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Abstract

In this thesis, we develop and investigate numerical methods for solving nonsmooth op-
timization problems and generalized variational inequalities. A proximal-type fixed point
equation representing the optimality or stationarity conditions forms the basis of the dif-
ferent approaches. The algorithmic framework we focus on uses semismooth Newton steps
for the fixed point equation to enhance an underlying globally convergent descent method.
We present both global and local convergence results and derive an abstract second order
theory that can be used to characterize and to verify the conditions for local convergence.
We conclude with numerical examples demonstrating the efficiency of the proposed methods.

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung und Untersuchung numerischer Verfahren
zur Lösung nichtglatter Probleme und verallgemeinerter Variationsungleichungen. Die ver-
schiedenen Verfahrensansätze basieren auf einer Reformulierung der Optimalitäts- oder Sta-
tionaritätsbedingungen als proximale Fixpunktgleichung. Im Fokus steht die Verwendung
eines semiglatten Newton-Verfahrens, welches ein zugrunde liegendes, global konvergentes
Abstiegsverfahren erweitern und beschleunigen soll. Globale und lokale Konvergenzresultate
werden präsentiert und eine abstrakte Optimalitätstheorie zweiter Ordnung wird hergeleitet,
die zur Sicherstellung und Überprüfung schneller, lokaler Konvergenz angewendet werden
kann. Numerische Experimente belegen die Effektivität der vorgestellten Verfahren.
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Notations

Sets and operations on sets:

∅ the empty set
N set of natural numbers
R set of real numbers
R+, R++ the sets of nonnegative and positive real numbers
(−∞,+∞], [−∞,+∞] the sets of real extended numbers
Bε(x) open ball with radius ε > 0 around x w.r.t. the Euclidean norm
B|||·|||(x, ε) open ball with radius ε > 0 around x w.r.t. the norm |||·|||,

B|||·|||(x, ε) := {y : |||y − x||| < ε}

aff S affine hull of the set S ⊂ Rn

conv S convex hull of S
lin S lineality space of S
sp S, sp{x} linear span of S and {x}
S◦ polar cone of S
S⊥, {x}⊥ orthogonal complement of S and {x}
cl S, S̄ closure of S
int S interior of S
ri S relative interior of S, i.e.,

ri S := {x ∈ S : ∃ ε > 0 such that Bε(x) ∩ aff S ⊂ S}

RS(x) radial cone of S at x ∈ Rn

TS(x) contingent tangent cone of S at x
T iS(x) inner tangent cone of S at x
NS(x) normal cone of the set S

Matrices:

Sn set of symmetric, real n× n matrices
Sn+ set of symmetric, real, positive semidefinite n× n matrices
Sn++ set of symmetric, real, and positive definite n× n matrices
λmin(M), λmax(M) smallest and largest eigenvalue of a symmetric matrix M
κ(M) condition number of a matrix M
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M[IJ ] submatrix of a matrix M ∈ Rm×n w.r.t. the index sets
I ⊂ {1, ...,m}, J ⊂ {1, ...,m}

M[i·], M[·j] i-th row and j-th column of M
diag(x) diagonal matrix with entries diag(x)[ii] = xi, i = 1, ..., n

sym(M) symmetric part of M , i.e., sym(M) = 1
2(M +M>)

Operations on vectors and matrices:

〈·, ·〉 Euclidean inner product, i.e., 〈x, y〉 =
∑n

i=1 xiyi

‖ · ‖ Euclidean norm, i.e., ‖x‖2 = 〈x, x〉
dist(x, S) distance between the point x and the set S, i.e.,

dist(x, S) = infy∈S ‖x− y‖
〈·, ·〉Λ, ‖ · ‖Λ, induced Λ-scalar product and Λ-norm; for Λ ∈ Sn++ it holds

〈x, y〉Λ := 〈x,Λy〉, ‖x‖Λ :=
√
〈x, x〉Λ

tr(·) trace of a square matrix
〈·, ·〉F , ‖ · ‖F , Frobenius inner product and Frobenius-norm of a matrix (we

use 〈·, ·〉 ≡ 〈·, ·〉F , ‖ · ‖ ≡ ‖ · ‖F if the context is clear)
�, � partial ordering on the space Sn, i.e.,

B � A :⇔ B −A ∈ Sn++, B � A :⇔ B −A ∈ Sn+
� Hadamard product, i.e., (x� y)i = xi · yi
� component-wise division, i.e., (x� y)i = xi/yi

In the following, let ϕ : Rn → [−∞,+∞], f : Rn → R, and F : Rn → Rm be arbitrary
functions.

Functions and operations on functions:

dom ϕ effective domain of the function ϕ
epi ϕ epigraph of ϕ
levα ϕ lower level set of ϕ at level α ∈ R
lin ϕ lineality space of ϕ
gra Φ graph of a multifunction Φ : Rn ⇒ Rm, i.e.,

gra Φ := {(x, y) ∈ Rn × Rm : y ∈ Φ(x)}

F−1(·) the inverse multifunction F−1 : Rm ⇒ Rn,
F−1(y) := {x ∈ Rn : F (x) = y}

ιS(·) indicator function of the set S
σS(·) support function of S
proxΛ

ϕ(·) proximity operator of ϕ with parameter matrix Λ ∈ Sn++

envΛ
ϕ(·) Moreau envelope of ϕ with parameter matrix Λ ∈ Sn++

PΛ
S (x) projection of x onto the set S w.r.t. the Λ-norm
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Derivatives and subdifferentials:

ϕ′−(x;h), ϕ′+(x;h) lower and upper directional derivatives of ϕ at x in the
direction h

ϕ′(x;h), F ′(x;h) directional derivate of ϕ, F at x in the direction h

ϕ↓−(x;h), ϕ↓+(x;h) lower and upper directional epiderivatives of ϕ at x in the
direction h

ϕ↓(x;h) directional epiderivative of ϕ at x in the direction h

ϕ′′−(x;h,w),
ϕ′′+(x;h,w)

lower and upper (parabolic) second order directional derivatives
of ϕ at x in the directions h,w

ϕ′′(x;h,w) (parabolic) second order directional derivative of ϕ at x in the
directions h,w

ϕ↓↓− (x;h,w),
ϕ↓↓+ (x;h,w)

lower and upper (parabolic) second order directional
epiderivatives of ϕ at x in the directions h,w

ϕ↓↓(x;h,w) (parabolic) second order directional epiderivative of ϕ at x in
the directions h,w

d2ϕ(x|h)(w) second order subderivative of ϕ at x relative to h in the
direction w

∇f(x), ∇2f(x) the gradient and the Hessian of f at x
DF (x), D2F (x) first and second order Fréchet derivative of F at x; for h ∈ Rn it

holds D2F (x)[h, h] ∈ Rm and
D2F (x)[h, h] = (h>∇2F1(x)h, ..., h>∇2Fm(x)h)>

∂BF (x) Bouligand subdifferential of F at x
∂F (x) Clarke subdifferential of F at x
∂CF (x) C-subdifferential of F at x
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1. Introduction

In this thesis, we consider and investigate efficient numerical algorithms for solving general
nonsmooth optimization problems of the form

(P) min
x∈Rn

f(x) + ϕ(x),

where f : Rn → R is a twice continuously differentiable, possibly nonconvex function and
ϕ : Rn → (−∞,+∞] is a convex, proper, and lower semicontinuous mapping.

The algorithmic framework we focus on is primarily based on the idea to use semismooth
Newton steps for a proximal-type reformulation of the corresponding first order optimality
conditions of the problem (P),

(E) FΛ(x) = x− proxΛ
ϕ(x− Λ−1∇f(x)) = 0, Λ ∈ Sn++,

to augment and accelerate an underlying globally convergent descent method. Unlike other
or more common globalization strategies, we utilize a multidimensional filter mechanism to
monitor the acceptance of the semismooth Newton steps and to achieve both global and local
fast convergence. The presented approach can be naturally extended to solve generalized
variational inequalities of the type

find x ∈ G−1(dom ϕ) such that

(Pvip) 〈F (x), y −G(x)〉+ ϕ(y)− ϕ(G(x)) ≥ 0, ∀ y ∈ Rn,

where the functions F : Rn → Rn and G : Rn → Rn are typically supposed to be continuously
differentiable on an open set that contains the domain G−1(dom ϕ). In one of its simplest
forms,

F (x) := ∇f(x), G(x) := x,

the generalized variational inequality (Pvip) coincides with an alternative, variational-based
representation of the optimality conditions of problem (P) illustrating the deep connection
between the two problems (P) and (Pvip).

In the following work, we provide a detailed convergence theory for the different described
methods and for both the convex composite problem (P) and the generalized variational
inequality problem (Pvip). In contrast to many other convergence analyses, our theory will
cover both convex and nonconvex situations. Moreover, to the best of our knowledge, conver-
gence results for semismooth Newton-type methods and for generalized variational inequalites
(Pvip) seem to be only available in the context of classical variational inequalities, where the
function G again corresponds to the identity mapping and the nonsmooth mapping ϕ is cho-
sen as a specific indicator function of a convex, nonempty, and closed set [121, 120, 227, 76].

1



1. Introduction

Besides, a strong emphasis is also put on the investigation and derivation of second order
conditions that allow a rather elegant verification and characterization of the conditions for
local fast convergence and that can be used to analyze the behavior and local structure of
stationary points and of the minimization problem (P). More specifically, by focusing on the
class of so-called decomposable problems, we derive a new representation of the curvature
that is induced by the nonsmooth function ϕ and show that it can be intrinsically described
by the Fréchet derivative of the proximity operator proxΛ

ϕ. We show that this abstract second
order framework can be applied to a large variety of nonsmooth optimization problems and
that it can be systematically extended to more general classes of composite problems.

In recent years, composite-type problems of the form (P) that consist of the sum of a
differentiable and a nonsmooth, but often simpler function have become a quite popular
and ubiquitous tool to model various practical problems and applications, such as, e.g.,
signal and image processing problems, matrix completion problems, or feature selection and
classification problems in machine learning. Typically, the smooth function f is utilized as a
loss function or a data-fitting term to express the difference between estimated values of data
and given measurements. On the other hand, the nonsmooth function ϕ is often chosen as a
highly specialized regularization term to induce a certain desired structure on the iterates of
a method and on the solutions of the problem (P). In particular, this is the case for, e.g., `1-,
group sparse, or nuclear norm regularizations where a particularly sparse or parsimonious
representation of the data is sought. In the following, we provide several practical examples
demonstrating the broad conceptual applicability and importance of the problem (P).

Compressive Sensing and `1-minimization. In the last decade, there has been a consider-
able interest in `1-regularized minimization problems of the form

min
x∈Rn

f(x) + µ ‖x‖1,

which can be primarily traced back to the sparsity promoting properties of the `1-norm. The
remarkably universal role and the computational attractiveness of sparse solutions stems from
the fact that in many applications, such as signal or image processing, there exist canonical
sparse representations of the relevant data. In the convex quadratic case f(x) := 1

2‖Ax−b‖
2
2,

the `1-problem reduces to an `1-regularized least squares problem that is closely related to
the so-called basis pursuit problem:

min
x∈Rn

‖x‖1 s. t. Ax = b.

It is known that the basis pursuit problem can be interpreted as a convex relaxation of the
NP-hard problem of finding the sparsest solution of the (in general underdetermined) system
Ax = b:

min
x∈Rn

‖x‖0 s. t. Ax = b.

Here, the `0-quasi norm counts the number of nonzeros in x, i.e., ‖x‖0 := |{i : xi 6= 0}|. Under
appropriate assumptions on the matrix A and on the sparsity of a solution x̄, the solutions of
the latter problems coincide and the computationally more tractable `1-basis pursuit problem
can be used to reconstruct the signal or solution x̄ from far less than n measurements. This

2



fundamental principle is also known as compressed sensing or compressive sensing. Details
and further information can be found in Candès, Romberg, Tao [35, 36, 37] and Donoho [66].
Compressive sensing significantly extended the class of existing data and signal acquisition
methods and has been used in a broad variety of fields, such as compressive imaging [69,
248], magnetic resonance and computed tomography imaging [141, 142], seismics [137], or
communication [9]. Other recent applications comprise logistic regression [170, 123, 221] or
Laplacian interpolation-based image compression [111, 47].

Group and joint sparsity. In contrast to the `1-regularization, group or joint sparse penalty
terms allow to incorporate and utilize more specific information about the structure of the
sparsity pattern of a solution. In particular, not only single components of a solution x̄ are
required to be zero, but whole groups and clusters of components can be modeled to be zero.
The basic `2-`1 group sparse problem can be written in the form

min
x∈Rn

f(x) + µ
s∑
i=1

‖xgi‖2,

where the groups gi ⊂ {1, ..., n} are usually chosen as a disjoint partitioning of the set
{1, ..., n} but are also allowed to overlap in certain situations. Additionally, if the smooth
loss function f is a quadratic mapping, then the latter problem is referred to as the group
Lasso [262]. This specific type of problem has been used extensively in statistics and ma-
chine learning [262, 7, 115], or biomedical applications [144, 166] throughout the last years.
Furthermore, if the optimization variable is a matrix and if the groups gi, i = 1, ..., s, corre-
spond to the different rows of the matrix variable, then the group sparse problem is called
multiple measurement vector (MMV) problem [59, 143, 45, 230, 243]. Let us note that for
MMV problems other norm constellations or more general group penalizations have been
considered in the literature, see [85, 230, 116]. In infinite dimensions, a similar problem was
analyzed by Herzog et al. [106, 39] in an optimal control setting. Here, a directional sparsity
term was applied to obtain controls with a striped sparsity pattern.

Other convex composite problems arise in the context of image deconvolution and total
variation minimization [209, 171, 41, 249, 259], semidefinite programming, or recommender
systems and low rank matrix completion [34, 125, 33, 38, 201]. Of course, our brief discussion
is rather incomplete; for a more detailed overview of convex composite problems and different
nonsmooth penalty terms, we refer to Bach et al. [6]. At this point, let us also highlight that
most of the mentioned problems are large scale.

Related work

The steadily growing interest in composite objective functions and nonsmooth optimization
problems of the form (P) has initiated the development and investigation of many different,
numerical methods. Their applicability ranges from very general settings to highly specific
problem formulations, where the functions f and ϕ have a fixed form. Moreover and in
contrast to our proposed globalized semismooth Newton method, a large class of these algo-
rithms is centered on the usage of first order gradient-based information and a strong focus
so far has been on the case where the mapping f is convex. In the following paragraph, we

3



1. Introduction

give a brief overview of several approaches that can be used to solve the general nonsmooth
optimization problem (P).

First, the optimality condition (E) immediately leads to the simple and basic fixed point
iteration scheme

(Fp) xk+1 = proxΛ
ϕ(xk − Λ−1∇f(xk)), k = 0, 1, ...

If the mapping f is convex and if the parameter matrix Λ ∈ Sn++ is chosen via Λ = τ−1I
for some τ > 0, then this iterative procedure is usually referred to as the classical, basic
proximal gradient or forward-backward splitting method and convergence to a fixed point can
be achieved under suitable assumptions on the step size τ and on the gradient ∇f . The
proximal gradient method forms the basis of a broad variety of approaches. In particular,
different variants and extensions of this basic method were analyzed by Combettes, Pesquet,
and Wajs in [54, 52]. Fukushima and Mine [88] studied another variant for nonconvex f and
used an additional line search technique to establish global convergence. Tseng and Yun [236]
refined and extended the theory presented in [88] and developed a general block coordinate
descent method for nonsmooth problems of the type (P) with block-separable structure. In
[200, 265], Qin et al. and Yun et al. proposed several related coordinate descent schemes for
`1- and group sparse problems. The method SpaRSA [256] uses a nonmonotone line search
technique and (adaptive) Barzilai-Borwein step sizes to accelerate the underlying proximal
gradient method. Recently, Ochs et al. [178] presented and analyzed the algorithm “iPiano”
that is an extension of the basic proximal gradient scheme for nonconvex problems. Here,
motivated by Polyak’s Heavy ball technique, a so-called inertial term is added to account
for the nonconcexity of f and to enhance the performance of the approach.

A slightly different class of algorithms utilizes two- or multi-stage schemes and extrapo-
lation steps to improve the performance of the underlying proximal gradient method. This
class includes Nesterov’s well-known accelerated gradient methods [168, 169], TwIST [19],
or the fast iterative thresholding algorithm FISTA [12]. Further methodologies comprise
variants of the alternating direction method of multipliers (ADMM) [91, 71, 93] and the
primal-dual algorithms [42, 192, 105]. While the latter algorithms can be usually applied to
more general problems where both f and ϕ may be nondifferentiable, convergence is often
only achievable under certain convexity assumptions.

Becker, Fadili, and Lee et al. [14, 129] proposed an inexact proximal Newton-type method
to solve convex problems of the form (P). The method uses the Hessian of the differentiable
function f or a suitable approximation as a parameter matrix,

Λ ≈ ∇2f(xk),

to accelerate the base algorithm (Fp). In [232], a combination of proximal Newton-type
steps and an interior point framework for constrained convex problems is considered. Here,
the parameter matrix Λ models and approximates the Hessian of an appropriately chosen
(self-concordant) barrier function. In [222] a proximal Newton-type method was used within
a stochastic framework for machine learning problems.

For a more detailed discussion of proximal-based methods we refer to the surveys [6, 53,
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184] and the references therein.

Patrinos, Stella, and Bempora [187] investigate a semismooth Newton method to solve a
forward-backward -based reformulation of the nonsmooth equation (E). The key idea is to
multiply the function FΛ with the matrix Λ(I − Λ−1∇2f(x)). The resulting function then
corresponds to the gradient of the so-called forward-backward envelope which can be used
as a merit function and to globalize the semismooth Newton method if the mapping f is
strongly convex. Although this approach is certainly based on similar algorithmic ideas, it
also significantly differs from our proposed semismooth Newton method in that its conver-
gence theory is limited to strongly convex problems. Several other and more specialized
semismooth Newton methods have been proposed in the context of `1- and matrix minimiza-
tion problems. In particular, Byrd et al. [32] present and discuss a family of semismooth
Newton methods for convex `1-regularized problems that represents different realizations of
the semismooth Newton method and incorporates block active set and orthant-based meth-
ods, respectively. In [268, 138, 117, 119, 260], exploiting the local fast convergence of the
semismooth Newton method, different inexact Newton-type approaches are investigated to
approximately solve inner subproblems of an augmented Lagrangian and a proximal point
method for semidefinite programming and nuclear norm problems.

In infinite dimensions, semismooth Newton methods have been successfully applied to a
variety of nonsmooth composite problems. For instance, Griesse and Lorenz [97] considered
a semismooth Newton method for `1-minimization in the Hilbert space `2. Stadler [225]
analyzed a local semismooth Newton method for elliptic optimal control problems with an
L1-cost functional. Moreover, Hans and Raasch [99] developed a globally convergent, damped
B-semismooth Newton method for `1-Tikhonov regularized quadratic problems. Based on the
so-called normal map, Pieper [191] investigated a globalized semismooth Newton framework
for elliptic and parabolic optimal control problems with an abstract and general regularization
term ϕ. Further applications of the local semismooth Newton method can be found, e.g., in
[65, 106].

For more details on generalized variational inequalities and on their applications, we refer
to chapter 6.

Organization and contribution

This thesis is structured as follows. In chapter 2, we provide various definitions, properties,
and concepts from convex and nonsmooth analysis that will form the mathematical basis of
our investigations. Since the nonsmooth function ϕ can be real extended valued in general
(for instance, it can be chosen as an indicator function to model convex constraints), we will
require an appropriate notion of (directional) differentiability to cope with this situation. In
particular, we will see that the classical directional derivative ϕ′(x;h) may no longer define
a lower semicontinuous mapping with respect to the considered direction h ∈ Rn and that
several important properties will not hold in such general case. Thus, a focus is set on the
introduction and investigation of so-called (directional) epiderivatives which are based on
Painlevé-Kuratowski- or Γ-convergence processes and appropriately generalize and extend
the directional derivative ϕ′(x;h). Moreover, since the mapping ϕ is usually assumed to be
convex, these epiderivatives often enjoy a rich calculus and can be connected to the common
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1. Introduction

convex subdifferential. Details can be found in section 2.4 and 2.5. Finally, we also present
basic properties of the Clarke subdifferential for vector valued functions and discuss the
concept of semismoothness.

Chapter 3 is concerned with a detailed analysis of the proximity operator proxΛ
ϕ and

summarizes its most relevant properties. While many other works concentrate on the classical
definition of the proximity operator with a fixed parameter matrix of the form

Λ = τ−1I, τ > 0,

we will consider the more general case and investigate the dependence of the proximity opera-
tor on the matrix Λ in some more detail. Since the proximity operator cannot be expected to
be semismooth in general, we also present and discuss a specific class of functions ϕ for which
semismoothness of the proximity operator proxΛ

ϕ can be guaranteed. The corresponding re-
sults were first derived by Bolte et al. [21] and are provided in section 3.3. Furthermore,
as preparation for chapter 5, we derive several second order properties which are mainly
immediate consequences of the differentiability and convexity of the Moreau envelope.

In chapter 4, we propose and analyze the globalized semismooth Newton method in detail.
At first, we introduce different equivalent first order optimality conditions and derive the
nonsmooth mapping FΛ. Then, based on [88, 236], we discuss the proximal gradient descent
method that will be used as an underlying base algorithm and analyze its global convergence
properties. Furthermore, the filter mechanism and the filter acceptance test are presented in
detail. Our main contribution in this chapter is the development of a general global and local
convergence theory for the proposed approach. In particular, we will verify that the filter
globalization guarantees global convergence in the sense that every accumulation point of a
generated sequence of iterates is a stationary point of the problem (P). Moreover, transition
to fast local convergence is shown under rather mild and standard assumptions. Here, the
main requirements are:

• Semismoothness of the proximity operator proxΛ
ϕ.

• Uniformly bounded invertibility of the generalized derivatives of the nonsmooth map-
ping FΛ in a neighborhood of an accumulation point.

• Existence of an accumulation point that is a strict local minimum and an isolated
stationary point of the problem (P).

Additionally, if the function f is convex, we will also present and investigate a simpler
globalization strategy and prove its efficiency. Let us note that chapter 4 is essentially based
on Milzarek and Ulbrich [157], where a similar algorithmic framework has been analyzed for
`1-regularized problems. In this thesis, we generalize and extend the results of [157], which
were established for `1-optimization problems, to the convex composite setting.

Chapter 5 is dedicated to the second order analysis of problem (P). Our overall goal in
this chapter is to rephrase the conditions for local convergence of the globalized semismooth
Newton method as suitable second order conditions. Based on an abstract and profound
second order framework developed by Bonnans, Cominetti, and Shapiro [23, 24, 27] and con-
centrating on the class of so-called decomposable problems, we derive a pair of no gap second
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order conditions that ensure isolated stationarity and local optimality of a stationary point
of (P). The concept of decomposability was first proposed by Shapiro [217] and is closely
related to the concept of cone-reducible sets in constrained optimization. The considered
class of decomposable problems comprises a large variety of interesting and important ex-
amples, such as polyhedral problems, group sparse problems, nonlinear programming, total
variation imaging, or nuclear norm-regularized problems. For more details we refer to sec-
tion 5.3. Inspired by [212], we show that the strict complementarity condition can be used
to characterize differentiability of the proximity operator proxΛ

ϕ if the underlying function
ϕ is decomposable. Furthermore, as already mentioned and as one of our main results, we
derive a new representation of the curvature induced by the nonsmooth function ϕ in terms
of the Moore-Penrose inverse of the Fréchet derivative of the proximity operator proxΛ

ϕ. This
formulation is then used to prove that the strict complementarity condition and the second
order sufficient conditions imply invertibility of all generalized derivatives of the nonsmooth
mapping FΛ at a stationary point. Finally, in section 5.5, we extend these different results
and a second order framework for more general composite problems is presented.

In chapter 6, we show that the described algorithmic prototype can also be utilized to solve
generalized variational inequalities problems of the form (Pvip). In this case, the underlying
proximal gradient method is substituted by a D-gap function-based descent method that
solves an optimization-based reformulation of the problem (Pvip). In section 6.1 and 6.2, we
briefly discuss conditions that ensure existence of a solution of problem (Pvip) and summarize
the main properties of the D-gap function and of the so-called regularized gap function.
Specifically, we derive several new stationarity results that guarantee global optimality of a
stationary point of the regularized gap or the D-gap function. Similar to chapter 4, a strong
focus is set on the development of a detailed and general convergence theory for the proposed
Newton-type method.

Finally, in chapter 7 we present extensive numerical results for the globalized semismooth
Newton method that was introduced and analyzed in chapter 4. In particular, the perfor-
mance of the method is investigated on convex and nonconvex `1-regularized least squares
problems and on group sparse optimization problems. We will focus on large scale experi-
ments where the application of the Hessian of f is only available as a matrix-free operation
and compare our algorithm with different state-of-the-art methods.
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2. Convex and nonsmooth analysis

In this chapter, we state and collect basic definitions, properties, and various concepts from
convex and nonsmooth analysis that will be used repeatedly throughout this thesis.

The next sections are organized as follows. At first, we recall some elementary definitions,
specify notational aspects and discuss helpful properties of tangent cones and sublinear func-
tions. Thereafter, we present several important, theoretical frameworks and results from
convex and variational analysis, such as, e.g., convex conjugation, multifunctions, the con-
vex subdifferential, and subdifferential calculus. Moreover, in section 2.4 and 2.5.1, we briefly
introduce the concepts of epi-convergence and directional epidifferentiability. Directional epi-
derivatives are an extension of the classical directional derivatives and turn out to be the
right tool to study real extended valued functions. Here, since we want to consider classes of
optimization problems that generally allow extended valued objective functionals (to model,
e.g., convex constraints), we will need these (epi-)concepts at different parts of this thesis.
For instance, the epi-calculus presented in section 2.5 will be utilized in section 5 to derive
and discuss general first and second order optimality conditions. Finally, in section 2.5.3 and
2.6, we present Clarke’s generalized subdifferential and the concept of semismoothness for
possibly nonconvex and nonsmooth functions.

Most of the material that is provided here can be found in the monographs [208, 27, 11].
Furthermore, the overall structure of this introductory chapter is essentially based on [27,
Chapter 2]. The work of Bonnans and Shapiro [27] also includes a broader and deeper
introduction and discussion of the different topics that will be presented in the following
passages. For a more detailed introduction to convex analysis let us refer to [109, 11]. A
quite advanced, systematic study of various subjects and developments in nonsmooth and
variational analysis can be found in the book of Rockafellar and Wets [208]. For more
information on Clarke’s subdifferential see also [50].

2.1. Preliminary definitions and tangent cones

2.1.1. Basics and semicontinuity

Let us start with some elementary definitions.

Definition 2.1.1. Let ϕ : Rn → [−∞,+∞] be a functional. The (effective) domain of ϕ is
defined by

dom ϕ := {x ∈ Rn : ϕ(x) < +∞}.

The epigraph of ϕ is

epi ϕ := {(x, t) ∈ Rn × R : ϕ(x) ≤ t} ⊂ Rn × R.
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2. Convex and nonsmooth analysis

The lower level set of ϕ at level α ∈ R is given by

levα ϕ := {x ∈ Rn : ϕ(x) ≤ α}.

The function ϕ is called proper if ϕ(x) 6= −∞ for all x ∈ Rn and dom ϕ 6= ∅.
Definition 2.1.2. The function ϕ : Rn → [−∞,+∞] is said to be lower semicontinuous at
a point x ∈ Rn if

lim inf
x̃→x

ϕ(x̃) ≥ ϕ(x), or equivalently lim inf
x̃→x

ϕ(x̃) = ϕ(x).

We say that ϕ is lower semicontinuous, if ϕ is lower semicontinuous at every x ∈ Rn.
The following Lemma shows that lower semicontinuity of a function ϕ can be completely

characterized by closedness of its corresponding epigraph epi ϕ.

Lemma 2.1.3 (cf. [11, Lemma 1.24]). Let ϕ : Rn → [−∞,+∞] be given. Then, the
following statements are equivalent:

(i) The function ϕ is lower semicontinuous.

(ii) The epigraph epi ϕ is closed in Rn × R.

(iii) For every α ∈ R, the level set levα ϕ is closed in Rn.

2.1.2. Tangent cones

A nonempty set S ⊂ Rn is called cone if we have tx ∈ S for all t ≥ 0 and any x ∈ S. The
polar cone of a set S ⊂ Rn is defined via

S◦ := {x ∈ Rn : 〈x, y〉 ≤ 0, ∀ y ∈ S}.

Clearly, the polar cone is always a closed, convex cone. In this thesis, we will work with the
following, different tangent cones.

Definition 2.1.4 (Tangent cones, cf. [27, Definition 2.54]). Let S ⊂ Rn and x ∈ S be
a given set and a given point. The radial cone of S at x is defined by

RS(x) := {d ∈ Rn : ∃ t∗ > 0, ∀ t ∈ [0, t∗], x+ td ∈ S}.

Furthermore, the sets

TS(x) := {d ∈ Rn : ∃ tk ↓ 0, dist(x+ tkd, S) = o(tk)},
T iS(x) := {d ∈ Rn : dist(x+ td, S) = o(t), t ≥ 0}

are called the contingent (Bouligand) cone and the inner tangent cone, respectively.

Of course, it immediately follows from the latter definition that the sets RS(x), TS(x),
and T iS(x) are cones. Moreover, if S is a convex, closed set and x ∈ S, then it holds

(2.1.1) RS(x) =
⋃
t>0

{t−1(S − x)} = R+(S − x) and TS(x) = T iS(x) = cl RS(x).
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2.1. Preliminary definitions and tangent cones

Thus, in this situation, the contingent and the inner tangent cone coincide (see [27, Propo-
sition 2.55] for details). Since the closure of a convex set is convex, (2.1.1) also implies that
the cones TS(x) and T iS(x) are convex sets in this case.

The polar cone of the contingent cone TS(x) is the so-called normal cone to S at x and we
will write NS(x) := TS(x)◦. If the set S is convex, then we obtain NS(x) = RS(x)◦. More-
over, in this situation, using the representation of the radial cone, NS(x) can be expressed
as follows

NS(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0, ∀ y ∈ S}.

If x /∈ S, we will use the convention NS(x) := ∅. Let us conclude with an important example.

Example 2.1.5 (cf. [27, Example 2.62]). Let S ⊂ Rn be a convex, closed cone and let
x ∈ S be arbitrary. Then, it follows RS(x) = S + sp{x} and, by applying [11, Proposition
6.26], we obtain

NS(x) = RS(x)◦ = [S + sp{x}]◦ = S◦ ∩ [sp{x}]◦ = S◦ ∩ {x}⊥.

In particular, if K ⊂ Rn is a convex, closed set and x ∈ K, y ∈ NK(x) are arbitrary points,
then this implies

(2.1.2) NNK(x)(y) = NK(x)◦ ∩ {y}⊥ = TK(x) ∩ {y}⊥.

2.1.3. Sublinear functions and support functions

In the following, we list several relevant definitions and properties of sublinear and support
functions. The results, which will be presented here, are essentially taken from [109]. Rig-
orous proofs and a more detailed overview of sublinear or support functions can be found in
[109, Chapter C].

Definition 2.1.6. A convex and positively homogeneous mapping ϕ : Rn → (−∞,+∞] is
called a sublinear function. If ϕ is sublinear, then the lineality space of ϕ is defined as the
linear subspace

lin ϕ := {x ∈ Rn : ϕ(x) + ϕ(−x) = 0}.

Now, suppose that ϕ : Rn → (−∞,+∞] is proper. Then, it can be easily shown that ϕ is
sublinear if and only if it is positively homogeneous and subadditive, i.e.,

ϕ(x+ y) ≤ ϕ(x) + ϕ(y), ∀ x, y ∈ Rn.

Next, we provide a definition of the support function of a set and collect some basic
properties of support functions.

Definition 2.1.7. Let S ⊆ Rn be a nonempty set. The function σS : Rn → (−∞,+∞]
defined by

x 7→ σS(x) := sup
s∈S
〈s, x〉

is called the support function of the set S.

Lemma 2.1.8. The support function has the following properties:
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2. Convex and nonsmooth analysis

(i) Let S ⊂ Rn be nonempty. Then, the support function σS is a convex, proper, lower
semicontinuous, and positively homogeneous function.

(ii) Let S1, S2 ⊂ Rn be two convex, closed sets. The set S1 is a subset of S2 if and only if
we have σS1(x) ≤ σS2(x) for all x ∈ Rn. Moreover, in this case, it follows dom σS2 ⊂
dom σS1.

(iii) Let S ⊂ Rn be a nonempty cone, then it holds dom σS ⊂ S◦.

(iv) The support function of a set S ⊂ Rn is finite everywhere if and only if S is bounded.

Proof. The first two parts are elementary and will be omitted. (See, e.g., [109, Proposition
C-2.1.2 and Theorem C-3.3.1]). We continue with a proof of statement (iii). Therefore, let
x̄ ∈ dom σS be arbitrary and assume that x̄ /∈ S◦. Then, there exist y ∈ S and ε > 0 such
that 〈x̄, y〉 > ε. Since S is a cone, it follows ty ∈ S for all t ≥ 0. This shows

σS(x̄) = sup
x∈S
〈x̄, x〉 ≥ sup

t≥0
〈x̄, ty〉 ≥ sup

t≥0
tε = +∞,

which contradicts x̄ ∈ dom σS and finishes the proof. A proof of part (iv) can be found in
[109, Proposition C-2.1.3].

The next lemma shows that the support function of a set S ⊂ Rn and its corresponding
lineality space can be used to characterize the affine hull of the set S. This result is presented
in [109, Theorem C-2.2.3] and will turn out to be very useful when working with the strict
complementarity condition.

Lemma 2.1.9. Let S ⊆ Rn be a nonempty, closed, convex set. Then, s ∈ aff S if and only
if it holds 〈s, d〉 = σS(d) for all d ∈ lin σS.

2.1.4. Robinson’s constraint qualification

Let us consider the optimization problem

min
x

f(x) + ϕ(F (x)),

where f : U → R, F : U → Rm are continuously differentiable functions on a certain open set
U ⊂ Rn and ϕ : Rm → (−∞,+∞] is a convex, proper, and lower semicontinuous mapping.
Throughout this thesis, we will work with the following constraint qualification.

Definition 2.1.10. We say that Robinson’s constraint qualification holds at a point x̄ ∈ Rn,
F (x̄) ∈ dom ϕ, if the following condition is satisfied

(2.1.3) 0 ∈ int{F (x̄) +DF (x̄)Rn − dom ϕ}.

Robinson’s constraint qualification is stable under small perturbations. In particular, if
condition (2.1.3) holds at x̄ (and if f and F are continuously differentiable in a neighborhood
of x̄), then it also follows

0 ∈ int{F (x) +DF (x)Rn − dom ϕ}
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for all x ∈ Rn in a sufficiently small neighborhood of x̄. A proof and discussion of this result
can be found in [27, Section 2.3.4 and Remark 2.88]. We will refer to this property as the
stability property of Robinson’s constraint qualification.

2.2. Convexity and the convex conjugate

At first, we give an equivalent characterization of the continuity of a convex function. The
following theorem combines Theorem 8.29 and Corollary 8.30 in [11].

Theorem 2.2.1. Let ϕ : Rn → (−∞,+∞] be a convex and proper function. Then, ϕ is
continuous at x ∈ dom ϕ if and only if x ∈ int dom ϕ. Furthermore, in that case, ϕ is also
locally Lipschitz continuous near x and on the whole set int dom ϕ.

Definition 2.2.2. Let ϕ : Rn → (−∞,+∞] be given. The convex conjugate or Fenchel
conjugate of ϕ is defined as

ϕ∗ : Rn → [−∞,+∞], ϕ∗(x) := sup
y∈Rn

〈y, x〉 − ϕ(y),

and the biconjugate ϕ∗∗ of ϕ is defined as ϕ∗∗ := (ϕ∗)∗.

Next, we state the classical Moreau-Fenchel Theorem that establishes a duality-like relation
between a function ϕ and its conjugate ϕ∗ and biconjugate ϕ∗∗.

Theorem 2.2.3 (Moreau-Fenchel, cf. [11, Theorem 13.31]). The convex conjugate ϕ∗

of a mapping ϕ : Rn → (−∞,+∞] is a convex, lower semicontinuous function. Moreover,
if ϕ itself is a convex, proper, and lower semicontinuous function, then ϕ∗ is proper and it
holds ϕ∗∗ = ϕ.

We proceed with two basic examples.

Example 2.2.4 (Indicator function). Let S ⊂ Rn be a convex, nonempty, and closed set
and consider the indicator function

ιS : Rn → (−∞,+∞], ιS(x) :=

{
0 if x ∈ S,
+∞ if x 6= S.

Then, by Lemma 2.1.3, it easily follows that the indicator function ιS is convex, proper, and
lower semicontinuous. The convex conjugate of ιS is the support function of S, i.e.,

ι∗S(x) = sup
s∈S
〈s, x〉 = σS(x).

Example 2.2.5 (Dual norms). Let |||·||| : Rn → R be a norm on Rn. The dual norm |||·|||◦
of |||·||| is defined as

(2.2.1) |||x|||◦ := sup
|||y|||≤1

〈y, x〉,
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2. Convex and nonsmooth analysis

i.e., the dual norm is the support function of the ball B|||·|||(0, 1) := {x ∈ Rn : |||x||| ≤ 1}.
The convex conjugate of the general norm |||·||| can be represented as follows

(2.2.2) |||x|||∗ = ιB|||·|||◦ (0,1)(x), ∀ x ∈ Rn.

In particular, if we consider the `p-norm ‖x‖p := (
∑n

i=1 |xi|p)
1/p for arbitrary p ∈ (1,∞),

then, for q ∈ (1,∞), 1
p + 1

q = 1, we obtain

(‖x‖p)◦ = ‖x‖q and ‖x‖∗p = ιB‖·‖q (0,1)(x), ∀ x ∈ Rn.

The same relation can also be verified for the `1-norm and the maximum norm ‖x‖∞ :=
maxi=1,...,n |xi| or, more generally, for dual matrix norms, such as the spectral and the
nuclear norm.

Proof. Here, we will only briefly prove formula (2.2.2). From the definition of the dual
norm, it immediately follows

(2.2.3) |||z||| · |||x|||◦ = sup
|||y|||≤1

|||z||| · 〈y, x〉 ≥ 〈z, x〉, ∀ z ∈ Rn.

First, let us consider the case |||x|||◦ ≤ 1. Then, inequality (2.2.3) implies 〈z, x〉 − |||z||| ≤ 0
for all z ∈ Rn and for the choice z = 0 we obtain |||x|||∗ = supz∈Rn 〈z, x〉 − |||z||| = 0. On the
other hand, if we have |||x|||◦ > 1, then it holds

|||x|||∗ = sup
µ≥0

sup
|||z|||≤1

µ〈z, x〉 − |||µz||| ≥ sup
µ≥0

µ · (|||x|||◦ − 1) = +∞,

as desired.

2.3. Multifunctions

In the following, we recall several continuity and monotonicity concepts for general, set-valued
multifunctions. The definitions of upper semicontinuity and upper Lipschitz continuity are
taken from [50, Proposition 2.6.2] and [27, Section 2.3], respectively.

Definition 2.3.1. A multifunction Φ : Rn ⇒ Rm is said to be upper semicontinuous at a
point x ∈ Rn, if for any ε > 0 there exists δ > 0 such that

Φ(y) ⊆ Φ(x) +Bε(0), ∀ y ∈ Bδ(x).

Moreover, the multifunction Φ is said to be upper Lipschitzian at x with modulus L > 0, if
there exists δ > 0 such that

Φ(y) ⊆ Φ(x) + L‖x− y‖ ·B1(0), ∀ y ∈ Bδ(x).

Definition 2.3.2. A multifunction Φ : Rn ⇒ Rn is called monotone, if it holds

〈u− v, x− y〉 ≥ 0, ∀ (x, u), (y, v) ∈ gra Φ,
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where gra Φ := {(x, u) ∈ Rn × Rn : u ∈ Φ(x)} denotes the graph of Φ.

2.4. Epi-convergence

Epi-convergence extends the classical pointwise or uniform convergence of a sequence of real
valued functionals (ϕν)ν , ϕν : Rn → R, ν ∈ N, to the extended real valued setting and is
strongly related to the notions of Γ- and Mosco-convergence. Simply put, the sequence (ϕν)ν
is said to epi-converge if the epigraphs epi ϕν , ν ∈ N, converge to a certain limit set.

In the following subsection, we give a brief overview of the concept of epi-convergence and
provide some basic definitions and corresponding tools. For more details on set and epi-
convergence we refer to the book of Rockafellar and Wets [208] and the references therein.
We also want to note that the material, which is presented in this subsection, is essentially
based on the chapters 4 and 7 in [208]. As in [208], let us set

N#
∞ := {N ⊂ N : N is infinite} and N∞ := {N ⊂ N : N \N is finite}.

We start with the following definition.

Definition 2.4.1 (cf. [208, Definition 4.1]). For a sequence (Cν)ν of subsets of Rn the
outer limit is the set

lim sup
ν→∞

Cν := {x ∈ Rn : ∃ N ⊂ N#
∞, ∃ xν ∈ Cν such that xν → x, N 3 ν →∞},

while the inner limit is the set

lim inf
ν→∞

Cν := {x ∈ Rn : ∃ N ⊂ N∞, ∃ xν ∈ Cν such that xν → x, N 3 ν →∞}.

