) — (@) = p(at) - <%+¢@%—w@“w
B(at) = dp1 — anl Y (@8)| B L oA || A ()2

1 « 2
> o (CrAm — o[ PR @R ) [P (@R )
1

Y

Since (F* (2%))ic,, — 0, we see that there exists k1 > ko such that ag || F2* (2%)]|% < (yAm /2
for all k € Ky with & > k;. Hence, if Js denotes the set of all j > 0 for which this sub-case
2 occurs, we see that Xo(r) := Zjehng(gb(xij) —ap(2%+1)) is bounded below for r — oo
and that liminf j5, . Xa(r) < oo requires either |Ja| < oo or
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liminf Fi+ (z%+1) = lim FAij“(xin) =0.
Jo3j—r00 Ja3j—r00

Sub-case 3: L+ 1,....1,—1 € Kn, rp =15(J) E/C?V, r+1,..., ke K%:
Let ro = 14(j) be defined as 74 := max({ko} U (K%, N{ko +1,...,7 — 1})). We obtain

k—1
Y(zh) = (@) = p(af) — v(a™) + Zw(af‘) — (@) +p(ah) — (")

r 2+«
> (z f)—wrb 1 — | [FAm (27) |77

2
—ar S IPM PN + ol 0
=7y
24 ng(i+1) )\ 2
> el ) — G 3™ = Gl

ZTb

where we used estimates as in the first case, inequalities (4.3.2), (4.3.3), (4.3.5) and the
growth conditions (4.2.18]), (4.2.19). Since the iterate z™ is acceptable for the filter, we can
use inequality (4.3.2) with ¢ = (z"*). This yields

C C
1 @) < Y 0o < Y LD i o)) < VG0 natre)
0

YFCo oa YFcy

and thus
¢ k1 ViCo ey )T Gty
Y(a") —P(x") > —an ﬁﬁ N Pl — a1/ P C2 Zn 2
Z’=T‘b

C’y)‘m 2
+ S0 s (g4
1

Let J3 denote all j > 0 that fall into this sub-case 3. Then, we have ng(r4(7)) # na(ra(j’))
for all 4,5’ € Js, j # j'. Hence

1
na(ra(j))(2+as) (2+as) _
2 W =
VISBE! k=0

Furthermore, nq(74(j) + 1) < na(rp(j) +2) < -+ < ng(k) = nq(ij41 — 1), and thus,

lj41—2 00
ng (i+1) k ].
g E n 2 S E 7]§ = —
J€J3 i=rp(j) k=0 L=V

We thus see that 33(r) := Zjej3,j<r(¢(93ij) — 9p(2%+1)) is bounded below as r — oo and
that liminf ;5,00 X3(r) < 0o requires either |J3| < co or

liminf FAi+ (z¥+1) = lm  F79+1(z¥+) = 0.
J33j—0 J335j—00
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Sub-case 4: L+1,....k € K%.
This is the same situation as in sub-case 3, except that there does not exist an iterate
ie{l+1,...,k} withi € IC?\,. Similarly as before, but easier, we obtain

02

k—1
b(at) = ) = 3 (@) - ) + p(ak) - pt)
=)
i 2
Z—alZW YEIEN @2 + P )]
kol na(i+1) C’}/A A k41
> a1 max{ 0, G5} 3 ™5 + S e (A1)
i =0

where we additionally used the estimate (4.3.4)) and ¢ = i; € Kp. Let Jy denote all j > 0
with i; > ko that fall into this sub-case 4. Then, we have ng(i; + 1) < ng(i; +2) < --- <
ng(ij41 — 1), and thus,

lj41—2

o0
nq(i+1) k
E E < E 2 = .
7 : N k=0 ’ \/ﬁ

JjEJs i= ”LJ

This shows that ¥4(r) := Z]€J4 j<r(¢(:cif) —p(2%+1)) is bounded below as 7 — oo and that
liminf 75,00 X4(r) < 0o requires either |.J4| < oo or

liminf FY+1(z941) =  lim  F+(2+1) = 0.
J43j—00 J43j—00

Taking all cases together, it follows from

4 4

Y(2) — (z*) > liminf Yy N(r) > lim inf ¥.(r)
J3r—o00 J3r—o0
c=1 c=1
that (F' A (z%+1)) ;>0 — 0, since otherwise the limit on the right hand side would be +o0
(note that all ¥.(r) were shown to be bounded below as r — o). Using Remark
and since K contains infinitely many indices i;, we conclude F*(z*) = 0 for some arbitrary
AeSt,. O

For convex problems, Algorithm 2 can be shown to converge globally without the growth
conditions (4.2.18) and (4.2.19) if the iterates stay in a compact set. In particular, if the
objective function 1 is coercive and ¢ is real valued and positively homogeneous, this bound-
edness condition is guaranteed by Lemma[4.2.6] Since every norm is a positively homogeneous
function, the following theorem generalizes the convergence result in [I57] for ¢1-regularized
problems (i.e., in [I57] the authors implicitly relied on the fact that the ¢;-norm is a positively
homogeneous function).

Theorem 4.3.3. Let the assumptions (A.1), (B), and (C.1) be satisfied and let the sequences
() and (Ay)g be generated by Algorithm 2. Furthermore, suppose that problem Pos-
sesses an optimal solution T € dom ¢, the growth conditions (4.2.18)) and (4.2.19) are not
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4.3. Convergence analysis

used in Algorithm 2 and that the sequence (xk)k stays in a compact set Qo C Q. Then, every
accumulation point of (z*)y, is a stationary point and thus, a globally optimal solution of the

problem .

Proof. Let x* € R"™ be an arbitrary accumulation point of the sequence (z¥); and let
(2*) ¢ be a subsequence converging to z*. Clearly, as in Theorem the two simple cases
KN Ky| = o0 and |K NKy| < oo, |[Kn| < oo are already covered by Lemma [£.3.1] and
Theorem [£.2.10] Thus, let us discuss the remaining, more difficult case.

So, let us assume |K N Ky| < oo, |Kn| = oo. Since we perform infinitely many Newton
steps, the subsequence (F*(z%)) Ky converges to zero by Lemma m By assumption, the
sequence (2");, remains in a compact set y and there exists an optimal solution Z € dom ¢
of problem ([P). We now want to show (w(mk)),CN — (Z). Assume that (w(xk)),CN does
not converge to 1(z). Since T is a global minimum of the objective function v, there then
exist € > 0 and a subsequence L C Ky with

V() > (@) +¢e, VLelL.

From the bounded sequence (x%),.; we can choose a further subsequence L C L satisfying

le

(a:e)eg: — & and (&) = liminf ¥(z) > P(z) +e.
L>f—00

Assumption (B) and the continuity of the proximity operator yields FA(#) = 0 for some
A € S, and thus Z is a global solution, which results in the contradiction ¢ (Z) = ().
Hence, we have proved (zp(xk)),CN — P(T).

Next, using the feasibility of the iterates ¥ and the descent property (z*) < ¥ (zF~1)
for all k € Kp, (see Lemma |4.2.7)), we obtain ¢(z*) = ¢)(Z) and thus the limit point z* is an
optimal solution, hence also a stationary point. [J

Remark 4.3.4. As we have already mentioned and as we have shown in Lemma
the assumptions (C.2)(C.3) are sufficient to ensure boundedness of the iterates z*, k € N.
Moreover, in this case, the coercivity of the objective function v also guarantees existence of
an optimal solution Z € dom ¢ of problem . Accordingly, the boundedness of the effective
domain dom ¢ yields the same implications. Another, alternative condition, which guaran-
tees the boundedness of the sequence of iterates (x*), is the coercivity of the nonsmooth
function F* : R — R™ for some A € S . In fact, this condition implies that the Newton
iterates stay in a compact set and by using the descent property of the proximal gradient
steps, boundedness of the whole sequence (xk)k can be established. Surprisingly, this rather
restrictive condition is always satisfied when the function f is strongly convex on dom ¢. A
proof of this claim is presented in Lemma [6.2.12] for an even more general setting.

Remark 4.3.5. The proofs of Theorem and do not use any particular properties
of the semismooth Newton steps s¥, hence the semismooth Newton method for computing
s could be replaced by other choices. In particular, the Newton system in step S3 could be

replaced by a regularized version of it, see, e.g., (4.3.17)).
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4. A globalized semismooth Newton method for nonsmooth optimization problems

4.3.2. Fast local convergence

The semismooth Newton steps achieve locally g-superlinear convergence under suitable con-
ditions. We now will prove that, under appropriate assumptions, Algorithm 2 turns into a
semismooth Newton method after finitely many iterations and thus achieves locally an at
least g-superlinear rate of convergence.

Assumption 4.3.6. Let the sequences (z¥), and (Ag)g be generated by Algorithm 2 and
suppose that z* € R™ and A, € S}, are accumulation points of () and (Ay)g, respectively.
Let us consider the following conditions:

D.1) There exists k* € N, such that A, = Ay for all k > k*.

D.
D.3) The prozimity operator proxﬁ* :R™ — R"™ is semismooth at u* = x* — A7V f(z*).
D.

(
(
(
(D.4

)

2) It holds x* € int dom ¢.
)
)

There exist constants § > 0 and C > 0 such that for all x € Bs(z*), every matriz
M € OFM(x) is nonsingular with |M~Y| < C.

If, in addition, the accumulation point x* is a stationary point of , then we assume:

(D.5) The accumulation point x* is a strict local minimum and an isolated stationary point

of the problem .

Remark 4.3.7 (CD-regularity). Let us also mention another alternative invertibility as-
sumption. The mapping F»* is called CD-regular at the accumulation point z* if every
element M € OF"(z*) is nonsingular. In this case, if FA+ is CD-regular at z*, then it can
be shown that condition (D.4) has to be satisfied. This well-known fact follows from the
upper semicontinuity and local boundedness of Clarke’s subdifferential 9F ™ : R = R™, see
[199, Proposition 3.1] or [238, Proposition 2.12|. Hence, assumption (D.4) can be substituted
by the stronger CD-regularity of F*+. Let us further note that if the limit point * is a sta-
tionary point of and if F*+ is semismooth and CD-regular at z*, then Pang and Qi [182,
Proposition 3] showed that 2* is an isolated solution of the nonsmooth equation F*+(z) = 0
and thus, an isolated stationary point of the problem .

Clearly, since we have already shown that every accumulation point of a sequence of iterates
(2*)x generated by Algorithm 2 is a stationary point of the initial problem under suitable
conditions, assumption (D.5) is well-defined and applicable in our situation.

Remark 4.3.8. In the following, we briefly assess and discuss the different conditions in

Assumption [£.3.6]

e The conditions (D.3)-(D.4) are standard assumptions for local convergence of semis-
mooth Newton methods, [199] [182] 197, 23§].

e While the choice of the parameter matrices A did not influence our global conver-
gence theory, it certainly can affect the rate of convergence of the semismooth Newton
method. In particular, to maintain local g-superlinear convergence, we have to assume
that the matrices Ax do not change too wildly and are kept fixed after an appropriate
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4.3. Convergence analysis

number of iterates. From a numerical perspective, this assumption seems not to be too
restrictive since a fixed parameter matrix can be used whenever the algorithm reaches
a certain level of tolerance.

On the other hand, condition (D.2) clearly limits the applicability of our local conver-
gence theory to convex composite problems that are locally Lipschitz continuous in a
neighborhood of the predestined solution x*. Specifically, this excludes optimization
problems with additional convex constraints where the solution lies at the boundary of
the feasible set. However, this condition is mandatory to guarantee feasibility of the
Newton steps ¥ + s* in a neighborhood of z* and thus, to show transition to fast local
convergence. Let us again note, that the requirement

¥ 4+ s% € dom ¢

in step S3 of Algorithm 2 is mainly a result of our specific globalization technique. For
instance, if the proximal gradient method is substituted by another globally convergent
algorithm that is not sensitive to the feasibility of the generated iterates, then condition
(D.2) is not necessary. In particular, Patrinos et al. [I87] proposed a forward-backward
envelope-based and globally convergent approach for strongly convexr problems that
overcomes this feasibility issue and can accordingly be combined with the semismooth
Newton method. Moreover, in chapter 6, we introduce a D-gap function for generalized
variational inequalities that can be shown to act as a merit function for the optimality
condition . Based on the D-gap function, we will then construct a simple
descent method that is also well-defined for infeasible inputs and hence can be used to
replace the proximal gradient method.

Assumption (D.5) will be used to prove that the whole sequence (x*); converges to z*.

While most of the latter assumptions have a rather natural intuition, the conditions
(D.4) and (D.5) seem to be more abstract and may not be easily verified in practise.
In the subsequent chapter, we will discuss these conditions in some more detail. In
particular, we will show that for a certain class of functions ¢ a second order sufficient
optimality condition can be formulated that, together with the strict complementarity
condition, will imply the assumptions (D.4) and (D.5).

We continue with a brief illustrative example.

Example 4.3.9 (Discussion of the /;-case). Before presenting the main convergence re-
sult, let us exemplarily examine the assumptions (D.1)—(D.5) for an ordinary ¢;-optimization
problem of the form

(4.3.6) min f(z) +¢(z),  @(r) = pllzl,  p>0.

Here, since the ¢;-norm is real valued, condition (D.2) is immediately satisfied. Now, suppose
that the parameter matrices are chosen via

Api=A, =2\
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4. A globalized semismooth Newton method for nonsmooth optimization problems

for some fixed A > 0. Then, clearly, assumption (D.1) is fulfilled. Moreover, in this case and
as in Example the proximity operator proxéil] is a piecewise continuously differen-
tiable function and thus semismooth at all z € R™. This readily establishes assumption (D.3).
In [I57], Milzarek and Ulbrich analyzed the convergence of Algorithm 2 for ¢;-problems of
the type . In particular, let the sequence (z¥); be generated by Algorithm 2 and let
z* be an accumulation of (z¥). Then, setting A* := {i : 2} = 0}, it was shown in [I57,
Lemma 4.6 and 4.7] that the second-order type condition

(4.3.7) RTV2f(z*)h >0, V heR" with hy- =0,

guarantees uniformly bounded invertibility of all elements M € OF™(z*) and, additionally,
the point x* is also a strict local solution and an isolated stationary point of the ¢;-problem
([4.3.6); see also |97, Section 3.4] and [156, Lemma 4.3.2] for related results. Consequently, in
the ¢1-setting, the assumptions (D.1)-(D.5) are satisfied, whenever the second order condition
holds at z*. As already mentioned, for more general problems, the verification of the
assumptions (D.4)—(D.5) is more involved and will be investigated in the next chapter.

We now present our result on the local convergence of Algorithm 2.

Theorem 4.3.10. Let the assumptions (A.1)~(A.3) hold and let the sequences (z*)y, (Ax)x
be generated by Algorithm 2. Furthermore, let x* € R™ and A, € S} | be accumulation points
of the sequences (x¥)y and (Ay)y satisfying the conditions (D.1)—(D.5) and suppose that the
sequence of iterates (z*) remains in a bounded set Qo C Q. Then, it holds:

(i) The whole sequence (z*)y, converges to the isolated local minimum z*.

(ii) There exists k> 0 such that =% results from a semismooth Newton step, i.e., k € Ky,
for all k > k. In particular, (z*);, converges g-superlinearly to x*.

(iii) If, in addition, the proximity operator proxf}* is a-order semismooth at u* for some
a € (0,1] and the Hessian V?f(x) is Lipschitz continuous near x*, then the order of
convergence 15 1 + a.

Proof. Let us start with the first part. Therefore, let £* € R™ be an accumulation point
of the sequence (xk) r with the stated properties. Then, by Theorem x* is a stationary
point and assumption (D.5) yields that «* is an isolated local minimum of problem and
also an isolated stationary point. Since every accumulation point of (z¥)j is stationary, x*
is an isolated accumulation point of (2*)y.

Now, consider an arbitrary subsequence (z¥) i that converges to the isolated accumula-
tion point z*. If we can show (||z*T! — 2*||),- — 0 then a well-known result of Moré and
Sorensen [I60], Lemma 4.10] implies the convergence of the whole sequence (z*); to x*.
Now, by assumption (D.4), the matrix M(z) € OF*(x) is uniformly boundedly invertible
in a neighborhood of z*. Hence, by using condition (D.1), there exist k1 > k* and C' > 0

such that ||M($k)71|| < Cforall k € K, k> k1. This estimate immediately leads to

la*+ — 24| < max{C, Y[ FM ()| max{C, 1} [FN (@) =0, (K 3 k = o0).
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As intended, [160, Lemma 4.10] now yields that the entire sequence (z*); converges to z*,
which concludes the proof of part (i). At this point, let us also note that the stationarity of
x* already implies z* € dom ¢ C €.

Next, we prove the second statement. From part (i) we know that z* — z*. As before,
using assumptions (D.2), (D.4), and (D.5), there exist 6; > 0, and C' > 0 such that:

o |[M(z)7 Y| < C for all M(z) € dF(z) and z € Bs, (z*).
e * is the unique stationary point of ¢ on By, (z*).

o (x) > Y(x*) for all € By, (z*) \ {z*}.

e 7z € int dom ¢ for all x € Bs, (x*).

Due to assumption (A.2), the function F*+ is Lipschitz continuous on Bg, (x*) with a Lip-
schitz constant L; > 0. (We refer to the proof of Theorem for details). Since the
gradient Vf is bounded on B, (z*), Theorem implies that 1 is also Lipschitz contin-
uous on By, (z*) with a constant Ls > 0. Moreover, invoking (A.3), Theorem and
condition (D.3), we can infer that F** is semismooth at 2*.

For all x € Bs, (z*), the Newton step s = —M (x) "' F»+ () is well defined and due to the
semismoothness of F*+ and the bound on ||M(z)~!|, it holds for z* = x + s:

lz = &*[| = |M ()" [FA (@) + M(x)(z — 2*) = F ()]
(4.3.8) < OIFM (@) + M(z)(z — 2*) = FM (@)l = o(llz — «*]))  (la —2*|| = 0).

Now let

Vf = min{n S } Vg 1= min{ s a% }
= s y s = ) o
VnCy(1+vr) LiC 475" (L2C + an)?
Then, 0 < v <np < 1and 0 <+, <1 and there exists 0 < J < é; such that
lot = 2*[| < ysllz — 2™, ¥z € Bs(a”).
This shows for all 2 € Bs(z*):
lo —2*|| < fl2™ — ™| +|Is]
= [lat — | + |M (2) T P (@) < 36|z — 27| + CIF ().
Hence, it holds
C B ook
lz — 2™ < 17HFA*($)H, Vx € Bs(a").
— Vs

Furthermore, using F*+(2*) = 0 and the definition of s, we obtain

1A @) < Lafla® — 2% < Loyl — 27
< G

<1 1Y @) < A7l FY (@) < nll F* (2)])-
S
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Since z¥ — *, there exists k; > k* such that 2% € B(;(x*) for all k£ > k1, and hence, with the

semismooth Newton step s* = — M (2F) "L FM (2%) = — M (2F) "1 FA (2%) and 2P+ = 2P 4+ 5%,
it holds:

(439 2+ — 2 < yalla® ¥,

@310) et = £ o PR T et < TP,
4ST) R = [P - el < Ll e,

(1312) P <l PN ),

(4.3.13) (@) — ()] < Lafla™* — 2.

Let k be any index with £ > k; > k* and

4.3.14 Fh- < Fhe .
( ) | A= (2F)) Oglzlgkll (=)

Since the algorithm does not terminate finitely and 0 < || (2)|| — 0, there exist infinitely
many such indices k. We now show that if ks is the smallest such index, then k € Ky for all
k> ko + 1.

Let k satisfy (4.3.14). Then we have 2®% € B, s(z*) C Bs(z*) and Agy1 = A.. Further,
for all ¢ € Fy, and the corresponding r < k with ¢ = 6(2") = 0(z", A,), it holds:

max [g; = 0 ()] = x0T oo

> [lalloe = (1 + 7R 10" ) oo = 10(27) oo — (1 + 420", A lloo

> el (7)o — Co(L+ 77 1™ (7)o fllFA’“( 2")|| = Co(L + 7F) | E™ ()|

\f\\FA (@) = Co(1 +77) [F (") > (\/ﬁ — (1 +’Yf)'Yf> I (M) = 0

by (4.3.12)) and the definition of ;. Hence, zF% is acceptable for Fj,. Also, there holds

(4.3.15) [P @) <yl FM @) <l FA @) = nin, IFA ()| < npr. < pie

Thus, the first condition in is satisfied by z®* (replacing z**!). Next, we show
that also the second condition in is satisfied. Since z* is the unique local minimum
on Bs(x*) D {xF, 2%*}, there holds ¢ (z*) > (x*) and ¢(zF+) > (z*). If we have
Y(zFT) < 9(2¥), the second condition of (4.2.18) is satisfied by ** replacing 2*+1. If we
have 9 (z%1) > v(z*), the following holds

(@) — ()] < (™) — v(a*)]| < Loflaht — o
* 3 * 3 L2C s
< Lyl - 2| ok = o)} < S fpn @ @)

1—
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LQC 7.
< Y S\/HFA* (@IFA (@) < any/IFA (@) [ FA (25,
where we used the Lipschitz continuity of v, the inequalities (4.3.9) and (4.3.10)), and the
definition of ;. Hence, we have shown that for all k satisfying (4.3.14), the semismooth
Newton iterate satisfies all requirements such that it is chosen as new iterate. Thus, we have

zFtl = ght = 2% 4 6% and k € K. Furthermore, (4.3.15) shows that

Ay k+1 Ag
I @) < i [P

and consequently 2*t! satifies again (4.3.14) with k replaced by k + 1. Hence, inductively,
we see {k : k > ka} C Ky and thus we can choose k = kg + 1. The superlinear convergence

follows from (4.3.8]).
A

We verify the third and last part. If the proximity operator prox,* is a-order semismooth
at v* and V2f is Lipschitz continuous near z*, then F** is a-order semismooth at z* and
thus

IEY (2%) + M (2) (@ —2*) = F*(2)] = O(|lz —2*|"*),  [la —2*[| = 0.
Hence, the asserted order of convergence follows from (4.3.8)). O
Remark 4.3.11. Reconsidering the proofs of Theorem [£.3.2] and Theorem [£.3.10] we can see
that boundedness of the sequence (2*)}, is only required in a special case of the proof of global

convergence to guarantee boundedness of the sequence (|| F2* (2F)||)rex,. Alternatively, the
assumption

» The sequence (¢(z¥))y, remains in a compact set “

does also ensure boundedness of the terms ||F2 (z%)||, k € Kp. This follows easily from the
arguments used in sub-case 1 in the proof of Theorem [£.3:2] A second and more elegant
variant can be achieved by slightly modifying Algorithm 2 and by replacing the first growth

condition (4.2.18)) by

| FA+1 (2F )| < npp and (2 T) < ap(aF) + al\/(k [ F AR (2R

where ¢ := [|[FAv® (209 )| and £y (k) := max({0} U (Kx N {1, ...,k})) denotes the index
of the last accepted Newton iteration. Clearly, if & € Ky, then this alternative condition
reduces to the old filter growth condition . It can be readily shown that this adjusted
version of Algorithm 2 converges globally and locally without any additional boundedness
assumptions.

In the convex setting and similar to our global convergence analysis, the growth conditions
(4.2.18) and (4.2.19) are again not necessary to establish fast local convergence of Algorithm
2. Moreover, assumption (D.4) can be slightly weakened.

Theorem 4.3.12. Let the assumptions (A.1)—(A.3) and (C.1) be satisfied and let the se-
quences (%) and (Ay)x be generated by Algorithm 2. Suppose that problem possesses
an optimal solution, the growth conditions (4.2.18]) and (4.2.19) are not used in Algorithm
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4. A globalized semismooth Newton method for nonsmooth optimization problems

2 and that the sequence (x);, remains in a compact set. Let x* € R™ and A, € S, be
accumulation points of the sequences (x¥)i, and (Ag)r satisfying the conditions (D.1)~(D.3),
and (D.5). Moreover, suppose that the following invertibility assumption is satisfied:

o There exist constants k. € N and C > 0 such that for all k > ki« the generalized
derivative My := M (z*) € OF M (%) is invertible with | M, '|| < C.

Then, it holds:
(i) The whole sequence (x¥) converges to the isolated local minimum x*.

(ii) The algorithm eventually turns into a pure semismooth Newton method and the sequence
()1, converges locally g-superlinearly to x*.

Proof. The first part of Theorem [£.3.12] can be established by using Theorem [4.3.3] and
by mimicking the proof of Theorem (i). Furthermore, the assumptions (A.2), (D.1)-
(D.2), and the bounded invertibility of the Newton matrices M (2*) imply that there exist
ko := max{k*, k.}, C > 0, and § > 0 such that:

o | M1 < C forall k> k.
o 2F € Bs(x*) for all k > kg and Bs(z*) C int dom .
e FM« is Lipschitz continuous on Bj(x*).

Additionally and as in Theorem [4.3.10] it can be shown that F*+ is semismooth at z*. Thus,
for all k > ko, the Newton step s* = —M, 'FA+(2*) is well-defined and there holds for
kot = ok 4 sk

bt — 2| = [|M [FN (27) + Mi(a® — 2%) — M (2b))]
(4.3.16) < CFM (@) + My(a* — 2%) = FA ()] = o(la* — 2"]l), & = oc.

Clearly, at this point, we can reuse the arguments of the proof of Theorem to show
that the Newton step zF1 is acceptable for the current filter and thus, is chosen as new
iterate for all k > k and sufficiently large k > ko. Let us note that, in this situation, we only
have to verify the filter acceptance criterion. In particular, the second estimate in is
not needed and hence, we can work with weaker invertibility assumptions. The g-superlinear
convergence then follows from . O

Finally, for robustifying the semismooth Newton steps, we are also interested in the more
general case where, in the Newton system, the generalized derivative M (z) is replaced by a
regularized version M,

(4.3.17) M,(z) = M(z) + p(|FM@)|]) - R(z), M(x) € 0F (z), AeST,.

Here, the function p : Ry — R, is assumed to be continuous and monotonically increasing
with p(0) = 0 and R : R" — S7} is a matrix-valued mapping that may depend on z and that
is supposed to be (globally) uniformly bounded, i.e., there exists Cr > 0 such that

IR(@)|| < Cr, VYzeR™
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In our numerical comparison in chapter [7], we will primarily work with regularizations of the
form p(t) = ct? with p € (0,1], ¢ > 0 and R(x) = I. Clearly, by Remark we see that
this adaption does not affect the global convergence of Algorithm 2. Moreover, by using a
continuity argument and the well-known Banach perturbation lemma, the matrices M),(x)
remain uniformly boundedly invertible in a certain neighborhood of * whenever assumption
(D.4) holds. Furthermore, for the regularized Newton iterate z} = x — M,(z) " FA () it
follows

lzy — 2| < 1M, () I (&%) + Mp() (@ — &*) — F ()]
<My ()7 - [IFM (2%) + M () (z — %) = FA (@) + Crp(||[F (@)]) - |2 — 2*|]
=o(|lz —2*]), [lz—2"|—0.
Consequently, the g-superlinear rate of convergence, established in Theorem and

4.3.12] is also not affected, if we use regularized derivatives of the form (4.3.17) in our
algorithm.
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5. Second order theory and
decomposability

In the following sections, we present and discuss second order conditions for the problem

where f : R — R, F: R® — R™ are supposed to be twice continuously differentiable and
¢ : R™ — (—00,400] is a convex, proper, and lower semicontinuous function, as usual. Our
overall goal is to replace the isolated stationarity and bounded invertibility assumptions (D.4)
and (D.5), which were necessary to establish fast local convergence of the semismooth Newton
method, by suitable second order conditions. On the other hand, as a second motivation,
this methodology will also allow us to get a deeper insight on the local structure of stationary
points and optimal solutions of and on their influence on the convergence behavior.

Clearly, problem is a more general variant of problem , since the composition
¢ o F' need not be convex. However, if we set F' = I, then problem obviously reduces
to the minimization problem discussed in the last sections. Optimization problems of the
form are called convex composite problems and are an important and well-studied class
of optimization problems. For instance, constrained nonlinear programs can be modeled
via convex composite problems. Other applications comprise convex inclusions, minimax
optimization problems, and exact penalization of general constrained problems, see, e.g.,
[28] 31], [81, Chapter 14|, and [134], 206]. Moreover, as we have already seen, ¢ can also act
as a nonsmooth, convex regularization term, like the ¢;-norm, the nuclear norm, or other
structure-inducing regularizations.

During the last decades, various algorithms have been proposed to solve the convex com-
posite problem . Of course, there is a huge amount of highly specialized methods, which
have been developed for specific choices of ¢. However, a large number of general algorithms
can also be applied to the abstract class of problems or to certain subclasses. These algo-
rithms concentrate on general and proximal descent methods [28] [134], trust-region methods
[263, 264], and Gauss-Newton methods [30, 135 255] that work with a linearization of F'(x)
to build a sequence of simpler subproblems of .

As we will see in the subsequent sections, in order to derive second order properties for our
initial problem , it is advantageous to consider the more general problem first. Our
analysis is primarily based on the second order theory that is presented in the monograph
[27] of Bonnans and Shapiro for possibly infinite dimensional and constrained optimization
problems of the form

(Pk) min f(z) st. F(z) €K,
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where K is a convex, closed set and the functions f and F are typically twice continuously
differentiable. More specifically, based on the concepts of (parabolic) second order tangent
sets [55], second order regularity [22), 23, [24] and related results in sensitivity and pertubation
analysis of optimization problems [22] 23, 27], the authors Bonnans, Cominetti, Shapiro, and
others have introduced, developed and collected profound, theoretical tools and frameworks
that enable a detailed study of second order properties and conditions for problem on
a very abstract level. Furthermore, by setting K = epi ¢ or ¢ = g, it is not hard to see
that the convex composite problem can also be interpreted as a general, constrained
optimization problem and vice versa. Using this straightforward connection, Bonnans
and Shapiro transfered their theory and results developed for to the convex composite
setting, see, e.g., the sections 3.3.4 and 3.4.1 in [27], section 5 in [24] and also [217]. In the
next sections we will sketch the second order theory presented in [27] and give a summary
of the most important definitions, steps, and the different theoretical components. We will
also add proofs whenever they facilitate the understanding of the overall concept and the
underlying structure and ideas (or, of course, when a specific proof seems not to be available).
Since we are interested in establishing stationarity and invertibility conditions for problem
(P)), we will mainly focus on the “translated” second order results and terminology for convex
composite problems.

Outline and motivation

In the following paragraph, we give a short roadmap of the main steps of this section and
we make some introductory remarks.

Apparently, the task of stating second order conditions for our initial problem

(P) min f(z) + ¢ (z),
rER™

is notably complicated by the possible nonsmoothness and nonlinearity of the function ¢.
As we will see, in order to derive tight, “no gap” second order conditions, we will have to
consider and incorporate certain terms that describe the curvature induced by the nonsmooth
function . Here, the terminology “no gap” means that the only difference between sufficient
and necessary second order conditions is between a strict and a non strict inequality. No gap
second order conditions are desirable and often very beneficial, since they allow associating
the sufficient second order condition with a natural quadratic growth condition.

In subsection [5.2] we will present a pair of no gap second order conditions that has been
established by Bonnans and Shapiro in [27] for the general problems and . Specif-
ically, their analysis shows that the mentioned curvature term can be characterized by the
convex conjugate of a second order directional epiderivative of . However, since it is hard to
analyze stationarity and nonsingularity properties under these highly abstract conditions, we
want to introduce a class of functions, that will allow us to use certain structural properties
and that will simplify the second order conditions. In particular, following and inspired by
the results in [217], we will assume that the function ¢ is decomposable and can be written as
a composition of a convex, proper, lower semicontinuous and positively homogeneous func-
tion ¢g4 : R™ — (—o00, +00] and a twice continuously differentiable function F': R” — R™ in
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5.1. A first second order sufficient condition and isolated stationarity

a certain neighborhood of a fixed point. Hence, we are also strongly interested in deriving
second order conditions for optimization problems of the form

(Pa) min f(z) + ¢a(F(2)).

Clearly, this motivates a discussion of second order conditions of the more general convex
composite problems (P,)).

In subsection [5.3] we will see that the class of decomposable functions is rather rich and in-
cludes £;-minimization and group sparse problems, and also semidefinite programs, low rank
structured problems or even general nonlinear problems. Moreover, the complicated curva-
ture term will have an easy representation and we can show that a suitable, corresponding
second order sufficient condition implies isolated stationarity of a stationary point of
and . Under the strict complementarity condition and using the so-called VU-concept,
[130, [103], we show that it is also possible to give a complete characterization of the second
order conditions of in terms of the (generalized) derivative of proxfz at a certain point.
This deep connection will then lead to new and general nonsingularity results, which are
presented in subsection [5.4]

5.1. A first second order sufficient condition and isolated
stationarity

We start with a discussion of the corresponding first order necessary conditions for (P). In
the next sections, we will assume that the following properties are always satisfied:

e The functions f: R®™ — R and F' : R™ — R™ are twice continuously differentiable.

e The mapping ¢ : R™ — (—o0, +00] is convex, proper, and lower semicontinuous.

5.1.1. First order necessary conditions

Let Z € F~!(dom ¢) be a local minimum of problem (PJ), then the necessary first order
optimality conditions for (P.) take the following form

(5.1.1) (e)* (£;h) >0, VY heR™
Moreover, if Robinson’s constraint qualification
(5.1.2) 0 € int{F(z) + DF(z)R" — dom ¢}

is satisfied at Z, then Lemma [2.5.6]implies that the composite function ¢ o F' is directionally
epidifferentiable and it holds

(¢ 0 F)¥(z;h) = ¢*(F(2); DF(2)h).
Consequently, by Corollary 1. is also directionally epidifferentiable at z and we obtain

V(@ h) = V(@) h+ ¢“(F(z); DF(Z)h).

87



5. Second order theory and decomposability

Due to (5.1.1)) and the convexity of ¢, the functions Y : R" — [—o0, +o0], T(y) := wi(a_c; Y)
and IT : R™ — [—o0, +00], TI(y) := ¢*(F(Z);y) are convex, proper, lower semicontinuous,
and positively homogeneous functions. Moreover, using Lemma (i), it also follows
that T and II are subdifferentiable at 0. Now, let ¥ € dom ¢ be arbitrary, then by applying

, we have
Iy — F(2)) < ¢(y) — 6(F (7)) < +oo,

which establishes (dom ¢) — F(z) C dom II. Hence, the regularity condition (i) in Lemma
2.5.15]is satisfied and we can infer

Y (0) = Vf(z) + DF(z) " d11(0).

Thus, using III(0) = dG(F(z)) (see, e.g., Example [2.5.17) and 1¢(Z;0) = 0, we see that the
optimality condition (5.1.1]) implies the condition

0 € dY(0) = Vf(z) + DF (%) 0¢(F(z)).

Clearly, the latter condition can be reformulated in the following way: there exists A € R™
such that

(5.1.3) V(@) +DF(E)'A=0, \ecdp(F(x)).
These results motivate the following definition and theorem.

Definition 5.1.1. Let Z € F~!(dom @) be given. A point A € R™ that (together with Z)
satisfies the conditions ((5.1.3) is called Lagrange multiplier. The set of all possible Lagrange
multipliers is denoted by M(Z), i.e.,

(5.1.4) M) :={NeR™: Vf(Z)+ DF(Z)"'A=0, A € 96(F(z))}.
The point T is called a stationary point of problem if and only if M(Z) # 0.

Theorem 5.1.2 (First order necessary conditions). Let € F~!(dom ¢) be a local
minimum of problem and suppose that Robinson’s constraint qualification holds at T.
Then, there exists A € R™ such that

Vf(Z)+DF(Z)"A=0, Xecdp(F(z)).
In particular, T is a stationary point of ,

Remark 5.1.3. Suppose that Z is stationary point of (P.). Then, our preceding discussion
shows, that the function II is subdifferentiable at 0 and, due to Lemma [2.5.15] we have

0 € Vf(Z)+ DF(z) dI1(0) C Vf(z) 4+ (Il o DF(Z))(0).
Consequently, it holds

0 < Vf(E@) (h—0)+I(DF(Z)h) —I1(0) = V(&) h+ ¢"(F(Z); DF(Z)h), ¥ heR™
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5.1. A first second order sufficient condition and isolated stationarity

Hence, in this case, Remark implies that our initial, first order condition
(Ge)* (7:h) >0, ¥ heR",

is also fulfilled (even if Robinson’s constraint qualification does not hold at z). In summary,
we see that the first order necessary conditions are generally stronger than condition
. We like to mention that this natural “gap” also appears when discussing and deriving
KKT conditions in nonlinear programming,.

In the subsequent analysis, we will also need the next, quite standard property.

Lemma 5.1.4 (cf. |27, Proposition 4.43]). Assume that z € F~1(dom ¢) is a stationary
point of and that Robinson’s constraint qualification is satisfied at z. Then, M(Z) is a
nonempty, convezx, and compact set and, additionally, the sets M(x) are uniformly bounded
for all x in a neighborhood of T.

5.1.2. Second order conditions and the strict constraint qualification

First order sufficient conditions that guarantee optimality of a stationary point often fail
to hold in practice. This observation can be traced back to the fact, that the directional
epiderivative (@ZJC)f(:ﬁ -) does not provide any information about optimality of a stationary
point Z along directions h € R™ that satisfy the condition

(5.1.5) (¥e)*(z;h) < 0.

A very common approach to circumvent this lack of information is to pose certain, appropri-
ate second order conditions and to incorporate second order information. In the following, we
introduce the so-called critical cone of 9. that exactly consists of those directions A fulfilling
(5.1.5)).

Definition 5.1.5. Let Z € F~!(dom ¢) be given. The critical cone of 1. at % is defined by
(5.1.6) C(z) :={h € R": (1)* (z; h) < 0}.

Additionally, if T is a stationary point of problem (Pc|) and if Robinson’s constraint qualifi-
cation (5.1.2)) is satisfied at T, then the critical cone C(Z) can be equivalently represented as
follows:

(5.1.7) C(z) ={heR": (¢C)£ (x;h) =0} ={h € R" : DF(Z)h € Nay(r(z)) (M)},
where X € M(Z) is an arbitrary Lagrange multiplier.

Proof. Let us briefly verify the alternative representation of the critical cone in the case
that T is a stationary point of (P.) and Robinson’s constraint qualification holds at z. The
formula

C(z) = {h € R": ()" (T3 h) = 0}

follows directly from definition ((5.1.6|) and from Remark (Let us note that Robinson’s
constraint qualification need not necessarily hold at Z for this implication). Now, let h € C(Z)
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5. Second order theory and decomposability

be arbitrary. Then, due to Remark it holds

0> Vf(Z) h+ ¢*(F(z); DF(T)h)
= —(DF(@)"\)"h + 0gg(r@)(DF(@)h) = sup (v — A, DF(2)h).
vedH(F ()

Hence, it follows (v — A, DF(z)h) < 0 for all v € d¢(F (7)) and DF(Z)h € Nyg(p(z))(A).
On the other hand, if h € R" satisfies DF(Z)h € Nag(p(z))(A), then the above discussion
immediately implies
V(@) h+ ¢*(F(2); DF(z)h) < 0.
Using Corollary this establishes h € C(z). O
Now, we are able to present a first second order condition that was introduced and studied

by Burke et al. in [29] B1].

Theorem 5.1.6 (Second order sufficient conditions). Let & be a stationary point of
problem ([P.)) and suppose that the second order sufficient condition

(5.1.8) sup {hTVQf(az)h + (\, D2F(z)[h, h]>} >0, Vhel@))\ {0}
AEM(2)

is satisfied. Then, there exists o > 0 such that for all x in a neighborhood of T it holds

f(x) + ¢(F(x)) > [(Z) + 6(F(T)) + allz — z|)%,
and hence, T is a (strict) locally optimal solution of .

Proof. The proof is exactly as in [31, Theorem 4.2|. O

In the case of cone constrained optimization, i.e., ¢ = tx, where K C R™ is a convex,
closed cone, it was already observed by Robinson [203] that condition (5.1.8)) does not ensure
that z is an isolated, local minimum of the optimization problem @, see, e.g., Example
(2.5) in [203]. In the following we will discuss several conditions that together with the sec-
ond order sufficient conditions will guarantee that a stationary point is an isolated
stationary point of problem .

The next result combines Lemma 4.44 and Proposition 4.47 in [27] and states a correspond-
ing “translated” version for the convex composite setting. For various related formulations
and examples we like to refer to [216].

Lemma 5.1.7 (Strict constraint qualification). Let T be a stationary point of problem
(P.) and let A € M(Z) be a corresponding Lagrange multiplier. Suppose that X\ satisfies the
following strict constraint qualification

(5.1.9) 0 € int{F(z) + DF(z)R" — ®},

where @ := {y € R™ : (\,y — F(z)) = ¢(y) — ¢(F(Z))} C dom ¢. Then:
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5.1. A first second order sufficient condition and isolated stationarity

(i) The Lagrange multiplier X is unique, i.e., M(Z) = {\}.
(i1) The multifunction M : R™ = R™ is upper Lipschitzian at the stationary point Z.

Proof. The proof of this Lemma is based on the (rather easy) observation that the set ®
and the condition (|5.1.9)) yield the right extension of the strict constraint qualification given
in Definition 4.46 in [27]. Alternatively, the statements (i) and (ii) can be shown directly by
mimicking the proof of Proposition 4.47 in [27] and by appropriately using the structure of
the set ®. We will not go into details here. O

5.1.3. Constraint nondegeneracy and the strict complementarity condition

In the following, we present the concepts of constraint nondegeneracy and strict comple-
mentarity, which will play an essential role in our subsequent analysis. Constraint nonde-
generacy was originally introduced by Robinson [204], 205] to study sensitivity properties of
nonlinear programs. Robinson also showed that in the case of nonlinear programming, the
nondegeneracy condition reduces to the well-known Linear Independence Constraint Qual-
ification (LICQ). In [27], constraint nondegeneracy was used in a reduction approach for
cone-reducible problems to establish quantitative stability results (see section 4.6 in [27]). A
related version of the nondegeneracy condition was also discussed in the paper [26], where it
was connected to transversality. Here, we will work with the more general formulation that
was studied by Shapiro in [218].

Over the last years, the concept of constraint nondegeneracy has been used in different
fields of optimization to investigate and discuss second order conditions and second order
information. For instance, in [2206], 43, [119], based on the nondegeneracy condition, a second
order theory was developed for semidefinite programs and low-rank structured problems that
can be applied to establish fast local convergence of corresponding semismooth Newton-type
methods. Further examples and applications can also be found in [26], 27, 217] and [25].

Definition 5.1.8 (Nondegeneracy and strict complementarity). Let z € F~!(dom ¢)
be a feasible point of problem . We say that the nondegeneracy condition s fulfilled at

x, if

where X € O¢(F(x)) is an arbitrary subgradient. Moreover, we say that the strict comple-
mentarity condition is satisfied at x, if there exists A € M(x) such that

(5.1.11) X € 1i 9(F(z)).

Remark 5.1.9. Let us note that the nondegeneracy condition can only hold at some = €
F~1(dom ¢) if ¢ is subdifferentiable at F(z). Otherwise, the lineality space lin Noy(p(z))(A)
is empty and condition (5.1.10)) cannot be satisfied by definition.

In the next paragraph, we want to derive several equivalent representations of the nonde-
generacy condition (5.1.10). Therefore, let z € F~!(dom ¢) be a feasible point and assume
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that ¢ is subdifferentiable at F'(z). Moreover, let A € 9¢(F(z)) be an arbitrary subgradient
and let us define the following sets

Uy :=1in Npy(p)(A), Uz :=lin o (F(z);-), Us:=[aff dp(F(z)) — N+ .

Then, it holds Uy = Us = Us. Clearly, this shows that the subspaces U, and Uz do not
depend on the specific choice of the subgradient A. In particular, for all A;, Ay € 9¢p(F(z))
we have

Let us briefly prove the equivalence of the three different subspaces U; —U3. From the defi-
nition of the normal cone, it follows for any h € lin Nyg(p(z))(A):

(v—=Ah)y=0, Yovedp(F(z)).
Obviously, using Lemma (ii), this implies
(5.1.13) (A, B) = ¢H(F(z); h).
Furthermore, since the lineality space of the normal cone Nyg(p(z))(A) is a linear subspace,
we also have —h € lin Npy(p(z))(A). Consequently, equation also holds for —h and

we immediately obtain

¢+ (F(@); h) + ¢*(F(x); —h) = 0.
On the other hand, if h € lin ¢*(F(z);-) is given, then again by applying Lemma (i),

we can infer

(A—v,h) <0 and (v—Ah) <0

for all v € d¢(F(x)). This shows h € lin Nyg(p(z))(A) and establishes Uy = Us. To finish the
proof, let h € Z/12l be arbitrary. Then, using (5.1.13)), it holds

(h4 A\, d) = ¢H(F(x);d), VY d € lin ¢*(F(z);-).

However, by Lemma [2.5.11| (ii) and Lemma this is equivalent to h+ A € aff 9p(F(7)).
Since Us is a closed, linear subspace, it follows Us = [Us-]= = Us, as desired.

Next, we want to present and verify a connection between the nondegeneracy condition
(5.1.10) and Robinson’s constraint qualification. Let us set

[1]

= {(h,t) ER™ xR : h € lin ¢*(F(z);-), t = ¢*(F(x);h)}.

and let (h,t) € = be arbitrary. From the definition of the set Z, it directly follows (h,t) €
epi ¢*(F(z);-) and we have

¢*(F(z);—h) = —¢*(F(z); h) = —t.
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Together, these observations imply
(h,t) € epi ¢*(F(2);-) N —[epi ¢*(F(2);-)] = lin epi ¢*(F(x); ).
Now, suppose that (h,t) € lin epi ¢*(F(x);-) is a given vector, then it holds
OH(F(x);h) + ¢ (F(x);—h) <t + (1) = 0.

Using the subadditivity of the directional epiderivative, we readily establish h € lin ¢*(F(z); )
and
t > ¢ (F(x);h) = —¢H(F(z); —h) > —(~t) = t.

Hence, we have shown that the two sets = and lin epi ¢*(F(z);-) coincide. Furthermore,
due to Lemma [2.5.3] we obtain the following, useful connection to the tangent cone of the

epigraph epi ¢:
= = lin epi ¢*(F(2);-) = lin Topi ¢(F (), 6(F(2))).

As a consequence, the nondegeneracy condition ([5.1.10)) can be equivalently rewritten as

<DF§§J)R"> —lin Topi o(F(2), d(F(2))) = <H¥1>

and, due to lin epi ¢*(F(z);-) C epi ¢*(F(z);-), the following condition must be automati-

cally satisfied at 2
<DF§1§)RH> T o(F(2), 6(F(2))) = <Rg> |

However, by applying Proposition 2.97 and Corollary 2.98 of [27], the latter condition is

equivalent to | . DREES
Oemt{<so<F<:c>>>+< R ) ep””}’

which in fact is just another equivalent reformulation of Robinson’s constraint qualification
. In summary, our latter computations have shown that the nondegeneracy condition
implies Robinson’s constraint qualification. In particular, if the nondegeneracy condition
holds at a local solution Z of , then M(Z) is nonempty and Z is a stationary point of

problem .