The limit of the sequence (Cν)ν exists if the outer and inner limit sets are equal:

lim
ν→∞

Cν := lim sup
ν→∞

Cν = lim inf
ν→∞

Cν .

In Definition 2.4.1, when the limit limν Cν exists and is equal to a set C, then the sequence
(Cν)ν is said to converge to the set C. Set convergence in this sense is known as Painlevé-
Kuratowski convergence. An exemplary illustration of the set convergence process and of
specific inner and outer limits is given in Figure 2.1. Besides Definition 2.4.1, there exist
many different, but equivalent characterizations of the inner and outer limit of a sequence of
sets. For instance, one has

lim sup
ν→∞

Cν =
{
x : lim inf

ν→∞
dist(x,Cν) = 0

}
, lim inf

ν→∞
Cν =

{
x : lim sup

ν→∞
dist(x,Cν) = 0

}
.

Other alternative definitions and corresponding discussions can be found in [208]. Finally,
let us mention the following two basic properties:

• It holds lim infν Cν ⊂ lim supν Cν .
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limν Cν

(a)

C1

C3

···

C2

C4

···
lim infν Cν

lim supν Cν

(b)

Figure 2.1.: Illustration of the Painlevé-Kuratowski convergence of a sequence of sets. In
subfigure (a), the unit disks Cν := {x ∈ R2 : ‖x‖ν = 1}, ν ∈ N, converge to the
limit set C = {x ∈ R2 : ‖x‖∞ = 1}. In subfigure (b), an example for a diverging
sequence of sets is given. In particular, in this situation, the outer and inner
limit of (Cν)ν are different sets.

• The inner and outer limit of (Cν)ν are always closed sets. (See [208, Proposition 4.4]).

We continue with the definition of epi-limits and epi-convergence of a sequence of possibly
real extended valued functionals.

Definition 2.4.2 (cf. [208, Definition 7.1]). Let (ϕν)ν , ϕν : Rn → (−∞,+∞], be a family
of functions. The lower and upper epi-limits of ϕν , as ν →∞, are defined as the functions
whose epigraphs are given by the outer and inner limits of the sets epi ϕν , i.e., it holds

epi
[
e-lim inf

ν→∞
ϕν

]
= lim sup

ν→∞
epi ϕν , and epi

[
e-lim sup

ν→∞
ϕν

]
= lim inf

ν→∞
epi ϕν .

When the two functions e-lim infν ϕν and e-lim supν ϕν coincide, we say that the epi-
limit function ϕ := e-limν ϕν exists. Moreover, in this case the sequence (ϕν)ν is said to
epi-converge to ϕ.

Again, there is a large number of alternative expressions and definitions of the lower and
upper epi-limits and of epi-convergence. The following representations will turn out to be
very useful for our calculations and our subsequent analysis. It holds

e-lim inf
ν→∞

ϕν(x) = lim inf
ν→∞, x̃→x

ϕν(x̃), e-lim sup
ν→∞

ϕν(x) = sup
(νk)k∈N#

∞

lim inf
k→∞, x̃→x

ϕνk(x̃),
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2.5. Directional (epi-)derivatives and subdifferentials

see, e.g., [208, Exercise 7.3] or section 2.2.3 in [27]. Additionally, these alternative formula-
tions also allow for a local and pointwise conception of epi-convergence. In particular, the
sequence (ϕν)ν epi-converges at a certain point x ∈ Rn if the upper and lower epi-limit val-
ues e-lim supν ϕν(x) and e-lim infν ϕν(x) coincide at x. Next, let us list some important
properties of epi-limits.

• The upper and lower epi-limits of (ϕν)ν are lower semicontinuous functions.

• If ϕν is positively homogeneous for all ν ∈ N, then the functions e-lim infν ϕν and
e-lim supν ϕν are also positively homogeneous, [208, Proposition 7.4].

Now, we present another, essential characterization of epi-convergence.

Lemma 2.4.3 (cf. [208, Proposition 7.2]). Let (ϕν)ν , ϕν : Rn → (−∞,+∞], be a given
sequence of functionals. Then, (ϕν)ν epi-converges to ϕ if and only if at each point x ∈ Rn
it holds

(2.4.1)

lim inf
ν→∞

ϕν(xν) ≥ ϕ(x) for every sequence xν → x,

lim sup
ν→∞

ϕν(xν) ≤ ϕ(x) for some sequence xν → x.

Clearly, this criterion can also be used for local or pointwise epi-convergence. In this case,
(2.4.1) has to be verified only at the points of interest. In the following theorem, we establish
an important connection between epi-convergence and uniform convergence of a sequence of
convex functions (ϕν)ν .

Theorem 2.4.4 (cf. [208, Theorem 7.17]). Let (ϕν)ν , ϕν : Rn → (−∞,+∞], be a given
sequence of convex functions and suppose that (ϕν)ν epi-converges to a convex, real valued,
and lower semicontinuous limit function ϕ : Rn → R. Then, (ϕν)ν converges uniformly to ϕ
on every compact set C ⊂ Rn.

Remark 2.4.5 (cf. [208, Definition 7.12]). Since the functions ϕν are generally extended
real valued, we have to clarify the meaning of uniform convergence of the sequence (ϕν)ν in
Theorem 2.4.4. For a function ϕ : Rn → [−∞,+∞] and arbitrary ρ > 0, the ρ-truncation of
ϕ is defined as

ϕ|ρ(x) :=


−ρ if ϕ(x) < −ρ,
ϕ(x) if ϕ(x) ∈ [−ρ, ρ],

ρ if ϕ(x) > ρ.

Then, a sequence (ϕν)ν is said to converge uniformly to ϕ on a set S ⊂ Rn, if, for every
ρ > 0, the sequence of ρ-truncations (ϕν |ρ)ν converges uniformly to ϕ|ρ on S.

2.5. Directional (epi-)derivatives and subdifferentials

Epiderivatives are one of the numerous extensions of the classical directional derivative that
have been developed to study and express differentiability properties of general nonconvex,
nonsmooth and extended real valued functions. As the name already indicates, epiderivatives

17



2. Convex and nonsmooth analysis

are based on epigraphical convergence processes of certain difference quotients and not on
the common notion of convergence that is used, e.g., in the derivation of classical directional
derivatives. In the following, we introduce and list important definitions and calculation rules
for epiderivatives. Afterwards, we continue with a discussion of the convex subdifferential,
present connections to epidifferentiability and introduce the Clarke subdifferential for general
vector valued functions.

An extensive literature review on epiderivatives and related topics can be found in the
commentaries at the end of the chapters 7 and 8 in [208]. Our terminology for epiderivatives
follows the notation in [27]; more details can be found in the sections 2.2 and 2.4 in [27].
Moreover, the interested reader is once more referred to the chapters 7 and 8 in [208], where
many additional properties and further concepts are provided.

For more information on subdifferential calculus and Clarke’s subdifferential we refer to
[27, 11] and [50, 208, 238].

2.5.1. Directional (epi-)differentiability

Definition 2.5.1. Let ϕ : Rn → (−∞,+∞] and x ∈ dom ϕ be given. The lower and upper
directional derivatives of ϕ at x are defined as

ϕ′−(x;h) := lim inf
t↓0

ϕ(x+ th)− ϕ(x)

t
,

and
ϕ′+(x;h) := lim sup

t↓0

ϕ(x+ th)− ϕ(x)

t
,

respectively. We say that ϕ is directionally differentiable at x in direction h if ϕ′+(x;h) =
ϕ′−(x;h). In this case, we will use the term ϕ′(x;h) to denote the coinciding derivative.

Since ϕ is an extended real valued function, the directional derivative ϕ′(x; ·) is also an
extended real valued function that can take the values −∞ and +∞. Obviously, if for some
h ∈ Rn, ϕ′(x;h) is finite, then it coincides with the usual directional derivative. If the direc-
tional derivative ϕ′(x;h) exists for all h ∈ Rn, then the function ϕ is said to be directionally
differentiable at x. We want to point out that the latter definitions do also make sense for
general vector valued functions F : Rn → Rm. Now, let us turn to epidifferentiability.

Definition 2.5.2. Let ϕ : Rn → (−∞,+∞] and x ∈ dom ϕ be given. We define the lower
and upper directional epiderivatives of ϕ at x in the direction h ∈ Rn as follows:

ϕ↓−(x;h) := lim inf
t↓0, h̃→h

ϕ(x+ th̃)− ϕ(x)

t
,

ϕ↓+(x;h) := sup
(tk)k∈N0

lim inf
k→∞, h̃→h

ϕ(x+ tkh̃)− ϕ(x)

tk
,

where N0 denotes the space of all positive real sequences (tk)k converging to zero. We say
that ϕ is directionally epidifferentiable at x in the direction h, if ϕ↓−(x;h) = ϕ↓+(x;h). In
this case, the common value will be denoted by ϕ↓(x;h).

18



2.5. Directional (epi-)derivatives and subdifferentials

Next, we list some important properties of the directional epiderivatives:

• Clearly, the directional epiderivatives ϕ↓+(x; ·), ϕ↓−(x; ·), and ϕ↓(x; ·) can be interpreted
as epi-limits of the difference quotient functions

∆tϕ(x)(h) :=
ϕ(x+ th)− ϕ(x)

t
for t 6= 0.

In particular, by Lemma 2.4.3, ϕ is directionally epidifferentiable at x in the direction
h ∈ Rn if and only if for every sequence (tk)k, tk ↓ 0, it holdslim inf

k→∞
∆tk ϕ(x)(hk) ≥ ϕ↓(x;h) for every sequence hk → h,

lim sup
k→∞

∆tk ϕ(x)(hk) ≤ ϕ↓(x;h) for some sequence hk → h.

As a consequence, the epiderivates ϕ↓+(x; ·), ϕ↓−(x; ·), and ϕ↓(x; ·) are lower semicon-
tinuous and positively homogeneous functions.

• It holds:

ϕ↓−(x;h) ≤ ϕ↓+(x;h), ϕ↓−(x;h) ≤ ϕ′−(x;h), ϕ↓+(x;h) ≤ ϕ′+(x;h).

• If ϕ is Lipschitz continuous near x, then it follows ϕ↓−(x;h) = ϕ′−(x;h) and ϕ↓+(x;h) =
ϕ′+(x;h) for all h ∈ Rn.

The following lemma establishes a connection between the different tangent cones of the
epigraph epi ϕ and the epigraphs of the epiderivatives ϕ↓+(x; ·) and ϕ↓−(x; ·).

Lemma 2.5.3 (cf. [27, Proposition 2.58]). Let ϕ : Rn → (−∞,+∞] be a proper,
extended real valued function and let x ∈ dom ϕ be given. Then, it holds

Tepi ϕ(x, ϕ(x)) = epi ϕ↓−(x; ·),

T iepi ϕ(x, ϕ(x)) = epi ϕ↓+(x; ·).

Remark 2.5.4. Suppose that ϕ : Rn → (−∞,+∞] is a convex, proper function and let
x ∈ dom ϕ be arbitrary. Using the convexity of ϕ, we readily establish that the epigraph
epi ϕ is convex. Consequently, due to (2.1.1), the contingent cone Tepi ϕ(x, ϕ(x)) and the
inner tangent cone T iepi ϕ(x, ϕ(x)) coincide and are also convex sets. This implies

ϕ↓−(x;h) = ϕ↓+(x;h), ∀ h ∈ Rn,

i.e., ϕ is directionally epidifferentiable at x. Moreover, in this case, ϕ↓(x; ·) is a convex, lower
semicontinuous, and positively homogeneous function.

Lemma 2.5.5. Let ϕ : Rn → (−∞,+∞] be a convex and proper function and let x ∈ dom ϕ
be arbitrary. Then, ϕ is directionally differentiable at x and it holds

(2.5.1) ϕ(x+ h)− ϕ(x) ≥ ϕ′(x;h) ≥ ϕ↓(x;h), ∀ h ∈ Rn.
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2. Convex and nonsmooth analysis

Proof. The existence of ϕ′(x; ·) is shown in [11, Proposition 17.2]. The inequality (2.5.1)
follows immediately from the convexity of ϕ and Remark 2.5.4.

We continue with several calculation rules.

Lemma 2.5.6 (cf. [27, Proposition 2.136]). Let ϕ : Rm → (−∞,+∞] be convex, proper,
and lower semicontinuous and let F : Rn → Rm be a continuously differentiable function.
Suppose that Robinson’s constraint qualification

(2.5.2) 0 ∈ int{F (x) +DF (x)Rn − dom ϕ}

is satisfied at x ∈ F−1(dom ϕ). Then, the composite function ϕ ◦ F is directionally epidif-
ferentiable at x and it holds

(2.5.3) (ϕ ◦ F )↓(x;h) = ϕ↓(F (x);DF (x)h), ∀ h ∈ Rn.

Corollary 2.5.7. Let ϕ : Rm → (−∞,+∞] be convex, proper, and lower semicontinuous
and let f : Rn → R, F : Rn → Rm be two continuously differentiable functions. Suppose
that Robinson’s constraint qualification (2.5.2) is satisfied at x ∈ F−1(dom ϕ). Then, the
function ψ := f + ϕ ◦ F is directionally epidifferentiable at x and it holds

(2.5.4) ψ↓(x;h) = ∇f(x)>h+ ϕ↓(F (x);DF (x)h), ∀ h ∈ Rn.

Proof. Let us define θ(y, t) := ϕ(y) + t and G : Rn → Rm × R, G(y) := (F (y), f(y)).
Then, ψ can be written as the composition of the mappings θ and G and it is easy to show
that the corresponding assumptions in Lemma 2.5.6 are fulfilled. Thus, ψ is directionally
epidifferentiable at x and, by applying [27, Lemma 2.137] (or by a direct calculation of
θ↓(y, t; ·)), formula (2.5.4) can be established.

Remark 2.5.8. Let us reconsider the situation of Corollary 2.5.7 and suppose that Robin-
son’s constraint qualification is not necessarily satisfied at x ∈ F−1(dom ϕ). Clearly, we
then cannot expect that the composite function ψ is directionally epidifferentiable or that
the chain rule (2.5.4) is valid. However, we are still able to show a somewhat weaker result.
Therefore, let us define Υ(y) := ∇f(x)>y + ϕ↓(F (x);DF (x)y). Then, it follows

epi ψ↓−(x; ·) ⊆ epi Υ.

In particular, we have

ψ↓−(x;h) ≥ Υ(h) = ∇f(x)>h+ ϕ↓(F (x);DF (x)h), ∀ h ∈ Rn.

Proof. Let (h, τ) ∈ epi ψ↓−(x; ·) be an arbitrary vector. Then, due to Lemma 2.5.3 and
Definition 2.1.4, there exist sequences (tk)k, tk ↓ 0, hk → h, and τk → τ such that

ψ(x+ tkh
k)− ψ(x) ≤ tkτk.

Next, a Taylor expansion of f(x+ tkh
k) and F (x+ tkh

k) at x yields

tk∇f(x)>h+ ϕ(F (x) + tkDF (x)hk + o(tk))− ϕ(F (x)) ≤ tkτ + o(tk).
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2.5. Directional (epi-)derivatives and subdifferentials

Dividing both sides of the latter inequality by tk > 0 and taking the limes inferior k → ∞,
we obtain

τ ≥ ∇f(x)>h+ lim inf
k→∞

ϕ(F (x) + tkDF (x)hk + o(tk))− ϕ(F (x))

tk

≥ ∇f(x)>h+ lim inf
t↓0, h̃→DF (x)h

ϕ(F (x) + th̃)− ϕ(F (x))

t
= Υ(h),

where we used Remark 2.5.4. This shows (h, τ) ∈ epi Υ, which completes the proof.

Example 2.5.9 (cf. [27, Example 2.67]). Let S ⊂ Rn be a convex, nonempty, and closed
set and let us consider ϕ ≡ ιS and x ∈ S. Then, Definition 2.1.4 and (2.1.1) imply

ϕ′(x;h) = ιRS(x)(h), and ϕ↓(x;h) = ιTS(x)(h).

2.5.2. The convex subdifferential

Definition 2.5.10. Let ϕ : Rn → (−∞,+∞] and x ∈ dom ϕ be given. The subdifferential
of ϕ is the multifunction

∂ϕ : Rn ⇒ Rn, ∂ϕ(x) := {s ∈ Rn : ϕ(y)− ϕ(x) ≥ 〈s, y − x〉, ∀ y ∈ Rn}.

The function ϕ is called subdifferentiable at x if ∂ϕ(x) 6= ∅. The elements s ∈ ∂ϕ(x) are
called subgradients of ϕ at x.

In the following, we list several important properties of the convex subdifferential.

Lemma 2.5.11 (cf. [27, Proposition 2.125 and 2.134]). Let ϕ : Rn → (−∞,+∞] be a
convex function and let x ∈ dom ϕ be arbitrary. Then, it holds:

(i) ϕ is subdifferentiable at x if and only if ϕ↓(x; 0) > −∞, or, equivalently, ϕ↓(x; 0) = 0.

(ii) If ϕ is subdifferentiable at x, then

ϕ↓(x;h) = sup
λ∈∂ϕ(x)

〈λ, h〉 = σ∂ϕ(x)(h),

i.e., ϕ↓(x; ·) is the support function of the subdifferential ∂ϕ(x).

(iii) Suppose that x ∈ ri dom ϕ, then ϕ is subdifferentiable at x.

Lemma 2.5.12 (cf. [27, Proposition 2.132], [11, Proposition 16.14]). Let ϕ : Rn →
(−∞,+∞] be convex, proper and let x ∈ dom ϕ be given. Then, it holds:

(i) ϕ is continuous at x if and only if ∂ϕ(x) is nonempty and bounded.

(ii) If ϕ is continuous at x, then there exists ε > 0 such that ∂ϕ(Bε(x)) is bounded.

The following lemma provides an important characterization of convex, proper, lower semi-
continuous, and positively homogeneous functions. A proof can be found in [11, Proposition
14.11 and Proposition 16.18].
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2. Convex and nonsmooth analysis

Lemma 2.5.13. Let ϕ : Rn → (−∞,+∞] be a convex, proper, lower semicontinuous, and
positively homogeneous function. Then, ϕ is the support function of the subdifferential ∂ϕ(0),
i.e., we have

ϕ(x) = σ∂ϕ(0)(x), ∀ x ∈ Rn.

In particular, ϕ is subdifferentiable at 0 and satisfies ϕ(0) = 0.

Let us briefly summarize and recapitulate the last results. Combing Lemma 2.5.11 (i) and
(ii), we see that a convex, proper function ϕ : Rn → (−∞,+∞] is subdifferentiable at some
x ∈ dom ϕ if and only if its corresponding directional epiderivative Π(·) := ϕ↓(x; ·) is proper.
Hence, by Remark 2.5.4, Lemma 2.5.13 is applicable to the mapping Π and, due to Lemma
2.1.8 (ii) and Lemma 2.5.11 (ii), we obtain the following essential relation

(2.5.5) ∂Π(0) = ∂ϕ(x).

Now, let ϕ be also lower semicontinuous and positively homogeneous. Then, by Lemma 2.1.8
(iv) and Lemma 2.5.12 (i), ϕ is real valued, (i.e., dom ϕ = Rn), if and only if ϕ is continuous
at 0. Next, we present a connection between the subdifferentiability of ϕ and its convex
conjugate ϕ∗.

Lemma 2.5.14 (cf. [11, Theorem 16.23]). Suppose that ϕ : Rn → (−∞,+∞] is convex,
proper, and lower semicontinuous and let x, s ∈ Rn be arbitrary. Then, the following state-
ments are equivalent:

(i) s ∈ ∂ϕ(x).

(ii) x ∈ ∂ϕ∗(s).

(iii) (s,−1) ∈ Nepi ϕ(x, ϕ(x)).

(iv) ϕ(x) + ϕ∗(s) = 〈x, s〉.

Next, we present a chain rule for the subdifferential of a composition of convex functions.

Lemma 2.5.15 (cf. [11, Proposition 16.5 and Theorem 16.37]). Let the two functions
f : Rn → (−∞,+∞] and ϕ : Rm → (−∞,+∞] be convex, proper, and lower semicontinuous
and let A ∈ Rm×n be an arbitrary matrix. Furthermore, let us set ψ(x) := f(x) +ϕ(Ax) and
suppose that A(dom f) ∩ dom ϕ 6= ∅. Then, it holds

(2.5.6) ∂f(x) +A>∂g(Ax) ⊆ ∂ψ(x), ∀ x ∈ Rn.

Additionally, if one of the following regularity conditions

(i) 0 ∈ int{A(dom f)− dom ϕ}

(ii) A(ri dom f) ∩ ri dom ϕ 6= ∅

is satisfied, then it follows

(2.5.7) ∂ψ(x) = ∂f(x) +A>∂g(Ax), ∀ x ∈ Rn.

We conclude this subsection with two basic and explicit examples.
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Example 2.5.16. Let S ⊂ Rn be a convex set. The indicator function ιS of S is subdif-
ferentiable at x ∈ Rn if and only if x ∈ S. Consequently, the subdifferential of ιS is given
by

∂ιS(x) =

{
{s ∈ Rn : 〈s, y − x〉 ≤ 0, ∀ y ∈ S} = NS(x) if x ∈ S,
∅ otherwise.

Example 2.5.17. Let S ⊂ Rn be a convex, nonempty, and closed set and consider the
support function σS : Rn → (−∞,+∞]. Then, for all x ∈ dom σS , it holds

(2.5.8) ∂σS(x) = {s ∈ S : 〈s, x〉 = σS(x)}.

Proof. Due to Example 2.2.4, the indicator function ιS of S is a convex, proper, and lower
semicontinuous function. Thus, using Theorem 2.2.3, we have σ∗S(x) = ι∗∗S (x) = ιS(x) for all
x ∈ Rn. Now, Lemma 2.5.14 implies

s ∈ ∂σS(x) ⇐⇒ σS(x) + ιS(s) = 〈s, x〉.

Clearly, this establishes formula (2.5.8) and we can conclude the proof.

2.5.3. The Bouligand and the Clarke subdifferential

In this subsection, we want to derive a subdifferential calculus for vector valued functions of
the type

F : U → Rm,

where U ⊂ Rn is an open, nonempty set. In this respect, let ΩF ⊂ U denote the set of
all points x ∈ U at which F is Fréchet differentiable with derivative DF (x) : Rn → Rm.
Moreover, if the function F is locally Lipschitz continuous in a neighborhood V ⊂ U of the
point x, then, according to Rademacher’s Theorem, the set V \ΩF has zero Lebesgue measure.
Consequently, every locally Lipschitz continuous function F : U → Rm is differentiable
almost everywhere. This observation forms the basis of the definition of a generalized notion
of differentiability for vector valued functions.

In the following, we will also use the term DF (x) to denote the corresponding Jacobian
of F at x, i.e., JF (x) ≡ DF (x) ∈ Rm×n. Let us start with the definition of the Bouligand
and Clarke subdifferential.

Definition 2.5.18 (Generalized derivatives). Let U ⊂ Rn be open, nonempty, x ∈ U ,
and let F : U → Rm be Lipschitz continuous in a neighborhood of x. The set

∂BF (x) := {M ∈ Rm×n : ∃ (xk)k ⊂ ΩF such that xk → x, DF (xk)→M}

is called Bouligand subdifferential or B-subdifferential of F at x. The Clarke subdifferential
∂F (x) of F at x is defined as the convex hull of ∂BF (x), i.e., it holds

∂F (x) := conv(∂BF (x)).

Moreover, the C-subdifferential of F at x is given by ∂CF (x) := ∂F1(x)× ...× ∂Fm(x).
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The next lemma presents some basic properties of the different subdifferentials. A proof
can be found, e.g., in Clarke [50, Proposition 2.6.2].

Lemma 2.5.19 (cf. [238, Proposition 2.2]). Suppose that U ⊂ Rn is open and F : U →
Rm is locally Lipschitz continuous near x ∈ U . Then, the following statements hold:

(i) The set ∂BF (x) is nonempty and compact.

(ii) ∂F (x) and ∂CF (x) are convex, nonempty, and compact.

(iii) The multifunctions ∂BF , ∂F , and ∂CF are locally bounded and upper semicontinuous.

(iv) ∂BF (x) ⊂ ∂F (x) ⊂ ∂CF (x).

(v) If F is continuously differentiable near x, then it holds

∂BF (x) = ∂F (x) = ∂CF (x) = {DF (x)}.

For a convex functional f : Rn → R, it can be shown that Clarke’s subdifferential coincides
with the convex subdifferential ∂f – up to transposition of course (see, e.g., [50, Proposition
2.2.7]). Clearly, this fact (and the discussion at the end of this subsection) indicates that the
Clarke subdifferential is also connected to other differentiability concepts. For instance, in the
real valued case, another directional derivative-type construction, the so-called generalized
directional derivatives, can be used to characterize Clarke’s subdifferential. We refer to [50]
for more information. Moreover, in [208, Chapter 8.C and 9], these generalized directional
derivatives are studied in an even more general epigraphical framework under the name
regular subderivatives. Since these deep theoretical concepts are not specifically relevant for
our later analysis, we will not go into detail here.

Let us continue with a sum and a chain rule for the Clarke subdifferential.

Lemma 2.5.20. Let U ⊂ Rn be open, nonempty and let F : U → Rm be continuously
differentiable in a neighborhood of x ∈ U . In addition, suppose that G : U → Rm is locally
Lipschitz continuous near x and let A ∈ Rm×m be an arbitrary, invertible matrix. Then,
setting Φ ≡ F +A ·G, it follows

∂Φ(x) = DF (x) +A · ∂G(x).

Proof. It suffices to show ∂BΦ(x) = DF (x) + A · ∂BG(x). However, this equality follows
immediately from the fact that Φ is Fréchet differentiable at some point y ∈ Rn if and only
if G is Fréchet differentiable at y.

Theorem 2.5.21. Let U ⊂ Rn and V ⊂ Rm be open, nonempty sets and suppose that
G : U → V is Lipschitz continuous near x ∈ U and F : V → Rp is Lipschitz continuous in a
neighborhood of G(x) ∈ V . Then, the composite function Φ ≡ F ◦G is Lipschitz continuous
near x, and it holds

(2.5.9) ∂Φ(x)h ⊂ conv{∂F (G(x)) ◦ ∂G(x)h}, ∀ h ∈ Rn.
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Moreover, if G is continuously differentiable in a neighborhood of x, then formula (2.5.9) can
be further simplified:

(i) If F is real valued, i.e., if we have p = 1, then it holds

(2.5.10) ∂Φ(x) ⊂ ∂F (G(x)) ◦DG(x).

(ii) In the general case, if, in addition, the linear mapping DG(x) : Rn → Rm is onto, and
F is directionally differentiable at every point in V , then it follows

(2.5.11) ∂Φ(x) = ∂F (G(x)) ◦DG(x).

Proof. The first and second part of this Theorem are proven in [50, Corollary 2.6.6 and
Theorem 2.3.10]. The last part can be found in [226, Lemma 2.1].

Remark 2.5.22. The conditions in Theorem 2.5.21 (i) and (ii) are rather restrictive and, in
general, even if the inner function G is continuously differentiable, we cannot expect that an
equality based representation of the Clarke subdifferential ∂Φ(x) as in (2.5.11) is available.
However, if F and G satisfy the basic assumptions of Theorem 2.5.21 at some point x ∈ Rn
and if G is continuously differentiable near x, then the following chain rule in terms of the
C-subdifferential of F does hold:

(2.5.12) ∂Φ(x) ⊂ ∂CΦ(x) ⊂ ∂CF (G(x)) ◦DG(x).

In applications, such as, e.g., Fischer-Burmeister -based reformulations of KKT-systems, [72,
Proposition 3.1], the set ∂CF (G(x)) ◦ DG(x) is often used to construct specific general-
ized derivatives of composite functions, since it typically has a much simpler structure than
Clarke’s subdifferential ∂Φ(x).

Proof. The first inclusion in (2.5.12) follows from Lemma 2.5.19 (iv). By the definition of
the C-subdifferential, the conditionM ∈ ∂CΦ(x) means that the i-th row ofM is an element
of Clarke’s subdifferential ∂Φi(x). Thus, using (2.5.10), it follows

M[i·] ∈ ∂Φi(x) = ∂(Fi ◦G)(x) ⊂ ∂Fi(G(x)) ◦DG(x), ∀ i = 1, ...,m.

Clearly, this immediately implies (2.5.12).

Remark 2.5.23. Another chain rule that guarantees a complete characterization of the
Clarke subdifferential ∂Φ(x) and equality as in (2.5.11) is derived in [183, Proposition 7].
There, Pang et al. considered the opposite case, when the outer function F is continuously
differentiable.

Finally, we present an important differentiability concept that ensures that the Clarke
subdifferential reduces to a singleton and which is generally weaker than continuous differ-
entiability. Following [50] and [208, Section 9.D], a function F : U → Rm with U ⊂ Rn open
and nonempty, is called strictly differentiable at x ∈ U if

lim
y,z→x, y 6=z

F (z)− F (y)−DF (x)(z − y)

‖z − y‖
= 0,
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where DF (x) denotes the classical Fréchet derivative of F at x. Before we state Theorem
2.5.24, let us mention and highlight some properties of strictly differentiable functions.

• If F : U → Rm is continuously differentiable in a neighborhood of x ∈ U , then F is
also strictly differentiable at x.

• A function F : U → Rm is strictly differentiable on an open set V ⊂ U if and only if
F is continuously differentiable on V .

• The composition of strictly differentiable functions is strictly differentiable.

Further properties and more information on strictly differentiable functions can be found
in [50, Section 2.2], [208, Section 9.C–9.D], or [67, 1D.6–1D.8].

Theorem 2.5.24. Let U ⊂ Rn be open and nonempty. A function F : U → Rm is strictly
differentiable at x ∈ U if and only if F is locally Lipschitz continuous near x and Clarke’s
subdifferential ∂F (x) reduces to a singleton.

Proof. In the real valued case m = 1, this result is presented in [50, Proposition 2.2.4]. In
the more general case, we have to use a connection between the Clarke subdifferential and
the so-called graphical or Mordukhovich coderivative D∗F (x) : Rm ⇒ Rn of F at x. Since
a full definition of Mordukhovich’s coderivative requires the introduction of several more
specific tools and concepts, such as, e.g., the limiting or basic normal cone to the graph of
F , we want to refer to [208, Section 8.G] and [158, Definition 1.32] for a detailed discussion.
However, if F is locally Lipschitz continuous near x, then [208, Theorem 9.62] provides the
following characterization

conv D∗F (x)(y) = conv
{
M>y : M ∈ ∂BF (x)

}
=
{
M>y : M ∈ ∂F (x)

}
.

Thus, in this situation, Clarke’s subdifferential ∂F (x) is a singleton if and only if the coderiva-
tive mapping D∗F (x) is single-valued. The rest of the proof now follows from [208, Exercise
9.25] or [158, Theorem 3.66].

2.6. Semismoothness

The concept of semimoothness was originally introduced and developed by Mifflin [148]
for real valued functionals. Later, Qi [197] and Qi and Sun [199] extended this notion
to general mappings between finite dimensional spaces. The importance and popularity of
semismoothness can be traced back to the fact that Newton’s method applied to the nonlinear
and possibly nonsmooth equation

F (x) = 0

is well-defined and can be shown to converge locally at least q-superlinearily under suitable
conditions, if the function F : Rn → Rn is semismooth. Clearly, this generalizes the classical
Newton method and enlarges the overall applicability of Newton-type methods to many
different and broad classes of problems.
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In the following, we state some basic definitions and give an overview of the concept of
semismoothness in the context of nonsmooth equations. More details on semismoothness and
the semismooth Newton method can be found in [197, 199, 198]. Extensions to the infinite
dimensional setting are presented in the book [238] by Ulbrich.

In the literature, a large number of different yet equivalent definitions of semismoothness
is available. Here, we will only give one of these definitions (see, e.g., [183, Theorem 5] or
[238, Proposition 2.7]), that will turn out to be the most useful version for the convergence
analysis of our semismooth Newton-type method later on. The original definition of Mifflin
and various other, equivalent formulations, as well as corresponding proofs and discussions
can be found in [199, 182, 198, 183, 238].

Definition 2.6.1 (Semismoothness). Let U ⊂ Rn be an open and nonempty set. A
function F : U → Rm is said to be semismooth at x ∈ U , if F is Lipschitz continuous in a
neighborhood of x, directionally differentiable at x, and for all h ∈ Rn it holds

(2.6.1) sup
M∈∂F (x+h)

‖F (x+ h)− F (x)−Mh‖ = o(‖h‖) as h→ 0.

If F is semismooth at all x ∈ U , then F is called semismooth (on U).

Let us list some elementary and well-known examples of semismooth functions.

• Convex, real valued functions are semismooth, [148, Proposition 3].

• Piecewise continuously differentiable functions, such as, e.g., the `1- or `∞-norm, are
semismooth. For more details we refer to [211] and [238, Section 2.5.3].

• If F : U → Rm, U ⊂ Rn open, is continuously differentiable in a neighborhood of some
point x ∈ U , then F is semismooth at x, see [148, Proposition 4].

Next, we present the concept of α-order semismoothness, which is a natural extension of
semismoothness of a function. Higher order semismoothness was introduced by Qi and Sun
in [199] to achieve a better, local convergence rate of the semismooth Newton method.

Definition 2.6.2 (α-order semismoothness). Let U ⊂ Rn be open, nonempty and let
F : U → Rm be given. For 0 < α ≤ 1, the function F is called α-order semismooth at
x ∈ U , if F is locally Lipschitz continuous near x, directionally differentiable at x, and for
all h ∈ Rn it holds

(2.6.2) ‖F (x+ h)− F (x)− F ′(x, h)‖ = O(‖h‖1+α) as h→ 0,

and

(2.6.3) sup
M∈∂F (x+h)

‖F (x+ h)− F (x)−Mh‖ = O(‖h‖1+α) as h→ 0.

The function F is said to be α-order semismooth (on U), if F is α-order semismooth at all
points x ∈ U .

27
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Remark 2.6.3. The condition (2.6.2) is known as α-order B-differentiability. Again, there
exist several other formulations of α-order semismoothness, see, e.g., [238, Definition 2.13
and Proposition 2.14].

Finally, let us present some calculation rules and properties of semismooth functions. We
start with a useful, equivalent characterization of (α-order) semismoothness. A proof of this
result can be found in [199, Corollary 2.4] and [238, Proposition 2.10 and Proposition 2.17].

Lemma 2.6.4. Let U ⊂ Rn be open, nonempty and 0 < α ≤ 1. Then, the mapping
F : U → Rm is (α-order) semismooth at x ∈ U if and only if each component function
Fi : U → R, i = 1, ...,m, is (α-order) semismooth at x.

Next, we give a chain rule for semismooth functions.

Theorem 2.6.5. Let U ⊂ Rn and V ⊂ Rm be open, nonempty sets and 0 < α ≤ 1. Suppose
that G : U → V is (α-order) semismooth at x ∈ U and that F : V → Rp is (α-order)
semismooth at G(x) with G(U) ⊂ V . Then, the composite mapping F ◦ G : U → Rp is
(α-order) semismooth at x.

Proof. In [148, Theorem 5], it is shown that the composition of two semismooth functions
f : Rm → R and G : Rn → Rm is again a semismooth mapping. Clearly, by using Lemma
2.6.4, this yields the more general result in Theorem 2.6.5; see also Lemma 18 in [79]. A
chain rule for α-order semismooth functions is studied in [79, Theorem 19].

Remark 2.6.6. Additionally, let us assume that the function G is continuously differentiable
in a neighborhood of x. Then, by combining Lemma 2.6.4 and Theorem 2.6.5, it can be easily
shown that the composite function F ◦ G is also (α-order) semismooth with respect to the
possibly larger set ∂CF (G(x))DG(x), i.e., it holds

‖(F ◦G)(x+ h)− (F ◦G)(x)−Mh‖ = o(‖h‖)

uniformly for all M ∈ ∂CF (G(x+ h))DG(x+ h), as h→ 0.

It is well-known that a Fréchet differentiable function is not necessarily semismooth. The
following theorem shows that the combination of semismoothness and Fréchet differentiability
implies some kind of higher regularity of the considered function. Theorem 2.6.7 is based
on some very recent results of Movahedian [165] and will be an essential component of our
second order and nonsingularity analysis in section 5.4.

Theorem 2.6.7. Let U ⊂ Rn be open, nonempty and let F : U → Rm be Fréchet differen-
tiable and semismooth at x ∈ U . Then, F is strictly differentiable at x and ∂F (x) reduces to
a singleton.

Proof. Due to Theorem 2.5.24, it suffices to show that ∂F (x) reduces to a singleton. Very
recently, in [165, Theorem 4.3], it has been established that Mordukhovich’s coderivative
and the so-called linear coderivative of F at x, see [233, 234], coincide if F is locally Lip-
schitz continuous, directionally differentiable, and semismooth at x. Now, applying [234,
Corollary 2.10] and [233, Proposition 2.14], the Fréchet differentiability of F implies that the
linear coderivative of F at x reduces to the classical Fréchet derivative DF (x) and it follows
D∗F (x)(y) = {DF (x)>y} for all y ∈ Rn. Clearly, as in the proof of Theorem 2.5.24, this
yields ∂F (x) = {DF (x)}.
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3. The proximity operator

The proximity operator was originally introduced and studied by Moreau in his seminal works
[161, 162, 163] and has become a popular tool in many different fields of research over the
last decades. More specifically, due to its manifold applicabilities in nonsmooth optimization,
the proximity operator has been intensively used to design and develop general numerical
algorithms, such as fixed point and descent-based methods [54, 88, 236], proximal (quasi)-
Newton approaches [14, 129], and alternating or primal-dual schemes [91, 71, 136, 42]. In
the following sections, we will introduce the proximity operator, give examples and discuss
several important properties. Most of the statements presented here can be found in the
paper of Combettes andWajs [54], where essential features and calculation rules for proximity
operators are provided and derived. Further results can also be found in the book [11]. For
more information on corresponding numerical methods and applications of the proximity
operator we refer to the reviews and monographs [6, 53, 184] and the references therein.

3.1. Definitions and basic properties

Let Λ ∈ Sn++ be an arbitrary symmetric, positive definite matrix and let ϕ : Rn → (−∞,+∞]
be a convex, proper, and lower semicontinuous function, then the Moreau-Yosida regulariza-
tion or Moreau envelope of ϕ is defined as

(3.1.1) envΛ
ϕ : Rn → R, envΛ

ϕ(x) := min
y∈Rn

ϕ(y) +
1

2
‖x− y‖2Λ,

where ‖x‖Λ :=
√
〈x, x〉Λ, x ∈ Rn, is the norm induced by the Euclidean scalar product

〈·, ·〉Λ : Rn×Rn → R, 〈x, y〉Λ := 〈Λx, y〉 = 〈x,Λy〉. For every x ∈ Rn the minimum in (3.1.1)
is attained at the unique point proxΛ

ϕ(x) that is characterized by the optimality condition

(3.1.2) proxΛ
ϕ(x) ∈ x− Λ−1 · ∂ϕ(proxΛ

ϕ(x)),

where ∂ϕ denotes the convex subdifferential of ϕ. The function

proxΛ
ϕ : Rn → Rn, proxΛ

ϕ(x) := arg min
y∈Rn

ϕ(y) +
1

2
‖x− y‖2Λ

is called proximity operator of ϕ. Usually, the matrix Λ is chosen as a fixed one-dimensional
parameter by setting Λ = 1

λI for some λ > 0. This leads to the classical proximity operator

prox
1
λ
I

ϕ (x) = arg min
y∈Rn

ϕ(y) +
1

2λ
‖x− y‖22,
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3. The proximity operator

which is typically abbreviated by proxλϕ(x). In the following, we will discuss characteristic
properties of the proximity operator proxΛ

ϕ for arbitrary parameter matrices Λ ∈ Sn++. More-
over, we will also treat the proximity operator as a function of Λ and establish more general
results, which are simple extensions of the classical ones, but, to the best of our knowledge,
do not seem to be completely available in the literature so far. We will use the notations

envϕ : Rn × Sn → R, envϕ(x,Λ) := envΛ
ϕ(x)

and
proxϕ : Rn × Sn → Rn, proxϕ(x,Λ) := proxΛ

ϕ(x),

when the Moreau envelope and the proximity operator are explicitly understood as functions
of x and Λ, i.e., when the parameter matrix Λ is not fixed. Let us start with some important
continuity results of proximity operators.

Lemma 3.1.1 (cf. [163], [54, Lemma 2.4]). Let ϕ : Rn → (−∞,+∞] be a convex,
proper, and lower semicontinuous function and let Λ ∈ Sn++ be an arbitrary symmetric and
positive definite matrix. Then, proxΛ

ϕ and I − proxΛ
ϕ are Λ-firmly nonexpansive operators,

i.e., it holds
‖T (x)− T (y)‖2Λ ≤ 〈T (x)− T (y), x− y〉Λ, ∀ x, y ∈ Rn,

for T ≡ proxΛ
ϕ and T ≡ I − proxΛ

ϕ.

Proof. We follow the proof of Lemma 2.4 in [54] and set T ≡ proxΛ
ϕ, then for x, y ∈ Rn

the optimality condition (3.1.2) implies{
ϕ(proxΛ

ϕ(y))− ϕ(proxΛ
ϕ(x)) ≥ 〈x− proxΛ

ϕ(x), proxΛ
ϕ(y)− proxΛ

ϕ(x)〉Λ,
ϕ(proxΛ

ϕ(x))− ϕ(proxΛ
ϕ(y)) ≥ 〈y − proxΛ

ϕ(y), proxΛ
ϕ(x)− proxΛ

ϕ(y)〉Λ.

Adding those two inequalities, we obtain

‖proxΛ
ϕ(x)− proxΛ

ϕ(y)‖2Λ + 〈y − x,proxΛ
ϕ(x)− proxΛ

ϕ(y)〉Λ ≤ 0.

Using the last result, we can easily establish the second assertion

‖(I − proxΛ
ϕ)(x)− (I − proxΛ

ϕ)(y)‖2Λ ≤ ‖x− y‖2Λ − 〈x− y,proxΛ
ϕ(x)− proxΛ

ϕ(y)〉Λ
= 〈(x− proxΛ

ϕ(x))− (y − proxΛ
ϕ(y)), x− y〉Λ,

as desired.

Let Λ ∈ Sn++ be arbitrary and suppose that T is a Λ-firmly nonexpansive operator. Then,
Lemma 3.1.1 implies

‖T (x)− T (y)‖2Λ ≤ ‖Λ
1
2 (T (x)− T (y))‖2 · ‖Λ

1
2 (x− y)‖2 = ‖T (x)− T (y)‖Λ · ‖x− y‖Λ

for all x, y ∈ Rn. Thus, every Λ-firmly nonexpansive mapping is also a Λ-nonexpansive
mapping, i.e., it is a Lipschitz continuous function with modulus 1 with respect to the norm
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‖ · ‖Λ. Moreover, by using

(3.1.3) λmin(Λ) · ‖z‖2 ≤ ‖z‖2Λ ≤ λmax(Λ) · ‖z‖2, ∀ z ∈ Rn,

it immediately follows that a Λ-nonexpansive mapping is also Lipschitz continuous with
respect to the Euclidean norm with modulus

√
λmax(Λ)/λmin(Λ). The following lemma

shows that the proximity operator preserves its local Lipschitz continuity when it is treated
as a function of the parameter matrix Λ.

Lemma 3.1.2. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let x ∈ Rn be arbitrary but fixed. Then, for every compact subset K ⊂ Sn++

there exists a constant L = L(ϕ, x,K) such that

‖proxΛ1
ϕ (x)− proxΛ2

ϕ (x)‖ ≤ L · ‖Λ1 − Λ2‖F , ∀ Λ1,Λ2 ∈ K.

In particular, the proximity operator proxϕ(x, ·) : Sn → Rn is Lipschitz continuous on every
compact subset K ⊂ Sn++.

Proof. Let K ⊂ Sn++ be a compact set. Then, due to the compactness of K, there exist
λM ≥ λm > 0 such that λMI � Λ � λmI for all Λ ∈ K. Let us define p̄ := proxλM Iϕ (x) and
let Λ ∈ K be arbitrary. Using envΛ

ϕ(x) ≤ envλM Iϕ (x) and applying the optimality condition
(3.1.2) for p̄, we obtain

1

2
‖proxΛ

ϕ(x)− x‖2 ≤ 1

λm
(envλM Iϕ (x)− ϕ(proxΛ

ϕ(x))

≤ λM
λm

(
〈p̄− x,proxΛ

ϕ(x)− p̄〉+
1

2
‖p̄− x‖2

)
≤ λM

λm

(
‖p̄− x‖‖proxΛ

ϕ(x)− x‖ − 1

2
‖p̄− x‖2

)
.

Rearranging the terms and solving the resulting inequality for ‖proxΛ
ϕ(x) − x‖ yields the

following bounds

λM
λm

(
1−

√
1− λm

λM

)
· ‖p̄− x‖ ≤ ‖proxΛ

ϕ(x)− x‖ ≤ λM
λm

(
1 +

√
1− λm

λM

)
· ‖p̄− x‖.

Thus, since the upper bound does only depend on λm, λM , and x, the term ‖proxΛ
ϕ(x)− x‖

is bounded for all Λ ∈ K. For convenience, let us set

C := C(ϕ, x,K) :=
λM
λm

(
1 +

√
1− λm

λM

)
· ‖p̄− x‖.

The remaining arguments of the proof follow the basic ideas and techniques presented in
[236, Lemma 3]. An almost identical and a related result can also be found in [210, Lemma
3] and [129, Proposition 3.6], respectively. Now, let Λ1,Λ2 ∈ K be arbitrary and let us define
pi := proxΛi

ϕ (x)− x, i = 1, 2. Then, using characterization (3.1.2) for x+ p1 and x+ p2, we
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3. The proximity operator

obtain the following inequalities:{
ϕ(x+ p2)− ϕ(x+ p1) ≥ −〈p1, p2 − p1〉Λ1 ,

ϕ(x+ p1)− ϕ(x+ p2) ≥ −〈p2, p1 − p2〉Λ2 .

Combining those two inequalities, we readily get

(3.1.4) 〈p1, p1 − p2〉Λ1 ≤ 〈p2, p1 − p2〉Λ2 .

Next, adding the term −〈p2, p1 − p2〉Λ1 on both sides of (3.1.4), it follows

‖p1 − p2‖2Λ1
≤ 〈p2, (Λ2 − Λ1)(p1 − p2)〉

= 〈Λ−
1
2

1 (Λ2 − Λ1) · p2,Λ
1
2
1 (p1 − p2)〉 ≤ ‖Λ−

1
2

1 (Λ2 − Λ1) · p2‖‖p1 − p2‖Λ1 ,

where we used the symmetry and invertibility of Λ1. Consequently, due to the boundedness
of p2 and Λ1 � λmI, we can infer

‖proxΛ1
ϕ (x)− proxΛ2

ϕ (x)‖ = ‖p1 − p2‖ ≤ λmax(Λ
− 1

2
1 )√

λm
‖p2‖ · ‖Λ1 − Λ2‖F ≤

C

λm
· ‖Λ1 − Λ2‖F ,

as desired.

Remark 3.1.3. Let us make some comments on Lemma 3.1.2. If (Λk)k ∈ Sn++ is a sequence
of matrices that converges to some Λ ∈ Sn++, then Lemma 3.1.2 implies that the proximity
operators proxΛk

ϕ (x) converge to proxΛ
ϕ(x) for every fixed x ∈ Rn. In other words, a sequence

of minimizers of the functionals θk(y) := ϕ(y) + 1
2‖x− y‖

2
Λk

converges to a minimizer of the
limit functional θ(y) := ϕ(y)+ 1

2‖x−y‖
2
Λ. This quite remarkable property can be traced back

to the fact that the sequence of functionals (θk)k epi- or Γ-converges to θ in our situation.
Figure 3.1 illustrates this effect for two different, explicit examples.

The following corollary is an easy consequence of Lemma 3.1.2.

Corollary 3.1.4. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function. Then, the proximity operator proxϕ : Rn × Sn → Rn is Lipschitz continuous on
every compact subset K ⊂ Rn × Sn++ and continuous on Rn × Sn++.

Next, we discuss differentiability properties of the Moreau envelope envϕ. Let us note,
that smoothness of envΛ

ϕ was already derived by Moreau in [163, Proposition 7.d]. The proof
of Lemma 3.1.5 is based on the proof in [90, Satz 6.38].

Lemma 3.1.5. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function. Then, the Moreau envelope of ϕ is continuously differentiable on Rn×Sn++ and its
partial derivatives satisfy

∇xenvϕ(x,Λ) = Λ(x− proxΛ
ϕ(x)), ∇Λenvϕ(x,Λ) =

1

2
(x− proxΛ

ϕ(x))(x− proxΛ
ϕ(x))>

for all (x,Λ) ∈ Rn × Sn++. Moreover, for every arbitrary but fixed Λ ∈ Sn++, the Moreau
envelope envΛ

ϕ is convex on Rn.
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2
x̄ = (2, 2)⊤

(a)
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x̄ = (0.5, 0.5)⊤

(b)

Figure 3.1.: Illustration of the convergence of a sequence of proximity operators (proxΛk
ϕ (x̄))k

for different parameter matrices Λk and for two different choices of ϕ. In subfig-
ure (a) the `1-regularization ϕ(x) := ‖x‖1 was used; in subfigure (b) the so-called
Burg entropy function

ϕ(x) :=
2∑
i=1

f(xi), f(xi) :=

{
− ln(xi) if xi > 0,

+∞ if xi ≤ 0,

was used (see, e.g., [54, Example 2.18]). The parameter matrices Λk converge to
the identity matrix I. Orange point: fixed reference point. Ellipses: visualization
of the different unit disks {x ∈ R2 : ‖x‖Λk = 1}. Gray points: plot of the
corresponding proximity operators proxΛk

ϕ (x̄).

Proof. Let us define θ(x, y,Λ) := ϕ(y) + 1
2‖x− y‖

2
Λ and let [h,H] ∈ Rn × Sn be arbitrary.

Then, for all t > 0 sufficiently small, the parameter matrix Λ + tH is symmetric and positive
definite. Thus, the Moreau envelope envϕ(x+ th,Λ + tH) is well-defined and it holds

envϕ(x+ th,Λ + tH)− envϕ(x,Λ) ≤ θ(x+ th,proxΛ
ϕ(x),Λ + tH)− θ(x,proxΛ

ϕ(x),Λ)

=
1

2
‖(x+ th)− proxΛ

ϕ(x)‖2Λ+tH −
1

2
‖x− proxΛ

ϕ(x)‖2Λ

=
t

2
‖x− proxΛ

ϕ(x)‖2H + t · 〈x− proxΛ
ϕ(x), h〉Λ +O(t2).

Please note, that the term “‖ · ‖2H ” is just used as an abbreviation for ‖y‖2H = y>Hy and
does not necessarily correspond to a norm since H is not assumed to be positive definite.
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Now, the latter estimate shows

lim sup
t↓0

envϕ(x+ th,Λ + tH)− envϕ(x,Λ)

t
(3.1.5)

≤ 1

2
‖x− proxΛ

ϕ(x)‖2H + 〈Λ(x− proxΛ
ϕ(x)), h〉.

Similarly, we can derive a lower bound

envϕ(x+ th,Λ + tH)− envϕ(x,Λ)

≥ θ(x+ th,proxΛ+tH
ϕ (x+ th),Λ + tH)− θ(x,proxΛ+tH

ϕ (x+ th),Λ)

=
1

2
‖(x+ th)− proxΛ+tH

ϕ (x+ th)‖2Λ+tH −
1

2
‖x− proxΛ+tH

ϕ (x+ th)‖2Λ

=
t

2
‖x− proxΛ+tH

ϕ (x+ th)‖2H + t · 〈x− proxΛ+tH
ϕ (x+ th), h〉Λ +O(t2).

This establishes

lim inf
t↓0

envϕ(x+ th,Λ + tH)− envϕ(x,Λ)

t
(3.1.6)

≥ 1

2
‖x− proxΛ

ϕ(x)‖2H + 〈Λ(x− proxΛ
ϕ(x)), h〉,

where we used the continuity of the proximity operator proxϕ. Combining (3.1.5), (3.1.6),
and

‖x− proxΛ
ϕ(x)‖2H = tr((x− proxΛ

ϕ(x))(x− proxΛ
ϕ(x))>H),

it follows that the Moreau envelope of ϕ is directionally differentiable at (x,Λ) in the direction
[h,H] and its derivative is given by

env′ϕ(x,Λ; [h,H]) = 〈Λ(x− proxΛ
ϕ(x)), h〉+

1

2
tr((x− proxΛ

ϕ(x))(x− proxΛ
ϕ(x))>H).

Since the direction [h,H] ∈ Rn×Sn was arbitrary and env′ϕ(x,Λ; [h,H]) is linear and contin-
uous in [h,H], the Moreau envelope envϕ is Fréchet differentiable and the gradient of envϕ
satisfies

∇xenvϕ(x,Λ) = Λ(x− proxΛ
ϕ(x)), ∇Λenvϕ(x,Λ) =

1

2
(x− proxΛ

ϕ(x))(x− proxΛ
ϕ(x))>.

Furthermore, using the continuity of the proximity operator proxϕ, we infer that envϕ is even
continuously differentiable on Rn×Sn++. To prove the convexity of the Moreau envelope, we
use the fact, that a continuously differentiable function is convex if and only if its gradient
is a monotone mapping. Hence, let Λ ∈ Sn++ be fixed and let x, y ∈ Rn be arbitrary. Then,
applying Lemma 3.1.1, it follows

〈∇xenvϕ(x,Λ)−∇xenvϕ(y,Λ), x− y〉 = 〈(x− proxΛ
ϕ(x))− (y − proxΛ

ϕ(y)), x− y〉Λ ≥ 0.

Consequently, we conclude that envΛ
ϕ : Rn → R is a convex function.
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Remark 3.1.6. We will often use the notation

∇envΛ
ϕ(x) := ∇xenvϕ(x,Λ)

to denote the partial derivative ∇xenvϕ(x,Λ) or the gradient of envΛ
ϕ, when the parame-

ter matrix Λ is fixed. Moreover, rewriting the optimality condition (3.1.2), we obtain the
following, useful property of the gradient of the Moreau envelope

(3.1.7) ∇envΛ
ϕ(x) ∈ ∂ϕ(proxΛ

ϕ(x)).

3.2. Proximal calculus and examples

Next, we present some basic tools and rules for the computation of proximity operators. In
particular, we will also discuss the decomposition principle of Moreau that establishes a link
between the proximity operator of a function and the proximity operator of its corresponding
convex conjugate.

Lemma 3.2.1. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let x ∈ Rn, Λ ∈ Sn++ be given. Then, the following hold:

(i) Let us define ψ(·) := ϕ(· − b), b ∈ Rn. Then, it follows proxΛ
ψ(x) = b+ proxΛ

ϕ(x− b).

(ii) Let us define ψ(·) := ϕ(·/ρ), ρ ∈ Rn\{0}. Then, it follows proxΛ
ψ(x) = ρ proxρ

2Λ
ϕ (x/ρ).

Proof. The proof is exactly as in [54, Lemma 2.6].

The following composition formula extends Theorem 3.1 in [147] to the class of real ex-
tended valued functions and to proximity operators with matrix parameters.

Lemma 3.2.2. Let ϕ : Rm → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let x ∈ Rn, Λ ∈ Sn++ be arbitrary. Furthermore, let A ∈ Rm×n be given and
suppose that one of the following regularity conditions

(i) 0 ∈ int{ARn − dom ϕ}

(ii) ARn ∩ ri dom ϕ 6= ∅

is satisfied. Set ψ(x) := ϕ(Ax), then it holds

(3.2.1) proxΛ
ψ(x) = x− Λ−1A>Γv, Γ ∈ Sm++,

if and only if v is a fixed point of the operator (I − proxΓ
ϕ) ◦ Hx, where Hx : Rn → Rn,

Hx(v) := Ax+ (I −AΛ−1A>Γ)v.

Proof. The proof is a simple extension of the proof in [147]. For the sake of completeness,
we adapt the proof given in [147] for the more general setting of Lemma 3.2.2. Due to (3.1.2)
and Lemma 2.5.15, it follows

x− proxΛ
ψ(x) ∈ Λ−1 · ∂ψ(proxΛ

ψ(x)) = Λ−1 ·A>∂ϕ(AproxΛ
ψ(x)).
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3. The proximity operator

Hence, for any arbitrary parameter matrix Γ ∈ Sm++, there exists v ∈ Γ−1 · ∂ϕ(AproxΛ
ψ(x))

such that
proxΛ

ψ(x) = x− Λ−1A>Γv

and we obtain

v ∈ Γ−1 · ∂ϕ(AproxΛ
ψ(x)) ⇐⇒ AproxΛ

ψ(x) ∈ AproxΛ
ψ(x) + v − Γ−1 · ∂ϕ(AproxΛ

ψ(x))

⇐⇒ AproxΛ
ψ(x) = proxΓ

ϕ(AproxΛ
ψ(x) + v)

⇐⇒ Ax−AΛ−1A>Γv = proxΓ
ϕ(Hx(v))

⇐⇒ v = (I − proxΓ
ϕ)(Hx(v)).

Conversely, assume that v is a fixed point of the mapping (I − proxΓ
ϕ) ◦Hx, then the above

argumentation establishes the following implication:

v ∈ Γ−1 · ∂ϕ(Ax−AΛ−1A>Γv)

=⇒ A>Γv ∈ A>∂ϕ(A(x− Λ−1A>Γv)) = ∂ψ(x− Λ−1A>Γv).

Obviously, the last inclusion can be rearranged such that optimality condition (3.1.2) is again
applicable. This finally yields proxΛ

ψ(x) = x− Λ−1A>Γv.

Remark 3.2.3. If the matrices A and Λ satisfy AΛ−1A> ∈ Sn++, then both regularity
conditions in Lemma 3.2.2 are fulfilled and equation (3.2.1) can be simplified to

proxΛ
ϕ◦A(x) = x− Λ−1A>(AΛ−1A>)−1(Ax− prox(AΛ−1A>)−1

ϕ (Ax)).

In addition, if A is orthogonal, i.e., if it holds A>A = AA> = I ∈ Rn×n, then the above
formula reduces to

proxΛ
ϕ◦A(x) = A>proxAΛA>

ϕ (Ax).

In particular, in the case Λ = λI, we recover the two well-known composition formulae

proxλIϕ◦A(x) = x−A>(AA>)−1(Ax− proxλ(AA>)−1

ϕ (Ax))

and
proxλIϕ◦A(x) = A>proxλIϕ (Ax),

respectively.

Lemma 3.2.4. Let (Ik)k=1,...,N ⊂ {1, ..., n} be a sequence of N distinct sets such that

N⋃
k=1

Ik = {1, ..., n} and nk := |Ik| 6= 0, ∀ k = 1, ..., N.

Furthermore, for k = 1, ..., N , let (ϕk)k=1,...,N , ϕk : Rnk → (−∞,+∞], be a family of
convex, proper, and lower semicontinuous functions and let Λk ∈ Snk++ be given. Let us define
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ϕ(x) :=
∑N

k=1 ϕk(xIk) and Λ ∈ Rn×n,

Λ[IkI`] :=

{
Λk if k = `,

0 if k 6= `,
1 ≤ k, ` ≤ N.

Then, it holds

(3.2.2) proxΛ
ϕ(x)Ik = proxΛk

ϕk
(xIk), ∀ k = 1, ..., N.

Proof. We only give a sketch of the proof and refer to [54, Lemma 2.9] for further details.
Clearly, ϕ is a convex, proper, and lower semicontinuous function and we have Λ ∈ Sn++.
Now, using

∂ϕ(xI1 , ..., xIN ) = ∂ϕ1(xI1)× ...× ∂ϕN (xIN ),

(see, e.g., [11, Proposition 16.8] or [54, Lemma 2.1]), the statement (3.2.2) easily follows from
a block-wise application of optimality condition (3.1.2).

Theorem 3.2.5 (Moreau’s decomposition principle). Let ϕ : Rn → (−∞,+∞] be a
convex, proper, and lower semicontinuous function and let Λ ∈ Sn++ be arbitrary. Then, for
all x ∈ Rn, it holds

(3.2.3) x = proxΛ
ϕ(x) + Λ−1 · proxΛ−1

ϕ∗ (Λx),

and

(3.2.4) ϕ(proxΛ
ϕ(x)) + ϕ∗(proxΛ−1

ϕ∗ (Λx)) = 〈proxΛ
ϕ(x),proxΛ−1

ϕ∗ (Λx)〉,

where ϕ∗ denotes the convex conjugate of ϕ.

Proof. A proof of (3.2.3) can be found in [14, Lemma 5−B.1]. To prove the second
assertion, we proceed as in [54, Lemma 2.10]. By reformulating the equation (3.2.3) and
using (3.1.7), we obtain

proxΛ−1

ϕ∗ (Λx) = Λ(x− proxΛ
ϕ(x)) = ∇envΛ

ϕ(x) ∈ ∂ϕ(proxΛ
ϕ(x)).

Due to Lemma 2.5.14, this is equivalent to (3.2.4).

The following result was established by Yu in [261].

Theorem 3.2.6. Let ϕ1, ϕ2 : Rn → (−∞,+∞] be two convex, proper and lower semicontin-
uous functions and let Λ ∈ Sn++ be arbitrary. If ϕ1 and ϕ2 satisfy

(3.2.5) ∂ϕ2(x) ⊆ ∂ϕ2(proxΛ
ϕ1

(x)), ∀ x ∈ Rn,

then the following composition rule holds for all x ∈ Rn:

(3.2.6) proxΛ
ϕ1+ϕ2

(x) = (proxΛ
ϕ1
◦ proxΛ

ϕ2
)(x).

Proof. The proof is just a minor, mainly “notational” extension of the proof of Theorem 1
in [261]. Therefore, we will omit the proof.
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3. The proximity operator

Examples

In this subsection we want to derive some explicit formulae for proximity operators by using
the calculation rules we have just presented. We mainly concentrate on examples that will
be relevant in the subsequent sections or in our numerical considerations at the end of this
thesis. More computational results and a broader overview of explicitly known proximity
operators can be found in [54, 6, 53].

Example 3.2.7 (Classical projection). Let K ⊂ Rn be a convex, nonempty, and closed
set and let Λ ∈ Sn++ be arbitrary. Then, it holds

proxΛ
ιK

(x) = arg min
y∈Rn

ιK(y) +
1

2
‖x− y‖2Λ = arg min

y∈K

1

2
‖x− y‖2Λ =: PΛ

K(x).

In particular, if Λ = λI for some λ > 0, then the proximity operator of the indicator function
ιK coincides with the classical, orthogonal projection onto the set K.

Example 3.2.8 (Norms and homogeneous functions). Let |||·||| : Rn → R be a norm
on Rn and let µ > 0, Λ ∈ Sn++ be arbitrary. Then, by applying Theorem 3.2.5 and Example
2.2.5, we obtain

(3.2.7) proxΛ
µ|||·|||(x) = x− µΛ−1 · proxµΛ−1

|||·|||∗ (Λx/µ) = x− Λ−1 · PΛ−1

B|||·|||◦ (0,µ)(Λx).

In the special case Λ = 1
λI, λ > 0, formula (3.2.7) can be used to derive and calculate a large

number of important proximity operators. For instance, if we consider the `1- or `2-norm,
then (3.2.7) reduces to the two well-known shrinkage operators

proxµλ‖·‖1(x) = prox
1
λ
I

µ‖·‖1(x) = x− P[−µλ,µλ](x) = sign(x)�max{|x| − µλ, 0},

proxµλ‖·‖2(x) = prox
1
λ
I

µ‖·‖2(x) = x− PB‖·‖2 (0,µλ)(x) =
x

‖x‖2
·max{‖x‖2 − µλ, 0},

where the application of the sign function sign(·) and the absolute value | · | is understood
component-wise. Now, suppose that ϕ : Rn → (−∞,+∞] is a convex, proper, lower semi-
continuous, and positively homogeneous function. Using Lemma 2.5.13, Theorem 2.2.3 and
3.2.5, we obtain the following extension of formula (3.2.7)

(3.2.8) proxΛ
µϕ(x) = x− µΛ−1 · proxµΛ−1

σ∗
∂ϕ(0)

(Λx/µ) = x− Λ−1 · PΛ−1

µ∂ϕ(0)(Λx).

Example 3.2.9 (Constraints and `1-norm). Let a, b ∈ [−∞,+∞]n be such that ai ≤ bi
for all i = 1, ..., n. Additionally, let us exclude the degenerate situations ai = bi = −∞ or
ai = bi = +∞, i.e., let us suppose that the sets [ai, bi] ∩ R are nonempty for all i. Now, let
λ ∈ Rn++ and µ > 0 be arbitrary and let us set Λ = diag(1 � λ) ∈ Sn++. The aim of this
example is to compute the proximity operator of the composite function

ϕ(x) := µ‖x‖1 + ι[a,b](x).
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3.2. Proximal calculus and examples

Clearly, we are in the setting of Lemma 3.2.4, i.e., the proximity operator proxΛ
ϕ(x) can be

computed component-wise. Moreover, due to

∂|xi| =


{+1} if xi > 0,

[−1,+1] if xi = 0,

{−1} if xi < 0,

prox1/λi
ι[ai,bi]

(xi) = P[ai,bi](xi) =


bi if xi > bi,

xi if xi ∈ [ai, bi] ∩ R,
ai if xi < ai,

we immediately see that Theorem 3.2.6 is applicable when 0 ∈ [ai, bi]. Since the absolute
value reduces to a differentiable function when ai > 0 or bi < 0, the proximity operator
prox

1/λi
µ|·|+ι[ai,bi]

(xi) can be computed directly in these cases; it holds:

prox
1/λi
µ|·|+ι[ai,bi]

(xi) =


P[ai,bi](xi − µλi) if ai > 0,

P[ai,bi](prox
1/λi
µ|·| (xi)) if 0 ∈ [ai, bi],

P[ai,bi](xi + µλi) if bi < 0.

In summary, after some more (easy) manipulations, we obtain the composition formula

proxΛ
ϕ(x) = P[a,b](proxΛ

µ‖·‖1(x)) = P[a,b](x− P[−µλ,µλ](x)).

The following example concludes this subsection and is a bit more sophisticated.

Example 3.2.10 (Epigraphical projection). We want to analyze the proximity operator
that is characterized by the optimization problem

(3.2.9) min
(y,γ)∈Rn×R

α

2
‖x− y‖22 +

β

2
(t− γ)2 s. t. ‖Ay − b‖2 ≤ γ,

where α, β > 0, A ∈ Rm×n, and b ∈ Rm are given. Clearly, if α = β, then the optimal
solution of the latter minimization problem is given by the projection onto the set K :=
{(x, t) ∈ Rn × R : ‖Ax− b‖2 ≤ t}. Projections of this type usually occur as subproblems or
subroutines in so-called basis pursuit problems which have the following form:

(3.2.10) min
x∈Rn

Ω(x) s. t. ‖Ax− b‖2 ≤ σ.

Here, Ω : Rn → R is a general sparsity-inducing penalization and σ > 0 estimates the level of
noise in the (possibly noisy) measurements b. Later, in our numerical comparison in chapter
7, we will use the computational results of this example to derive an Alternating Direction
Method of Multipliers (ADMM) for an optimization problem of the form (3.2.10) with a
group-sparse penalty function. Now, defining

Λ :=

(
αIn 0
0 β

)
∈ R(n+1)×(n+1), B =

(
A 0
0 1

)
∈ R(m+1)×(n+1),

and
ϕ(y, γ) := ιepi ‖·‖2(y − b, γ),
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3. The proximity operator

we see that the optimal solution of (3.2.9) is given by the proximity operator proxΛ
ϕ◦B(x, t).

Moreover, if the matrix A satisfies AA> = I, then, using Lemma 3.2.1 (i) and Remark 3.2.3,
we can derive a closed form formula for this proximity operator. In particular, it holds

proxΛ
ϕ◦B(x, t) =

(
x
t

)
−
(
A> 0
0 1

)((
Ax− b

t

)
− PΛ

epi ‖·‖2(Ax− b, t)
)

and

PΛ
epi ‖·‖2(y, γ) =


(y, γ) if ‖y‖2 ≤ γ,
α‖y‖2+βγ

2‖y‖2 (y, ‖y‖2) if − α
β ‖y‖2 ≤ γ ≤ ‖y‖2,

(0, 0) if γ ≤ −α
β ‖y‖2.

A detailed verification of the epigraph formula can be found, e.g., in [87, Proposition 3.3].

3.3. Semismoothness and second order properties

As motivated in our introduction, proximity operators play an essential role in deriving first
order necessary conditions for optimization problems of the form

(3.3.1) min
x∈Rn

f(x) + ϕ(x),

where f : Rn → R is smooth and ϕ : Rn → (−∞,+∞] is a convex, proper, and lower
semicontinuous function. In particular, as we will see in the next chapter, the proximal
framework can be utilized to reformulate these optimality conditions as nonsmooth, proximal-
based equations that include the proximity operator of the mapping ϕ. Consequently, this
subsection is dedicated to analyze the semismoothness and the second order properties of
the proximity operator proxΛ

ϕ and to investigate whether the semismooth Newton method
can be applied to solve the problem (3.3.1).

Unfortunately, in general, the proximity operator cannot be expected to be a semismooth
function. More specifically, Kruskal [127], and Shapiro [214], constructed a three- and two-
dimensional example of a convex, closed set K such that the corresponding projection oper-
ator PK(x) is not directionally differentiable at some point x /∈ K.

Although the analysis of the differentiability properties of the metric projection PK is a
very classical field of research, see, e.g., [266, 80, 213, 212], general results that establish and
guarantee the semismoothness of the projection PK are rather limited and often necessitate
a special and specific structure of the convex, closed set K ⊂ Rn. For instance, in [75],
Facchinei and Pang studied the metric projection onto sets of the form

(3.3.2) K := {x ∈ Rn : g(x) ≤ 0},

where each component function gi : Rn → R, i = 1, ...,m, is assumed to be convex and
twice continuously differentiable. Under the Sequentially Bounded Constraint Qualification
(SBCQ) and the Constant Rank Constraint Qualification (CRCQ), Facchinei and Pang es-
tablished directional differentiability and piecewise smoothness of the projection operator
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3.3. Semismoothness and second order properties

PK , respectively. Moreover, in a similar fashion and applying the CRCQ, Sun and Han [228]
and Mifflin et al. [149] have shown that the proximity operator of a piecewise C2-function
and of the maximum of a finite collection of convex C2-functions is again a piecewise smooth
and hence, a semismooth function. Extensions using weaker constraint qualifications were
considered, e.g., in [146]. For a more detailed discussion of the metric projection, we refer to
[75, Chapter 4] and the references therein.

In general, if the nonsmooth function ϕ does not possess a certain piecewise structure,
much fewer results are available. However, Meng, Sun, and Zhao [145] showed that, under
a mild regularity condition, semismoothness of the proximity operator proxλIϕ can be traced
back to semismoothness of the metric projection onto the epigraph of ϕ. In [146], this result
was further refined and it was shown that piecewise smoothness of the epigraphical projec-
tion Pepiϕ implies piecewise smoothness of the corresponding proximity operator. (See also
the recent work [48] for another connection between the proximity operator proxλIϕ and the
epigraphical projection Pepiϕ). Thus, the analysis of the semismoothness of the proximity
operator can be completely shifted to a respective investigation of the projection operator
Pepiϕ. Unfortunately, in many situations, the epigraph epi ϕ will not be representable as
a set of the form (3.3.2) with a smooth function g and the known results for metric pro-
jections are not applicable. Nonetheless, these different results and observations initiated
a “renewed” discussion and an intensive study of differentiability properties of certain epi-
graphical projections. In particular, in the area of low-rank matrix optimization and matrix
cone programming, new and profound results were established by Ding et al. [63, 64]; see
also [118, 44, 119] for recent applications.

In the following, we will briefly introduce the classes of so-called semialgebraic and tame
functions. In their seminal work [21], Bolte, Daniilidis and Lewis, showed that semialgebraic
and tame functions are semismooth. Moreover, these two classes of functions provide an
extensive calculus and, remarkably, it also follows that the proximity operator of a semial-
gebraic function is an α-order semismooth function for some α > 0. The material in the
following subsection is primarily based on [114, 21] and on the observations in [63].

Semialgebraic and tame functions

We will now sketch the main definitions and theorems for tame functions and present some
basic calculation rules for semialgebraic functions. More details can be found in [114, 21].
Furthermore, for a more algebraic and geometric interpretation of semialgebraic functions
and tameness, we refer to the work of van den Dries and Coste [244, 57, 58].

Definition 3.3.1 (o-minimal structure, cf. [57, 21]). An o-minimal structure on
(R,+, ·) is a sequence O = (On)n of collections On, n ∈ N, of definable subsets of Rn
satisfying the following axioms

(i) For every n ∈ N, the collection On is closed under Boolean operations (finite intersec-
tions, unions, and complements).

(ii) If A ∈ On and B ∈ Om, then A×B belongs to On+m.

(iii) If π : Rn+1 → R, π(x1, ..., xn, xn+1) := (x1, ..., xn), is the canonical projection onto Rn,
then for any set A ∈ On+1 it holds π(A) ∈ On.
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3. The proximity operator

(iv) On contains the family of algebraic subsets of Rn. In particular, every set of the form
{x ∈ Rn : p(x) = 0}, where p : Rn → R is a polynomial function, belongs to On.

(v) The elements of O1 are exactly the finite unions of open intervals and points.

A mapping F : U ⊂ Rn → Rm is said to be definable in O if its graph is definable in O as a
subset of Rn × Rm.

Definition 3.3.2 (Tame functions, cf. [21, Definition 2]). A set A ⊂ Rn is called
tame if for every r > 0, there exists an o-minimal structure O over (R,+, ·), such that the
intersection A∩ [−r, r]n is definable in this structure. A mapping F : U ⊂ Rn → Rm is called
tame if its graph gra F is tame as a subset of Rn × Rm.

Let us mention that a tame function is not necessarily definable in an o-minimal structure
O. For instance, the sine function, sin : R→ R, is tame but not definable in every o-minimal
structure. This can be easily seen by noticing that the set π(gra sin ∩R×{0}) violates part
(v) of Definition 3.3.1.

The class SA of so-called semialgebraic objects is of special interest since it forms the
smallest o-minimal structure on (R,+, ·), see [57, Exercise 1.7]. Here, a set A ⊂ Rn is said
to be semialgebraic if it can be written as a finite intersection and union of polynomial sets,
i.e., if

A =

p⋃
j=1

q⋂
i=1

{x ∈ Rn : pij(x) = 0, qij(x) < 0}, p, q ∈ N,

where pij , qij : Rn → R are polynomial functions on Rn. A mapping is called semialgebraic
if its graph is semialgebraic. Let us note that for semialgebraic objects, the projection axiom
(iii) in Definition 3.3.1 is a consequence of the Tarski-Seidenberg principle [244, 58]. Before we
discuss the connection between semialgebraic functions, semismoothness, and the proximity
operator, we want to state some basic properties of semialgebraic sets and functions. Clearly,
by Definition 3.3.1, the finite union, intersection, and difference of semialgebraic sets is also
a semialgebraic set. Besides, it holds:

• The closure, the interior, and the boundary of a semialgebraic set are semialgebraic.

• Let F : Rn → Rm be a semialgebraic mapping and let B ⊂ Rm be a semialgebraic set.
Then, the set F−1(B) is semialgebraic.

• The sum and composition of semialgebraic functions is again a semialgebraic function.

• Let f : Rn × Rm → R be semialgebraic, then the function ϕ : Rn → R, ϕ(x) :=
infy∈Rm f(x, y) is also semialgebraic.

The proof of these properties heavily relies on the fact that the class SA is an o-minimal
structure. In particular, item (iii) in Definition 3.3.1 will constantly be used to derive and
formulate rather elegant proofs. To facilitate the understanding of the concept and of the
overall mechanism of semialgebraic sets and mappings, we want to briefly verify the latter
three statements.
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Proof. First of all, by induction, it easily follows that if A ⊂ Rn+m is a semialgebraic set
and if

π : Rn+m → Rn, π(z1, ..., zn, zn+1, ..., zn+m) := (z1, ..., zn),

is the projection onto the first n components of z ∈ Rn+m, then π(A) is also a semialgebraic
set. (Actually, this is one of several, basic formulations of the Tarski-Seidenberg Theorem).
Now, let F : Rn → Rm be a semialgebraic function and let B ∈ Rm be a semialgebraic set.
Then, the set F−1(B) can be rewritten as follows

F−1(B) = π(gra F ∩ Rn ×B), π(z1, ..., zn, zn+1, ..., zn+m) := (z1, ..., zn).

Thus, the preimage F−1(B) is semialgebraic. Next, let us suppose that G : Rn → Rm is
another semialgebraic mapping. Then, it holds

gra F +G = π(B1 ∩ B2 ∩ B3), π(z1, ..., zn+m, zn+m+1, ..., zn+3m) := (z1, ..., zn+m),

where the sets Bi, i = 1, 2, 3, are given by B1 := {(x, y, u, v) ∈ Rn+3m : y = u + v}, B2 :=
{(x, y, u, v) ∈ Rn+3m : (x, u) ∈ gra F}, and B3 := {(x, y, u, v) ∈ Rn+3m : (x, v) ∈ gra G}.
Since the sets B2, B3 are semialgebraic and B1 is an algebraic set, it follows that F +G is a
semialgebraic mapping. The argumentation for the composition of two functions is similar.
Specifically, if H : Rp → Rn is a semialgebraic function, then the graph of F ◦ H can be
written as

gra F ◦H = π({(x, y, z) ∈ Rp × Rm × Rn : (x, z) ∈ gra H, (z, y) ∈ gra F})

with π(z1, ..., zp+m, zp+m+1, ..., zp+m+n) := (z1, ..., zp+m). Hence, the composition F ◦ H is
again a semialgebraic function. Finally, let us prove the last statement and let us consider
the graph of the marginal function ϕ:

gra ϕ = {(x, τ) ∈ Rn × R : τ = ϕ(x) = inf
y

f(x, y)}

= {(x, τ) ∈ Rn × R : ∀ ε > 0, ∃ y ∈ Rm, such that f(x, y) ≤ τ + ε}.

Now, let us define b : Rn × R× R× Rm → R, b(x, τ, ε, y) := f(x, y)− τ − ε, and

B := {(x, τ, ε, y) ∈ Rn × R× R× Rm : b(x, τ, ε, y) ≤ 0}.

Then apparently, the set B can be written as

B = π3(gra b ∩ Rm+n+2 × R−),

where π3(z1, ..., zm+n+2, zm+n+3) = (z1, ..., zm+n+2) is the canonical projection onto the first
n+m+ 2 components of z ∈ Rm+n+3. Since f is assumed to be a semialgebraic function, it
immediately follows that the graph of b and the set B are semialgebraic sets. Moreover, by
setting

π1(z1, ..., zn+1, zn+2) = (z1, ..., zn+1), π2(z1, ..., zn+2, zn+3, ..., zm+n+2) = (z1, ..., zn+2),
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3. The proximity operator

the graph gra ϕ can be represented as follows

gra ϕ = Rn × R \ π1 ({(x, τ, ε) ∈ Rn × R× R : ε > 0} \ π2(B)) .

Let us note that this construction basically expresses the quantifiers “∀” and “∃” as set
operations. Since the involved sets are all semialgebraic, this clearly proves our claim.

The next result establishes semismoothness of semialgebraic and tame functions and was
first presented by Bolte, Daniilidis, and Lewis in [21, Theorem 1 and Remark 4]; see also
[114] for an alternative proof.

Theorem 3.3.3. Let F : Rn → Rm be a locally Lipschitz continuous mapping. Then, the
following statements hold:

(i) If the function F is tame, then F is semismooth.

(ii) If F is semialgebraic, then F is α-order semismooth for some α > 0.

As in the work of Ding [63], we can now derive semismoothness of the proximity operator
proxΛ

ϕ of a semialgebraic function.

Corollary 3.3.4. Let ϕ : Rn → (−∞,+∞] be a convex, proper, lower semicontinuous,
and semialgebraic function and let Λ ∈ Sn++ be an arbitrary parameter matrix. Then, the
proximity operator proxΛ

ϕ : Rn → Rn is a semialgebraic mapping and α-order semismooth for
some α > 0.

Proof. Due to Theorem 3.3.3, it suffices to show that the proximity operator is a semialge-
braic function. Since the Moreau envelope envΛ

ϕ is the marginal function of the semialgebraic
mapping

θ : Rn × Rn → R, θ(x, y) := ϕ(y) +
1

2
‖x− y‖2Λ,

it immediately follows that envΛ
ϕ is semialgebraic. Furthermore, the graph of the proximity

operator proxΛ
ϕ can be represented as follows

gra proxΛ
ϕ = {(x, y) ∈ Rn × Rn : θ(x, y) = envΛ

ϕ(x)}.

Since the functions θ and envΛ
ϕ are semialgebraic, this clearly implies that the proximity

operator proxΛ
ϕ is a semialgebraic mapping.

Using the calculus of semialgebraic mappings and the Courant-Fischer max-min principle,
it is possible to show that the absolute value of a real number and the k-th eigenvalue or
singular value of a matrix are semialgebraic functions. This implies that the `p-norms and
the Schatten-p norms are semialgebraic for all p ∈ [1,∞)∩Q and p =∞. Specifically, the `1-
norm, the TV-regularization and the nuclear norm are examples of semialgebraic functions.
We refer to Karow [122, Section 3.1] for detailed proofs.

Thus, in summary, we have seen that the class of semialgebraic functions is rather broad
and enjoys a rich calculus. Moreover, nearly every application and example considered in
this thesis can be treated within the framework of semialgebraic mappings. Finally, let us
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also note that the abstract and general results of this subsection can be further extended to
the larger o-minimal structure of the so-called globally subanalytic functions, see [20] and the
references therein.

Second order properties of the proximity operator

In the following paragraph, motivated by the results in [110, 145], we want to discuss and
derive certain second order properties of the proximity operator which will be obligatory for
the second order analysis of optimization problems later on.

As usual, let Λ ∈ Sn++ be arbitrary and let ϕ : Rn → (−∞,+∞] be a convex, proper,
and lower semicontinuous mapping. In Lemma 3.1.1 and the subsequent discussion, it was
shown that the proximity operator proxΛ

ϕ is a Lipschitz continuous function. Thus, due to
the Theorem of Rademacher, the function proxΛ

ϕ is Fréchet differentiable almost everywhere.
Let ΩΛ

ϕ ⊂ Rn denote the set of all points at which the proximity operator proxΛ
ϕ is Fréchet

differentiable. Then, the following statements are true:

• The function envΛ
ϕ is twice Fréchet differentiable on ΩΛ

ϕ.

• For all x ∈ ΩΛ
ϕ the matrix ΛDproxΛ

ϕ(x) is symmetric and positive semidefinite.