We conclude this discussion with a brief example. Let K C R"™ be a convex, closed, and
nonempty set and let us define ¢ := tx. Furthermore, let z € F~'(K) and A € 0¢(F(x)) =
Nk (F(x)) be arbitrary. Then, the nondegeneracy condition can be simplified as follows. By

, we have
Nog(r)(N) = Ny (ran(A) = {y € T (F(2)) : (A, y) = 0} = Tre(F(z)) N {A}*.
Moreover, due to 0 € Nk (F(z)) and (5.1.12)), we obtain

lin N@qb(F(x)) ()\) = lin N@(Z)(F(x))(o) = lin TK(F<1‘))
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Thus, in this situation, the nondegeneracy condition reduces to

DF(z)R" —lin Tk (F(x)) = R™.
Let us note that this is exactly the condition that was introduced and analyzed by Bonnans
and Shapiro in [26], 27, 218].

The following result of Lemaréchal and Sagastizabal provides a helpful, alternative char-
acterization of the strict complementarity condition.

Lemma 5.1.10. Let S C R"™ be a convex, nonempty, and closed set and let A € S be
arbitrary. Then, it holds

AeriS <= Ng(A) is a subspace.

Proof. A proof of this result can be found in [I31 Proposition 2.2|. O
The next result is analogue to [27, Proposition 4.75] and [2I8, Theorem 2.1| and completes

our discussion of the nondegeneracy and strict complementarity condition.

Lemma 5.1.11. Suppose that T is a local solution or a stationary point of . Then, the
following holds:

(i) If the nondegeneracy condition holds at Z, then the set M(Z) reduces to a singleton.

(ii) Conversely, suppose that M(z) = {\} and that the strict complementarity conditions
1s satisfied at T. Then, the nondegeneracy condition holds at T.

Proof. The proof is a mere “translation” of the proofs given in [27, 2I8|. Nonetheless, for
the sake of completeness, we want to present a proof of this statement.

At first, let T be a local solution of and suppose that the nondegeneracy condition is
satisfied. Then, we have seen that Robinson’s constraint qualification must hold at Z and,
consequently, Z is also a stationary point of . In particular, we have M(z) # 0. Of
course, the argumentation is identical if Z is already a stationary point. Now, let us assume
that there exists A\, A € M(Z), A # \. It follows

DF@)T(A=X) =0, A—Xedp(F()) -\ C aff dp(F(z)) — A

and we infer A — \ € [DF(z)R"]* N [Us]*. However, by taking the orthogonal complement,
the nondegeneracy condition is equivalent to

(5.1.14) [DF(z)R™* N [lin Nag(r ) (V)] = {0},

see, e.g., [I1], Proposition 6.26]. This clearly implies A = A. Next, to prove the second part,
let us suppose that the nondegeneracy condition is not satisfied. Then, due to , there
exists v # 0 such that v € ker DF(z)" and v € [lin N(%(F(g—c))(j\)]L = aff 9¢(F(z)) — \.
Obviously, this establishes

(5.1.15) DF(Z)"(tv) =0 and X+ tv € aff dp(F(Z)),
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for all t € R. Now, the second part of equation ([5.1.15) and the strict complementarity
condition imply A + tv € 0¢(F(z)) for all ¢ > 0 sufficiently small. Next, by combining

A € M(z) and (5.1.15)), we obtain
V(@) +DFE) (A +tv) =0

and, consequently, it holds A + tv € M(z) for all t > 0 sufficiently small. Clearly, this is a
contradiction to the assumption M(z) = {A\}. O

5.1.4. lIsolated stationarity

The following theorem establishes several conditions under which isolated stationarity of an
arbitrary stationary point of problem can be guaranteed. This result (together with
Corollary can be traced back to Robinson [203, Theorem 2.3|. Similar results can
also be found in section 4.4.4 in [27].

Theorem 5.1.12 (Isolated stationarity). Let # € F~!(dom ¢) be a stationary point of
problem , Suppose that the second order sufficient conditions (5.1.8) hold at T and that
one of the following conditions is satisfied:

(i) The nondegeneracy condition holds at .

(i) DF(z) : R™ — R™ is onto.

(iii) The multiplier X\ € M(Z) fulfills the strict constraint qualification .
Then, T is an isolated stationary point of .

Proof. We slightly adjust the proof given in [203, Theorem 2.3] and prove this statement
by contradiction. (We also want to refer to the proofs of |27, Theorem 4.51 and Proposition
4.52], where similar techniques were used). Let () be a sequence of stationary points of
problem that converges to  and let ()\k) r be a corresponding sequence of multipliers,
i.e., \F € M(z*) for all k € N. Since each of the conditions (i)-(iii) implies that Robinson’s
constraint qualification is satisfied at Z, Lemma ensures boundedness of the sequence
(A¥)g. Furthermore, due to Lemma m (i) and (i), the set of Lagrange multipliers
also reduces to a singleton M(7) = {\}.

Now, there exists a subsequence (A¥)rer, of (AF); that converges to some limit A € R™.
The continuity of Vf, F', DF, and of the proximity operator yields

V(@) +DF@E)'\ = lim Vf(*)+DFE)TAF =0,
Ki13k—o0
F(z)— proxé(F(a?) +) = Kllailfgoo F(z*) — proxé(F(xk) + M) =o.

Obviously, this shows A € M(Z) and, since M(Z) is a singleton, we also have A = X. Next,
using \*¥ € 9¢(F (2¥)) and a first order Taylor expansion, we obtain

¢(F(a")) — 6(F(2)) < (A", F(«*) — F(z)) = (\*, DF(z)(2" — 2)) + o(||2" - z])).
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Let us define t, := ||z —Z| and h¥ := (2¥ — %) /tx. Then, by passing to another subsequence
K C K; if necessary, we can assume that (h¥)pcx converges to some h € R™. It follows

F(z®) - F(z) F(Z+th*) - F(z
(xF) (Z) _ (T + tph") (Z) = DF(z)h* + ——— DF(z)h
t e tr  K>k—oo

o(tx)

and

S F(E):DF@h) < lmint 2EE) —oF(@)

K>k—00 tr
.. k N1 k O(tk) AT _

< liminf (A%, DF(z)h") + = (\,DF(z)h).
K>k—00 tr

Adding V£(Z)"h on both side of the latter inequality and applying Corollary [2.5.7, we
establish

(@ h) = V(@) h+ ¢*(F(z); DF(2)h) < (Vf(Z) + DF(z) X\, h) = 0.

Together with the stationarity of z, this implies h € C(Z) \ {0}. Next, a Taylor expansion of
Vf, F,and DF at  and Lemma yield

(5.1.16) 0= —Vf(z*) — DF(z*) T\

_ . . . S (= o(tr)
= —Vf(@) — DF@) "\ —t;, <v2f(a;)h’f + ; AP LV2E(z)RF — 0 )

= —DF@) (=0 -t (sz@c)h’“ +g X V2E (@)h — <tt:>>

and
0¢*(\F) 3 F(2%) = F(z) + tR DF(Z)h* + 2 D> F(Z)[h*, h¥] + o(t2).

Furthermore, by the monotonicity of the subdifferential operator 9¢* (combine, e.g., |11,
Theorem 20.40] and Lemma [2.5.14]), we have

0 < (F(zF) = F(2),\*F = X) = (\F — X\, tx DF (z)h* + 2 D?F(z)[h*, h¥]) + o(t3).

By multiplying (5.1.16)) with ¢, (k*¥)T and adding the latter inequality, we get

TV - O, DR+ L) )
k

> 0.
Taking the limit K > k — oo, we finally obtain
RV f(Z)h + (N, D?F(Z)[h, h]) < 0.

However, due to h € C(Z) \ {0} and M(z) = {\}, this contradicts the second order sufficient
conditions ((5.1.8). O
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Remark 5.1.13. Let us note, that this proof also works under slightly weaker assumptions.
Specifically, if Robinson’s constraint qualification is satisfied at Z, then the set M(x) is
uniformly bounded in a neighborhood of Z and the sequence (A¥);, which was constructed
in the proof of Theorem will stay in a bounded set. Of course, if M(Z) is not a
singleton, a stronger form of the second order sufficient conditions has to be used, in order
to establish a contradiction at the end of the proof.

The latter observations motivate the following corollary, which obviously requires no proof.

Corollary 5.1.14. Let Z € F~(dom ¢) be a stationary point of . Suppose that the
strong second order sufficient conditions hold at

h'V2f(Z)h + (N, D*F(z)[h,h]) >0, Y helC(@)\{0}, V&M

and that Robinson’s constraint qualification is satisfied at . Then, T is an isolated stationary
point of (P

Remark 5.1.15. Let us briefly reconsider our initial problem
min f(z) + elx) = (),

where f: R™ — R is twice continuously differentiable and ¢ : R — (—o0, +00] is a convex,
proper, and lower semicontinuous mapping. Clearly, in this situation, we have F' = I and,
consequently, condition (ii) in Theorem is satisfied. Let T € dom ¢ be an arbitrary
stationary point, then the corresponding second order sufficient conditions reduce to
the condition

h'V2f(Z)h >0, YV hel(z)={heR":*z;h)=0}.

Thus, if the Hessian of f at Z is positive definite on the critical cone C(Z), then Z is a strict
local minimum and an isolated stationary point of problem . In the following sections, we
will discuss and present situations where isolated stationarity can be obtained under weaker
assumptions. In particular, we have ignored any possible second order information of the
nonsmooth function ¢ so far.

5.2. No gap second order conditions

We will now introduce and present a pair of so-called no gap second order conditions for the
convex composite problem . In contrast to the previous discussions, these conditions also
take the possible curvature of the nonsmooth and nonlinear function ¢ into account. Since
the formulation and derivation of these general second order conditions relies on a number of
not yet mentioned concepts, such as, e.g., second order directional derivatives of ¢ or outer
second order regularity, we start with some preliminary definitions.

This subsection is primarily based on the sections 3.2.1, 3.3.4, and 3.4.1 in [27] and summa-
rizes the most important results of Bonnans and Shapiro. For more details and information
on second order conditions for composite functions we refer to [24] 27]. To improve the over-
all comprehensibility of this subsection and of the abstract second order theory, we decided
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5. Second order theory and decomposability

to recreate some of the proofs given in [27] and to “translate” them to the convex composite
setting. The complete proofs can be found in the Appendix.

5.2.1. Second order directional (epi-)derivatives and second order tangent
sets

At first, we will give a brief overview on second order directional derivatives and their relation
to second order tangent sets. Let us note that the following definitions are formulated for
general functions g, g, and G that are not necessarily connected to our initial problem or to
problem (P,).

Definition 5.2.1. Let o : R" — (—o0, +00] and x € dom ¢ be given and suppose that o is
directionally differentiable at x in the direction h € R™ such that ¢'(x;h) is finite. Then, the
lower and upper (parabolic) second order directional derivatives of ¢ at z are defined by:

o(x + th + 3t?w) — o(z) — to'(z; h)

" (x; h,w) := liminf
Q_(I', aw) Hg(l)n %tQ ’
z +th+ 5t°w) — o(x) — to'(z; h
o/ (2 hyw) = limsup & st) — ole) — te'(@:h).
tl0 th

We say that o is twice (parabolically) directionally differentiable at x, in the direction h,
if the upper and lower second order directional derivatives coincide for all w € R™. In that
case, the term o (x; h,w), w € R™, will be used to denote the common values.

Apparently, if the function p is twice continuously differentiable at x, then it is also twice
directionally differentiable at x and a second order Taylor expansion immediately yields

o' (w; h,w) = Vo(x) w+ bV o(x)h.

Next, we introduce an analogous terminology for second order directional epiderivatives.

Definition 5.2.2. Let o : R" — (—o00,+0o0], € dom o, and h € R™ be given and suppose
that the directional epiderivatives gf (z;h) and gi(w; h) are finite. Then, the lower and upper
(parabolic) second order directional epiderivatives of ¢ at x are defined as follows:

142,~\ b
o(x 4 th + 5t°w) — o(x) — to* (z; h)

in(x; h,w) := lim inf

0, —w %tQ ’
z+tph + 220) — o(z) — ¢ Yz h
Qf(x;h,w) = sup lim inf of i 2k )1 29( ) kQ+< ! )
(ti)nEND k—o00, W—w Etk

In addition, if o is directionally epidifferentiable at x, in the direction h, and the lower and
upper second order directional epiderivatives coincide for all w € R™, then o is said to be
twice (parabolically) directionally epidifferentiable at x, in the direction h. In this case, we
will use the term g“(x; h,w), w € R™, to denote the coinciding derivatives.

Again, if p is Lipschitz continuous in a neighborhood of z and directionally differentiable at
x, then for all h, w € R", the second order epiderivatives in(:v; h,w) and Q%(:L’; h,w) reduce
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5.2. No gap second order conditions

to the more conventional lower and upper second order directional derivatives. Clearly, our
definition of second order epidifferentiability can be equivalently rephrased as epi-convergence
of the second order difference quotients

o(z + th + 1t2w) — o(x) — to*(a; )
8 ol h)(w) 1= e ,

N[

for all w € R™. A thorough treatment and further properties of second order (epi-)derivatives
can be found in [15, 16, 206], [208, Section 13.J], and [27, Chapter 3]. As in Lemma [2.5.3]
the second order epiderivatives can be connected to so-called second order tangent sets.

Definition 5.2.3 (cf. [27, Definition 3.28]). Let S C R™ be nonempty and let x € S be
given. The sets

TE (2, h) := {w € R" : dist(z + th + 2w, S) = o(t?), t > 0},
T3(z,h) == {w € R" : It} L 0 such that dist(z + txh + 2tjw,S) = o(t})}

are called the inner and outer second order tangent sets to the set S at the point x in the
direction h € R", respectively.

The inner and outer second order tangent sets are closed and it holds Tg’Q(x, h) C T%(x, h)
for all h € R™. Moreover, if the set S is convex, then the distance function dist(-, ) is convex
and, in that case, the inner second order tangent set Tg’Q(x, h) is also a convex set. The outer
second order tangent set T2(z, k) can be nonconvex, even if S is a convex set.

Lemma 5.2.4 (cf. |27, Proposition 3.41]). Let o : R" — (—o00,+00] and x € dom o be

gwen. For h € R", suppose that Q£ (z;h) and Qi(l‘; h) are finite. Then, we have

Tezpi g[($7 Q(.’L‘)), (h7 Qi(x; h))] = epi QJ:L({E; h, ')7
122 l(x, o(@)), (b, o (x; )] = epi 0% (3 h, ).

Lemma immediately implies that the upper second order directional epiderivative
Qf(a:; h,-) is convex, when the function g is convex and g*(z; h) is finite. We conclude this
preparatory subsection with a chain rule for second order epiderivatives.

Lemma 5.2.5 (cf. [27, Proposition 3.42]). Let G : R™ — R™ be a twice continuously
differentiable function and let o : R™ — (—o00,400] be a convex, proper, and lower semicon-
tinuous mapping. Moreover, suppose that Robinson’s constraint qualification

0 € int{G(x) + DG(z)R"™ — dom p}
is satisfied at x € G (dom o) and that o*(G(z); DG(z)h) is finite. Then, it holds
(00 G (w3 h, w) = 0*(G(x); DG(x)h, DG(x)w + D*G(x)[h, h]),

(00 G)Y (w; h,w) = 0¥ (G(x); DG(x)h, DG(x)w + D*G(w)[h, h)).
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5. Second order theory and decomposability

5.2.2. Outer second order regularity and second order conditions

The concept of outer second order regularity was introduced and developed in [22] 24], 27].
It is an essential analytical tool and one of the central ideas that allows to close the gap
between second order sufficient and necessary conditions. The following definition is taken
from |27, Definition 3.94].

Definition 5.2.6 (Outer second order regularity). Let o : R® — (—o0,400] be an
extended real valued function and let © € dom o be arbitrary. We say that ¢ is outer second
order regular at the point x, in a direction h € R™, if Q£ (x, h) is finite and if for any sequences
(te)r, tr 4 0, and (w*, %), € R**L that satisfy t,(wk, %) — 0 and

(5.2.1) o(z + tpxh + %t%wk) < o(z) + tpo' (x;h) + %tirk

there exists a sequence (W*,7%), € R"*1 such that, for all k € N, it holds in(m; h,wk) < 7F
and

~k

w —wk—>0, 7k

— 7" 50, ask— .

The function ¢ is said to be outer second order regular at x on a set H C R”, if Q‘E (z;h) is
finite for all h € H and if o is outer second order reqular ot x, in all directions h € H.

Let us note that condition ([5.2.1)) is equivalent to

s () uled) (e

Thus, outer second order regularity implies that for any parabolic curve of the form ,
which is entirely contained in the epigraph epi ¢ and which is tangential to the direction
(h, 0" (z;h)) € Tepi o7, 0(z)), the term (w*,7%) will eventually approach the outer second
order tangent set Tgpi Q[(w, o(z)), (h, gf(a:; h))] as k — oo. Next, we present a chain rule-type

result for outer second order regular functions.

Lemma 5.2.7. Let g : R" - R, G : R® — R™ be twice continuously differentiable and let
0:R™ — (—o0,+00] be a convex, proper, and lower semicontinuous function. Furthermore,
suppose that Robinson’s constraint qualification is satisfied at x € G~'(dom o) and o is
outer second order regqular at G(x) in the direction DG(xz)h. Then, the composite function
Yt R" — (—o0,+00], ¢¥(z) := g(z) + o(G(x)), is outer second order regular at x in the
direction h.

Proof. A proof can be found in [27, Proposition 3.88 and 3.96]. O

We are now ready to state the no gap second order conditions for the convex composite
problem . Recall that in our initial setting the functions f : R™ — R, F': R® — R™ are
supposed to be twice continuously differentiable and ¢ : R™ — (—o0, +00] is assumed to be
convex, proper, and lower semicontinuous.

This theorem summarizes and combines the Theorems 3.45, 3.83, 3.86, 3.108, and 3.109
in [27], see also |24, Theorem 5.2| for an analogue formulation. As already mentioned, a
complete proof of Theorem is provided in the appendix.
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5.2. No gap second order conditions

Theorem 5.2.8 (No gap second order conditions). Let z € F~!(dom ¢) be given
and suppose that Robinson’s constraint qualification is fulfilled at x. Then, the following
statements do hold:

(i) (Second order necessary conditions). Additionally, let T be a locally optimal solution
of (PJ. Then, for any h € C(Z) and any convez function ((-) > ¢ (F(z), DF(Z)h, ")
the following inequality is satisfied:

(5.2.3) e {th2 F(@)h + (A, D2F(3)[h, h]) — C*(/\)} > 0.

(ii) (Second order sufficient conditions). Let T be a stationary point of problem . Sup-
pose that for every h € C(Z), the function ¢ is outer second order regular at F(Z) in
the direction DF(Z)h and that it holds

(5.2.4) . {hTVQ F(@)h + (A, D2F(z)[h, h]) — g;g,h(x)} >0,

for all h € C(Z) \ {0}, where &4 4(-) == oY (F(z), DF(2)h,-). Then, for some o > 0
and all x in a neighborhood of T it follows

(5.2.5) f(@) +¢(F(x)) = f(2) + ¢(F(2)) + alle — z]%,

and hence, Z is a locally optimal solution of (P). Moreover, if the function &y is
convex for every h € C(Z), then the second order conditions (5.2.4]) are necessary and

sufficient for the quadratic growth condition (5.2.5)) and there is no gap between the
second order necessary and sufficient conditions.

In the second order necessary conditions we can always choose ((-) = qbﬁ(F (z); DF(z)h,-)
as an upper and convex estimate of the function {4 ;. Moreover, if ¢ is twice directionally
epidifferentiable at F'(Z), in all directions DF(z)h, h € C(Z), then the epiderivative &4 5 is
convex and there occurs no gap between the second order conditions.

Remark 5.2.9. Let Z be a stationary point of problem . Then, ¢ is subdifferentiable
at F'(z) and for any ¢ > 0 and h, w € R™ it holds

¢(F(z) +tDF(Z)h + it*w) — ¢(F(T)) > (\, tDF(2)h + 3t2w), Y X € 9¢(F(z)).
Now, choosing A € M(Z) C d¢(F(Z)) and h € C(T), the latter inequality yields

o™ (F(z); DF (2)h, w)

g AED) (V@) h + 6 (F(@) DF@)h))

= (A
= 410, v—w %tQ (A w),

where we used DF(Z)"\ = —V f(z) and the definition of the critical cone C(#). Hence, this
immediately implies

&aN) = swp (A w) — ¢ (F(z); DF(2)h, w) < 0.

weR™
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5. Second order theory and decomposability

Furthermore, since the convex function ¢ in (5.2.3)) satisfies {(-) > &4 n(-), we can apply [11,
Proposition 13.14] and obtain the following, final estimate

CA) < AN <0, YAeM(z), VheCl()

This shows that the second order sufficient condition is generally weaker than the
second order condition , which was discussed in the previous subsection. Moreover,
the second order necessary conditions indicate that the stronger conditions (5.1.8]) cannot
be expected to hold at a local minimum of without any further assumptions on the
nonsmooth function ¢.

Remark 5.2.10. A careful study of the proof of Theorem [5.2.8 shows that the second
order optimality conditions can also be stated in terms of the lower second order directional
epiderivative (zbc)%. In particular, it is possible to derive the following pair of second order
conditions:

Let  be a local solution of problem , then it holds

inf (o) (@ h,w) >0, ¥ heC(T).

On the contrary, assume that Z satisfies the first order necessary condition (¥,)* (Z;h) > 0
for all h € R™ and suppose that 1. is outer second order regular at Z in all directions
heC(z) = {h: (e)* (Z;h) < 0}. Then, the second order growth condition holds at Z if and
only if the following second order sufficient conditions are satisfied

inf ()M (@ h,w) >0, ¥V hel(z)\ {0}

Clearly, these alternative conditions have the advantage that Robinson’s constraint qual-
ification is not needed explicitly. Second order conditions of this form were already studied
and introduced by Ben-Tal and Zowe [15] [16] by using (parabolic) second order directional
derivatives. We also refer to |27, Proposition 3.105] for more details.

Remark 5.2.11. Let us briefly discuss the corresponding pair of no gap second order con-
ditions for our initial problem . Again, as in Remark we set ¢ = p and F = 1.
Obviously, in this situation, the nondegeneracy condition is satisfied at any point
x € dom ¢ and, due to Lemma m (ii), the set of Lagrange multipliers reduces to the
singleton M(z) = {—V f(z)} when Z € dom ¢ is a stationary point. Now, let z € dom ¢
be a local solution of the initial problem . Then, by , for any h € C(Z) and any

convex function ¢(+) > ¢ (Z; h, -), we have
h'V2f(@)h — (=Y f(2)) 2 0.

On the other hand, let Z be a stationary point of problem . Let us assume that ¢ is outer
second order regular at  on C(z) and that for all h € C(z) \ {0} the second order sufficient
condition

WV f(@)h = € (=V f(Z)) > 0
is satisfied with &, 5(-) = ™ (Z; h,-). Then, by Theorem (i), = is a (strict) locally
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5.3. Decomposable functions

optimal solution of . As we have seen in Remark this second order sufficient
condition is certainly weaker than the condition presented in Remark [5.1.15] Unfortunately,
due to the presence of the term f;h, we cannot infer that Z is also an isolated stationary
point of the problem . In the next section, we introduce several classes of nonsmooth
functions ¢ that will allow us to resolve this disadvantage.

Finally, we present a specific property of the upper second order directional epiderivative
that will be needed for the second order analysis of the proximity operator in the next
subsection. This result is based on [23, Corollary 4.1] or |27, Proposition 3.48|.

Lemma 5.2.12. Let o : R" — (—o0, +o0] be a convex and proper function and let x € dom p
and X\ € R™ be given. Suppose that there exists a convex, nonempty set Q C dom o*(x;-),
such that o*(x; h) is finite for every h € Q. Then, the function

E)x :R" — [—OO, —I—OO], E)\(h) ‘= — sup ()\,U)) - Qﬁ-i($a h,’U))
weR™

18 convex on §).

Proof. First, let us note that the upper second order directional epiderivative Qf(x; h,w)
is well-defined for all h € Q2 and w € R™. We rewrite the function =) as follows

Ex(h) = — sup (\w) — Qﬂ(gg; h,w)
weR™
SNA
= — sup Aw) —:(w,y) €epl o7 (s h, )} =—0 . 11, (A, —1).
(w,y)ER™ xR {< > ( ) + ( )} epi o7 (w3h, )( )

Due to Lemma the epigraph epi Qf(x;h, -) coincides with the inner second order
tangent set Teﬁ (@ 0()), (h, o*(z; h))]. However, in this situation, [27, Proposition 3.48] is
applicable, which establishes the convexity of =) on . O

Obviously, if the function p is subdifferentiable at x, then the set € in Lemma [5.2.12] can
be chosen as Q = dom o*(x; ).

5.3. Decomposable functions

In the following section, we will introduce and discuss an important class of nonsmooth and
not necessarily convex functions for which the curvature term in the second order conditions
and has an easy representation. As anticipated in Remark this will
allow us to formulate no gap second order conditions that additionally guarantee isolated
stationarity of a stationary point of problem and that combine our different theoretical
results we have developed so far.

The concept of decomposable functions was proposed by Shapiro in [217] and is strongly
related to the notions of amenable functions, see, e.g., [193, 194] or [208, Chapter 10.F],
and of C*-cone reducible sets in nonlinear, constrained optimization. We will see that the
class of decomposable functions is quite rich and a large number of nonsmooth optimization
problems can be treated within the framework of decomposable function. In particular, we
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5. Second order theory and decomposability

will show that £1- and group sparse problems possess a decomposable structure. Moreover,
decomposability is also applicable to structural more advanced problems such as semidefinite
programming or nuclear norm regularized optimization problems.

Before stating the main definition, let us give a short summary of our current position.
In Remark [5.1.15| and [5.2.11], we have seen that the choice F' = I leads to two basic second
order sufficient conditions that both seem to be too strong and too weak to characterize or
ensure isolated stationarity. As already mentioned, the overall idea is now to rewrite ¢ as
a suitable composite function ¢ = @4 o F' and to shift the second order discussion to the
corresponding convex composite problem . In this respect, if ¥ is a stationary point
of problem , then, by comparing Theorem @ and Theorem the decomposition
pair (g4, F') should be chosen such that:

e The function ¢4 is outer second order regular and twice epidifferentiable at F(Z), in
all directions DF(Z)h, h € C(Z).

e The curvature term &7, (A) vanishes for all multipliers A € M(z) and h € C(Z).

e The mapping DF(z) : R™ — R™ is onto or the nondegeneracy condition is satisfied at
Z. (Or other regularity conditions hold at Z, see Corollary [5.1.14)).

In this case, there will be no gap between the second order necessary and sufficient conditions
and Theorem [5.1.12] is applicable. In the following, we will systematically verify and derive
these motivational observations and show that the concept of decomposability adequately
unites our different demands and results.

In the next paragraph, based on [217), Definition 1.1], we give a definition of decomposable
functions. Since the framework in [217] is tailored to the real valued setting, we have to adjust
the definitions given in [217] to cope with the possible extended valuedness. Moreover, we
also extend the definition in [217] and introduce fully decomposable functions, which will
play an essential role in our further analysis. Thereafter, we discuss the main properties of
decomposable functions, present various illustrating examples and provide several calculation
rules. We conclude this section with one of our main results. In particular, by combining
diverse theoretical frameworks, such as the VU-theory, second order sensitivity analysis of
the Moreau envelope, and the strict complementarity condition, we will establish that the
curvature term §Z’h(—V f(&)) for the initial function ¢, which already appeared in Remark
[5.2.17] does not depend on a specific decomposition pair and can be expressed via a Moore-
Penrose inverse of the Frechét derivative of the proximity operator. This is one of the most
fundamental steps to show that, for the class of decomposable functions, the second order
sufficient condition also ensures nonsingularity of any element of the Clarke subdifferential

OFM(z) of a stationary point of ).

5.3.1. Decomposability

Let us start with a detailed definition of decomposable functions.

Definition 5.3.1 (Decomposable functions). A function ¢ : R" — (—o00,+o0] is called
C*-decomposable, £ € N, at a point & € dom ¢, if there exists an open neighborhood U of &
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such that
(5.3.1) p(z) = o(T) + pa(F(z)), YVaeU,
and the functions pq and F satisfy:
(i) F:R™ — R™ is (-times continuously differentiable on U and it holds F(z) = 0.

(ii) The mapping pq : R™ — (—o00,400] is convex, proper, lower semicontinuous, and
positively homogeneous.

(iii) Robinson’s constraint qualification holds at Z:

(5.3.2) 0 € int{F(z) + DF(Z)R" — dom ¢4} = int{DF(Z)R" — dom ¢ }.

We say that ¢ is C*-fully decomposable at & if ¢ is C*-decomposable at T and if, in addition,
the nondegeneracy condition

DF(Z)R" +lin Ny, 0)(}) = R™
is satisfied at T for an arbitrary subgradient A\ € Jp4(0).

If ¢ is decomposable at z, then the functions ¢4 : R™ — (—o0,+0oc] and F : R" — R™
are called a decomposition pair of . Of course, a decomposition of ¢ as in does not
need to be unique. Thus, in general, the function ¢ can have many different decomposition
pairs. Let us also mention that, in the fully decomposable case, since the nondegeneracy
condition implies Robinson’s constraint qualification , assumption (iii) in Definition
is superfluous. We continue with two important remarks.

Remark 5.3.2. Due to Lemma the function ¢, is subdifferentiable at 0. Hence,
the nondegeneracy condition in Definition [5.3.1] is always well-defined. Moreover, since g4
is convex, proper, and positively homogeneous, the set DF(z)R™ — dom ¢, is a convex,
nonempty cone and, consequently, Robinson’s constraint qualification is equivalent to

the condition
DF(z)R" — dom ¢4 = R™.

Remark 5.3.3 (Stationarity and decomposable optimization problems). So far, we
have only considered the trivial decomposition F' = I. For more general decompositions as in
Definition we have to be more careful when speaking of local solutions and stationary
points. If the function ¢ can be rewritten as a composition ¢ = ¢4 o0 F, then it is clear that
every local solution of the initial problem

(5.3.3) min f(x) + ¢(z)
is also a local minimum of the convex composite problem

(5.3.4) min f(z) + pa(F(x)) +
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for some constant ¢ € R, and vice versa. However, this analogy does not need to be true for
the different notions of stationarity, i.e., a stationary point of the initial problem is
not necessarily a stationary point of the composite problem in the sense of Definition
.1 Our earlier discussion in Remark already showed that, in general, we can only
expect the following implication

M@ £0 = FMz)=o0,

where M(z) = {\ € dpy(F(z)) : Vf(Z) + DF(Z)" A = 0} is the set of corresponding La-
grange multipliers of (5.3.4) and A € S, is an arbitrary parameter matrix. Now, if the
function ¢ is C*~decomposable at some point Z € dom ¢ with decomposition pair (¢g4, F),
then Robinson’s constraint qualification guarantees that these two different stationarity con-
cepts are actually equivalent, i.e., we have

M@ £0 = FMz)=o.

Moreover, due to the stability property of Robinson’s constraint qualification (see subsection
, the latter equivalence is also satisfied for any other stationary point that lies in a
certain neighborhood of z. Consequently, T is an isolated stationary point of our initial
problem if and only if Z is an isolated stationary point of the composite problem .
Therefore, in the context of decomposable functions, there is no difference between these
two stationarity concepts. Thus, the overall idea of decomposability and decomposable
optimization problems can be summarized as follows.

Let us suppose that the function ¢ is C*~-decomposable at a local minimum or a stationary
point z € dom ¢ of . Then, the second order analysis of  and of the initial problem
can be completely transferred to the composite problem . Since the latter
problem is a general convex composite problem of the form (P,), our abstract second order
framework and theory of the sections and can be applied. Furthermore, due to
the demonstrated, local equivalence of the problems ([5.3.3)) and (5.3.4), any optimality and
stationarity result that is obtained for the composite setting, can be passed to the original

problem ([5.3.3).

In the following, we want to briefly assess the class of decomposable functions with respect
to its generality and compare it to the so-called class of amenable functions, which was
introduced by Poliquin and Rockafellar in [193] [194].

Definition 5.3.4 (cf. [193, Definition 1.1 and 1.2]). A function ¢ : R" — (—o00, +00]
is amenable at T € dom ¢ if there is an open neighborhood U of T such that

90($) = Qpa(F(x))a Vzel,

where F' : R™ — R™ is a continuously differentiable function and ¢, : R™ — (—00,+00]
is a convex, proper, and lower semicontinuous mapping and the following basic constraint
qualification is satisfied:

there is no y # 0 in Naom o, (F(Z)) with DF(z)Ty = 0.
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The function @ is called fully amenable if such a representation exists and, additionally, the
function F' is twice continuously differentiable and p, is piecewise linear-quadratic.

By [27, Proposition 2.97 and Corollary 2.98|, the basic constraint qualification is just an
equivalent reformulation of Robinson’s constraint qualification. Thus, any C!'-decomposable
function is amenable. On the other hand, an amenable function is C'-decomposable if
and only if the function ¢, is additionally positively homogeneous and it holds F(z) = 0.
Moreover, it is also clear that a C?>-decomposable function does not need to be fully amenable
and vice versa. Finally, in [217], it was shown that a C2-fully decomposable function is also
partly smooth in the sense of Lewis [133]. For a more detailed overview and discussion of
these different decomposition concepts we refer to Hare [100] 10I] and [217]. For instance, a
comprehensive visualization of the connection between various classes of functions, including
amenable, decomposable and partly smooth functions, can be found in [101, Figure 1].

Let us also mention that in [I00, [101] decomposability was defined and studied without
explicitly assuming Robinson’s constraint qualification. Here, we decided to add this extra
regularity condition, since, from a practical point of view, it does not seem to be too restrictive
and it notably simplifies the calculus and the overall analysis. In particular, it can be shown
that many results for (fully) amenable functions, such as sum and chain rules for second order
epiderivatives, do also hold for (fully) decomposable functions and that basic techniques and
proofs can be expanded to the class of decomposable functions.

5.3.2. Properties of decomposable functions and decomposable problems

In this subsection, we gradually derive and collect basic properties of decomposable functions.
More specifically, we will show that any decomposition pair of a decomposable function ¢
fulfills the structural requirements that were stated at the beginning of this section.

Therefore, let us suppose that the function ¢ : R® — (—o0, +00] is C*-decomposable at
some point z € dom ¢ with corresponding decomposition pair (¢4, F') and ¢ € N. Then, it
follows p4(0) = 0, pgy(0) # B, and, due to the lower semicontinuity and positive homogeneity
of the mapping ¢4, we have

pa(h) < liminf pa(h) = liming P20 ) = 2a(0)
h—h t10, h—h t
< limint 22O —0a0) o #a0+1h) — ¢a(0)
t0 t tl0 t

= pa(h)
for all h € R™. Using Remark this shows that ¢4 is directionally differentiable and

directionally epidifferentiable at 0, in all directions h € R™, and both derivatives coincide,
ie.,

(5.3.5) £a(0;h) = 9405 h) = pa(h), ¥ heR™
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Now, let A € dom ¢4, w € R™, and t > 0 be arbitrary, then we obtain

@a(0 + th + 32w) — 4(0) — toh(0;h)  pa(h + Stw) — pa(h)

1 1
3t 7t

Since g4 is convex and ¢q(h) is finite, the limit of the difference quotient on the right side
of the latter equality exists, as ¢ | 0, and is given by the directional derivative ¢/,(h;w); see,
e.g., Lemma [2.5.5] Hence, the function ¢4 is twice directionally differentiable at 0 in the
direction h. Using the epidifferentiability of 4 and analogue arguments, we also see that (4
is twice directionally epidifferentiable at 0 in the direction h. The second order derivatives
are given by

(5.3.6) cpi#(O;h, w) = apil(h; w), @0 h,w) = @h(h;w), ¥V weR™.

Next, let us consider arbitrary sequences (t)x, tx | 0, (w®), (7%) with t(w®, 7%) — 0, as
k — oo, and let us suppose that the following inequality

0a(0 + tih + L20*) < 0a(0) + trp}(0; h) + 2278 = trpa(h) + St37*,

is satisfied for all £ € N. Then, the convexity of vg, our last computations, and the positive
homogeneity of the directional epiderivative gpil(h; -) imply

v o walh+ 5tewt) — pa(h) b (hs Ltk

T

= b (h;w*) = @5 (0; b, wh).

1 1
otk otk

Thus, ¢4 is outer second order regular at 0 in all directions A € dom 4. Using Robinson’s
constraint qualification we are able to transfer this properties to the initial function .

Lemma 5.3.5. Let ¢ : R — (—o00,+0o0] be C?-decomposable at some point x € dom ¢
with decomposition pair (¢q, F'). Then, ¢q is twice directionally epidifferentiable and outer
second order regular at F(x) on dom ¢q4 and ¢ is twice directionally epidifferentiable and
outer second order reqular at x in all directions h € R™ with DF(z)h € dom 4.

Proof. The first statement just summarizes our preceding calculations. Now, let h € R™
with DF(z)h € dom g4 be arbitrary. The C?-decomposability implies that the function
F :R™ — R™ is twice continuously differentiable and Robinson’s constraint qualification

0 € int{F(x) + DF(z)R"™ — dom ¢4}

is satisfied at . Moreover, since @4 is proper and we have DF(x)h € dom ¢y, it follows
from (5.3.5))
G4(F(x); DF(x)h) = o}(0; DF ()h) = pa(DF (x)h) € R.

Consequently, Lemma is applicable and, due to (5.3.6)), we obtain

(s h,w) = (pq 0 F) (23 h,w)
= py(DF ()h; DF (x)w + D*F(x)[h, h]) = (¢4 0 F)¥* (x5 h,w) = @4 (@ h,w)
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for all w € R™. Hence, ¢ is twice directionally epidifferentiable at x in the direction h. The
outer second order regularity of ¢ follows from the regularity properties of ¢4 and Lemma

b27 O

In the following, we return to the discussion of our initial optimization problem . Let
us suppose, that £ € dom ¢ is a stationary point of problem and let the function
¢ : R" = (—00, +00] be C%-decomposable at  with decomposition pair (g4, F). Then, due
to Robinson’s constraint qualification or Remark [5.3:3] Z is also a stationary point of the
composite problem

(5.3.7) min f(z) + ¢a(F(2)) + ().

Since this problem is of the form the theory developed in the sections and is
applicable. In particular, Remark implies

€01 (N) = b (A, w) = ()= (F(2); DF (2)h, w) <0,
for all A € M(Z) and h € C(Z). In our specific situation, we have

G (z;h) = V(@) Th+ 9" (7;h) = V(Z) h + @5(F(z); DF(Z)h)
= V(@) "h+ a(DF(z)h),

for all h € R", and the sets M(Z) and C(Z) are given by

C(z) = {h: V(@) h+ pa(DF(Z)h) = 0}, M(Z) = {\ € dpq(0) : V() + DF(z)" X = 0}.
Moreover, using and Lemma it follows

(5.3.8) (¢a) = (F(): DF(2)h,0) = @4( DF(@)h: 0) < ¢ DF(2)h;0) = 0.

Hence, the decomposability of ¢ and the structure of ¢, imply that the additional curvature
term in ((5.2.3)) and (5.2.4) vanishes, i.e.,

&,nN) =0, YAeM(), Vhecl()

Together with our previous results, this observation allows to formulate no gap second order
conditions for decomposable problems.

Theorem 5.3.6 (Second order conditions for decomposable problems). Suppose that
f:R" = R is a twice continuously differentiable function and let ¢ : R™ — (—o0, +0o0] be
a convex, proper, and lower semicontinuous mapping. Let T € dom ¢ be given and assume
that o is C%-decomposable at T with corresponding decomposition pair (oq, F). Then, the
following statements do hold:

(i) (Second order necessary conditions). Suppose that T is a locally optimal solution of the
wnitial problem . Then, for any h € C(Z) the following inequality is satisfied:

(5.3.9) e {th2f(:z)h + (\, D*F(3)[h, h]>} > 0.
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(ii) (Second order sufficient conditions). Let T be a stationary point of the initial optimiza-
tion problem . Then, the quadratic growth condition,

(5.3.10) f(x) + @(2) > f(2) + ¢(2) + allz — 2%,

holds for some o > 0 and all x in a neighborhood of T if and only if the following second
order sufficient condition is fulfilled,

(5.3.11) e {th2f(az=)h + (\, D*F(2)[h, h]>} >0, ¥hel())\ {0}

Therefore, in the latter case, T is also a (strict) locally optimal solution of the problem
. Moreover, if the function o is C%-fully decomposable at Z, then the second order
sufficient condition additionally implies that T is an isolated stationary point
of the initial problem (P)).

Proof. The decomposability of ¢ implies that any (strict) local solution or (isolated)
stationary point of problem is also a (strict) local solution or (isolated) stationary point
of the composite problem and vice versa. Since g is twice epidifferentiable and outer
second order regular at F'(z), in all directions DF(Z)h, h € C(Z), and it holds

EounN) =0, YAeM(z), Vhel(2),

the second order conditions in Theorem clearly reduce to the present conditions (i)
and (ii). Now, suppose that ¢ is additionally C?-fully decomposable at Z. Then, by Lemma
5.1.11} the set of Lagrange multipliers reduces to a singleton, i.e., M(Z) = {\} and Theorem
5.1.12|is applicable. This readily shows that Z is an isolated stationary point of and
of the initial problem . O

Remark 5.3.7. Let us note that the discussion of the nondegeneracy condition in section
yields ) ) )
lin Nag,0)(A) C{y € R™ 1 (A y) = pa(y)} = Noy,0)(N),

see, e.g., (5.1.12). On the other hand, in the decomposable setting, the set ®, which was
used to define the strict constraint qualification in Theorem [5.1.12] can be characterized as
follows

®={yeR™: (\y—F(z)) = pa(y) — 0a(F(Z))} = {y €R™ : (X, 9) = pa(y)}-

Thus, if ¢ is C?fully decomposable at Z, then the strict constraint qualification is also
satisfied at the (unique) multiplier A and the mapping M : R™ =2 R™ is upper Lipschitzian.

Remark 5.3.8. In Theorem [5.3.6] the function ¢ does not necessarily need to be convex.
We have added this extra condition, since it is one of the basic and natural assumptions
of our initial setting . However, let us note that in the nonconvex case we cannot work
with first order optimality conditions that are based on the proximity operator of . Thus,
Lemma [4.1.2] is not applicable and stationarity of a feasible point Z € dom ¢ can only be
characterized via

W (zd) = V@) d+ @ (3:d) >0, VdeR"
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Since a more thorough treatment of the fully nonconvex case relies on an extension of Clarke’s
subdifferential for real extended valued functions and on certain regularity concepts, we will
not go into detail here.

We conclude this subsection with an important computational result. In particular, we will
show that the curvature term *fz,h of the original function ¢ has an explicit representation
and that, in the decomposable case, the second order conditions in Remark and The-
orem actually coincide. Once more, this beautifully illustrates the fact that our second
order results for the initial problem are independent of the respective decomposition pair
(pa, F'). Again, for convenience, we will assume that the standard conditions for problem

are satisfied.

Lemma 5.3.9. Let f: R™ = R be a twice continuously differentiable function and suppose
that ¢ : R™ — (—00,+00] is a convex, proper, and lower semicontinuous mapping. Moreover,
let & € dom ¢ be a stationary point of problem and let o be C?-decomposable at T with
decomposition pair (pq, F). Then, for all h € C(Z), it follows

(5.3.12) ~Eu(-VI@) = max (A DUF(@)hH).

In addition, if ¢ is C?-fully decomposable at T, then the supremum that defines & W(=V£(z))
1s attained at some w € R™, i.e., it holds

—& (V@) = V@) D+ o (@ hb).

Proof. By Lemma [5.3.5] we know that ¢ is twice epidifferentiable at Z in all directions
h € R" with DF(Z)h € dom ¢4. Now, let h € C(Z) be arbitrary, then it follows

a(DF(2)h) = p}(F(z); DF (z)h) = =V f(z) h € R.

Consequently, due to Lemma [5.2.5[ and (5.3.6]), we have

(@3 how) = (pg 0 F)M (@1 h,w) = @t (F(z); DF (2)h, DF (z)w + D*F(z)[h, h))
= pL(DF(%)h; DF(2)w + D*F(z)[h, h)).

Next, Remark [5.2.9| and (5.3.8) imply

¢4 (DF(2)h;0) = ¢+ (F(z); DF(z)h,0) = 0,

i.e., ¢4 is subdifferentiable at DF(Z)h. Now, let us set w := D?F(Z)[h, h], then the convex
conjugate —5; 5, can be computed via

—Eon(=Vf(Z) = - Sup (w, =V f(2)) = p*H(z; b, w)

(5.3.13) = inf (w, Vf(2)) + ¢4 (DF(z)h; DF(Z)w + ).

Here, since the directional epiderivative I1(y) := gag(DF (Z)h; y+w) is a convex, proper, and
lower semicontinuous function, the latter problem can be dualized by applying the Fenchel-
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Rockafellar duality framework for convex optimization problems. More specifically, by setting
o(y) == (y, Vf(z)), the dual problem of (5.3.13)) is formally given by

max —¢*(DF(z)Tv) ~ II*(~v),

see, e.g., [11, Chapter 15 and Definition 15.19|. Furthermore, due to Lemma [2.5.11] (ii), the

convex conjugates p* and II* can be expressed as follows:

o o'(DF(z)'v) = Sup (y. DF(2)"v = Vf(2)) = vy sa@p(DF(x) v).

o II"(—v) = SI;P —{Y,0) = Gopu(DF @) (Y + ©) = (0, ) + 05, (DFE)H (—)
= (0, v) + Loy (DF ()R (—V)-
Furthermore, by combing q(DF(Z)h) = 05,,0)(DF(Z)h) and Example it holds
Opi(DF(T)h) = 00gy,(0)(DF(T)h) = {v € dpa(0) : pa(DF(2)h) = (v, DF(Z)h)}.
Thus, the dual problem can be rewritten as the following constrained problem

—vE 830d(0)7
max —(w,v) s.t. Vf(@) - DF(z) v =0,
V(&) h+ pa(DF(z)h) = 0.

Moreover, since the first two constraints are equivalent to —v € M(Z) and the third condition
is satisfied by any h € C(z), we finally obtain

(5.3.14) max —0"(DF (%) v) — II*(—v) = Aén/\%}(;) (\, D*F(z)[h, h]).

To finish the proof of the first part, it remains to be shown that there is no duality gap

between the primal problem (5.3.13) and the dual problem (5.3.14)). In particular, by [1I,
Theorem 15.23 and Proposition 15.24|, this is the case when the following regularity condition

is satisfied:
(5.3.15) 0 € int{DF(z)R" — dom II} = int{w + DF(z)R" — dom @ﬁ(DF(i)h; 9}

We want to verify condition (5.3.15)) by using Robinson’s constraint qualification. First, since
g is convex and positively homogeneous, it follows

YL (DF(z)h;y) < pa(DF(Z)h +y) — ¢a(DF(2)h) < pa(y).

and hence, we have dom ¢4 C dom cpﬁ(DF (Z)h; ). Now, Robinson’s constraint qualification
and Remark imply

R™ = DF(z)R" — dom @4 C DF(2)R" — dom @}(DF(z)h; -).

This easily establishes (5.3.15)) and shows that problem (5.3.13) and ([5.3.14]) coincide and
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have the same optimal value. Next, let us suppose that the mapping ¢ is C?-fully decom-
posable at Z. Then, the set of Lagrange multipliers reduces to a singleton M(z) = {A} and,
obviously, the point v := —\ is a solution of the dual problem (/5.3.14). According to |11}
Corollary 19.2], the (possibly empty) set of solutions of the primal problem ([5.3.13)) is given
by

do*(DF(z)"5) N DF (z)~ 011" (—1)).