• For all x ∈ ΩΛ
ϕ the matrix Λ(I −DproxΛ

ϕ(x)) is symmetric and positive semidefinite.

Let us briefly verify the latter properties. The first result follows immediately from Lemma
3.1.5. By setting

T (x) :=
1

2
‖x‖2Λ − envΛ

ϕ(x),

the symmetry of the matrix ΛDproxΛ
ϕ(x) follows from the identity ∇2T (x) = ΛDproxΛ

ϕ(x),
for x ∈ ΩΛ

ϕ, and the well-known fact that a twice Fréchet differentiable function possesses a
symmetric Hessian; see, e.g., [62, Theorem 8.12.2 and 8.12.3]. Now, let x ∈ ΩΛ

ϕ, h ∈ Rn, be
arbitrary and let t > 0 be sufficiently small. Then, due to Lemma 3.1.1, we have

0 ≤ ‖proxΛ
ϕ(x+ th)− proxΛ

ϕ(x)‖2Λ ≤ 〈proxΛ
ϕ(x+ th)− proxΛ

ϕ(x),Λth〉
= 〈DproxΛ

ϕ(x) · th,Λth〉+ o(t2),

where we used the Fréchet differentiability of proxΛ
ϕ on ΩΛ

ϕ. Dividing both sides of the latter
inequality by t2 and taking the limit t ↓ 0, we establish

〈h,ΛDproxΛ
ϕ(x)h〉 ≥ 0, ∀ h ∈ Rn.

To prove the third assertion, we first use

∇2envΛ
ϕ(x) = Λ(I −DproxΛ

ϕ(x)), ∀ x ∈ ΩΛ
ϕ.

Thus, as in the second part, the matrix Λ(I −DproxΛ
ϕ(x)) has to be symmetric. Moreover,

the positive semidefiniteness of Λ(I −DproxΛ
ϕ(x)) is a direct consequence of the convexity of

the Moreau envelope envΛ
ϕ.
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3. The proximity operator

Let us recall that the Bouligand subdifferential of the proximity operator proxΛ
ϕ at x ∈ Rn

is defined as follows

∂BproxΛ
ϕ(x) = {M ∈ Rn×n : ∃ (xk)k ⊂ ΩΛ

ϕ such that xk → x, DproxΛ
ϕ(xk)→M}.

Now, a simple continuity argument and Lemma 2.5.20 show that the last two properties do
also hold for every generalized derivativeM ∈ ∂BproxΛ

ϕ(x) of the Bouligand subdifferential of
proxΛ

ϕ. In the following Lemma, we summarize our observations and present an analogue and
final result for the Clarke subdifferential of the proximity operator proxΛ

ϕ. Let us mention that
Meng, Sun, and Zhao [145] have already established a similar result for metric projections
onto convex, nonempty, and closed sets.

Lemma 3.3.5. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let Λ ∈ Sn++ and x ∈ Rn be arbitrary. Then, for every V ∈ ∂proxΛ

ϕ(x) ⊂ Rn×n,
the following statements are true:

(i) The matrices ΛV and Λ(I − V ) are symmetric and positive semidefinite.

(ii) It holds 〈V h,Λ(I − V )h〉 ≥ 0 for all h ∈ Rn.
Proof. The first part is an immediate consequence of ∂proxΛ

ϕ(x) = conv ∂BproxΛ
ϕ(x) and

Lemma 2.5.20. The proof of the second part is identical to the proof of [145, Proposition 1]
and will be omitted here.

Let us note, that the symmetry of the matrix ΛV , V ∈ ∂proxΛ
ϕ(x), can be used to calculate

the transposed of V . In particular, it holds

(3.3.3) V > = V >ΛΛ−1 = (ΛV )>Λ−1 = ΛV Λ−1, and V = Λ−1V >Λ.

We conclude this section with a structural property of the directional derivative of the prox-
imity operator. This result is a straightforward extension of [132, Corollary 2.6].

Lemma 3.3.6. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let Λ ∈ Sn++ be arbitrary. Suppose that proxΛ

ϕ is directionally differentiable at
some point x ∈ Rn, then it holds

(proxΛ
ϕ)′(x;h) ∈ N∂ϕ(proxΛ

ϕ(x))(∇envΛ
ϕ(x)), ∀ h ∈ Rn.

Proof. For the sake of completeness, let us recapitulate the proof presented in [132]. Let
h ∈ Rn be arbitrary and t > 0. Due to the monotonicity of the convex subdifferential ∂ϕ
and ∇envΛ

ϕ(x+ th) ∈ ∂ϕ(proxΛ
ϕ(x+ th)), it holds

〈∇envΛ
ϕ(x+ th)− λ,proxΛ

ϕ(x+ th)− proxΛ
ϕ(x)〉 ≥ 0, ∀ λ ∈ ∂ϕ(proxΛ

ϕ(x)).

Using the continuity of ∇envΛ
ϕ and the directional differentiability of proxΛ

ϕ, it follows

〈∇envΛ
ϕ(x)− λ, (proxΛ

ϕ)′(x;h)〉

= lim
t↓0

〈
∇envΛ

ϕ(x+ th)− λ,
proxΛ

ϕ(x+ th)− proxΛ
ϕ(x)

t

〉
≥ 0
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3.3. Semismoothness and second order properties

for all λ ∈ ∂ϕ(proxΛ
ϕ(x)) and hence, (proxΛ

ϕ)′(x;h) ∈ N∂ϕ(proxΛ
ϕ(x))(∇envΛ

ϕ(x)).
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4. A globalized semismooth Newton
method for nonsmooth optimization
problems

In this chapter, we propose and investigate a semismooth Newton method for general non-
smooth optimization problems of the form

(P) min
x∈Rn

f(x) + ϕ(x) =: ψ(x),

where f : Rn → R is twice continuously differentiable, possibly nonconvex and ϕ : Rn →
(−∞,+∞] is a convex, proper, and lower semicontinuous mapping.

The proposed algorithm generalizes the semismooth Newton method for `1-regularized
optimization problems that was presented and analyzed by Milzarek and Ulbrich in [157]. In
particular, by exploiting the properties of the proximity operator, we will modify and extend
the algorithmic framework and the convergence theory given in [157] to the more general
class of nonsmooth minimization problems (P).
As in [157], we will combine the efficiency of filter globalization techniques with the fast

local convergence properties of the semismooth Newton method [197, 199] to construct an
overall globally and locally fast converging algorithm. Our approach is primarily based on
the idea to obtain trial steps from semismooth Newton steps for a nonsmooth reformulation

(E) FΛ(x) = x− proxΛ
ϕ(x− Λ−1∇f(x)) = 0, Λ ∈ Sn++

of the first order optimality conditions of (P). The acceptance of these steps is controlled by
a multidimensional filter globalization technique. If the semismooth Newton step is not ac-
cepted, then a suitably chosen descent step is performed. The main requirement is that these
alternative steps ensure global convergence in the case where only finitely many semismooth
Newton steps are taken. Here, we choose a proximal gradient method with an Armijo-type
line search, which was first introduced by Fukushima and Mine [88], for this purpose. The
nonsmooth function FΛ : Rn → Rn arising in (E) will be derived in section 4.1.

We use a globalization technique that is based on a multidimensional filter framework.
Originally, the filter concept was developed by Fletcher and Leyffer [83] in order to globalize
SQP methods for nonlinear programming problems without using penalty functions. The
original version of the filter method works with a two dimensional filter, where each entry
consists of the objective function value and a measure for the constraint violation at a
given point. The filter globalization concept has rapidly established itself as one of the
most important and efficient globalization techniques in nonlinear programming. For further
details we refer to [84, 82, 240]. Gould, Leyffer, and Toint modified this concept in [95] and
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4. A globalized semismooth Newton method for nonsmooth optimization problems

proposed a multidimensional filter to globalize (Gauss-)Newton-based methods for nonlinear
equations and least squares problems. In [96] Gould, Sainvitu, and Toint adapted this
approach to an unconstrained minimization problem by applying the method to the gradient
of the objective function. Our method can be viewed as an extension of this idea to the
general setting of the nonsmooth optimization problem (P).

Under assumptions comparable to those of other state-of-the-art methods, we prove for
our algorithm that every accumulation point of the generated sequence is a stationary point.
Furthermore, under suitable second order conditions, transition to q-superlinear local con-
vergence is shown. In contrast to many other analyses, we consider not only the case of
convex f , but also address the general situation of a nonconvex function f . Moreover, in
the subsequent chapter, we also provide a profound and detailed discussion of abstract and
different second order-type conditions for problem (P). In particular, for a certain class of
nonsmooth functions ϕ, we will show that the semismoothness of the proximity operator
proxΛ

ϕ, a (no gap) second order sufficient condition and the strict complementarity condition
guarantees fast local convergence of the semismooth Newton method.

Let us note that the following sections are essentially based on the work [157] and that
several parts have already appeared in similar form in [157] for the `1-regularized setting.

This chapter is organized as follows. In section 4.1 we specify different optimality con-
ditions for the nonsmooth minimization problem (P) and derive the nonsmooth equation
(E). In the sections 4.2.1–4.2.3 we state the assumptions under which we prove convergence
and discuss some preliminaries concerning the properties of the proximal gradient method
as well as the theoretic introduction and examination of the multidimensional filter method.
We then continue with the presentation of the main approach. In section 4.3 we prove our
results on global and local convergence of the algorithm. Finally, the mentioned second order
framework for the nonsmooth problem (P) can be found in chapter 5.

4.1. First order optimality conditions

We now derive first order optimality conditions for the nonsmooth optimization problem
(P). Therefore, suppose that f : Rn → R is a continuously differentiable function, ϕ : Rn →
(−∞,+∞] is a convex, proper, and lower semicontinuous mapping and let us assume that
x̄ ∈ dom ϕ is a local solution of problem (P). Then, for all d ∈ Rn and all t > 0 sufficiently
small it holds

ψ(x̄+ td)− ψ(x̄) ≥ 0.

This shows that the directional epiderivative ψ↓−(x̄; d) must be nonnegative for all d ∈ Rn.
Furthermore, by using the convexity of ϕ, it follows

ψ↓−(x̄; d) ≤ lim inf
t↓0

f(x̄+ td)− f(x̄) + ϕ((1− t)x̄+ t(x̄+ d))− ϕ(x̄)

t

≤ ϕ(x̄+ d)− ϕ(x̄) + lim inf
t↓0

f(x̄+ td)− f(x̄)

t

= ϕ(x̄+ d)− ϕ(x̄) +∇f(x̄)>d,
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4.1. First order optimality conditions

which directly implies −∇f(x̄) ∈ ∂ϕ(x̄). Next, let Λ ∈ Sn++ be an arbitrary symmetric and
positive definite matrix. Then, the latter condition is clearly equivalent to

x̄ ∈ x̄− Λ−1∇f(x̄)− Λ−1 · ∂ϕ(x̄)

and by invoking equation (3.1.2), this just means

(4.1.1) x̄ = proxΛ
ϕ(x̄− Λ−1∇f(x̄)).

Finally, let us assume that x̄ satisfies the fixed point-type equation (4.1.1) and let us set
z̄ := x̄ − Λ−1∇f(x̄). Then, rearranging the terms in (4.1.1) and in the definition of z̄, we
obtain

x̄ = proxΛ
ϕ(z̄) and ∇f(proxΛ

ϕ(z̄)) + Λ(z̄ − proxΛ
ϕ(z̄)) = 0.

Of course, in the general, nonconvex case, we cannot expect that these different conditions
are sufficient to guarantee optimality. However, they can be used to characterize stationarity
of a feasible point.

Definition 4.1.1 (Stationarity). A feasible point x̄ ∈ dom ϕ is called stationary point of
the problem (P) if it holds

(4.1.2) ψ↓−(x̄; d) ≥ 0, ∀ d ∈ Rn.

In the following, we collect our different reformulations of the stationarity condition (4.1.2)
and summarize our previous discussion.

Lemma 4.1.2. Let f : Rn → R be a continuously differentiable function and let ϕ : Rn →
(−∞,+∞] be a convex, proper, and lower semicontinuous mapping. Furthermore, assume
that x̄ ∈ dom ϕ is a stationary point of problem (P). Then, the following conditions are
mutually equivalent:

(i) For all d ∈ Rn it holds ψ↓−(x̄; d) ≥ 0.

(ii) It holds 0 ∈ ∇f(x̄) + ∂ϕ(x̄).

(iii) For any Λ ∈ Sn++, the following fixed point-type equation is satisfied

FΛ(x̄) := x̄− proxΛ
ϕ(x̄− Λ−1∇f(x̄)) = 0.

(iv) Let Λ ∈ Sn++ be arbitrary. Then, the vector z̄ = x̄−Λ−1∇f(x̄) is a zero of the so-called
normal map FΛ

nor : Rn → Rn,

FΛ
nor(z̄) := ∇f(proxΛ

ϕ(z̄)) + Λ(z̄ − proxΛ
ϕ(z̄)) = 0.

Proof. So far, we have already shown (i) ⇒ (ii) ⇔ (iii) ⇒ (v). To complete the proof,
let us suppose that z̄ is a zero of the Normal map FΛ

nor. By setting x̄ := proxΛ
ϕ(z̄), we

readily obtain z̄ = x̄ − Λ−1∇f(x̄) and FΛ(x̄) = x̄ − proxΛ
ϕ(z̄) = 0. Since the conditions (ii)

and (iii) are already known to be equivalent, we also see that this result does not depend
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4. A globalized semismooth Newton method for nonsmooth optimization problems

on the specific choice of Λ. Now, let us turn to the direction “(ii) ⇒ (i)”. The inclusion
−∇f(x̄) ∈ ∂ϕ(x̄) implies that ϕ is subdifferentiable at x̄. In this case, Π(·) := ϕ↓(x̄; ·) is a
convex, proper, lower semicontinuous, and positively homogeneous mapping and by (2.5.5),
we obtain ∂Π(0) = ∂ϕ(x). Thus, applying Remark 2.5.8, we can infer

0 ≤ ∇f(x̄)>(d− 0) + Π(d)−Π(0) = ∇f(x̄)>d+ ϕ↓(x̄; d) ≤ ψ↓−(x̄; d), ∀ d ∈ Rn.

This concludes the proof.

As already mentioned, our strategy and overall goal is to develop a globally and locally
fast converging, semismooth Newton method to solve the nonsmooth equation

(4.1.3) FΛ(x) = x− proxΛ
ϕ(x− Λ−1∇f(x)) = 0.

Clearly, Lemma 4.1.2 justifies this approach since each solution of (4.1.3) corresponds to a
stationary point of our initial problem (P).

In the remainder of this section, we will discuss several useful properties of the nonsmooth
function FΛ. The next statement shows that ‖FΛ(x)‖ does not grow too much when the
parameter matrix Λ changes. This result was first established by Tseng and Yun in [236].

Lemma 4.1.3. Let f : Rn → R be a continuously differentiable function and let ϕ : Rn →
(−∞,+∞] be a convex, proper, and lower semicontinuous mapping. Moreover, let Λ1,Λ2 ∈
Sn++ be two arbitrary symmetric, positive definite matrices. Then, for all x ∈ Rn and for

W := Λ
− 1

2
2 Λ1Λ

− 1
2

2 , it follows

‖FΛ1(x)‖ ≤
1 + λmax(W ) +

√
1− 2λmin(W ) + λmax(W )2

2

λmax(Λ2)

λmin(Λ1)
‖FΛ2(x)‖.

Proof. We refer to [236, Lemma 3] for a detailed proof. Let us briefly remark that in
[236, Lemma 3] the additional restriction “x ∈ dom ϕ ≡ dom P ” is made. This assumption
is not really necessary since, in the proof the “crucial”, possibly extended valued function
“ϕ ≡ P ” is only evaluated at appropriate proximity operators that are always contained in
dom ϕ ≡ dom P .

Remark 4.1.4. Let Λ ∈ Sn++ be given and let (Λk)k ⊂ Sn++ be a family of symmetric,
positive definite matrices. Suppose that there exist constants λM ≥ λm > 0 such that

λMI � Λk � λmI, ∀ k ∈ N.

Then, it easily follows

λmax(Λ)

λm
I � Λ

− 1
2

k ΛΛ
− 1

2
k � λmin(Λ)

λM
I and λM

λmin(Λ)
I � Λ−

1
2 ΛkΛ

− 1
2 � λm

λmax(Λ)
I,

for all k ∈ N, and, due to Lemma 4.1.3, we obtain the following bounds

(4.1.4) λ · ‖FΛ(x)‖ ≤ ‖FΛk(x)‖ ≤ λ · ‖FΛ(x)‖
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for all k ∈ N, x ∈ Rn and some constants λ, λ > 0, which do not depend on k or Λk. Thus,
if the parameter matrices Λk remain in a bounded set, the latter inequalities imply:

FΛ(xk)→ 0 ⇐⇒ FΛk(xk)→ 0, k →∞.

As a consequence, the parameter matrix Λ is allowed to change in each iteration. Hence,
adaptive update schemes such as the well-known Barzilai-Borwein step size rule, [10], or
other techniques can be applied.

Lemma 4.1.5. Suppose that f and ϕ satisfy the assumptions in Lemma 4.1.3 and let
Λ1,Λ2 ∈ Sn++ be arbitrary. Then, for all x ∈ Rn, it holds

(4.1.5) ‖FΛ1(x)− FΛ2(x)‖ ≤ 1

λmin(Λ1)
‖(Λ2 − Λ1)FΛ2(x)‖.

Proof. The proof uses the same techniques and ideas as the proof of [236, Lemma 3];
see also [210, Lemma 3] and [129, Proposition 3.6] for related results. Using x − FΛi(x) =
proxΛi

ϕ (x − Λ−1
i ∇f(x)) ∈ dom ϕ, for i = 1, 2, and the characterization of the proximity

operator (3.1.2), we obtain{
ϕ(x− FΛ2(x))− ϕ(x− FΛ1(x)) ≥ 〈Λ1F

Λ1(x)−∇f(x), FΛ1(x)− FΛ2(x)〉,
ϕ(x− FΛ1(x))− ϕ(x− FΛ2(x)) ≥ 〈Λ2F

Λ2(x)−∇f(x), FΛ2(x)− FΛ1(x)〉.

Adding those two inequalities yields

〈Λ1F
Λ1(x)− Λ2F

Λ2(x), FΛ1(x)− FΛ2(x)〉 ≤ 0

and

‖FΛ1(x)− FΛ2(x)‖2Λ1
≤ 〈(Λ2 − Λ1)FΛ2(x), FΛ1(x)− FΛ2(x)〉
≤ ‖(Λ2 − Λ1)FΛ2(x)‖‖FΛ1(x)− FΛ2(x)‖.

Finally, by applying (3.1.3), we establish inequality (4.1.5).

The next lemma provides a connection between the nonsmooth function FΛ(x) and the
normal map FΛ

nor(x) and generalizes a result of Facchinei and Pang for variational inequalities;
see [75, Proposition 1.5.14].

Lemma 4.1.6. Let f and ϕ satisfy the assumptions in Lemma 4.1.3 and let Λ ∈ Sn++ be an
arbitrary symmetric, positive definite matrix. Moreover, let x ∈ dom ϕ be given and suppose
that ϕ is subdifferentiable at x. Then, it holds

‖FΛ(x)‖Λ ≤ dist(−∇f(x), ∂ϕ(x))Λ−1 = inf
z
{‖FΛ

nor(z)‖Λ−1 : x = proxΛ
ϕ(z)}.

Proof. Let x− y ∈ dom ϕ be arbitrary. As in the proof of Lemma 4.1.5 we obtain

ϕ(x− y)− ϕ(x− FΛ(x)) ≥ 〈ΛFΛ(x)−∇f(x), FΛ(x)− y〉
= ‖FΛ(x)‖2Λ − 〈FΛ(x)− Λ−1∇f(x), y〉Λ − 〈∇f(x), FΛ(x)〉.
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Now, setting y = 0 it follows

‖FΛ(x)‖2Λ ≤ 〈∇f(x), FΛ(x)〉+ ϕ(x)− ϕ(proxΛ
ϕ(x− Λ−1∇f(x)))

≤ 〈∇f(x) + v, FΛ(x)〉 ≤ ‖∇f(x) + v‖Λ−1‖FΛ(x)‖Λ

for all v ∈ ∂ϕ(x). Thus, by taking the infimum over all such v ∈ ∂ϕ(x) and by using

x = proxΛ
ϕ(z) ⇐⇒ x ∈ z − Λ−1∂ϕ(x) ⇐⇒ Λ(z − x) ∈ ∂ϕ(x),

we establish the following estimate

‖FΛ(x)‖Λ ≤ inf
v∈∂ϕ(x)

‖∇f(x) + v‖Λ−1

= dist(−∇f(x), ∂ϕ(x))Λ−1 = inf
z
{‖FΛ

nor(z)‖Λ−1 : x = proxΛ
ϕ(z)},

as desired.

4.2. Algorithmic framework

In this section, we present the different algorithmic components of our globalized semismooth
Newton method in detail.

In particular, in subsection 4.2.2, we propose and investigate a proximal gradient method
that will be used as an underlying base algorithm and that was first analyzed by Fukushima,
Mine [88] and Tseng, Yun [236]. As in [236], we incorporate an Armijo-type linesearch to
guarantee descent and global convergence of the iterates generated by the proximal gradient
method. Afterwards, in section 4.2.3, we introduce a multidimensional filter framework that
controls the acceptance of the Newton iterates and suitably connects the proximal gradi-
ent method and the semismooth Newton approach. In contrast to most other convergence
analyses for convex composite algorithms, we will consider both the general nonconvex case
and the convex case. Taking account of the possible effects of the nonconvexity, we augment
our basic combination of semismooth Newton and proximal gradient steps by adding cer-
tain growth conditions. In subsection 4.2.4, we present these growth conditions and the full
algorithm in detail. Moreover, we also give examples that illustrate the application of the
semismooth Newton method in practise.

Besides, we also propose a specialized method for convex problems that has an easier
structure and converges under similar assumptions. More specifically, if f is convex and if
the nonsmooth function ϕ is positively homogeneous and real valued, then an abstract con-
vergence result can be established without specifying any algorithmic details. This extends
a similar result of Milzarek and Ulbrich [157] for convex `1-regularized problems.

We start with a brief discussion of our basic assumptions.
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4.2.1. Assumptions

The following conditions summarize our assumptions for proving that every accumulation
point of the proposed algorithm is a stationary point.

Assumption 4.2.1. Let f : Rn → R be given and let ϕ : Rn → (−∞,+∞] be a convex,
proper, and lower semicontinuous function. Furthermore, let us assume that there exists an
open, convex set dom ϕ ⊆ Ω ⊆ Rn such that:

(A.1) The function f is continuously differentiable on Ω.

(A.2) The gradient mapping ∇f : Ω→ Rn is Lipschitz continuous on dom ϕ with modulus
Lf > 0.

(A.3) The mapping f is twice continuously differentiable on Ω.

We will also utilize the following condition. Let (Λk)k ⊂ Sn++ be a family of symmetric,
positive definite parameter matrices, then we assume:

(B) There exist 0 < λm ≤ λM such that λMI � Λk � λmI for all k ∈ N.

Next, we consider a specialized version of Assumption 4.2.1:

Assumption 4.2.2. Let f : Rn → R be given and let ϕ : Rn → (−∞,+∞] be a convex,
proper, and lower semicontinuous mapping. Furthermore, let us assume that there exists an
open, convex set dom ϕ ⊆ Ω ⊆ Rn such that:

(C.1) The function f : Ω→ R is convex.

(C.2) The objective function ψ is coercive on Ω.

(C.3) The function ϕ : Rn → R is real valued and positively homogeneous.

In the following, we want show that for a general class of algorithms comprising those
investigated in this thesis, the assumptions (A.1), (B), and (C.1)–(C.3) imply boundedness
of an arbitrary sequence (xk)k of iterates satisfying FΛk(xk)→ 0, as k →∞. We start with
a discussion of the compactness of the level sets of ψ.

Lemma 4.2.3. Let Ω ⊂ Rn and f : Ω → R satisfy condition (C.1), then the following
statements are equivalent:

(i) For every α ∈ R the level set levα ψ is compact.

(ii) There exists ᾱ ∈ R such that the level set levᾱ ψ is nonempty and compact.

(iii) For some ᾱ ∈ R, the level set levᾱ ψ is nonempty and for every x̄ ∈ levᾱ ψ there exists
ϑ,R > 0 such that

ψ(x) ≥ ψ(x̄) + ϑ‖x− x̄‖, ∀ x ∈ Ω \BR(0).

(iv) The function ψ is coercive on Ω, i.e., limx∈Ω, ‖x‖→∞ ψ(x) = +∞.
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Proof. At first, let us suppose, that the level sets levα ψ, α ∈ R, are all compact. Since
the function ϕ is proper, there exists ξ ∈ dom ϕ and, consequently, the level set levψ(ξ) ψ
is nonempty and compact. Now, let us assume that levᾱ ψ is nonempty and compact for a
certain ᾱ ∈ R. Due to the compactness of levᾱ ψ and the Theorem of Weierstrass, we can
expand the level set levᾱ ψ by a small strip without leaving Ω, i.e., there exists δ > 0 such
that

Lδ := {x+ d : x ∈ levᾱ ψ, d ∈ Rn, ‖d‖ < δ}

is still contained in Ω (but not necessarily in dom ϕ). Let Γ := ∂Lδ denote the boundary of
Lδ and let us fix an arbitrary point x̄ ∈ levᾱ ψ. Using the compactness of Γ and Weierstrass’s
Theorem, we can find ε > 0 such that

ψ(x) ≥ inf
y∈Γ

ψ(y) > ψ(x̄) + ε, ∀ x ∈ Γ.

(In the case Γ∩ dom ϕ = ∅, this inequality is obviously fulfilled). Further, there exists r > 0
with maxx∈Γ ‖x− x̄‖ = r. Next, let t ∈ (0, 1) and z ∈ Γ be arbitrary and let us consider the
point x = x̄+ 1

t (z − x̄). Then, the convexity of ψ implies

ψ(z) = ψ(tx+ (1− t)x̄) ≤ tψ(x) + (1− t)ψ(x̄).

By combining the latter properties with the estimate 1
t = ‖x−x̄‖

‖z−x̄‖ ≥
1
r‖x− x̄‖, we can establish

the following growth rate:

(4.2.1) ψ(x) >
1

t
(ψ(x̄) + ε) +

(
1− 1

t

)
ψ(x̄) ≥ ψ(x̄) +

ε

r
‖x− x̄‖, ∀ x ∈ Ω \ Lδ.

Clearly, this shows that condition (iii) is satisfied. Moreover, since (iii) immediately implies
condition (iv), we only need to verify the direction “(iv) ⇒ (i)” to finish the proof of this
Lemma. However, since the equivalence of condition (i) and (iv) is already well-known for a
more general setting, see, e.g., [11, Proposition 11.11], we are done here.

Now, we want to prove that every sequence (xk)k ⊂ Ω that satisfies FΛk(xk) → 0, as
k →∞, has to be automatically bounded. We will see that the real valuedness and positive
homogeneity of ϕ plays a central role in the proof of this claim.

Lemma 4.2.4. Let Ω ⊂ Rn, f : Ω→ R, and the mapping ϕ : Rn → R satisfy the conditions
(A.1), (C.1)–(C.3), and let the sequences (xk)k ⊂ Ω, (Λk)k ⊂ Sn++ be arbitrary. Moreover,
suppose that condition (B) holds and that the sequence (FΛk(xk))k converges to 0 as k →∞.
Then, (xk)k remains in a bounded set Ω0 ⊂ Rn.

Proof. Due to Lemma 4.2.3, there exist a point x̄ ∈ dom ϕ = Rn and a suitable constant
ϑ > 0 such that

(4.2.2) f(x)− f(x̄) ≥ ϕ(x̄)− ϕ(x) + ϑ‖x̄− x‖

for all x ∈ Rn sufficiently large. To prove that (xk)k is bounded, assume in contrary that
there exists a subsequence (xk)K1 of (xk)k with ‖xk‖ → ∞ as K1 3 k →∞. Then, we have
(FΛk(xk))K1 → 0 and, by applying the calculation rule (3.2.8), assumption (B), and the
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compactness of ∂ϕ(0) (see Lemma 2.5.12 (i) and the discussion after Lemma 2.5.13), there
exists another subsequence (xk)K2 of (xk)K1 such that

(4.2.3) ∇f(xk) = ΛkF
Λk(xk)− PΛ−1

k

∂ϕ(0)(Λkx
k −∇f(xk))→ g∗ and g∗ ∈ ∂ϕ(0),

as K2 3 k →∞. Now, let k ∈ K2 be sufficiently large and let us define

pk := xk − FΛk(xk) = proxΛk
ϕ (xk − Λ−1

k ∇f(xk)),

qk := ΛkF
Λk(xk)−∇f(xk) = PΛ−1

k

∂ϕ(0)(Λkx
k −∇f(xk)).

Then, we obtain the following estimate

ϑ+
ϕ(x̄)− ϕ(FΛk(xk))

‖x̄− xk‖

≤ ϑ+
ϕ(xk − FΛk(xk)) + ϕ(x̄)− ϕ(xk)

‖x̄− xk‖

≤ ϕ(pk) + f(xk)− f(x̄)

‖x̄− xk‖
≤ ϕ(pk) + 〈∇f(xk), xk − x̄〉

‖x̄− xk‖

=
ϕ(pk)− 〈qk, xk − FΛk(xk)〉 − 〈qk, FΛk(xk)− x̄〉+ 〈ΛkFΛk(xk), xk − x̄〉

‖x̄− xk‖

≤ ϕ(pk)− (ϕ(pk) + ϕ∗(qk))
‖x̄− xk‖

+ ‖qk‖ · ‖F
Λk(xk)− x̄‖
‖x̄− xk‖

+ λM · ‖FΛk(xk)‖,

where we used the subadditivity of ϕ, the convexity of f , Moreau’s decomposition principle
(3.2.4) and inequality (4.2.2). Next, let us further define

qmax := max
q∈∂ϕ(0)

‖q‖.

Due to ϕ∗(qk) = σ∗∂ϕ(0)(q
k) = ι∂ϕ(0)(q

k) = 0 and by taking the limit K2 3 k → ∞, we
establish the contradiction

ϑ = lim
K23k→∞

{
ϑ+

ϕ(x̄)− ϕ(FΛk(xk))

‖x̄− xk‖

}
≤ lim

K23k→∞

{
λM · ‖FΛk(xk)‖+ qmax

‖FΛk(xk)− x̄‖
‖x̄− xk‖

}
= 0.

Hence, the sequence (xk)k is bounded, as desired.

Remark 4.2.5. If the set Ω is bounded, i.e., if the effective domain dom ϕ is bounded, then
we can use a much easier and more direct argumentation. In particular, due to the simple
fact

pk = proxΛk
ϕ (xk − Λ−1

k ∇f(xk)) ∈ dom ϕ, ∀ k ∈ N,

we immediately see that the sequence (xk)k has to be bounded in this situation. Moreover,
this argument does also clearly not depend on the convexity of f .
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4. A globalized semismooth Newton method for nonsmooth optimization problems

Lemma 4.2.6. Let Ω ⊂ Rn, f : Ω→ R, and the function ϕ : Rn → R satisfy the conditions
(A.1), (C.1)–(C.3), and consider the sequences (xk)k ⊂ Ω, (Λk)k ∈ Sn++. Suppose that
assumption (B) holds and let the sets KP ∪ KN be a disjoint partitioning of N such that
ψ(xk) ≤ ψ(xk−1) for all k ∈ KP and either KN is finite (or empty) or FΛk(xk) → 0 for
KN 3 k →∞. Then, the sequence of iterates (xk)k remains in a compact set Ω0 ⊂ Rn.

Proof. Due to Lemma 4.2.3 all level sets of the objective function ψ are compact. Hence,
it suffices to show that all iterates are contained in an appropriate level set levα ψ. If the
set KN is finite, then, due to ψ(xk) ≤ ψ(xk−1) for all k ∈ KP , we obtain xk ∈ levα ψ for all
k ≥ 0, where α := max{ψ(xr) ; r ∈ {0} ∪ KN}. Next, Lemma 4.2.4 shows that (xk)KN is
bounded, if KN contains infinitely many elements. Further, there holds

‖∇f(xk)‖ = ‖ΛkFΛk(xk) + PΛ−1
k

∂ϕ(0)(Λkx
k −∇f(xk))‖ ≤ λM‖FΛk(xk)‖+ qmax,

where qmax := maxq∈∂ϕ(0) ‖q‖ and we used the compactness of ∂ϕ(0). By applying the
subdifferential inequality for the convex functions f and ϕ and Example 2.5.17, we obtain

ψ(xk)− ψ(y) ≤ 〈∇f(xk), xk − y〉+ σ∂ϕ(0)(x
k)− ϕ(y)

≤ ‖∇f(xk)‖‖xk − y‖+ qmax‖xk − y‖ ≤ (λM‖FΛk(xk)‖+ 2qmax)‖xk − y‖

for some fixed y ∈ dom ϕ. Since the sequence (xk)KN is bounded, we see that

α := max
k∈{0}∪KN

ψ(xk) <∞.

From ψ(xk) ≤ ψ(xk−1) for all k ∈ KP we thus conclude that xk ∈ levα ψ for all k ≥ 0.

4.2.2. A proximal gradient method with an Armijo-type linesearch technique

We now consider a globalized proximal gradient method that we use for the step generation
whenever the semismooth Newton step is not accepted. It is advantageous to analyze this
method separately before proceeding the development and investigation of the final overall
algorithm.

Let xk denote the current iterate and let dk := −FΛk(xk) be a direction that is generated
by the fixed point-type equation (E). Then, the globalized proximal point method calculates
xk+1 = xk + σkd

k, where the step size σk is controlled by a quasi-Armijo rule. The details
are formulated in Algorithm 1. We use the following notation:

u(xk) := xk − Λ−1
k ∇f(xk), ∆k := −(∇f(xk))>FΛk(xk) + ϕ(proxΛk

ϕ (u(xk)))− ϕ(xk).

In the following, we will show that Algorithm 1 is a globally convergent descent method.
Further properties of Algorithm 1 will be discussed later together with the convergence
analysis of our main approach.

Let us mention that over the last years the proximal gradient method has established itself
as one of the most common and basic first order methods for convex composite problems.

58



4.2. Algorithmic framework

Algorithm 1: Proximal gradient method with quasi-Armijo rule
S0 Initialization: Choose x0 ∈ domϕ, Λ0 ∈ Sn++, and β, γ ∈ (0, 1). Set iteration k := 0.

while FΛk(xk) 6= 0 do
S1 Compute a new direction dk = −FΛk(xk) = proxΛk

ϕ (u(xk))− xk.

S2 Choose a maximal quasi-Armijo step size σk ∈ {1, β, β2, ....} with

ψ(xk + σkd
k) ≤ ψ(xk) + σkγ∆k.

S3 Set xk+1 = xk + σkd
k and choose Λk+1 ∈ Sn++.

k ← k + 1.

Moreover, besides Algorithm 1, many variants and alternative approaches have been pro-
posed and developed. For instance, the so-called BB-methods, which combine nonmonotone
linesearch techniques and the Barzilai-Borwein spectral approach [267, 10], represent a popu-
lar and frequently used class of extended proximal gradient methods. Here, characteristically,
the parameter matrix Λk is chosen via Λk = (λkBB1)−1I or Λk = (λkBB2)−1I, where

λkBB1 :=
(x̄k−1)>x̄k−1

(x̄k−1)>ḡk−1
, λkBB2 :=

(x̄k−1)>ḡk−1

(ḡk−1)>ḡk−1
,

and x̄k−1 := xk − xk−1, ḡk−1 := ∇f(xk)−∇f(xk−1). These nonmonotone variants of Algo-
rithm 1 have been successfully implemented in many different algorithms, as, e.g., SpaRSA
[256], FPC-AS, [254], TVAL3 [136], or curvilinear search methods [252, 251]. In this work,
we will focus on the very basic version of the proximal gradient method that guarantees
descent in the objective function at each iteration to facilitate the convergence analysis of
the augmented semismooth Newton method.

Let us start with the following descent property.

Lemma 4.2.7 (Descent directions). Let assumption (A.1) hold and let the sequences
(xk)k and (dk)k be generated by Algorithm 1. Then for all k ≥ 0 it holds

∆k ≤ −‖dk‖2Λk = −‖FΛk(xk)‖2Λk .

Proof. At first, let us note that the update formula in step S3 of Algorithm 1 and σk ∈ [0, 1]
imply xk ∈ dom ϕ for all k ∈ N. Thus, due to assumption (A.1), the terms u(xk) and ∇f(xk)
are well-defined for all k. Next, using the characterization (3.1.2) of the proximity operator
proxΛk

ϕ (u(xk)) and Lemma 3.1.5, we obtain

∆k ≤ −〈∇f(xk), FΛk(xk)〉+ 〈∇envΛk
ϕ (u(xk)), proxΛk

ϕ (u(xk))− xk〉
= −〈∇f(xk), FΛk(xk)〉 − 〈ΛkFΛk(xk)−∇f(xk), FΛk(xk)〉 = −‖FΛk(xk)‖2Λk ,

as desired.
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Lemma 4.2.8. Suppose that the assumptions (A.1)–(A.2) and condition (B) hold and let
the sequences (xk)k and (dk)k be generated by Algorithm 1. Then, there exists a constant
ζ > 0 for all k ∈ N with

(4.2.4) ψ(xk + σdk) ≤ ψ(xk) + σγ∆k for all σ ∈ [0, ζ].

Proof. Apparently σ = 0 fulfills (4.2.4). So, let us consider σ ∈ (0, 1] sufficiently small,
then we obtain for arbitrary but fixed k ∈ N

ψ(xk + σdk)− ψ(xk)

σ
− γ∆k ≤ f(xk + σdk)− f(xk)

σ
−∇f(xk)

>
dk + (1− γ)∆k

≤
∫ 1

0
(∇f(xk + σtdk)−∇f(xk))>dk dt− λm(1− γ)‖dk‖2

≤
(
Lf
2
σ − λm(1− γ)

)
‖dk‖2,

where we used the convexity of ϕ, Lemma 4.2.7 and assumption (B). At this point, let us
emphasize that the convexity of the set dom ϕ and σ, t ∈ [0, 1] imply

xk + σtdk = (1− tσ)xk + tσ · proxΛk
ϕ (u(xk)) ∈ dom ϕ ⊂ Ω, ∀ k ∈ N.

Hence, the expression ∇f(xk + σtdk) is well-defined for all k. Moreover, the quasi-Armijo
condition (4.2.4) is satisfied whenever

σ ≤ ζ := min

{
2λm(1− γ)

Lf
, 1

}
.

Remark 4.2.9. Lemma 4.2.8 shows that every step size sequence (σk)k generated by Al-
gorithm 1, is uniformly bounded from below (whenever our assumptions hold). To be more
precise, we have

(4.2.5) σk ≥ βζ > 0, ∀ k ≥ 0.

The following convergence result was first established by Tseng and Yun [236]. In contrast
to many other convergence analyses, Lipschitz continuity of the gradient ∇f or boundedness
of the iterates is not required.

Theorem 4.2.10 (Global convergence). Suppose that the assumptions (A.1) and (B)
are satisfied and let the sequences (xk)k and (Λk)k be generated by Algorithm 1. Then, every
accumulation point x∗ of (xk)k satisfies FΛ(x∗) = 0, Λ ∈ Sn++, and is thus a stationary point
of the nonsmooth problem (P).

Proof. This theorem is an application of a more general result of Tseng and Yun; see
[236, Theorem 1b]. For the sake of completeness, we also provide a simplified proof in the
Appendix A.1.
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4.2.3. A multidimensional filter framework

We adopt the multidimensional filter globalization concept of [95, 96] and tailor it to a
semismooth Newton method for solving the equation

(4.2.6) FΛ(x) = 0, Λ ∈ Sn++.

We will apply the filter to accept or reject semismooth Newton steps. The filter value
corresponding to a point x ∈ Rn is given by θ(x), where the filter function θ : Rn → Rp+ is
continuous and satisfies

(4.2.7) cθ‖FΛ(x)‖∞ ≤ ‖θ(x)‖∞ ≤ Cθ‖F
Λ(x)‖∞

with constants 0 < cθ < Cθ. This ensures that (θ(xk))k is bounded if and only if the sequence
(FΛ(xk))k is bounded and that the filter function θ and the function FΛ have the same set of
zeros. Hence, x̄ is a stationary point of the minimization problem (P) if and only if θ(x̄) = 0.
Next, we give a typical example for a filter function θ.

Example 4.2.11. A standard approach for choosing θ (with many possible variants) is to de-
compose {1, . . . , n} into p possibly overlapping nonempty sets Ij with

⋃p
j=1 Ij = {1, 2, ..., n}.

The function θ is then defined as

(4.2.8) θj(x) :=
1√
|Ij |
‖FΛ
Ij (x)‖ =

(
1

|Ij |
∑

i∈Ij
FΛ
i (x)

2
)1/2

, ∀ j ∈ {1, ..., p}.

This choice satisfies condition (4.2.7) with cθ := 1/
√

maxj |Ij | and Cθ := 1. The selection
of p and of the set Ij can be based on the characteristics of the problem. For instance, if we
choose p = n and Ij = {j}, then we obtain

θ(x) = (|FΛ
1 (x)|, |FΛ

2 (x)|, ..., |FΛ
n (x)|)>.

Remark 4.2.12. Since we are also interested in situations where the parameter matrix Λ
depends on the current iteration k, it is natural to ask whether the filter concept does also
work for sequences of the form (FΛk(xk))k. Clearly, if the parameter matrices (Λk)k satisfy
assumption (B), then Lemma 4.1.3 is applicable and the boundedness condition (4.2.7) will
also hold for FΛk(xk),

cθ‖FΛk(xk)‖∞ ≤ ‖θ(xk)‖∞ ≤ Cθ‖FΛk(xk)‖∞,

but of course with other constants 0 < cθ ≤ Cθ. Furthermore, in Example 4.2.11, the matrix
Λ can also be replaced by an arbitrary and changing parameter matrix Λk ∈ Sn++, k ∈ N.
Thus, the filter function need not be necessarily restricted to fixed parameter matrices.
However, to emphasize the dependency of the filter function and the filter values on Λ, we
will also work with the following notational variant

θ : Rn × Sn++ → Rp+, (x,Λ) 7→ θ(x,Λ).
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Figure 4.1.: Example of a two-dimensional filter and of the filter acceptance criterion. In
subfigure (a), the acceptance test (4.2.11) is illustrated for γF = 0. In particular,
each point that lies above the orange line is dominated by a filter entry and is
not acceptable to the filter. In subfigure (b), the same situation is shown for
different values of γF .

In particular, this extension of the filter function will turn out to be useful when comparing
different filter values θ(xk) ≡ θ(xk,Λk) and θ(xk+1) ≡ θ(xk+1,Λk+1). Since we will always
work with bounded parameter matrices, our following discussion focuses on the basic defini-
tion of the filter function that does not explicitly include the parameter matrix Λ. Moreover,
if the filter concept is used within an algorithmic framework, we will adhere to the convention
θ(xk) ≡ θ(xk,Λk).

Now, assume that a filter function θ : Rn → Rp+ has been chosen (e.g., according to (4.2.8)
for some p ≤ n). At iteration k, the filter Fk ⊂ Rp+ is a finite collection of filter entries
q ∈ Rp+, where usually (and in our context always) each q ∈ Fk corresponds to a point
x ∈ Rn, via q = θ(x) and the points x are selected iterates x`, ` < k, of the method to be
globalized. In our case, these points are a subset of the iterates generated by semismooth
Newton steps for (4.2.6). Similar to [95], we define an acceptance criterion for a point x.

Definition 4.2.13 (Filter acceptance criterion). A point x ∈ Rn is said to be acceptable
to the filter Fk ⊂ Rp+ \ {0} if

(4.2.9) max
1≤j≤p

(
qj − θj(x)

)
≥ γF δ(q, θ(x))

holds for all q ∈ Fk. Here, γF ∈ (0, 1) is fixed and δ : Rp+ × Rp+ → R+ is continuous and
satisfies for all q ∈ Rp+

(4.2.10) δ(q, q) = 0 =⇒ q = 0.

If the new iterate xk+1 ∈ Rn is acceptable to the current filter Fk, we can, if we wish,
update the filter by adding θ(xk+1) to the filter: Fk+1 := Fk ∪ {θ(xk+1)}. If the filter is
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(a) (b)

Figure 4.2.: Example of a three-dimensional filter. The subfigures visualize the acceptance
criterion (4.2.11) for γF = 0 from two different perspectives. The coloring
changes with the norm of the respective points.

not updated, then we set Fk+1 := Fk. After each update the filter can be scanned for
redundant entries that no longer have influence on the acceptance rule and consequently can
be removed. More details can be found in [95]. Returning to the acceptance rule, there are
many suitable choices for the function δ. Here, we will work with δ(q, θ(x)) := ‖θ(x)‖∞.
Then, the corresponding acceptance test

(4.2.11) max
1≤j≤p

(
qj − θj(x)

)
≥ γF‖θ(x)‖∞, ∀ q ∈ Fk

ensures the uniform boundedness of the filter entries. The filter concept yields convergence
in the following sense.

Lemma 4.2.14. Let θ : Rn → Rp+ be a filter function and let δ : Rp+ × Rp+ → R+ satisfy
condition (4.2.10). Furthermore, let (xk)K be an infinite subsequence of iterates such that
(θ(xk))k∈K is bounded, xk is acceptable to Fk−1 for all k ∈ K \ {0} and the filter is updated,
i.e., Fk = Fk−1 ∪ {θ(xk)}, for all k ∈ K. Then it holds

lim
K3k→∞

θ(xk) = 0.

Proof. Since the sequence (θ(xk))k∈K is bounded, there exists a subsequence (θ(xk`))`,
k` ∈ K, that converges to an accumulation point θ∗ ∈ Rp+. Since θ(xk`) is acceptable to
Fk`−1 ⊇ Fk`−1

⊇ {θ(xk`−1)}, there holds

max
1≤j≤p

(
θj(x

k`−1)− θj(xk`)
)
≥ γF δ(θ(xk`−1), θ(xk`)).
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Taking the limit `→∞, we obtain

0 = max
1≤j≤p

(θ∗j − θ∗j ) ≥ γF δ(θ∗, θ∗),

where we used the continuity of δ. Applying the second part of condition (4.2.10), the last
equation implies θ∗ = 0.

Remark 4.2.15. If we choose δ(q, θ(x)) := ‖θ(x)‖∞ as in (4.2.11), Lemma 4.2.14 holds with-
out explicitly assuming the boundedness of the filter entries. In fact, since xk is acceptable
to Fk−1 we then have, for all q ∈ Fk−1, that

γF‖θ(xk)‖∞ ≤ max
1≤j≤p

(
qj − θj(x)

)
≤ ‖q‖∞.

Lemma 4.2.14 can be regarded as the essence of the multidimensional filter framework
[95, 96]. The general idea to apply this concept is as follows: If a globally convergent base
algorithm is given (in our case the proximal gradient method with quasi-Armijo step size
rule) and an additional method for computing steps (in our case the semismooth Newton)
shall be incorporated, then we can use the filter to control acceptance of the latter steps
while resorting to steps of the base algorithm, otherwise. Then, any subsequence of points
generated by filter steps tends to stationarity. If only finitely many filter steps are taken,
then global convergence follows from the properties of the base algorithm. This implies that
there exists a subsequence approaching stationarity. To prove that every accumulation point
is stationary, the tricky part is the situation where infinitely many filter steps take place
but only finitely many iterates resulting from filter steps are contained in the convergent
subsequence. In this case it is required to show that the intermediate filter steps do not
affect the convergence of the base algorithm.

We will formulate an algorithm of the described type in the next section. In the following
sections we then will prove that all limit points are stationary along the lines just described.

4.2.4. The full algorithm

We now derive a semismooth Newton method for the minimization problem (P) for both
convex and nonconvex f . The method uses the following nonsmooth equation form of the
optimality conditions:

(4.2.12) FΛ(x) = x− proxΛ
ϕ(x− Λ−1∇f(x)) = 0, Λ ∈ Sn++.

This results in the nonsmooth Newton system

(4.2.13) M(xk)sk = −FΛk(xk), Λk ∈ Sn++,

where M(xk) denotes a generalized derivative of FΛk in xk and the parameter matrices Λk
may be chosen differently or adaptively in each iteration.

In chapter 3, we have seen that the class of functions ϕ that guarantees semismoothness
of the proximity operator proxΛk

ϕ and thus of FΛk is quite large and contains many well-
known and important examples, such as the `1-, `2- or the nuclear norm. However, further
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structural information about the proximity operator proxΛk
ϕ are needed to explicitly construct

and choose an appropriate set of generalized derivatives M(xk). In the following, we want
to assume that a suitable realization of M(xk) is always available.

Before we state the full algorithm, let us consider several concrete examples to illustrate
the semismooth Newton step (4.2.15) and the construction of M(xk).

Example 4.2.16 (`1-optimization). In the following, we consider an `1-regularized opti-
mization problem of the form

min
x∈Rn

f(x) + µ‖x‖1,

where f : Rn → R is a twice continuously differentiable function and µ > 0 is a regularization
parameter. Let λ ∈ Rn++ be arbitrary and let us set Λ := diag(1 � λ). Then, due to the
separability of the `1-norm and by using Example 3.2.8 and equation (3.2.7), we obtain

(4.2.14) FΛ(x) = Λ−1∇f(x) + P[−µλ,µλ]n(x− Λ−1∇f(x)) = 0.

This results in the nonsmooth Newton system

(4.2.15) M(xk)sk = −FΛ(xk),

whereM(xk) denotes a generalized derivative of FΛ in xk. Since the function FΛ is piecewise
continuously differentiable, it is also semismooth at all x ∈ Rn, see, e.g., [211]. Furthermore,
setting u(x) := x− Λ−1∇f(x) and applying Remark 2.5.22, it holds

∂FΛ(x) = Λ−1∇2f(x) + ∂(P[−µλ,µλ]n ◦ u)(x)

⊂ Λ−1∇2f(x) + ∂CP[−µλ,µλ]n(u(x)) ◦ (I − Λ−1∇2f(x)).

In particular, choosing

(4.2.16) M(x) := (I −D(x))Λ−1∇2f(x) +D(x),

where the diagonal matrix D(x) is defined component-wise

D(x)[ii]


= 0 if |ui(x)| > µλi,

∈ {0, 1} if |ui(x)| = µλi,

= 1 if |ui(x)| < µλi,

∀ i = 1, ..., n,

we have that M(x) is the Jacobian of one of the smooth active pieces that define FΛ at x.
Denoting by ∂PWFΛ(x) the collection of all these M(x), there holds ∂BFΛ(x) ⊂ ∂PWFΛ(x)
and FΛ is semismooth w.r.t. ∂PWFΛ. More specifically, there holds

‖FΛ(x+ s)− FΛ(x)−M(x+ s)‖ = o(‖s‖)

uniformly for all M(x + s) ∈ ∂PWFΛ(x + s) as s → 0; see [124] and Remark 2.6.6. In our
numerical comparison, we will work with the unique choice for M(x) that results when we
select D(x)[ii] = 1 in the case |ui(x)| = µλi.
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Example 4.2.17 (Constrained `1-optimization). Next, we discuss the following `1-type
optimization problem,

min
x

f(x) + µ‖x‖1 + ι[a,b](x).

This problem is a simple extension of the previous example with additional box constraints.
Again, f : Rn → R is supposed to be twice continuously differentiable and we have a, b ∈
[−∞,+∞]n, µ > 0. Moreover, we set Λ := diag(1�λ) for λ ∈ Rn++. Then, by using Example
3.2.9, the proximity operator proxΛ

ϕ(x), ϕ(x) := µ‖x‖1 + ι[a,b](x), is given by

proxΛ
ϕ(x) = P[a,b](x− P[−µλ,µλ]n(x)).

Thus, setting u(x) := x− Λ−1∇f(x), we obtain

FΛ(x) = x− P[a,b](u(x)− P[−µλ,µλ]n(u(x))).

Since this function is again piecewise continuously differentiable, it is semismooth on Rn and
we can reuse the basic construction of Example 4.2.16. In particular, since the projections in
FΛ(x) are applied component-wise, we can utilize [50, Theorem 2.3.9] and Theorem 2.5.21
(i) to construct a generalized derivative of FΛ at x. It holds

∂(P[ai,bi] ◦ wi)(x) ⊂ conv(∂P[ai,bi](wi(x)) ◦ ∂wi(x))

⊂ conv(∂P[ai,bi](wi(x)) · (1− ∂P[−µλi,µλi](ui(x))) · ∇ui(x)>) = Di(x)∇ui(x)>,

where w(x) := u(x)− P[−µλ,µλ]n(u(x)) and the set Di(x) ⊂ R is defined via

δ ∈ Di(x) :⇐⇒ δ


= 0 if wi(x) /∈ [ai, bi] ∨ |ui(x)| < µλi,

= 1 if wi(x) ∈ (ai, bi) ∧ |ui(x)| > µλi,

∈ [0, 1] otherwise.

Clearly, due to ∂FΛ(x) ⊂ ∂CF
Λ(x) ⊂ I − D1(x)∇u1(x)> × ... × Dn(x)∇un(x)>, this leads

to the following possible choice of generalized derivatives

M(x) = I −D(x)(I − Λ−1∇2f(x)), D(x) = diag(δ1, ..., δn)

with δi ∈ Di(x) for all i = 1, ..., n and the corresponding semismooth Newton system has the
form

M(xk)sk = −FΛ(xk).

Furthermore, similar to Remark 2.6.6 or [79, Theorem 19], it can be shown that the function
FΛ is also semismooth w.r.t. the possibly larger set I−D1(x)∇u1(x)>× ...×Dn(x)∇un(x)>.

Example 4.2.18 (Group sparse optimization). Here, we consider optimization problems
with a group sparse penalty term

min
x∈Rn

f(x) +

s∑
i=1

ωi‖xgi‖2, ωi > 0, i = 1, ..., s,
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where f : Rn → R is again a twice continuously differentiable function and the index sets
gi, i = 1, ..., s form a disjoint partitioning of the set {1, ..., n}. Moreover, let λ ∈ Rs+ be an
arbitrary vector and let us define the parameter matrix Λ ∈ Sn++,

(4.2.17) Λ[gigj ] =

{
1
λi
I if i = j,

0 if i 6= j,
∀ 1 ≤ i, j ≤ s.

Then, due to Lemma 3.2.4, the proximity operator associated with ϕ(x) :=
∑s

i=1 ωi‖xgi‖2
and Λ can be computed group-wise via

proxΛ
ϕ(x)gi = prox

λ−1
i I

ωi‖·‖2(xgi), ∀ i = 1, ..., s.

Consequently, by using Example 3.2.8 and equation (3.2.7), we obtain

FΛ(x)gi = λi∇f(x)gi + PB‖·‖2 (0,ωiλi)(xgi − λi∇f(x)gi), ∀ i = 1, ..., s,

and the semismooth Newton equation is given by

M(xk)sk = −FΛ(xk).

As usual, the matrix M(xk) denotes a suitable generalized derivative of FΛ at xk. Further-
more, since the mapping ϕ is the sum of semialgebraic functions, Corollary 3.3.4 implies that
FΛ is semismooth on Rn. Now, let us set u ≡ u(x) := x − Λ−1∇f(x). In our numerical
comparison in chapter 7, we will work with the following generalized derivatives

M(x) := (I −D(x))Λ−1∇2f(x) +D(x),

where the matrix D(x) is defined block-wise via

D(x)[gigj ] = 0, D(x)[gigi]


= I if ‖ugi‖2 < ωiλi,

∈
{
I − tugiu>gi : t ∈

[
0, 1

(ωiλi)2

]}
if ‖ugi‖2 = ωiλi,

= ωiλi
‖ugi‖2

I − ωiλi
‖ugi‖32

ugiu
>
gi if ‖ugi‖2 > ωiλi,

for all 1 ≤ i, j ≤ s and i 6= j. In particular, it immediately follows

D(x)[gigi] ∈ ∂CPB‖·‖2 (0,ωiλi)(ugi), ∀ i = 1, ..., s.

Hence, as in Example 4.2.16 and by Remark 2.5.22 and 2.6.6, this specific choice yields a
suitable set of generalized derivatives and does again not affect the semismoothness of FΛ.

We now continue with the description of our algorithmic approach.

For a given semismooth Newton step sk the decision on accepting xk + sk as new iterate
is based on the filter framework presented in the last section. Consequently, we accept the
trial point xk + sk whenever it is acceptable for the current filter Fk, i.e., whenever the filter
value θ(xk + sk) ≡ θ(xk + sk,Λk+1) satisfies the acceptance test (4.2.11).
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Algorithm 2: Semismooth Newton Method with Multi-Dimensional Filter Globalization
S0 Initialization: Choose an initial point x0 ∈ dom ϕ, Λ0 ∈ Sn++, τ > 0, β, γ ∈ (0, 1)

(quasi-Armijo parameters), γF ∈ (0, 1),F−1 = ∅ (filter parameters) and αi > 0 for
i ∈ {1, 2, 3}, η ∈ (0, 1). Set k := 0, ψ0 :=∞, ρ0 :=∞. Set iteration k := 0.

while FΛk(xk) 6= 0 do
S1 If k = 0 or xk was obtained in step S3, add θ(xk) to the filter: Fk = Fk−1 ∪ {θ(xk)}.

Otherwise, set Fk = Fk−1. Choose Λk+1 ∈ Sn++.

S2 Compute the semismooth Newton step sk via M(xk)sk = −FΛk(xk). If this is not
possible go to step S4.

S3 Set xk+1 = xk + sk and check if xk+1 lies in dom ϕ and is acceptable for the filter Fk:

max
1≤j≤p

(
qj − θj(xk+1)

)
≥ γF max

1≤j≤p
θj(x

k+1), ∀ q ∈ Fk.

If xk+1 is acceptable for Fk and either f is convex or (4.2.18) holds or (4.2.19) holds,
set ψk+1 = ψk, ρk+1 = min{ρk, ‖FΛk+1(xk+1)‖} and skip step S4 and S5.

S4 Compute the direction dk = −FΛk(xk) and choose a maximal quasi-Armijo step
σk ∈ {1, β, β2, β3, ...} ⊂ (0, 1] satisfying

ψ(xk + σkd
k) ≤ ψ(xk) + σkγ∆k.

S5 Set xk+1 = xk + σkd
k, ψk+1 = ψ(xk+1), and ρk+1 = ρk.

k ← k + 1.

In the convex case, if the trial point xk + sk satisfies all conditions and is contained in
dom ϕ, we accept the Newton step, set xk+1 = xk+sk, update the filter Fk+1 = Fk∪{θ(xk)}
and start the next iteration. Otherwise we reject the Newton step and perform a step of the
globalized proximal gradient method xk+1 = xk + σkd

k. In the nonconvex case, we require
additional conditions for accepting a Newton step. Details are given below. The resulting
method is summarized in Algorithm 2.

The algorithm contains two conditions (4.2.18) and (4.2.19) in step S4, and requires that
one of the two has to hold if f is not convex. We now introduce these condition. Before
doing so, however, we stress that these conditions are only required in the nonconvex case
and only if we want to prove that every accumulation point of (xk)k is stationary. If we
are satisfied with the existence of at least one stationary accumulation point of (xk)k, then
the conditions (4.2.18) or (4.2.19) are not required. We now state these two limited growth
conditions for ‖FΛk+1(xk + sk)‖ and for ψ(xk + sk):

‖FΛk+1(xk+1)‖ ≤ ηρk and ψ(xk+1) ≤ ψ(xk) + α1

√
‖FΛk(xk)‖‖FΛk+1(xk+1)‖,(4.2.18)

ψ(xk+1) ≤ ψk + α2‖FΛk+1(xk+1)‖2+α3 .(4.2.19)

Let us further note that the latter growth conditions are chosen to control the ψ-descent
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of the Newton steps xk + sk in a way such that global convergence of Algorithm 2 can
be established without any additional restrictions. In the convex setting, if the conditions
(4.2.18) and (4.2.19) are not used in Algorithm 2, we have to assume boundedness of the
sequence of iterates (xk)k and existence of an optimal solution of (P) to cope with this
missing controllability. For our subsequent analysis, we introduce the sets

KP := {k : xk was generated by the proximal gradient method},
KN := {k : xk was generated by the Newton method}.

Consequently, this means k + 1 ∈ KP if and only if xk+1 = xk + σkd
k was obtained in step

S5 and k + 1 ∈ KN if and only if xk+1 = xk + sk was obtained in step S3 before going to
step S5 .

It holds
ρk = min

i∈KN∩{1,...,k}
‖FΛi(xi)‖

and ψk = ψ(x`P (k)), where `P (k) := max(KP ∩ {1, ..., k}) is the index of the last proximal
gradient iteration. The trial point xk+sk is accepted as new iterate if it is acceptable for the
current filter Fk and additionally satisfies one of the above conditions (4.2.18) or (4.2.19).

Remark 4.2.19. The condition xk+1 ∈ dom ϕ in step S3 of Algorithm 2 is needed to ensure
well-definedness of the underlying proximal gradient method and of the growth conditions.
In particular, it may happen that the Newton method generates an infeasible iterate xk+1

with ψ(xk+1) =∞ that is acceptable to the filter. Clearly, without the additional constraint
xk+1 ∈ dom ϕ, the quasi-Armijo condition in step S4 then cannot be satisfied and conse-
quently, our algorithmic mechanism cannot guarantee global convergence in this case. Let
us note that if the domain dom ϕ is closed, then feasibility of the Newton iterates can be
achieved via the following projection operation

xk+1 = Pdom ϕ(xk + sk).

Since the metric projection Pdom ϕ is a nonexpansive operator, this will not affect the local
convergence properties of the semismooth Newton method, see, e.g., [237]. Of course, this
infeasibility problem arises from our specific globalization strategy. In chapter 6, we introduce
a D-gap function for generalized variational inequalities that can be used as a real valued,
smooth merit function for the optimality system (4.2.12) and for problem (P). Recently, in
[187], Patrinos et al. proposed another merit function-based globalization for the semismooth
Newton method when f is strongly convex. These two different merit function approaches
circumvent the unfavourable feasibility issues and can be used to design alternative base
algorithms to substitute the proximal gradient method.

Remark 4.2.20. Clearly, the new parameter matrix Λk+1 can also be calculated after step
S3 (or S5) of Algorithm 2. In this case, the acceptance test in step S3 is performed w.r.t. to
the old parameter matrix Λk, i.e., the filter values θ(xk+1) ≡ θ(xk+1,Λk) then depend on Λk
and the growth conditions have to be adjusted accordingly. While this allows a computation
of the next parameter matrix Λk+1 based on the new iterate xk+1, this also requires the
computation of FΛk(xk+1) and FΛk+1(xk+1). If the parameter matrices (Λk)k stay in a
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compact set K ⊂ Sn++, i.e., if assumption (B) is satisfied, this adjustment will not affect our
convergence theory.

4.3. Convergence analysis

4.3.1. Global convergence

This section focuses on the analysis of the convergence behaviour of our main approach.

Lemma 4.3.1. Let the assumptions (A.1) and (B) hold and let (xk)k and (Λk)k be generated
by Algorithm 2. Consider a subsequence (xk)K that converges to x∗ and contains infinitely
many iterates resulting from semismooth Newton steps, i.e., |K ∩ KN | = ∞. Then x∗ is a
stationary point.

Proof. By assumption, there exists an infinite set K ⊂ KN such that (xk)K → x∗. Due
to the structure of Algorithm 2 and by Remark 4.2.15, all assumptions of Lemma 4.2.14 are
satisfied. Hence,

lim
K3k→∞

θ(xk) = lim
K3k→∞

θ(xk,Λk) = 0.

Thus, by (4.2.7) or Remark 4.2.12, we conclude (FΛk(xk))K → 0 and Remark 4.1.4 and the
continuity of the proximity operator yield FΛ(x∗) = 0, for some arbitrary Λ ∈ Sn++.

Theorem 4.3.2. Let the assumptions (A.1)–(A.2) and condition (B) be satisfied and let the
sequences (xk)k, (Λk)k be generated by Algorithm 2. Furthermore, suppose that the sequence
of iterates (xk)k stays in a bounded set Ω0 ⊆ Ω. Then, every accumulation point of (xk)k is
a stationary point of problem (P).

Proof. Let x∗ ∈ Rn be any accumulation point of the sequence (xk) and let (xk)K be a
corresponding subsequence that converges to x∗.

The strategy of the proof is based on a rigorous discussion of the occurrence and number
of Newton and proximal gradient iterates in (xk) and (xk)K . We start with two simpler cases
that can be readily established by using Theorem 4.2.10 and Lemma 4.3.1. The remaining
part of the proof is concerned with the case that (xk)K contains only finitely many Newton
iterations while infinitely many Newton iterates were generated. Here, we want to show
that the possibly negative effect of the intermediate Newton steps is controlled by the filter
conditions in a way that convergence of the subsequence (xk)K can always be guaranteed.
Consequently, we analyze several subcases that correspond to different filter (acceptance)
constellations of the intermediate steps.

The proof of Theorem 4.3.2 is similar to the proof of [157, Theorem 4.2], where convergence
of Algorithm 2 is shown for the specific choice ϕ(x) ≡ µ‖x‖1. In contrast to [157], the
boundedness of the sequence of iterates (xk)k is only needed in one specific sub-case in order
to guarantee and control boundedness of the terms ‖FΛk(xk)‖ for k ∈ KP . In Remark 4.3.11,
we present two alternative strategies that allow to circumvent this additional boundedness
assumption.

Case 1: |K ∩ KN | =∞. Then the claim follows directly from Lemma 4.3.1.
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Case 2: |K ∩ KN | < ∞, |KN | < ∞. In this case we just compute a finite number of
Newton iterations, i.e., there exists k0 ∈ N such that k ∈ KP holds for all k ≥ k0. Hence, we
can apply the convergence result of Theorem 4.2.10 for the quasi-Armijo proximal gradient
method to complete the proof in this case.

The discussion of the remaining case heavily depends on the acceptance criteria in step
S3 of the algorithm and consequently we have to distinguish several more subcases.

Case 3: |K ∩ KN | < ∞, |KN | = ∞. Since we perform infinitely many Newton steps, the
sequence (FΛk(xk))KN converges to zero by Lemma 4.3.1. But since only finitely many such
xk are contained in the sequence (xk)k, the challenge is to show that the convergence of the
proximal gradient method is not disrupted by the intermediate Newton steps, which might
not always result in ψ-descent.

At first, we introduce several useful constants and derive preparatory estimates that will
be needed in our subsequent investigation. Assumption (A.2) yields the Lipschitz constant
Lf for ∇f on Ω. Thus, for all λMI � Λ � λmI, we obtain the Lipschitz constant 1 +Lfλ

−1
m

for u(x) = x − Λ−1∇f(x) on Ω. Since the proximity operator proxΛ
ϕ is Λ-nonexpansive, an

easy computation yields that FΛ(x) = x − proxΛ
ϕ(u(x)) is Lipschitz continuous on Ω with

modulus
C0 := 1 + (λ−1

m λM )
1
2 + Lf (λ−3

m λM )
1
2 .

Hence, due to Assumption (B) and Remark 4.1.4, there exists a constant λ = λ(λm, λM )
such that

(4.3.1) ‖FΛk+1(xk+1)‖ ≤ ‖FΛk+1(xk)‖+C0 ·σk‖dk‖ ≤ (λ+C0)‖FΛk(xk)‖ =: C1‖FΛk(xk)‖

for all k + 1 ∈ KP . Moreover, for all k + 1 ∈ KN , using that xk+1 is acceptable to Fk, we
obtain from Remark 4.2.15:

(4.3.2) ‖FΛk+1(xk+1)‖ ≤
√
n‖FΛk+1(xk+1)‖∞ ≤

√
n

cθ
‖θ(xk+1)‖∞ ≤

√
n

γFcθ
‖q‖∞, ∀ q ∈ Fk.

Let k0 := minKN . Then, there holds θ(xk0) ∈ Fk for all k > k0, and thus

(4.3.3) ‖FΛk(xk)‖ ≤
√
n

γFcθ
‖θ(xk0)‖∞ =: C2, ∀ k ∈ KN , k > k0.

Additionally, using the boundedness of (xk)k, Remark 4.1.4, and the Lipschitz continuity of
the residual function FΛ, there also exists C3 > 0 such that

(4.3.4) ‖FΛk(xk)‖ ≤ C3, ∀ k ∈ KP , k > k0.

Further, let (ij)j≥0 enumerate all elements of the set {k ∈ KP : k > k0} in increasing order.
Then the set J := {j : ij ∈ K} contains infinitely many indices. Defining

Σ(r) :=
r−1∑
j=0

(ψ(xij )− ψ(xij+1))
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we will use the telescope sum

ψ(xi0)− ψ(x∗) ≥ ψ(xi0)− lim inf
J3r→∞

ψ(xir) = lim inf
J3r→∞

Σ(r).

Our approach consists in deriving a lower bound for the right hand side that would exceed
the left hand side as J 3 r →∞ unless (FΛk(xk))K∩KP → 0.

Therefore, we will discuss the difference ψ(xij ) − ψ(xij+1) of two consecutive proximal
gradient iterates (with possibly other iterates in between). We define the index subsets

KaN := {k ∈ KN : xk satisfies (4.2.18)}, KbN := {k ∈ KN : xk satisfies (4.2.19)}.

and the function
na : N→ N, na(k) := |KaN ∩ {k0 + 1, ..., k}|.

Note that k0 is the index of the very first iterate xk0 obtained by a Newton step. We then
have

(4.3.5) ‖FΛk(xk)‖ ≤ ηna(k)ρk0 , ∀ k ∈ KaN .

We now consider j ≥ 0 and derive a lower bound for ψ(xij ) − ψ(xij+1). To this end, we
distinguish several cases. For abbreviation, let ` := ij , k := ij+1 − 1.

Sub-case 1: k = ` (i.e., k, k + 1 ∈ KP ):
Applying Lemma 4.2.7, Lemma 4.2.8, and inequality (4.3.1), we obtain

ψ(x`)− ψ(xk+1) ≥ −σkγ∆k ≥ σkγλm‖dk‖2 ≥ ζγλm‖FΛk(xk)‖2 ≥ ζγλm
C2

1

‖FΛk+1(xk+1)‖2.

Denoting by J1 the set of all j ≥ 0 for which this case occurs (recall ` = ij), we see
that Σ1(r) :=

∑
j∈J1, j<r

(ψ(xij ) − ψ(xij+1)) is bounded below as r → ∞. Furthermore,
lim infJ3r→∞Σ1(r) <∞ requires either |J1| <∞ or

lim inf
J13j→∞

FΛij+1 (xij+1) = lim
J13j→∞

FΛij+1 (xij+1) = 0.

Sub-case 2: ` < k ∈ KbN :
Using the same arguments as in sub-case 1, (4.2.19), and ψk−1 = ψ(x`), we obtain:

ψ(x`)− ψ(xk+1) = ψ(x`)− ψ(xk) + ψ(xk)− ψ(xk+1)

≥ ψ(x`)− ψk−1 − α2‖FΛk(xk)‖(2+α3)
+ ζγλm‖FΛk(xk)‖2

≥ 1

C2
1

(
ζγλm − α2‖FΛk(xk)‖α3

)
‖FΛk+1(xk+1)‖2.

Since (FΛk(xk))KN → 0, we see that there exists k1 ≥ k0 such that α2‖FΛk(xk)‖α3 < ζγλm/2
for all k ∈ KN with k ≥ k1. Hence, if J2 denotes the set of all j ≥ 0 for which this sub-case
2 occurs, we see that Σ2(r) :=

∑
j∈J2,j<r

(ψ(xij ) − ψ(xij+1)) is bounded below for r → ∞
and that lim infJ3r→∞Σ2(r) <∞ requires either |J2| <∞ or
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lim inf
J23j→∞

FΛij+1 (xij+1) = lim
J23j→∞

FΛij+1 (xij+1) = 0.

Sub-case 3: `+ 1, . . . , rb − 1 ∈ KN , rb = rb(j) ∈ KbN , rb + 1, . . . , k ∈ KaN :
Let ra = ra(j) be defined as ra := max({k0} ∪ (KaN ∩ {k0 + 1, . . . , rb − 1})). We obtain

ψ(x`)− ψ(xk+1) = ψ(x`)− ψ(xrb) +
k−1∑
i=rb

(ψ(xi)− ψ(xi+1)) + ψ(xk)− ψ(xk+1)

≥ ψ(x`)− ψrb−1 − α2‖FΛrb (xrb)‖2+α3

− α1

k−1∑
i=rb

‖FΛi(xi)‖
1
2 ‖FΛi+1(xi+1)‖

1
2 + ζγλm‖FΛk(xk)‖2

≥ −α2‖FΛrb (xrb)‖2+α3 − α1

√
ρk0C2

k−1∑
i=rb

η
na(i+1)

2 +
ζγλm
C2

1

‖FΛk+1(xk+1)‖2,

where we used estimates as in the first case, inequalities (4.3.2), (4.3.3), (4.3.5) and the
growth conditions (4.2.18), (4.2.19). Since the iterate xrb is acceptable for the filter, we can
use inequality (4.3.2) with q = θ(xra). This yields

‖FΛrb (xrb)‖ ≤
√
n

γFcθ
‖θ(xra)‖∞ ≤

√
nCθ
γFcθ

‖FΛra (xra)‖ ≤
√
nCθ
γFcθ

ηna(ra)ρk0 ,

and thus

ψ(x`)− ψ(xk+1) ≥ −α2

(√
nCθ
γFcθ

ηna(ra)ρk0

)2+α3

− α1

√
ρk0C2

k−1∑
i=rb

η
na(i+1)

2

+
ζγλm
C2

1

‖FΛk+1(xk+1)‖2.

Let J3 denote all j ≥ 0 that fall into this sub-case 3. Then, we have na(ra(j)) 6= na(ra(j
′))

for all j, j′ ∈ J3, j 6= j′. Hence

∑
j∈J3

ηna(ra(j))(2+α3) ≤
∞∑
k=0

ηk(2+α3) =
1

1− η2+α3
.

Furthermore, na(rb(j) + 1) < na(rb(j) + 2) < · · · < na(k) = na(ij+1 − 1), and thus,

∑
j∈J3

ij+1−2∑
i=rb(j)

η
na(i+1)

2 ≤
∞∑
k=0

η
k
2 =

1

1−√η
.

We thus see that Σ3(r) :=
∑

j∈J3,j<r
(ψ(xij ) − ψ(xij+1)) is bounded below as r → ∞ and

that lim infJ3r→∞Σ3(r) <∞ requires either |J3| <∞ or

lim inf
J33j→∞

FΛij+1 (xij+1) = lim
J33j→∞

FΛij+1 (xij+1) = 0.
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Sub-case 4: `+ 1, . . . , k ∈ KaN .
This is the same situation as in sub-case 3, except that there does not exist an iterate
i ∈ {`+ 1, . . . , k} with i ∈ KbN . Similarly as before, but easier, we obtain

ψ(x`)− ψ(xk+1) =
k−1∑
i=`

(ψ(xi)− ψ(xi+1)) + ψ(xk)− ψ(xk+1)

≥ −α1

k−1∑
i=`

‖FΛi(xi)‖
1
2 ‖FΛi+1(xi+1)‖

1
2 + ζγλm‖FΛk(xk)‖2

≥ −α1

√
ρk0 max{C2, C3}

k−1∑
i=`

η
na(i+1)

2 +
ζγλm
C2

1

‖FΛk+1(xk+1)‖2,

where we additionally used the estimate (4.3.4) and ` = ij ∈ KP . Let J4 denote all j ≥ 0
with ij ≥ k0 that fall into this sub-case 4. Then, we have na(ij + 1) < na(ij + 2) < · · · <
na(ij+1 − 1), and thus,

∑
j∈J4

ij+1−2∑
i=ij

η
na(i+1)

2 ≤
∞∑
k=0

η
k
2 =

1

1−√η
.

This shows that Σ4(r) :=
∑

j∈J4,j<r
(ψ(xij )−ψ(xij+1)) is bounded below as r →∞ and that

lim infJ3r→∞Σ4(r) <∞ requires either |J4| <∞ or

lim inf
J43j→∞

FΛij+1 (xij+1) = lim
J43j→∞

FΛij+1 (xij+1) = 0.

Taking all cases together, it follows from

ψ(xi0)− ψ(x∗) ≥ lim inf
J3r→∞

4∑
c=1

Σc(r) ≥
4∑
c=1

lim inf
J3r→∞

Σc(r)

that (FΛij+1 (xij+1))j≥0 → 0, since otherwise the limit on the right hand side would be +∞
(note that all Σc(r) were shown to be bounded below as r → ∞). Using Remark 4.1.4
and since K contains infinitely many indices ij , we conclude FΛ(x∗) = 0 for some arbitrary
Λ ∈ Sn++.

For convex problems, Algorithm 2 can be shown to converge globally without the growth
conditions (4.2.18) and (4.2.19) if the iterates stay in a compact set. In particular, if the
objective function ψ is coercive and ϕ is real valued and positively homogeneous, this bound-
edness condition is guaranteed by Lemma 4.2.6. Since every norm is a positively homogeneous
function, the following theorem generalizes the convergence result in [157] for `1-regularized
problems (i.e., in [157] the authors implicitly relied on the fact that the `1-norm is a positively
homogeneous function).

Theorem 4.3.3. Let the assumptions (A.1), (B), and (C.1) be satisfied and let the sequences
(xk)k and (Λk)k be generated by Algorithm 2. Furthermore, suppose that problem (P) pos-
sesses an optimal solution x̄ ∈ dom ϕ, the growth conditions (4.2.18) and (4.2.19) are not
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used in Algorithm 2 and that the sequence (xk)k stays in a compact set Ω0 ⊂ Ω. Then, every
accumulation point of (xk)k is a stationary point and thus, a globally optimal solution of the
problem (P).

Proof. Let x∗ ∈ Rn be an arbitrary accumulation point of the sequence (xk)k and let
(xk)K be a subsequence converging to x∗. Clearly, as in Theorem 4.3.2, the two simple cases
|K ∩ KN | = ∞ and |K ∩ KN | < ∞, |KN | < ∞ are already covered by Lemma 4.3.1 and
Theorem 4.2.10. Thus, let us discuss the remaining, more difficult case.

So, let us assume |K ∩ KN | < ∞, |KN | = ∞. Since we perform infinitely many Newton
steps, the subsequence (FΛk(xk))KN converges to zero by Lemma 4.3.1. By assumption, the
sequence (xk)k remains in a compact set Ω0 and there exists an optimal solution x̄ ∈ dom ϕ
of problem (P). We now want to show (ψ(xk))KN → ψ(x̄). Assume that (ψ(xk))KN does
not converge to ψ(x̄). Since x̄ is a global minimum of the objective function ψ, there then
exist ε > 0 and a subsequence L ⊂ KN with

ψ(x`) ≥ ψ(x̄) + ε, ∀ ` ∈ L.

From the bounded sequence (x`)`∈L we can choose a further subsequence L̃ ⊂ L satisfying

(x`)`∈L̃ → x̃ and ψ(x̃) = lim inf
L̃3`→∞

ψ(x`) ≥ ψ(x̄) + ε.

Assumption (B) and the continuity of the proximity operator yields FΛ(x̃) = 0 for some
Λ ∈ Sn++, and thus x̃ is a global solution, which results in the contradiction ψ(x̃) = ψ(x̄).
Hence, we have proved (ψ(xk))KN → ψ(x̄).

Next, using the feasibility of the iterates xk and the descent property ψ(xk) < ψ(xk−1)
for all k ∈ KP , (see Lemma 4.2.7), we obtain ψ(x∗) = ψ(x̄) and thus the limit point x∗ is an
optimal solution, hence also a stationary point.

Remark 4.3.4. As we have already mentioned and as we have shown in Lemma 4.2.6,
the assumptions (C.2)–(C.3) are sufficient to ensure boundedness of the iterates xk, k ∈ N.
Moreover, in this case, the coercivity of the objective function ψ also guarantees existence of
an optimal solution x̄ ∈ dom ϕ of problem (P). Accordingly, the boundedness of the effective
domain dom ϕ yields the same implications. Another, alternative condition, which guaran-
tees the boundedness of the sequence of iterates (xk)k, is the coercivity of the nonsmooth
function FΛ : Rn → Rn for some Λ ∈ Sn++. In fact, this condition implies that the Newton
iterates stay in a compact set and by using the descent property of the proximal gradient
steps, boundedness of the whole sequence (xk)k can be established. Surprisingly, this rather
restrictive condition is always satisfied when the function f is strongly convex on dom ϕ. A
proof of this claim is presented in Lemma 6.2.12 for an even more general setting.

Remark 4.3.5. The proofs of Theorem 4.3.2 and 4.3.3 do not use any particular properties
of the semismooth Newton steps sk, hence the semismooth Newton method for computing
sk could be replaced by other choices. In particular, the Newton system in step S3 could be
replaced by a regularized version of it, see, e.g., (4.3.17).
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4. A globalized semismooth Newton method for nonsmooth optimization problems

4.3.2. Fast local convergence

The semismooth Newton steps achieve locally q-superlinear convergence under suitable con-
ditions. We now will prove that, under appropriate assumptions, Algorithm 2 turns into a
semismooth Newton method after finitely many iterations and thus achieves locally an at
least q-superlinear rate of convergence.

Assumption 4.3.6. Let the sequences (xk)k and (Λk)k be generated by Algorithm 2 and
suppose that x∗ ∈ Rn and Λ∗ ∈ Sn++ are accumulation points of (xk)k and (Λk)k, respectively.
Let us consider the following conditions:

(D.1) There exists k∗ ∈ N, such that Λk = Λ∗ for all k ≥ k∗.

(D.2) It holds x∗ ∈ int dom ϕ.

(D.3) The proximity operator proxΛ∗
ϕ : Rn → Rn is semismooth at u∗ := x∗−Λ−1

∗ ∇f(x∗).

(D.4) There exist constants δ > 0 and C > 0 such that for all x ∈ Bδ(x∗), every matrix
M ∈ ∂FΛ∗(x) is nonsingular with ‖M−1‖ ≤ C.

If, in addition, the accumulation point x∗ is a stationary point of (P), then we assume:

(D.5) The accumulation point x∗ is a strict local minimum and an isolated stationary point
of the problem (P).