Moreover, by using the formulae for o*, II*, and dpy(DF(z)h), Example [2.5.16{ and the
stationarity of Z, it follows:

o 90*(DF(%)"0) = Nyyan(DF(2)"0) = {2 : (2, Vf(z) - DF(z)"0) < 0} =R"™
. (91_[*(—1_]) =w+ N@(pd(DF(i‘)h) (5\) Dw+ Nagod(O)(S‘)~

The nondegeneracy condition implies that there exist @ € R™, —§ € lin Ny, (0)(A) such that
w = DF(Z)w — g. Thus, due to

DF(z)i € w + lin Ny, 0)(A) C 01T (—),

and [11, Corollary 19.2], the point @ is a solution of the primal problem ({5.3.13)) and we can
conclude the proof of the second part. O

Remark 5.3.10. Although the convexity of ¢ is not really necessary for the proof of the
previous Lemma, it has an interesting, structural consequence. Particularly, in this situation,
Lemma [5.2.12]is applicable and we can infer that the function

W —€on(~VF(@) = max (A DF(&)[h.h)

is convex on the critical cone C(z) C dom ¢4(%;-) = {h : DF(z)h € dom ¢4}. This clearly
demonstrates that the curvature term —{; ;, captures basic second order properties of the
nonsmooth function .

Remark 5.3.11. Let us note that a similar duality argument as in Lemma is also used
in the proof of the abstract second order conditions in Theorem [5.2.8] For more details we
refer to the Appendix.

Computational results of the chain rule-type have already been studied and es-
tablished for different classes of functions and decomposition concepts. In particular, in
[206, Theorem 4.5 and 4.7|, Rockafellar showed that the curvature term in Lemma is
connected to another second order epigraphical framework, the so-called second order sub-
derivative, and that similar chain rule-type formulae do exist for the class of fully amenable
functions. Moreover, based on the results in [206], Rockafellar et al. have developed an
extensive second order calculus for fully amenable functions, see, e.g., [193] [194] and [208|
Theorem 13.14 and 13.67|. Extensions to the general infinite dimensional setting were studied
by Cominetti in [56]. Finally, Mifflin and Sagastizabal, [150} [152], analyzed functions with
a so-called primal-dual gradient (pdg)-structure. Under a special index set based regularity
assumption they provide a profound calculus for functions with pdg-structure that resemble
the result of Lemma Since decomposable and pdg-structured functions are related,
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see, e.g., Hare [100] 101], Lemma may turn out to be a special case of the pdg-theory.
However, since the connection between decomposable and pdg-structured functions and a
corresponding application of the results in [150, [I52] are not apparent, we leave a further,
more detailed investigation to future work.

5.3.3. Examples and calculus

In the following, we present various examples of decomposable functions and optimization
problems that illustrate the generality and broad applicability of this concept. Let us note
that a large part of our examples is motivated by similar examples addressed by Shapiro
in [2I7, Section 2]. Moreover, let us also mention that, in the decomposable setting, the
nondegeneracy condition has a much easier representation. In particular, in section , we
have seen that the set lin Ny, 0)(A), A € Jpq(0), is equivalent to the subspace lin 7(0;-).

Consequently, due to (5.3.5)), it holds
lin Nay,0)(A) = lin goﬁl(O; ) = lin ¢q.

We start with a discussion of several nonsmooth optimization problems and their corre-
sponding second order conditions.

Example 5.3.12 ({;-regularized minimization). Let us consider the ¢;-optimization
problem

(5.3.16) min (z) = f(z) + pllz,

TeR™
where f : R™ — R is twice continuously differentiable and 1 > 0 is a regularization parameter.
In the following, we want to show that the weighted ¢;-norm ¢(x) = plz||; is C*°-fully
decomposable at any point & € R™. Therefore, let £ € R™ be arbitrary and let us define the
index sets Z(z) := {i : ; # 0} and A(Z) := {i : Z; = 0}. Then, the directional derivative of
@ at T is given by

(3 h) = oy A0+ thi| — 0 -zt th] — plil
Sﬁ(x,h)—.z_ ltlf[r)l . +‘Z ltlfél p
i€A(T) 1€Z(T)
= pllha s + o - sign(z) T h.

Moreover, for all z in a sufficiently small neighborhood U C R" of z, it follows Z(z) C Z(x)
and sign(zz(z)) = sign(Tz(z)). This implies

(5.3.17) pllell = plleag i + 1 - sign(@) Tz = pl|z(h + &' (#;2 — 7)

for all z € U. Consequently, let us consider the two functions ¢g : R™ — R, p4(y) := ¢'(Z;y)
and F: R" - R", F(z) := x — Z. Then, the pair (¢4, F') satisfies the following properties:

e The function F' is of class C*°(R") and it holds F(z) = 0.

e (g is a convex, real valued, Lipschitz continuous, and positively homogeneous function.
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e The derivative mapping DF(Z) = I is obviously onto.

Thus, by (5.3.17) and Definition m (pa, F) is a decomposition pair of ¢ and we have
verified that the ¢1-norm is C'*°-fully decomposable at any point z € R"™.

Now, let us discuss the corresponding optimality conditions for problem (5.3.16) and let
us suppose that & € R™ is an arbitrary, given stationary point, i.e., it holds FA(z) = 0 for
some A € S" . Then, the first order optimality conditions (5.1.3)) take the following form

ViE)+A=0, X dpy(0)
— V(@)@ +p-sign(Fze) =0, VI(T)am € [—m ™, m:=]|AT)

where we used 9| -[(0) = [—1, 1]. Furthermore, the critical cone C(Z) associated with problem

is given by
C(@) ={h: V(@) h+pa(h) =0} ={h: (VFT)am) haw) + #lhazll =0}

Due to
VS (@) b+ plhal > (= (V@) - [kl 20, Vi € A@),

we can further simplify the critical cone and obtain the following final expression
C(x)={heR":h;=0,Vie AAy(x), hy e R_.-Vf(z);,Vie AL (T)},

where Ay(z) :={i € A(Z) : |Vf(Z)i| < p} and A4 (Z) := {i € A(Z) : |Vf(Z)i| = u}. Hence,
by using the full decomposability of ¢, D?F(z) = 0, and Theorem the second order
sufficient conditions reduce to

(5.3.18) R'V2f(Z)h >0, YV hel(@))\{0}.

Moreover, any stationary point & € R” that satisfies the second order conditions is a
(strict) locally optimal solution and, additionally, an isolated stationary point of the problem
. On the other hand, any local solution Z of the ¢1-problem also has to fulfill
the following second order necessary conditions

R'V2f(Z)h >0, Y helC(z).

Let us note that second order conditions of this form were already studied by Casas, Herzog,
and Wachsmuth, [40], in an infinite dimensional, optimal control setting. In [98| 254, [157],
the strong second order sufficient condition

RTV2f(Z)h >0, Y heaff C(z)\ {0},

was used to analyze local convergence properties of ¢1-minimization algorithms. In particu-
lar, Milzarek and Ulbrich, [I57], showed that the strong second order conditions guarantee
isolated stationarity and invertibility of the generalized derivatives of FA(Z). Similar in-
vertibility results were also established in [97, 225]. Finally, let us mention, that the strong
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second order sufficient condition is equivalent to
Amin(V2f(Z)(gg]) > 0, & = Ap(T) UL(T).

Example 5.3.13 (Group sparse problems). We consider the following optimization prob-
lem with a group sparse penalty term

(5.3.19) min Y(2) = f(2) + Y willgll2:
=1

Here, the index sets g;, i = 1, ..., s, form a disjoint partitioning of the set {1,...,n} and the
parameters w;, @ = 1,..., 8, are supposed to be positive. Again, we want to show that the
nonsmooth function ¢(z) := > | wil|zg|2 is fully decomposable at any point Z € R"™. As
in the last example, let z be arbitrary and let us define the index sets Z(z) := {i : 4, # 0},
A(Z) :={i: &4, = 0}. Moreover, let us set

Ga=J g m=1Gal= > lgil. m:=|A@)
1€A(T) 1€A(Z)

and suppose that iy,...,4, and ji,...,jm denote the different elements in G4 and A(Z),
respectively. For our further analysis, we will also need the following (one-to-one) relabeling
of the active groups g;, 1 € A(Z),

@ C{l,...m}, q={ke{l,..,m}:iy€g;,}, C(€{l,..,m}

Now, we can define the decomposition functions g4 : R™*! — R and F : R® — R™H! via

(53200 palty) =t + Y willuglh, Fla) = (Eiem Wﬂw?iﬂz— ”%z-””) |
(=1 A

Clearly, we have p(z) = ¢(Z) + @q(F(z)) for all x € R™ and, as in the ¢;-norm example,
it follows Z(z) C Z(x) for all x in a certain neighborhood U of z. Consequently, the pair
(g, F) satisfies the following properties:

e The function F' is of class C*°(U) and it holds F(z) = 0.
e (g is a convex, real valued, Lipschitz continuous, and positively homogeneous function.
e The derivative mapping DF(z) : R® — R™*! is given by
)T Wi if 5 € T(7),
DF(z) = (vmx) ) L [VE(2)]y, = Tl (@)
lig 4 0 otherwise.

It is easy to see that the rows of DF(Z) are pairwise orthogonal, i.e., DF(Zz) has full
row rank and is onto.

Hence, (¢4, F') is a decomposition pair of ¢ and the group sparse penalty term is C*°-fully
decomposable at any point z € R™. We want to point out that, besides the somewhat tech-
nical relabeling of the active groups, this construction is straightforward. Since the function
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© is only nonsmooth at groups with value zero, the overall idea is to split the functional
 into its smooth and nonsmooth parts. This immediately leads to a decomposition of the

form (|5.3.20)).

Now, let us consider an arbitrary stationary point Z of problem (5.3.19)). The corresponding
first order optimality conditions (5.1.3|) take the following form

VI(#) + VE(Z)y+ g, A =0, (7,)) € 094(0,0)
= V(@) w2 =0, Vi€L(@), V(@) € B, (0), Vie A),

14l
where we used || - ||2(0) = B1(0) and dp4(0,0) = {1} x [Licaw B,,,(0). The critical cone is
given by

C(x) ={h:Vf(@) h+eyDF(x)h) =0}
={h: Y7\ Vf(@),,hg, + Yica@) willhgll2 + VE (z)"h =0}
= {h: V@), hg, + willhg|l2 =0,V i€ A@)}.

Next, let us introduce the index sets Ao (Z) := {i € A(Z) : |V f(Z)gll2 < wi} and A4 (Z) =
{ie A(Z) : [[Vf(Z)g,]|]2 = wi}. Then, for all i € Ay(z), it follows
0= Vf(Z))hg +willhgllz > (wi = [[VF(@)g,ll2) - lhgll2 >0 < hg =0

(3

and for i € AL(Z), we obtain
Vf(j);hgi + V(@) g llllhgll2 =0 == hy € R_-Vf(T),.
Thus, the critical cone can be represented as follows:
C(z)={heR":hy =0,Yie€ Ay(Z), hg e R_-Vf(Z)g,Viec AL(Z)}.

Finally, for all h € R™, we have ((y,)), D2F(Z)[h,h]) = h"V2Fi(Z)h. Here, the Hessian
V2Fy(Z) is a block-structured matrix that captures the curvature of the smooth part of ¢;
it is given by

w; o wi = =T e _
V2F () [gig,] = Folh! ~ T ot i1=7€L(@),

e 0 otherwise.
Consequently, by Theorem and the full decomposability of ¢, the second order sufficient
conditions

RIV2f(Z)h+ hTVER(Z)h >0, Y heC(z))\{0}

guarantee that every stationary point of the group sparse problem is also a (strict)
local minimizer and an isolated stationary point. Moreover, any local solution of
must satisfy the corresponding second order necessary conditions . Let us remark that
similar second order conditions were investigated by Casas, Herzog, Stadler and Wachsmuth,
[106, 39], in an infinite dimensional, directionally sparse framework.

117



5. Second order theory and decomposability

Example 5.3.14 (Total variation). We consider the total variation-regularized optimiza-
tion problem

m
(5.3.21) min f(z) +p Y Dyl
=1

where p > 0 is a parameter and D = (DE,...,D%)T € R?mxn, Dy € R2*7 4 =1,...,m, is
a discrete gradient operator using forward differences and periodic or Neumann boundary

conditions. Here, the subscript index “|i” is used to denote two dimensional objects of the

form
2= <x2¢1) €R’ and D= (D[Qil,-]) e R

and to simplify the notation. In the following, we will analyze the decomposability prop-
erties of this problem and of the total variation semi-norm ¢(x) := p Y ;" || Dj;z|[2. Since
this example has a similar structure as the group sparsity problem, we can reuse the basic
constructions of Example . We define A(z) := {i : Dz = 0}, Z(¥) := {i : Dj;x # 0},
m = |A(z)| and

m
wat,y) ==t+p Yy llyill, Flx):=
i=1

<H Yiezm 1Djzll2 — ||Dz'f?|2)> .
Dia@) -

Again, it holds p(z) = ¢(Z) + pq(F(z)) for all z € R™ and it follows Z(Z) C Z(z) for all =
in a small neighborhood U of Z. Accordingly, the pair (¢4, ') has the following properties:
e F'is of class C*°(U) and it holds F(z) = 0.
e (g is a convex, real valued, Lipschitz continuous, and positively homogeneous mapping.

e Due to dom ¢; = R?*™*+1 Robinson’s constraint qualification is always satisfied. The
derivative mapping DF(Z) : R™ — R?>™*! is given by

- VFl(x)T) _ % TH ~ T=na
DF(x) = , VF ()= ———D, D,z =D EDz,
@) < Dy o iEZZ(SL‘) [zl

where = € R?™*2™ g a (block)-diagonal matrix and it holds = = blockdiag(Z!, ..., E™)
with

W o _
Ei c R2X2 EZ — ||D|Z£E||QI if 4 € I(x)7
0 if i € A(Z).

Thus, ¢ is C*°-decomposable at any point & with decomposition pair (¢4, F'). Furthermore,

if the nondegeneracy condition,

VF; (.f)—r

R x R*™ = DF(Z)R" — lin g = ( D
|A(@)

> R™ — R x {0} <~ D‘A(Q)Rn = RQm,

is fulfilled, i.e., if the matrix D 4z) is onto, then ¢ is C*°-fully decomposable at z. Let
us note that in applications this additional requirement can be somewhat restrictive and
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(b) (c)

Figure 5.1.: Hlustration of the failure of the nondegeneracy condition for total variation imag-
ing. In subfigure (a), a pixelated version of the image boat.png is shown that
does not satisfy the nondegeneracy condition. In subfigure (b) and (c) (approx-
imate) solutions of the image reconstruction problem

’I’L2
min () +p Y [Dyrls, f@) = Sle b3 n=7
i=1
are presented. In both examples, we tried to restore noisy versions b of the
images lena.png and mandrill.tiff by solving the latter minimization prob-
lem. (More specifically, we added Gaussian noise with zero mean and variance
o = 0.1). The respective reconstructions z, which are shown in subfigure (b) and
(c), do not fulfill the nondegeneracy condition. However, in this situation, since
the function f is strongly convex, the second order conditions are sat-
isfied and, consequently, the shown images are strict local minima and isolated
stationary points of the above nonsmooth optimization problem.

cannot be expected to be satisfied in general; an exemplary discussion of this problem and a
corresponding illustration for image reconstruction problems is provided in Figure [5.1]

Now, let £ € R™ be a stationary point of problem ({5.3.21)). The corresponding first order
optimality conditions are given by

V(@) + VE(Z)y + DlypA =0, (7,A) € dpa(0,0)
& Vf(@ +D'EDz+DlynrA=0, A;€B,(0), Vi=1,..,m,

where we used 9¢4(0,0) = {1} x [["; B,(0). Next, let iy, ...,is denote the elements of the
set A(z). For i € A(Z), we define the indices k; as follows

ki:=j :<=  theindex i is the i;-th element of A(Z).

119



5. Second order theory and decomposability

Let (1,\) € M(Z) be an arbitrary, but fixed Lagrange multiplier. Then, it holds

0=Vf(@) "h+ea(DF(@)h) = V(@) h+VF(Z) h+p Y [Dh2
1€ A(Z)
=p Y IDyhlla = (Dpa@h. A = D> {ullDybllz — (Dyh, Ak, }-
1€A(T) 1€A(T)

Due to j\lki € B,(0), i € A(Z), and by repeating the argumentation of Example [5.3.13] we
obtain the following, final representation of the critical cone

Cx)= () {heR":Dh=0,Viec Ay(z,N), Dyh € R_- Ny, Vi€ Ax(z,\)},
(1,\)eM(z)

where Ao(Z,A) = {i € A(Z) : [[Ng,llz2 < p} and Ap(z,\) = {i € A(Z) : [[Apll2 = 1}
(Let us recall that the critical cone does not depend on the choice of the multiplier A, see
Definition |5.1.5)). Finally, for all A € R™, we have

(v, A), D*F(z)[h, h]) = hT V2Fy(z)h,

i.e., the curvature term in the second order conditions does not depend on any specific La-
grange multiplier (7, \) € M(Z). Moreover, the Hessian V2 F} (Z) can be computed explicitly;
it holds V2Fy(z) = D'ED,

[1]

- HD(Z@HQ (D|i9f)(D|ii’)T if i € Z(z),

2 = blockdiag(Z, ..., 2™), éi:{o if i € A(Z)
1 2 x).

Hence, the second order necessary and sufficient conditions for the total variation problem

take the forms
hTV2f(z)h+ (Dh)TEDh >0, VY heC(z),
and
(5.3.22) h'V2f(Z)h + (Dh)TEDh >0, Y heC(z))\{0},

respectively. In addition, if the matrix D)4z is onto and if the second order conditions
are satisfied, then Theorem m (ii) implies that Z is an isolated stationary point
of problem . However, since this additional condition is likely to be violated in
practice, the function ¢ does not need to be fully decomposable at the stationary point
Z. Nonetheless, in this specific situation, since the second order sufficient conditions are
independent of the choice of the multiplier (v, A) = (1,\) € M(Z) and ¢4 is real valued, we
can apply Corollary Consequently, the second order conditions imply that x
is an isolated stationary point of problem , no matter whether ¢ is fully decomposable
or not.

Although the (possible) nonuniqueness of the multiplier A has no influence on the second
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5.3. Decomposable functions

order conditions, it can cause certain numerical difficulties. This was already observed by
Dong, Hintermiiller, and Neri, [65], who studied a semismooth Newton method for a primal-
dual interpretation of the KKT conditions ([5.1.3)) of the problem (5.3.21)) in an ¢;-setting.

Example 5.3.15 (Nonlinear programming). In this example, we want to show that
nonlinear optimization problems of the form

(5.3.23) mxin f(z) s.t. g(x) <0, h(z)=0,

are decomposable at any feasible point Z, where f : R® - R, g : R* — R™, and h : R" —
RP are supposed to be twice continuously differentiable. Let us set ¢(x) = grm(g(z)) +
oy (M()), Z(z) == {i : gi(¥) < 0}, A(Z) := {i : gi(Z) = 0}, and m := [A(Z)[. Then, the
constrained problem can be rewritten in our basic form

min ¥(2) = £(z) + p(a)
and, due to ¢(z) =0, it holds

o(x) = p(Z) + trm (g4@) (7)) + 10y (M(2)),

for all  in a neighborhood U of Z. Now, let us define the decomposition functions ¢4 :
R™ x RP — (—o00,+00] and F : R" — R x R? as follows

ea(y, z) == wgm (y) + 1oy (2), F(z):= <g“‘;§w)x()x)) .

The pair (g4, F') satisfies the following properties:
e The function F' is twice continuously differentiable on R™ and it holds F'(z) = 0.
e (4 is a convex, proper, lower semicontinuous, and positively homogeneous mapping.

Moreover, in this situation, Robinson’s constraint qualification (/5.3.2)) is given by

()T ]
R™ x RP = DF(z)R" — dom @y = <ngf}£z;)()a%) > R" — R™ x {0}.

Furthermore, let us note that the latter condition is actually equivalent to the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ) for nonlinear programs:

Vh(z) has full column rank, 3 d € R" such that Vg4 (z)"d < 0.

On the other hand, due to lin g = {0} x {0}, the nondegeneracy condition immediately
reduces to the condition - B
Va@)(2) | pn _ (R
— T - .
Vh(z) RP

Thus, the point = is nondegenerate if and only if the matrix (Vg4(z)(Z), VA(Z)) has full
column rank. Consequently, if the MFCQ is satisfied at Z, then ¢ is C2-decomposable
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5. Second order theory and decomposability

at T with decomposition pair (¢4, F'). Additionally, if the Linear Independency constraint
qualification (LICQ) holds at Z, then ¢ is C?-fully decomposable.

Next, let € dom ¢ be a stationary point of problem ([5.3.23)) (in the sense of Definition
5.1.1) and suppose that the MFCQ holds at Z. Then, the first order optimality conditions
take the following form

V() + Vga) @A+ Vh(@) =0, (A ) € 9pa(0,0) = Ngm (0) x Nygy (0) = R x R
and the critical cone is given by

C(Z)={d e R": Vf(Z)"d+ pg(DF(%)d) = 0}
={deR":Vf(@)'d=0,Vgi(z)'d <0V iec A&), V() d = 0}.

By Theorem [5.3.6] it follows that the condition

P
max d'V2f(@)d+ D> Nd Vig(@)d+ Y pid Vhi(Z)d =

(A p)EM(Z) (A =1
(5.3.24) max d' V2, L.(Z,\p)d > 0, YdeC(z))\{0}

(A p)eEM(Z)
ensures local optimality of the stationary point Z. Moreover, if the LICQ is satisfied at Z,
i.e., if ¢ is fully decomposable at Z, then the set of Lagrange multipliers M(Z) reduces to a
singleton and 7 is an isolated stationary point of (5.3.23). Here, L, : R" x R™ x R? — R,
Ly(z, A\, 1) := f(x)+ (X, ga@) (%)) + (1, h(z)) denotes the reduced Lagrangian associated with
problem (5.3.23). As usual, the decomposability of ¢ also implies that any local solution
of the nonlinear program ([5.3.23]) has to satisfy the corresponding second order necessary
conditions

5.3.25 max d' V2 L.(Z,\,p)d > 0, VdeC(z).
( ) o (2, A ) (2)

Of course, this pair of second order conditions is well-known in nonlinear optimization. Here,

in our case, the conditions ([5.3.24)) and (5.3.25)) emerge as a special example of the general
second order theory for decomposable functions and problems.

In summary, the latter examples demonstrate the diversity and wide applicability of de-
composable functions in the context of nonsmooth optimization problems. Next, based on
various results and examples in Shapiro [217), Section 2|, we will study several, general classes
of decomposable functions.

The following, first example was presented in [217, Example 2.1].

Example 5.3.16 (Max-type functions). Let ¢; : R® — R, i = 1,...,m, be a family of
twice continuously differentiable functions and let us consider

PR = R, plo) = max pi).

Let & € R™ be arbitrary and let us define A(Z) := {i : ¢;(Z) = ¢(Z)}. Then, a continuity
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5.3. Decomposable functions

argument implies A(z) C A(Z) for all z in a sufficiently small neighborhood U of Z and,
consequently, it holds

(5.3.26) p(z) = ¢(@) + max {gi(@) —¢(@)}, Vzel
Let us set m := | A(Z)| and suppose that i1, ..., 75 are the different elements of the index set

A(Z). Then, the functions ¢4 : R™ — R and F : R" — R™,

iy () — ¢(7)

ea(y) == max{y1, ..., ym}, F(@)=psa()—p(@) 1= ! €R™

I

have the following properties:
e [ is of class C?(R") and it holds F(z) = 0.
e (g is convex, real valued, Lipschitz continuous, and positively homogeneous.

e Due to dom ¢y = R™, Robinson’s constraint qualification obviously holds at Z. More-
over, the derivative of F' at 7 is given by DF(Z) = Vi 4z (z)".

Thus, together with ([5.3.26)), this shows that ¢ is C?-decomposable at Z with decomposition
pair (g, F). If, in addition, the nondegeneracy condition

R™ = DF(z)R" —lin @q = Vo4 (T) ' R* —R-1
is satisfied at Z, then ¢ is C2-fully decomposable.
The next example is inspired by [217, Example 2.2].

Example 5.3.17 (Polyhedral functions). A function ¢ : R" — (—o0, 400] is said to be
polyhedral if and only if its epigraph epi ¢ is a polyhedral set, i.e., if epi ¢ can be represented
in the following form

FJOeRXHD e R epip= {(x,t) eR"™ 0", ) —c< O}.

Alternatively, by [208, Theorem 2.49|, ¢ is a polyhedral function if only if it can be expressed
as

p(@) = pple) + (@) == max {alz - o} + (o),

where a; € R", «o; € R, i = 1,...,¢, and K C R" is a polyhedral set. In particular, a
polyhedral function is always convex and lower semicontinuous. Now, let z € dom ¢ = K
be arbitrary and let us set A(Z) := {i : @] T — a; = ,(Z)}. Then, by using the calculus for
max-type functions, see, e.g., [27, Example 2.68], it follows

np;,(f; h) = max (a;, h).

i€ A(T)
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5. Second order theory and decomposability

Now, as in the last example, the continuity of ¢, implies A(z) C A(z) for all z in a certain
neighborhood U of Z and by applying ([2.5.1]), we obtain

©p(x) > 0 (T30 — T) + 0p(T) = nax (as,x — ) + @p(T)
> max, {a;  — a;} o {a; © — a;} = pp(x)

On the other hand, since K is a polyhedral set, it follows Rg(Z) = cl Rx(Z) and, conse-
quently, Example yields
L/K(i';h> = LRK(&:)(h) = LTK(i)(h)7 vV heR"

Moreover, by using the structure of the (polyhedral) sets K and Tk (Z), we can easily establish

iy (o) (@ — T) = 1k —z(2 — &) = 1k (2)

for all x in a sufficiently small neighborhood of  (we refer to [208, Theorem 6.46 and Example
6.47] for more details). Thus, after choosing a smaller neighborhood V' C U of z, if necessary,
we have

o(x) =)+ ¢ (T2 —7), VzeV.

We proceed as in Example [5.3.12| and define the functions ¢4 : R™ — (—o00,+00], ¢4(y) :=
¢ (T;y) and F : R — R", F(x) := x—Z. Then, the pair (¢g, F) has the following properties:
e F'is of class C*°(R") and it holds F(z) = 0.
e (g is a convex, proper, lower semicontinuous, and positively homogeneous function.

e Obviously, the nondegeneracy condition is satisfied at z.

Hence, the polyhedral function ¢ is C*°-fully decomposable at any point Z € dom ¢ with
decomposition pair (¢4, F).

Apparently, since the ¢;-norm is a polyhedral function, the results in Example [5.3.12] are
a direct consequence of the latter example. Moreover, since the composite function

o(x) = pllzll + vy (), abeR”
is also polyhedral, Example immediately implies that £;-optimization problems with

additional box constraints are C'°°-fully decomposable at any feasible point.

In the following, we analyze the decomposability of singular value-based functions, such
as, e.g., the nuclear norm or the more general Ky Fan k-norm of a matrix. The example
is quite involved and requires various tools from matrix and eigenvalue theory. Our con-
struction essentially follows [220], [27, Example 3.98 and 3.140|, [217, Example 2.3], and [63),
Proposition 4.3|.

Example 5.3.18 (Singular value optimization). Let X e R™*" m < n, be an arbitrary
but fixed matrix and let o1(X) > ... > 0y, (X)) denote the singular values of X in decreasing
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order. Furthermore, by 71, ...,7441, we denote the multiplicities and by pu1 > ... > pg > 0 =

fig+1 the distinct values of the singular values o1 (X), ..., om(X), i.e., it holds

j—1
,u,j:Usj+1(X):...:O'5j+Tj(X), 84 Z:Z ri, Jj=1,...,q+ 1.
=1
Moreover, let
X = U[E 0](‘71 VQ)Ta E = diag(o—l(}z)? >Gm(X))

be a corresponding singular value decomposition of X. Here, the columns of the matrices
U e R™m V = (V; Vo) € R™" are formed by the pairwise orthonormal singular vectors
Ui, ..., U € R™ and vy, ...,0, € R”, respectively. Moreover, for some arbitrary index sets
T, CA{1,...m}, I, C {1,...,n}, we will use the abbreviations

Uz, == Uiz, = (Wi)icz,, Vi, = Viz,) = (0i)iez,-
Accordingly, for another matrix X € R™*" let
X = U(X)[S(X) 0)(Vi(X) Va(X))T, S(X) = diag(o1(X), ., o (X)),

UX) e Rm™m V(X) = (Vi(X) Va(X)) € R™™ be the singular value decomposition of X
and let Uz, := U(X)[z,] and Vz, := V(X)|z, denote the respective submatrices of U(X)
and V(X). Now, for j =1,...,¢ + 1, let us consider the index sets

aj:={sj+1,.,s;+r;}, B:=ag1U{m+1,..,n}

and let us define the linear operator B : R™*" — S™+7

B(X) = (;’T )0(>

It is well-known that the symmetric matrix B(X) admits the following eigenvalue decompo-
sition

X)) 00 1 /U o0 U
_ T —
500 =P | 000 o )raoT p; (0 e )

where we dropped the argument X in the definition of P(X) for a better readability. Let
us also note that the matrix P(X) is obviously orthogonal. Next, since the singular value
functions o; : R™*™ — R are globally Lipschitz continuous, see, e.g., [94, Section 8.6], there
exists d; > 0, such that

‘O’i(X)—,uj|<5j, Vica; and ;4041 < pj — pjq1

for all j = 1,...,¢ +1 and all X in a certain neighborhood of X. Thus, the singular values
0i(X), i € o, stay in bounded and disjoint boxes [p; — 6;, u; + 9;]. We will now define a
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H
T
=
i
—

|[— QQ_ —

Figure 5.2.: Illustration of the functions v; and of the distribution of the singular values.

function that separates these different singular value boxes. In particular, let us set

—¢—1 . 2
e ift>0 c(ts —t)
t) = ’ (t) := J (1) = c.:((t — \2
o {o <o, o(r? —t) +c(t —62)’ %i(8) = ¢ ((t = 15)7),
and
Ml_ﬂ2+(51—(52 1f]:1,
73 ::Q min{u;j—1 — pj — 61+ 65, 5 — pj1 + 05 — 05} if2<j<gq,
Ha + Oge1 = 0y if j=q+1,

then it holds ;(t) = 1 for all t € [u; — 05, 11 + 6;] and ;(¢) = 0 for all |t — p;| > 7; and all
j=1,...,q+ 1. Moreover, the functions «; are obviously of class C*° for all j =1,...,¢ + 1.
(The mappings v; and the underlying construction principle are also visualized in Figure

[5.2). Let p;(X) € R™*" denote the i-th column of the matrix P(X) and let us define

R m+n Pa.P(;r_ if | < ’
Pj(X) == P;j(B(X)) == ; Pi(X)7; (N (B(X)))pi(X) T = {Pg;P/;i ifj’ _ Z+ 1,

where
Pa]. = P(X)[.aj], PﬁB = P(X)['BB]7 ﬁB ::ﬁU{Tq+1+n+l,...,n+m}.

Since the columns of the matrices P,; and Fp,; span the eigenspace associated with the
collection of eigenvalues

{)\AB(X)) :iEOéj}, i=1,..,q9+1
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the mappings P;(X) are the orthogonal projections onto these respective eigenspaces. More-
over, the functions 75j, j=1,...,q+ 1, can be interpreted as Lowner operators of the matrix
B(X). Thus, due to [I8, Exercise V.3.9] or [64, Proposition 4], we can infer that P; is (at
least) twice continuously differentiable in a neighborhood of B(X) for every j = 1,..,q + 1.
Since B is a linear operator, this shows that, for all j =1, ..., ¢+1, the function P;(X) is twice
continuously differentiable in a neighborhood N of X. In the following, we will distinguish
two different cases.

Case 1: 1 < j < q. Let us define

Qj(X) = Pj(X)Pa, € R™™75 Q(X) = Q;(X)(Q;(X)TQ;(X)) 2,

where Pa = P(X )[ ay]- Since Pj (X) is the orthogonal projection onto the eigenspace asso-
ciated with the set of elgenvalues {Ai(B(X)) : i € aj}, the columns of Q;(X) are elements
of the subspace sp P(X)[.o;- Moreover, due to Q;(X) = Py, it follows

+ Vol Va,) = T € R,

Q}

Q(X)TQ(X) = P Pa, = (07 s,

[NIES

Consequently, for all X in a neighborhood of X, the inverse matrix root (Q;(X)'Q;(X))~
is well-defined and the matrix Q;(X) has full column rank. Additionally, it holds

=1

N

Q;(X) T Q;(X) = (Q;(X) T Q; (X)) "2 Q;(X) T Q(X)(Q;(X) T Q5(X))
Thus, the columns of Q;(X) are pairwise orthonormal and we obtain
(5.3.27) sp Q;(X) =sp P(X)(q,)-

Finally, since the inverse matrix root can be written as a specific Lowner operator,

M\H

l
= p(M)eM())pi(Y),  olt) =

=1

Sf3Y =P(Y)A(Y)P(Y) 7

and since g is C* on R\ {0}, the function Q;(X) is also twice continuously differentiable in
a certain neighborhood of X. Now, let us define

i R™ ST X e E5(X) = Q(X)TB(X)Q;(X).

Then, there exists a neighborhood N; C A of X, such that the mapping Z; has the following
properties:

e =;(X) is twice continuously differentiable on Nj.
o 1t holds Z;(X) = Q;(X)TB(X)Q;(X) = }(Vil X Uu, + UJ XVi) = .

e For all X € N, the eigenvalues of the symmetric matrix =;(X) coincide with the set
of singular values

(NEX) ti=1, 1) = {03(X) i € oy}
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e The derivative mapping D=;(X) : R™*™ — S"7 is onto and satisfies

D

(1]

J(X)[H] = Py B(H)Pa; = sym(Uy HVa,).

Since the third statement follows from ([5.3.27) and from the orthogonality of Q;(X), we only
need to prove the last part. First, let us consider the derivative of the matrix root mapping

S:st sl Y SY) =vYe.
For every Y € Sﬁ, the function S(Y') is uniquely characterized by the equation
SY)-SY)=Y.
Consequently, the derivative of S has to satisfy
DS(Y)[H]-S(Y)+S(Y)-DS(Y)[H]=H, ¥V Hes"
In particular, in the case Y = I, we readily obtain DS(I)[H] = 1H. We then have
DQ;(X)[H] = DQ;(X)[H] - Q;(X) - DS(I)(DQ;(X)[H]) " Q;(X) + Q;(X) ' DQ;(X)[H]]

= MPy; — 5Po;(By M Py, + P, MP,;) = (I = Po, P )M Py,

JT O

DN | =

where M := DP;(X)[H] € S™™, and it follows
DE;(X)[H] = (DQ;(X)[H]) " B(X)Pu, + Py (B(H)Pa, + B(X)DQ;(X)[H]).
By using UOZ_X = ujVaj and VOZXT = Nonij we have PJJ_B(X) = ,uiPaTj. Thus, it immedi-
ately follows B o B B B
(DQ;(X)[H])" B(X)Pa, = P, B(X)DQ;(X)[H] =0
and we establish DE;(X)[H] = P;;_ B(H)P,,. Moreover, this mapping is clearly onto.

Case 2: j = ¢+ 1. In this case, the projection Py11(X) takes the following form

U, X 0

where Uy+1(X) := Uy, ., US  and Vi1 (X) = VﬁVBT. We now define

Ag+1~ ag+1

Lyt (X) = Ups1(X)Uayr1s  Los1(X) i= Lest (X) (La1 (X) T Lgsr (X)) 77,
Ryr1(X) = Verr(X)Vs,  Rgs1(X) i= Rysr (X)(Rgs1(X) T Rysr (X)) 2.

Here, the mappings Uy41(X) and Vgy1(X) are the orthogonal projections onto the left and
right eigenspaces associated with the set of singular values {o;(X) : i € ag41}. Hence,
the columns of L441(X) and Ry41(X) are elements of the subspaces sp U(X) | and

[ag+1

128



5.3. Decomposable functions

sp V(X)(.g), respectively. Moreover, due to

Lq+1<X> =U

Qg+19

Ry (X) = V3,

the matrices L£,41(X) and Ry41(X) have full column rank in a neighborhood of X. As in
the first case, it can be easily shown that the functions L441(X) and Ry41(X) are twice
continuously differentiable near X and the columns of £,41(X) and Ry4+1(X) are pairwise
orthonormal. Consequently, it readily follows

(5.3.28) sp Lg41(X) =8p U(X)[ag1]s SP Re+1(X) =sp V(X))
We now define
o1 RV S R X B (X)) = L(X) T X R 1 (X).

Then there exists a neighborhood Ny+1 C N, such that =;41 has the following properties:

e Z,41(X) is twice continuously differentiable on Ngy1.

e It holds Z,41(X) =0.

e For all X € Ny the singular values of the matrix Z,41(X) coincide with the set of
singular values

{Ui(Eq+1(X)) =1, ...,Tq+1} = {Uz<X> 11 € Oéq+1}.

e The derivative DZ,1(X) : R™*" — R7a+1<I8] is onto and it holds

DZ,1(X)[H]|=U.)  HVj.

Qg+1

Since singular values are invariant under left and right orthogonal transformations, the third

part follows again from ([5.3.28)). The derivative DZq41(X)[H] can be computed as in the
last case. (Here, we have to use U;—qulX =0 and VﬁTXT =0).

Let us note that the separate discussion of the zero singular values cannot be avoided in
general. In particular, since the mapping H PBTB B(H)Pg, is typically not onto, we cannot
reuse the basic construction principle from the first case to define =441 (X).

Finally, let us consider the so-called Ky Fan k-norm

-l s R™ ™ = Ry, Xy =D 0a(X), k€ {1,..,m},
i=1

which denotes the sum of the k-largest singular values. Using our latter constructions, we
will show that || - || is C?-fully decomposable at every X € R™*" Again, depending on
the singular value 0% (X), we have to discuss two different cases.
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5. Second order theory and decomposability

Case 1: 04(X) > 0. Then, there exists 1 < go < ¢ such that o1(X) € a4, and we define

F:R™" 3R x ST‘IO, F( ) <Zq0 1tr(E‘(X) - E](X))>

qu(X) tao L ’
k—sq
pa i Rx S0 SR, @ut,Y) =t +5(Y)(hosy)s SV )hosy) = 2 X(Y).
=1

Here, the function s(-)(s) denotes the sum of the {-largest eigenvalues of a symmetric matrix.
Furthermore, the Ky Fan k-norm can be represented as follows:

qo—1 k qo—1 7; k—sqq
IXNwy =D D a(X)+ D oa(X)=> D NEX))+ D Ml(Eg(X
j=1 i€a; i=sq9+1 j=1 i=1 i=1
qo—1

= > 2(E5(X) + 5(Zg0 (X)) ks, )-
j=1

Now, setting N = N j/\/j, the functions ¢4 and F' have the following properties:

e Clearly, our preceding discussion implies that F' is twice continuously differentiable on
the open set N/. Moreover, it holds F(X) = 0.

e Since s(~)(k_sq0) is convex and positively homogeneous, ¢4 is a convex, real valued, and
positively homogeneous mapping.

e Due to \j(Y + kI) = A\(Y) + « for all k and 4, our latter calculation implies
I XNy = @a(F(X)) + | X)), VX €EN.
e The derivative mapping DF(X) : R™*" — R x ST is given by

»(X)[HD) (Z% 1tr<PTB<H>Pa].>)

(0
DF(X)[H] —( e sym(Ug,, HVa,,)

and it can be easily shown that the function DF(X) is onto. Consequently, the non-
degeneracy condition is satisfied at X.

Case 2: 01(X) = 0. In this situation, it holds o4 (X) € ay41 and we define

F:R™" 5 R x R X8l p(X) = <Z§]':1 tr(fj(X) - Ej(X))> ’
Eg+1(X)

@a R RBI SR it Y) =t + [V ]| (5—s)-
Again, setting N = N j/\/'j, the mappings ¢4 and F' have the following properties:

e [ is twice continuously differentiable on the neighborhood A and it holds F(X) = 0.
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5.3. Decomposable functions

e Obviously, ¢4 is a convex, real valued, and positively homogeneous function.
e As in the last case and due to pg41 = 0, it follows

XNy = @a(F(X)) + | Xy, ¥ X €EN.

e The derivative mapping DF(X) : R™*" — R x R+ %18l is given by

X ¢y r(DE(X)[H])\ _ (S0 tr(P) B(H)Py,)
DF(X)[H}=< B GO >_< e >

Qg+1

and is also onto.

Combining the latter cases, we establish that the Ky Fan k-norm is C?-fully decomposable
at each X € R™*™, For instance, this also proves that the spectral and the nuclear norm are
fully decomposable matrix functions.

As mentioned at several points in this section, the concept of decomposable functions is
closely connected to the notion of cone reducible sets in constrained optimization. In the
following, we will clarify and explain this connections in some more detail. We start with a
definition of reducible sets.

Definition 5.3.19 (cf. [27), Definition 3.135]). Let K C R™ and C C R™ be two convex,
closed sets. The set K is said to be C*-reducible to the set C, at a point & € K, if there
exists a neighborhood U of T and an £-times continuously differentiable function F : U — R™
such that:

e The derivative mapping DF (z) : R™ — R™ is onto.
o [t hollss KNU ={xeU:F(z) € C}.

We say that the reduction is pointed if the tangent cone Te(F (%)) is a pointed cone. If, in
addition, the set C — F(Z) is a pointed, convex, and closed cone, we say that K is C’-cone
reducible. We can assume without loss of generality that F(z) = 0.

Let us note that a cone C C R" is said to be pointed if and only if its corresponding
lineality space lin C' is {0}. The following example is taken from [2I7] and connects cone
reducible sets and decomposable functions.

Example 5.3.20 (Cone reducible sets and decomposability). Consider the indicator
function () = tx(z) and a point # € K, and suppose that the set K is C*-cone reducible
to the set C' C R™ at . Then, due to Definition [5.3.19] there exist a neighborhood U of &
and an /-times continuously differentiable function F': R™ — R™ such that

F(z)=0, o) =¢@) +iw(F(z), Yzel.

Since C' is a convex, closed cone, the function p4(y) := tc(y) is convex, proper, lower semi-
continuous, and positively homogeneous. Moreover, since the mapping DF(Z) is onto, the
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5. Second order theory and decomposability

nondegeneracy condition is automatically satisfied. Consequently, ¢ is C*fully decompos-
able at 7 with decomposition pair (¢g4, F'). On the other hand, if the indicator function
o(x) = ti(x) is C*fully decomposable at Z € K and if the derivative mapping of the cor-
responding decomposition function F' is onto, then it can be easily shown that the set K is
C*(-cone) reducible at z.

Thus, the concept of decomposability can also be applied to optimization problems with
cone-reducible constraints. The class of cone-reducible sets contains many different and
interesting examples. For instance, any polyhedral set and the cone of positive semidefinite
matrices S C R"*™ are C"°°-cone reducible; see [27, Example 3.139 and 3.140|. Further
examples comprise the second order cone, [25],

K={(zt) e R" xR : |[zf]z <t} = epi || |2,

or the epigraph of the Ky-Fan k-norm, which also includes the epigraph of the nuclear norm
as a special case, we refer to [63, Chapter 4| for more details. Let us also point out that
decomposable functions and cone-reducible sets share many of their characteristic, second
order properties. In particular, similar to decomposable functions, the curvature term of a
cone-reducible set reduces to a quadratic function on the critical cone. More information on
reducible sets and on their specific properties can be found in [27, Section 3.4.4].

In the following, we establish a connection between full decomposability of a function ¢
and cone-reducibility of the corresponding epigraph epi .

Corollary 5.3.21. Suppose that the function ¢ : R* — (—o0, +00] is C*-fully decomposable
at some point T € dom ¢ with decomposition pair (¢q, F'). If the mapping DF(Z) : R — R™
is onto, then the epigraph epi ¢ is C’-reducible to the set epi g, at the point (Z,p(Z)).
Additionally, if the function ¢q is pointed, i.e., if lin pg = {0}, then the epigraph epi ¢ is
C*-cone reducible at (%, p(T)).

Proof. Let ¢ be C*-fully decomposable at Z € dom ¢ with decomposition pair (pg, F).
Then, by Definition there exists a neighborhood U of Z such that

p(x) = o(T) + pa(F(z)), Vzel.
and for any (z,t) € epi p NU x R, it follows
p(x) <t <= @a(F(x)) <t—p(@) <<= (F(z),t—¢(T)) € epl pq.
Clearly, this implies
epi pNU X R ={(z,t) eU xR : (F(x),t — ¢(Z)) € epi g}

Furthermore, since the mapping DF(z) : R" — R™ is supposed to be onto, this also shows
that the epigraph epi ¢ is C*-reducible to the set epi g at (Z, ¢(Z)). Now, since the function
g is convex, proper, lower semicontinuous, and positively homogeneous, the set epi ¢4 is a
convex, nonempty, and closed cone. Moreover, due to Lemma [2.5.3| and ([5.3.5)), we have

epi Wd(F('f)a SO(IE) - (p(.f)) = Tepi Lpd((]? 0) = epi @ﬁ(& ) = epi ©d-

132



5.3. Decomposable functions

Consequently, under the additional assumption lin ¢4 = {0}, the cone epi ¢4 is pointed and
epi ¢ is C*-cone reducible at (z, p(z)). O

We conclude this subsection with a simple sum and chain rule for decomposable functions.

Lemma 5.3.22. Let the functions ¢',¢? : R* — (—00,400] be C*-decomposable at some
point T € R™ with corresponding decomposition pairs (cpcll,Fl) and (gofl,F2), and let o' be
real valued. Then, the function p = o' 4+ Bp? is Ct-decomposable at T for every choice
a,B > 0.

Proof. Tt can be easily shown that the functions ¢4 : R™ "2 — (—o0, 00|, F : R" —

Rm1+M27
1
va(y, z) == apyly) + Bei(z), Flx):= (?2%)

form a decomposition pair (g4, F) of the mapping ¢. Moreover, since the function ! is real
valued, Robinson’s constraint qualification

= n DFl a_: n le m m
DF(z)R™ —dom ¢4 = (DFZEED R"™ — <dom ‘Pi) = RmMtm2

immediately follows from the condition DF?(Z)R™ — dom ¢% = R™2. This establishes the
desired C*-decomposability of . [

Lemma 5.3.23 (Chain rule). Let ¢ : R™ — (—o0,+0o0] be a convez, proper, and lower
semicontinuous mapping and let G : R™ — R™ be {-times continuously differentiable in a
neighborhood of some point T € dom . Suppose that ¢ is C*-decomposable at G(Z) and that
Robinson’s constraint qualification

(5.3.29) 0 € int{G(Z) + DG(Z)R" — dom ¢}

holds at &. Then, the composite function ¢ o G is C*-decomposable at &. Moreover, if  is
C*-fully decomposable at G(T) and if the nondegeneracy condition

is satisfied at T, then @ o G is C*-fully decomposable at Z.

Proof. Since ¢ is C*-decomposable at G(Z), there exist functions F : R™ — RP, g : R? —
(—00, +00] such that

(5.3.30) p(y) = 0(G(7)) + va(F(y))

for all y in a neighborhood V' C R™ of G(Z). Moreover, since G is continuous near Z, there
exists an open, nonempty set U C R” such that £ € U and G(U) C V. Then, (5.3.30)
implies

(poG)(x) = (poG)(T)+ ¢ F(G(x))), Vacl.