Remark 4.3.7 (CD-regularity). Let us also mention another alternative invertibility as-
sumption. The mapping FΛ∗ is called CD-regular at the accumulation point x∗ if every
element M ∈ ∂FΛ∗(x∗) is nonsingular. In this case, if FΛ∗ is CD-regular at x∗, then it can
be shown that condition (D.4) has to be satisfied. This well-known fact follows from the
upper semicontinuity and local boundedness of Clarke’s subdifferential ∂FΛ∗ : Rn ⇒ Rn, see
[199, Proposition 3.1] or [238, Proposition 2.12]. Hence, assumption (D.4) can be substituted
by the stronger CD-regularity of FΛ∗ . Let us further note that if the limit point x∗ is a sta-
tionary point of (P) and if FΛ∗ is semismooth and CD-regular at x∗, then Pang and Qi [182,
Proposition 3] showed that x∗ is an isolated solution of the nonsmooth equation FΛ∗(x) = 0
and thus, an isolated stationary point of the problem (P).

Clearly, since we have already shown that every accumulation point of a sequence of iterates
(xk)k generated by Algorithm 2 is a stationary point of the initial problem (P) under suitable
conditions, assumption (D.5) is well-defined and applicable in our situation.

Remark 4.3.8. In the following, we briefly assess and discuss the different conditions in
Assumption 4.3.6.

• The conditions (D.3)–(D.4) are standard assumptions for local convergence of semis-
mooth Newton methods, [199, 182, 197, 238].

• While the choice of the parameter matrices Λk did not influence our global conver-
gence theory, it certainly can affect the rate of convergence of the semismooth Newton
method. In particular, to maintain local q-superlinear convergence, we have to assume
that the matrices Λk do not change too wildly and are kept fixed after an appropriate
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number of iterates. From a numerical perspective, this assumption seems not to be too
restrictive since a fixed parameter matrix can be used whenever the algorithm reaches
a certain level of tolerance.

• On the other hand, condition (D.2) clearly limits the applicability of our local conver-
gence theory to convex composite problems that are locally Lipschitz continuous in a
neighborhood of the predestined solution x∗. Specifically, this excludes optimization
problems with additional convex constraints where the solution lies at the boundary of
the feasible set. However, this condition is mandatory to guarantee feasibility of the
Newton steps xk +sk in a neighborhood of x∗ and thus, to show transition to fast local
convergence. Let us again note, that the requirement

xk + sk ∈ dom ϕ

in step S3 of Algorithm 2 is mainly a result of our specific globalization technique. For
instance, if the proximal gradient method is substituted by another globally convergent
algorithm that is not sensitive to the feasibility of the generated iterates, then condition
(D.2) is not necessary. In particular, Patrinos et al. [187] proposed a forward-backward
envelope-based and globally convergent approach for strongly convex problems that
overcomes this feasibility issue and can accordingly be combined with the semismooth
Newton method. Moreover, in chapter 6, we introduce a D-gap function for generalized
variational inequalities that can be shown to act as a merit function for the optimality
condition (4.2.12). Based on the D-gap function, we will then construct a simple
descent method that is also well-defined for infeasible inputs and hence can be used to
replace the proximal gradient method.

• Assumption (D.5) will be used to prove that the whole sequence (xk)k converges to x∗.

• While most of the latter assumptions have a rather natural intuition, the conditions
(D.4) and (D.5) seem to be more abstract and may not be easily verified in practise.
In the subsequent chapter, we will discuss these conditions in some more detail. In
particular, we will show that for a certain class of functions ϕ a second order sufficient
optimality condition can be formulated that, together with the strict complementarity
condition, will imply the assumptions (D.4) and (D.5).

We continue with a brief illustrative example.

Example 4.3.9 (Discussion of the `1-case). Before presenting the main convergence re-
sult, let us exemplarily examine the assumptions (D.1)–(D.5) for an ordinary `1-optimization
problem of the form

(4.3.6) min
x

f(x) + ϕ(x), ϕ(x) = µ‖x‖1, µ > 0.

Here, since the `1-norm is real valued, condition (D.2) is immediately satisfied. Now, suppose
that the parameter matrices are chosen via

Λk := Λ∗ := λ−1I
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4. A globalized semismooth Newton method for nonsmooth optimization problems

for some fixed λ > 0. Then, clearly, assumption (D.1) is fulfilled. Moreover, in this case and
as in Example 4.2.16, the proximity operator proxλ

−1I
ϕ is a piecewise continuously differen-

tiable function and thus semismooth at all x ∈ Rn. This readily establishes assumption (D.3).
In [157], Milzarek and Ulbrich analyzed the convergence of Algorithm 2 for `1-problems of
the type (4.3.6). In particular, let the sequence (xk)k be generated by Algorithm 2 and let
x∗ be an accumulation of (xk)k. Then, setting A∗ := {i : x∗i = 0}, it was shown in [157,
Lemma 4.6 and 4.7] that the second-order type condition

(4.3.7) h>∇2f(x∗)h > 0, ∀ h ∈ Rn with hA∗ = 0,

guarantees uniformly bounded invertibility of all elements M ∈ ∂FΛ∗(x∗) and, additionally,
the point x∗ is also a strict local solution and an isolated stationary point of the `1-problem
(4.3.6); see also [97, Section 3.4] and [156, Lemma 4.3.2] for related results. Consequently, in
the `1-setting, the assumptions (D.1)–(D.5) are satisfied, whenever the second order condition
(4.3.7) holds at x∗. As already mentioned, for more general problems, the verification of the
assumptions (D.4)–(D.5) is more involved and will be investigated in the next chapter.

We now present our result on the local convergence of Algorithm 2.

Theorem 4.3.10. Let the assumptions (A.1)–(A.3) hold and let the sequences (xk)k, (Λk)k
be generated by Algorithm 2. Furthermore, let x∗ ∈ Rn and Λ∗ ∈ Sn++ be accumulation points
of the sequences (xk)k and (Λk)k satisfying the conditions (D.1)–(D.5) and suppose that the
sequence of iterates (xk)k remains in a bounded set Ω0 ⊆ Ω. Then, it holds:

(i) The whole sequence (xk)k converges to the isolated local minimum x∗.

(ii) There exists k̂ > 0 such that xk results from a semismooth Newton step, i.e., k ∈ KN ,
for all k ≥ k̂. In particular, (xk)k converges q-superlinearly to x∗.

(iii) If, in addition, the proximity operator proxΛ∗
ϕ is α-order semismooth at u∗ for some

α ∈ (0, 1] and the Hessian ∇2f(x) is Lipschitz continuous near x∗, then the order of
convergence is 1 + α.

Proof. Let us start with the first part. Therefore, let x∗ ∈ Rn be an accumulation point
of the sequence (xk)k with the stated properties. Then, by Theorem 4.3.2, x∗ is a stationary
point and assumption (D.5) yields that x∗ is an isolated local minimum of problem (P) and
also an isolated stationary point. Since every accumulation point of (xk)k is stationary, x∗

is an isolated accumulation point of (xk)k.

Now, consider an arbitrary subsequence (xk)K that converges to the isolated accumula-
tion point x∗. If we can show (‖xk+1 − xk‖)K → 0 then a well-known result of Moré and
Sorensen [160, Lemma 4.10] implies the convergence of the whole sequence (xk)k to x∗.
Now, by assumption (D.4), the matrix M(x) ∈ ∂FΛ∗(x) is uniformly boundedly invertible
in a neighborhood of x∗. Hence, by using condition (D.1), there exist k1 ≥ k∗ and C > 0

such that ‖M(xk)
−1‖ ≤ C for all k ∈ K, k ≥ k1. This estimate immediately leads to

‖xk+1 − xk‖ ≤ max{C, 1}‖FΛk(xk)‖ → max{C, 1}‖FΛ∗(x∗)‖ = 0, (K 3 k →∞).
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As intended, [160, Lemma 4.10] now yields that the entire sequence (xk)k converges to x∗,
which concludes the proof of part (i). At this point, let us also note that the stationarity of
x∗ already implies x∗ ∈ dom ϕ ⊂ Ω.

Next, we prove the second statement. From part (i) we know that xk → x∗. As before,
using assumptions (D.2), (D.4), and (D.5), there exist δ1 > 0, and C > 0 such that:

• ‖M(x)−1‖ ≤ C for all M(x) ∈ ∂FΛ∗(x) and x ∈ B̄δ1(x∗).

• x∗ is the unique stationary point of ψ on B̄δ1(x∗).

• ψ(x) > ψ(x∗) for all x ∈ B̄δ1(x∗) \ {x∗}.

• x ∈ int dom ϕ for all x ∈ B̄δ1(x∗).

Due to assumption (A.2), the function FΛ∗ is Lipschitz continuous on B̄δ1(x∗) with a Lip-
schitz constant L1 > 0. (We refer to the proof of Theorem 4.3.2 for details). Since the
gradient ∇f is bounded on B̄δ1(x∗), Theorem 2.2.1 implies that ψ is also Lipschitz contin-
uous on B̄δ1(x∗) with a constant L2 > 0. Moreover, invoking (A.3), Theorem 2.6.5, and
condition (D.3), we can infer that FΛ∗ is semismooth at x∗.

For all x ∈ B̄δ1(x∗), the Newton step s = −M(x)−1FΛ∗(x) is well defined and due to the
semismoothness of FΛ∗ and the bound on ‖M(x)−1‖, it holds for x+ = x+ s:

‖x+ − x∗‖ = ‖M(x)−1[FΛ∗(x∗) +M(x)(x− x∗)− FΛ∗(x)]‖
≤ C‖FΛ∗(x∗) +M(x)(x− x∗)− FΛ∗(x)‖ = o(‖x− x∗‖) (‖x− x∗‖ → 0).(4.3.8)

Now let

γf := min

{
η,

cθ√
nCθ(1 + γF )

}
, γs := min

{
γf

L1C + γf
,

α2
1

(L2C + α1)2
,

}
.

Then, 0 < γf ≤ η < 1 and 0 < γs < 1 and there exists 0 < δ ≤ δ1 such that

‖x+ − x∗‖ ≤ γs‖x− x∗‖, ∀ x ∈ B̄δ(x∗).

This shows for all x ∈ B̄δ(x∗):

‖x− x∗‖ ≤ ‖x+ − x∗‖+ ‖s‖
= ‖x+ − x∗‖+ ‖M(x)−1FΛ∗(x)‖ ≤ γs‖x− x∗‖+ C‖FΛ∗(x)‖.

Hence, it holds

‖x− x∗‖ ≤ C

1− γs
‖FΛ∗(x)‖, ∀ x ∈ B̄δ(x∗).

Furthermore, using FΛ∗(x∗) = 0 and the definition of γs, we obtain

‖FΛ∗(x+)‖ ≤ L1‖x+ − x∗‖ ≤ L1γs‖x− x∗‖

≤ L1Cγs
1− γs

‖FΛ∗(x)‖ ≤ γf‖FΛ∗(x)‖ ≤ η‖FΛ∗(x)‖.
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Since xk → x∗, there exists k1 ≥ k∗ such that xk ∈ B̄δ(x∗) for all k ≥ k1, and hence, with the
semismooth Newton step sk = −M(xk)−1FΛk(xk) = −M(xk)−1FΛ∗(xk) and xk,+ = xk+sk,
it holds:

‖xk,+ − x∗‖ ≤ γs‖xk − x∗‖,(4.3.9)

‖xk − x∗‖ ≤ C

1− γs
‖FΛ∗(xk)‖, ‖xk,+ − x∗‖ ≤ C

1− γs
‖FΛ∗(xk,+)‖,(4.3.10)

‖FΛ∗(xk)‖ = ‖FΛ∗(xk)− FΛ∗(x∗)‖ ≤ L1‖xk − x∗‖,(4.3.11)

‖FΛ∗(xk,+)‖ ≤ γf‖FΛ∗(xk)‖, 1

2
(4.3.12)

|ψ(xk,+)− ψ(x∗)| ≤ L2‖xk,+ − x∗‖.(4.3.13)

Let k be any index with k ≥ k1 ≥ k∗ and

(4.3.14) ‖FΛ∗(xk)‖ < min
0≤`<k

‖FΛ`(x`)‖.

Since the algorithm does not terminate finitely and 0 < ‖FΛk(xk)‖ → 0, there exist infinitely
many such indices k. We now show that if k2 is the smallest such index, then k ∈ KN for all
k ≥ k2 + 1.

Let k satisfy (4.3.14). Then we have xk,+ ∈ Bγsδ(x∗) ⊂ Bδ(x
∗) and Λk+1 = Λ∗. Further,

for all q ∈ Fk and the corresponding r ≤ k with q = θ(xr) ≡ θ(xr,Λr), it holds:

max
j

[qj − θj(xk,+)]− γF‖θ(xk,+)‖∞

≥ ‖q‖∞ − (1 + γF )‖θ(xk,+)‖∞ = ‖θ(xr)‖∞ − (1 + γF )‖θ(xk,+,Λ∗)‖∞
1

2

≥ cθ‖FΛr(xr)‖∞ − Cθ(1 + γF )‖FΛ∗(xk,+)‖∞ ≥
cθ√
n
‖FΛr(xr)‖ − Cθ(1 + γF )‖FΛ∗(xk,+)‖

≥ cθ√
n
‖FΛ∗(xk)‖ − Cθ(1 + γF )‖FΛ∗(xk,+)‖ ≥

(
cθ√
n
− Cθ(1 + γF )γf

)
‖FΛ∗(xk)‖ ≥ 0

by (4.3.12) and the definition of γf . Hence, xk,+ is acceptable for Fk. Also, there holds

(4.3.15) ‖FΛ∗(xk,+)‖ ≤ γf‖FΛ∗(xk)‖ ≤ η‖FΛ∗(xk)‖ = η min
0≤`≤k

‖FΛ`(x`)‖ ≤ ηρk < ρk.

Thus, the first condition in (4.2.18) is satisfied by xk,+ (replacing xk+1). Next, we show
that also the second condition in (4.2.18) is satisfied. Since x∗ is the unique local minimum
on B̄δ(x

∗) ⊃ {xk, xk,+}, there holds ψ(xk) > ψ(x∗) and ψ(xk,+) > ψ(x∗). If we have
ψ(xk,+) ≤ ψ(xk), the second condition of (4.2.18) is satisfied by xk,+ replacing xk+1. If we
have ψ(xk,+) > ψ(xk), the following holds

|ψ(xk,+)− ψ(xk)| ≤ |ψ(xk,+)− ψ(x∗)| ≤ L2‖xk,+ − x∗‖

≤ L2
√
γs‖xk − x∗‖

1
2 ‖xk,+ − x∗‖

1
2 ≤

L2C
√
γs

1− γs

√
‖FΛ∗(xk)‖‖FΛ∗(xk,+)‖
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≤
L2C
√
γs

1−√γs

√
‖FΛ∗(xk)‖‖FΛ∗(xk,+)‖ ≤ α1

√
‖FΛ∗(xk)‖‖FΛ∗(xk,+)‖,

where we used the Lipschitz continuity of ψ, the inequalities (4.3.9) and (4.3.10), and the
definition of γs. Hence, we have shown that for all k satisfying (4.3.14), the semismooth
Newton iterate satisfies all requirements such that it is chosen as new iterate. Thus, we have
xk+1 = xk,+ = xk + sk and k ∈ KN . Furthermore, (4.3.15) shows that

‖FΛ∗(xk+1)‖ < min
0≤`≤k

‖FΛ`(x`)‖

and consequently xk+1 satifies again (4.3.14) with k replaced by k + 1. Hence, inductively,
we see {k : k > k2} ⊂ KN and thus we can choose k̂ = k2 + 1. The superlinear convergence
follows from (4.3.8).

We verify the third and last part. If the proximity operator proxΛ∗
ϕ is α-order semismooth

at u∗ and ∇2f is Lipschitz continuous near x∗, then FΛ∗ is α-order semismooth at x∗ and
thus

‖FΛ∗(x∗) +M(x)(x− x∗)− FΛ∗(x)‖ = O(‖x− x∗‖1+α), ‖x− x∗‖ → 0.

Hence, the asserted order of convergence follows from (4.3.8).

Remark 4.3.11. Reconsidering the proofs of Theorem 4.3.2 and Theorem 4.3.10, we can see
that boundedness of the sequence (xk)k is only required in a special case of the proof of global
convergence to guarantee boundedness of the sequence (‖FΛk(xk)‖)k∈KP . Alternatively, the
assumption

„ The sequence (ψ(xk))k remains in a compact set “

does also ensure boundedness of the terms ‖FΛk(xk)‖, k ∈ KP . This follows easily from the
arguments used in sub-case 1 in the proof of Theorem 4.3.2. A second and more elegant
variant can be achieved by slightly modifying Algorithm 2 and by replacing the first growth
condition (4.2.18) by

‖FΛk+1(xk+1)‖ ≤ ηρk and ψ(xk+1) ≤ ψ(xk) + α1

√
ζk · ‖FΛk+1(xk+1)‖,

where ζk := ‖FΛ`N (k)(x`N (k))‖ and `N (k) := max({0} ∪ (KN ∩ {1, ..., k})) denotes the index
of the last accepted Newton iteration. Clearly, if k ∈ KN , then this alternative condition
reduces to the old filter growth condition (4.2.18). It can be readily shown that this adjusted
version of Algorithm 2 converges globally and locally without any additional boundedness
assumptions.

In the convex setting and similar to our global convergence analysis, the growth conditions
(4.2.18) and (4.2.19) are again not necessary to establish fast local convergence of Algorithm
2. Moreover, assumption (D.4) can be slightly weakened.

Theorem 4.3.12. Let the assumptions (A.1)–(A.3) and (C.1) be satisfied and let the se-
quences (xk)k and (Λk)k be generated by Algorithm 2. Suppose that problem (P) possesses
an optimal solution, the growth conditions (4.2.18) and (4.2.19) are not used in Algorithm
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2 and that the sequence (xk)k remains in a compact set. Let x∗ ∈ Rn and Λ∗ ∈ Sn++ be
accumulation points of the sequences (xk)k and (Λk)k satisfying the conditions (D.1)–(D.3),
and (D.5). Moreover, suppose that the following invertibility assumption is satisfied:

• There exist constants k∗ ∈ N and C > 0 such that for all k ≥ k∗ the generalized
derivative Mk := M(xk) ∈ ∂FΛk(xk) is invertible with ‖M−1

k ‖ ≤ C.

Then, it holds:

(i) The whole sequence (xk)k converges to the isolated local minimum x∗.

(ii) The algorithm eventually turns into a pure semismooth Newton method and the sequence
(xk)k converges locally q-superlinearly to x∗.

Proof. The first part of Theorem 4.3.12 can be established by using Theorem 4.3.3 and
by mimicking the proof of Theorem 4.3.10 (i). Furthermore, the assumptions (A.2), (D.1)–
(D.2), and the bounded invertibility of the Newton matrices M(xk) imply that there exist
k0 := max{k∗, k∗}, C > 0, and δ > 0 such that:

• ‖M−1
k ‖ ≤ C for all k ≥ k0.

• xk ∈ B̄δ(x∗) for all k ≥ k0 and B̄δ(x∗) ⊂ int dom ϕ.

• FΛ∗ is Lipschitz continuous on B̄δ(x∗).

Additionally and as in Theorem 4.3.10, it can be shown that FΛ∗ is semismooth at x∗. Thus,
for all k ≥ k0, the Newton step sk = −M−1

k FΛ∗(xk) is well-defined and there holds for
xk,+ = xk + sk:

‖xk,+ − x∗‖ = ‖M−1
k [FΛ∗(x∗) +Mk(x

k − x∗)− FΛ∗(xk)]‖
≤ C‖FΛ∗(x∗) +Mk(x

k − x∗)− FΛ∗(xk)‖ = o(‖xk − x∗‖), k →∞.(4.3.16)

Clearly, at this point, we can reuse the arguments of the proof of Theorem 4.3.10 to show
that the Newton step xk,+ is acceptable for the current filter and thus, is chosen as new
iterate for all k ≥ k̂ and sufficiently large k̂ ≥ k0. Let us note that, in this situation, we only
have to verify the filter acceptance criterion. In particular, the second estimate in (4.3.10) is
not needed and hence, we can work with weaker invertibility assumptions. The q-superlinear
convergence then follows from (4.3.16).

Finally, for robustifying the semismooth Newton steps, we are also interested in the more
general case where, in the Newton system, the generalized derivative M(x) is replaced by a
regularized version Mρ,

(4.3.17) Mρ(x) := M(x) + ρ(‖FΛ(x)‖) · R(x), M(x) ∈ ∂FΛ(x), Λ ∈ Sn++.

Here, the function ρ : R+ → R+ is assumed to be continuous and monotonically increasing
with ρ(0) = 0 and R : Rn → Sn+ is a matrix-valued mapping that may depend on x and that
is supposed to be (globally) uniformly bounded, i.e., there exists CR ≥ 0 such that

‖R(x)‖ ≤ CR, ∀ x ∈ Rn.
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In our numerical comparison in chapter 7, we will primarily work with regularizations of the
form ρ(t) = ctp with p ∈ (0, 1], c > 0 and R(x) ≡ I. Clearly, by Remark 4.3.5, we see that
this adaption does not affect the global convergence of Algorithm 2. Moreover, by using a
continuity argument and the well-known Banach perturbation lemma, the matrices Mρ(x)
remain uniformly boundedly invertible in a certain neighborhood of x∗ whenever assumption
(D.4) holds. Furthermore, for the regularized Newton iterate x+

ρ = x −Mρ(x)−1FΛ∗(x) it
follows

‖x+
ρ − x∗‖ ≤ ‖Mρ(x)−1‖‖FΛ∗(x∗) +Mρ(x)(x− x∗)− FΛ∗(x)]‖
≤ ‖Mρ(x)−1‖ ·

[
‖FΛ∗(x∗) +M(x)(x− x∗)− FΛ∗(x)‖+ CRρ(‖FΛ∗(x)‖) · ‖x− x∗‖

]
= o(‖x− x∗‖), ‖x− x∗‖ → 0.

Consequently, the q-superlinear rate of convergence, established in Theorem 4.3.10 and
4.3.12, is also not affected, if we use regularized derivatives of the form (4.3.17) in our
algorithm.
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5. Second order theory and
decomposability

In the following sections, we present and discuss second order conditions for the problem

(Pc) min
x∈Rn

ψc(x) = f(x) + φ(F (x)),

where f : Rn → R, F : Rn → Rm are supposed to be twice continuously differentiable and
φ : Rm → (−∞,+∞] is a convex, proper, and lower semicontinuous function, as usual. Our
overall goal is to replace the isolated stationarity and bounded invertibility assumptions (D.4)
and (D.5), which were necessary to establish fast local convergence of the semismooth Newton
method, by suitable second order conditions. On the other hand, as a second motivation,
this methodology will also allow us to get a deeper insight on the local structure of stationary
points and optimal solutions of (P) and on their influence on the convergence behavior.

Clearly, problem (Pc) is a more general variant of problem (P), since the composition
φ ◦ F need not be convex. However, if we set F ≡ I, then problem (Pc) obviously reduces
to the minimization problem discussed in the last sections. Optimization problems of the
form (Pc) are called convex composite problems and are an important and well-studied class
of optimization problems. For instance, constrained nonlinear programs can be modeled
via convex composite problems. Other applications comprise convex inclusions, minimax
optimization problems, and exact penalization of general constrained problems, see, e.g.,
[28, 31], [81, Chapter 14], and [134, 206]. Moreover, as we have already seen, φ can also act
as a nonsmooth, convex regularization term, like the `1-norm, the nuclear norm, or other
structure-inducing regularizations.

During the last decades, various algorithms have been proposed to solve the convex com-
posite problem (Pc). Of course, there is a huge amount of highly specialized methods, which
have been developed for specific choices of φ. However, a large number of general algorithms
can also be applied to the abstract class of problems (Pc) or to certain subclasses. These algo-
rithms concentrate on general and proximal descent methods [28, 134], trust-region methods
[263, 264], and Gauss-Newton methods [30, 135, 255] that work with a linearization of F (x)
to build a sequence of simpler subproblems of (Pc).

As we will see in the subsequent sections, in order to derive second order properties for our
initial problem (P), it is advantageous to consider the more general problem (Pc) first. Our
analysis is primarily based on the second order theory that is presented in the monograph
[27] of Bonnans and Shapiro for possibly infinite dimensional and constrained optimization
problems of the form

(PK) min
x

f(x) s.t. F (x) ∈ K,
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where K is a convex, closed set and the functions f and F are typically twice continuously
differentiable. More specifically, based on the concepts of (parabolic) second order tangent
sets [55], second order regularity [22, 23, 24] and related results in sensitivity and pertubation
analysis of optimization problems [22, 23, 27], the authors Bonnans, Cominetti, Shapiro, and
others have introduced, developed and collected profound, theoretical tools and frameworks
that enable a detailed study of second order properties and conditions for problem (PK) on
a very abstract level. Furthermore, by setting K ≡ epi φ or φ ≡ ιK , it is not hard to see
that the convex composite problem (Pc) can also be interpreted as a general, constrained
optimization problem (PK) and vice versa. Using this straightforward connection, Bonnans
and Shapiro transfered their theory and results developed for (PK) to the convex composite
setting, see, e.g., the sections 3.3.4 and 3.4.1 in [27], section 5 in [24] and also [217]. In the
next sections we will sketch the second order theory presented in [27] and give a summary
of the most important definitions, steps, and the different theoretical components. We will
also add proofs whenever they facilitate the understanding of the overall concept and the
underlying structure and ideas (or, of course, when a specific proof seems not to be available).
Since we are interested in establishing stationarity and invertibility conditions for problem
(P), we will mainly focus on the “translated” second order results and terminology for convex
composite problems.

Outline and motivation

In the following paragraph, we give a short roadmap of the main steps of this section and
we make some introductory remarks.

Apparently, the task of stating second order conditions for our initial problem

(P) min
x∈Rn

f(x) + ϕ(x),

is notably complicated by the possible nonsmoothness and nonlinearity of the function ϕ.
As we will see, in order to derive tight, “no gap” second order conditions, we will have to
consider and incorporate certain terms that describe the curvature induced by the nonsmooth
function ϕ. Here, the terminology “no gap” means that the only difference between sufficient
and necessary second order conditions is between a strict and a non strict inequality. No gap
second order conditions are desirable and often very beneficial, since they allow associating
the sufficient second order condition with a natural quadratic growth condition.

In subsection 5.2, we will present a pair of no gap second order conditions that has been
established by Bonnans and Shapiro in [27] for the general problems (Pc) and (PK). Specif-
ically, their analysis shows that the mentioned curvature term can be characterized by the
convex conjugate of a second order directional epiderivative of ϕ. However, since it is hard to
analyze stationarity and nonsingularity properties under these highly abstract conditions, we
want to introduce a class of functions, that will allow us to use certain structural properties
and that will simplify the second order conditions. In particular, following and inspired by
the results in [217], we will assume that the function ϕ is decomposable and can be written as
a composition of a convex, proper, lower semicontinuous and positively homogeneous func-
tion ϕd : Rm → (−∞,+∞] and a twice continuously differentiable function F : Rn → Rm in
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a certain neighborhood of a fixed point. Hence, we are also strongly interested in deriving
second order conditions for optimization problems of the form

(Pd) min
x∈Rn

f(x) + ϕd(F (x)).

Clearly, this motivates a discussion of second order conditions of the more general convex
composite problems (Pc).
In subsection 5.3, we will see that the class of decomposable functions is rather rich and in-

cludes `1-minimization and group sparse problems, and also semidefinite programs, low rank
structured problems or even general nonlinear problems. Moreover, the complicated curva-
ture term will have an easy representation and we can show that a suitable, corresponding
second order sufficient condition implies isolated stationarity of a stationary point of (P)
and (Pd). Under the strict complementarity condition and using the so-called VU -concept,
[130, 103], we show that it is also possible to give a complete characterization of the second
order conditions of (P) in terms of the (generalized) derivative of proxΛ

ϕ at a certain point.
This deep connection will then lead to new and general nonsingularity results, which are
presented in subsection 5.4.

5.1. A first second order sufficient condition and isolated
stationarity

We start with a discussion of the corresponding first order necessary conditions for (Pc). In
the next sections, we will assume that the following properties are always satisfied:

• The functions f : Rn → R and F : Rn → Rm are twice continuously differentiable.

• The mapping φ : Rm → (−∞,+∞] is convex, proper, and lower semicontinuous.

5.1.1. First order necessary conditions

Let x̄ ∈ F−1(dom φ) be a local minimum of problem (Pc), then the necessary first order
optimality conditions for (Pc) take the following form

(5.1.1) (ψc)
↓
−(x̄;h) ≥ 0, ∀ h ∈ Rn.

Moreover, if Robinson’s constraint qualification

(5.1.2) 0 ∈ int{F (x̄) +DF (x̄)Rn − dom φ}

is satisfied at x̄, then Lemma 2.5.6 implies that the composite function φ ◦F is directionally
epidifferentiable and it holds

(φ ◦ F )↓(x̄;h) = φ↓(F (x̄);DF (x̄)h).

Consequently, by Corollary 2.5.7, ψc is also directionally epidifferentiable at x̄ and we obtain

ψ↓c (x̄;h) = ∇f(x̄)>h+ φ↓(F (x̄);DF (x̄)h).
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Due to (5.1.1) and the convexity of φ, the functions Υ : Rn → [−∞,+∞], Υ(y) := ψ↓c (x̄; y)
and Π : Rm → [−∞,+∞], Π(y) := φ↓(F (x̄); y) are convex, proper, lower semicontinuous,
and positively homogeneous functions. Moreover, using Lemma 2.5.11 (i), it also follows
that Υ and Π are subdifferentiable at 0. Now, let y ∈ dom φ be arbitrary, then by applying
(2.5.1), we have

Π(y − F (x̄)) ≤ φ(y)− φ(F (x̄)) < +∞,

which establishes (dom φ) − F (x̄) ⊆ dom Π. Hence, the regularity condition (i) in Lemma
2.5.15 is satisfied and we can infer

∂Υ(0) = ∇f(x̄) +DF (x̄)>∂Π(0).

Thus, using ∂Π(0) = ∂φ(F (x̄)) (see, e.g., Example 2.5.17) and ψ↓c (x̄; 0) = 0, we see that the
optimality condition (5.1.1) implies the condition

0 ∈ ∂Υ(0) = ∇f(x̄) +DF (x̄)>∂φ(F (x̄)).

Clearly, the latter condition can be reformulated in the following way: there exists λ ∈ Rm
such that

(5.1.3) ∇f(x̄) +DF (x̄)>λ = 0, λ ∈ ∂φ(F (x̄)).

These results motivate the following definition and theorem.

Definition 5.1.1. Let x̄ ∈ F−1(dom φ) be given. A point λ ∈ Rm that (together with x̄)
satisfies the conditions (5.1.3) is called Lagrange multiplier. The set of all possible Lagrange
multipliers is denoted byM(x̄), i.e.,

(5.1.4) M(x̄) := {λ ∈ Rm : ∇f(x̄) +DF (x̄)>λ = 0, λ ∈ ∂φ(F (x̄))}.

The point x̄ is called a stationary point of problem (Pc) if and only ifM(x̄) 6= ∅.

Theorem 5.1.2 (First order necessary conditions). Let x̄ ∈ F−1(dom ϕ) be a local
minimum of problem (Pc) and suppose that Robinson’s constraint qualification holds at x̄.
Then, there exists λ ∈ Rm such that

∇f(x̄) +DF (x̄)>λ = 0, λ ∈ ∂φ(F (x̄)).

In particular, x̄ is a stationary point of (Pc).

Remark 5.1.3. Suppose that x̄ is stationary point of (Pc). Then, our preceding discussion
shows, that the function Π is subdifferentiable at 0 and, due to Lemma 2.5.15, we have

0 ∈ ∇f(x̄) +DF (x̄)>∂Π(0) ⊆ ∇f(x̄) + ∂(Π ◦DF (x̄))(0).

Consequently, it holds

0 ≤ ∇f(x̄)>(h− 0) + Π(DF (x̄)h)−Π(0) = ∇f(x̄)>h+ φ↓(F (x̄);DF (x̄)h), ∀ h ∈ Rn.
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Hence, in this case, Remark 2.5.8 implies that our initial, first order condition

(ψc)
↓
−(x̄;h) ≥ 0, ∀ h ∈ Rn,

is also fulfilled (even if Robinson’s constraint qualification does not hold at x̄). In summary,
we see that the first order necessary conditions (5.1.3) are generally stronger than condition
(5.1.1). We like to mention that this natural “gap” also appears when discussing and deriving
KKT conditions in nonlinear programming.

In the subsequent analysis, we will also need the next, quite standard property.

Lemma 5.1.4 (cf. [27, Proposition 4.43]). Assume that x̄ ∈ F−1(dom φ) is a stationary
point of (Pc) and that Robinson’s constraint qualification is satisfied at x̄. Then,M(x̄) is a
nonempty, convex, and compact set and, additionally, the sets M(x) are uniformly bounded
for all x in a neighborhood of x̄.

5.1.2. Second order conditions and the strict constraint qualification

First order sufficient conditions that guarantee optimality of a stationary point often fail
to hold in practice. This observation can be traced back to the fact, that the directional
epiderivative (ψc)

↓
−(x̄; ·) does not provide any information about optimality of a stationary

point x̄ along directions h ∈ Rn that satisfy the condition

(5.1.5) (ψc)
↓
−(x̄;h) ≤ 0.

A very common approach to circumvent this lack of information is to pose certain, appropri-
ate second order conditions and to incorporate second order information. In the following, we
introduce the so-called critical cone of ψc that exactly consists of those directions h fulfilling
(5.1.5).

Definition 5.1.5. Let x̄ ∈ F−1(dom φ) be given. The critical cone of ψc at x̄ is defined by

(5.1.6) C(x̄) := {h ∈ Rn : (ψc)
↓
−(x̄;h) ≤ 0}.

Additionally, if x̄ is a stationary point of problem (Pc) and if Robinson’s constraint qualifi-
cation (5.1.2) is satisfied at x̄, then the critical cone C(x̄) can be equivalently represented as
follows:

(5.1.7) C(x̄) = {h ∈ Rn : (ψc)
↓
−(x̄;h) = 0} = {h ∈ Rn : DF (x̄)h ∈ N∂φ(F (x̄))(λ)},

where λ ∈M(x̄) is an arbitrary Lagrange multiplier.

Proof. Let us briefly verify the alternative representation of the critical cone in the case
that x̄ is a stationary point of (Pc) and Robinson’s constraint qualification holds at x̄. The
formula

C(x̄) = {h ∈ Rn : (ψc)
↓
−(x̄;h) = 0}

follows directly from definition (5.1.6) and from Remark 5.1.3. (Let us note that Robinson’s
constraint qualification need not necessarily hold at x̄ for this implication). Now, let h ∈ C(x̄)
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be arbitrary. Then, due to Remark 2.5.8, it holds

0 ≥ ∇f(x̄)>h+ φ↓(F (x̄);DF (x̄)h)

= −(DF (x̄)>λ)>h+ σ∂φ(F (x̄))(DF (x̄)h) = sup
v∈∂φ(F (x̄))

〈v − λ,DF (x̄)h〉.

Hence, it follows 〈v − λ,DF (x̄)h〉 ≤ 0 for all v ∈ ∂φ(F (x̄)) and DF (x̄)h ∈ N∂φ(F (x̄))(λ).
On the other hand, if h ∈ Rn satisfies DF (x̄)h ∈ N∂φ(F (x̄))(λ), then the above discussion
immediately implies

∇f(x̄)>h+ φ↓(F (x̄);DF (x̄)h) ≤ 0.

Using Corollary 2.5.7, this establishes h ∈ C(x̄).

Now, we are able to present a first second order condition that was introduced and studied
by Burke et al. in [29, 31].

Theorem 5.1.6 (Second order sufficient conditions). Let x̄ be a stationary point of
problem (Pc) and suppose that the second order sufficient condition

(5.1.8) sup
λ∈M(x̄)

{
h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉

}
> 0, ∀ h ∈ C(x̄) \ {0}

is satisfied. Then, there exists α > 0 such that for all x in a neighborhood of x̄ it holds

f(x) + φ(F (x)) ≥ f(x̄) + φ(F (x̄)) + α‖x− x̄‖2,

and hence, x̄ is a (strict) locally optimal solution of (Pc).

Proof. The proof is exactly as in [31, Theorem 4.2].

In the case of cone constrained optimization, i.e., ϕ ≡ ιK , where K ⊆ Rm is a convex,
closed cone, it was already observed by Robinson [203] that condition (5.1.8) does not ensure
that x̄ is an isolated, local minimum of the optimization problem (Pc), see, e.g., Example
(2.5) in [203]. In the following we will discuss several conditions that together with the sec-
ond order sufficient conditions (5.1.8) will guarantee that a stationary point is an isolated
stationary point of problem (Pc).

The next result combines Lemma 4.44 and Proposition 4.47 in [27] and states a correspond-
ing “translated” version for the convex composite setting. For various related formulations
and examples we like to refer to [216].

Lemma 5.1.7 (Strict constraint qualification). Let x̄ be a stationary point of problem
(Pc) and let λ̄ ∈ M(x̄) be a corresponding Lagrange multiplier. Suppose that λ̄ satisfies the
following strict constraint qualification

(5.1.9) 0 ∈ int{F (x̄) +DF (x̄)Rn − Φ̄},

where Φ̄ := {y ∈ Rm : 〈λ̄, y − F (x̄)〉 = φ(y)− φ(F (x̄))} ⊆ dom φ. Then:
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(i) The Lagrange multiplier λ̄ is unique, i.e.,M(x̄) = {λ̄}.

(ii) The multifunctionM : Rn ⇒ Rm is upper Lipschitzian at the stationary point x̄.

Proof. The proof of this Lemma is based on the (rather easy) observation that the set Φ̄
and the condition (5.1.9) yield the right extension of the strict constraint qualification given
in Definition 4.46 in [27]. Alternatively, the statements (i) and (ii) can be shown directly by
mimicking the proof of Proposition 4.47 in [27] and by appropriately using the structure of
the set Φ̄. We will not go into details here.

5.1.3. Constraint nondegeneracy and the strict complementarity condition

In the following, we present the concepts of constraint nondegeneracy and strict comple-
mentarity, which will play an essential role in our subsequent analysis. Constraint nonde-
generacy was originally introduced by Robinson [204, 205] to study sensitivity properties of
nonlinear programs. Robinson also showed that in the case of nonlinear programming, the
nondegeneracy condition reduces to the well-known Linear Independence Constraint Qual-
ification (LICQ). In [27], constraint nondegeneracy was used in a reduction approach for
cone-reducible problems to establish quantitative stability results (see section 4.6 in [27]). A
related version of the nondegeneracy condition was also discussed in the paper [26], where it
was connected to transversality. Here, we will work with the more general formulation that
was studied by Shapiro in [218].

Over the last years, the concept of constraint nondegeneracy has been used in different
fields of optimization to investigate and discuss second order conditions and second order
information. For instance, in [226, 43, 119], based on the nondegeneracy condition, a second
order theory was developed for semidefinite programs and low-rank structured problems that
can be applied to establish fast local convergence of corresponding semismooth Newton-type
methods. Further examples and applications can also be found in [26, 27, 217] and [25].

Definition 5.1.8 (Nondegeneracy and strict complementarity). Let x ∈ F−1(dom φ)
be a feasible point of problem (Pc). We say that the nondegeneracy condition is fulfilled at
x, if

(5.1.10) DF (x)Rn + lin N∂φ(F (x))(λ) = Rm,

where λ ∈ ∂φ(F (x)) is an arbitrary subgradient. Moreover, we say that the strict comple-
mentarity condition is satisfied at x, if there exists λ ∈M(x) such that

(5.1.11) λ ∈ ri ∂φ(F (x)).

Remark 5.1.9. Let us note that the nondegeneracy condition can only hold at some x ∈
F−1(dom φ) if φ is subdifferentiable at F (x). Otherwise, the lineality space lin N∂φ(F (x))(λ)
is empty and condition (5.1.10) cannot be satisfied by definition.

In the next paragraph, we want to derive several equivalent representations of the nonde-
generacy condition (5.1.10). Therefore, let x ∈ F−1(dom ϕ) be a feasible point and assume
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that φ is subdifferentiable at F (x). Moreover, let λ ∈ ∂φ(F (x)) be an arbitrary subgradient
and let us define the following sets

U1 := lin N∂φ(F (x))(λ), U2 := lin φ↓(F (x); ·), U3 := [aff ∂φ(F (x))− λ]⊥.

Then, it holds U1 = U2 = U3. Clearly, this shows that the subspaces U1 and U3 do not
depend on the specific choice of the subgradient λ. In particular, for all λ1, λ2 ∈ ∂φ(F (x))
we have

(5.1.12) lin N∂φ(F (x))(λ1) = lin N∂φ(F (x))(λ2).

Let us briefly prove the equivalence of the three different subspaces U1 –U3. From the defi-
nition of the normal cone, it follows for any h ∈ lin N∂φ(F (x))(λ):

〈v − λ, h〉 = 0, ∀ v ∈ ∂φ(F (x)).

Obviously, using Lemma 2.5.11 (ii), this implies

(5.1.13) 〈λ, h〉 = φ↓(F (x);h).

Furthermore, since the lineality space of the normal cone N∂φ(F (x))(λ) is a linear subspace,
we also have −h ∈ lin N∂φ(F (x))(λ). Consequently, equation (5.1.13) also holds for −h and
we immediately obtain

φ↓(F (x);h) + φ↓(F (x);−h) = 0.

On the other hand, if h ∈ lin φ↓(F (x); ·) is given, then again by applying Lemma 2.5.11 (ii),
we can infer

〈λ− v, h〉 ≤ 0 and 〈v − λ, h〉 ≤ 0

for all v ∈ ∂φ(F (x)). This shows h ∈ lin N∂φ(F (x))(λ) and establishes U1 = U2. To finish the
proof, let h ∈ U⊥2 be arbitrary. Then, using (5.1.13), it holds

〈h+ λ, d〉 = φ↓(F (x); d), ∀ d ∈ lin φ↓(F (x); ·).

However, by Lemma 2.5.11 (ii) and Lemma 2.1.9, this is equivalent to h+ λ ∈ aff ∂φ(F (x̄)).
Since U2 is a closed, linear subspace, it follows U2 = [U⊥2 ]⊥ = U3, as desired.

Next, we want to present and verify a connection between the nondegeneracy condition
(5.1.10) and Robinson’s constraint qualification. Let us set

Ξ := {(h, t) ∈ Rm × R : h ∈ lin φ↓(F (x); ·), t = φ↓(F (x);h)}.

and let (h, t) ∈ Ξ be arbitrary. From the definition of the set Ξ, it directly follows (h, t) ∈
epi φ↓(F (x); ·) and we have

φ↓(F (x);−h) = −φ↓(F (x);h) = −t.
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5.1. A first second order sufficient condition and isolated stationarity

Together, these observations imply

(h, t) ∈ epi φ↓(F (x); ·) ∩ −[epi φ↓(F (x); ·)] = lin epi φ↓(F (x); ·).

Now, suppose that (h, t) ∈ lin epi φ↓(F (x); ·) is a given vector, then it holds

φ↓(F (x);h) + φ↓(F (x);−h) ≤ t+ (−t) = 0.

Using the subadditivity of the directional epiderivative, we readily establish h ∈ lin φ↓(F (x); ·)
and

t ≥ φ↓(F (x);h) = −φ↓(F (x);−h) ≥ −(−t) = t.

Hence, we have shown that the two sets Ξ and lin epi φ↓(F (x); ·) coincide. Furthermore,
due to Lemma 2.5.3, we obtain the following, useful connection to the tangent cone of the
epigraph epi φ:

Ξ = lin epi φ↓(F (x); ·) = lin Tepi φ(F (x), φ(F (x))).

As a consequence, the nondegeneracy condition (5.1.10) can be equivalently rewritten as(
DF (x)Rn

R

)
− lin Tepi φ(F (x), φ(F (x))) =

(
Rm
R

)
and, due to lin epi φ↓(F (x); ·) ⊂ epi φ↓(F (x); ·), the following condition must be automati-
cally satisfied at x (

DF (x)Rn
R

)
− Tepi φ(F (x), φ(F (x))) =

(
Rm
R

)
.

However, by applying Proposition 2.97 and Corollary 2.98 of [27], the latter condition is
equivalent to

0 ∈ int

{(
F (x)

ϕ(F (x))

)
+

(
DF (x)Rn

R

)
− epi ϕ

}
,

which in fact is just another equivalent reformulation of Robinson’s constraint qualification
(5.1.2). In summary, our latter computations have shown that the nondegeneracy condition
implies Robinson’s constraint qualification. In particular, if the nondegeneracy condition
holds at a local solution x̄ of (Pc), then M(x̄) is nonempty and x̄ is a stationary point of
problem (Pc).

We conclude this discussion with a brief example. Let K ⊂ Rn be a convex, closed, and
nonempty set and let us define φ := ιK . Furthermore, let x ∈ F−1(K) and λ ∈ ∂φ(F (x)) =
NK(F (x)) be arbitrary. Then, the nondegeneracy condition can be simplified as follows. By
(2.1.2), we have

N∂φ(F (x))(λ) = NNK(F (x))(λ) = {y ∈ TK(F (x)) : 〈λ, y〉 = 0} = TK(F (x)) ∩ {λ}⊥.

Moreover, due to 0 ∈ NK(F (x)) and (5.1.12), we obtain

lin N∂φ(F (x))(λ) = lin N∂φ(F (x))(0) = lin TK(F (x)).
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5. Second order theory and decomposability

Thus, in this situation, the nondegeneracy condition reduces to

DF (x)Rn − lin TK(F (x)) = Rm.

Let us note that this is exactly the condition that was introduced and analyzed by Bonnans
and Shapiro in [26, 27, 218].

The following result of Lemaréchal and Sagastizábal provides a helpful, alternative char-
acterization of the strict complementarity condition.

Lemma 5.1.10. Let S ⊂ Rn be a convex, nonempty, and closed set and let λ ∈ S be
arbitrary. Then, it holds

λ ∈ ri S ⇐⇒ NS(λ) is a subspace.

Proof. A proof of this result can be found in [131, Proposition 2.2].

The next result is analogue to [27, Proposition 4.75] and [218, Theorem 2.1] and completes
our discussion of the nondegeneracy and strict complementarity condition.

Lemma 5.1.11. Suppose that x̄ is a local solution or a stationary point of (Pc). Then, the
following holds:

(i) If the nondegeneracy condition holds at x̄, then the setM(x̄) reduces to a singleton.

(ii) Conversely, suppose that M(x̄) = {λ̄} and that the strict complementarity conditions
is satisfied at x̄. Then, the nondegeneracy condition holds at x̄.

Proof. The proof is a mere “translation” of the proofs given in [27, 218]. Nonetheless, for
the sake of completeness, we want to present a proof of this statement.

At first, let x̄ be a local solution of (Pc) and suppose that the nondegeneracy condition is
satisfied. Then, we have seen that Robinson’s constraint qualification must hold at x̄ and,
consequently, x̄ is also a stationary point of (Pc). In particular, we have M(x̄) 6= ∅. Of
course, the argumentation is identical if x̄ is already a stationary point. Now, let us assume
that there exists λ̄, λ ∈M(x̄), λ̄ 6= λ. It follows

DF (x̄)>(λ− λ̄) = 0, λ− λ̄ ∈ ∂φ(F (x̄))− λ̄ ⊂ aff ∂φ(F (x̄))− λ̄

and we infer λ− λ̄ ∈ [DF (x̄)Rn]⊥ ∩ [U3]⊥. However, by taking the orthogonal complement,
the nondegeneracy condition is equivalent to

(5.1.14) [DF (x̄)Rn]⊥ ∩ [lin N∂φ(F (x̄))(λ̄)]⊥ = {0},

see, e.g., [11, Proposition 6.26]. This clearly implies λ = λ̄. Next, to prove the second part,
let us suppose that the nondegeneracy condition is not satisfied. Then, due to (5.1.14), there
exists v 6= 0 such that v ∈ ker DF (x̄)> and v ∈ [lin N∂φ(F (x̄))(λ̄)]⊥ = aff ∂φ(F (x̄)) − λ̄.
Obviously, this establishes

(5.1.15) DF (x̄)>(tv) = 0 and λ̄+ tv ∈ aff ∂φ(F (x̄)),
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5.1. A first second order sufficient condition and isolated stationarity

for all t ∈ R. Now, the second part of equation (5.1.15) and the strict complementarity
condition imply λ̄ + tv ∈ ∂φ(F (x̄)) for all t > 0 sufficiently small. Next, by combining
λ̄ ∈M(x̄) and (5.1.15), we obtain

∇f(x̄) +DF (x̄)>(λ̄+ tv) = 0

and, consequently, it holds λ̄ + tv ∈ M(x̄) for all t > 0 sufficiently small. Clearly, this is a
contradiction to the assumptionM(x̄) = {λ̄}.

5.1.4. Isolated stationarity

The following theorem establishes several conditions under which isolated stationarity of an
arbitrary stationary point of problem (Pc) can be guaranteed. This result (together with
Corollary 5.1.14) can be traced back to Robinson [203, Theorem 2.3]. Similar results can
also be found in section 4.4.4 in [27].

Theorem 5.1.12 (Isolated stationarity). Let x̄ ∈ F−1(dom φ) be a stationary point of
problem (Pc). Suppose that the second order sufficient conditions (5.1.8) hold at x̄ and that
one of the following conditions is satisfied:

(i) The nondegeneracy condition (5.1.10) holds at x̄.

(ii) DF (x̄) : Rn → Rm is onto.

(iii) The multiplier λ̄ ∈M(x̄) fulfills the strict constraint qualification (5.1.9).

Then, x̄ is an isolated stationary point of (Pc).

Proof. We slightly adjust the proof given in [203, Theorem 2.3] and prove this statement
by contradiction. (We also want to refer to the proofs of [27, Theorem 4.51 and Proposition
4.52], where similar techniques were used). Let (xk)k be a sequence of stationary points of
problem (Pc) that converges to x̄ and let (λk)k be a corresponding sequence of multipliers,
i.e., λk ∈ M(xk) for all k ∈ N. Since each of the conditions (i)–(iii) implies that Robinson’s
constraint qualification is satisfied at x̄, Lemma 5.1.4 ensures boundedness of the sequence
(λk)k. Furthermore, due to Lemma 5.1.7 (i) and 5.1.11 (i), the set of Lagrange multipliers
also reduces to a singletonM(x̄) = {λ̄}.
Now, there exists a subsequence (λk)k∈K1 of (λk)k that converges to some limit λ̃ ∈ Rm.

The continuity of ∇f , F , DF , and of the proximity operator yields

∇f(x̄) +DF (x̄)>λ̃ = lim
K13k→∞

∇f(xk) +DF (xk)>λk = 0,

F (x̄)− proxIφ(F (x̄) + λ̃) = lim
K13k→∞

F (xk)− proxIφ(F (xk) + λk) = 0.

Obviously, this shows λ̃ ∈ M(x̄) and, sinceM(x̄) is a singleton, we also have λ̃ = λ̄. Next,
using λk ∈ ∂φ(F (xk)) and a first order Taylor expansion, we obtain

φ(F (xk))− φ(F (x̄)) ≤ 〈λk, F (xk)− F (x̄)〉 = 〈λk, DF (x̄)(xk − x̄)〉+ o(‖xk − x̄‖).
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Let us define tk := ‖xk− x̄‖ and hk := (xk− x̄)/tk. Then, by passing to another subsequence
K ⊆ K1 if necessary, we can assume that (hk)k∈K converges to some h ∈ Rn. It follows

F (xk)− F (x̄)

tk
=
F (x̄+ tkh

k)− F (x̄)

tk
= DF (x̄)hk +

o(tk)

tk
−−−−−−→
K3k→∞

DF (x̄)h

and

φ↓(F (x̄);DF (x̄)h) ≤ lim inf
K3k→∞

φ(F (xk))− φ(F (x̄))

tk

≤ lim inf
K3k→∞

〈λk, DF (x̄)hk〉+
o(tk)

tk
= 〈λ̄, DF (x̄)h〉.

Adding ∇f(x̄)>h on both side of the latter inequality and applying Corollary 2.5.7, we
establish

ψ↓c (x̄;h) = ∇f(x̄)>h+ φ↓(F (x̄);DF (x̄)h) ≤ 〈∇f(x̄) +DF (x̄)>λ̄, h〉 = 0.

Together with the stationarity of x̄, this implies h ∈ C(x̄) \ {0}. Next, a Taylor expansion of
∇f , F , and DF at x̄ and Lemma 2.5.14 yield

0 = −∇f(xk)−DF (xk)>λk(5.1.16)

= −∇f(x̄)−DF (x̄)>λk − tk

(
∇2f(x̄)hk +

m∑
i=1

λki · ∇2Fi(x̄)hk − o(tk)

tk

)

= −DF (x̄)>(λk − λ̄)− tk

(
∇2f(x̄)hk +

m∑
i=1

λki · ∇2Fi(x̄)hk − o(tk)

tk

)

and
∂φ∗(λk) 3 F (xk) = F (x̄) + tkDF (x̄)hk + t2kD

2F (x̄)[hk, hk] + o(t2k).

Furthermore, by the monotonicity of the subdifferential operator ∂φ∗ (combine, e.g., [11,
Theorem 20.40] and Lemma 2.5.14), we have

0 ≤ 〈F (xk)− F (x̄), λk − λ̄〉 = 〈λk − λ̄, tkDF (x̄)hk + t2kD
2F (x̄)[hk, hk]〉+ o(t2k).

By multiplying (5.1.16) with tk(hk)> and adding the latter inequality, we get

−(hk)>∇2f(x̄)hk − 〈λ̄, D2F (x̄)[hk, hk]〉+
o(tk)

tk
+
o(t2k)

t2k
≥ 0.

Taking the limit K 3 k →∞, we finally obtain

h>∇2f(x̄)h+ 〈λ̄, D2F (x̄)[h, h]〉 ≤ 0.

However, due to h ∈ C(x̄) \ {0} andM(x̄) = {λ̄}, this contradicts the second order sufficient
conditions (5.1.8).
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Remark 5.1.13. Let us note, that this proof also works under slightly weaker assumptions.
Specifically, if Robinson’s constraint qualification is satisfied at x̄, then the set M(x) is
uniformly bounded in a neighborhood of x̄ and the sequence (λk)k, which was constructed
in the proof of Theorem 5.1.12, will stay in a bounded set. Of course, if M(x̄) is not a
singleton, a stronger form of the second order sufficient conditions has to be used, in order
to establish a contradiction at the end of the proof.

The latter observations motivate the following corollary, which obviously requires no proof.

Corollary 5.1.14. Let x̄ ∈ F−1(dom φ) be a stationary point of (Pc). Suppose that the
strong second order sufficient conditions hold at x̄

h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 > 0, ∀ h ∈ C(x̄) \ {0}, ∀ λ ∈M(x̄)

and that Robinson’s constraint qualification is satisfied at x̄. Then, x̄ is an isolated stationary
point of (Pc)

Remark 5.1.15. Let us briefly reconsider our initial problem

min
x

f(x) + ϕ(x) = ψ(x),

where f : Rn → R is twice continuously differentiable and ϕ : Rn → (−∞,+∞] is a convex,
proper, and lower semicontinuous mapping. Clearly, in this situation, we have F ≡ I and,
consequently, condition (ii) in Theorem 5.1.12 is satisfied. Let x̄ ∈ dom ϕ be an arbitrary
stationary point, then the corresponding second order sufficient conditions (5.1.8) reduce to
the condition

h>∇2f(x̄)h > 0, ∀ h ∈ C(x̄) = {h ∈ Rn : ψ↓(x̄;h) = 0}.

Thus, if the Hessian of f at x̄ is positive definite on the critical cone C(x̄), then x̄ is a strict
local minimum and an isolated stationary point of problem (P). In the following sections, we
will discuss and present situations where isolated stationarity can be obtained under weaker
assumptions. In particular, we have ignored any possible second order information of the
nonsmooth function ϕ so far.

5.2. No gap second order conditions

We will now introduce and present a pair of so-called no gap second order conditions for the
convex composite problem (Pc). In contrast to the previous discussions, these conditions also
take the possible curvature of the nonsmooth and nonlinear function φ into account. Since
the formulation and derivation of these general second order conditions relies on a number of
not yet mentioned concepts, such as, e.g., second order directional derivatives of φ or outer
second order regularity, we start with some preliminary definitions.

This subsection is primarily based on the sections 3.2.1, 3.3.4, and 3.4.1 in [27] and summa-
rizes the most important results of Bonnans and Shapiro. For more details and information
on second order conditions for composite functions we refer to [24, 27]. To improve the over-
all comprehensibility of this subsection and of the abstract second order theory, we decided
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to recreate some of the proofs given in [27] and to “translate” them to the convex composite
setting. The complete proofs can be found in the Appendix.

5.2.1. Second order directional (epi-)derivatives and second order tangent
sets

At first, we will give a brief overview on second order directional derivatives and their relation
to second order tangent sets. Let us note that the following definitions are formulated for
general functions %, g, and G that are not necessarily connected to our initial problem or to
problem (Pc).

Definition 5.2.1. Let % : Rn → (−∞,+∞] and x ∈ dom % be given and suppose that % is
directionally differentiable at x in the direction h ∈ Rn such that %′(x;h) is finite. Then, the
lower and upper (parabolic) second order directional derivatives of % at x are defined by:

%′′−(x;h,w) := lim inf
t↓0

%(x+ th+ 1
2 t

2w)− %(x)− t%′(x;h)
1
2 t

2
,

%′′+(x;h,w) := lim sup
t↓0

%(x+ th+ 1
2 t

2w)− %(x)− t%′(x;h)
1
2 t

2
.

We say that % is twice (parabolically) directionally differentiable at x, in the direction h,
if the upper and lower second order directional derivatives coincide for all w ∈ Rn. In that
case, the term %′′(x;h,w), w ∈ Rn, will be used to denote the common values.

Apparently, if the function % is twice continuously differentiable at x, then it is also twice
directionally differentiable at x and a second order Taylor expansion immediately yields

%′′(x;h,w) = ∇%(x)>w + h>∇2%(x)h.

Next, we introduce an analogous terminology for second order directional epiderivatives.

Definition 5.2.2. Let % : Rn → (−∞,+∞], x ∈ dom %, and h ∈ Rn be given and suppose
that the directional epiderivatives %↓−(x;h) and %↓+(x;h) are finite. Then, the lower and upper
(parabolic) second order directional epiderivatives of % at x are defined as follows:

%↓↓− (x;h,w) := lim inf
t↓0, w̃→w

%(x+ th+ 1
2 t

2w̃)− %(x)− t%↓−(x;h)
1
2 t

2
,

%↓↓+ (x;h,w) := sup
(tk)k∈N0

lim inf
k→∞, w̃→w

%(x+ tkh+ 1
2 t

2
kw̃)− %(x)− tk%↓+(x;h)

1
2 t

2
k

.

In addition, if % is directionally epidifferentiable at x, in the direction h, and the lower and
upper second order directional epiderivatives coincide for all w ∈ Rn, then % is said to be
twice (parabolically) directionally epidifferentiable at x, in the direction h. In this case, we
will use the term %↓↓(x;h,w), w ∈ Rn, to denote the coinciding derivatives.

Again, if % is Lipschitz continuous in a neighborhood of x and directionally differentiable at
x, then for all h,w ∈ Rn, the second order epiderivatives %↓↓− (x;h,w) and %↓↓+ (x;h,w) reduce
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to the more conventional lower and upper second order directional derivatives. Clearly, our
definition of second order epidifferentiability can be equivalently rephrased as epi-convergence
of the second order difference quotients

∆2
t %(x;h)(w) :=

%(x+ th+ 1
2 t

2w)− %(x)− t%↓(x;h)
1
2 t

2
,

for all w ∈ Rn. A thorough treatment and further properties of second order (epi-)derivatives
can be found in [15, 16, 206], [208, Section 13.J], and [27, Chapter 3]. As in Lemma 2.5.3,
the second order epiderivatives can be connected to so-called second order tangent sets.

Definition 5.2.3 (cf. [27, Definition 3.28]). Let S ⊂ Rn be nonempty and let x ∈ S be
given. The sets

T i,2S (x, h) :=
{
w ∈ Rn : dist(x+ th+ 1

2 t
2w, S) = o(t2), t ≥ 0

}
,

T 2
S(x, h) :=

{
w ∈ Rn : ∃ tk ↓ 0 such that dist(x+ tkh+ 1

2 t
2
kw, S) = o(t2k)

}
are called the inner and outer second order tangent sets to the set S at the point x in the
direction h ∈ Rn, respectively.

The inner and outer second order tangent sets are closed and it holds T i,2S (x, h) ⊂ T 2
S(x, h)

for all h ∈ Rn. Moreover, if the set S is convex, then the distance function dist(·, S) is convex
and, in that case, the inner second order tangent set T i,2S (x, h) is also a convex set. The outer
second order tangent set T 2

S(x, h) can be nonconvex, even if S is a convex set.

Lemma 5.2.4 (cf. [27, Proposition 3.41]). Let % : Rn → (−∞,+∞] and x ∈ dom % be
given. For h ∈ Rn, suppose that %↓−(x;h) and %↓+(x;h) are finite. Then, we have

T 2
epi %[(x, %(x)), (h, %↓−(x;h))] = epi %↓↓− (x;h, ·),

T i,2epi %[(x, %(x)), (h, %↓+(x;h))] = epi %↓↓+ (x;h, ·).

Lemma 5.2.4 immediately implies that the upper second order directional epiderivative
%↓↓+ (x;h, ·) is convex, when the function % is convex and %↓(x;h) is finite. We conclude this
preparatory subsection with a chain rule for second order epiderivatives.

Lemma 5.2.5 (cf. [27, Proposition 3.42]). Let G : Rn → Rm be a twice continuously
differentiable function and let % : Rm → (−∞,+∞] be a convex, proper, and lower semicon-
tinuous mapping. Moreover, suppose that Robinson’s constraint qualification

0 ∈ int{G(x) +DG(x)Rn − dom %}

is satisfied at x ∈ G−1(dom %) and that %↓(G(x);DG(x)h) is finite. Then, it holds

(% ◦G)↓↓− (x;h,w) = %↓↓− (G(x);DG(x)h,DG(x)w +D2G(x)[h, h]),

(% ◦G)↓↓+ (x;h,w) = %↓↓+ (G(x);DG(x)h,DG(x)w +D2G(x)[h, h]).
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5.2.2. Outer second order regularity and second order conditions

The concept of outer second order regularity was introduced and developed in [22, 24, 27].
It is an essential analytical tool and one of the central ideas that allows to close the gap
between second order sufficient and necessary conditions. The following definition is taken
from [27, Definition 3.94].

Definition 5.2.6 (Outer second order regularity). Let % : Rn → (−∞,+∞] be an
extended real valued function and let x ∈ dom % be arbitrary. We say that % is outer second
order regular at the point x, in a direction h ∈ Rn, if %↓−(x, h) is finite and if for any sequences
(tk)k, tk ↓ 0, and (wk, τk)k ⊂ Rn+1 that satisfy tk(wk, τk)→ 0 and

(5.2.1) %(x+ tkh+ 1
2 t

2
kw

k) ≤ %(x) + tk%
↓
−(x;h) + 1

2 t
2
kτ

k

there exists a sequence (w̃k, τ̃k)k ⊂ Rn+1 such that, for all k ∈ N, it holds %↓↓− (x;h, w̃k) ≤ τ̃k
and

w̃k − wk → 0, τ̃k − τk → 0, as k →∞.

The function % is said to be outer second order regular at x on a set H ⊂ Rn, if %↓−(x;h) is
finite for all h ∈ H and if % is outer second order regular at x, in all directions h ∈ H.

Let us note that condition (5.2.1) is equivalent to

(5.2.2)
(

x
%(x)

)
+ tk

(
h

%↓−(x;h)

)
+

1

2
t2k

(
wk

τk

)
∈ epi %.

Thus, outer second order regularity implies that for any parabolic curve of the form (5.2.2),
which is entirely contained in the epigraph epi % and which is tangential to the direction
(h, %↓−(x;h)) ∈ Tepi %(x, %(x)), the term (wk, τk) will eventually approach the outer second
order tangent set T 2

epi %[(x, %(x)), (h, %↓−(x;h))] as k →∞. Next, we present a chain rule-type
result for outer second order regular functions.

Lemma 5.2.7. Let g : Rn → R, G : Rn → Rm be twice continuously differentiable and let
% : Rm → (−∞,+∞] be a convex, proper, and lower semicontinuous function. Furthermore,
suppose that Robinson’s constraint qualification is satisfied at x ∈ G−1(dom %) and % is
outer second order regular at G(x) in the direction DG(x)h. Then, the composite function
ψ : Rn → (−∞,+∞], ψ(x) := g(x) + %(G(x)), is outer second order regular at x in the
direction h.

Proof. A proof can be found in [27, Proposition 3.88 and 3.96].

We are now ready to state the no gap second order conditions for the convex composite
problem (Pc). Recall that in our initial setting the functions f : Rn → R, F : Rn → Rm are
supposed to be twice continuously differentiable and φ : Rm → (−∞,+∞] is assumed to be
convex, proper, and lower semicontinuous.

This theorem summarizes and combines the Theorems 3.45, 3.83, 3.86, 3.108, and 3.109
in [27], see also [24, Theorem 5.2] for an analogue formulation. As already mentioned, a
complete proof of Theorem 5.2.8 is provided in the appendix.

100



5.2. No gap second order conditions

Theorem 5.2.8 (No gap second order conditions). Let x̄ ∈ F−1(dom φ) be given
and suppose that Robinson’s constraint qualification is fulfilled at x̄. Then, the following
statements do hold:

(i) (Second order necessary conditions). Additionally, let x̄ be a locally optimal solution
of (Pc). Then, for any h ∈ C(x̄) and any convex function ζ(·) ≥ φ↓↓− (F (x̄), DF (x̄)h, ·)
the following inequality is satisfied:

(5.2.3) max
λ∈M(x̄)

{
h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − ζ∗(λ)

}
≥ 0.

(ii) (Second order sufficient conditions). Let x̄ be a stationary point of problem (Pc). Sup-
pose that for every h ∈ C(x̄), the function φ is outer second order regular at F (x̄) in
the direction DF (x̄)h and that it holds

(5.2.4) max
λ∈M(x̄)

{
h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − ξ∗φ,h(λ)

}
> 0,

for all h ∈ C(x̄) \ {0}, where ξφ,h(·) := φ↓↓− (F (x̄), DF (x̄)h, ·). Then, for some α > 0
and all x in a neighborhood of x̄ it follows

(5.2.5) f(x) + φ(F (x)) ≥ f(x̄) + φ(F (x̄)) + α‖x− x̄‖2,

and hence, x̄ is a locally optimal solution of (Pc). Moreover, if the function ξφ,h is
convex for every h ∈ C(x̄), then the second order conditions (5.2.4) are necessary and
sufficient for the quadratic growth condition (5.2.5) and there is no gap between the
second order necessary and sufficient conditions.

In the second order necessary conditions we can always choose ζ(·) = φ↓↓+ (F (x̄);DF (x̄)h, ·)
as an upper and convex estimate of the function ξφ,h. Moreover, if φ is twice directionally
epidifferentiable at F (x̄), in all directions DF (x̄)h, h ∈ C(x̄), then the epiderivative ξφ,h is
convex and there occurs no gap between the second order conditions.

Remark 5.2.9. Let x̄ be a stationary point of problem (Pc). Then, φ is subdifferentiable
at F (x̄) and for any t > 0 and h,w ∈ Rn it holds

φ(F (x̄) + tDF (x̄)h+ 1
2 t

2w)− φ(F (x̄)) ≥ 〈λ, tDF (x̄)h+ 1
2 t

2w〉, ∀ λ ∈ ∂φ(F (x̄)).

Now, choosing λ ∈M(x̄) ⊂ ∂φ(F (x̄)) and h ∈ C(x̄), the latter inequality yields

φ↓↓− (F (x̄);DF (x̄)h,w)

≥ lim inf
t↓0, w̃→w

1
2 t

2〈λ, w̃〉 − t · (∇f(x̄)>h+ φ↓−(F (x̄);DF (x̄)h))
1
2 t

2
= 〈λ,w〉,

where we used DF (x̄)>λ = −∇f(x̄) and the definition of the critical cone C(x̄). Hence, this
immediately implies

ξ∗φ,h(λ) = sup
w∈Rn

〈λ,w〉 − φ↓↓− (F (x̄);DF (x̄)h,w) ≤ 0.
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5. Second order theory and decomposability

Furthermore, since the convex function ζ in (5.2.3) satisfies ζ(·) ≥ ξφ,h(·), we can apply [11,
Proposition 13.14] and obtain the following, final estimate

ζ∗(λ) ≤ ξ∗φ,h(λ) ≤ 0, ∀ λ ∈M(x̄), ∀ h ∈ C(x̄).

This shows that the second order sufficient condition (5.2.4) is generally weaker than the
second order condition (5.1.8), which was discussed in the previous subsection. Moreover,
the second order necessary conditions indicate that the stronger conditions (5.1.8) cannot
be expected to hold at a local minimum of (Pc) without any further assumptions on the
nonsmooth function φ.

Remark 5.2.10. A careful study of the proof of Theorem 5.2.8 shows that the second
order optimality conditions can also be stated in terms of the lower second order directional
epiderivative (ψc)

↓↓
− . In particular, it is possible to derive the following pair of second order

conditions:

Let x̄ be a local solution of problem (Pc), then it holds

inf
w

(ψc)
↓↓
− (x̄;h,w) ≥ 0, ∀ h ∈ C(x̄).

On the contrary, assume that x̄ satisfies the first order necessary condition (ψc)
↓
−(x̄;h) ≥ 0

for all h ∈ Rn and suppose that ψc is outer second order regular at x̄ in all directions
h ∈ C(x̄) = {h : (ψc)

↓
−(x̄;h) ≤ 0}. Then, the second order growth condition holds at x̄ if and

only if the following second order sufficient conditions are satisfied

inf
w

(ψc)
↓↓
− (x̄;h,w) > 0, ∀ h ∈ C(x̄) \ {0}.

Clearly, these alternative conditions have the advantage that Robinson’s constraint qual-
ification is not needed explicitly. Second order conditions of this form were already studied
and introduced by Ben-Tal and Zowe [15, 16] by using (parabolic) second order directional
derivatives. We also refer to [27, Proposition 3.105] for more details.

Remark 5.2.11. Let us briefly discuss the corresponding pair of no gap second order con-
ditions for our initial problem (P). Again, as in Remark 5.1.15, we set φ ≡ ϕ and F ≡ I.
Obviously, in this situation, the nondegeneracy condition (5.1.10) is satisfied at any point
x ∈ dom ϕ and, due to Lemma 4.1.2 (ii), the set of Lagrange multipliers reduces to the
singleton M(x̄) = {−∇f(x̄)} when x̄ ∈ dom ϕ is a stationary point. Now, let x̄ ∈ dom ϕ
be a local solution of the initial problem (P). Then, by (5.2.3), for any h ∈ C(x̄) and any
convex function ζ(·) ≥ ϕ↓↓− (x̄;h, ·), we have

h>∇2f(x̄)h− ζ∗(−∇f(x̄)) ≥ 0.

On the other hand, let x̄ be a stationary point of problem (P). Let us assume that ϕ is outer
second order regular at x̄ on C(x̄) and that for all h ∈ C(x̄) \ {0} the second order sufficient
condition

h>∇2f(x̄)h− ξ∗ϕ,h(−∇f(x̄)) > 0

is satisfied with ξϕ,h(·) := ϕ↓↓− (x̄;h, ·). Then, by Theorem 5.2.8 (ii), x̄ is a (strict) locally
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5.3. Decomposable functions

optimal solution of (P). As we have seen in Remark 5.2.9, this second order sufficient
condition is certainly weaker than the condition presented in Remark 5.1.15. Unfortunately,
due to the presence of the term ξ∗ϕ,h, we cannot infer that x̄ is also an isolated stationary
point of the problem (P). In the next section, we introduce several classes of nonsmooth
functions ϕ that will allow us to resolve this disadvantage.

Finally, we present a specific property of the upper second order directional epiderivative
that will be needed for the second order analysis of the proximity operator in the next
subsection. This result is based on [23, Corollary 4.1] or [27, Proposition 3.48].

Lemma 5.2.12. Let % : Rn → (−∞,+∞] be a convex and proper function and let x ∈ dom %
and λ ∈ Rn be given. Suppose that there exists a convex, nonempty set Ω ⊂ dom %↓(x; ·),
such that %↓(x;h) is finite for every h ∈ Ω. Then, the function

Ξλ : Rn → [−∞,+∞], Ξλ(h) := − sup
w∈Rn

〈λ,w〉 − %↓↓+ (x;h,w)

is convex on Ω.

Proof. First, let us note that the upper second order directional epiderivative %↓↓+ (x;h,w)
is well-defined for all h ∈ Ω and w ∈ Rn. We rewrite the function Ξλ as follows

Ξλ(h) = − sup
w∈Rn

〈λ,w〉 − %↓↓+ (x;h,w)

= − sup
(w,γ)∈Rn×R

{〈λ,w〉 − γ : (w, γ) ∈ epi %↓↓+ (x;h, ·)} = −σ
epi %↓↓+ (x;h,·)(λ,−1).

Due to Lemma 5.2.4, the epigraph epi %↓↓+ (x;h, ·) coincides with the inner second order
tangent set T i,2epi %[(x, %(x)), (h, %↓(x;h))]. However, in this situation, [27, Proposition 3.48] is
applicable, which establishes the convexity of Ξλ on Ω.

Obviously, if the function % is subdifferentiable at x, then the set Ω in Lemma 5.2.12 can
be chosen as Ω = dom %↓(x; ·).

5.3. Decomposable functions

In the following section, we will introduce and discuss an important class of nonsmooth and
not necessarily convex functions for which the curvature term in the second order conditions
(5.2.3) and (5.2.4) has an easy representation. As anticipated in Remark 5.2.11, this will
allow us to formulate no gap second order conditions that additionally guarantee isolated
stationarity of a stationary point of problem (P) and that combine our different theoretical
results we have developed so far.

The concept of decomposable functions was proposed by Shapiro in [217] and is strongly
related to the notions of amenable functions, see, e.g., [193, 194] or [208, Chapter 10.F],
and of C`-cone reducible sets in nonlinear, constrained optimization. We will see that the
class of decomposable functions is quite rich and a large number of nonsmooth optimization
problems can be treated within the framework of decomposable function. In particular, we
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5. Second order theory and decomposability

will show that `1- and group sparse problems possess a decomposable structure. Moreover,
decomposability is also applicable to structural more advanced problems such as semidefinite
programming or nuclear norm regularized optimization problems.

Before stating the main definition, let us give a short summary of our current position.
In Remark 5.1.15 and 5.2.11, we have seen that the choice F ≡ I leads to two basic second
order sufficient conditions that both seem to be too strong and too weak to characterize or
ensure isolated stationarity. As already mentioned, the overall idea is now to rewrite ϕ as
a suitable composite function ϕ ≡ ϕd ◦ F and to shift the second order discussion to the
corresponding convex composite problem (Pd). In this respect, if x̄ is a stationary point
of problem (P), then, by comparing Theorem 5.2.8 and Theorem 5.1.12, the decomposition
pair (ϕd, F ) should be chosen such that:

• The function ϕd is outer second order regular and twice epidifferentiable at F (x̄), in
all directions DF (x̄)h, h ∈ C(x̄).

• The curvature term ξ∗ϕd,h(λ) vanishes for all multipliers λ ∈M(x̄) and h ∈ C(x̄).

• The mapping DF (x̄) : Rn → Rm is onto or the nondegeneracy condition is satisfied at
x̄. (Or other regularity conditions hold at x̄, see Corollary 5.1.14).

In this case, there will be no gap between the second order necessary and sufficient conditions
and Theorem 5.1.12 is applicable. In the following, we will systematically verify and derive
these motivational observations and show that the concept of decomposability adequately
unites our different demands and results.

In the next paragraph, based on [217, Definition 1.1], we give a definition of decomposable
functions. Since the framework in [217] is tailored to the real valued setting, we have to adjust
the definitions given in [217] to cope with the possible extended valuedness. Moreover, we
also extend the definition in [217] and introduce fully decomposable functions, which will
play an essential role in our further analysis. Thereafter, we discuss the main properties of
decomposable functions, present various illustrating examples and provide several calculation
rules. We conclude this section with one of our main results. In particular, by combining
diverse theoretical frameworks, such as the VU -theory, second order sensitivity analysis of
the Moreau envelope, and the strict complementarity condition, we will establish that the
curvature term ξ∗ϕ,h(−∇f(x̄)) for the initial function ϕ, which already appeared in Remark
5.2.11, does not depend on a specific decomposition pair and can be expressed via a Moore-
Penrose inverse of the Frechét derivative of the proximity operator. This is one of the most
fundamental steps to show that, for the class of decomposable functions, the second order
sufficient condition also ensures nonsingularity of any element of the Clarke subdifferential
∂FΛ(x̄) of a stationary point of (P).

5.3.1. Decomposability

Let us start with a detailed definition of decomposable functions.

Definition 5.3.1 (Decomposable functions). A function ϕ : Rn → (−∞,+∞] is called
C`-decomposable, ` ∈ N, at a point x̄ ∈ dom ϕ, if there exists an open neighborhood U of x̄
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5.3. Decomposable functions

such that

(5.3.1) ϕ(x) = ϕ(x̄) + ϕd(F (x)), ∀ x ∈ U,

and the functions ϕd and F satisfy:

(i) F : Rn → Rm is `-times continuously differentiable on U and it holds F (x̄) = 0.

(ii) The mapping ϕd : Rm → (−∞,+∞] is convex, proper, lower semicontinuous, and
positively homogeneous.

(iii) Robinson’s constraint qualification holds at x̄:

(5.3.2) 0 ∈ int{F (x̄) +DF (x̄)Rn − dom ϕd} = int{DF (x̄)Rn − dom ϕd}.

We say that ϕ is C`-fully decomposable at x̄ if ϕ is C`-decomposable at x̄ and if, in addition,
the nondegeneracy condition

DF (x̄)Rn + lin N∂ϕd(0)(λ) = Rm

is satisfied at x̄ for an arbitrary subgradient λ ∈ ∂ϕd(0).

If ϕ is decomposable at x̄, then the functions ϕd : Rm → (−∞,+∞] and F : Rn → Rm
are called a decomposition pair of ϕ. Of course, a decomposition of ϕ as in (5.3.1) does not
need to be unique. Thus, in general, the function ϕ can have many different decomposition
pairs. Let us also mention that, in the fully decomposable case, since the nondegeneracy
condition implies Robinson’s constraint qualification (5.3.2), assumption (iii) in Definition
5.3.1 is superfluous. We continue with two important remarks.

Remark 5.3.2. Due to Lemma 2.5.13, the function ϕd is subdifferentiable at 0. Hence,
the nondegeneracy condition in Definition 5.3.1 is always well-defined. Moreover, since ϕd
is convex, proper, and positively homogeneous, the set DF (x̄)Rn − dom ϕd is a convex,
nonempty cone and, consequently, Robinson’s constraint qualification (5.3.2) is equivalent to
the condition

DF (x̄)Rn − dom ϕd = Rm.

Remark 5.3.3 (Stationarity and decomposable optimization problems). So far, we
have only considered the trivial decomposition F ≡ I. For more general decompositions as in
Definition 5.3.1, we have to be more careful when speaking of local solutions and stationary
points. If the function ϕ can be rewritten as a composition ϕ ≡ ϕd ◦ F , then it is clear that
every local solution of the initial problem

(5.3.3) min
x

f(x) + ϕ(x)

is also a local minimum of the convex composite problem

(5.3.4) min
x

f(x) + ϕd(F (x)) + c̄,
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5. Second order theory and decomposability

for some constant c̄ ∈ R, and vice versa. However, this analogy does not need to be true for
the different notions of stationarity, i.e., a stationary point of the initial problem (5.3.3) is
not necessarily a stationary point of the composite problem (5.3.4) in the sense of Definition
5.1.1. Our earlier discussion in Remark 5.1.3 already showed that, in general, we can only
expect the following implication

M(x̄) 6= ∅ =⇒ FΛ(x̄) = 0,

where M(x̄) = {λ ∈ ∂ϕd(F (x̄)) : ∇f(x̄) + DF (x̄)>λ = 0} is the set of corresponding La-
grange multipliers of (5.3.4) and Λ ∈ Sn++ is an arbitrary parameter matrix. Now, if the
function ϕ is C`-decomposable at some point x̄ ∈ dom ϕ with decomposition pair (ϕd, F ),
then Robinson’s constraint qualification guarantees that these two different stationarity con-
cepts are actually equivalent, i.e., we have

M(x̄) 6= ∅ ⇐⇒ FΛ(x̄) = 0.

Moreover, due to the stability property of Robinson’s constraint qualification (see subsection
2.1.4), the latter equivalence is also satisfied for any other stationary point that lies in a
certain neighborhood of x̄. Consequently, x̄ is an isolated stationary point of our initial
problem if and only if x̄ is an isolated stationary point of the composite problem (5.3.4).
Therefore, in the context of decomposable functions, there is no difference between these
two stationarity concepts. Thus, the overall idea of decomposability and decomposable
optimization problems can be summarized as follows.

Let us suppose that the function ϕ is C`-decomposable at a local minimum or a stationary
point x̄ ∈ dom ϕ of (5.3.3). Then, the second order analysis of x̄ and of the initial problem
(5.3.3) can be completely transferred to the composite problem (5.3.4). Since the latter
problem is a general convex composite problem of the form (Pc), our abstract second order
framework and theory of the sections 5.1 and 5.2 can be applied. Furthermore, due to
the demonstrated, local equivalence of the problems (5.3.3) and (5.3.4), any optimality and
stationarity result that is obtained for the composite setting, can be passed to the original
problem (5.3.3).

In the following, we want to briefly assess the class of decomposable functions with respect
to its generality and compare it to the so-called class of amenable functions, which was
introduced by Poliquin and Rockafellar in [193, 194].

Definition 5.3.4 (cf. [193, Definition 1.1 and 1.2]). A function ϕ : Rn → (−∞,+∞]
is amenable at x̄ ∈ dom ϕ if there is an open neighborhood U of x̄ such that

ϕ(x) = ϕa(F (x)), ∀ x ∈ U,

where F : Rn → Rm is a continuously differentiable function and ϕa : Rm → (−∞,+∞]
is a convex, proper, and lower semicontinuous mapping and the following basic constraint
qualification is satisfied:

there is no y 6= 0 in Ndom ϕa(F (x̄)) with DF (x̄)>y = 0.
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The function ϕ is called fully amenable if such a representation exists and, additionally, the
function F is twice continuously differentiable and ϕa is piecewise linear-quadratic.