Now, our goal is to show that ¢ o G is decomposable at  with respect to the decomposition
pair (pg, F' o G). Clearly, the composite function F o G : U — RP is {-times continuously

133



5. Second order theory and decomposability

differentiable and we have (F' o G)(Z) = 0. Since the function ¢4 is part of the decom-
position pair (¢g4, F'), it is necessarily convex, proper, lower semicontinuous, and positively
homogeneous. We have already seen that Robinson’s constraint qualification can be
equivalently reformulated as

e {(yiaim) + () el

Furthermore, by [27, Proposition 2.97 and Corollary 2.98] and Lemma [2.5.3 this condition
is also equivalent to

330 (T ) = ("% - T @ ptc@n = (PP — i 0@

Since ¢ is decomposable at G(Z), Robinson’s constraint qualification (5.3.2)), (with respect
to ¢q and F), is satisfied at G(Z) and, by applying Lemma we have

P (G(2);h) = (pao F)*(G(); h)

This immediately establishes

D - epi goi(G(f);-) C epi g, @:= <DF(8;(37)) ?) € RPH1xm+1

and, by multiplying ([5.3.31]) with ® and subtracting epi ¢4, we obtain the following inclusion

<D(F o g)(a:)R"> — (epi g + epi pq) O (DF(GISJ)) Rm) —epl pa = (HE?) ‘

Moreover, since g is convex and positively homogeneous, the epigraph epi ¢4 is a convex
cone and it follows epi g4 + epi ¢4 C epi g, (see, e.g., [I1, Proposition 6.4]). Together with
the latter inclusion, this yields

D(F o G)(z)R"™ — dom ¢4 = RP.

Hence, Robinson’s constraint qualification is satisfied at Z, (with respect to the decomposition
pair (g, F o G)), and consequently, ¢ is C*~decomposable at Z. Now, let us suppose that ¢
is C*fully decomposable at G(Z). Then, due to

lin Npy () () = lin 9" (G(2); ),
we can reuse and adapt the last steps of the proof to verify that the nondegeneracy condition,
D(F o G)(z)R™ —lin pg = RP,

is fulfilled at Z. This finally shows that ¢ is C*-fully decomposable at Z with decomposition
pair (pg, F o G). O
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5.3. Decomposable functions

Remark 5.3.24. In [2I8] Proposition 3.2|, Shapiro showed that sets of the form
S={zxeR":G(x) e K}

are cone reducible at some point z if the set K’ C R™ is cone reducible at G(Z) and if the
nondegeneracy condition holds at . Hence, Lemma transfers and extends this result
to (fully) decomposable functions. Let us further note that similar computational results
have also been established by Rockafellar et al., [193] [194] 208], for the composition and sum
of (fully)-amenable functions. Moreover, we want to emphasize that chain rules for amenable
functions are also available for general, nonconvex functions . For more details we refer to
[193, [194] and [208], Section 10.F].

5.3.4. The curvature of fully decomposable functions

In this subsection, we will discuss an essential property of fully decomposable functions in
some more detail. In particular, let f : R — R be twice continuously differentiable and
suppose that the mapping ¢ : R™ — (—o0, +00] is convex, proper, lower semicontinuous, and
C?-fully decomposable at some stationary point Z € dom ¢ of our initial problem

(5.3.32) min P(x) = f(x) + o(z).

Then, under the strict complementarity condition, we will establish a connection between
the curvature term f;,l, which is associated with the problem , and the Fréchet
derivative of the proximity operator proxg at T — A1V f(Z). This is one of the most crucial
steps in order to combine the second order conditions ([5.3.9) and (5.3.11)), which are based
on the knowledge of a specific decomposition pair (g4, F') of ¢, and to prove nonsingularity
conditions for the generalized derivatives of the nonsmooth function

FMNz) =2 —prox3(z — A7'Vf(z)), AeSt,.

Now, let (¢4, F') be a decomposition pair of the function ¢. The corresponding composite
optimization problem is given by

(5.3.33) min () = f(z) + pa(F(z)) +¢, €= p(2).

Moreover, by Definition the critical cone of the problems ([5.3.32)) and ([5.3.33)), has the
following equivalent representations

C(Z) = Nop) (—Vf(Z)) = {h € R" : 9*(z; h) = 0}
={heR": Vf(Z)"h+ @4(DF(Z)h) = 0}
= {h eR": DF(z)h € Nawd(o)(;\)},

where A\ € M(Z) is an associated (unique) Lagrange multiplier. Let us recall that the strict
complementarity condition is said to be satisfied at x if and only if

(5.3.34) — V(%) € ri 9p(%).
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5. Second order theory and decomposability

The next lemma shows that the nondegeneracy condition guarantees equivalence of the latter
condition and of the respective strict complementarity condition for the composite problem
(5.3.33) (in the sense of Definition . This result is motivated by a discussion in [217,
Section 4]. However, our proof uses different arguments.

Lemma 5.3.25. Let f : R™ — R be continuously differentiable and let ¢ : R™ — (—00, +00]
be a convex, proper, and lower semicontinuous mapping. Suppose that T € dom ¢ is a
stationary point of problem and ¢ is C'-fully decomposable at T with decomposition pair
(¢a, F'). Then, the following conditions are equivalent:

—Vf(z)eri0p(z) < C(T) is a subspace
= Na@d(o)(;\) is a subspace <= X € 1i 0pq(0),

where X € M(Z) is the corresponding, unique Lagrange multiplier of the problem ([5.3.33)).

Proof. By Lemma [5.1.10} we only need to prove the second equivalence. Moreover, from
the above discussion, it immediately follows DF(z)C(Z) C Na,,(0)(A) and, due to the corre-
spondence

h e C(i‘) <~ DF(CE)}L S NB‘Pd(O)(/\)’

it can be easily shown that the set C(Z) is a subspace if Ny, (0)(A) is a subspace. Now, on

the other hand, let 21,22 € Ny, d(o)()\) be arbitrary and let us suppose that the critical cone
C(z) is a subspace. Then, the nondegeneracy condition implies

Jh; €eR”, y; €lin Nagod(o)(;\) such that z; = DF(Z)h; +vy;, 1=1,2.
Furthermore, for ¢ = 1,2, we have

This establishes DF(z)h; € Ny, d(o)(j\) and consequently, it follows h; € C(Z) for all i = 1, 2.
Next, since the sets C(Z) and lin Np,,)(A) are subspaces and the normal cone Ny, (0)(\)
is a convex cone, we obtain

21+ 22 = DF(Z)(h1 + ha) + (y1 + y2) € DF(2)C(Z) + lin Ny, 0)(A)
C Nowy(0)(A) + Now,0)(A) € Nogy0)(A)

and
az; = DF(Z)(ahy) + (ay1) € DF(Z)C(z) + lin N&pd(O)(;\) C Na(pd(o)(j\),

for all @ € R. This shows that the normal cone Ny, )()) is a subspace and concludes the
proof. O

In the following, we state one of the main results of this work.
Theorem 5.3.26 (Curvature via proximity operators). Let f : R — R be a twice
continuously differentiable function and let ¢ : R™ — (—o0,+00] be convez, proper, and

lower semicontinuous. Moreover, let T € dom ¢ be a stationary point of problem and
suppose that o is C%-fully decomposable at T. If the strict complementarity condition holds
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at T, then the proximity operator proxg is Fréchet differentiable at i := & — A=YV f(z) for
every A € S, and it follows

~En (V@) = (b, (A2Q5 @) T A2 — D)h)a, Y heC(@),

=

where Qg(ﬂ)“‘ denotes the pseudoinverse of the matriz Qi}(a) = A%Dproxé(ﬂ)A_ .

The proof of this theorem relies on a well-considered combination of various results and
concepts and beautifully connects different fields in optimization. In particular, the proof
consists of the following steps and concepts:

Second order subderivatives.

e At first, the curvature term &, (—V f(2)), which is based on parabolic second order
epiderivatives, will be connected to another, already mentioned, epigraphical framework
— the so-called second order subderivatives.

Second order sensitivity analysis of the Moreau envelope.

e Since decomposable functions are outer second order regular and twice epidifferentiable
at I, it can be shown that the proximity operator of ¢ is directionally differentiable at
Z. This result is presented in [27, Example 4.106] and requires a deep background and
discussion of differentiability and sensitivity properties of minimum value functions.

e In the case of full decomposability, the directional derivative of the proximity opera-
tor can be characterized as the unique minimizer of a specific, convex and quadratic
optimization problem. The strict complementarity condition then will imply Fréchet
differentiability. Let us note that similar properties were obtained by Shapiro, [212],
for metric projections onto convex, cone-reducible sets. Thus, differentiability of the
proximity operator can be seen as a “translation” and extension of Shapiro’s work to
the proximal setting.

VU -theory, sub-Lagrangians and the U-Hessian.

e By using the theory of the quadratic sub-Lagrangian, [103], the strict complementarity
condition, and a slightly adapted result of Mifflin and Sagastizabal, [154], it is possible
to show that the convex, decomposable function ¢ admits a so-called ¢/-Hessian at z
which will be precisely given by the generalized quadratic & ,(=V f(2)).

e Finally, the theory and results developed in [I32] and [130, Section 5|, connect the
(existing) U-Hessian of ¢ with the ¢-Hessian of the corresponding Moreau envelope of
o and the derivative of the proximity operator.

In the next paragraphs, we will introduce all relevant and necessary concepts and tools for

the proof of Theorem [5.3.26] step by step. We start with a brief discussion of second order
subderivatives.
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Second order subderivatives

Let ¢ : R™ — (—o00,+0o0] be a proper functional and let z € dom g be arbitrary. Then, the
so-called second order subderivative of ¢ at x relative to y € R™ is defined as the following
epi-limit

(z +th) —o(z) — t{y, h)
I

Poely) = e-lim A olaly).  AF e(ely)(h) = =

If the latter epi-limit exists and if it holds d2p(z|y)(0) > —oo, then p is said to be twice
epi-subdifferentiable at x relative to y. Alternatively, the second order subderivative can also
be defined by means of the lower and upper epi-limits:

d2o(z|y)(h) := liminf Afo(z|y)(h), die(zly)(h)= sup  liminf A} o(z|y)(h).
tl0, h—h (tg)kENo k—00, h—h

Here, as usual, the limits d2 o(z|y)(h) and d%o(z|y)(h) denote the lower and upper second
order subderivative of ¢ at = relative to y, in the direction h € R", and g is twice epi-
subdifferentiable relative to y if and only if these two limits coincide for all h € R™ and it
holds d? o(z|y)(0) > —oco. Of course, in the latter case, the common limit is just the second
order subderivative. Let us state some basic properties of second order subderivatives:

e Suppose that p is convex and subdifferentiable at « € dom p, then it holds

N, th) — t(\, h
d2 o(z|\)(h) > lim inf A, >1 5 A Ry =0, VAe€do(x), VheR"
t10, h—h 5t

e Let p be twice epi-subdifferentiable at € dom p relative to y and let f : R™ — R be
twice continuously differentiable in a neighborhood of z, then, for w := y+ V f(x) and
for all h € R™, it holds

A (f + o) (|w)(h) = KTV f(2)h + do(z|y)(h).

e Let o : R — (—o00,+00] be a convex, proper, lower semicontinuous, and positively
homogeneous function. Then, for all A € 9p(0), it holds

0 if o(h) = (\,h
(5.3.35) d20(0|\)(h) = ifo(h) = (A h),
+oo if o(h) > (A, h).
Proof. The second claim can be easily shown by using a second order Taylor expansion of
f. Now, let us briefly prove the third part. Let A € 09(0) be arbitrary. Then, by Lemma
[2.5.13 and (j5.3.5)), it follows

(5.3.36) o(h) = 0" (0;h) = 00y (h) = (N, h), Y heR™

Thus, the case “p(h) < (A, h)” cannot occur. Next, let us consider a point h € R" with
o(h) > (X, h) and let (t)x, tx | 0, and (h*)y, k¥ — h, be arbitrary. Then, the epi-convergence
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of the (first order) difference quotients A; o(0) implies

tih*) —
imint 20T 80D =000 o by jining Ay, 0(0)(hF) = (A, BFY > 0H(0;h) — (A, h) > 0.
k—o0 ik k—o0
Hence, for every pair of sequences T := (t;)r, H := (h*)x, there exists K(7,H) € N such
that
Apy 0(0)(A") = (A ) >0, ¥ k> K(T, H).

This immediately establishes

- 2 -
d2 o(0|A\)(R) = liminf A2 p(0|\)(h) = liminf =(A; 0(0)(h) — (X, h)) = +oo.
10, h—sh t10, h—h

Now, on the other hand, let us suppose that h € R" satisfies p(h) = (A, h). Again, let (tx)g,
tr 1 0, and (h¥)s, h* — h, be two arbitrary sequences. Then, inequality (5.3.36)) implies

(h*) = (A, h*)

liminf A2 o(0]A)(h*) = liminf 2 > 0.
k—o0 k—o0

1
otk

Moreover, due to h € dom p, the function p is directionally epidifferentiable at h. In partic-
ular, there exists (w”)y, w* — 0, such that

limsup Az, o(h)(w®) < o*(h;0) < 0.

k—00

Next, let us consider and define the specific sequence (hk)k with h* .= h + %tkwk, keN. It
holds

h 4 Ltpw®) — o(h
limsup A7, o(0|A\)(R*) = lim sup o(h + 5trw”) — o(h)

- — (N, wh) < o(h;0) — (X,0) < 0.
k—o0 k—o0 §tk

Consequently, the epi-convergence of the difference quotients A? p(0|)\) and formula ([5.3.35))
follow from Lemma 243 O

Second order subderivatives were extensively studied by Rockafellar [206], 207] and Poliquin
and Rockafellar [193] 194] in the context of amenable functions. A thorough discussion of
second order subderivatives can also be found in [208, Chapter 13|. Next, we present a
connection between the second order parabolic epiderivative and the subderivative of a fully
decomposable function. Let us note that similar results were obtained in [206, Theorems 4.5
and 4.7| or [208, Theorems 13.67| for fully amenable functions.

Lemma 5.3.27. Let f : R™ — R be a twice continuously differentiable function and let ¢ :
R™ — (=00, +00] be convex, proper, and lower semicontinuous. Furthermore, let T € dom ¢
be a stationary point of problem and suppose that the mapping ¢ is C?-fully decomposable
at T with decomposition pair (g, F'). Then, ¢ is twice epi-subdifferentiable at T relative to
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5. Second order theory and decomposability

g :=—Vf(x) and the second order subderivative of p at T is given by

~&on(9) = (A, D*F(2)[h, h]) if h € C(a),

400 otherwise,

d®p(z[g)(h) = {

where A € M(z) denotes the associated, unique Lagrange multiplier of problem (5.3.33).

Proof. At first, in the case h ¢ C(Z), the same arguments as in the proof of formula (/5.3.35))
can be used to establish

a2 o(]7)(h) = +o0,

see also [208, Proposition 13.5| for a similar, general result. Next, let (¢x), tx | 0, be arbitrary
and suppose that h € C(Z) is an element of the critical cone. Moreover, let us consider
another arbitrary sequence (h*), with h¥ — h. Then, for any k € N sufficiently large, the
decomposability of ¢, a second order Taylor expansion of F' at Z, and A € M(Z) C dpg(0)
yield

pa(F(Z + tyh*)) — pa(F(2)) — ti(g, h*)
3
(A, F(Z + txh®)) — ti.(\, DF(z)RhF)
b

AF, p(]g)(h*) =

>

= (A, D*F(2)[h*, h*]) + o(1).
Of course, by Lemma [5.3.9] this immediately implies
liming A%, ¢(215) (1) > (, DXF() [0, ]) = ~€5,(7).

On the other hand, the full decomposability of ¢ and Lemma also ensure the existence
of a point w € R™ such that

€)= inf P (Eshw) - (g,0) = pH(E hd) - (g,10).
Furthermore, by Lemma we know that the mapping ¢ is twice (parabolically) di-
rectionally epidifferentiable at Z, in the direction h € C(z). Hence, the epi-convergence of

the (parabolic) difference quotients A? o(z;h) and Lemma imply that there exists a
sequence (w”);, w¥ — b, such that

< o™ (z;h,0).

T+ tph 4+ 320k) — o(Z) — trot (T h

limsup A? o(%; h)(w") = limsup p(T + teh + 5t 1) . P(T) — trp¥(T; h)
k—o0 k—o0 Etk

Now, as in the last proof, let us define h* := h + %tkwk. Then, clearly, it holds h* — h and

we obtain

limsup A2 o(r|g) () = limsup {A2 o) (w*) - (5, 0")

k—o0 k—o00

——

< @¢¢(57 h7w) - <§7w> = _‘fz,h(g)a
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5.3. Decomposable functions

where we used h € C(z). Thus, for every sequence (tg)g, tx J 0, it follows

likn_1>ior.}f A?k o(Z|g)(h*) > —&,.1(g)  for every sequence h* — h,

limsup A7, o(z]g)(h*) < —&; n(g)  for some sequence h* — h.
k—o0

By Lemma [2.4.3] this shows that ¢ is twice epi-subdifferentiable at Z relative to g with
o (z|g)(h) = =& ,(g) for all h € C(z). O

Remark 5.3.28. Let us note that the first part of this proof is based on [206, Theorem 4.5|,
while the derivation of the “limsup-inequality” is motivated by the proof of |27, Proposition
3.103]. However, we also want to mention that our argumentation might not be optimal
since it requires full decomposability of ¢ and existence of a maximizer w of the curvature
term

—& 1(g) = —sup (g, w) — ™ (T; h,w) = M (T; h, D) — (g, D).

It is an interesting question whether a direct discussion of the second order subderivative as
in [206] can lead to similar and more general results for C?-decomposable functions.

Second order sensitivity analysis of the Moreau envelope

In Lemma we have already seen that the Moreau envelope envg, A e S, of a
convex, proper, and lower semicontinuous function ¢ : R" — (—o0,+0o0] is convex and
continuously differentiable. Moreover, in section [3.3] we have discussed several second order
properties of the proximity operator proxg that can be primarily traced back to the convexity
of the Moreau envelope and to the firm nonexpansiveness of proxg. In this subsection,
we will additionally assume that the mapping ¢ is outer second order regular and twice
directionally epidifferentiable at a certain point of interest. This extra information will then
allow us to refine our basic differentiability results and to establish general, first and second
order directional differentiability of the proximity operator and of the Moreau envelope,
respectively.

The theoretical statements in this paragraph are essentially based on [23, Section 7.3] and
[27, Example 4.106]. However, let us emphasize that the results of Bonnans, Cominetti,
and Shapiro, [23, 27], rely on a number of involved second order sensitivity results for the
minimum value function of a general optimization problem. Here, in our specific situation,
these results and the corresponding proofs can be expressed in a compact, self-contained, and
simplified form, which will be presented in the following. For a more abstract formulation
and more details on second order sensitivity analysis we refer to [23] and [27, Section 4.7].

In the following, we will always assume that ¢ : R" — (—o0, +00] is a convex, proper, and
lower semicontinuous function. Furthermore, we consider the specific problem

1
(5.3.37) min (z) + 5 [1@ - 213,
xr

where © € R" is a fixed point and A € S} | is an arbitrary parameter matrix. The unique,
optimal solution of this problem is given by the proximity operator p := proxg(ﬁ) and the

141



5. Second order theory and decomposability

optimal value of problem ([5.3.37)) coincides with the Moreau envelope envfz (). In particular,
it holds

1
(5.3.38) envyy () = o(p) + 5l — pl3.

By Remark the function ¢ is subdifferentiable at p and the corresponding first order
optimality conditions take the following form

(5.3.39) @ (B h) + (A(p— @), h) = @*(p; h) — (Venvi(w),h) > 0, VheR"

Thus, the critical cone associated with problem ([5.3.37) can be defined as follows:

Ch(p) = {h € R" : " (p; h) — Venvi (@) "h = 0} = Ny, (Venvi(a)).

In the next lemmas, we want to analyze stability and sensitivity properties of problem
(5.3.37) and of the Moreau envelope envé along parabolic paths of the form

1
u(t) ==+ td + §t2r +o(t?), d,reR™

By adapting the proof of [27, Theorem 4.100| and by using the concept of outer second order
regularity, we obtain the following result.

Lemma 5.3.29. Let A € S} be arbitrary and let ¢ : R™ — (—o0,+00| be convex, proper
and lower semicontinuous. Suppose that the function ¢ is outer second order reqular at
D= proxg(ﬂ) in all directions h € CA(p). Then, it holds

env(u(t)) — envi (@) — Venvi(a)"d

s ¥ @ ¥
(5.3.40) h%(l)nf I
> (Venviy(a),r) + min  {||d = hl[§ — & ,(Venviy(a))},
heCy (p)

where E,1() = 0 (p5 h, ).
Proof. Let (tg)k, tr | 0, be a sequence such that the limes inferior on the left side of ([5.3.40))
is attained as (f); converges to zero. Furthermore, let us set u* = u(ty), p* = proxg(uk),

and p := prox{,}(a). By defining h* := t;l(pk —p), it holds p* = p + t,.h* and
k Low Low 1
[P"]|a = 7P —plla < o L ulla < |ld+ gter + o(te)a,
where we used the Lipschitz continuity of the proximity operator. Consequently, the sequence
(h*);, is bounded and there exists h € R™ and a subsequence of (h*);, that converges to h. In
the following, without loss of generality, we will drop the additional index of the subsequence
for a better readability. By further setting w* := 2t,;1(hk — h), the proximal path p* can be

written in the form

1 1
P =Pt teh o+ 6 261 (hF = W) = p ot teh 4 St
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5.3. Decomposable functions

Now, a simple calculation yields
Ip* = u¥(I%
= [lp— @ — tr(d — h+ Ftr(r —w*) — o(tx))|
= |lp—ull} — 2tx(A(p — w),d — h + Stx(r — w"))
+iilld — b+ $tr(r — w*) — o(tr) |13 + o(t})
— 15— al} + 2t (Venvh (@), d — b} + £ { (Venvi (@), r — wb) + d = B3 } + o(£2).

Hence, by applying the definition of the Moreau envelope (5.3.38)), we obtain

envg(uk) - envg(ﬂ) - thenvg(a)Td

N 1, i
= @(p") = ¢(0) + S lIP" = w*IR = S — al} — te(Venvi(a), d)

= o") — ¢ (p) ~ ti{Venva), b) + 57 {(Venv(@), r —wb) + ld— hIR} + o).

Dividing both sides by ¢, and taking the limit, £ — oo, this establishes

A,k Al

envi(u”) —enviy(u

0= lim { vp () Yp(®) —VenVA(u)Td}
k—o0 tr ¥

e
{M — <Venv$(ﬂ), h) + O(tk)}

= lim inf
k—o0

o b/ 1, Kk A
> hkrgggf {cp Py h + 5tpw™) + o(tk)} — (Venv,,

(@), h) > @*(p; h) — (Venvy(a), h),
where we used tpw® — 0, the convexity of ¢, and the properties of the epiderivative p*(p;-).
On the other hand, since p is a solution of the minimization problem (5.3.37)), the optimality
conditions (5.3.39) imply

©*(p;h) — (Venvh (@), h) = 0

and, consequently, it follows h € C}} (p). Next, by combining the last results, we get

(") — @(B) — trp*(p; h) = L27F,

k

where the remainder 7% is defined as 7% := 2t,;2[envg(uk) - envg(ﬂ) - Venvfz(ﬂ)—rd] -

<Venv$(ﬁ), r—wF) — ||d — h|]3 + o(1) and satisfies ¢, 7% — 0. Thus, since ¢ is outer second
order regular at p in all directions h € C2(p), there exist sequences (@"*); and (7¥); such
that @* — wk — 0, 7¥ — 7% — 0, and 7% > (pi_i(ﬁ; h,@w*). Finally, we have

Ak Al Ar=\T
envy,(u”) —env; (1) — Venv,, (1) ' d

1,2
3tk

> o (s h, i) + (Venv (@), r — wk) + |d — b + o(1)

> (VenvA(a),r) + [[d — A} — €5 (Venvi (@) + ofL).
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5. Second order theory and decomposability

Moreover, by taking the limit & — oo over both sides of the latter inequality and using
h € CA(p), we clearly obtain (5.3.40). This concludes the proof of Lemma [5.3.291 O

In order to derive an upper bound for the parabolic difference quotient in ([5.3.40)), we will
now discuss the second order behaviour of the Moreau envelope envg along fixed proximal
paths

_ 1 _ _ _
(5.3.41) p(t) = p+th+ Stw+o(t?), p=proxy(a), heC(p),
where w € R and the o(#?)-term are chosen such that the path p(t) satisfies p(t) € dom ¢

for all ¢ > 0 sufficiently small. Due to the definition of the inner second order tangent set
and Lemma [5.2:4] it follows for all ¢ > 0

(5.3.42) ((’Dfﬁo +i <¢¢<g; h)> + %tQ <¢+ (:h w)) +o(t2) € epi .

Hence, since the epiderivative @*(p; h) is finite, the path p(t) is feasible if there exists w € R™
with g0+ (p; h,w) < oo. The following result is based on [27, Proposition 4.83].

Lemma 5.3.30. Let A € S™ | be arbitrary and let ¢ : R™ — (—o00, +00] be a convex, proper
and lower semicontinuous function. Then, it holds

(5.3.43) limsup envi (u(t)) — envi (@) — Venvi () Td
a tl0 %tz
< (Venvy(a),r) + hrgkr(l {lld =Rl = ¢p(Venvi(a))},

where Cop(-) = ¢4 (B3 hy ).

Proof. Clearly, if the upper second order directional epiderivative gp My (p, h,-) is infinite for
all h € C2(p), then, due to

~Con(Venvi(w) = inf o (p b, w) — (Venvj(u), w),

the right side of ([5.3.43) equals 400 and the inequality in Lemma |5.3.30|is trivially satisfied.
Otherwise, there exist h € C2(p) and w € R™ such that we can construct a feasible proximal

path p(t) of the form (5.3.41)). Then, by using the calculations of the proof of Lemma [5.3.29

and , it follows
envfz(u(t)) - envg( ) — tVenvh (1 )hd
1
< ¢(p(t)) — ¢(p) + *Hp(t) —u@®)x - 5 lIp - ali - t(Venv}(a),d)

(p(1)) = ¢(p) — t{Venvi(a), h) + ;tz {{Venvi (@), r — w) +||d = hl3 } + o(t?)

2 { o (s h, w) + (VenvB (@), — w) + [ld = b | + o(#2).

<

= S
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5.3. Decomposable functions

By taking the infimum with respect to w and minimizing over h € C2(p), we readily obtain

inequality ([5.3.43)). O

Before continuing with the next theorem, we want to discuss the minimization problem,
which occurs in the inequalities ([5.3.40) and (5.3.43]), and the corresponding convex conju-
gates 5:; p, and C; », in some more detail. Therefore, let us suppose that the function ¢ is addi-

tionally outer second order regular and twice directionally epidifferentiable at p = proxg(

u)
in some direction h € C2(p). Furthermore, let (t), tx 4 0, be an arbitrary sequence. Then,
due to the epi-convergence of the first order difference quotients A; p(p), there exists (h¥)y,
h¥ — h, such that

_ kY _ _
lim sup (P + th") — o(p)

< o*(p;h) € R.
k—s00 tg

Next, let us define
wh =20 B = B), 7= 262 (0(p + tih + 5tRwR) — o () — the (B )],
Clearly, this yields t,w® — 0 and
(D + thh + 3tEw®) = (D) + tep* (B h) + 387"

Using Lemma and the positive homogeneity and lower semicontinuity of the epideriva-
tive H(p;-), we obtain

\l/ _-t h th k _t J/ _'h,
liminf t7F > liminf © (B3 tih + 3 klw ) — tret(p; )
k—oo k—o0 §tk
it 2 ik + btwt) - (@) 20
k—o0

On the other hand, we have

_ t hk _ _
lim sup tka = lim sup PP+ 1kh7) — (p)

- — 204 (p; h) < 20 (s h) — 2¢%(p; h) = 0.
k—o0 k—o00 §tk

Thus, it follows t,7% — 0 and, due to the twice epidifferentiability and outer second order
regularity of ¢, there exist (@), w* — w* — 0, and (7*);, 7% — 7F — 0, such that
P (ps by 0*) = o (9 a) = o (s by ) < 7
Consequently, in this case, we have
—C;,L(Venvg(ﬁ)) <7k (Venvé(a), W) < +oo.
Moreover, as in Remark [5.2.9] it follows

Venv (@), th + 1t2w) — tot(p; h
B,y = fimin TS IE SN TN _ G i) ),
’ 2

2
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5. Second order theory and decomposability

and

—fzyh(Venvg(a)) = inf o™ (p; h,w) — (Venvh

A(a), w) > 0.

Altogether, this finally implies
—5:,,h(VenV£(ﬂ)) = —C:,yh(Venvfz(ﬂ)) € [0, +00).

Hence, in summary, if ¢ is outer second order regular and twice directionally epidifferentiable
at p in every direction h € C2(p), then the objective function of the minimization problem

in_||d— |} — & n(Venvi (@), =" (p; h,
i | A = Eon(Venvig (1)),  Epn(w) := @™ (P; h,w)

is real valued on the critical cone C2(p). Now, by combining Lemma [5.3.29] and [5.3.30| and
our latter observations, we obtain the following theorem.

Theorem 5.3.31. Let A € S | be arbitrary and let ¢ : R™ — (—o0, +00] be convez, proper,
and lower semicontinuous. Furthermore, suppose that ¢ is outer second order reqular and
twice directionally epidifferentiable at p = proxg(ﬁ) in all directions h € C2(p). Then, the

second order directional derivative (envg)”(a; d,r) exists and it holds

(5349)  (env)'(5d,r) = (Venvh(@),r) + min  {ld— b3 — €55(Venvh(@)}
heCi (p) ’

where {, 1 (+) = o (p; h,-). Moreover, the proxzimity operator proxg is directionally differen-

tiable at u and its derivative satisfies

(prox)'(@; d) = argmin {[|d — Alf} — &5, (Venvi(a))} .
heCh (p)

Proof. At first, we want to note that the following proof is based on the proofs of [24]
Theorem 4.1 and Corollary 4.1] and [27, Theorem 4.101]. Again, we will tailor the abstract
and general results in [24] 27] to our specific situation.

The second order directional differentiability of the Moreau envelope env’ and formula
(5.3.44)) follow directly from Lemma |5.3.29| and |5.3.30L the continuity of envf;, and the fact
that the objective function

A
®

h = Tg(h) := ||d — h||3 — & ,(Venv)(a))

is real valued on C2(p). (In particular, the term on the right side of equation (5.3.44)) is a real
number). Furthermore, Lemma |5.2.12| implies that the mapping h +— —§;7h(Venv$(ﬂ)) is

convex on the critical cone C2(p) C dom *(p;-). Hence, the function Ty is strongly convex
on C2(p) and the optimization problem

(5.3.45) min  T'y(h)
heci (p)

has a unique solution h € CMp). Now, let (t)k, t 1 0, be an arbitrary sequence. Then, by
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5.3. Decomposable functions

combining Lemma [5.3.29 and [5.3.30] and by reconsidering the proof of Lemma [5.3.29] we see
that any accumulation point & € R™ of the sequence (¢*)y,

ty)) — proxh(u
O o (u (k)t) prOXgJ(U)? keN,
k

satisfies the following inequality

A A T
Py(h) < limsup env; (u(ty)) — envy,(a) — thenV (u)'d

n T —Venv2(@) "r < min  Ty(h).
— 00 2%

s hec (p)

Thus, the point h is a solution of the minimization problem and it immediately
follows h = h. Moreover, since (¢®)1 is bounded and h was an arbitrary accumulation point,
the sequence (gx)r has to converge to the unique solution h of problem . Finally,
since the proximity operator is a Lipschitz continuous function and the sequence (tj); was
also arbitrarily chosen, we obtain

A A
rox(u(t)) — proxi(u A
prox; (u(t)) — prox; () = h = argmin Ty(h),

t¢0 t hecl (p)

(prox))'(a:d) =

as desired. O

Next, we are going to combine the results of Theorem [5.3.31] the full decomposability of ¢,
and the strict complementarity condition to establish Fréchet differentiability of the proximity
operator proxfg. Let us mention that a similar result was already proven by Shapiro, [212]
Proposition 3.1], for projections onto cone-reducible sets. The proof of the following Lemma

is motivated by the ideas in [212].

Lemma 5.3.32. Let ¢ : R" — (—o0,+00] be a convez, proper, and lower semicontinuous
mapping and let u € R™ and A € S be arbitrary. Moreover, suppose that o is C%-fully
decomposable at p := proxg(ﬁ). Then the proximity operator prox 1s Fréchet differentiable

at u if and only if the following strict complementarity condition is satisfied
VenvA o (1) €11 Op(p).

Proof. Let (¢4, F) be a corresponding decomposition pair of ¢. Since ¢ is C?-fully decom-
posable at p, Lemma [5.3.5] implies that ¢ is twice directionally epidifferentiable and outer
second order regular at j in all directions h € R"™ with DF(p)h € dom ¢g4. Now, let h € C2(p)
be arbitrary, then it follows

0= @*(p;h) — (Venvg(ﬂ), h) = wa(DF(p)h) — <Venv$(7j), h).
Clearly, this shows DF(p)C2(p) C dom g and, consequently, Theorem [5.3.31] is applicable
and we can infer that the proximity operator prox$ is directionally differentiable at . More-
over, since proxg is a Lipschitz continuous function, it is also directionally differentiable in
the Hadamard sense and its directional derivative (proxA)’ (u;-) is Lipschitz continuous.

Hence, the proximity operator prox is Fréchet differentiable at u if and only if its di-
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5. Second order theory and decomposability

rectional derivative (prox{,})' (u;-) is a linear mapping. (Let us refer to |27, Section 2.2.1]

for more details on Hadamard and Fréchet differentiability). Furthermore, via identifying
fl@)=iz—a|}, z=p, —Vf(2) = Venvg(ﬁ), and C(z) = C2(p), Lemma implies
~&5n(Venvi (@) = (X, D°F(p)[h, h]), X € M(p), ¥ heCq(p).

Thus, by using Theorem 5.3.31} the directional derivative (proxg)’ (u; d) is the unique, optimal
solution of the following, strongly convex and quadratic program

5.3.46 i d—h|%+h"Ho(P)h,  Hop):=> NVZF(p).
( ) o | 1A (D) (D) z; (p)

We can now proceed as in the proof of [212, Proposition 3.1]. Since the critical cone C2(p)
coincides with the normal cone Naw(ﬁ)(Venvg(ﬂ)), we can utilize Lemma [5.1.10] and conse-
quently, we only need to verify that the linearity of the mapping (proxé)’ (u; -) is equivalent to
C}} (p) being a subspace. Additionally, since the set Cé\ (p) is a convex, nonempty, and closed

cone and by defining ¢(h) := ch(ﬁ)(h), the optimization problem ([5.3.46)) is of the form
and the general first order optimality theory of section [4.1] is applicabAle. Therefore, let us

first suppose that the critical cone C2(p) is a subspace and let us set h; := (proxg)’(ﬂ; d;),
d; € R" ¢ =1,2. Then, due to

Neag(hi) = [C2 (@) n {hi}*" = C3(p)™,
the corresponding first order optimality conditions for problem ([5.3.46)) reduce to
(Alhi = di) + Ho(P)his ) =0, ¥ h €CR(p), Vi,

where we used Example Example [2.5.16] Lemma and the fact that C2(p) is
subspace. Obviously, this establishes

(proxg)'(ﬂ; ady + Bdg) = ahi + Bhe, Y a,B ER,

which in turn implies the linearity of (proxé)’ (u;-). On the other hand, suppose that the

directional derivative (proxf})’ (1; ) is a linear mapping and let b € C2(p) be arbitrary. Setting

d:=h+ A"'H,(p)h, it holds
A(h —d) +Ho(p)h = 0 € Neagy (h) = [C3 (P))° N {h}

and, thus, it follows (proxg)/(ﬂ; d) = h. Now, formula (5.3.46)), the linearity of (proxg)’(ﬁ; ),
and 0 € C2(p) immediately imply that the critical cone C2(p) is a subspace. O

Let us briefly reconsider our initial problem
min /() + olz)

and let Z € dom ¢ be a stationary point of the latter problem. Moreover, let us suppose that
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the function ¢ is C?-fully decomposable at Z and let A € S, be an arbitrary parameter
matrix. The corresponding first order optimality conditions can be represented as follows

z =prox(a), w:=z—AT'Vf(z)

Consequently, ¢ is “also” C?-fully decomposable at p := proxg(a) =z and, due to

Venv) () = A — p) = =V f(Z) + A@ — prox)y (1)) = —V f(Z),

we can formulate the following corollary, which apparently does not need a proof.

Corollary 5.3.33. Let f : R® — R be a twice continuously differentiable function and let
¢ : R™ — (=00, +00| be convex, proper, and lower semicontinuous. Suppose that & € dom ¢
is a stationary point of problem and let ¢ be C%-fully decomposable at T. Then, for
every parameter matriv A € S, the proximity operator proxg 1s Fréchet differentiable at
u =7 — A"V f(Z) if and only if the strict complementarity condition

—Vf(z) €ri 0p(T)
holds at T.

Thus, in summary, if the convex, proper, and lower semicontinuous mapping ¢ is C?-fully
decomposable at every point x € dom ¢, then our analysis shows that the strict complemen-
tarity condition completely characterizes the Fréchet differentiability of the corresponding
proximity operator. Once more, this illustrates the abundance and the structural advan-
tages of the concept of full decomposability. We conclude this paragraph with an exemplary
application.

Example 5.3.34 (Semidefinite programming). We consider the matrix optimization
problem

: n
(5.3.47) mmin f(X) st. XeSh,
where f : S™ — R is a twice continuously differentiable function. Since the cone of positive
semidefinite, symmetric matrices is C°°-cone reducible at every point X € S| (see, e.g., [27,
Example 3.140]), it immediately follows that the indicator function ¢ : S — (—o0, +00],
@(X) = tgn (X) is C-fully decomposable at X € S7. Hence, our abstract second order
framework can also be applied to general semidefinite programs of the form ([5.3.47)).

In the following, we briefly want to analyze the differentiability properties of the proximity
operator prox{o(-) = PSQL(')' Therefore, let U € S™ be arbitrary and let us consider the
spectral decomposition of U,

U=PxP", ¥ =diag(o)eS",

where each o;, i = 1,...,n, denotes a corresponding eigenvalue of U and P € R"*" is an
orthogonal matrix. Then, by [107], the proximity operator proxSID(U) can be computed as
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follows

_ _ _ 1 -
Uy = proxfo(U) = Psn (U) = arg min §||U — Y% = Pdiag(max{c,0})P".
Yest

Next, let us define the index sets
a:={i:0;,>0}, B:={i:0;,=0}, ~:={i:0;<0}.

Then, as in [27] [I83] 226, 43] and by setting & = {1,...,n} \ «, the tangent cone TS"J:(U_A'_)
has the following explicit representation

Tsn (Uy) = {H € S": B HP.4 = 0}

and, due to @+ (Uy; H) = U (T
+

y(H), it can be shown that the critical cone reduces to

Cy(Us) ={H € Ty (U+) : (U — Uy, H) = 0}
n. pl T _ T _

Consequently, Lemma [5.3.32|implies that the projection Pgi (-) is Fréchet differentiable at U
if and only the index set /3 is empty, i.e., if and only if the matrix U is invertible. Of course,
this result is already well-known; see, e.g., [I83, Corollary 10| or [226] for more details.

The VU{-concept

The VU-concept was introduced by Lemaréchal, Oustry, and Sagastizabal in [130] to analyze
and express second order differentiability properties of real valued, convex and possibly
nonsmooth functions. Basically, the idea is to decompose the space

R'=UsV

into two perpendicular subspaces i and V and to study the behavior of ¢ along this subspaces.
Typically, the gully-shaped space U is chosen such that the restriction of ¢ to the set U is
differentiable in the classical sense. On the other hand, the narrow, V-shaped space V
is parallel to the affine hull of the subdifferential of ¢ and captures the nonsmoothness
of the function . Moreover, Lemaréchal et al. developed the U-Lagrangian, Ly : U —
R, of ¢ that, in contrast to the convex function ¢, is solely defined on the U-space and
can be shown to be Fréchet differentiable at a certain point of interest. This enables the
investigation of second order properties of L;; and leads to the concept of the U-Hessian
of ¢. In [103, 155], these ideas were extended to general, real extended valued and proz-
reqular functions by introducing a regularized version of the U-Lagrangian — the so-called
quadratic sub-Lagrangian. Based on the VU-concept, Mifflin and Sagastizabal [154] proposed
an algorithm for convex, real valued, and unconstrained minimization. It uses a VU-space
decomposition, bundle techniques and generates a proximal point sequence that follows a
smooth trajectory in the V-space. For more details on Vi{-related algorithms and applications
we refer to [60, 140l 102] and [179] [112], respectively.
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5.3. Decomposable functions

Here, we are motivated by the following facts:

e In [I55] Mifflin and Sagastizabal showed that, if the quadratic sub-Lagrangian has a
generalized Hessian at 0 and the strict complementarity condition is satisfied, then the
second order subderivative of ¢ exists (at a certain point) and its value coincides with
the quadratic form induced by the U/-Hessian on the subspace U.

e In [I50, 152 153] MifHlin and Sagastizabal analyzed the second order behavior of max-
type functions of the form

f:R*" 5 R, f(z):=max{fi(z):i=1,...m}, f;€C?

and of a class of functions with primal-dual gradient structure (pdg structure). As
in [I55], they established a connection between the ¢-Hessian, the second order sub-
derivative and the second order parabolic epiderivative of ¢. Moreover, under a certain
index set-based regularity condition, they derive and provide explicit formulae for the
U-Hessian and the epiderivatives.

e Finally, in [132, 130, 151], a connection between the U-Hessian of ¢ and the Hessian of
the corresponding Moreau envelope envf,} is presented. We will utilize this connection
to complete our theoretical “detour” and to derive an intrinsic characterization of the

curvature &5, (=V f(Z)), h € U, in terms of the Fréchet derivative of the proximity
@5
operator proxé — just as presented in Theorem [5.3.26

Let us briefly recall our current situation to clarify the motivational aspects of the latter
observations. Let ¢ : R" — (—o00,+0o0] be a convex, proper, and lower semicontinuous
function and let € dom ¢ be a stationary point of problem . Furthermore, let A € St
be given and suppose that ¢ is C2-fully decomposable at Z. Then, by setting g := —V f(Z)
and by using the notation of the proof of Lemma and Lemma it follows

(5.3.48) dPo(z|g)(h) = —&5,(9) = B Hy(Z)h, ¥V heC(z).

Thus, the second order subderivative has obviously a Hessian-like structure. Moreover, in-
spired by the mentioned results for max-type and pdg-structured functions, this also indicates
that a similar connection between second order parabolic epiderivatives, second order sub-
derivatives, and U-Hessians does also exist for the class of fully decomposable functions.
However, at this point and in contrast to [150} 155, [153] [152], we cannot directly infer that
o has a U-Hessian at 7.

Our task is now as follows. First, we will introduce the U-, and V-space, the quadratic sub-
Lagrangian, and several helpful and necessary VU-tools. Then, we extend the computational
and theoretical results of Mifflin and Sagastizabal to the class of fully decomposable functions.
In particular, by mimicking the proof of [I55, Theorem 3.2], we will show that the second
order subderivative d2¢(Z|g) coincides with the second order subderivative of the quadratic
sub-Lagrangian. Invoking equation ([5.3.48)) and Theorem and using the convexity of
the second order difference quotients, this finally implies that 7, (Z) is actually the U/-Hessian
of p at z, as expected. Applying the results of Lemaréchal et al. [132] [I30], we are then able
to conclude the proof of Theorem An overview of the various representations of the
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5. Second order theory and decomposability

—&5 0(3) = hTHy(Z)h, heC(T) —& () = d*o(2]g)(h), h e C(z)
e Curvature via parabolic epiderivatives and [7| e Curvature via second order subderivatives.
full decomposability. e Lemma BT
e Lemma[5.3.9
1
—&2,(9) = (h, [A"2 QA (@) TAZ — I]h),, &5 0(9) = (B, HoA(O)h)y, heU
where h € C(z) £ U, u = 7 — A"V f(2), o Curvature via U-Hessians and quadratic
and sub-Lagrangians.
A=)y _ AL Af~\A—2L
Q. (u) = A2 Dprox,,(u)A™=. . Theorem B350

e Curvature via the Fréchet derivative of the
proximity operator prox?

o
e Theorem [5.3.26)

Figure 5.3.: Different expressions of the curvature term —§<’;,h(§) and illustration of concept
of the proof of Theorem @

curvature term —&7 , (g) and of the different steps of the proof of Theorem [5.3.26|is given in
Figure [5.3]

As in the last subsection, we start with a slightly more general setting that includes the
stationary case as a special case (see, e.g., Corollary and the preceding discussion).
Therefore, let u € R", A € S}, be arbitrary and let us suppose that ¢ is C?-fully decom-
posable at the point p := prox{,} (a). Moreover, let us set g := Venvg(ﬂ). Here, we consider
the following subspaces

(5.3.49) U :=lin No,p(9), Ut =aff dp(p) —g, V:=U",

where the latter operation is defined via

Y

veV= <=  (u,u)p=0, Yuel.

Since the bilinear form (-, ) : R™ x R™ — R represents a scalar product on R x R™ and U is
a closed subspace, it immediately follows U = V1A = 2 l’A]L’A. Let us note, that the space
U does not depend on the specific choice of the subgradient g, i.e., we have U = lin Ny,5)(9)
for every g € d¢(p). Furthermore, if the strict complementarity condition g € ri dp(p) is
satisfied, then the lineality space operation “lin” is superfluous.

Now, let us define ny := dim U, ny := dim V and let U € R™™ and V € R™™ be
two basis matrices of the subspaces U and V), respectively. Then, the projection of a vector
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5.3. Decomposable functions

x € R™ onto the sets & and V can be calculated via
Py(z) =U[UTAU) YU Az =: Uy, Pylz) =VIVIAV] VT Az = Vay
and we have the following space decomposition formula
e=U[UTAUT YO T Az + VIVTAV] W T Az = Uy + Vay =: a2y @a zy € R x R,

Due to ¢, = 1,1, the latter formula is just a simple application of Moreau’s decomposition
principle, Theorem [3.2.5

v =Ph(x) + AP (Ax) = Pi(z) + P (x).
This terminology can also be naturally extended to scalar products and norms. It holds
o (v,y)n = (Uxy + Vay, AUyy + AVyy) = (Uxy, Uy + (Voy, Vyy)a
(@, yuu s + (T, Yv)va,

UTAU UTAVY [z
hd H$||?\ = (»”Uz—,fr 5'3;) (VTAU VTAV> (fﬁz

) Nzl n + NlevlBoas

where we used the A-orthogonality of the basis matrices U and V. Let us note that, besides
the original definition (5.3.49)), the subspaces U and V are also often identified with the

subspaces R™ and R™, respectively. In particular, we will work with the following notions:
e UEUCR" = u=uy®r0 < VIAu=0.
e UCUZRY < FGcR":Uu=1.
Additionally, if necessary, we will also use the terms
(YRR SR, el = @y (v R xR SR, [yl = o)y
to denote the scalar product and the corresponding, induced norm on R™ and R™>.
Next, for § := A™1g, we define the so-called quadratic sub-Lagrangian of o at p
Dp U — [—00,+00], Pp(u):= 5I€11f) o(p+udprv)—(gv,v)pa + %”’UH%A

and the associated multi-valued mapping

. _ . 1

W U=V, Walu) = argmin o(p+u®a o) — (Gv,vva+ 5 lola
veVY

These two definitions are essentially based on the work of Hare and Poliquin [I03], but, in

contrast to [103], [130], do also take account of the parameter matrix A and of the induced

V-geometry. In comparison, the original U-Lagrangian, introduced by Lemaréchal, Oustry,

and Sagastizabal, [130], is only well-defined for convex, real valued functions ¢ : R” — R
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5. Second order theory and decomposability

and has the following form
Ly (u) == ;glf} e(p+udv)—(gy,v)yy, (A=1I).

Hence, by adding the quadratic term %HUH% A» Hare and Poliquin successfully extended the
concept of the U-Lagrangian to real extended valued and possibly nonconvex functions.

In the following, we present several important properties of the quadratic sub-Lagrangian.
More precisely, we will show that the quadratic sub-Lagrangian is convex, Lipschitz contin-
uous in a neighborhood of 0, and Fréchet differentiable at 0. Let us note that the convexity
of ¢ significantly simplifies the discussion of the quadratic sub-Lagrangian and that most of
our proofs are easy extensions of the corresponding proofs for the original U-Lagrangian.

Lemma 5.3.35. Let A € S, be arbitrary. The functions @5 and Wy have the following
properties:

(i) The function ® is convez, proper, and lower semicontinuous. In particular, it holds
A (0) = ¢(p).

(i) 1t holds Wa(u) # 0 for all u € dom ®p and Wy (0) = {0}.

Proof. In [103 Theorem 5 and Proposition 6], a proof of these two statements is provided
for the general nonconvex and prox-regular setting. Here, similar to [130, Theorem 3.2], we
will explicitly exploit the convexity of ¢. First, let us note that the quadratic sub-Lagrangian
can be written as a marginal function

. _ . 1
Da(w) = inf 6(u,v), 6w, v) = p(p+unv) = (G, 0w+ 50l
Since the function 6 : R" x R™ — (—o00, +00] is obviously convex, we can utilize |11, Propo-
sition 8.26]. This establishes convexity of the quadratic sub-Lagrangian ®,. Furthermore,
using g € dp(p), it follows

_ . 1 . 1
(5.3.50)  O(u,v) —0(0,0) > (g, uSrv) — (Gv,v)v,a + §||UH]2/,A = (Ju> wWu + 5”””]2/,1\
and consequently, we have

0(u,0) > Py (u) = ;Ié\f} O(u,v) > o(P) + (Gu, wur, Vuel.
Clearly, this implies ®4(0) = ¢(p) and shows that the quadratic sub-Lagrangian is a proper
function. The lower semicontinuity of ®, follows from [I03] Theorem 7] and will not be dis-
cussed here. Let us continue with the verification of the second part. Apparently, inequality
also implies that for every fixed u € U, the function (u, -) is coercive on the subspace
V. Moreover, for all u € dom ®p, we can further deduce that 6(u,-) : V — (—o0, +0o0] is a
convex, proper, and lower semicontinuous mapping. Thus, by Lemma [4.2.3] all level sets of
0(u, ) are bounded and Wy (u) has to be nonempty. The formula W, (0) = {0} immediately

follows from (|5.3.50)). O
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5.3. Decomposable functions

Lemma 5.3.36. Let A € S, be arbitrary. Then, the quadratic sub-Lagrangian ®, is lo_cally
Lipschitz continuous and Fréchet differentiable at 0 and its gradient satisfies V®A(0) = U g.

Proof. Since ®, is a convex marginal function

. o o 1
Dp(u) = glelmf/ O(u,v), O(u,v):=p(@+Uu+Vv)— (Vg Vo) + 5“1)”%771“—/,

we can apply [11], Proposition 16.46| to characterize the subdifferential 9®4(0). In particular,
it holds

w

U’ _ 0
we dPp(0) = ( 0) € 80(0, W (0)) = (VT) do(p) — (VT A‘-/g>
— UWUTAU)'we A 9p(p) — Vi
— AUWUTAU)'w e dp(p) —AViCc Ut +5—AV§,

where we used W (0) = {0}, Lemma [2.5.15, and ([5.3.49). Multiplying the latter inclusion
with U T yields

welU Ut4+U0Tg—U"AVy={U"g}.

Now, by utilizing Lemma, and Theorem it follows that ®, is locally Lipschitz
continuous near 0. Moreover, in this case, since the subdifferential &, (0) = {U g} is a
singleton, [IT], Proposition 17.26] is applicable and we obtain V®,(0) = U"g. Hence, the
quadratic sub-Lagrangian ®, is Fréchet differentiable at 0; see also [11, Proposition 17.36].
a

Consequently, the quadratic sub-Lagrangian ®, has a higher regularity than the convex
base-function ¢ which allows to analyze and characterize second order properties of ®5 via
classical tools. Now, due to

Vo) b= (OO TAU) 0" AG, Uh)p = (Ugy, Uh)a = (Gu, R)un, h €U,

the vector gy is called U-gradient of ¢ at p. Moreover, we say that ®, has a generalized
Hessian at 0 if and only if there exists a symmetric, positive semidefinite operator H®, (0) €
R™ X" guch that

(5.3.51) Dp(h) — ®A(0) — VDA(0)Th — %(h, H®x(0)h)y = o(||h|7), (kb — 0).

If the generalized Hessian H®,(0) exists, then we call it a U-Hessian for ¢ at z. Let
us emphasize that the generalized Hessian H®,(0) must not be confused with the classical
Hessian V2®, (0) of the function ®,. In particular, the expansion does not guarantee
twice Fréchet differentiability of ®, at 0 since the quadratic sub-Lagrangian typically need
not be differentiable in a neighborhood of 0. The next lemma mathematically clarifies the
term “U-Hessian” and combines [I30, Corollary 3.5| and [154, Lemma 3.1].

Lemma 5.3.37. Let A € S" | be arbitrary and suppose that the condition g € ri 0p(p) is
satisfied. Let us consider a V-space minimizer function v(h) € Wx(h), h € dom ®,. Then,
the following statements hold:
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5. Second order theory and decomposability

(i) It holds v(h) = o(||h|ju), B — 0.

(i1) Additionally, if the quadratic sub-Lagrangian has a generalized Hessian at 0, then it
holds v(h) = O(||h||), h — 0, and we obtain

R 1
p(p+h@nv(h) = @) +(g: h®a v(h)a + 5(h, HPA(0)h)u + o([In%),
for all h € U sufficiently small.

Proof. We only prove the first part of Lemma [5.3.37 A proof of the second part can
be found in [I54, Lemma 3.1]. The strict complementarity condition g € ri dp(p) and the
definition of the subspace V imply that there exists € > 0 such that

g+ 0@pveAIp(p), YveV)\{o}.

[v]lv,a
Hence, as in , we have
0u,0) ~ 0(0,0) > G, uhue + g0l + <l
and for v(h) € W (h), it follows
®p(h) = PA(0) = VA(0) "h = O(h, v(h)) = 0(0,0) — (G, hu
> %(HU(MHV,A +26)lo(h)llv.a > ello(h)v.a.

Now, the Fréchet differentiability of ®, immediately establishes v(h) = o(]|h/), as h — 0.
Moreover, let us note that, due to Theorem the continuity of ®, is equivalent to the
condition 0 € int dom ®,. Thus, by Lemma (i), we have Wx(h) # 0 for all h € U
sufficiently small and the V-space minimizer function v(h) is well-defined in a neighborhood
of 0. O

Connecting second order subderivatives and {/-Hessians

In the following, we show that the second order subderivatives of the quadratic sub-Lagrangian
®, and of the convex function ¢ coincide. This result is strongly motivated by [154, Theorem
3.2] and covers the case when existence of the -Hessian or the generalized Hessian of ®5
cannot be guaranteed in advance.

Lemma 5.3.38. Let A € S', be an arbitrary parameter matriz and let the strict comple-
mentarity condition g € ri Op(p) be satisfied. Furthermore, let us suppose that the function
@ is twice epi-subdifferentiable at p, relative to g. Then, the quadratic sub-Lagrangian ®, is
twice epi-subdifferentiable at 0, relative to go := VPA(0) and the corresponding second order
subderivative of ®p at 0 is given by

(5.3.52) A2® 4 (0[go) (hy) = d%p(p|g)(h), Y h=hy @0 €U.
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Proof. Let u € dom ®, be arbitrary and let v(u) € Wy (u) be a corresponding V-space
minimizer function. Then, it holds

D) (u) = 0(u,v(u) < P+ udsrv) — (Gv,v)ya + %HUH]%A, Yvey,
and it readily follows
(5.3.53)  ®p(u) — ®A(0) — VA(0) u < p(p+u@av) — 9(P) — (3, u @ v)a + 5][v][Da-

Next, let (tx)k, tx 4 0, be an arbitrary sequence and fix any h = hy ©p 0 € U. Since ¢ is
twice epi-subdifferentiable at p relative to g, there exists a sequence (h¥), C R™, h¥ — h,
such that

limsup A7 ¢(plg)(h*) < d*¢(plg) ().

k—o0

Moreover, using the VlU-structure, we obtain
WF = b @ by, p+tht =P+ (khg) ©a (teh}),
and hzlj — hy, h]’j — 0. Now, from ([5.3.53)) and for all k sufficiently large, it follows

@A(tkhlzf{) — ®Dp(0) — tx(VPA(0), hlIf{>

u =
" < A2 p(plg) (1) + 1113
2k

and
limsup A7, ®(0g0)(hfy) < d*p(plg)(h) + limsup [|hD]5 4 = d*e(plg)(h).

k—o00 k—o00

On the other hand, let (hzlj)k C R™ be an arbitrary sequence that converges to hy and let
us define

1
h* = hy @ av(t,.ch’g,).

Now, by Lemma [5.3.37] (i), we have v(t,h}}) = o(||tih¥ |lu), k — oo. Consequently, it follows
h¥ — hy @A 0 =: h and we obtain

D (trhy) — PA(0) — tx(VOA(0), ANy o(p+ teh®) — o(p) — (g, h¥) N [o(trhf)15A
sth 5t t '

Taking the limes inferior £ — oo over both sides of the latter equality and using the second
order epi-subdifferentiability of ¢, this yields

[EGEALAN

liminf A7, ®(0]g0)(hyy) > d*¢(plg)(h) + lim inf 5 = d%¢(plg)(h).
k—o00 k—o00 tk

In summary, we have shown, that for any sequence (t)g, tx J 0, it holds

1i’§n inf Afk ®A(0]go)(h) > d%¢(plg)(h) for every sequence hfy — hy,

—00

limsup A2 B4 (0]go) () < Zp(plg) () for some sequence by — hu.
k—o0
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5. Second order theory and decomposability

Thus, due to Lemma the difference quotients AZ ®(0|gg) epi-converge to the second
order subderivative d?(p|g) on U and it holds

d2®4(0]90) (hu) = d*p(p|7) (),

forall h=hy ®&p0€U. O

Next, we will merge our different results and observations. Therefore, let £ € dom ¢ be a
stationary point of problem and suppose that ¢ is C2-fully decomposable at . Moreover,
as usual, let us set @ := z—A~!V f(Z) and let the strict complementarity condition be satisfied

—Vf(z) € i dp(T).
Then, we have the following identifications
T =p=proxy(u), —Vf(z)=g=Ven)(a), C(T)=Ny,m(-Vf@)=U,

where we used the stationarity of Z, Definition [5.1.5 and Lemma [5.1.10} Furthermore, by
Lemma the stationarity of  and the full decomposability of ¢ imply that ¢ is twice
epi-subdifferentiable at Z relative to g and it holds

d*p(zlg)(h) = —€, 1(9) = h Hp(T)h, ¥ heC(a).

In particular, if (g4, F') is a corresponding decomposition pair of ¢, then the symmetric and
positive semidefinite matrix H,(z) € R"*" is given by

(5.3.54) Ho () = i NV F(Z),
i=1

where A\ € M(Z) is the associated, unique Lagrange multiplier of the decomposed problem
(5.3.33]). Clearly, at this point, Lemma|5.3.38|is applicable and we can infer that the quadratic
sub-Lagrangian is twice epi-subdifferentiable at 0, relative to go. We obtain

d*®(0lg0) (hus) = d*@(2|g)(h) = b Hyp(Z)h, ¥ h(= hy @2 0) € C(2).

Now, rephrasing the second order epi-subdifferentiability of the function ®,, the latter equa-
tion means that for every sequence (tx)k, tx J 0, the family of convex difference quotients
A7 @a(0g0) : U — (00, +00],

D (tph) — @A (0) — 1, VOA(0) TR
&

A} @A (0]g0)(h) = , helUd=R™

1
2
epi-converges to the convex and real valued function Z, : i/ — R,

Z,(h) == (h,U " H,(z)Uh)yy, hel.

Thus, by Theorem [2.4.4} the sequence (A7 ®4(0|go))x converges uniformly to the limit func-
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tion =, on every compact subset C' C U, i.e., we have

(5.3.55) lim sup |A7 @A (0]go)(h) — Ep(R)| = 0.

Let us recall that the convexity and Lipschitz continuity of the quadratic sub-Lagrangian

®, implies 0 € int dom ®,. (We refer to the Lemmas |5.3.35] [5.3.36[ and to Theorem m
for details). Hence, for all k sufficiently large and all h € C' C U, the difference quotient

A} ®x(0]go)(h) is well-defined, finite valued, and, consequently, we do not necessarily need to
work with p-truncations in equation (5.3.55)). Specifically, for every sequence (h¥)z, h* — 0,
Rk 0, it holds

i |5 (hF) = @A (0) — VRA(0) T RF — 52, (hF)]
k00 1k

= lim (A%, @r(0g0) () — 2,5 =0,
where h¥ := h¥/||h¥||, k € N. This shows

1 _
Pa(h) = @a(0) = VOA(0) 'h = 5 {h, U T Ho(@)Uh)y = o([[BllF), 7 —0,

and thus, the symmetric and positive semidefinite matrix H®,(0) := U H,(z)U is a gen-

eralized Hessian of ®, at 0 and a U-Hessian for ¢ at . Let us summarize our latter results

in the following theorem.

Theorem 5.3.39. Let A € S} | be arbitrary, let f : R™ — R be twice continuously differen-
tiable, and let ¢ : R™ — (—o0, +00] be a convex, proper, and lower semicontinuous mapping.
Furthermore, let & € dom ¢ be a stationary point of problem and suppose that ¢ is C?-
fully decomposable at T. If the strict complementarity condition holds at T, then the quadratic
sub-Lagrangian ® has a generalized Hessian H®A(0) at 0, which is also a U-Hessian for ¢
at &, and it holds

HOA(0) = U H,(2)U,

where the symmetric, positive semidefinite matriz H,(Z) is specified in ((5.3.54).

Before proceeding with the next paragraph, let us mention that our proof of Theorem [5.3.39
is strongly motivated by [195] and [I96, Theorem 6.7]. In particular, Poliquin and Rockafellar
used the concept of epi-subdifferentiability and a similar (but more complex) argumentation
to establish existence of second order-type expansions in a much more general context. We
are now able to finish the proof of Theorem [5.3.26

Completion of the proof of Theorem [5.3.26

In this last step of the proof, we will connect the /-Hessian of ¢ at T and the Fréchet
derivative of the proximity operator proxg at 4 := T — A"V f(z). Let us assume that all
conditions in Theorem [5.3.39] (or Theorem [5.3.26]) are satisfied. Then, as in [130, Proposition
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5.2], we obtain
env} (@ + hy @4 0) = env(p + (Gu + hu) @4 Gv)

) i 1. .
= min @@ +ud®rv)+ =||(Gu + hy —u) Da (Gy —v)||3
(u,0)EUXV 2

= mi in p(p+ud )+*1H9A —olfal + *1H9A + hy — ullf
= min |min u v v u
weid |vey TP A Phad VATl U UA

1 1
— min ® La 2 s her — ull?
min alw) + S 1gvlva + 519+ hu = ullg A
TTAD /- L.
= enngAU(gu + hy) + 5”91/“%2,/\’
for all h = hyy @A 0 € C(z). (Clearly, since the quadratic sub-Lagrangian is a convex, proper,

and lower semicontinuous function and the matrix U AU is positive definite, the Moreau
JLLCOont
envelope enng AU is well-defined). Moreover, due to

_ N S _ 1. .
env (@ +0@4 0) = (p) + 5llp — al} = (5 +0@a 0) + 5ll(Gu — 0) @2 (9v — O)II3,
it immediately follows prongAU(gu) = (0. Since the quadratic sub-Lagrangian ®, has a
generalized Hessian at 0, an important result of Lemaréchal and Sagastizabal [132, Theorem
3.1] implies
V2envy AU (gy) = UTAU — UTAU[H®A(0) + UTAT] 'UTAU.

Let us note that the proof of [132] Theorem 3.1] strongly relies on [I08, Theorem 2.12]
and that the results in [108] [I32] are only formulated for finite valued, convex functions.
However, a careful examination of the different arguments and steps used in the proofs of
[132, Theorem 3.1] and [108, Theorem 2.12| shows that finiteness is only required locally
in a neighborhood of the point of interest. Thus, since ®, is Lipschitz continuous near 0
and its corresponding subdifferential 0®, is nonempty and compact in a neighborhood of 0,
the results of Hiriart-Urruty, Lemaréchal, and Sagastizédbal are applicable in our situation.

Now, on the other hand, invoking Corollary [5.3.33| the proximity operator proxg is Fréchet

A

differentiable at @ and we obtain V2envcp

() =A— ADproxg (w). In particular, this yields
UTAU — UTADproxg(ﬂ)U = UTVQenvg(ﬁ)U = V2enngAU(§u)
—UTAU —UTAU[UTH,(2)U + UTAT] 'O TAD.

Consequently, using Lemma (i), the matrix U TADproxg(ﬂ)U has to be positive definite
and we can infer

U'H,(2)U =U"AU [UTADproxg(ﬂ)UrlUTAU —~UTAU.
Furthermore, by Lemma it follows Dproxé (w)h € Npy)(9) = C(z) =U for all h € R™.

This readily establishes B
VTADproxg(ﬂ) =0,
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5.3. Decomposable functions

and
A(\T A TD AT AT
[ADprox,,(u)]V = [ADprox,(u)] 'V = [Dprox,(u)] AV =0,

where we used the symmetry of the matrices ADproxf;(ﬂ) and A. Finally, we get the following

U-characterization of the Fréchet derivative of proxé

Dproxg(ﬂ) =[U(UTAD) U + V(VTAV)_IVT]ADpI"OXA(_)
)"'U T ADprox(w)[U(UTAU)'U T + V(VTAV) 'V T]A
UTAU)~'[UT ADprox g< YU(UTAU) U TA.

Next, setting AT := A%E'(UTA(_])*1 and B := UTADprOXQ(ﬂ)U', we obtain

[A2 DproxA(@)A=2]" = ATB(BAATB) " (AAT) "' A= ATB(B[UTAU]"'B)" [UT AUJA
= AT(UTAD)BN(UTAU)A = A2U [UT ADprox(@)U] "' 0T Az,

Hence, by defining Qé(ﬂ) = A%Dproxg(ﬂ)A_% and combing our computational results, we
have for every h = hy &5 0 € C(Z)

—&51(9) = (h, Hyp(2)h) = (hy, [UT Ho(2) Uy )y = (hwUT[AZQA( )FAZ — AT )
= (h, [A 292(“)+A2 — Ih).

This concludes the proof of Theorem Although the latter characterization seems
to be somewhat complicated, it allows a fully intrinsic description of the curvature of ¢
in terms of the Fréchet derivative Dproxg(ﬂ). In particular, we can formulate and assess
second order necessary and sufficient conditions for problem without knowing a specific
decomposition pair (¢g, F) of ¢, the corresponding (unique) Lagrange multiplier A € M(z),
or the second order derivative of F'. Moreover, in contrast to the /-Hessian based formulation,
this representation does also not depend on the basis matrices U and V. Finally, let us
mention that if the parameter matrix A satisfies A = A7'I, A > 0, then the curvature

formula takes the much simpler form
~€;,(3) = A(h, [Dprox)y (@) — 1),V heC(a).
At this point, let us briefly state some additional properties of the matrix Qé (u) and of its
pseudoinverse, which will be needed in the subsequent section. Clearly, due to Lemma [3.3:5]
the matrix Qé(a) is symmetric and, for all h = hyy &4 0 € C(Z) = U, it holds
QA (@)t QM (a)Azh = A2UB'UTAZATBAN:h = AsU(UTAU)'UTAh = A3 h.

Similarly, we also get QA( )QA( )+A2h Azh.
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5. Second order theory and decomposability

5.4. Nonsingularity conditions

In this section, we combine our latest results and apply the alternative, prox-based represen-
tation of the curvature term 5 1(g) to derive nonsingularity conditions for the generalized

derivatives of the nonsmooth mappmg FA,
We first start with a simple observation that is motivated by a result of Pieper [191]

Lemmas 3.14 and 3.15], for a Normal map-related formulation. Let us note that the proof
of Lemma can be seen as a prototype for the subsequent generalizations.

Lemma 5.4.1. Let f : R" — R be a twice continuously differentiable function and let
¢ : R"™ = (—00,400| be conver, proper, and lower semicontinuous. Furthermore, let x € R™,
A € ST, be given and let us set u := v — AV f(x). For a fized element V € aproxﬁ(u)
suppose that the following second order-type condition is satisfied

(5.4.1) h'V2f(x)h 4 (h,(I = V)h)p >0, Y he&ran V )\ {0}.
Then, the matriz W =1 — V(I — A~1V2f(x)) is invertible.

Proof. Let us assume that W is not invertible. Then, there exists h € R™, h # 0, such
that Wh = 0. Setting d := (I — A='V2f(x))h, this implies h = Vd, (i.e., h € ran V' \ {0}),
and Vh = h + VA~I'V2f(z)h. Moreover, we obtain

= (h,Wh)p = (h, A(I = V)h) + (Vh,V?f(x)h)
= (h, A(I = V)h) + (b, V2 f(x)h) + (VAT f(2)h, V2 f (2)h)
= (h,(I = V)h)a + (h, V2 f(2)h) + (AV[ATIV2 f ()R], [NV f(2)h])

> WV f(@)h + (b, (I = V)h)a,

~ ~

+
_|_
+

where we used the positive semidefiniteness of the matrix AV; see Lemma [3.3.5| (i). However,
invoking condition ([5.4.1]), we deduce h = 0 which contradicts our assumption. Hence, the
matrix W must be invertible. O

Clearly, if the Hessian V2 f(x) is positive definite on ran V'\ {0}, then the second order-type
condition (|b.4.1)) is satisfied. More specifically, we have the following result.

Lemma 5.4.2. Let f : R® — R be a twice continuously differentiable function and let
¢ : R" = (—o00,400] be conver, proper, and lower semicontinuous. Furthermore, let x € R™,
A € 8%, be given and let us set u := x — A=V f(x). Suppose that the Hessian V2f(x) is
positive definite, then every matriz W € W (z),

WA (@) = {W e R W =1 -V (I - A'V*f(z2)), V € dprox(u)},
1s invertible and there exists C € R such that
Wl <c, ¥vWeWwh).

Proof. Due to Lemma we only need to verify that the matrices W € W(x) are
uniformly boundedly invertible. Therefore, let V € 8pr0x£(u) and r € R™ be arbitrary and
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5.4. Nonsingularity conditions

consider the equation
Wh=(-V(I—-A'V?f(x) h=r

Multiplying both sides of the latter equation with A2 yields
(5.4.2) (I—A2VA~2(] — A 2V2f(z)A2)) - A2h = Azr.

Now, Lemma m (i) implies that the matrix V := ATVA™Z = A2 [AV]A_% is symmetric,

positive semidefinite and its eigenvalues are bounded by 1. Let
AT2[AVIA™2 = PEPT, ¥ = diag(oy,...,on),
be a corresponding eigenvalue decomposition of V and let us define the index sets
a={i:0;=0}, B:={i:0€(0,6)}, y:={i:0;€[e1]}

for some arbitrary but fixed e € (0,1). Then, setting H := PTA_%VQf(x)A_%P, equation
(5.4.2)) can be equivalently rewritten as follows

[I—X(I—H)] PTAzh =P Azr.

Moreover, by setting h := PTA%h, T o= PTA%T, B := diag(og), G := diag(o,), and I' :=
G~ Y(I — G) the latter system can also be discussed w.r.t. the index sets a, 3, and v,

I 0 0 0 I 0 0 ha Fa
I BHiga) BHigs BHpgy |+ | 0 I-B 0 he | = | 75
g 0 0 0 Hpya) Hpg Hpyp +1/ 1 \y my

Now, the remaining part of the proof utilizes a technique that was applied in [156, Lemma
4.3.2] to prove bounded invertibility in an ¢;-setting. Specifically, let R, S, and T denote
the three different matrices occurring in the last equation. Then, the idea is to determine
e € (0,1) in a way such that Banach’s perturbation lemma is applicable and invertibility of
the matrix R - (S + 7T) can be inferred.

Using g[;]l € [1,e7 ! and [ € [0, (1 — ¢)], we obtain the following estimates:

IR~ < et

)\min(ﬁhry] + F) Z )\min(ﬁ[ryfy]) Z )\min(Aiévzf(x)Ai%) Z )\max(A)il)\min(vzf(x))'

For any arbitrary pair of index sets Z, J C {1, ...,n}, it holds

IHzzll2 = Iz HIL )l < | izgll2[lH |2l .7 ]12
= A2V £ (@)A 73|z < Awin(A)  Amax(V2 (@) =: Cs.
e For all v = (vg,’ug,UWT)T € R", it holds

ISvll* < CZIBI1* - (lvall + ol + [lo4[1)* < 3CZe? - [lo]®
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5. Second order theory and decomposability

and a simple block elimination yields

1Tl < oall* + (1 = )72 [lugl* + CF2 - (loall + llvsll + [loy 1)
< (14 (1 =)™ +3C2) - |lvlf?,

Amax(A)  K(A)R(V2f(x)) }
)\min(VQf(x)) ! 1—¢ '

where C; := max{

Clearly, for every 0 < ¢ < & := 1 — 0.5v/2, the constant C. is bounded above by C: and for
the specific choice € := min{1, (3Cs\/1 + C2)~1} < £ it follows

ST Y <3Ce\/1+C2<E<1.
Thus, by Banach’s perturbation lemma, we establish

—1 2
I7 3+ CD)

IR S+ TN < IRV = s < Yo g

= C’r‘st-

At this point, let us emphasize that the constants € and C}4 are independent of the index
sets a, B, and -y, the matrix P, and of the eigenvalues of V. Consequently, the latter estimate
holds uniformly for all V' € aproxg(u). Now, reconsidering our initial system of equations,
we readily obtain

IRI1Z = hall® + Ihsl® + 1Ay 1* < CRip(lIFall® + 175117 + 117 11%) = CralI7l*.
Finally, due to

121 = 112la = vV A WIBL 7] = lrlla < v Amax(W)[I7]),
we can conclude that the bound in Lemma holds with C := \/k(A)Crg. O

Remark 5.4.3. Suppose that VA € R™*" is a given subset and that the matrices AV and
A(I — V) are symmetric and positive semidefinite for every V' € VA, Then, the proof of
Lemma shows that the (possibly larger) collection of matrices

WAz) = {W eR™": W =1-V(I - A'V2f(z), V eV}
is also uniformly boundedly invertible (with the same constant C').

We now present the main result of this section.

Theorem 5.4.4. Let f : R™ — R be twice continuously differentiable and let ¢ : R* —
(—o0,+0o0] be a convex, proper, and lower semicontinuous mapping. Furthermore, let T €
dom ¢ be a stationary point of problem and suppose that o is C?-fully decomposable at
Z and that the strict complementarity condition,

is satisfied. Then, the proximity operator proxé is Fréchet differentiable at i := z— A1V f(z)
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5.4. Nonsingularity conditions

and the second order conditions
(5.4.3) RTV2f(E)h + (b A2 QM (@) AT — IJh)y >0, V heC(z)\ {0}

are necessary and sufficient for the quadratic growth condition[5.3.10, Moreover, if the latter
second order sufficient condition is satisfied at T, then the following statements do hold:

(i) The stationary point T is a strict local minimum and an isolated stationary point of
problem .
A

(ii) If, in addition, the proximity operator prox,, is semismooth at u, then the function FA

is strictly differentiable at T and its Fréchet derivative DFM(Z) is nonsingular.
Proof. The Fréchet differentiability of the proximity operator proxé follows from Corollary

5.3.33, Now, let (¢4, F') be an appropriate decomposition pair of the function ¢. Then,
Theorem [5.3.26] and our preceding discussion implies

(h, [A"2Q3(@)*AZ — I]h)x = (X, D2F(Z)[h, h])

for all h € C(z). (Here, A denotes the unique Lagrange multiplier associated with the de-

composed problem ([5.3.33))). Consequently, the second order conditions (5.4.3|) and ([5.3.11)
coincide and applying Theorem we can infer that the conditions (5.4.3) are necessary

and sufficient for the quadratic growth condition (5.3.10)). Moreover, Z is also a strict locally
optimal solution and an isolated stationary point of problem . Let us continue with the
proof of the second part.

Since the proximity operator is Fréchet differentiable and semismooth at %, Theorem
implies that proxg is strict differentiable at u. Hence, as a composition of strictly differen-

tiable functions, the mapping F is also strictly differentiable at Z. In particular, it follows
OFMz) = {DFM(z)}. Next, as in Lemma suppose there exists h € R\ {0} such that
DFA(zZ)h = 0. Then, it follows

(5.4.4) DFMz)h=0 <=  h= Dproxj(a)(I— A~'V?f(z))h.
Consequently, Lemma implies h € C(z) \ {0} and we have

QM ()" @A (@)[A~2 V2 f(2)h] = AZh — QA (a)TAzh.
Setting V := Dproxé(a), we obtain

(h, DFMZ)h)a = (h, A(I — V)h) 4+ (AVh, A1V f(Z)h)

= KTV f(@)h + (h, AL = V)h) + (QB(@)[A~2V2f(2)h], [A"2 V2 (2)h))
RTV2F(@)h+ (h AL = V)h) + (AVATIV2f(z)h, [T — A2 Q5 ()" AZ]R)
= hTV2f(@)h+ (I — V)h A2 Q5 (@) " A2h)
WTV2f(@)h + (h, A72 QM () AZh) s — (QA(@)AZh, Q(@) T AZh)
= RTV2f(@)h + (h, [A2 QA ()T AT — I]h)a,
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5. Second order theory and decomposability

where we used ([5.4.4)), the properties of the Moore-Penrose inverse, i.e.,
Af- Ar=y AA (= + AN (=
Q. (@) = Qu(a)Q,(a) " Q(a),

the symmetry of the matrices AV, Q{,} (a), and h € C(z) = U. Clearly, the second order suf-
ficient conditions (5.4.3)) now imply A = 0, which contradicts our assumption. Consequently,
the matrix DF?(Z) has to be nonsingular. This finishes the proof of Theorem [5.4.4 O

In the following, we briefly summarize our previous results and connect our observations
to the convergence theory of the semismooth Newton method. Therefore, let the functions
f:R" - R, ¢:R" - (—o0,+00] be given and suppose that the assumptions (A.2)—(A.3)
are satisfied. Let the sequences (2¥); and (Ag)x be generated by Algorithm 2 and let 2* € R"
and A, € S", be accumulation points of the sequences (z¥)) and (Ag)y, respectively. If the
parameter matrices Ay, k € N, remain in a bounded set K C S |, i.e., if assumption (B) is
satisfied, then Theoremimplies that z* is a stationary point of problem . Moreover,
if ¢ is C?-fully decomposable at z* with decomposition pair (g, F') and if the second order
sufficient conditions

(5.4.5) RTV2f(z*)h + (N, D?*F(z*)[h,h]) >0, Y helz*)\{0}, e M),

hold at z*, then Theorem [5.3.11] shows that condition (D.5) is fulfilled. Additionally, if the
accumulation points z* and A, satisfy the conditions (D.1)—(D.3) and if the strict comple-
mentarity condition

(5.4.6) — Vf(z") €ri 0p(z¥)

holds at z*, the latter second order sufficient conditions can be equivalently represented as
follows

(5.4.7) hTN2f(x*)h + (h, [AﬁQQ*(u*)*Af —Ilh)p, >0, ¥V heC(z")\ {0},

1 1
where u* = 2* — A;'V f(z*) and Qg* (u*) = Aporox{,}*(u*)A*_a. Furthermore, in this
situation, the second order conditions ([5.4.5)) or (5.4.7) imply that the elements of Clarke’s
subdifferential 9F*+(z*) are uniformly boundedly invertible and consequently, by Remark
[4.3.7 assumption (D.4) is satisfied.

Thus, in short, if the nonsmooth function is C?-fully decomposable and if the strict comple-
mentarity condition is fulfilled, then the second order sufficient conditions (5.4.5) or (|5.4.7))
essentially yield fast local convergence of Algorithm 2.

We conclude this subsection with two illustrating examples.

Example 5.4.5 (Group sparsity). Let us reconsider the group-sparse optimization prob-

lem
S

min fx) +o(z), @)= Z willzg, |2,

i=1

and let the groups g;, i = 1, ..., s, form a disjoint partitioning of the set {1,...,n}. Moreover,
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5.4. Nonsingularity conditions

let z € R™ be a stationary point of the latter problem and let us set
if 1 = 7, .
A >0, 1<4,5<s.

. 1
A o= A =00
l9:95] 0 otherwise,
As usual, we then define @ := z—A~1V f(z) and consider the index sets A(Z) := {z zg, = 0}
and Z(7) := {i : T4, # 0}. As in Example |4.2.18} the proximity operator prox A(@) has the
Ug,
max{||ty, [|2 — wiAi, 0}.

Ig: 12

following group-wise representation
At _ _

pI'OX ( )g - prOXWZH.HQ(ugi) - ugz PBHMQ(O;UJZ')\i)(ugz)
prox(@)g, =0 A |lug[l2 <wiki,
[ag, ll2 > wiXi

Now, the stationarity of z implies
Prox, S(a )gs 70 A

ic Alz) =
iel(z) =
and, by Corollary [5.3.33] the proximity operator is Fréchet differentiable at @ if and only if
wiri} = {i € A(Z) : [[Vf(2)g,]l2 = wi}

the index set

(7) : [lug, [l =

Ai(z)={icec A
is empty. In this case, the Fréchet derivative of prox’ at @ is given by
5 ( ) = ifi=yg, 0 if i € A(z),
TOX = Z =9 g la—wihs o _
p [9193] 0 lf’L 7& j; ”ugﬂi—,‘lzl”‘:ﬂ\ll + ”w;j\ﬂS ugz ;—z lf 1€ I(fL’)
and it holds
= oifi=4, - |0 if i € A(z),
WiDprox@at]t 4= MTEh g g0 e Al
9195 0 ifi##j, (=] if i € Z(z).
Moreover, for i € Z(Z), the matrix =’ can be calculated explicitly by using the Sherman-
Morrison-Woodbury formula:
20 _ <1 n wiA; >I— Wi ' g, Ty,
g, [l2 — wiki g, |l — wiXi  [1ag,]I3°
Again, from the stationarity of z, we deduce ||Zg, |2 = |||t |l2 — wiri| = ||t |2 — wiAi, and
g |2 - Zg, = ||Zg, 2 - g, for all i € Z(Z). Finally, this shows
1 _ 1
(h, [A"2Q3 (@)Y A2 — I]h)n
S
. ; w; 1
= MN'hy[E -1 hy, =T, T, | hy, — g 13-
Z i 9@[ Z |:ng H ng'H%xszgl 9i .Z, /\zH ngQ
= i€Z(z) ¢ ‘ i€A(T)
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For h € C(z), the latter formula reduces to

h,[A"2 QA (@) T A — I]h), = W |- g 5] | by,
0 gi 379" gi 9i
ieT(7) 1Zg, I 1Zg: I3

and coincides with the representation of the curvature term —¢7 |, (—=V f(z)) that was cal-

culated in Example |5.3.13, as expected. Thus, since the proximity operator proxé

semismooth function, (see, e.g., Example 4.2.18)), the strict complementarity condition,

is a

~Vf(z) eridp() < AL(T)=0,
and the second order sufficient conditions
RTV2F(@)h+ (h, [A"2 QM @) A7 — IIh)y >0, V heC(x)\ {0}

ensure invertibility of the Fréchet derivative of FA at Z and locally g-superlinear convergence
of Algorithm 2.

Example 5.4.6 (Semidefinite programming). Next, we want to apply our nonsingularity
results to semidefinite programs of the form

min f(X) s.t. X eS%,

where f: " — R is a twice continuously differentiable function. Let X e S’ be a stationary
point of the latter problem and let us set U := X — %\Vf(X), A > 0. As in Example [5.3.34]
we consider the following spectral decomposition of U

U=PxP", ¥ =diag(o)eS",
and the associated index sets
a:={i:0,>0}, p:={i:0;=0}, ~v:={i:0; <0}
Moreover, let us set
Uy = proxéI(U) = PSi(U) = P diag(max{c,0})P".

In Example [5.3.34], we have seen that the strict complementarity condition is equivalent to
the invertibility of the matrix U. Thus, in this case, we have 3 = () and the metric projection
PSi is Fréchet differentiable at U. In particular, by using [46, Proposition 4.3|, it holds

max{o;,0} — max{o;,0}

if 0; # 0},
- — PO T T o= 9795
DPsn (U)H] = P(QO (P HP)P ", Quj =11 if 0; = 0j,i € a,
0 ifUi:Jj,iE’Y,

for all H € S” and 1 < 4,j < n. In the following, let us suppose that the eigenvalues of U
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are arranged in decreasing order. This implies P = (P[.a],P[.V]) and setting H := PTHP,
the term DPsn (U)[H] can be further simplified to

_ H, Qi © H
DPen Hl =P [aa] [o7] [o7] )2
Pap ()] ( Hi o © Q) 0

Moreover, due to Q) = 2

it immediately follows

= Haa Ha ®Qa
[D’PSK(U)]JF[H] =P <H [@S]2 [av] 0 [ ’7]) PT.
[a7] [o]

Now, defining

02 e RV Q9. =

Y ifieajer,
[ig] "

0 otherwise,

we readily obtain

f , 0 Aoy o0
(. [DPsy (0 [H] — H) = tx (PH ( = [aw> PT>
Hi 000, —Hyy

— tr ((H[a'ﬂ( o) © ) * _ ))
x H, [ar] (Hiay © Q[a'y]) Hiyy)

=2 tr<H[a'y]( (o] © Q[a’y])) - HH[’Y’Y]HF7

where we used the symmetry of H and the invariance of the trace operation under cyclic
permutations. Furthermore, an easy calculation yields

tr(Higy) (Hiay) © Q) = tr (F[ (O - diag(%)) H (diag(ﬂ oo 0>)

~u (P (" o) PR (T ) )

and from the stationarity of X we deduce
X=U,=P <diag(0a) 0> P, MWf(X)=X-U=P (0 _diag(ay)) P,
Consequently, we have
tr(Hyp) (Hiay) © QF)) = MV f(X), HX T H)
and
(., [DPos (D) [H] ~ H)x = 2V f(X), HXTH) ~ (| Hyy 3 A= A7T

Hence, since for all H € C(X) = Cy(Uy), it holds H,, = P['TW}H Py} = 0 (see Example
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5.3.34)), the curvature term reduces to the well-known formula

Let us also refer to [2I5] and [27, Section 5.3 and 5.3.5] for more details on second order
conditions for semidefinite programs. In particular, since the metric projection PSi is a
semismooth function (see, e.g., [229]), the strict complementarity condition and the second
order optimality condition,

V2f(X)[H,H +2(Vf(X),HXTH) >0, Y HecCX)\{0},

guarantee invertibility of the Fréchet derivative of FA(X) := X — P (X — AV f(X)) at X.
Let us note that, in this situation, fast local convergence of Algorithm 2 can only be expected
under the additional and restrictive assumption X € S’/ (this is exactly condition (D.2) in
Assumption . However, the results of this example can be immediately applied to a
pure and local semismooth Newton method.

5.5. Extensions

In this section, we demonstrate the broad applicability and the advantages of the concept
of decomposability and, based on our second order and nonsingularity results, we derive an
analogue second order framework for general convex composite problems of the form

(Pe) min Ye(z) := f(z) + ¢(G(x)),

z€eR™

where f : R" - R, G : R" — R™ are given, twice continuously differentiable functions and
the mapping ¢ : R™ — (—o00, +00| is convex, proper, and lower semicontinuous, as usual.
In the following, let Z € G~!(dom ¢) be an arbitrary stationary point of the problem
and let us suppose that ¢ is C?-fully decomposable at G(z) with decomposition pair (¢4, F).
Furthermore, let us assume that the nondegeneracy condition

holds at Z. The first order necessary optimality conditions associated with problem can
be characterized as follows

(5.5.2) VF(Z)+DGE)"A=0, Xedp(G(T)).
In particular, the nondegeneracy condition implies that the set of Lagrange multipliers,
M(Z) = {\ € 06(G(7)) : Vf(Z) + DG(Z)" X = 0},

is nonempty and reduces to the singleton M(z) = {\}. Moreover, by Lemma [5.3.23 we can
infer that the composite function ¢ o G is C?-fully decomposable at Z with decomposition
pair (¢4, F o G).

Now, let I' € S, be an arbitrary parameter matrix. Then, the KKT conditions ([5.5.2))
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can be equivalently represented as the following system of equations

UM R x R™ - R x R™,  Wl(z,)\):= (G(x)—proxg(a(x)+r—1A)>:<o>

and thus, every KKT pair (Z,\) of the problem (PJ) corresponds to a solution of the latter
system and vice versa. Therefore, we can again apply the semismooth Newton method to
approximately solve the nonsmooth system of equations

(5.5.3) W (z,A) =0

and to compute a stationary point of the convex composite problem . Let us emphasize
that the mapping W' plays a similarly important role as the nonsmooth function F*. Clearly,
Ul can be seen as an adequate generalization of F* taking account of the more general and
more difficult structure of the convex composite problem . Our goal is now to extend our
second order results and to establish appropriate nonsingularity conditions for the generalized
derivatives of the nonsmooth mapping ¥'.

As for the initial problem , we first discuss and clarify the different notions of stationar-
ity emerging from the decomposability of problem ([P.). The first order optimality conditions
for the decomposed problem

(5.5.4) min f(z) + ¢a((F o G)(x)) +¢, = ¢(G(T)),

z€R™

formally take the following form
IReER?: V(@) +DFoG)(2) =0, € dp0).

(Here, we assume that F' : R"™ — RP? is a p-dimensional mapping). Due to the nondegeneracy
condition and the full decomposability of ¢ o G, the following constraint qualifications are
satisfied w.r.t. &

0 € int{G(Z) + DG(Z)R"™ — dom ¢}, 0 € int{F(G(Z))+ D(F o G)(Z)R"™ — dom ¢,}.

Thus, setting M.(Z) := {u € 9¢4(0) : Vf(z) + D(F o G)(z) " = 0}, the discussion of the
first order necessary condition on page [87f. implies

M(Z)£0 =  @W) (;h) >0, VheR® <«  M(z)#0.

Consequently, T is also a stationary point of the decomposed problem (5.5.4) (in the sense of
M. (Z) # D) and the set of the corresponding Lagrange multipliers necessarily has to reduce
to a singleton M.(z) = {i} C RP. Moreover, as in Remark the stability property
of Robinson’s constraint qualification guarantees that the latter equivalence does also hold
for every stationary point in a certain neighborhood of . Hence, every isolated stationary
point of problem is also an isolated stationary point of the decomposed problem
and vice versa. In addition, if Z is an isolated stationary point, then the uniqueness of
the Lagrange multiplier A implies that the pair (Z,)) is an isolated, local solution of the
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5. Second order theory and decomposability

nonsmooth equation (5.5.3). On the other hand, if (z,)) is an isolated solution of the
system ([5.5.3)), then there exists ¢ > 0 such that

(5.5.5) M(z)=0, YzxecB(z)\{z}, M(@)N BN\ ={\},

i.e., T is an isolated stationary point of the convex composite problem . As a consequence
and similar to the discussion of ordinary decomposable problems in section [5.3] it suffices
to analyze second order conditions for the decomposed problem and to pass the
stationarity results to the initial convex composite problem (P.). Fortunately, since the
composite function ¢ o G is C?-fully decomposable at Z, we can reuse and apply our theory
and results of section to the decomposed problem .

Next, we derive an explicit connection between the Lagrange multipliers A\ and fi. The
stationarity of Z implies that the function II(y) := ¢*(G(Z);y) is proper and subdifferentiable
at 0 and it holds 9I1(0) = 9¢(G(Z)). Moreover, since Robinson’s constraint qualification

0 € int{F(G(Z)) + DF(G(Z))R™ — dom ¢4} = int{ DF(G(z))R™ — dom ¢}
holds at G(Z) (this follows from the full decomposability of ¢), we have
M(y) = (¢a o F)(G(®);y) = ¢4(F(G(®)); DF(G(2))y) = a(DF(G(2))y), VyeR™,

where we used Lemma [2.5.6{and (5.3.5). Applying Lemma [2.5.15, we can infer

OIL(0) = DF(G(z)) " 0¢4(0)

and thus, 0¢(G(z)) = DF(G(Z))"0¢4(0). Consequently, if fi € M.(z) is a Lagrange multi-
plier of the decomposed problem, then it follows

Vf(z) - DG(z)'[DF(G(2)) a] =0, DF(G(2)) i € 96(G(1)).

Hence, DF(G(z)) " fi is also a Lagrange multiplier of the initial problem (P] . and the unique-
ness of \ implies

A= DF(G(z))" f.

In the following, based on Theorem [5.3.6] we formulate second order necessary and suffi-
cient conditions for the convex composite problem ([P.). Let us recall that the critical cone
C(z) associated with problem (P.)) is given by

C(.T) = {h cR": DG(_)h S N8¢( (@)(5\)}
= {h €eR": Vf(z) "h+ ¢"(G(z); DG(z)h) = 0}.

Furthermore, we will also need the Lagrange function
L:R"xR™ =R, (x,\)— L(z,\):= f(z)+ (\G(x)).

Theorem 5.5.1. Let f : R® — R, G : R® — R™ be twice continuously differentiable
and let ¢ : R™ — (—o0,+00] be a convex, proper, and lower semicontinuous mapping.
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Let € G~ !(dom ¢) be given and assume that ¢ is C*-fully decomposable at G(z) with
decomposition pair (¢q, F'). Moreover, suppose that the nondegeneracy condition

DG(z)R™ + lin Na¢(G(g—c))()\) =R"™, Xe€0p(G(z))
1s satisfied at . Then, the following statements hold:

(i) (Second order necessary conditions). Suppose that T is a locally optimal solution of
problem . Then, for every h € C(Z) the following inequality is satisfied

h'V2 L(Z, \h+ (i, D*F(G(z))[DG(Z)h, DG(Z)h]) > 0.

Here, A € M(z) and i € M.(Z) are the unique Lagrange multipliers associated with

the problems and (5.5.4), respectively.

(ii) (Second order sufficient conditions). Let Z be a stationary point of the initial mini-
mization problem (Pcl). Then, the quadratic growth condition,

(5.5.6) f@)+6(G(x)) = f(z) + 6(G(z)) + af|z — 2|,

holds for some a > 0 and all x in a neighborhood of T if and only if the following second
order sufficient condition is satisfied,

(5.5.7)  h'V2 L(Z,\h+ (5, D*F(G(Z))[DG(Z)h, DG(Z)h]) >0, Y heC(z))\{0}.

In the latter case, T is a (strict) locally optimal solution and an isolated stationary

point of problem .
Proof. Due to the full decomposability of ¢ o G and

(n, D*(F o G)(@)[h, h]) = (, DF(G(2))D*G(z)[h, h] + D*F(G(z))[DG(2)h, DG(z)h])
= (X, D*G(x)[h, h]) + (i, D*F(G(2))[DG(2)h, DG(x)h]),

Theorem [5.5.1] simply follows from Theorem and Remark [5.3.8, O

As in last section, we will now show that the term
(5, D*F(G/(#))[DG(2)h, DG(z)h))

exactly represents the possible curvature of the nonsmooth function ¢. Accordingly, for some
arbitrary parameter matrix I' € S'', and by using the strict complementarity condition, we
will also derive an additional, alternative characterization in terms of the Fréchet derivative
of the proximity operator proxg at @ := G(z) + I''X that is independent of the specific
decomposition pair (¢4, F').

In this paragraph, we mainly recreate the argumentation in Lemma for the more

general convex composite setting. Therefore, let us define Y := DG(Z)C(Z) +1in Nyg(q(z))(A)
and let y € Y be arbitrary. Then, there exist h € C(Z) and d € lin Nyg(g(z))(A) such that
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5. Second order theory and decomposability

y = DG(Z)h + d and we have

(5.5.8) (y) = ¢Y(G(Z); DG(Z)h + d) = Aeasq:(lg(i))u, DG(z)h + d)

= ¢*(G(2); DG(T)h) + (A d) = —(Vf(2),h) + (X, d) = (\,),

where we used h € C(Z), and the stationarity of Z. (Let us recall, that the stationarity of
implies that ¢ is subdifferentiable at G(z)). On the other hand, due to

(y) = ¢a(DF(G(Z))y),

it follows DF(G(Z))Y C dom ¢4. Consequently, by Lemma [5.3.5] the mapping ¢ is twice
directionally epidifferentiable at G(z) on Y and, using Lemma [5.2.5 and ([5.3.6]), we obtain

¢ (G(@);y,w) = ¢ (F(G(®)); DF(G(®))y, DF(G(Z))w + D*F(G(@))[y. y))
= ¢4(DF(G(z))y; DF(G(2))w + D*F(G(x))[y, y])

for all y € Y. Now, let us fix an arbitrary element y € ). Then, setting § := G(Z) and
0 := D*F(y)[y,y], it holds
(5.5.9) ~6, ) = inf (=X w) + 6" By, w)

= inf (~\w) +¢4(DF(y)y, DF(g)w +w),

weR™

where &y, (+) := & (75, -). Next, as in Remark we have

$L(DF(g)y;w) = ¢5 (F(5): DF(§)y, w)

>l P PE@Y + 500~ 0aDEGY) _
~ 10, 0w 312 gl

where we used fi € 9¢4(0), DF ()" i = X\, and (5.5.8)). Together with (5.3.8), this implies
6i(DF(5)y;0) = 6 (F(5): DF(7)y, 0) = 0

and thus, the mapping T : RP — (—o0, +00], T(w) := (;Sg(DF(gj)y; w + W) is convex, proper,
and lower semicontinuous. Hence the Fenchel-Rockafellar duality framework can again be
applied to dualize the problem (5 . Specifically, setting o(w) := (—\,w), the dual problem
is formally given by

max ¢*(DF(y) ' v) = T*(~v)

and by repeating the computations in Lemma [5.3.9] we obtain the following representation

—v € 0¢q(0),
max (—v,w) s.t. A+ DF(y)Tv =0,
(v, DF(y)y) + da(DF(§)y) = 0.
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Since the third condition is automatically satisfied for all y € ) and since it holds
{1} € {v € 944(0) : DF(y)Tv = A} € M.(z) = {ii},

we finally deduce

(5.5.10) max ¢*(DF(y) v) = T*(~v) = (i, D*F(g)[y.y))-

Now, as in Lemma and using the full decomposability of ¢, it can be shown that there
is no gap between the primal problem (5.5.9) and the dual problem (5.5.10). Moreover, the
infimum that defines the curvature term —¢7  (A) is attained at some @ € R™, i.e., it holds

—&5y(N) = oM Gy, ) — (N, ).

Next, as in Lemma [5.3.27, using i € d¢4(0), A = DF(y)' i, and a second order Taylor
expansion of F' at ¢, we establish the following lower bound for the second order difference
quotient

¢a(F (5 + try")) — da(F(1)) — tr - (A yF)
i
o B F (5 + tey®)) =t (1, DE(5)y")
) i

A7 WM () =

= (1, D*F(§)[y*,y"]) + o(1),

where (t)r, tx 1 0, and (y¥)g, y¥ — y € Y, are arbitrarily chosen. Furthermore, let us note
that the nondegeneracy condition (5.5.1)) and (5.5.8)) imply

Y={y eR™: " G(@);y) = (N )} = Nog(ca)(N)-

Thus, by combining the latter facts and reconsidering the proof of Lemma [5.3.27] it can be
readily shown that ¢ is twice epi-subdifferentiable at § = G(Z) relative to A and it follows

Eo(G@) N () = ~, (V) = (1, D*F(G(2))[y, y))

for all y € Y. In particular, this also implies

d%p(G(z)|I\)(DG(z)h) = (i, D*F(G(z))[DG(Z)h, DG(Z)h)), Y h € C(z).

Now, let us briefly discuss an appropriate adaption of the Vl{-theory. Again, let I' € ST,
be an arbitrary parameter matrix. Then, by using 4 = G(z) + I' "'\ and the stationarity of
z, we have

pi= proxg(a) =G(z), g:= Venvg(ﬂ) =I(G@)+T A= proxg(ﬂ)) =\

Hence, in this case, the strict complementarity condition apparently reduces to

(5.5.11) X € 11 9¢(G(2))
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and the U- and V-space can be defined via
U :=lin NB(Z)(G(;T:)) (5\) =lin), V:= [U]L’F.

(If the strict complementarity condition is satisfied, then the lineality space operation
in the definition of the subspace U is superfluous). Thus, at this point, it is clear that the V-
concept and our theoretical results, which were presented and discussed in the last section,
can be naturally extended and applied to the convex composite problem (P.). Specifically,
the associated quadratic sub-Lagrangian takes the following form

. 3 A 1
Op U — [—o0,+0], Pr(u):= 52‘5 #(G(Z) +udrv) — (Ap,v)yr + §HU||%F,

where \ := "1\ = I'~'g. Moreover, let us suppose that U and V are two basis matrices
whose columns span the subspaces U and V), respectively. If the strict complementarity

condition ([5.5.11)) is fulfilled, Lemma |5.3.38| implies that the gué{dratic sub-Lagrangian ®r is
twice epi-subdifferentiable at 0, relative to go := V®r(0) = U "X and it follows

d*@r (0lgo) () = *S(G@N) (W) =y Hy(G(@))y, Yy=puor0eU =Y,
where the symmetric, positive semidefinite matrix Hg(G(Z)) € R™*™ is given by

P

MHs(G(Z) == mVF(G(z)).

=1

Hence, as in Theorem 5.3.39, we can infer that ®p has a generalized Hessian at 0 and it holds
H®r(0) = UTHy(G(2))U. Combining our latter calculations, Theorem [5.3.39) the proximal
VU-calculus on page [I59f., and using

y:=DG(Z)h = [DG(Z)hjy er0eU =Y, Vhel(7),
we finally obtain

—&5 1 () = (DG(2)h, Ho(G(2))DG(T)h) = (yu, [U T Ho(G(2)) Ulyue)u
— (DG(#)h, [[~2QL(@) T2 — I)DG(z)h)r,

where Qg(ﬁ) = F%Dproxg(ﬁ)F_% and () := oW (G(); DG(Z)h, -).

Let us note that although the set of “critical directions” DG(Z)~'C(Z) is a more intuitive
and plausible choice for the U-space, it cannot be used here. In particular, in this case, the
second order subderivative d2®r(0|go) is not necessarily finite on the whole subspace U and
we cannot apply Theorem and the Vf-calculus. Thus, our duality argument in
and is formulated for directions of the more complex set ) from the start.

We now present our extended invertibility result for convex composite problems.

Theorem 5.5.2. Let f:R" - R, G: R® — R™ be twice continuously differentiable and let
¢:R™ — (—o00, +00] be a convez, proper, and lower semicontinuous mapping. Furthermore,
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let 7 € G~'(dom @) be a stationary point of problem and suppose that ¢ is C?-fully
decomposable at G(z) and that the nondegeneracy condition,

DG(z)R"™ + lin Nad)(G(a_:))(A) =R"™, Xe€dop(G(x)),

is satisfied at T. Additionally, let X denote the unique Lagrange multiplier associated with
the stationary point T and assume that the strict complementarity condition

X € 1i 9¢(G(%))

holds at x. Then, for every I' € S, , the proximity operator proxg 1s Frréchet differentiable
- 1 1
at @ = G(Z) + T\ and, setting Qg(ﬂ) = FiDproxg(ﬂ)I’fi, the second order conditions

hTV2,L(z, \h + (DG(z)h, [~ QY (@) T2 — I]DG(Z)h)r >0, ¥ heC(x)\ {0},

are sufficient and necessary for the quadratic growth condition (5.5.6|). In particular, if the
latter second order sufficient condition is satisfied, then the following implications do hold:

(i) The point T is a strict local minimum and an isolated stationary point of the problem
(P.). Moreover, the pair (T, ) is also an isolated local solution of the equation

W (z,\) = 0.

ii) If the prozimity operator prox. is semismooth at @, then the mapping W' is strictly
¢
differentiable at (Z,)\) and its Fréchet derivative DU (Z,\) is nonsingular.

Proof. B)j Lemma [5.3.32 the proximity operator proxg is Fréchet differentiable at & =
G(z) + T X if and only if the strict complementarity condition

\ = Venvg(a) €ri 06(G(2))

is satisfied. Now, let (¢4, F) be a corresponding decomposition pair of the mapping ¢. Then,
our preceding discussion establishes

(DG(@)h, [0~2 Q(@)*T> — IIDG(@)h)r = {1, D*F(G(2))[DG(7)h, DG(Z)h))

for all h € C(Z). (As usual, i denotes the unique Lagrange multiplier of the decomposed
problem ) Consequently, Theorem implies that z is a (strict) local minimum
and an isolated stationary point of problem . Moreover, using the uniqueness of A and as
we have already shown, the pair (Z, \) is also an isolated solution of the nonsmooth system
of equations

Wz, \) = 0.

As in Theorem the semismoothness and Fréchet differentiability of the proximity op-
erator proxg establish strict differentiability of the KKT mapping ' at (z, ).

The rest of the proof is strongly motivated by a general nonsingularity result of Sun [226,
Proposition 3.2 for nonlinear semidefinite programming. Furthermore, we will also follow
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the proof of Theorem The derivative of U' at (Z, \) is given by

_ 2 T 3\ T T
DU (z,\) = <(IV—W%/E)(DG)\() ) ]_z?/(l“)1> , V.= Dproxg(ﬂ).

Now, suppose that there exists 0 # h = (h%, h*) € R"*™ such that DW'(z, \)h = 0. Clearly,
this implies

(5.5.12) V2 L(Z,Nh® +DG(E) 'hr =0, (I-V)DGZ)h* - VI~ 'h* =0
and it follows
(5.5.13) DG(Z)h® = V(DG(Z)h® + T 'ht).

Hence, applying Lemma we deduce DG(Z)h* € Na¢(g(f))(;\) = U, i.e., it holds h* €
C(z). Moreover, since the matrix QF(’) obviously has the same structural properties as the
matrix QA( ) from the last section, we also have

(5.5.14) o (w)* QL@ 2k = [Qh () — 112 DG (z)h"
and we obtain

(h*, V2, L(Z, X)h”” + DG(z) ")

= (h®)"V2,L(Z,\)h® + (V(DG(Z)h* + T71hY), h?)

=)V (j,X)hu(r%DG( )h? +T2hA, QL (@)~ 2 k)

= (h*)TV2,L(@, Mh* + (Q5(@) [P DG(2)h” + T2k, [Q5(w)" — 102 DG(z)h?)
(h"”)TV2 L(z, )h* + (DG(z)h*, 172 QL (w)*T7 — I|DG(2)h")r,

where we used ((5.5.13)), (5.5.14)), the basic identities of the Moore-Penrose inverse, and the
symmetry of Qg(ﬂ) Thus, the second order sufficient conditions imply h* = 0 and from

(5.5.12)), it follows

DG(z)"h* =0, VI~ 'p*=0.
Next, by applying the nondegeneracy condition, we can infer that there exist v € R" and
v € Nag(c(z))(A) such that h* = DG(2)u + v. Furthermore, due to v € Nogcz)(A) =U, it
holds . .
QL (u)T Q) (u)'2v =T'2v
and consequently, we finally get

(B, h*) = (B, DG(Z)u +v) = (L"21*,T20) = (QL(@)* T2V ~'hA, T30) = 0.

Altogether, this implies h = 0, which contradicts our assumption. Hence, the Fréchet deriva-
tive DWT(Z, \) must be nonsingular, as desired. O

Of course, if the proximity operator proxg is directionally differentiable in a certain neigh-
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borhood of @ = G(z) +T !\, Theorem [2.5.21] (ii) and Theorem immediately yield that
every sequence of iterates (z*, \¥); generated by the semismooth Newton method

V2, L(xE AR DGR (s*\ G ghtt\ [k . s*
(I —=Vi)DG(zF) —vI=t J\s*) — AR P any AR P s*)
Vi € 8proxg (uF), uF := G(2*) + T~'\¥, converges g-superlinearly to the local and isolated
solution (z, \) if the respective initial point (2%, \’) € R™ x R™ is chosen sufficiently close to

(z,\). We conclude this chapter with some final observations and remarks on future research
directions.

Further extensions, full equivalence, and remarks

At first, let us mention that it is straightforward to extend our results to equality constrained
problems of the form

min f(z) +¢(G(z)) s.t. h(z) =0,

where the additional function A : R™ — RP is supposed to be twice continuously differentiable,
as usual. More specifically, if the extended nondegeneracy condition

@iégD B <lin Nai((g@))uﬂ - (151) ;A€ 99(G(T)),

is satisfied, then, by considering the proof of Lemma [5.3.23] it can be readily shown that the
function

0:R" = (=00, +od],  o(z) = ¢(G(x)) + 110y (h(2))

is C2-fully decomposable at Z. Furthermore, in this case, the corresponding KKT-mapping
Ul takes the following form

Vf(z)+ DG(z)" A+ Vh(z)u
Wz, \p) = | G=) - proxg(G(m) +I1))
h(z)

and a similar invertibility result as in Theorem [5.5.2] can be established. However, a detailed
discussion of this problem is beyond the scope of this thesis.

Another possible extension arises from the quite apparent, but interesting question whether
the assertion in Theorem [5.5.2] is also true for the opposite direction. In particular, let
us suppose that the strict complementarity condition holds at Z, the proximity operator
proxg is semismooth at @ = G(z) + I'"'\, and that the Fréchet derivative DU (z,\) is
nonsingular. Then, can it be shown that the nondegeneracy condition and the second
order sufficient condition in Theorem [(.5.2] are satisfied at Z?

In fact, by using the concept of strongly reqular solutions of generalized equations and
the so-called uniform quadratic growth condition, the answer to this question seems to be
affirmative if the stationary point z is additionally assumed to be a local solution of the
optimization problem . In this situation, we can argue as follows:
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e The invertibility of DU (Z, \) implies that the KKT-pair (Z,\) is an isolated local
solution of the system of equations

oz, \) =0

and by , this shows that A is a locally unique Lagrange multiplier. Moreover,
using the convexity of the set M(Z), this already establishes global uniqueness of the
multiplier A, i.e., we have M(Z) = {\}. Thus, by Lemma (ii), the nondegeneracy
condition must hold at z.

e Applying Clarke’s inverse function theorem [49, Theorem 1|, it can be shown that
the mapping ¥' is a locally Lipschitz homeomorphism near (Z,\), i.e., there exists
a neighborhood O of (Z,\) such that the restricted function ¥'|p : O — WI(0)
is Lipschitz continuous and bijective on O and its inverse mapping is also Lipschitz
continuous. Then, as in [226, Remark 3.1], it follows that the pair (7, ) is a strongly
regular solution of the generalized equation

V. L(x )\)> ( {0} )
0e T ’ + . '
( —G(x) 99™(A)
Now, if Z is a locally optimal solution of problem , Theorem 5.20 in [27] is appli-
cable and we can infer that the uniform quadratic growth condition is satisfied. Thus,
since the uniform quadratic growth condition implies the classical quadratic growth

condition, Theorem shows that the second order sufficient condition (5.5.7) must
hold at z.

e Additionally, by mimicking the proof of [217, Theorem 5.2] it can be shown that, under
the nondegeneracy and the strict complementarity condition, the uniform quadratic
growth and the second order sufficient condition are actually equivalent. Moreover,
if ¢ is decomposable at G(z) with decomposition pair (¢q4, F') such that DF(G(Z)) is
onto, then [27, Theorem 5.20 and 5.24] imply that (z, \) is a strongly regular solution
of the above generalized equation and ' is a locally Lipschitz homeomorphism. A
well-known inverse function theorem by Kummer [I128] now yields invertibility of the

derivative DU (z, \).

Of course, our argumentation is only preliminary and the latter steps have to be verified
more carefully. However, this brief discussion clearly demonstrates the deep connection
between these different concepts. For more details on strong regularity and the uniform
second order growth condition, we refer to Robinson [202], Sun [226], and the sections 5.1.3—
5.1.5 in [27].

Let us note that this adumbrated equivalence has already been investigated in a much
broader and more general context. In particular, in [202] Robinson analyzed connections
between the strong regularity of KKT points, nonsingularity conditions, and a second order
strong sufficient condition for nonlinear programming. Similar results were obtained by
Bonnans, Ramirez [25] and Wang, Zhang [250] for second order cone programming, and by
Sun et al. [226, 43| and Ding [63] for nonlinear semidefinite programs and other matrix
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optimization problems. For these specific problems, explicit representations and formulae
for the corresponding Clarke subdifferentials, the critical cones, and the curvature terms are
available and it is possible to derive full equivalence between the mentioned concepts and
the nonsingularity of all elements in OW' (Z, ) without the strict complementarity condition.
Moreover, since these problems all have a fully decomposable structure, the mentioned strong
second order sufficient condition can formally be represented in the following form

R'V2 L(Z,\h+ (i, D?F(G(Z))[DG(Z)h, DG(Z)h]) > 0, ¥ h e aff C(z)\ {0}.

Thus, in comparison to the original second order condition ({5.5.7)) and in order to cope with
the missing strict complementarity, the larger set aff C (Z) has to be used and the curvature
term —&y p(A) is “substituted” by the quadratic form

h— (i, D*F(G(z))[DG(Z)h, DG(%)h]),

which is also well-defined for h ¢ C(Z). Let us again emphasize that full equivalence results
are only available for very specific cone reducible problems. To the best of our knowledge,
general results are not yet known.

Finally, strong regularity has also been analyzed in a second order variational context.
In particular, by using new computational results for the coderivative mapping, Outrata
and Ramirez [I80] and Mordukhovich et al. [I59] derived a variational-based connection
between strong regularity and strong stability concepts and the so-called Aubin property of
the associated critical point mapping for second order cone programs. Again, more general
connections and results which yield an equivalent (variational-based) characterization of
the strong second order sufficient condition and the invertibility of all elements in Clarke’s
subdifferential O (z, \) are not yet available.
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6. Numerical methods for generalized
variational inequalities

In this chapter, we consider and investigate numerical methods for generalized variational
inequality problems (in short GVIPs) of the following form:

find x € G=(dom ¢) such that
(Prip) (F(x),y — G(2)) + ¢(y) —p(G(x)) 20, VyeR™

As usual, we will assume that ¢ : R™ — (—o00, +00] is a convex, proper, and lower semicontin-
uous function. Furthermore, the mappings F, G : 2 C R” — R" are typically supposed to be
continuous on an open set Q C R™ that contains the domain G~*(dom ¢). The generalized
variational inequality subsumes many different classes of variational inequalities. In
particular, the abstract problem includes the family of mixed variational inequalties,

find x € dom ¢ such that

(F(z),y —2) + ¢(y) —p(z) >0, VyeR",

which are also known as variational inequalities of the second kind or hemivariational in-
equalities [173], 181, 167, [I75]. Moreover, in the special case ¢(-) = tx(+), where K C R" is
a convex, nonempty, and closed set, the latter problem reduces to the classical variational
mequality,

find x € K such that
<F($)7y_x>207 VyeKv

which has been studied extensively during the last decades and is commonly used to model
Nash equilibria problems, nonlinear complementarity problems, saddle point problems or
problems arising in nonlinear mechanics or economics [113] 911 [77) [75] 126], 172]. Of course,
there also exist other types of generalized variational inequalities that are not immediately
covered by the problem . For instance, the function F' can operate as a general multi-
function, or the set K in the classical variational inequality may also depend on the solution
x which leads to the class of so-called quasi-variational inequalities, see [164] [8, 176, [73], [74].
For more details on these different classes of variational inequalities and applications, we
refer to the surveys and monographs [104, [77, [75] [76] and the references therein.

Similar to the derivation of the first order necessary optimality conditions in section
Solodov [223] showed that every solution Z € R™ of the generalized variational inequality
(Pyip)) can be equivalently characterized by an alternative, proximal-type equation,

(Evip) VM) = G(7) — prox(G(z) — A'F(z)) =0, AeS},,
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that can be interpreted as a natural residual for the problem and naturally extends the
nonsmooth mapping F* from the last chapter. Additionally, Solodov [223] also introduced
a reqularized gap and a D-gap function that generalize existing merit functions for classical
variational inequality problems. Here, a nonnegative function p : R™ — R, is called merit
function for the problem if and only if the following correspondence is satisfied:

T is a solution of (Pyip) <= =€ G '(dom ) and o(Z)=0.

Thus, in general, merit functions allow to recast the problem (Pyip|) as constrained optimiza-
tion problems of the form

(Pmer) min Q(l’) s. t. G(a:) € dom @,

such that every global solution Z of the latter problem with o(Z) = 0 is also a solution of the
generalized variational inequality . Now, based on these observations and motivated by
our previous results, our key idea is to apply the semismooth Newton to solve the nonsmooth
system VA(x) = 0 and to combine it with an iterative algorithm for a merit function-based
reformulation of the generalized variational inequalities. Here, we choose Solodov’s D-gap
function as a suitable merit function and a simple descent method for this purpose. Again,
we embed these two different algorithmic components in a multidimensional filter framework
to control the acceptance of the semismooth Newton steps and to achieve both global and
local fast convergence.

Our approach can be seen as an extension of the algorithm presented in [120]. Here,
Kanzow and Fukushima proposed a combination of the semismooth Newton method for
and a D-gap function-based descent method to solve box constrained variational inequalities.
Moreover, a sufficient decrease condition is used to monitor the acceptance of the Newton
steps and to establish global convergence. In this respect, let us also refer to von Heusinger et
al. [245] 247] and Dreves et al. [68] where a similar approach is investigated in the context of
generalized Nash equilibrium problems and using the so-called Nikaido-Isoda function. Sun
et al. [227] and Kanzow and Fukushima [121] also studied a different type of algorithm that
implements a generalized Newton scheme to minimize the D-gap function and to directly solve
the corresponding optimization problem . Furthermore, for box constrained variational
inequalities, Kanzow and Fukushima [I2I] showed that a stationary point z* of the D-gap
function is a solution of the variational inequality if the derivative DF'(z*) is a P-matrix. In
[224], Solodov and Tseng developed a dynamical parameter strategy for the D-gap function
and obtained similar stationarity results for more general variational inequalities with a
bounded feasible set K. Other D-gap function related approaches comprise the Newton-type
methods presented in [189, 190] and are discussed extensively in [76, Section 10.4|. So far,
the literature we have mentioned centers on methods that are based on the D-gap function
and that utilize higher order information. Clearly, this only covers a small percentage of the
different approaches and methodologies available for variational inequalities. However, since
a more comprehensive survey is out of the scope of this work, we again refer to the excellent
monographs by Facchinei and Pang [75, [76] and the references therein.

Our discussion of the generalized variational inequality problem (Pyip) is strongly moti-
vated by the observation that the D-gap function can be used to define an alternative base
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algorithm to substitute the proximal gradient method in Algorithm 2. Moreover, such a merit
function-based approach may also allow us to globalize the semismooth Newton method in
situations where first order objective function-based descent methods fail or are simply not
available. In the following, we provide three different examples that connect the generalized
variational inequality problem with other nonsmooth problems considered in this thesis.

e Nonsmooth optimization problems. In the case G = I and F = V f, the generalized

variational inequality ,
(Vf(@),y —z) +oy) —¢(z) 20,

clearly coincides with the first order optimality conditions of the nonsmooth problem
(P)), which were discussed and analyzed in chapter 4.

o (Convex composite problems. In the following, let us reconsider the convex composite
problem

min Y.(x) := f(x) + ¢(F(x)),

reR”™

where f : R” — R, F': R" — R™ are twice continuously differentiable functions and
¢ : R™ — (—o00,+00] is a convex, proper, and lower semicontinuous mapping. Let
T € F~!(dom ¢) be a local solution of the latter problem and suppose that Robin-
son’s constraint qualification is satisfied at . Then, by Theorem there exists a
Lagrange multiplier A € R™ such that

Vf(#)+DF@E)"A =0, X¢cp(F(z)).

Moreover, due to Lemma [2.5.14] the inclusion A\ € d¢(F (7)) is equivalent to F(Z) €
d¢*(X\). Thus, the first order necessary conditions are satisfied if and only if the fol-
lowing two conditions are fulfilled:

(V@) +DF@E)"\y—z) =0, VyeR"
¢*(2) — d*(\) — (F(Z),z—\) >0, VzeR™

By combining those two conditions, we conclude that Z is stationary point of the convex
composite problem if and only if there exists A € R™ such that (Z, \) is a solution of
the generalized variational inequality

find (z,\) € R" x R™ such that:

<<Vf($)_+Ff(7£($)T)\> 7 (y) _ <§>> +¢"(2) —d*(A\) =0, V (y,2) € R x R™.

z
Clearly, in this case, we have

v= (@), Flz)= (Vf (@fFl()gf; (@TA) . G)= (f) ,

and p(x) = tgn () + ¢*(N).
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e Nonlinear saddle point problems. Suppose that L : R™ x R™ — R is a continuously

differentiable function and let the mappings ¢ : R” — (—o0,+o0] and ¢ : R™ —
(—o0, +00] be convex, proper, and lower semicontinuous. Furthermore, let us set

O :R" x R™  [—00,+d],  O(z,y) i= Llx,y) + ¢(x) — " ()
and let us consider the following general saddle point problem
find (z,y) € dom ¢ x dom ¢* such that:
O(z,y) < ©(z,7) < O(,5), ¥ (z,y) € R" x R™.

Then, using the convexity of ¢, ¥* and the differentiability of L, it can be shown that
the point (z,7y) € dom ¢ x dom 9* is a solution of the latter problem if and only if it
satisfies the following two conditions:

Thus, (z,7) is a saddle point of the function © if and only if it is a solution of the
generalized variational inequality (Pyip) where

1= (2,y), Fla)= (Efff:éjy;))’ Gl = @

and p(z) = ¢(z) + ¢¥*(y). The saddle point problem is also strongly related to the
so-called minimaz and maximin problems

inf sup L(z,y)+¢(z) —¢*(y),  sup inf L(z,y)+é(z) — ¥*(y).
z€R™ ecRrm yeRm T€R

More specifically, if (Z,y) is a saddle point, then it can be easily shown that z is a
solution of minimax problem and ¥ is a solution of the corresponding maximin problem,
respectively. Hence, in the special setting

K :R" — R™, L(z,y) = (K(z),y),

and using the identity ¢¥** = 1, our proposed variational framework can be applied to
solve nonlinear and nonsmooth problems of the general form

min (x) + (K (2)).

At this point, let us mention that if the mapping K : R™ — R™ is linear, then the
latter problem can be solved by Chambolle and Pock’s primal-dual algorithm [42] or via
an alternating direction method [91l [71]. Furthermore and very recently, Clason and
Valkonen [241], 51] also studied and analyzed an extended (primal-dual-based) approach
for the more general nonlinear setting. Clearly, this demonstrates the relevance of the
considered class of variational problems.



6.1. Characterization and existence of solutions

This chapter is organized as follows. In section [6.1] we derive several reformulations of the
generalized variational inequality and based on [75, Chapter 2|, we state different conditions
that ensure solvability of the problem . Moreover, we will also reuse the concept of outer
second order regularity and decomposability and present a new second-order type condition
yielding local uniqueness of a solution of . In section 6.2, based on [76], 223], we discuss
various basic properties of the regularized gap and the D-gap function for the generalized
variational inequality problem ([Pyip)). In particular, we will provide generalizations and
extensions of different stationarity results that were derived by Facchinei and Pang in [76]
for classical variational inequality problems and that can be used to characterize “optimality”
of stationary points of the regularized gap function and the D-gap function. In section 6.3,
we present an Armijo-type descent method and a globalized semismooth Newton method for
the problem and analyze their convergence properties in detail.

From now on, we will always assume that ¢ : R™ — (—o00,+00] is a conxex, proper, and
lower semicontinuous mapping.

6.1. Characterization and existence of solutions

In the following, we briefly introduce monotonicity concepts for the generalized variational
inequality and discuss conditions that guarantee existence of a solution of the problem .
We start with an investigation of alternative representations of the problem resembling
the first order optimality conditions that were analyzed in the previous chapters. At first, let
us note that the variational inequality can be equivalently rephrased as the following
generalized equation:

find x € G™1(dom ¢) such that
—F(x) € 0p(G(x)).

Thus, by (3.1.2)), this immediately implies that # € G~!(dom ¢) is a solution of the general-
ized variational inequality , if and only if the point x is a zero of the so-called natural
residual VA : R™ — R™,

(6.1.1) VAz) = G(z) — prox?

2(G(z) = AT'F(2)) = 0,

where A € S, is an arbitrary parameter matrix. Again, let us notice that the nonsmooth

mapping V2 plays a similar role as its counterpart F*(z) = 2 — prox?(z — A~V f(z)) from

the previous chapters. Now, if x € R” is a solution of the problem , then it holds
(F(z),th) + (G(x) + th) — ¢(G(z)) >0, Vt>0, VheR"

and hence, we can infer

(6.1.2) (F(z),h) + @*(G(x);h) >0, YV heR"

On the other hand, by setting h = y — G(x) and using Lemma the latter inequality

also implies

(F(z),y — G(z)) + p(y) — p(G(x)) >0, VyeR"
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In summary, these simple computations establish the following lemma, which apparently
does not need a proof.

Lemma 6.1.1. Let F,G : Q — R"” be given functions and suppose that the open set 0 C R™
contains the domain G~1(dom ). Then, the following conditions are mutually equivalent:

(i) The point T is a solution of the generalized variational inequality (Pyip))-
(ii) It holds —F(z) € 0p(G(Z)).
(iii) The point & € G~ (dom ) satisfies the condition

(F(Z),h) + ¢*(G(Z);h) >0, YV heR"

(iv) Let A € ST be arbitrary. The point T is a solution of the fived point-type equation
VM) = G(z) — prox}(G(z) - A™'F(2)) = 0.

Similar to our terminology for convex composite problems and to Definition [5.1.5] we now
define the critical cone associated with the generalized variational inequality (Puip|) via

C(z):={h e R": (F(z),h) + ¢*(G(z); h) < 0}.

Hence, if Z is a solution of the problem (Pyip)), then the critical cone C(Z) again coincides
with the normal cone Ny, (z))(—F(Z)). In the subsequent sections, we will also work with

the cone
Col(z) :={h € R": DG(x)h € C(z)} = DG(z)~'C(x),

which we will refer to as the G-critical cone.

Next, we state several monotonicity concepts for the function F' that will be used to derive
and formulate existence conditions. The following definition is quite standard, see, e.g., [75),
Section 2.3 and Definition 2.3.1] or [223] [176].

Definition 6.1.2. Let Q C R™ be an open set and let the functions F,G : Q — R™ be given.
Then, the mapping F is called

(i) G-monotone on  if it holds

(F(x) = F(y),G(x) = G(y)) 20, Va,yec

(ii) strictly G-monotone on Q if it holds

(F(z) — F(y),G(z) —G(y)) >0, Vz,yeQ and z#y.

iii) (&, G)-monotone on 2 for some & > 1 if there exists a constant u > 0 such that
I
(F() = F(y),G(z) = G(y)) > pllz —ylI*, ¥ 2,y e

Furthermore, F is called strongly G-monotone if F is (2, G)-monotone on €.
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If the function G is the identity mapping then we will drop the “G-" prefix in Definition
and the latter properties coincide with the conventional monotonicity concepts. Similar
to [75, Proposition 2.3.2|, the monotonicity properties of F' and G can also be alternatively
characterized via their derivatives and appropriate semidefiniteness assumptions. We will
not give a proof here.

Lemma 6.1.3. Let Q2 C R"™ be an open set and let the functions F,G : Q2 — R™ be continu-
ously differentiable on Q2. Then, it holds:

(i) F is G-monotone on Q) if and only if
(DF(z)h, DG(x)h) >0, VheR" Vazel
(ii) F is strictly G-monotone on € if it holds

(DF(z)h, DG(z)h) >0, ¥V heR"\ {0}, Vuzeq.

(iii) F is (2,G)-monotone on Q if and only if there exists a constant u > 0 such that

(DF(z)h, DG(z)h) > p||h|?, Y heR" VazeQ.

The next lemma presents several basic existence conditions and results for the generalized
and the mixed variational inequality. A more refined and thorough discussion of the existence
of solutions for classical variational inequalities can be found in the monograph [75, Sections
2 and 3|. Motivated by [75, Proposition 2.2.3, Theorem 2.3.3, and Exercise 2.9.11], we obtain
the following result.

Lemma 6.1.4. Let F,G : Q) — R" be given and let Q2 C R™ be an open set that contains the
domain G~'(dom ). It holds:

(i) If F is strictly G-monotone on Q, then the generalized variational inequality (Pyip) has
at most one solution.

Now, suppose that G is the identity mapping. Then, the following two statements are valid.

(ii) Let us further suppose that ¢ is coercive on 2 and there exist x* € dom ¢ and constants
¥ >0, & >0 such that

F _ *
lim inf W—xg‘“ > 9,
|l —c0, z€Q [Eal

Then, the problem (Pyip|) has a solution.

(iii) If F is &-monotone for some & > 1 and if there exists z* € dom ¢ such that dp(z*) # 0,
then the generalized variational inequality (Pyip) has a unique solution on Q.

Proof. Suppose that F is strictly G-monotone on 2 and let Z, & € G~!(dom ¢), T # Z, be
two different solutions of (Pyip)). Then, it holds

3
&
Q
=
|
Q
&
+
5
«Q
=
|
5
Q
&
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Thus, adding both inequalities and using the strict G-monotonicity of F' yields the following
contradiction

0 < (F(z) — F(#),G(%) — G(z)) < 0.

The remaining existence results essentially follow from [75, Exercise 2.9.11]. A more detailed
proof is provided in the appendix in section O

Remark 6.1.5. In the general case G # I, existence of solutions can be established when
the functions F' and G are Lipschitz continuous and strongly monotone. In this situation,
the mapping

rz—Vhz), Aest,,

can be shown to be a contraction and thus, by Banach’s famous fixed point theorem, must
possess a unique fixed point that is also a solution of the generalized variational inequality
. Let us emphasize that this result heavily relies on a correct balance of the Lipschitz
constants and the monotonicity parameters and is only valid in certain situations. Here, we
will not present these dependencies. However, let us refer to Noor et al. [174} [177] for a more
detailed examination and similar results.

In the following, based on the second order theory in chapter [5] we introduce second
order-type conditions that ensure local uniqueness of solutions. Similar to our observations
in chapter [5] the concept of outer second order regularity allows to formulate rather mild
conditions. In particular, this theorem generalizes and extends a related result of Facchinei
and Pang |75, Proposition 3.3.4], see also [75], Section 3.3].

Theorem 6.1.6. Suppose that F,G : Q& C R™ — R" are continuously differentiable on an
open set 2 containing G=(dom ¢) and let £ € G~ (dom ) be a solution of the problem
(Pvipl). Furthermore, let G be twice continuously differentiable on a neighborhood of T and
assume that the mapping ¢ is outer second order reqular at G() on DG(Z)Cq(Z). Then, the
second order-type condition

(6.1.3) 2(DF(z)h, DG(z)h) — &0 (—~F(&) >0, ¥ h e Cq(x)\ {0},

where §, p(+) 1= ©MG(z); DG(Z)h; ), implies that T is an isolated solution of the generalized
variational inequality .

Proof. The proof of this theorem is similar to the proof of Theorem (ii), see also
section Let us suppose that T is not an isolated solution of the generalized variational
inequality . Then, there exists a sequence (x*); of solutions of with 2% # z,
for all k& € N, that converges to #, as k — oo. Furthermore, setting t; := ||2* — Z| and
h¥ = t, }(2* — Z), we may assume that h* converges to some point h # 0 (after extracting
an appropriate subsequence if necessary). Using the optimality of z* and a first order Taylor
expansion of G(z*) at Z, we readily obtain

(F(z"),t,DG(2)h") + o(G(Z) + te DG(2)W* + o(tr)) — @(G(Z)) + o(ty) < 0.
Thus, dividing both sides of the latter inequality by ¢z and taking the limes inferior k — oo,

this yields
(F(z), DG(Z)h) + ¢*(G(z); DG(Z)h) < 0.
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Consequently, by Lemma (iii) and the definition of the G-critical cone, it follows h €
Ca(z) \ {0}. Next, writing

a¥ =7+ tph+ 33 26,1 (R = )], WP =21 (WF - ),
we obviously have t;w* — 0 and hence, a second order Taylor expansion of G at z yields
G(z¥) = G(z) + 4t DG(2)h + Stiv*, VF = DG(z)w* + D*G(z)[h, h] + o(1).
Accordingly, we obtain

(F(a*),G(a*) — G(2)) = (F() + 4y DF (2)h* + o(ty), G(a") — G(1))
k

= ~tip*(G(2); DG(2)h) + 33 (F(2), ") + i(DF(2)h*, DG(2)h) + o(t})-

Combining the latter facts, this immediately establishes
p(G(Z) + ts DG(Z)h + §t71*) — p(G(T)) — trp*(G(7); DG(Z)h) < gt

where we set 7% := —(F(z),v*) — 2(DF(z)h*, DG(‘)h) o(1) and used the fact that 2*
is a solution of the generalized variational inequality (Pyip) for all & € N. Hence, due to
tr(VF, %) = 0, k — oo, and h € Co(Z ) the outer second order regularity of ¢ is applicable
and there exist sequences (7*);, and (7¥); such that

+ o™M(G(2); DG(z)h, ¥)

0>7F— 7% 4 (F(z),vF — %) + 0o(1) + 2(DF (z)h*, DG(Z)h)
)
> 7F — 7+ (F(2),05 = %) + o(1) + 2(DF (2)h*, DG(z)h) — &, ,,(—F ().

Finally, taking the limit & — oo, this clearly contradicts condition (6.1.3). O
Remark 6.1.7. Let us note that the following second order-type condition

(DF(z)h, DG(Z)h) >0, V¥V heCqa(z)\ {0},

does also ensure local uniqueness of a solution # € G~!(dom ¢) of the generalized variational
inequality if the function ¢ is not outer second order regular or if G is not twice
differentiable. This result can be derived in a similar (but easier) fashion to Theorem
In particular, reusing the notation and mimicking the first steps of the proof of Theorem
a first order Taylor expansion of F'(z*) and G(2*) at T establishes

0> (F(a¥), G(a*) = G(2)) + p(G(a")) — p(G(7))
> (F(2) + tyDF(2)h" + o(t"), G(z*) - G(2)) — (F(2),G(«") — G(2))
= t2(DF(z)h*, DG(z)hF) + o(t3).
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Clearly, taking the limit £ — oo, this produces the same contradiction as in the proof of
Theorem Again, let us refer to [75, Proposition 3.3.4] for comparison.

For general mixed variational inequalities of the form the second order-type con-
dition seems to be new. Let us also mention that Shapiro [219] derived several
local uniqueness results for classical variational inequalities that can be associated with a
quadratic growth condition for the regularized gap function and that can be established un-
der weaker differentiability assumptions. In the following, we briefly discuss the curvature
term §:;7h(—F<i')) and present some implications in the decomposable setting.

Suppose that Z € G~!(dom ¢) is a solution of the problem (Pyi) and let h € Cs(Z) be
arbitrary. Then, using —F(z) € 0p(G(z)) and similar to Remark and the discussion
in section it holds

Eon(w) = oPH(G(Z); DG(Z)h, w) > —(F(T),w), VweR™

Thus, it follows —£7 , (=F(2)) = infy (F(Z),w) + {pn(w) > 0. Moreover, this shows that
the second-order type conditions (6.1.3) are generally weaker than the sufficient conditions
presented in |75, Proposition 3.3.3 and Remark 3.3.4| or in Remark

Now, let us assume that ¢ is C2-fully decomposable at G(z) and let (g4, H) be a corre-
sponding decomposition pair. Then, due to Lemma [5.3.5] ¢ is twice directionally epidiffer-
entiable and outer second order regular at G(z) in all directions h € R" with DH (G(Z))h €
dom ¢g. In particular, this implies that the function ¢ is outer second order regular at G(7)
on DG(7)Cq(7) and on C(Z) = Na,(a(z)(—F()). Furthermore, as in section we can
establish the following equivalence:

—F(z) € 0p(G(Z)) <= 3Jhaedpy0): F(z)+DH(GZ)) a=0.
Next, as shown in Lemma [5.1.11] the nondegeneracy condition,
DH(G(%))R" +lin Na,, ) () = R™,

implies that the vector i € R™ is uniquely determined and hence, analogous to Lemmal[5.3.9]
it follows

~&on(—F(2)) = (1, D*H(G(2))[DG(z)h, DG(2)h]), ¥ h € Ca(2).

Consequently, the curvature term —¢£7 n(—F(Z)) can again be represented as an appropriate
quadratic form. Moreover, under the strict complementarity condition,

—F(z) €11 0p(G(7)),

and invoking Lemma we can infer that the proximity operator proxg has to be Fréchet
differentiable at the point @ := G(z) — A~'F(z). Additionally, in this situation, the critical
cone C(T) = Ny (cz)) (—F (7)) is also a subspace. Collecting these preparatory components
and reconsidering the proof of Theorem [5.3.26] or the different steps in section [5.5] it is
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possible to derive the following prox-based, intrinsic characterization of the curvature term
—&5W(—F (%)) = (DG(2)h, [A"7 QM (@) T A2 — []DG(Z)h)r, Y h € Ca(%),

where Qé(ﬂ) = A%Dproxé (Q)Afé. We will not go into further detail here. However, let us
note that this representation will again be advantageous and helpful when analyzing local
convergence properties of the semismooth Newton method later on.

6.2. Merit and gap functions for GVIPs

In this section, we introduce the regularized gap function and the D-gap function for the
generalized variational inequality problem (Pyip|) and discuss their main properties in detail.

6.2.1. The regularized gap function

The regularized gap function was originally proposed by Auchmuty [5] and Fukushima [86]
for classical variational inequalities. For a given function F': R™ — R™ and a set K C R" it
takes the form:

Gaap + BY = R, 0 Gy (@) 1= i (F(2). 2 ) — %Hx “yI3, Aest,.
Indeed, Auchmuty and Fukushima were the first who showed that this gap function is an
appropriate merit function for the variational inequality problem and that it possesses all the
properties described in the beginning of this chapter. Its overall popularity primarily stems
from the fact that the regularized gap function is continuously differentiable whenever the
function F' is continuously differentiable. Thus, first order methods, such as the projected
gradient descent method, can be applied to solve the corresponding gap function-based op-
timization problem . Moreover, the regularized gap function is also often utilized to
construct a globalization framework for fast, but only locally convergent methods, see, e.g.,
[231], 269] and [76] Section 10.4.4]. For more information on the regularized gap function and
other merit function-based approaches, we refer to [86, 185, (186, [76].

In the following, we present an extended definition of the regularized gap function for
generalized variational inequalities that is due to Solodov [223]. Let us also mention that
Patriksson [I85], [I86] considered a similar extension for a specific class of GVIPs with G = 1.

Definition 6.2.1. Let the functions F : 0 — R" and G : 2 — R"™ be defined on an open set
Q C R™ that contains the domain G~ (dom ) and let A € S, be an arbitrary parameter
matriz. The regularized gap function G* : Q — [—o0, +00] is defined as

64w = max {(Plo). 612) ~ 1) + 9(G0) — ol0) - 51G0) ~ v} }.

for all x € Q.

The following lemma establishes an alternative representation of the regularized gap func-
tion G that will be useful for our further investigation.
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Lemma 6.2.2. Let F,G : Q — R" be given and let Q C R™ be an open set that contains the
domain G~ (dom ). Let A € ST, be an arbitrary parameter matriz. Then, it holds

M) = SIF@I 1 + ol(G(a)) — envh(Glw) — A7 F(a)

for all x € Q.

Proof. A direct calculation shows

GMw) = p(Ga) ~ min {o(o) + 5 (2U-A"F@) AGL) - ) + 16(0) - uIR) }

yEeR™

— AW+ SIAF@IR - nin o)+ 5166) - A7) -yl |

= %HF(ﬂf)llifl +¢(G(2)) —envy(G(z) — A F(a)),

as desired. O

Unfortunately, Lemma [6.2.2] immediately implies that the regularized gap function cannot
be expected to be continuously differentiable in general. Clearly, in the classical setting, the
nonsmooth term

0 if G(z) € K,

+o00 otherwise

p(G(2)) = 1k (G(x)) = {

vanishes whenever the vector G(x) is feasible. However, this is not the case for more general
choices of . Now, throughout this section, we will use the following abbreviation

u(r) = G(z) - A"'F(z), AeSt,.

Next, we derive several important properties of the regularized gap function and verify
that G is an appropriate merit function for the generalized variational inequality (Pyip) -
See also 223, Theorem 4| and [76, Theorem 10.2.3, Remark 10.3.8] for similar results.

Lemma 6.2.3. Let F': Q — R" and G : Q — R" be two given continuous functions and let
Q) C R™ be an open set containing the domain G~1(dom ¢). Let A € S, be an arbitrary
parameter matriz. Then, the following two statements are valid.

(i) The regularized gap function is lower semicontinuous on 2 and it holds

1
GMa) > VA @) >0, Ve

(i) It holds G*(z) = 0 if and only if x is a solution of the variational inequality (Pyip).

Proof. Since the Moreau envelope envi} is continuously differentiable, (see Lemma ,
the lower semicontinuity of the gap function G* follows from the continuity of F, G, and the

194



6.2. Merit and gap functions for GVIPs

lower semicontinuity of . Moreover, an easy calculation yields

M) = SIF@)I - — 3 lloroxh(u(e) — (@) + $(G(@)) ~ p(proxi(u(z)
> LIF@I3 - SIATF @)~ VA@IR + (Venvd (), V(@)
= (F(), V(@) ~ S IVA@IR + AV @) ~ F(@), VA @) = S VA3

Clearly, this also shows that any zero of the regularized gap function G is a solution of the
problem (Pyip|). On the other hand, if x is a solution of the generalized variational inequality,
then it holds G(x) = proxg(u(x)) and it follows

M) = SIF@I3 -~ 5 1G@) — u(@)} = 0.

This finishes the proof of Lemma [6.2.3] O

The latter results clearly suggest to compute solutions of the generalized variational in-
equality (Pyip) via minimization of the regularized gap function. More specifically, let us
define the so-called reqularized gap program:

(6.2.1) min GMz), s.t. G(z) € dom o.

x
Now, if Z is a stationary point of the latter problem satisfying GA(:f'> =0, then Lemmam
implies that this point is also a solution of the variational inequality (Pyip|). In this respect,
any stationary point of the regularized gap program will be called variational optimal if it is

also a solution of the problem (Pyip)). Obviously, every variational optimal stationary point
is automatically a global solution the minimization problem ((6.2.1)).

In general, however, we cannot expect that stationary points of the regularized gap function
or of the regularized gap program are solutions of the generalized variational inequality
without any further assumptions. In the following, based on related results for classical
variational inequalities in |76l Section 10.2.1|, we want to derive several equivalent conditions
that guarantee variational optimality of stationary points of the regularized gap function.

Let us note that such a discussion is particularly important if the regularized gap func-
tion G is used as a merit function for optimization problems of the type or (P, as
has already been indicated in the introductory part of this chapter. Here, solutions of the
generalized variational inequality or of the nonsmooth equation correspond to
stationary points of the initial minimization problem and thus, variational optimality is an
essential requirement for global convergence.

Thus, let  be an arbitrary stationary point of problem (6.2.1)) and suppose that Robinson’s
constraint qualification
0 € int{G(z) + DG(z)R"™ — dom ¢}

is satisfied at z. Then, using

Venvf}(u(a‘c)) = A(u(z) — prox® (u(z))) = AVA(Z) — F(z),
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the corresponding first order necessary optimality conditions take the following form

(GMH(@;h) = ¢H(G(2); DG(2)h) + F(z) 'A™ DF(2)h

— Venv(u(z)) " (DG(z) — A" DF(2))h
= ¢*(G(2); DG(2)h) + (VM (2), DF(2)h) + (F(z) — AV (2), DG(2)h) > 0

for all h € R™. Moreover, by using Lemma Lemma [2.5.11| (ii), and the characterization
of the proximity operator, we obtain

(6.2.2) p(proxy (u(z)) + h) — p(proxj(u()))
1

(u
> p*(prox; (u()), h) = (Venvi(u(@)), h) = (AV*(2) — F(2), h),

for any vector x € R™ and all h € R™. Clearly, this yields
goi(proxg(u(x)), h) > —oo, VY heR",

and, if the function ¢ is additionally continuous at proxé(u(x)) then we have

dom gpi(proxg(u(m)), ) =R™

Now, for a vector z € G™!(dom ¢) and an arbitrary matrix A € S, we define the sets
THz) == {h € R": p"(G(x); h) + ¢*(prox(u(z)); —h) < 0}

and

N(z):={h e R" : o"(G(x); h) + (F(z),h) = 0}.
Since the directional epiderivatives p*(G(z);-) and goi(proxg(u(x)); -) are convex and posi-
tively homogeneous, it immediately follows that the sets 72 (x) and A(x) are convex cones.
Furthermore, if Z is a stationary point of the regularized gap function G* and Robinson’s
constraint qualification is satisfied at Z, then our latter computations and Lemma [2.5.11] (i)

imply
(6.2.3) ©H(G(%);0) = 0.

Consequently, ¢ is subdifferentiable at G(z) and again by applying Lemma [2.5.11] (ii), we
have
oH(G(Z);h) > —c0, Y heR™

In this case, the cones 72(zZ) and N(Z) are nonempty and, due to the lower semicontinuity
of the directional epiderivatives, they are also closed sets.

In the following, we discuss an important special case. Let K C R" be a convex, nonempty,
and closed set and let us consider the indicator function ¢(x) := tx(x). Then, due to Example

it holds
o (i h) = iy wy(h), Vo €K, VheR"™
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Hence, for any x € G~1(dom ¢) = G~1(K), we obtain
TH(x) = Tr (G(2)) N (~Tx (P (u(2)))
and the critical cone reduces to
C(z) = {h € Tr(G(x)) : (F(x),h) <0} = Tg(G(x)) N{F ()} C {F(z)}°.
Moreover, if the function G is the identity mapping, then it follows
T @) = T () N (~Tw(PR(z — A" F(2))))

and the cones 7™ (z) and T*(x) NC(x) coincide with the cones “T,(z; K)” and “T,(z; K, F)”
that were introduced and discussed by Facchinei and Pang in [76, Section 10.2.1|. Let us also
note that Robinson’s constraint qualification is automatically fulfilled when G is the identity
mapping. In what follows, we will show that the cones 7% (z) and 7(z) N C(x) represent
the correct generalizations of the objects “T,(x; K)” and “T,(x; K, F')”. This will then allow
us to extend the variational optimality result in [76] to the generalized variational setting.

Before we present the full theorem, let us assume that Z is a solution of the generalized
variational inequality and that Robinson’s constraint qualification is satisfied. Then,
it holds VA(Z) = 0 and thus, we can infer G(z) = proxg(u(f)). Therefore, the cone T2(z)
reduces to the following set

TZ) = {h € R" : "(G(T); h) + ¢*(G(T); —h) = 0} = lin p*(G(7);"),

where we used the subadditivity of the epiderivative o*(G(Z);-) and (6.2.3). Moreover, as
we have already seen, the critical cone C(Z) admits the following representation:

C(z) = {h e R": (F(z), h) + ¢"(G(Z); h) = 0} = Noy(q(a))(—F (7)) = N(@).

Consequently, if Z solves the generalized variational inequality , then the sets 72(Z)
and T2(z) NC(z) are equal to the lineality space of the normal cone Noy(a(z)(—F(z)) and
the cone NV (Z) coincides with the critical cone; let us refer to the discussion in section m
for further details.

In the following result and similar to [76, Theorem 10.2.5], we need the cones T™(z),
TM(z) N C(z), and N (Z) for a stationary point Z of (6.2.1]) that is not (yet) known to be a

solution of the problem (Pyip|).

Theorem 6.2.4. Let the mappings F, G : Q@ C R™ — R"™ be continuously differentiable on the
open set 0 C R™ and suppose that 2 contains the domain G~'(dom ). Let A € St be an
arbitrary parameter matriz and let T € G~ (dom ) be a stationary point of the reqularized
gap function G®. Furthermore, let us assume that Robinson’s constraint qualification is
satisfied at . Then, the following three statements are equivalent:

(i) = solves the generalized variational inequality (Pyip))-

(ii) The cone T™N(Z) N C(T) is contained in N (7).
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(iii) The implication below holds:

de TMz)NC(z)

(6.2.4) DF(z)"d € [DG(z)"'TMz))°

} = deN(z).

Proof. We proceed as in [76, Theorem 10.2.5]. If & is a solution of the variational inequality
, then we have already shown, that the cone ’TA(E) coincides with the linear subspace
lin Nay(c(z))(—F(7)). Consequently, statement (i) implies (ii). Since the implication “(ii) =
(iii)” is obvious, it remains to be shown that part (iii) implies (i). We start with a quite easy

observation. Due to (| , we have

P (G(2); =V () + pH(proxy (u(2)); V(@)
< p(G(z) = VA(2)) — 9(G(2)) + p(proxy (u(z)) + V(2 ))—w(prOXf,(U(ff)))
= p(prox; (u(@))) — ¢(G()) + ¢(G(x)) — p(prox; (u(2))) =

Thus, it follows d := —V(z) € T2(z). Now, by using the optimality conditions (6.2.2) and
setting h = VA (), we obtain

(6.2.5) *(prox) (u(2)); V(@) + (F(2), V(@) > [V (@)1}
and hence, we readily establish
PHG(T);d) + (F(2),d) < —p*(prox)(u(®)); —d) + (F(z),d) < 0.

This shows that the vector d must be an element of the cone TA(z) NC(z). Next, we will
verify the second condition in . ). Again, by using , we get

" (prox (u(z)); —=DG(2)h) — (AVH(Z) — F(2), -DG(2)h) > 0
for all h € R". Now, adding the latter inequality and the stationarity condition
(GN)H(@;h) = ¢H(G(2); DG(2)h) + (VA(Z), DF(Z)h) + (F(z) — AVA(Z), DG(Z)h) > 0,
we infer
(VM) DF(2)h) < ¢*(G(2); DG(2)h) + ¢*(proxj(u(z)); =DG()h), ¥V h € R™
Thus, for all h € DG(z)" T (z), it follows
(DF(z)"d,h) = (-V*(z), DF(Z)h) <0

and we can conclude DF(z)"d € [DG(z)~'T™(z)]°. Consequently, by (6.2.4), we deduce
d € N(Z) and hence, using (6.2.5)), this implies

IVA@)IR < 9H(G(2);d) + ¢ (prox (u()); —d) < 0.

This shows that Z is a solution of the generalized variational inequality (P.yip) and finishes
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the proof of Theorem O

In the following, we briefly consider the special case of a mixed variational inequality for
which an easy characterization of the conditions in Theorem [6.2.4]is available. Therefore, let
us suppose that the function G is the identity mapping and let & € dom ¢ be a stationary
point of the regularized gap function. Then, our argumentation in the proof of Theorem

[6-2.4] showed
(6.2.6) —VvA2) e TMN@)NnC(x), —DF(&)'VvA2) e TMN@)®  [TME) ne@)]°.

Consequently, if the matrix DF(Z) is strictly copositive on the cone T2(z) N C(Z), i.e., if it
holds
(h, DF(Z)h) >0, Y heT*Z)nc(z)\ {0},

then immediately implies that Z is a solution of the generalized variational inequality
(Pvip). Moreover, if DF(Z) is strictly copositive on the critical cone C(Z), then by Remark
we can even infer that Z is an isolated solution of the problem . This observation
is analogous to the corresponding result for classical variational inequalities, see |76, Corollary
10.2.7).

6.2.2. The D-Gap function

The D-gap function was first introduced by Peng [188] and Yamashita et al. [257] and is
defined as the difference of two regularized gap functions. This elegant approach formally
eliminates the nonsmooth term “¢(G(x))” and thus resolves several disadvantages of the
regularized gap function. In particular, Peng and Yamashita et al. showed that the D-gap
function is a merit function and that the corresponding D-gap program allows to
reformulate the classical variational inequality as an unconstrained optimization problem. In
the last decade, the D-gap function has been analyzed by various authors and in different
contexts [227, 257, 121, 120, 224, [76| 223], 245, 246]. In the following, we will consider an
extended version of the D-gap function for generalized variational inequalities and discuss
its properties.

First, we give a precise definition of the D-gap function that is again due to Solodov [223].

Definition 6.2.5. Let A,B € S"t,, B = A, be arbitrary parameter matrices and let F,G :
R™ — R™ be given functions. The D-gap function of the generalized variational inequality

problem ([Pyip|) is defined as
HAB . R" 5 R, HAP(2) := GA(z) - GP(2)

for all x € R™.

Using Lemma [6.2.2] we immediately obtain the following alternative representation of the
D-gap function

1 _
HAP (2) = J|F@) g1+ envE(G(e) = BT F(x)) — env

(G(z) = AT F(x)).

Thus, by applying Lemma [3.1.5] we deduce the next differentiability result.
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Lemma 6.2.6. Let A,B € S ,, B = A, be arbitrary parameter matrices and suppose
that the mappings F,G : R™ — R™ are continuously differentiable on R™. Then, the D-gap
function HYB s also continuously differentiable on R™ and it holds

VHAP(z) = DG(x)" (BVE(2) — AVA(z)) — DF(2) " (VE(2) — V().

Now, similar to Solodov [223, Theorem 6|, we derive two important growth conditions for
the D-gap function. In particular, the estimates below will show that the D-gap function is

in fact a merit function for the problem (Pyip|).

Lemma 6.2.7. Let A,B € S't,, B = A, be arbitrary matrices and let F,G : R" — R" be
given functions. Then, it holds

1 1 .
SIVE@I5a < HYP (@) < SIVA@)[Fa, V2 eR™

Hence, HAB is nonnegative on R™ and a vector x € R" is a solution of the generalized
variational inequality problem ([Pyip)) if and only if HAB(x) = 0.

Proof. Setting p, := prox4(G(z) — A7 F(z)) and py, := proxg(G(a:) — B~ !F(z)) and using
the optimality principle (6.2.2)), we readily get

HAP(0) = IF@) g+ 5IVE (@) ~ BRI - 5IVAE) — A7 F@)I
+ ¢(po) — ¢(pa)
> SIVE@)IE — (F @), V) - VA) - S IVA@)I
FAVA@) — F(), V@)~ VE()

IVE (@) 5 a-

| =

1 1
= §HVB(33)HQB — (VP (2), VA(2))a + §||VA(36)H2A >
On the other hand, due to

@(py) = ¢(pa) < (BVF(2) — F(x),VA(z) = VE(2)),

the upper estimate can be established in a similar fashion. The last claim obviously follows
from Lemma (iv). O

Next, we show that the norm of the natural residual ||[V4(z)|| does not grow to much with
respect to the parameter matrix A. This result is a straightforward extension of Lemma
where we considered the case F =V f and G = 1.

Lemma 6.2.8. Let F,G : R" — R" be given functions and let A, B € S’ be two arbitrary

symmetric and positive definite matrices. Then, for all x € R™ and for W := B_%AB_%, it
follows

1 + )\max(W) + \/1 - 2)\min(W) + )\max(W)2 )\max(B)
2 Amin(4)

IVA()]l < IVE (@)l
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Proof. The proof is almost identical to the proof presented in [236]. More precisely, by using

the optimality principle (6.2.2)) separately for proxé(G(a:) — A7'F(z)) and proxf(G(x) -

B~'F(z)) and by adding the resulting inequalities, we readily obtain
(BVB(z) — AVA(2),VP(2) - VA(z)) <0.

(The same inequalities were also used in the proof of the last lemma). From this point, we
can proceed as in [236, Lemma 3|. O

Remark 6.2.9. Let A,B € S, B > A, be given and let (Ay)x, (Br)r C S, be two
families of symmetric, positive definite matrices. Suppose that there exist matrices AIJ’W >
Al = A%, = A%, = 0 such that

Ay =By= A, A=A =A%, VEkeN.

Then, similar to Remark [£.1.4] and by combining Lemma [6.2.7) and [6.2.8] it is possible to
derive the bounds

>

(VA@I < V@) <X [VA@)

and
A HAB(2) < HAPr(z) < X HAB (1)

for all £ € N, 2 € R™ and some constants A\, A > 0 which do not depend on k, A or By.
Hence, if the parameter matrices (Ag)k, (Bk)xr remain in bounded (and separated) sets, then
the latter inequalities imply

HWPe(h) 50 = HAP(F) 50, and VA(aF) 50 <= VAR >0,

as k — oo. Again, if the functions HB or V4 are used within an iterative procedure, this
shows that the parameter matrices A and B are allowed to change in each iteration.

Similar to the previous section, we will now derive several equivalent conditions that guar-
antee variational optimality of a stationary point Z € G~!(dom ¢) of the D-gap function.
(A stationary point of the D-gap function will again be called variational optimal if it is a
solution of the problem ) Again, our methodology is strongly motivated by related
results of Facchinei and Pang that were established for classical variational inequalities, see
[76 Section 10.3]. Now, let A, B € R™*™ be two arbitrary parameter matrices satisfying

A=a"'7, B:=87'1, a>B>0

and let * € G7!(dom ¢) be given. Let us mention that the following definitions and results
can also be formulated for more general parameter matrices A, B € S"t | . However, since in
the fully general setting, the intuition behind the subsequent objects becomes less clear, we
decided to present a “streamlined” version for the simpler, one-dimensional parametrizations.

Thus, for u,(z) := G(z) — A~ F(x) and uy(z) := G(z) — B~ F(x), let us define

Ia(h) := @*(prox; (ua()); h),  Ty(h) = @* (prox (wp(@)); h).
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Moreover, let us consider the following sets
TP (2) := {h € R" : Tl (h) + Iu(=h) < 0},
CAB(x) == {h e R": (F(z),h) <II,((B — A)"*Ah) + I, ((A — B)"'Bh)},
and
NAB(2) .= {h e R": (F(z),h) = II,((B — A)"YAh) + I1,((A — B)"'Bh)}.

Again, as in the last section, the properties of the epiderivatives Il, and Il imply that the
sets TAB (), CAB(z), and NAB(x) are convex, nonempty, and closed cones. Furthermore,
if € G71(dom ¢) is a solution of the generalized variational inequality (Pyip)), then it holds

G(z) = proxﬁ(ua(a_c)), G(z) = proxg(ub(a_:))

and the cone 742 (Z) coincides with the lineality space of the normal cone Nopa@) (—F()).
Now, by using the positive homogeneity of the epiderivative o*(G(%);-), we obtain

B

S G@) + MGl ).

I, (B — A)"'Ah) + I, ((A — B)"'Bh) = pae L

Hence, in this situation, it holds
lin oY (G(z);-) = T4E(z) c TAP(2)nCcAB(z) c NYE (7).

Before stating the main result of this section, let us note that the cones C5(z) and N'4-B(z)
can also be simplified as follows:

C4B(z) = {h e R": (a — B)(F(x), h) < all,(—h) + By (h)},

NAB(z) == {h e R" : (a — B)(F(z),h) = alls(—h) + BII,(h)}.
Theorem 6.2.10. Let the mappings F, G : R™ — R" be continuously differentiable and let
A = a7 'I, B = 87 be arbitrary parameter matrices with o > 3 > 0. Furthermore, let

T € G~l(dom ¢) be a stationary point of the D-gap function HB and suppose that the
matriz DG(Z) is invertible. Then, the following three statements are equivalent:

(i) = solves the generalized variational problem ([Pyip)).
(i) The set TAB(z) N CAB(Z) is contained in N4B(Z).
(iii) The implication below holds:

de TA4B(z)ncAB(z)

(6.2.7) DF(z)'d e DG(z)T[TAB(%)]°

} —  de NYB(2).

Proof. Since the first implication “(i) = (ii)” follows from our preceding discussion and
the second implication “(ii) = (iii)” is rather obvious, we directly start with the verification
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of the remaining direction “(iii) = (i)”. Let us define d := VB(z) - VA(z) = proxﬁ(ua(a_c)) -
proxg (up(z)). Then, by using the optimality principle (6.2.2)), it follows
I,(d) + a(—d) < @(prox] (up(z)) + d) — @(prox] (uy(z)))
+ @(prox) (ua()) — d) — p(proxi (ua(z))) = 0.

This obviously implies d € T45(z). Moreover, using the second inequality in (6.2.2), we
readily establish the following estimates:

o I((B — A)"'Ad) > (BVP(z) - F(z),(B — A) ' A[VF(z) - VA(2))),
o (A= B)'Bd) > (F(z) — AVA(), (B — A) BIV(z) — VA()).
Now, due to (B—A)"!B = I+ (B — A)~!'A and by adding the latter inequalities, we obtain

(6.2.8)  TI((B — A)~'Ad) + I,((A — B)"'Bad)

> (BVB(z) — AVA(z) — (B — A)VA(Z), (B — A)~tAd) + (F(z),d)

= Hd”,Qél(B—A)*lB + (F(2),d)
and hence, it holds d € C45(z). Similarly, the optimality principle (6.2.2)) also implies
II,(DG(z)h) > (BVE(z) — F(z), DG(2)h), I, (—DG(Z)h) > (F(z) — AVA(z), DG(Z)h)
for all h € R™. Next, by summing the latter inequalities, we get

(DG(z)T[BVE(z) — AVA(Z)], h) < Iy(DG(Z)h) + L (—DG(Z)h) < 0

for all b € R™ with DG(z)h € TAB(z). Hence, this shows DG(z)"[BVE(z) — AVA(z)] €

[DG(z)~'TAB(z)]°. Now, due to the invertibility of the matrix DG(Z), a general, compu-
tational result of Bonnans and Shapiro, [27, Lemma 3.27], is applicable and it follows

[DG(z) "' TP (2))° = DG(2) T[T (2)]°.
Consequently, since the stationarity of Z implies

(6.2.9) VHAB(z) = DG(z)"[BVP(z) — AVA(2)] — DF(z)"d =0,

we immediately establish DF(z)"d € DG(z)T[T4B(z)]° and from (6.2.7) and (6.2.8) we
deduce d = 0. Finally, by combining the invertibility of the matrix DG (z), VA(z) = VE(z),
and (6.2.9)), we obtain

vAz) =VvEBz) =0
This completes the proof of Theorem [6.2.10] O

Remark 6.2.11. A careful examination of the proof of Theorem shows that the
implication “(iii) = (i)” does also hold for more general parameter matrices A, B € S% .
However, in this case, the connection between the sets 742 (z) N CAB(z) and N4B(z) is
not clear and thus, full equivalence as in Theorem [6.2.10] cannot be directly inferred.
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Now, let A,B € S ,, B = A, be given parameter matrices and suppose that the function
G is the identity mapping. Furthermore, let £ € dom ¢ be an arbitrary stationary point of
the D-gap function and let us set d := VB(z) — VA(Z). Then, the proof of Theorem [6.2.10
implies

de T*P@)nc*B(z), DF(z)'de T*P(z)°  [T*P(z)nChB ().

Consequently, similar to our observations in the previous subsection, if the matrix DF(Z) is
strictly copositive on the cone 745 (%) NCA#(z), then it follows d = 0 and thus, by (6.2.9),
Z must be a solution of the generalized variational inequality (Pyip|

The next result concludes this subsection and establishes a sufficient condition for co-
ercivity of the natural residual mapping and of the D-gap function. Lemma [6.2.12] is an
extension of [76, Proposition 10.3.9] and is based on a monotonocity-type assumption (as in,

e.g., Lemma [6.1.4)).

Lemma 6.2.12. Let F : R® — R"™ and G : R® — R"™ be Lipschitz continuous with moduli
Ly and Lg, respectively. Moreover, suppose that there exist x* € G~'(dom ) and constants
¥ >0, £ > 1 such that ¢ is subdifferentiable at G(x*) and it holds

(F(z) = F(z"), G(z) — G(z7))

[E |z — x*]|¢

(6.2.10) > 4.

Then, the functions |[VA|| and HAB are coercive on R™ for every arbitrary choice of A, B €
St with B = A.

Proof. Let us write 9* := ||F(z*)|| and proxé(G(a;) — A7'F(x)) = G(x) — VA(x). Then,
by using (6.2.2)) and the Lipschitz continuity of the functions F' and G, it holds

p(prox; (G(z) — A7 F())) — ¢(G(a™))
,G(z) = VA(x) — G(a"))

< (AVA(z) ~ F()
= (F(z") = F(x),G(z) = G(z")) — (AV(2) = F(2), V()
+{(AV(2) = F(z7), G(2) = G(27))

< (F(a) = F(), G(z) = G(a")) — [V (2
+ ((Lr + LallAlD @ — ™[] 4+ 97

~—

!
VA@)| + Lad*|lo — 2.

~—

Now, since ¢ is subdifferentiable at G(x*), it follows
p(prox; (G(z) — A7'F(2))) — p(G(a") 2 (\*,G(z) — G(a*) = V()
> —La |\ llz — || = A IEA @),

where A* € 0p(G(x*)) is an arbitrary subgradient. Next, by combining the last inequalities
and setting C(x) := (Lr + Lg||Al|) ||z — x*|| + 9* + ||\*||, we obtain

an o Iz = 2€ [ (Fla) = F@").6(@) - GG™) Lo + |3
V@I = =50 { o — 2 lo —z & }
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6.3. Numerical algorithms for GVIPs

Clearly, due to £ > 1 and (6.2.10)), the term within the curly brackets is strictly positive as
||lz|| tends to infinity, while the outer factor ||z — x*||¢/C(z) diverges to +o0. Using Lemma
this establishes the coercivity of |[V4| and HAF. O

As mentioned in Remark this result can be utilized to ensure boundedness of the
iterates of the semismooth Newton method that was discussed in chapter 4. Let us finally
note that condition (/6.2.10)) is obviously satisfied if the function F' is (£, G)-monotone on R".

6.3. Numerical algorithms for GVIPs

In this section, we propose and analyze different numerical algorithms for the solution of the
generalized variational inequality (Pyip)). Our investigation focuses on a globalized semis-
mooth Newton method that uses semismooth Newton steps for the nonsmooth equation

VM) = G(z) — proxi(G(z) — A1 F(z)) =0, AeS",,

©
to augment a merit function-based descent method for the problem (Pyip)). Similar to Algo-
rithm 2, we utilize the abstract multidimensional filter mechanism presented in section [4.2.3
to connect these two different algorithmic components.

In the following, as a consequence of our preceding discussions, we will only consider D-gap
and regularized gap function-based approaches. In particular, since the D-gap function was
shown to be continuously differentiable, a simple gradient descent method can be chosen as
an underlying base algorithm to globalize the semismooth Newton method. Moreover, if the
function G is the identity mapping, then the regularized gap program,

min GMx) = {31 F(@)|3- - envé(x —A'F(2)} + () s.t. x€dom g,
reduces to an optimization problem of the form and thus, a specialized version of the
proximal gradient descent method represents another suitable base algorithm in this case. At
this point, let us clarify that an algorithm for the generalized variational inequality is
said to be globally convergent if and only if every accumulation point of a generated sequence
of iterates is also a stationary point of an appropriate and associated merit function. Since
stationary points of the regularized gap function do not necessarily correspond to stationary
points of the D-gap function and vice versa, we want to emphasize that this terminology
obviously depends on the chosen merit function.

In contrast to the D-gap function based approach, the minimization of the regularized
gap function G* may again result in a constrained minimization problem. Here, similar to
Algorithm 2, feasibility of the Newton iterates has to be enforced in order to guarantee global
and local convergence. Since one of our initial motivations for studying generalized variational
inequalities was to circumvent this additional restriction, we will mainly concentrate on a
D-gap function-based globalization that is also well-defined for infeasible input vectors from
now on. Nevertheless, let us note that the stationarity results in Theorem which were
derived for the regularized gap function, have a much simpler and more natural form than
the corresponding conditions for the D-gap function. Furthermore, the computation of the
gap function G? also only requires the evaluation of a single proximity operator while the
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6. Numerical methods for generalized variational inequalities

Algorithm 3: D-Gap Function-Based Gradient Descent Method
so Initialization: Choose 2 € R™, By = Ag = 0, 3,7 € (0,1). Set iteration k := 0.

while VHA%Bx(2%) £ 0 do
S1 Compute a new direction d¥ = —V HA%Br(F).

S2 Choose a maximal Armijo stepsize o} € {1, 8, %, 83, ...} C (0,1] satisfying
HA%Br(2F 4 gpd®) < HA%Br (2F) + opry - VHA B (28) T gF,

S3 Set 2! = 2% 4 5,.d* and choose Apy1, Bpy1 € ST with By g = Apqa.
L k<« k+1.

application of the D-gap function incorporates the calculation of two different proximity
operators.

The D-gap function-based descent method is summarized in the next subsection. The
proposed semismooth Newton method will be presented in subsection in detail.

6.3.1. A D-gap function-based descent method

In the following, we consider a basic gradient descent method with an Armijo-type linesearch
technique to solve the D-gap program

min H4B(z), A,BeSt,, B> A

Let us emphasize that our approach to minimize the D-gap function is well-known in nonlin-
ear programming. Moreover, it can be seen as a special case of the proximal gradient method
with f = HAB, » =0, and A = I. The details are formulated in Algorithm 3. Again, the
parameter matrices A, B € S’ | are allowed to change adaptively.

The following theorem is an immediate consequence of Theorem For various related
results and specific parameter strategies for Ay and By we refer to [257), 224] and |76, Section
10.4.1].

Theorem 6.3.1 (Global convergence). Let the functions F,G : R™ — R"™ be continuously
differentiable and let the sequences (xk)k, (Ag)k, and (By)r be generated by Algorithm 3.
Furthermore, suppose that there exist k* € N and Ay, B, € S' ., By = A, such that

Ay, =A, and Bp=B., Vk>k".

Then, every accumulation point x* of (x¥)y, satisfies VHA*B+(2*) = 0 and is thus a station-
ary point of the D-gap function H™+Bx.

6.3.2. A semismooth Newton method for generalized variational inequalities

The globalized semismooth Newton method we have described so far can be clearly seen as
an adaption of Algorithm 2 for generalized variational inequalities. Similar to Algorithm 2,
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6.3. Numerical algorithms for GVIPs

Algorithm 4: Globalized Semismooth Newton Method for GVIPs
so Initialization: Choose an initial point 20 € R?, Ag € St ., Bo > Ag >0, 8,7,vF € (0,1),
and F_1 = (). Set iteration k := 0.
while VHA%Bx (zF) £ 0 do
s1 If k = 0 or ¥ was obtained in step 83, add 6(z*) to the filter: Fr = Fp_; U {0(z*)}.
Otherwise, set Fj, = Fr_1. Choose Ay41, Bry1, Apy1 € ST, with Byyq = Ay,

S2 Compute the semismooth Newton step s* via M (2*)s* = — VA% (z¥). If this is not
possible go to step S4.

S3 Set zFt1 = 2% + % and check if ¥ is acceptable for the filter Fy:

R k+1 > 0. k+1 v F.
g, (o =) 207 e 6567, Ve

If 51 is acceptable for Fj, skip step S4 and S5.

S4 Compute the direction d* = —V HA%Bx (2F) and choose a maximal Armijo step
ok € {1, 8,82, 8%, .} © (0,1] satisfying

HA% B (a:k + akdk) < HA’“’B’“(J:’C) + oy - VHAk’B’“(xk)Tdk.

S5 Set zFt! = 2k + o d".

| k<« k+1.

to obtain a new Newton step, we have to solve the linear system of equations
M (z*)sk = — VA (zF),

where M (2*) is a generalized derivative of the natural residual VA* at ¥ and Ay is the
current parameter matrix. Again, the trial point ¥ 4+ s* is accepted as a new iterate if it is
acceptable for the current filter Fy, i.e., whenever the filter value 0(z*+s*) = 0(2F +5% A1)
fulfills the acceptance test . More specifically, if the trial point z* + s* satisfies the
filter conditions, then we set #¥*! = 2% 4+ s* update the filter Fj 1 = Fi U {0(2*)} and
start the next iteration. Otherwise, the Newton step is rejected and we perform a step of
the D-gap function-based descent method.

In contrast to Algorithm 2, the feasibility condition G(z* 4 s*) € dom ¢ and the additional
growth conditions (4.2.18)) and (4.2.19)) are not required to establish global convergence. The
details of the method are summarized in Algorithm 4.

Next, we state several assumptions that are essential for our convergence analysis.

Assumption 6.3.2. Let the sequences (z¥)r, (Ax)k, (Br)k, and (Ay)r be generated by Al-
gorithm 4 and suppose that x* € R" and A,, By, Ay € S, are accumulation points of ("),
(Ar)k, (Br)k, and (Ag)k, respectively. Let us consider the following conditions:

(F.1) There exists k* € N such that Ay, = Ax, B, = By, and Ay, = Ay for all k > k*.
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6. Numerical methods for generalized variational inequalities

(F.2) The prozimity operator proxf;* : R™ — R™ 4s semismooth at u* := G(z*)—A; 1 F(x*).

(F.3) There exist constants k, € N and C > 0 such that for all k > k., every matriz
My, := M(2%) € 9V (2¥) is nonsingular with || M, || < C.

If, in addition, the accumulation point x* is a solution of the generalized variational inequality

(Pyip)), then we assume:

(F.4) The accumulation point x* is an isolated solution of problem ([Pyipl).

In the following, we discuss global and local convergence properties of Algorithm 4 in
detail. In particular, by utilizing the conditions presented in Assumption [6.3.2], our analysis
allows to extend well-known convergence results for classical variational inequalities, see, e.g.,
[120, Theorem 3.5] or |76, Theorem 10.4.9].

Theorem 6.3.3. Let the functions F,G : R® — R™ be continuously differentiable and let the
sequences (%), (Ar)x, (Br)r, and (Ag)x be generated by Algorithm 4. Furthermore, suppose
that assumption (F.1) is satisfied. Then, it holds:

(i) Every accumulation point x* of the sequence (x*);, is a stationary point of the D-gap
function HA B«

(ii) Suppose that infinitely many Newton steps are acceptable to the filter. In this case, every
accumulation point of the sequence (xF)y is a solution of the generalized variational

inequality (Pyip))-

(iii) Let x* be an accumulation point of the sequence (x*);, and suppose that x* is a solu-
tion of the problem (Pyip)). Furthermore, assume that the conditions (F.2)~(F.4) are
satisfied. Then, the following statements are valid:

e The whole sequence (x*)y converges to x*.

o Algorithm 4 eventually turns into a pure semismooth Newton method and the
sequence ()5, converges locally g-superlinearly to x*.

e If, in addition, the prozimity operator prox is a-order semismooth at u* for

some a € (0,1] and the derivatives DF(x) and DG(z) are Lipschitz continuous
near x*, then the order of convergence is 1+ a.

Proof. Since part (i) clearly follows from Theorem and part (ii), we first verify the
second part. Therefore, let z* € R™ be an arbitrary accumulation point of the sequence (a:k) k
and let (z¥)g be a corresponding subsequence that converges to z*. Similar to our analysis
in chapter 4, we will work with the following sets

Kn := {k : 2* was generated by the Newton method},
Kp:={k: z¥ was generated by the D-gap function-based method}.

Since we perform infinitely many Newton steps, the sequence (VA’“ (ivk))lcN converges to
zero by the abstract filter result that was presented in Lemma [£.3.1] Moreover, in the case
|K N Kn| = oo, this already implies

VA () 5 VA (2*) =0, K3k— oo,
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6.3. Numerical algorithms for GVIPs

where we used assumption (F.1) and the continuity of F, G, and proxé*. Hence, by Lemma
m (iv), we conclude that z* is a solution of the generalized variational inequality .
Next, let us consider the case |K N Ky| < co. Due to Lemma Remark and
condition (F.1), there exists a constant A such that

0 < HAB(zby <X |[vA (P, Vk>E.

Thus, by taking the limit Ky > k — oo and using HA% Bk (2F) = HAB« (%) for all k > k*,
this establishes
HAB(2F) 50, as Ky 3k — oo.

Since the algorithm does not terminate after a finite number of steps, the descent property
of the D-gap function-based gradient method,

HA*vB*($k+1) < HAMB*(CCk)u A k+ 1e ICD) k Z k;*’

yields H4+Bx(2*) = 0. This finishes the proof the first two parts.

Now, in order to prove part (iii), let us additionally assume that the accumulation point
x* is a solution of the generalized variational inequality problem . Moreover, for a
moment, let us suppose that only finitely many Newton steps are performed. In this case,
Algorithm 4 reduces to the D-gap function-based gradient descent method and similar to our

preceding discussion, we obtain
HAB 2%y 50, as k — oc.

Consequently, together with part (ii) this implies that every accumulation point of the se-
quence (z*);, is a solution of the problem (Pyip). Hence, by assumption (F.4) we conclude
that x* is an isolated accumulation point of (z¥);. To show convergence of the entire se-
quence (2*);, we again want to apply the result of Moré and Sorensen [160] that was already
used in Theorem [4.3.10{ and [4.3.12, Thus, let (z¥)x be a subsequence that converges to the
isolated accumulation point z*. Then, due to condition (F.3), there exist constants C' > 0
and ko > max{k,, k*} such that || M, || < C for all k > k. Thus, for all k € K, k > ko, it
holds

ka—f—l _ :L,kH < CHVA*(wk)H iftk+1e ICN7
T\ IVHEASB(2%)|| ifk+1€Kp.

and VA (2¥) = 0 as K 3 k — co. By Lemma [6.2.6] this implies |V HA* 5 (z*)|| — 0 for
K > k — oo and altogether, we deduce (||z¥+! — 2¥||)x — 0. Thus, in this situation, [160,
Lemma 4.10] again yields that the whole sequence (2¥); converges to z*.

The rest of the proof is identical to the proof of Theorem and Theorem O

Next, since z* is a solution of the problem (Pyp)), we have VA (z*) — 0, VB (z*) — 0,

Remark 6.3.4. Let us note that, in order to establish the (global) convergence results in
Theorem (1)—(ii), it suffices to assume that the parameter matrices Ay, k € N stay in
a compact set K C S . Moreover, in part (iii), if assumption (F.3) is substituted by the
stronger CD-regularity condition that was presented in Remark then condition (F.4)
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6. Numerical methods for generalized variational inequalities

is again a consequence of the semismoothness of V** and [182, Proposition 3|. In this case,
assumption (F.4) is superfluous and can be omitted.

In contrast to the discussion of Algorithm 2 in chapter 4, the D-gap function-based glob-
alization strategy notably simplifies the convergence analysis of Algorithm 4. On the other
hand, without any further assumptions, we can only guarantee global convergence to sta-
tionary points of the D-gap function. In particular, if Algorithm 4 is used to solve our initial
nonsmooth problem , then the generated Newton and D-gap steps only operate on the
first order optimality condition,

(Vf(@),y—x) +o(y) —p(x) >0, VyeR",

and the connection to the underlying optimization problem is no longer taken into
account. However, if the Hessian V2 is positive definite at some accumulation point z* and
if VA = FM is semismooth at z*, then Lemma, , Remark and condition
imply that all assumptions of Theorem m (iii) are satisfied. Thus, in this situation, x* is
an isolated stationary point and a globally optimal solution of problem and Algorithm 4
is ensured to converge locally g-superlinearly to x*. See also Theorem [4.3.10] and [£.3.12] for
comparison.

In the spirit of our second order analysis in chapter 5, we will now show that the assump-
tions (F.3) and (F.4) are fulfilled whenever a certain second-order type condition and the
strict complementarity condition hold at a solution of problem (Pyip)). The proof of the fol-
lowing theorem essentially relies on the techniques that were presented and used in Theorem
[£.4.4 and [5.5.2] and finishes this section.

Theorem 6.3.5. Let F,G : 2 = R be continuously differentiable functions and let Q C R™
be an open set that contains the domain G~1(dom ). Furthermore, let z € G~!(dom ¢) be a
solution of the problem and let G be twice continuously differentiable in a neighborhood
of . Additionally, let us suppose that ¢ is C?-fully decomposable at G(Z) and assume that
the strict complementarity condition

—F(z) eri 0p(G(7))

holds at z. Then, for every parameter matrix A € S}, the proximity operator prox? is

)
Fréchet differentiable at 4 := G(z) — A~ F(Z) and the second order-type conditions
2(DG(Z)h, DF(z)h) + (DG(Z)h, [A*%QQ(Q)JFA% — I|DG(Z)h)p >0, VYV heCq(z)\ {0},

where Q{;(ﬁ) = A%Dproxg(ﬂ)Afé, imply the following properties:

(i) The point T is an isolated solution of the generalized variational inequality (Pyip))-

A
®

differentiable at T and its Fréchet derivative DV (Z) is nonsingular.

it) If the prozimity operator prox is semismooth at @, then the mapping V2 is strictl
Yy g Yy

Proof. The first part was already shown in Theorem[6.1.6]and in the subsequent discussion.
At this point, let us recall that if the mapping ¢ is C?-fully decomposable at G(z) and if the
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6.3. Numerical algorithms for GVIPs

strict complementarity condition is satisfied at Z, then it holds
—&5W(—F (%)) = (DG(2)h, [A"2 QM (@) T A2 — IIDG(2)h)s, ¥ h € Ca(%).

The strict differentiability is again a consequence of Theorem [2.6.7] Next, let us assume that
the matrix DVA(Z) is not invertible. Then, there exists A € R™ \ {0} such that

DG(z)h = W(DG(z) — AT*DF(z))h, W := Dproxg(a).

Hence, Lemma implies DG(Z)h € Nay(a(z))(—F(2)) and it follows h € Cq(7) \ {0}
Since the operator Qé(ﬂ) has the same basic properties as its associated counterparts in

Theorem [5.4.4] or [5.5.2] we also have
[03(@)* QA (u)]A2 DG(Z)h = A2 DG(z)h,
see, e.g., subsection [5.3.4] for details. Thus, we obtain
(03 (@) QA (@)]A~2 DF(2)h = [T — QA\(u)*]AZ DG(Z)h.

Furthermore, by using the symmetry of the matrix Qg(ﬂ) and the properties of the Moore-
Penrose pseudoinverse, we get

(DF(z)h, DVM(Z)h) — (DF (&)h, DG(Z)h)
= —(DF(z)h, WDG(%)h) + (A2 DF(2)h, Q3 (@)A~2 DF(z)h)
= —(DF(2)h, WDG(2)h) + ([Q3(@) — I]A? DG(z)h, [I — Q3(@)*]A? DG(z)h)
= —(DF(2)h, WDG(%)h) + ([Q) (@) — I]A2 DG(2)h, A2 DG()h) — &5 ,(—F (%))

= —Eon(=F (7).

Now, due to DVA(Z)h = 0 and h € Cg(z) \ {0}, the latter calculations and the second
order-type conditions imply

(DF(2)h, DG(2)h) > 0.

However, since the curvature term —¢7, , (—F()) is nonnegative for all h € C(2), this yields
the contradiction

0 = (DF(&)h, DVN(&)h) = (DF(&)h, DG(Z)h) — &5, (= F(2)) > 0.

Consequently, we deduce h = 0. This concludes the proof of Theorem [6.3.5] O
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7. Applications and numerical results

In this chapter, we present numerical results and discuss the competitiveness of the semis-
mooth Newton method that was proposed in chapter 4 for different nonsmooth optimization
problems and in comparison with several state-of-the-art algorithms.

Let us note that the numerical comparisons for ¢1-regularized problems in section and
are essentially based on the work [I57] and that several parts have already appeared in a
similar form in [I57]. However, we also want to emphasize that the results reported in this
thesis were obtained by using a more refined and improved version of Algorithm 2 and thus,
are not immediately comparable with the results in [I57].

All tests in this chapter were performed under MATLAB v8.5 (R2015a) on an iMac 27"
with Intel Core i5 3,2 GHz and 16 GB of memory.

7.1. Convex /i-regularized least squares problems

At first, based on a test framework in [I3|, we provide an extensive numerical comparison of
different ¢;-optimization methods, that are particulary designed to solve either basis pursuit
denoising problems of the form

(BP,) min ||zf|; s.t. ||[Az -], <o
FASING

or corresponding ¢1-regularized quadratic problems of the form

o1 2
(QP,) min oAz —blly + pllofly = ¥(2).

From now on and for /;-least squares problems of the form (QP ), we will refer to the
specialized version of Algorithm 2 as SNF-L1 (semismooth Newton filter) method.

Remark 7.1.1. Clearly, due to the nonnegativity of the quadratic term f(z) = %||Az —b||3,
the objective function ¢ of problem is coercive, i.e., there exists at least one solution
and the set of all possible solutions must be bounded. Moreover, since f is convex, quadratic,
and twice continuously differentiable on R™ and since the £;-norm is obviously real valued and
positively homogeneous, the assumptions (A.1) and (C.1)—(C.3) are satisfied. Thus, Theorem
and Remark guarantee that the SNF-L1 method converges globally. Additionally,
and as sketched in Example if a certain submatrix of the Hessian V2f(x) = AT A is
positive definite, then the conditions for local fast convergence are fulfilled.

We start with several implementational aspects of the SNF-L1 algorithm.
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7.1.1. Algorithmic details and implementation

We now briefly describe algorithmic and numerical details of the SNF-L1 method. We want to
point out that the following considerations mainly focus on the class of convex and quadratic

problems )

A-strategy. In our implementation, the parameter matrix Ay € S, is chosen based on
the following simple strategy:

Ay = Tk_ll, Tk € [Tm, ™)y 0 < T < Tr-

In the first iteration, we use 79 = 6 as initial value. Afterwards, the parameter 75 is adjusted
to approximate the inverse Lipschitz constant of the gradient Vf(z) = AT (Az — b). More
specifically, we set

(7.1.1) AL la® — 2"

k= va(xk) o Vf(-%'k_l)H’ )\2 = max{min{Ai,TM}7Tm}7 k>1.

Finally, in order to prevent outliers, we calculate a weighted mean of )\z and of the previous
parameters 7, j = 1,...,k — 1. This mean is then used as the new step size parameter 7.

Newton system. In Example [4.2.16| we have already shown that for £;-problems of the
form (QP ) the nonsmooth mapping FMe :R™ — R™ is given by

FM (2%) = iV f(2%) + P n(@® — 1,V f ().

—HTE KTk

Moreover, as also mentioned in Example [4.2.16{ and setting u* := z¥ — 7,V f(2F), we will
work with the following generalized derivates

M (%) :== 7(I — D(2%)) - ATA + D(a),

where the diagonal matrix D(z¥) is uniquely determined via

Dty = 40 Tl =wme g
AT fub] < s T

Now, in each iteration we have to solve the system of equations
M (z)s% = —FM(2F),

in order to obtain the next Newton step s*. Thus, the performance of our algorithm highly
depends on efficient strategies for solving those systems. By taking advantage of the structure
of the generalized derivative M (z*) and using a simple block elimination technique we can
reduce the computational complexity and end up with the smaller problem

sl = —Fy* ("),
(7.12) (ATA)izpst = —7 L (a) - (ATA) iz 5%,
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Table 7.1.: Summary of parameters and their default values

ggont ggont (eont  factors for the continuation update formula, C$°" = 0.535,

max

Cs5°" = —1ogy((0.65) and maximum number of iterations CS2% = 10
B, parameters for the quasi-Armijo condition, 8 = 0.1, v = 0.1
T0, T, TM parameter for the adaptive choice of Ay, 7o = 6, 7, = 1073, 73y = 104
YF factor for the filter acceptance criterion, yr = 7- 1072
CG-tol, CG-maxit parameters to control the accuracy of the CG method, CG-tol = 0.1,
CG-maxit = 10

where we set A = A(z%) := {i : [uF| < prp} and Z = Z(2*) == {i : [uf| > pmp}. Instead
of solving directly, we consider a regularized version of the submatrix of the Hessian
(ATA)[II} + pI with p = p(2¥) := ||[F™(2*)||. This leads to the numerically more robust
formulation

(7.1.3) (ATA+ pl)gpsh = =7 P (%) — (AT A) 5%

and corresponds to a reformulation of the Newton system with the regularized matrix M,
which was already introduced in (4.3.17]). The remaining problem is approximately
solved by an early terminated (preconditioned) CG method. Since ¢;-minimization algo-
rithms are usually used for large-scale applications and the matrix A typically involves di-
rect or inverse discrete cosine, wavelet, or related transforms, the computational effort of
every iteration is dominated by the number of applications of A and A" to a vector. For
convenience, we will use the terms A- and A'-call to describe an application of A or AT.
Furthermore, let C4 denote the complexity of applying A or AT. Then the complexity of a
single, successful Newton iteration of the SNF-L1 algorithm is given by 2C4 +2C4 - cg-iter
(two calls are used to evaluate the right-hand side of equation ([7.1.3)). Furthermore, if the
current iterate is not acceptable to the filter, we have to apply A (and AT) once more to
obtain an alternative shrinkage step. This complexity bound motivates us to solve the linear
system ([7.1.3) only approximately, in order to keep the number of CG iterations as low as
possible. Hence, we choose a rather mild stopping criterion for the CG method and set the
relative tolerance to 10~ and the maximum number of iterations to 10.

Filter. In our implementation, we choose a filter function 6 : R" — Rﬁ of type (4.2.8)
with the following decomposition pattern

L={1,.,0, Ih={l+1,.,20}, ., T,={(p—1){+1,...,n}, L= [g].

We use p = 1000, but experiments show that the algorithm is quite insensitive to the choice
of p. Of course, the required filter storage increases proportional to p.

Continuation. The continuation with respect to u [98] has become a common and suc-
cessful tool to further improve the performance of £1-optimization algorithms. The idea is to
solve the problem for a sequence of different p values. At first, starting with a usually
large parameter g > p, an approximate solution zfj of the problem (QP,,) is computed.
We then decrease the regularization parameter, i.e., we choose ui satisfying po > p1 > u
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and solve (QP,,) with z{ as initial point. This procedure is repeated until the current
regularization parameter pu; coincides with our desired parameter p or a termination cri-
terion for the problem is satisfied. Practical experience and numerical experiments
in [78, 98], 256, 13| showed that this homotopy scheme can enhance the performance of ¢;-
optimization methods significantly. Encouraged by this general observation we embedded
the SNF-L1 method in a continuation framework. Particularly, we choose

_1

po = max {C§"||b]|oc, £}, C§™ = min {0.257 2.2 (||blloo/1t) 3}

and decrease the current homotopy parameter p; according to the following update formula

' Cgont
prjpr = max{yp;, p}, (0,1] 345 =1—Cf™ <Zi)> 7

cgont Csent e (0,1) (see Table [7.1). Here, our specific choice of pg is based on a scale
invariance argument: if the magnitude of the input data b is increased by a factor, the con-
tinuation scheme is supposed to adapt in a similar way. This motivates the above ansatz
po = C§°"||b||co, where the additional damping factor C§°™ is introduced to avoid dispro-
portionately high initial values. Furthermore, we observed that a logarithmically decreasing
update of the regularization parameter yields better numerical results. Thus, we have chosen
an adaptive update formula such that the reguction of u; gets smaller if the total number of
+1

continuation steps increases. We set «j := x;" " and reduce p; whenever the total number of

iterations within a single continuation phase exceeds the bound C<%% = 10 or a good New-
ton step is performed, i.e., when the Newton iterate x?“ = xf + s? satisfies the following
decrease condition

IFY+ @ < 0.5 (| F ()], k>0,

where x?’ denotes the k-th iterate of the j-th subproblem (QP,;), k¥ > 0 and x? =127 ;. An

exemplary visualization of the development of the continuation phases with respect to the
number of A- and A-calls can be found in Figure

Initial point and stopping tolerance. We choose 2° = 0 as initial point and terminate
SNF-L1 when the current residual falls below a given tolerance ¢, i.e.,

(7.1.4) IF™ @) < e,

where we dropped the additional continuation index for convenience. We want to emphasize
that the term F** has to be understood in its original sense, i.e., here F* depends on the
initial regularization parameter . The tolerance ¢ influences the level of accuracy, we will
work with ¢ € {1,1071,1072,107%,1076}. Table summarizes the default setting of the
parameters of SNF-L1.

7.1.2. State-of-the-art methods

In this section we state main ideas and basic structural aspects of several state of the art
methods, which will be used later in our numerical comparison. We will work with ¢;-
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algorithms that are designed for efficient large-scale optimization and can take advantage of
fast implementations of the A or AT application.

Fixed Point Continuation method (FPC) [98]. The Fixed Point Continuation method
is a first order algorithm for solving the problem 1’ or more general £1-problems with
convex f. It is a direct realization of the fixed point iteration

(7.1.5) ! = proxﬁMh(:z:k — 7V (@F), A=7"', 7>0

with an additional continuation scheme for the ¢i-regularization parameter u. FPC-BB
is an advanced version of FPC that uses Barzilai-Borwein steps to improve performance.
The code can be found online at http://www.caam.rice.edu/ optimization/L1/fpc/. All
parameters were set to default values.

FPC Active Set (FPC-AS) [253]. FPC-AS is an extended two-phase version of the
FPC method and is designed to solve . In the first stage a specialized, nonmonotone
version of Algorithm 1 with A = 77'I and a Barzilai-Borwein heuristic for the parameter
7 is used to determine an active set. Motivated by Greedy algorithms for £;-optimization,
FPC-AS then solves a smooth subproblem on this active set with a L-BFGS method. The
algorithm is embedded in a continuation scheme. The code is available at http://www.caam.
rice.edu/"optimization/L1/FPC_AS/. All parameters were set to default values.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [12]. FISTA is an ac-
celerated proximal gradient method that resembles Nesterov’s fast gradient schemes for con-
vex problems [169]. It can be seen as an extension of the fixed-point iteration ((7.1.5) with
an additional extrapolation step. In our numerical experiments we implemented FISTA as
described [12, Section 4] and with constant step size L = 1.

Gradient Projections for Sparse Reconstruction (GPSR) [78]. GPSR is based
on the well-known projected gradient technique for constrained optimization problems. By
splitting © = v1 — v into its positive and negative part v1 and vy the £1-regularized problem
li is smoothed and reformulated as a quadratic program with positivity constraints for
v1 and vo. In our experiments we tested GPSR with continuation and an alternative version
with Barzilai-Borwein step sizes (we refer to GPSR-BB). As recommended by the authors
and proposed in [13], all parameters were set to default except the number of continuation
steps was set to 40, the ToleranceA variable was set to 1073, and the MiniterA variable was
set to 1. The code is available at http://www.1lx.it.pt/ mtf/GPSR/.

NESTA [I3]. NESTA is built on Nesterov’s smoothing technique for convex and possibly
nonsmooth functions and applies this technique to the constrained ¢;-problem (BP,]). In [I3]
it was shown that the performance of Nesterov’s framework can be significantly improved
by using a continuation scheme on the smoothing parameter that characterizes the level of
smoothing of the ¢1-norm. We tested NESTA with different smoothing parameters, u €
{0.01,0.02,1078} (unfortunately, the meaning of y here is different from its standard use
in this section) and two continuation scenarios, where the number of continuation steps
was set to either T' = 4 or T" = 5. All other parameters were set to default, except, as
proposed in [I3], the tolerance variable § was set to 10~7. The code can be found at http:
//www-stat.stanford.edu/ candes/nesta/.
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7. Applications and numerical results

Primal-Dual Method (PD) [42]. Chambolle and Pock’s primal-dual method is able to
solve general nonsmooth problems of the form

(7.1.6) min ¢(z) + o(Kx),

z€R?
where the functions ¢ : R” — (—o00,400] and ¢ : R™ — (—o00, 00| are convex, proper,
and lower semicontinuous functions and K € R™*" is a given matrix. In each iteration, the
method successively performs the following steps:

k+1

Yo = proxg. L (yF + oK b,

o
;_11(1,16 _ TKTyk+1)7

jk—O—l — :Ek_H + 0(33k+1 . ﬂfk)

gl = prox

If the step sizes o and 7 satisfy o7||K |2 < 1 and if it holds # = 1, then the sequence (¥, y")
converges to a saddle point of the corresponding primal-dual formulation of problem .
For the ¢1-problem (QP ), we set ¢(x) := pl|z([1, o(y) := +lly — b3, and K := A. Moreover,
since the convex conjugate p* is strongly convex with convexity parameter v = 1, we can use
an accelerated version of the primal-dual method that is presented in [42], Section 5| (in this
variant the variables o, 7, and 6 are updated adaptively in each iteration). We implemented
the accelerated primal-dual method as specified in [42 Algorithm 2| and set 79 = 1, 09 = 1,
and v = 0.9.

Sparse reconstruction by separable approximation (SpaRSA) [256]. The method
SpaRSA was developed to solve the general problem . For it is an iterative
shrinkage-based algorithm and therefore resembles FPC. SpaRSA also uses Barzilai-Borwein
steps and a continuation technique to accelerate its performance. Online code can be obtained
at http://www.lx.it.pt/ “mtf/SpaRSA/. Again, as recommended, we set all parameter to
default and adopt the parameter modifications in GPSR-BB.

Spectral projected gradient (SPGL1) [242]. SPGLI solves the basis pursuit prob-
lem (BP,)) via finding roots of a corresponding one-dimensional nonlinear equation. This
procedure involves solving a sequence of so-called LASSO problems

min |[Az — b st x|l <

win Az b, st el <7

for different values of 7. In [242] a spectral projected gradient method is used to efficiently
compute approximate solutions of the above least squares problems. The code is available
at http://www.cs.ubc.ca/labs/scl/spgll/. All parameters were set to default values.

Alternating Direction Method of Multipliers (YALL1) [258]. The YALLI package
provides a general alternating direction method [92], [89, OT] [71] that can solve a variety of
constrained and unconstrained £1-problems. Similar to the primal-dual method it introduces
an auxiliary variable to split the objective function into two separate parts. The resulting
reformulated problem is then solved with an Augmented Lagrange method in an alternating
fashion. Let us note that the performance of YALLI strongly depends on how efficiently its
corresponding subproblems can be solved. In our numerical comparison, since the measure-
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ment matrix A will be chosen as an orthogonal projector with AAT = I, the different steps
of the YALLI-algorithm are given by simple and fast update rules. For more details on the
alternating direction method we refer to [91) [71], 258] and to section Online code can
be found at http://yalll.blogs.rice.edu/. All parameters were set to default values.

7.1.3. Numerical comparison

To compare SNF-L1 with several other methods we use a slightly modified test framework
from the NESTA package [13]. The problem setting is identical to the one proposed in [13]
and is specified as follows. At first, we generate a sparse signal Z € R™ of length n = 5122 =
262144 with k = [n/40] = 5553 nonzero entries. Here, the k different indices i € {1,...,n}
are randomly chosen and the magnitude of each nonzero component is determined via

T =m (i)lodm(i)/%’

where 71(7) € {—1,+1} is a symmetric random sign and 72(¢) is uniformly distributed in
[0,1]. The signal has dynamic range of d dB and we consider d € {20, 40, 60,80}. The matrix
A € R™*™ takes m = n/8 = 32768 random cosine measurements, i.e., Ar = (dct(z)),
where the index set J C {1,...,n}, |J| = m, is initialized randomly and dct is the discrete
cosine transform. Finally, the input data b € R™ is obtained by adding Gaussian noise with
standard deviation ¢ = 0.1 to AZ.

Since NESTA and SPGL1 solve the basis pursuit problem (BP,|) while all other mentioned
algorithms solve the unconstrained problem (QP [} we need to compute a corresponding pair
(o, 1) to gain comparable results at first. Therefore, we run SPGL1 to generate an approx-

imate solution of the problem (BP,,) with o9 = v/m + 2v/2m& and to obtain an estimate
p(og) from its dual solution. Afterwards, we use the SNF-L1 algorithm with stopping crite-
rion

1! (2*)] < 10712

to compute a high precision solution z* of the problem (QP,,)) and set o = [[Az™ — b|.
Then the problems (QP,)) and (BP,|) should be almost equivalent. Now, the SNF-L1 method
is run again with stopping rule

(Cnat) I (M)l < e

and with different tolerances £ to create a series of reference solutions. We modified the
stopping criterion of each algorithm; the other algorithms now terminate at iteration k& when
the current iterate ac];lg satisfies the following relative stopping criterion

$(y) ~ 9 _ [plat) — )
P(x¥) - Y(x*) 7

where z . denotes the solution of the SNF-L1 method. Moreover, we also performed a
second independent test series where each algorithm uses the condition as stopping
criterion. In this case, termination and accuracy of the different methods is solely controlled
by the stopping rule and do no longer depend on the results of SNF-L1.

(Crel)
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Table 7.2.: Total number of A- and A" -calls # A, and # A, averaged over 10 independent

runs with dynamic range 20 dB using the stopping criteria (C.e)) and (best
NESTA configuration was used: y = 1078, T = 4).

Method e:10° e:107! €:1072 €:107% £:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-L1 91 91 227 227 260 260 289 289 342 342
FISTA 70 56 203 149 474 349 1879 1480 4333 3549
FPC 372 374 014 432 778 646 1490 1332 2385 2118
FPC-BB 148 150 180 174 269 206 960 802 DNC 1588
FPC-AS 80 74 218 212 311 312 393 409 454 434
NESTA 570 570 DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 551 561 675 614 902 818 1481 1387 DNC 2026
GPSR-BB 390 418 445 435 522 487 753 706 1055 964
PD 86 104 420 307 1127 839 DNC 7698 DNC DNC
SpaRSA 485 503 528 521 559 550 628 621 702 688
SPGL1 66 58 152 124 192 181 DNC DNC DNC DNC
YALL1 60 56 144 126 223 202 399 374 620 558

In the following, we consider the dynamic ranges d € {20,40,60,80} and the tolerances
e€{1,1071,1072,1074,1075}. Since an application of A or A" corresponds to the evaluation
of a dct or idct function, the total number of A- and AT-calls is an important measure of
efficiency. For our two different test series these total numbers will be denoted by #A.e and
# Anat, respectively. Thus, along with the corresponding total runtime of each algorithm,
our numerical comparison is based on a discussion of the different, achieved # A, and # Apat
values. We report DNC (did not converge) if convergence is not reached after # A, = 20000
or #A,. = 20000 calls. The Tables [7.4] and contain the mean values of the
numbers # Ao and # A, over 10 random trials; the three best results from each column
are shaded. Accordingly, the Tables[A ], [A.2] [A.3] and [A4] contain the corresponding mean
values of the total runtimes t,¢ and ty,t of the different algorithms. Here, we set ¢, = DNC
or tpay = DNC when the respective algorithm did not converge within 20000 A-calls. Again,
the three best results fro each column are shaded. For the sake of clarity, the Tables
[A74] have been moved to the Appendix [A:41] In Figure [7.I] we illustrate the change of the
absolute value of 128 randomly chosen components of the iterate with respect to the number
of A- and AT-calls. Each plot is associated with one of the tested algorithms and shows the
development of the iterate for a single run with dynamic range d = 40 dB. Furthermore, the
maximum number of A- and A" -calls that is necessary to capture all zero components of the
optimal solution x* is marked with a green line. Similar illustrations for the other dynamic

ranges d € {20, 60,80} can be found in the Appendix see Figures A3

It was observed in [13, 139 that ¢;-optimization algorithms react sensitively on changes
of the dynamic range and their performances usually deteriorate with increasing dynamic
range. Our experiments also confirm this behavior for the modified test framework.
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Table 7.3.: Total number of A- and AT-calls # A,¢ and # A, averaged over 10 independent

runs with dynamic range 40 dB using the stopping criteria and (Cpat)) (best
NESTA configuration was used: y = 1071, T = 5).

Method g:10° g:107! €:1072 e:107% €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-L1 180 180 459 459 496 496 542 542 610 610
FISTA 196 234 559 421 1193 833 4280 2934 7543 6402
FPC 367 378 997 679 1531 1203 2867 2355 3925 3561
FPC-BB 160 169 441 223 975 648 2309 1797 DNC 3192
FPC-AS 252 164 448 324 542 526 616 608 703 676
NESTA 374 DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 461 472 836 698 1082 942 1692 1469 DNC DNC
GPSR-BB 428 467 583 493 781 668 1287 1101 1695 1559
PD 165 240 718 582 2158 1769 DNC DNC DNC DNC
SpaRSA 478 519 566 538 621 596 738 703 821 799
SPGL1 100 110 286 228 342 318 DNC DNC DNC DNC
YALL1 131 202 451 392 812 676 1894 1517 2804 2516

SPGL1 is very efficient at low and middle precisions. However, SPGL1 does not converge
in the high precision examples. In the low precision case, it takes about 4 times as many
A applications on the 80 dB signal as on the 20 dB signal (for lower tolerances this factor
diminishes to 3). Figure (k) demonstrates that SPGL1 quickly detects zero and nonzero
components of the optimal solution x*.

The Barzilai-Borwein version of GPSR outperforms the regular GPSR version in both
number of A- and AT-calls and CPU time, though it cannot keep up with the results of
SNF-L1. In general, GPSR-BB requires twice as many A- and A'-calls at 80 dB than at 20
dB. The runtimes for 80 dB and 20 dB differ by a factor between 1.6 and 2.6.

SpaRSA needs a comparatively large number of A- and A "-calls at low dynamic range and
low precision tests. For fixed dynamic range it only requires about 1.5-1.9 times as many
A- and AT-calls to compute a very accurate solution as in the low precision case. Besides,
SpaRSA shows good performance with large dynamic range and requires less A- and A" -calls
than SNF-L1 in the 80 dB example (see Table. However, concerning computational time,
SpaRSA does not succeed in outperforming SNF-L1. Both GPSR-BB and SpaRSA show a
similar development of their iterates. The Figures (h) and (j) illustrate that almost all
zero components of ™ are captured within the very first iterations. However, there are several
outliers that prevent fast convergence to the correct zero pattern. Compared to SNF-L1, a
large number of A-calls is needed to detect the small nonzero components of z*, see also
Figures In general, we observe that both SpaRSA and GPSR-BB become more
competitive in the problems with higher dynamic range.

The NESTA algorithm did not converge in most of our tests. This can be traced back to
NESTA’s smoothing of the ¢1-norm that is used in the algorithm and the resulting relatively
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Table 7.4.: Total number of A- and A" -calls # A, and # A, averaged over 10 independent

runs with dynamic range 60 dB using the stopping criteria and (Cpat)) (here,
NESTA did not converge).

Method e: 109 e:1071 €:1072 e:107* €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-L1 378 378 666 666 702 702 765 765 860 860
FISTA 641 630 1149 946 1896 1543 4939 4213 9340 8511
FPC 625 521 1700 1177 2328 1937 3820 3497 5376 5098
FPC-BB 236 225 1212 690 1838 1446 3329 3006 DNC DNC
FPC-AS 243 214 648 598 717 690 791 779 898 883
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 726 455 1233 1007 1519 1354 2200 2066 DNC DNC
GPSR-BB 453 462 800 614 1049 912 1634 1526 2253 2158
PD 420 561 1636 1422 4597 4765 DNC DNC DNC DNC
SpaRSA 546 563 649 609 721 686 847 827 943 927
SPGL1 168 168 389 319 459 434 DNC DNC DNC DNC
YALL1 606 1046 2492 2322 3986 3961 7610 7598 11346 11019

Table 7.5.: Total number of A- and A" -calls # A, and # A, averaged over 10 independent

runs with dynamic range 80 dB using the stopping criteria and (Cpat) (here,
NESTA did not converge).

Method £:10° e:1071 €:1072 £:1074 £:1076
#Arcl #Anat #Arcl #Anat #Arcl #Anat #Arcl #Anat #Arel #Anat
SNF-L1 644 644 939 939 979 979 1058 1058 1174 1174
FISTA 2297 2293 3030 2757 4019 3650 7948 7222 12716 12753
FPC 1243 834 2526 1816 3271 2800 5080 4723 6674 6685
FPC-BB 499 256 1773 1064 2518 2047 4331 3975 DNC DNC
FPC-AS 390 397 784 738 836 824 950 935 1072 1083
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 2079 980 2674 2366 3017 2818 3846 3700 DNC DNC
GPSR-BB 996 424 1004 782 1249 1100 1849 1737 2388 2389
PD 1158 1476 4140 3729 11196 12357  DNC DNC DNC DNC
SpaRSA o84 529 747 673 820 789 964 947 1072 1076
SPGL1 250 245 475 378 562 529 DNC DNC DNC DNC
YALL1 5445 8530 DNC DNC DNC DNC DNC DNC DNC DNC
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Table 7.6.: Total number of iterations, shrinkage steps S-iter and A- and AT-calls averaged
over 10 independent runs. The minimum and maximum value of S-iter over the
10 runs are shown in smaller font. The method SNF-Lla? uses a fixed parameter
choice 7, =17 = 4.

Method €:1072 e:10°6 g:10710

iter  S-iter #An. iter S-iter #A,. iter  S-iter #Anat

SNF-L1 22 O 260 25 Oy 342 31 Oq 461
SNF-Lla 20 dB 22 0(0/0) 260 24 0(0/0) 346 25 0(0/0) 410
SNF-Llal 22 0y 272 26 Ogp 373 27 O 437
SNF-L1 46 O 496 51 Opp 610 58 O 773
SNF-Lla 40 dB 46 0(0/0) 496 48 0(0/0) 595 50 0(0/0) 724
SNF-Lla‘ 49 0p/ 506 52 Ogp) 609 53 O 737
SNF-L1 0 Ogpy 702 77 Ogp 860 86 O 1060
SNF-Lla  60dB 70 0O 702 73  Ogp) 820 75 O 943
SNF-Llal 87  Busey 807 89 Bus 917 91 By 1053
SNF-L1 105 1o 979 114 1 1174 125 1 1410
SNF-L1la 80 dB 105 1(0/2) 979 109 1(0/2) 1131 110 1(0/2) 1238
SNF-Lla’ 105 20 999 109 20 1122 111 24, 1264

low sparsity of NESTA’s solutions (see Figures and (b)). Thus, with increasing
accuracy NESTA seems to fail at sufficiently decreasing the ¢1-norm of its iterates and satis-
fying the conditions and . Nevertheless, the results of the low precision problems
and the results reported in [13] [157] indicate that NESTA is a very robust method regarding
changes of the dynamic range.

At low and middle precision the FPC-BB method outperforms its regular FPC version
and converges much faster. For fixed dynamic range the performance of both approaches
degrades as the stopping tolerance is reduced, requiring about 6—18 times more iterations.
Furthermore, FPC-BB did not converge for almost all high precision examples. FPC-AS
generally performed very well; it takes about 2.3-4.9 times as many A- and A" -calls at 80
dB than at 20 dB. For dynamic range d € {20,40,60} about 2.8-5.6 times as many A- and
AT-calls are used to compute a very accurate solution as to compute a low precision solution,
whereas SNF-L1 only needs 1.8-3.7 times more calls. According to Figure all variants of
FPC need about 200-400 A-calls until they start to reliably identify zero components of z*.
While FPC-BB and FPC-AS manage to detect all zero components within 200 A-calls, FPC
requires a large number of additional A-calls to find the correct sparsity pattern. Besides
SPGL1, FPC-AS is the only tested method that detects small nonzero components of x* as
fast as SNF-L1.

FISTA and the PD method are outperformed by most other algorithms. For fixed dynamic
range, FISTA needs about 5.5-60 times as many A- and AT -calls to compute a high precision
solution as to calculate a low precision solution. In our experiments, FISTA seems to be
mainly attractive for problems with low dynamic range and low accuracy. As SPGL1, the
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Figure 7.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 40 dB with respect to the number of A-
and AT-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x* within the sample (the
following NESTA configuration was used: p = 1078, T = 4).
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Figure 7.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 40 dB with respect to the number of A-
and AT-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution z* within the sample.
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Figure 7.2.: Change of residual with respect to the total number of A- and A"-calls. The blue
bar at the bottom of each plot visualizes the continuation scheme of SNF-L1.
Each single box depicts one specific continuation phase with fixed p;. Shrinkage
steps are marked in red color.

primal-dual method did not converge in the high precision examples. Usually, it requires
about 10 times as many A-calls for the middle precision examples as for the low precision
problems with e = 1. Although the Figures and (i) show that the PD method
quickly detects all zero components of z* for dynamic range d € {20,40,60}, both FISTA
and the PD method fail in successfully locating the small nonzero components of the optimal
solution x*.

The performance of the YALL1 algorithm rapidly decreases with increasing dynamic range.
While YALLI achieves good results in the 20 dB case, it performs rather poor in the examples
with higher dynamic range. More specifically, YALL1 takes about 18-21 times as many A
applications on the 40 and 60 dB signal than on the 20 dB signal. Furthermore, it did not
converge in the 80 dB examples (see Table. The Figures and (1) in the appendix
also indicate that YALL1 does not correctly detect all zero components of z*.
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Figure 7.3.: Convergence of the residual with respect to the number of iterations. Each
subfigure contains two images that depict the same trial for different intervals of
iterations.

The proposed method SNF-L1 compares quite positively to the other solvers. It performs
especially well at low dynamic range. The Tables and demonstrate the efficiency of
SNF-L1 and its competitiveness in this regime. Although SNF-L1 generally is a bit more
sensitive to increasing dynamic range than, e.g., GPSR-BB or SpaRSA, its performance
consistently stays competitive with the other methods. Moreover, our experiments in the
Tables [7.2H7.5| show the particular strength of SNF-L1 in efficiently computing high accuracy
solutions.

We now investigate the local convergence properties in some more detail. Since SNF-L1
terminates the CG iteration quite early, we also consider SNF-Lla, a version of SNF-L1
where the stopping criteria for the inner CG solves are adaptively adjusted to enforce more
accurate solves in the final phase of convergence. To achieve this, SNF-L1a applies a simple
adaptive update rule for the CG parameters. If the residual |FA*(2*)| falls below a certain
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7. Applications and numerical results

tolerance we adjust CG-maxit and CG-tol appropriately and solve the Newton system with
higher accuracy. For SpaRSA, FPC-AS, SNF-L1 and SNF-L1a, we investigate the change
of the current residual ||F!(z*)|| depending on the number of A- and A'-calls (Figure
and depending on the total number of iterations (Figure . We perform a single trial and
consider dynamic ranges d € {20,40,60,80}. The results are summarized in the Figures
and [(.3]

The following effects can be observed. Independently of the dynamic range, both SNF-L1
and SNF-L1la provide competitive results and generally need much less A- and AT -calls than
SpaRSA or FPC-AS to compute very accurate solutions. Figure shows that the adaptive
choice of the CG parameters results in local superlinear convergence of SNF-L1a, as predicted
by the theory. Due to the coarse accuracy used in SNF-L1, superlinear convergence cannot be
expected here and thus our original SNF-L1 implementation converges at a (good) linear rate.
We also see that adaptivity as implemented in SNF-L1a can be a means for further increasing
the performance of SNF-L1, since in the considered cases, SNF-Lla generally requires even
less A- and AT-calls than SNF-L1, although the system is solved with much higher
accuracy. Thus, Figures [7.2] and [7.3] clearly confirm the potential and the efficiency of the
SNF-L1 method in the high precision regime.

We conclude this section with a short discussion of the filter. Typically, in consistency
with our observations regarding SNF-L1’s rate of convergence, only few Newton iterates are
rejected by the filter and the acceptance condition. To be more precise, our experiments and
the results in Table indicate that unacceptable Newton iterations mainly occur among
trials with high dynamic range d = 80 dB and at low precision (see also Figure. Moreover,
as shown in Table the additional adaptive scheme for the step size parameter 75 further
stabilizes the SNF-L1 method and reduces the overall number of proximal gradient steps and
A- or AT-calls. Hence, in the convex quadratic example, our numerical results demonstrate
that the SNF-L1 method finally turns into a locally fast converging, pure semismooth Newton
method.

7.2. Nonconvex /1-problems with Student’s-t penalty

One particular strength of Algorithm 2 is that it is applicable to nonconvex problems. To
evaluate the semismooth Newton method for nonconvex problems, we replace the Gaussian
noise by errors with a Student’s-t distribution, which is heavy-tailed and thus generates
more outliers. It is known that least squares functionals || Az — b||? are tailored to Gaussian
noise, while a suitable misfit measure for data contaminated by Student’s-t errors is given

by [4, 2, 13] Y, w([Az — b];) where

v:R—=>R, 9(y) ::log<1+y:)
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7.2. Nonconvex {1-problems with Student’s-t penalty

Table 7.7.: Total number of A- and AT-calls #A,¢ and # A, averaged over 10 independent
runs with dynamic range 20 dB using the stopping criteria (Crel) and (Cyat).-

Method e:10° e:107! €:1072 e:107% €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 354 354 906 906 1280 1280 1888 1888 2323 2323

FPD 716 574 3283 1869 5452 4174 DNC 17087  DNC DNC

FPD-BB, 554 1996 2372 2082 4337 4327 DNC DNC DNC DNC
FPD-BB, 752 631 3411 1648 6371 6106 DNC DNC DNC DNC

Table 7.8.: Total number of A- and A -calls # A, and # Apat averaged over 10 independent
runs with dynamic range 40 dB using the stopping criteria (Crell) and (Cpa)-

Method e:10° e:1071 €:1072 €:107% €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 1298 1298 2651 2651 3134 3134 3956 3956 4545 4545

FPD 4365 4788 9731 7785 14255 11495 DNC DNC DNC DNC

FPD-BB, 2252 3405 4369 3608 9070 7800 DNC DNC DNC DNC
FPD-BB, 448 703 1700 852 6528 5249 DNC DNC DNC DNC

is the Student’s-t penalty function with the degrees of freedom parameter v > 0 (see Figure
(a)). The function v is nonconvexr and we consider the following nonconvex problem:

(7.2.1) min 3 w([Az — 8;) + plle|-
i=1

rEeR™

For more information about robust inversion, Student’s-t approaches and related applications
we refer to [2, [I] and the references therein.

In the following, we discuss the behavior of Algorithm 2 for the nonconvex problem ([7.2.1)).
Based on an extension of the test framework of the convex example we compare the globalized
semismooth Newton method with variants of Algorithm 1 and FPC-BB.

7.2.1. Algorithms and implementational details

In this section we list implementational details of the semismooth Newton method for (7.2.1))
and describe the setting of the generalized fixed point descent (FPD) methods.

Semismooth Newton Method (SNF-T). We will refer to the Student’s-t version of
Algorithm 2 as SNF-T. SNF-T inherits its structure and concepts from SNF-L1 (section
[7.1.1). As SNF-Lla, it implements an adaptive strategy for the CG parameters. Thus, the
system is solved with higher accuracy when the current residual is small enough. The
parameters of the additional filter conditions (4.2.18) and are set to oy = ag = 5,
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Figure 7.4.: In subfigure (a), a plot of the Gaussian (--) and the Student’s-t penalty function
(-) with v = 0.25 is shown. Subfigure (b) shows the convergence of the residual
with respect to the number of iterations. The left figure contains the results for
a single run with 20 dB; on the right, dynamic range d = 40 dB is considered.

a3z = 107! and n = 0.8. Due to the different scale invariance properties, continuation is not
performed with respect to the regularization parameter p but for the degree of freedom v,
i.e., u is kept fixed throughout the iteration process. We used the same update formula as
in the convex case except the damping factor C{™ was set to

Cg = min {01, 2.2 ([bllo/?) 5

and O was set to 20. Finally, 2° = ATb was used as initial point and we worked with
fixed parameter matrices of the form A = 777 and 7 = 6. All remaining parameters were

not changed.

Fixed point descent methods (FPD). FPD is an implementation of the globally con-
vergent proximal gradient method, Algorithm 1. The parameters for the quasi-Armijo con-
dition were set to 3 = 0.1, v = 0.1 and we used A = 7711, 7 = 6. Furthermore, we tested
two variants of FPD that are based on FPC-BB. FPD-BB,, uses a continuation strategy
for p and the quasi-Armijo condition is substituted by a Barzilai-Borwein framework with a
nonmonotone linesearch technique. The continuation scheme and the choice of the BB steps
and parameters were adopted from FPC-BB. As SNF-T, FPD-BB, applies a continuation
to the degree of freedom parameter v. Again the scheme and concept of FPC-BB was used
except the initial value vy was set to max{0.1 - ||b||oc, #}. All methods were initialized with
20 =ATb.
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Figure 7.5.: Change of the residual with respect to the total number of A- and A" -calls.

7.2.2. Numerical comparison

Our comparison is based on the test framework of the convex example. More precisely, the
reference signal z € R”, n = 5122, and the matrix A € R™ " m = n/8, are generated as
specified in section and the input data b € R™ is obtained by adding Student’s-t noise
with degree of freedom 4, that is rescaled by 0.1, to AZ. Now, as described in several
reference solutions are computed by SNF-T and the stopping criteria of the other methods

are changed to (Cyel) and , respectively.

All algorithms were run with 4 = 0.07 and degree of freedom v = 0.25. We consider
dynamic range d € {20,40} and tolerances ¢ € {1,107!,1072,10~%,107%}. Again we report
DNC, when convergence is not reached after a total number of # A, = 20000 or #Ap.x =
20000 A-calls. Table[7.7 and [7-8|contain the mean values of # A, and # Apat over 10 random
trials; the best result from each column is shaded. The corresponding total CPU times can
be found in Table [A25] and [A-6] in the appendix.

At first, we observe that, due to the additional nonconvexity all algorithms need a relatively
high number of A- and AT-calls to show convergence. As in the convex case, the Barzilai-
Borwein methods FPD-BB,, and FPD-BB, generally outperform their regular FPD version
and converge faster. The continuation strategy of FPD-BB, proves to be very efficient at
low precision and at larger dynamic range. However, in the 20 dB case, FPD and FPD-BB,,
achieve better results and converge faster than FPD-BB, with respect to the CPU time.
Compared to SNF-T, FPD and FPD-BB, degrade much faster as the stopping tolerance
is reduced, requiring about 8-30 times more iterations. Surprisingly, none of the other
algorithms converged at the high precision examples.

The results in Table [7.7] and [7.8] demonstrate that SNF-T possesses similar convergence
properties as SNF-L1 and is, again, especially well-suited for recovering high precision so-
lutions. Figure (b) and strengthen this impression and illustrate that transition to
local superlinear convergence is also achieved in the nonconvex setting. As in the convex
example only few Newton iterates are rejected by the filter and consequently, due to the
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7. Applications and numerical results

rare update of ¢, we observed that the majority of the accepted Newton iterations satisfies
the growth condition (4.2.19)). The remaining iterates, which satisfy condition (4.2.18]), are
usually performed at the beginning or the end of a trial or after a proximal gradient step.

7.3. Group sparse least squares problems

In this paragraph, we evaluate the semismooth Newton method on convex group sparse
problems of the following type

S

. 1

(GSy) min f(z) ) llzglles  fa) = llAz - bl3.
i=1

As usual, we assume that the different groups g; C {1,...,n}, i = 1,...,s, form a disjoint
partitioning of the set {1,...,n}. Our numerical comparison will be again based on the test
framework presented in [I3] and section A detailed description of the construction of
the subsampled data vector b € R™, the measurement matrix A € R™*™, and of the test
setting can be found in section [7.3.3]

In contrast to the ¢1-norm regularization, the group sparse penalty term

(7.3.1) pl@) =) llagll
i=1

allows to model and add information about the sparsity pattern of the solutions of problem
. In particular, any solution £ € R™ of the latter least squares problem will possess
a certain group sparse structure, i.e., the components of Z are clustered in different groups
that are either zero or nonzero. The minimization problem is also known as the
group lasso problem [262] and is a specific example of a problem with so-called joint sparsity
constraints |70} 235, B5]. Its effectiveness has been proven in various applications such as
variable selection [262, [IT5], machine and multiple kernel learning [7, [I15], or gene selection
and logistic regression [144].

In the following, we compare Algorithm 2 with several state-of-the-art methods that were
already considered in the convex f1-example. For instance, we will also investigate a variant
of the SPGL1 method that solves a constrained version of the problem (GS,):

S
(GSs) min |zgll2 s.t. ||[Az —bl]2 < 0.
reR™ 4
=1
By reusing the basic constructions of the ¢1-comparison, we build a similar, high dimensional
test framework for group sparse problems. We first start with a more detailed discussion of

the implementation of the semismooth Newton method for problem (GS,|).
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7.3. Group sparse least squares problems

7.3.1. Algorithmic description

We will refer to the group sparse version of Algorithm 2 as SNF-GS. In the following, we
describe the basic components of the SNF-GS method.

A-strategy. As in the ¢;-case, we will work with simple parameter matrices of the form
A = Tk_lf, Tk € [Tm, M), k> 1,

where the variable 7y is again chosen to estimate the inverse Lipschitz constant of the gradient
Vf(z) = AT(Az —b) and is updated according to (7.1.1)). The initial value is set to 79 = 500
and we used 7, = 1073, 7y = 10%.

Newton system. As described in Example [4.2.18 the nonsmooth residual function F**
can be computed group-wise via

FAe(zh), =7,V f(ab),, + PBH'HQ(O’W]C)(a:; — VIR, Vi=1,..s.
Moreover, setting u := 2*—7,V f (z*), we will work with the following generalized derivatives
M(z*) .= 7,(I — D(z%)) - ATA + D(z%),

where the block-structured matrix D(xk) is uniquely determined by

I if ||uk ||2 < pr
k k Gi - ’
D(x )[Qigj] =0, D(=z )[gigi] = { BTk [ _ BTk ok

Tk T2~ Tk, I3 %o

(ug) T f [lug lla > pm,

for all 1 < 4,5 < s and ¢ # j. As usual, the most expensive part of the algorithm is the
computation of the next Newton step s¥ which again involves finding a solution of the linear
system of equations

(7.3.2) M(2*)s% = —F™ % (zF).

Let us emphasize that the matrix M (2*) is never build explicitly in our implementation.
Instead, we utilize an iterative method which only requires matrix-vector multiplications to
compute an approximate solution of the latter system. Here, in contrast to the SNF-L1
method, we directly solve the full and nonsymmetric system with a GMRES method.
Let us note that by introducing the index sets A = A(zF) = {i : ||u’;1||2 < w7} and
T =TI(a*) := {i : [ul.|l2 > p7i} and using a group-wise block elimination, the system (7.3.2)
can again be reduced to a symmetric and smaller system of equations that, for instance,
can be solved with a conjugate gradient method. However, in our numerical experiments,
we observed that the CG method needs a relatively large number of iterations to achieve
convergence. Hence, we implemented a GMRES-based strategy to solve the system .
Furthermore and similar to the f;-case, we also consider the regularized and numerically
more robust formulation

[M(2*) + pI]s" = —FA(z*),  p= p(a®) = ||F™(@")].
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Figure 7.6.: Construction of the group pattern. Each image visualizes one basic group con-
figuration for a 8 x 8 signal. Larger group patterns are generated by combining
the depicted group blocks and randomly assigning the different groups.
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Figure 7.7.: Visualization of the experimental data. In subfigure (a), the group pattern of a
512 x 512 reference signal z* with a total of 4096 groups is shown. Subfigure (b)
illustrates the corresponding sparsity pattern of x*. The generated signal has
dynamic range 20 dB and 409 nonzero groups. In subfigure (¢), a reconstruction
of a noisy and undersampled version of the signal z* is presented (we took 12.5%
random discrete cosine measurements and added Gaussian noise with zero mean
and variance o = 0.1).

As in the f1-example, we will count the number of applications of the matrices A and
AT and use this number as a measure of efficiency and to compare the different algorithms.
The terms A-call, AT-call, and C4 will again denote an application of the matrices A or
AT and will specify the complexity of an A- or A'-call, respectively. Since each inner step
of the GMRES solver requires two A-calls, the complexity of a single Newton iteration of
the SNF-GS method is given by 2C4 + 2C4 - gmres-iter (two A-calls are used to calculate
FMe(2%)). To reduce the overall number of A-calls, we implemented an adaptive scheme
that controls the maximum number of GMRES iterations and the accuracy of the GMRES
method. Specifically, at the beginning, we set the relative tolerance GMRES-tol to 0.2 and
the maximum number of iterations GMRES-max to 10. If the current residual ||F* (zF)]|
falls below a certain tolerance, we adjust GMRES-tol and GMRES-max and solve the system

(7.3.2) with higher accuracy.

Continuation. Motivated by our previous experiments and results, we implemented a
simple continuation framework for the regularization parameter u. Here, we choose g =
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7.3. Group sparse least squares problems

Table 7.9.: Total number of A- and AT-calls #A,c and # A, averaged over 10 independent
runs with dynamic range 20 dB and noise level ¢ = 0.1.

Method e:109 e:1071 €:1072 €:107% €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-GS 109 109 149 149 199 199 289 289 289 289
ADMM 211 68 387 240 757 450 1904 888 1904 1330
FISTA 130 68 294 202 696 568 3353 2160 3353 4716
FPD-BB 131 65 203 159 320 279 630 519 630 741
PD 87 91 118 148 190 259 1688 1252 1688 6795
SpaRSA 389 388 415 409 488 480 736 651 736 853
SPG-GS 84 70 129 114 213 194 DNC DNC DNC DNC

0.05 - ||ATb||oo and use the following update formula
pj+1 = max{vy;u;, 1u}, (0,1] 3 v; = min{0.01 - iter, 0.8},

where iter denotes the current iteration number. Thus, in contrast to SNF-L1, the damping
factor 7; increases linearly as the total number of iterations increases. Again, the current
regularization parameter p; will be reduced whenever the number of inner iterations of a

single continuation phase is larger than CSO% = 10.

Filter and globalization. In our numerical tests, we experienced that the implemented
continuation scheme and the adaptive step size strategy ensure convergence of semismooth
Newton method even without the filter globalization. This is not completely surprising since
a similar behavior can also be observed for the ¢;-problems in section see, e.g., Table
Nevertheless, we integrated the filter mechanism as a safeguard in our implementation.
Here, we again choose a filter function 6 : R® — R? of the type with the following
specifications:

yr=10" I;=g;, Vj=1{1,..s}.

Hence, in this case, the filter function 6 does also take account of the group-wise structure
of the natural residual Fx.

Initial point and stopping criterion. As in the /;-case, we choose 2" = 0 as default
initial point and terminate SNF-GS if the current residual || F*(2¥)]|| is smaller than a given
tolerance.

7.3.2. State-of-the-art methods

For our numerical comparison, we will mainly focus on methods that were already considered
in the ¢;-test framework and that can also handle group sparse problems of the form (GS,,)
or (GS,)). In particular, we will reuse FISTA, SpaRSA, SPGL1, and the primal dual method
for our experiments. (Here, we refer to the group sparse version of SPGL1 as SPG-GS).
For each approach, additional code for the computation of the objective function and of the
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Table 7.10.: Total number of A- and A "-calls # A, and #Ap.; averaged over 10 independent
runs with dynamic range 20 dB and noise level & = 0.01.

Method e:10° g:107t e:1072 e:1074 €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-GS 209 209 283 283 402 402 561 561 686 686
ADMM 133 29 366 147 815 347 1495 799 1813 1258
FISTA 302 16 992 270 3722 824 DNC 6342 DNC DNC
FPD-BB 518 93 1401 195 2465 1063 3955 3020 4647 5000
PD 171 26 271 261 363 360 451 476 485 567
SpaRSA 445 452 613 473 1251 593 2220 1670 2730 3066
SPG-GS 142 137 440 184 1355 340 DNC DNC DNC DNC

group sparse proximity operator is provided. Moreover, we also use the same modifications
and parameter settings as specified in section

Although SpaRSA’s continuation scheme has been developed for ¢1-problems, it also led to
a significant speedup in the group sparse case. Thus, in our tests, SpaRSA is run with contin-
uation and all continuation parameters were set to default except the number of continuation
steps was set to 40 and the initial regularization parameter pg was changed to

po = max [[AT0]g o
1=1,...,s

=1,..,

In the following, we derive an alternating direction method for the constrained problem
(GS,)) and briefly describe a variant of the FPC-BB algorithm for the group sparse least-

squares problem (GS,)).

Alternating Direction Method of Multipliers (ADMM). In [6I], Deng et al. present
and provide an extension of the YALL1 package for group sparse problems. Unfortunately,
their algorithmic framework and their online code is not directly applicable to the problems
considered in this section. Thus, we implemented our own version of ADMM to solve the
constrained problem . Next, we give an overview of ADMM and of our proposed ver-
sion; for more general information about ADMM, see, e.g., [91) [71]. The classical alternating
direction method goes back to Glowinski and Marrocco [92] and Gabay and Mercier [89] and
is designed for problems of the form

min ¢(z) +¢¥(y) s.t. Az + By =c,

m7y
where ¢ : R — (—o00,400] and ¢ : R™ — (—o0,+00| are convex, proper, and lower
semicontinuous functions and A € R>*™ B € R™>*™ ¢ € R’ are given. The constraint
Az + By = c couples the variables x and y and usually arises from a reformulation of a
general convex composite problem. The basic idea of the alternating direction method is to
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7.3. Group sparse least squares problems

Table 7.11.: Total number of A- and A -calls # A, and #Apae averaged over 10 independent
runs with dynamic range 40 dB and noise level & = 0.1.

Method e:10° e:1071 €:1072 e:1074 €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-GS 257 257 386 386 453 453 556 556 668 668
ADMM 377 192 778 380 1130 5H5 1416 901 1807 1247
FISTA 793 293 3028 876 5528 2146 9220 8276 15117  DNC
FPD-BB 1016 233 1728 903 2335 1489 2832 2672 DNC 3844
PD 249 253 333 312 403 383 510 648 729 1156
SpaRSA 516 478 982 530 1435 844 1811 1732 2337 2620
SPG-GS 283 147 812 275 1266 648 DNC DNC DNC DNC

perform a successive and alternating minimization of the associated augmented Lagrangian
g
L(w,y,A) = p(@) + ¥(y) + (N, Az + By — ) + 5 [|Az + By — c[|3,

where X\ € R denotes the Lagrange multiplier and 3 > 0 is a penalty parameter. Now, for
the group sparse problem (GS,)), we introduce the auxiliary variables z = x and ¢t = 0. This
leads to the following formulation:

S
min [LZ; lzgll2 s.t. (Az—b,t)cepi| |2, z—2=0, t—oc=0.
1=

In our implementation, we also use different penalty parameters for the constraints x = z
and t = o, i.e., setting y = (2,t) € R" " and A = (\,, \s) € R""! we consider the Lagrangian

B B2
L(..3) 1= ola) + 0(0) + Ay~ @To)T) + D = 23+ 2t - 02,
where ¥(y) = 1 (2,t) = tepi|.||, (A% — b, ) and ¢ is the group sparse penalty term as defined
in (7.3.1)). In this case, the update steps of the alternating direction method are given by

2"t = argmin L(z, 4%, \F) = proxgll(zk + B7IAE,

TzER™
k
yk+1 = arg min E(:Uk+1,y, )\k) _ prox{f ((:E > B B_l)\k> . B= (51[ 0> ’
yERn+1 g 0 52

)\kJrl _ )\k + ’yB(ka . ((karl)T’U)T)‘

Clearly, the most complex part of each ADMM iteration is the computation of the proximity
operator proxg. However, if the matrix A is an orthogonal projector and satisfies AAT = I,
then Example 3.2.9| implies that proxf has an explicit representation. In this situation, the

total complexity of a single ADMM iteration reduces to two A-calls. In our implementation,
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Table 7.12.: Total number of A- and A "-calls # A, and #Ap.; averaged over 10 independent
runs with dynamic range 40 dB and noise level & = 0.01.

Method e:10° g:107t e:1072 e:1074 €:1076
#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat
SNF-GS 401 401 476 476 788 788 1024 1024 1224 1224
ADMM 307 179 535 383 835 568 1468 936 1695 1303
FISTA 2282 165 5255 1178 12928 3439 DNC DNC DNC DNC
FPD-BB 4733 308 7885 404 11291 4986 DNC 13372 DNC DNC
PD 656 224 806 783 946 974 1179 1244 1254 1448
SpaRSA 528 518 2018 535 5583 978 12708 7738 DNC 15942
SPG-GS 337 297 2876 336 7200 665 14869 10166  DNC DNC

we use the parameters v = 1.618, #; = 0.3/mean(b), B2 = 3/mean(b) and set 2° = 0 and
A0 = 0. Furthermore, no continuation was used for the penalty parameters 31 and fs.

Fixed point descent method (FPD-BB). As in the nonconvex ¢;-test framework,
FPD-BB is an implementation of the globally convergent, proximal gradient scheme, Algo-
rithm 1. Similar to FPC-BB, we use Barzilai-Borwein step sizes to build the parameter ma-
trices Ay = 7, 1T and the quasi-Armijo condition is substituted by a nonmonotone line search
technique. Again, we apply a simple continuation strategy to adapt the parameter u and to
accelerate convergence. More specifically, we set g = 0.05- || AT b||« and after a fixed number
of steps the new regularization parameter p;1; is calculated via pj11 = max{0.7 - p;, pu}.

7.3.3. Numerical comparison

Again, our test framework is based on the NESTA package [13] and on the experiments in
section At first, we generate a random group pattern by combinin