By [27, Proposition 2.97 and Corollary 2.98], the basic constraint qualification is just an
equivalent reformulation of Robinson’s constraint qualification. Thus, any C1-decomposable
function is amenable. On the other hand, an amenable function is C1-decomposable if
and only if the function ϕa is additionally positively homogeneous and it holds F (x̄) = 0.
Moreover, it is also clear that a C2-decomposable function does not need to be fully amenable
and vice versa. Finally, in [217], it was shown that a C2-fully decomposable function is also
partly smooth in the sense of Lewis [133]. For a more detailed overview and discussion of
these different decomposition concepts we refer to Hare [100, 101] and [217]. For instance, a
comprehensive visualization of the connection between various classes of functions, including
amenable, decomposable and partly smooth functions, can be found in [101, Figure 1].

Let us also mention that in [100, 101] decomposability was defined and studied without
explicitly assuming Robinson’s constraint qualification. Here, we decided to add this extra
regularity condition, since, from a practical point of view, it does not seem to be too restrictive
and it notably simplifies the calculus and the overall analysis. In particular, it can be shown
that many results for (fully) amenable functions, such as sum and chain rules for second order
epiderivatives, do also hold for (fully) decomposable functions and that basic techniques and
proofs can be expanded to the class of decomposable functions.

5.3.2. Properties of decomposable functions and decomposable problems

In this subsection, we gradually derive and collect basic properties of decomposable functions.
More specifically, we will show that any decomposition pair of a decomposable function ϕ
fulfills the structural requirements that were stated at the beginning of this section.

Therefore, let us suppose that the function ϕ : Rn → (−∞,+∞] is C`-decomposable at
some point x ∈ dom ϕ with corresponding decomposition pair (ϕd, F ) and ` ∈ N. Then, it
follows ϕd(0) = 0, ∂ϕd(0) 6= ∅, and, due to the lower semicontinuity and positive homogeneity
of the mapping ϕd, we have

ϕd(h) ≤ lim inf
h̃→h

ϕd(h̃) = lim inf
t↓0, h̃→h

ϕd(0 + th̃)− ϕd(0)

t

≤ lim inf
t↓0

ϕd(0 + th)− ϕd(0)

t
≤ lim sup

t↓0

ϕd(0 + th)− ϕd(0)

t
= ϕd(h)

for all h ∈ Rm. Using Remark 2.5.4, this shows that ϕd is directionally differentiable and
directionally epidifferentiable at 0, in all directions h ∈ Rm, and both derivatives coincide,
i.e.,

(5.3.5) ϕ↓d(0;h) = ϕ′d(0;h) = ϕd(h), ∀ h ∈ Rm.
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Now, let h ∈ dom ϕd, w ∈ Rm, and t > 0 be arbitrary, then we obtain

ϕd(0 + th+ 1
2 t

2w)− ϕd(0)− tϕ↓d(0;h)
1
2 t

2
=
ϕd(h+ 1

2 tw)− ϕd(h)
1
2 t

.

Since ϕd is convex and ϕd(h) is finite, the limit of the difference quotient on the right side
of the latter equality exists, as t ↓ 0, and is given by the directional derivative ϕ′d(h;w); see,
e.g., Lemma 2.5.5. Hence, the function ϕd is twice directionally differentiable at 0 in the
direction h. Using the epidifferentiability of ϕd and analogue arguments, we also see that ϕd
is twice directionally epidifferentiable at 0 in the direction h. The second order derivatives
are given by

(5.3.6) ϕ↓↓d (0;h,w) = ϕ↓d(h;w), ϕ′′d(0;h,w) = ϕ′d(h;w), ∀ w ∈ Rm.

Next, let us consider arbitrary sequences (tk)k, tk ↓ 0, (wk)k, (τk)k with tk(wk, τk) → 0, as
k →∞, and let us suppose that the following inequality

ϕd(0 + tkh+ 1
2 t

2
kw

k) ≤ ϕd(0) + tkϕ
↓
d(0;h) + 1

2 t
2
kτ

k = tkϕd(h) + 1
2 t

2
kτ

k,

is satisfied for all k ∈ N. Then, the convexity of ϕd, our last computations, and the positive
homogeneity of the directional epiderivative ϕ↓d(h; ·) imply

τk ≥
ϕd(h+ 1

2 tkw
k)− ϕd(h)

1
2 tk

≥
ϕ↓d(h; 1

2 tkw
k)

1
2 tk

= ϕ↓d(h;wk) = ϕ↓↓d (0;h,wk).

Thus, ϕd is outer second order regular at 0 in all directions h ∈ dom ϕd. Using Robinson’s
constraint qualification we are able to transfer this properties to the initial function ϕ.

Lemma 5.3.5. Let ϕ : Rn → (−∞,+∞] be C2-decomposable at some point x ∈ dom ϕ
with decomposition pair (ϕd, F ). Then, ϕd is twice directionally epidifferentiable and outer
second order regular at F (x) on dom ϕd and ϕ is twice directionally epidifferentiable and
outer second order regular at x in all directions h ∈ Rn with DF (x)h ∈ dom ϕd.

Proof. The first statement just summarizes our preceding calculations. Now, let h ∈ Rn
with DF (x)h ∈ dom ϕd be arbitrary. The C2-decomposability implies that the function
F : Rn → Rn is twice continuously differentiable and Robinson’s constraint qualification

0 ∈ int{F (x) +DF (x)Rn − dom ϕd}

is satisfied at x. Moreover, since ϕd is proper and we have DF (x)h ∈ dom ϕd, it follows
from (5.3.5)

ϕ↓d(F (x);DF (x)h) = ϕ↓d(0;DF (x)h) = ϕd(DF (x)h) ∈ R.

Consequently, Lemma 5.2.5 is applicable and, due to (5.3.6), we obtain

ϕ↓↓− (x;h,w) = (ϕd ◦ F )↓↓− (x;h,w)

= ϕ↓d(DF (x)h;DF (x)w +D2F (x)[h, h]) = (ϕd ◦ F )↓↓+ (x;h,w) = ϕ↓↓+ (x;h,w)
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for all w ∈ Rn. Hence, ϕ is twice directionally epidifferentiable at x in the direction h. The
outer second order regularity of ϕ follows from the regularity properties of ϕd and Lemma
5.2.7.

In the following, we return to the discussion of our initial optimization problem (P). Let
us suppose, that x̄ ∈ dom ϕ is a stationary point of problem (P) and let the function
ϕ : Rn → (−∞,+∞] be C2-decomposable at x̄ with decomposition pair (ϕd, F ). Then, due
to Robinson’s constraint qualification or Remark 5.3.3, x̄ is also a stationary point of the
composite problem

(5.3.7) min
x

f(x) + ϕd(F (x)) + ϕ(x̄).

Since this problem is of the form (Pc) the theory developed in the sections 5.1 and 5.2 is
applicable. In particular, Remark 5.2.9 implies

ξ∗ϕd,h(λ) = sup
w
〈λ,w〉 − (ϕd)

↓↓
− (F (x̄);DF (x̄)h,w) ≤ 0,

for all λ ∈M(x̄) and h ∈ C(x̄). In our specific situation, we have

ψ↓−(x̄;h) = ∇f(x̄)>h+ ϕ↓−(x̄;h) = ∇f(x̄)>h+ ϕ↓d(F (x̄);DF (x̄)h)

= ∇f(x̄)>h+ ϕd(DF (x̄)h),

for all h ∈ Rn, and the setsM(x̄) and C(x̄) are given by

C(x̄) = {h : ∇f(x̄)>h+ ϕd(DF (x̄)h) = 0}, M(x̄) = {λ ∈ ∂ϕd(0) : ∇f(x̄) +DF (x̄)>λ = 0}.

Moreover, using (5.3.6) and Lemma 2.5.5, it follows

(5.3.8) (ϕd)
↓↓
− (F (x̄);DF (x̄)h, 0) = ϕ↓d(DF (x̄)h; 0) ≤ ϕ′d(DF (x̄)h; 0) = 0.

Hence, the decomposability of ϕ and the structure of ϕd imply that the additional curvature
term in (5.2.3) and (5.2.4) vanishes, i.e.,

ξ∗ϕd,h(λ) = 0, ∀ λ ∈M(x̄), ∀ h ∈ C(x̄).

Together with our previous results, this observation allows to formulate no gap second order
conditions for decomposable problems.

Theorem 5.3.6 (Second order conditions for decomposable problems). Suppose that
f : Rn → R is a twice continuously differentiable function and let ϕ : Rn → (−∞,+∞] be
a convex, proper, and lower semicontinuous mapping. Let x̄ ∈ dom ϕ be given and assume
that ϕ is C2-decomposable at x̄ with corresponding decomposition pair (ϕd, F ). Then, the
following statements do hold:

(i) (Second order necessary conditions). Suppose that x̄ is a locally optimal solution of the
initial problem (P). Then, for any h ∈ C(x̄) the following inequality is satisfied:

(5.3.9) max
λ∈M(x̄)

{
h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉

}
≥ 0.

109



5. Second order theory and decomposability

(ii) (Second order sufficient conditions). Let x̄ be a stationary point of the initial optimiza-
tion problem (P). Then, the quadratic growth condition,

(5.3.10) f(x) + ϕ(x) ≥ f(x̄) + ϕ(x̄) + α‖x− x̄‖2,

holds for some α > 0 and all x in a neighborhood of x̄ if and only if the following second
order sufficient condition is fulfilled,

(5.3.11) max
λ∈M(x̄)

{
h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉

}
> 0, ∀ h ∈ C(x̄) \ {0}.

Therefore, in the latter case, x̄ is also a (strict) locally optimal solution of the problem
(P). Moreover, if the function ϕ is C2-fully decomposable at x̄, then the second order
sufficient condition (5.3.11) additionally implies that x̄ is an isolated stationary point
of the initial problem (P).

Proof. The decomposability of ϕ implies that any (strict) local solution or (isolated)
stationary point of problem (P) is also a (strict) local solution or (isolated) stationary point
of the composite problem (5.3.7) and vice versa. Since ϕd is twice epidifferentiable and outer
second order regular at F (x̄), in all directions DF (x̄)h, h ∈ C(x̄), and it holds

ξ∗ϕd,h(λ) = 0, ∀ λ ∈M(x̄), ∀ h ∈ C(x̄),

the second order conditions in Theorem 5.2.8 clearly reduce to the present conditions (i)
and (ii). Now, suppose that ϕ is additionally C2-fully decomposable at x̄. Then, by Lemma
5.1.11, the set of Lagrange multipliers reduces to a singleton, i.e.,M(x̄) = {λ̄} and Theorem
5.1.12 is applicable. This readily shows that x̄ is an isolated stationary point of (5.3.7) and
of the initial problem (P).

Remark 5.3.7. Let us note that the discussion of the nondegeneracy condition in section
5.1 yields

lin N∂ϕd(0)(λ̄) ⊂ {y ∈ Rm : 〈λ̄, y〉 = ϕd(y)} = N∂ϕd(0)(λ̄),

see, e.g., (5.1.12). On the other hand, in the decomposable setting, the set Φ̄, which was
used to define the strict constraint qualification in Theorem 5.1.12, can be characterized as
follows

Φ̄ = {y ∈ Rm : 〈λ̄, y − F (x̄)〉 = ϕd(y)− ϕd(F (x̄))} = {y ∈ Rm : 〈λ̄, y〉 = ϕd(y)}.

Thus, if ϕ is C2-fully decomposable at x̄, then the strict constraint qualification is also
satisfied at the (unique) multiplier λ̄ and the mappingM : Rn ⇒ Rm is upper Lipschitzian.

Remark 5.3.8. In Theorem 5.3.6, the function ϕ does not necessarily need to be convex.
We have added this extra condition, since it is one of the basic and natural assumptions
of our initial setting (P). However, let us note that in the nonconvex case we cannot work
with first order optimality conditions that are based on the proximity operator of ϕ. Thus,
Lemma 4.1.2 is not applicable and stationarity of a feasible point x̄ ∈ dom ϕ can only be
characterized via

ψ↓−(x̄; d) = ∇f(x̄)>d+ ϕ↓−(x̄; d) ≥ 0, ∀ d ∈ Rn.
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Since a more thorough treatment of the fully nonconvex case relies on an extension of Clarke’s
subdifferential for real extended valued functions and on certain regularity concepts, we will
not go into detail here.

We conclude this subsection with an important computational result. In particular, we will
show that the curvature term −ξ∗ϕ,h of the original function ϕ has an explicit representation
and that, in the decomposable case, the second order conditions in Remark 5.2.11 and The-
orem 5.3.6 actually coincide. Once more, this beautifully illustrates the fact that our second
order results for the initial problem (P) are independent of the respective decomposition pair
(ϕd, F ). Again, for convenience, we will assume that the standard conditions for problem
(P) are satisfied.

Lemma 5.3.9. Let f : Rn → R be a twice continuously differentiable function and suppose
that ϕ : Rn → (−∞,+∞] is a convex, proper, and lower semicontinuous mapping. Moreover,
let x̄ ∈ dom ϕ be a stationary point of problem (P) and let ϕ be C2-decomposable at x̄ with
decomposition pair (ϕd, F ). Then, for all h ∈ C(x̄), it follows

(5.3.12) − ξ∗ϕ,h(−∇f(x̄)) = max
λ∈M(x̄)

〈λ,D2F (x̄)[h, h]〉.

In addition, if ϕ is C2-fully decomposable at x̄, then the supremum that defines ξ∗ϕ,h(−∇f(x̄))
is attained at some ŵ ∈ Rn, i.e., it holds

−ξ∗ϕ,h(−∇f(x̄)) = ∇f(x̄)>ŵ + ϕ↓↓(x̄;h, ŵ).

Proof. By Lemma 5.3.5, we know that ϕ is twice epidifferentiable at x̄ in all directions
h ∈ Rn with DF (x̄)h ∈ dom ϕd. Now, let h ∈ C(x̄) be arbitrary, then it follows

ϕd(DF (x̄)h) = ϕ↓d(F (x̄);DF (x̄)h) = −∇f(x̄)>h ∈ R.

Consequently, due to Lemma 5.2.5 and (5.3.6), we have

ϕ↓↓(x̄;h,w) = (ϕd ◦ F )↓↓(x̄;h,w) = ϕ↓↓d (F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)[h, h])

= ϕ↓d(DF (x̄)h;DF (x̄)w +D2F (x̄)[h, h]).

Next, Remark 5.2.9 and (5.3.8) imply

ϕ↓d(DF (x̄)h; 0) = ϕ↓↓d (F (x̄);DF (x̄)h, 0) = 0,

i.e., ϕd is subdifferentiable at DF (x̄)h. Now, let us set w̄ := D2F (x̄)[h, h], then the convex
conjugate −ξ∗ϕ,h can be computed via

−ξ∗ϕ,h(−∇f(x̄)) = − sup
w
〈w,−∇f(x̄)〉 − ϕ↓↓(x̄;h,w)

= inf
w
〈w,∇f(x̄)〉+ ϕ↓d(DF (x̄)h;DF (x̄)w + w̄).(5.3.13)

Here, since the directional epiderivative Π(y) := ϕ↓d(DF (x̄)h; y+ w̄) is a convex, proper, and
lower semicontinuous function, the latter problem can be dualized by applying the Fenchel-
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Rockafellar duality framework for convex optimization problems. More specifically, by setting
%(y) := 〈y,∇f(x̄)〉, the dual problem of (5.3.13) is formally given by

max
v
−%∗(DF (x̄)>v)−Π∗(−v),

see, e.g., [11, Chapter 15 and Definition 15.19]. Furthermore, due to Lemma 2.5.11 (ii), the
convex conjugates %∗ and Π∗ can be expressed as follows:

• %∗(DF (x̄)>v) = sup
y
〈y,DF (x̄)>v −∇f(x̄)〉 = ι{∇f(x̄)}(DF (x̄)>v).

• Π∗(−v) = sup
y
−〈y, v〉 − σ∂ϕd(DF (x̄)h)(y + w̄) = 〈w̄, v〉+ σ∗∂ϕd(DF (x̄)h)(−v)

= 〈w̄, v〉+ ι∂ϕd(DF (x̄)h)(−v).

Furthermore, by combing ϕd(DF (x̄)h) = σ∂ϕd(0)(DF (x̄)h) and Example 2.5.17, it holds

∂ϕd(DF (x̄)h) = ∂σ∂ϕd(0)(DF (x̄)h) = {v ∈ ∂ϕd(0) : ϕd(DF (x̄)h) = 〈v,DF (x̄)h〉}.

Thus, the dual problem can be rewritten as the following constrained problem

max
v
−〈w̄, v〉 s. t.


−v ∈ ∂ϕd(0),

∇f(x̄)−DF (x̄)>v = 0,

∇f(x̄)>h+ ϕd(DF (x̄)h) = 0.

Moreover, since the first two constraints are equivalent to −v ∈M(x̄) and the third condition
is satisfied by any h ∈ C(x̄), we finally obtain

(5.3.14) max
v
−%∗(DF (x̄)>v)−Π∗(−v) = max

λ∈M(x̄)
〈λ,D2F (x̄)[h, h]〉.

To finish the proof of the first part, it remains to be shown that there is no duality gap
between the primal problem (5.3.13) and the dual problem (5.3.14). In particular, by [11,
Theorem 15.23 and Proposition 15.24], this is the case when the following regularity condition
is satisfied:

(5.3.15) 0 ∈ int{DF (x̄)Rn − dom Π} = int{w̄ +DF (x̄)Rn − dom ϕ↓d(DF (x̄)h; ·)}.

We want to verify condition (5.3.15) by using Robinson’s constraint qualification. First, since
ϕd is convex and positively homogeneous, it follows

ϕ↓d(DF (x̄)h; y) ≤ ϕd(DF (x̄)h+ y)− ϕd(DF (x̄)h) ≤ ϕd(y).

and hence, we have dom ϕd ⊂ dom ϕ↓d(DF (x̄)h; ·). Now, Robinson’s constraint qualification
and Remark 5.3.2 imply

Rm = DF (x̄)Rn − dom ϕd ⊂ DF (x̄)Rn − dom ϕ↓d(DF (x̄)h; ·).

This easily establishes (5.3.15) and shows that problem (5.3.13) and (5.3.14) coincide and
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have the same optimal value. Next, let us suppose that the mapping ϕ is C2-fully decom-
posable at x̄. Then, the set of Lagrange multipliers reduces to a singletonM(x̄) = {λ̄} and,
obviously, the point v̄ := −λ̄ is a solution of the dual problem (5.3.14). According to [11,
Corollary 19.2], the (possibly empty) set of solutions of the primal problem (5.3.13) is given
by

∂%∗(DF (x̄)>v̄) ∩DF (x̄)−1[∂Π∗(−v̄)].

Moreover, by using the formulae for %∗, Π∗, and ∂ϕd(DF (x̄)h), Example 2.5.16, and the
stationarity of x̄, it follows:

• ∂%∗(DF (x̄)>v̄) = N{∇f(x̄)}(DF (x̄)>v̄) = {z : 〈z,∇f(x̄)−DF (x̄)>v̄〉 ≤ 0} = Rn.

• ∂Π∗(−v̄) = w̄ +N∂ϕd(DF (x̄)h)(λ̄) ⊃ w̄ +N∂ϕd(0)(λ̄).

The nondegeneracy condition implies that there exist ŵ ∈ Rn, −ŷ ∈ lin N∂ϕd(0)(λ̄) such that
w̄ = DF (x̄)ŵ − ŷ. Thus, due to

DF (x̄)ŵ ∈ w̄ + lin N∂ϕd(0)(λ̄) ⊂ ∂Π∗(−v̄),

and [11, Corollary 19.2], the point ŵ is a solution of the primal problem (5.3.13) and we can
conclude the proof of the second part.

Remark 5.3.10. Although the convexity of ϕ is not really necessary for the proof of the
previous Lemma, it has an interesting, structural consequence. Particularly, in this situation,
Lemma 5.2.12 is applicable and we can infer that the function

h 7→ −ξ∗ϕ,h(−∇f(x̄)) = max
λ∈M(x̄)

〈λ,D2F (x̄)[h, h]〉

is convex on the critical cone C(x̄) ⊂ dom ϕ↓(x̄; ·) = {h : DF (x̄)h ∈ dom ϕd}. This clearly
demonstrates that the curvature term −ξ∗ϕ,h captures basic second order properties of the
nonsmooth function ϕ.

Remark 5.3.11. Let us note that a similar duality argument as in Lemma 5.3.9 is also used
in the proof of the abstract second order conditions in Theorem 5.2.8. For more details we
refer to the Appendix.

Computational results of the chain rule-type (5.3.12) have already been studied and es-
tablished for different classes of functions and decomposition concepts. In particular, in
[206, Theorem 4.5 and 4.7], Rockafellar showed that the curvature term in Lemma 5.3.9 is
connected to another second order epigraphical framework, the so-called second order sub-
derivative, and that similar chain rule-type formulae do exist for the class of fully amenable
functions. Moreover, based on the results in [206], Rockafellar et al. have developed an
extensive second order calculus for fully amenable functions, see, e.g., [193, 194] and [208,
Theorem 13.14 and 13.67]. Extensions to the general infinite dimensional setting were studied
by Cominetti in [56]. Finally, Mifflin and Sagastizábal, [150, 152], analyzed functions with
a so-called primal-dual gradient (pdg)-structure. Under a special index set based regularity
assumption they provide a profound calculus for functions with pdg-structure that resemble
the result of Lemma 5.3.9. Since decomposable and pdg-structured functions are related,
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see, e.g., Hare [100, 101], Lemma 5.3.9 may turn out to be a special case of the pdg-theory.
However, since the connection between decomposable and pdg-structured functions and a
corresponding application of the results in [150, 152] are not apparent, we leave a further,
more detailed investigation to future work.

5.3.3. Examples and calculus

In the following, we present various examples of decomposable functions and optimization
problems that illustrate the generality and broad applicability of this concept. Let us note
that a large part of our examples is motivated by similar examples addressed by Shapiro
in [217, Section 2]. Moreover, let us also mention that, in the decomposable setting, the
nondegeneracy condition has a much easier representation. In particular, in section 5.1, we
have seen that the set lin N∂ϕd(0)(λ), λ ∈ ∂ϕd(0), is equivalent to the subspace lin ϕ↓d(0; ·).
Consequently, due to (5.3.5), it holds

lin N∂ϕd(0)(λ) = lin ϕ↓d(0; ·) = lin ϕd.

We start with a discussion of several nonsmooth optimization problems and their corre-
sponding second order conditions.

Example 5.3.12 (`1-regularized minimization). Let us consider the `1-optimization
problem

(5.3.16) min
x∈Rn

ψ(x) = f(x) + µ‖x‖1,

where f : Rn → R is twice continuously differentiable and µ > 0 is a regularization parameter.
In the following, we want to show that the weighted `1-norm ϕ(x) = µ‖x‖1 is C∞-fully
decomposable at any point x̄ ∈ Rn. Therefore, let x̄ ∈ Rn be arbitrary and let us define the
index sets I(x̄) := {i : x̄i 6= 0} and A(x̄) := {i : x̄i = 0}. Then, the directional derivative of
ϕ at x̄ is given by

ϕ′(x̄;h) =
∑
i∈A(x̄)

lim
t↓0

µ|0 + thi| − 0

t
+
∑
i∈I(x̄)

lim
t↓0

µ|x̄i + thi| − µ|x̄i|
t

= µ‖hA(x̄)‖1 + µ · sign(x̄)>h.

Moreover, for all x in a sufficiently small neighborhood U ⊂ Rn of x̄, it follows I(x̄) ⊆ I(x)
and sign(xI(x̄)) = sign(x̄I(x̄)). This implies

(5.3.17) µ‖x‖1 = µ‖xA(x̄)‖1 + µ · sign(x̄)>x = µ‖x̄‖1 + ϕ′(x̄;x− x̄)

for all x ∈ U . Consequently, let us consider the two functions ϕd : Rn → R, ϕd(y) := ϕ′(x̄; y)
and F : Rn → Rn, F (x) := x− x̄. Then, the pair (ϕd, F ) satisfies the following properties:

• The function F is of class C∞(Rn) and it holds F (x̄) = 0.

• ϕd is a convex, real valued, Lipschitz continuous, and positively homogeneous function.
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• The derivative mapping DF (x̄) = I is obviously onto.

Thus, by (5.3.17) and Definition 5.3.1, (ϕd, F ) is a decomposition pair of ϕ and we have
verified that the `1-norm is C∞-fully decomposable at any point x̄ ∈ Rn.

Now, let us discuss the corresponding optimality conditions for problem (5.3.16) and let
us suppose that x̄ ∈ Rn is an arbitrary, given stationary point, i.e., it holds FΛ(x̄) = 0 for
some Λ ∈ Sn++. Then, the first order optimality conditions (5.1.3) take the following form

∇f(x̄) + λ = 0, λ ∈ ∂ϕd(0)

⇐⇒ ∇f(x̄)I(x̄) + µ · sign(x̄I(x̄)) = 0, ∇f(x̄)A(x̄) ∈ [−µ, µ]m̄, m̄ := |A(x̄)|,

where we used ∂| · |(0) = [−1, 1]. Furthermore, the critical cone C(x̄) associated with problem
(5.3.16) is given by

C(x̄) = {h : ∇f(x̄)>h+ ϕd(h) = 0} = {h : 〈∇f(x̄)A(x̄), hA(x̄)〉+ µ‖hA(x̄)‖1 = 0}.

Due to
∇f(x̄)i · hi + µ|hi| ≥ (µ− |∇f(x̄)i|) · |hi| ≥ 0, ∀ i ∈ A(x̄),

we can further simplify the critical cone and obtain the following final expression

C(x̄) = {h ∈ Rn : hi = 0, ∀ i ∈ A0(x̄), hi ∈ R− ·∇f(x̄)i, ∀ i ∈ A±(x̄)},

where A0(x̄) := {i ∈ A(x̄) : |∇f(x̄)i| < µ} and A±(x̄) := {i ∈ A(x̄) : |∇f(x̄)i| = µ}. Hence,
by using the full decomposability of ϕ, D2F (x̄) ≡ 0, and Theorem 5.3.6, the second order
sufficient conditions reduce to

(5.3.18) h>∇2f(x̄)h > 0, ∀ h ∈ C(x̄) \ {0}.

Moreover, any stationary point x̄ ∈ Rn that satisfies the second order conditions (5.3.18) is a
(strict) locally optimal solution and, additionally, an isolated stationary point of the problem
(5.3.16). On the other hand, any local solution x̄ of the `1-problem (5.3.16) also has to fulfill
the following second order necessary conditions

h>∇2f(x̄)h ≥ 0, ∀ h ∈ C(x̄).

Let us note that second order conditions of this form were already studied by Casas, Herzog,
and Wachsmuth, [40], in an infinite dimensional, optimal control setting. In [98, 254, 157],
the strong second order sufficient condition

h>∇2f(x̄)h > 0, ∀ h ∈ aff C(x̄) \ {0},

was used to analyze local convergence properties of `1-minimization algorithms. In particu-
lar, Milzarek and Ulbrich, [157], showed that the strong second order conditions guarantee
isolated stationarity and invertibility of the generalized derivatives of FΛ(x̄). Similar in-
vertibility results were also established in [97, 225]. Finally, let us mention, that the strong
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second order sufficient condition is equivalent to

λmin(∇2f(x̄)[EE]) > 0, E := A±(x̄) ∪ I(x̄).

Example 5.3.13 (Group sparse problems). We consider the following optimization prob-
lem with a group sparse penalty term

(5.3.19) min
x

ψ(x) = f(x) +
s∑
i=1

ωi‖xgi‖2.

Here, the index sets gi, i = 1, ..., s, form a disjoint partitioning of the set {1, ..., n} and the
parameters ωi, i = 1, ..., s, are supposed to be positive. Again, we want to show that the
nonsmooth function ϕ(x) :=

∑s
i=1 ωi‖xgi‖2 is fully decomposable at any point x̄ ∈ Rn. As

in the last example, let x̄ be arbitrary and let us define the index sets I(x̄) := {i : x̄gi 6= 0},
A(x̄) := {i : x̄gi = 0}. Moreover, let us set

GA :=
⋃

i∈A(x̄)

gi, m := |GA| =
∑
i∈A(x̄)

|gi|, m̄ := |A(x̄)|,

and suppose that i1, ..., im and j1, ..., jm̄ denote the different elements in GA and A(x̄),
respectively. For our further analysis, we will also need the following (one-to-one) relabeling
of the active groups gi, i ∈ A(x̄),

q` ⊂ {1, ...,m}, q` = {k ∈ {1, ...,m} : ik ∈ gj`}, ` ∈ {1, ..., m̄}.

Now, we can define the decomposition functions ϕd : Rm+1 → R and F : Rn → Rm+1 via

(5.3.20) ϕd(t, y) := t+
m̄∑
`=1

ωj`‖yq`‖2, F (x) :=

(∑
i∈I(x̄) ωi(‖xgi‖2 − ‖x̄gi‖2)

I[GA·] · x

)
.

Clearly, we have ϕ(x) = ϕ(x̄) + ϕd(F (x)) for all x ∈ Rn and, as in the `1-norm example,
it follows I(x̄) ⊂ I(x) for all x in a certain neighborhood U of x̄. Consequently, the pair
(ϕd, F ) satisfies the following properties:

• The function F is of class C∞(U) and it holds F (x̄) = 0.

• ϕd is a convex, real valued, Lipschitz continuous, and positively homogeneous function.

• The derivative mapping DF (x̄) : Rn → Rm+1 is given by

DF (x̄) =

(
∇F1(x̄)>

I[GA·]

)
, [∇F1(x̄)]gi =

{
ωi

x̄gi
‖x̄gi‖2

if i ∈ I(x̄),

0 otherwise.

It is easy to see that the rows of DF (x̄) are pairwise orthogonal, i.e., DF (x̄) has full
row rank and is onto.

Hence, (ϕd, F ) is a decomposition pair of ϕ and the group sparse penalty term is C∞-fully
decomposable at any point x̄ ∈ Rn. We want to point out that, besides the somewhat tech-
nical relabeling of the active groups, this construction is straightforward. Since the function
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ϕ is only nonsmooth at groups with value zero, the overall idea is to split the functional
ϕ into its smooth and nonsmooth parts. This immediately leads to a decomposition of the
form (5.3.20).

Now, let us consider an arbitrary stationary point x̄ of problem (5.3.19). The corresponding
first order optimality conditions (5.1.3) take the following form

∇f(x̄) +∇F1(x̄)γ + I>[GA·]λ = 0, (γ, λ) ∈ ∂ϕd(0, 0)

⇐⇒ ∇f(x̄)gi + ωi
x̄gi
‖x̄gi‖

= 0, ∀ i ∈ I(x̄), ∇f(x̄)gi ∈ B̄ωi(0), ∀ i ∈ A(x̄),

where we used ∂‖ · ‖2(0) = B̄1(0) and ∂ϕd(0, 0) = {1}×
∏
i∈A(x̄) B̄ωi(0). The critical cone is

given by

C(x̄) = {h : ∇f(x̄)>h+ ϕd(DF (x̄)h) = 0}
= {h :

∑s
i=1∇f(x̄)>gihgi +

∑
i∈A(x̄) ωi‖hgi‖2 +∇F1(x̄)>h = 0}

= {h : ∇f(x̄)>gihgi + ωi‖hgi‖2 = 0, ∀ i ∈ A(x̄)}.

Next, let us introduce the index sets A0(x̄) := {i ∈ A(x̄) : ‖∇f(x̄)gi‖2 < ωi} and A±(x̄) :=
{i ∈ A(x̄) : ‖∇f(x̄)gi‖2 = ωi}. Then, for all i ∈ A0(x̄), it follows

0 = ∇f(x̄)>gihgi + ωi‖hgi‖2 ≥ (ωi − ‖∇f(x̄)gi‖2) · ‖hgi‖2 ≥ 0 ⇐⇒ hgi = 0

and for i ∈ A±(x̄), we obtain

∇f(x̄)>gihgi + ‖∇f(x̄)gi‖‖hgi‖2 = 0 ⇐⇒ hgi ∈ R− ·∇f(x̄)gi .

Thus, the critical cone can be represented as follows:

C(x̄) = {h ∈ Rn : hgi = 0, ∀ i ∈ A0(x̄), hgi ∈ R− ·∇f(x̄)gi , ∀ i ∈ A±(x̄)}.

Finally, for all h ∈ Rn, we have 〈(γ, λ), D2F (x̄)[h, h]〉 = h>∇2F1(x̄)h. Here, the Hessian
∇2F1(x̄) is a block-structured matrix that captures the curvature of the smooth part of ϕ;
it is given by

∇2F1(x̄)[gigj ] =

{
ωi
‖x̄gi‖2

I − ωi
‖x̄gi‖32

x̄gi x̄
>
gi if i = j ∈ I(x̄),

0 otherwise.

Consequently, by Theorem 5.3.6 and the full decomposability of ϕ, the second order sufficient
conditions

h>∇2f(x̄)h+ h>∇2F1(x̄)h > 0, ∀ h ∈ C(x̄) \ {0}

guarantee that every stationary point of the group sparse problem (5.3.19) is also a (strict)
local minimizer and an isolated stationary point. Moreover, any local solution of (5.3.19)
must satisfy the corresponding second order necessary conditions (5.3.9). Let us remark that
similar second order conditions were investigated by Casas, Herzog, Stadler and Wachsmuth,
[106, 39], in an infinite dimensional, directionally sparse framework.
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5. Second order theory and decomposability

Example 5.3.14 (Total variation). We consider the total variation-regularized optimiza-
tion problem

(5.3.21) min
x

f(x) + µ

m∑
i=1

‖D|ix‖2,

where µ > 0 is a parameter and D = (D>|1, ..., D
>
|m)> ∈ R2m×n, D|i ∈ R2×n, i = 1, ...,m, is

a discrete gradient operator using forward differences and periodic or Neumann boundary
conditions. Here, the subscript index “|i” is used to denote two dimensional objects of the
form

x|i :=

(
x2i−1

x2i

)
∈ R2 and D|i :=

(
D[2i−1,·]
D[2i,·]

)
∈ R2×n,

and to simplify the notation. In the following, we will analyze the decomposability prop-
erties of this problem and of the total variation semi-norm ϕ(x) := µ

∑m
i=1 ‖D|ix‖2. Since

this example has a similar structure as the group sparsity problem, we can reuse the basic
constructions of Example 5.3.13. We define A(x̄) := {i : D|ix = 0}, I(x̄) := {i : D|ix 6= 0},
m̄ := |A(x̄)| and

ϕd(t, y) := t+ µ
m̄∑
i=1

‖y|i‖2, F (x) :=

(
µ
∑

i∈I(x̄)(‖D|ix‖2 − ‖D|ix̄‖2)

D|A(x̄) · x

)
.

Again, it holds ϕ(x) = ϕ(x̄) + ϕd(F (x)) for all x ∈ Rn and it follows I(x̄) ⊂ I(x) for all x
in a small neighborhood U of x̄. Accordingly, the pair (ϕd, F ) has the following properties:

• F is of class C∞(U) and it holds F (x̄) = 0.

• ϕd is a convex, real valued, Lipschitz continuous, and positively homogeneous mapping.

• Due to dom ϕd = R2m̄+1, Robinson’s constraint qualification is always satisfied. The
derivative mapping DF (x̄) : Rn → R2m̄+1 is given by

DF (x̄) =

(
∇F1(x̄)>

D|A(x̄)

)
, ∇F1(x̄) =

∑
i∈I(x̄)

µ

‖D|ix̄‖2
D>|iD|ix̄ = D>ΞDx̄,

where Ξ ∈ R2m×2m is a (block)-diagonal matrix and it holds Ξ = blockdiag(Ξ1, ...,Ξm)
with

Ξi ∈ R2×2, Ξi =

{
µ

‖D|ix̄‖2 I if i ∈ I(x̄),

0 if i ∈ A(x̄).

Thus, ϕ is C∞-decomposable at any point x̄ with decomposition pair (ϕd, F ). Furthermore,
if the nondegeneracy condition,

R× R2m̄ = DF (x̄)Rn − lin ϕd =

(
∇F1(x̄)>

D|A(x̄)

)
Rn − R× {0} ⇐⇒ D|A(x̄)Rn = R2m̄,

is fulfilled, i.e., if the matrix D|A(x̄) is onto, then ϕ is C∞-fully decomposable at x̄. Let
us note that in applications this additional requirement can be somewhat restrictive and
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(a) (b) (c)

Figure 5.1.: Illustration of the failure of the nondegeneracy condition for total variation imag-
ing. In subfigure (a), a pixelated version of the image boat.png is shown that
does not satisfy the nondegeneracy condition. In subfigure (b) and (c) (approx-
imate) solutions of the image reconstruction problem

min
x

f(x) + µ
n2∑
i=1

‖D|ix‖2, f(x) =
1

2
‖x− b‖22, µ =

1

4

are presented. In both examples, we tried to restore noisy versions b of the
images lena.png and mandrill.tiff by solving the latter minimization prob-
lem. (More specifically, we added Gaussian noise with zero mean and variance
σ = 0.1). The respective reconstructions x̄, which are shown in subfigure (b) and
(c), do not fulfill the nondegeneracy condition. However, in this situation, since
the function f is strongly convex, the second order conditions (5.3.22) are sat-
isfied and, consequently, the shown images are strict local minima and isolated
stationary points of the above nonsmooth optimization problem.

cannot be expected to be satisfied in general; an exemplary discussion of this problem and a
corresponding illustration for image reconstruction problems is provided in Figure 5.1.

Now, let x̄ ∈ Rn be a stationary point of problem (5.3.21). The corresponding first order
optimality conditions are given by

∇f(x̄) +∇F1(x̄)γ +D>|A(x̄)λ = 0, (γ, λ) ∈ ∂ϕd(0, 0)

⇐⇒ ∇f(x̄) +D>ΞDx̄+D>|A(x̄)λ = 0, λ|i ∈ B̄µ(0), ∀ i = 1, ..., m̄,

where we used ∂ϕd(0, 0) = {1} ×
∏m̄
i=1 B̄µ(0). Next, let i1, ..., im̄ denote the elements of the

set A(x̄). For i ∈ A(x̄), we define the indices ki as follows

ki := j :⇐⇒ the index i is the ij-th element of A(x̄).
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5. Second order theory and decomposability

Let (1, λ̄) ∈M(x̄) be an arbitrary, but fixed Lagrange multiplier. Then, it holds

0 = ∇f(x̄)>h+ ϕd(DF (x̄)h) = ∇f(x̄)>h+∇F1(x̄)>h+ µ
∑
i∈A(x̄)

‖D|ih‖2

= µ
∑
i∈A(x̄)

‖D|ih‖2 − 〈D|A(x̄)h, λ̄〉 =
∑
i∈A(x̄)

{
µ‖D|ih‖2 − 〈D|ih, λ̄|ki〉

}
.

Due to λ̄|ki ∈ B̄µ(0), i ∈ A(x̄), and by repeating the argumentation of Example 5.3.13, we
obtain the following, final representation of the critical cone

C(x̄) =
⋂

(1,λ)∈M(x̄)

{h ∈ Rn : D|ih = 0, ∀ i ∈ A0(x̄, λ), D|ih ∈ R− · λ|ki , ∀ i ∈ A±(x̄, λ)},

where A0(x̄, λ) := {i ∈ A(x̄) : ‖λ|ki‖2 < µ} and A±(x̄, λ) := {i ∈ A(x̄) : ‖λ|ki‖2 = µ}.
(Let us recall that the critical cone does not depend on the choice of the multiplier λ, see
Definition 5.1.5). Finally, for all h ∈ Rn, we have

〈(γ, λ), D2F (x̄)[h, h]〉 = h>∇2F1(x̄)h,

i.e., the curvature term in the second order conditions does not depend on any specific La-
grange multiplier (γ, λ) ∈M(x̄). Moreover, the Hessian∇2F1(x̄) can be computed explicitly;
it holds ∇2F1(x̄) = D>Ξ̂D,

Ξ̂ = blockdiag(Ξ̂1, ..., Ξ̂m), Ξ̂i =

{
Ξi − µ

‖D|ix̄‖32
(D|ix̄)(D|ix̄)> if i ∈ I(x̄),

0 if i ∈ A(x̄).

Hence, the second order necessary and sufficient conditions for the total variation problem
(5.3.21) take the forms

h>∇2f(x̄)h+ (Dh)>Ξ̂Dh ≥ 0, ∀ h ∈ C(x̄),

and

(5.3.22) h>∇2f(x̄)h+ (Dh)>Ξ̂Dh > 0, ∀ h ∈ C(x̄) \ {0},

respectively. In addition, if the matrix D|A(x̄) is onto and if the second order conditions
(5.3.22) are satisfied, then Theorem 5.3.6 (ii) implies that x̄ is an isolated stationary point
of problem (5.3.21). However, since this additional condition is likely to be violated in
practice, the function ϕ does not need to be fully decomposable at the stationary point
x̄. Nonetheless, in this specific situation, since the second order sufficient conditions are
independent of the choice of the multiplier (γ, λ) = (1, λ) ∈ M(x̄) and ϕd is real valued, we
can apply Corollary 5.1.14. Consequently, the second order conditions (5.3.22) imply that x̄
is an isolated stationary point of problem (5.3.21), no matter whether ϕ is fully decomposable
or not.

Although the (possible) nonuniqueness of the multiplier λ has no influence on the second
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5.3. Decomposable functions

order conditions, it can cause certain numerical difficulties. This was already observed by
Dong, Hintermüller, and Neri, [65], who studied a semismooth Newton method for a primal-
dual interpretation of the KKT conditions (5.1.3) of the problem (5.3.21) in an `1-setting.

Example 5.3.15 (Nonlinear programming). In this example, we want to show that
nonlinear optimization problems of the form

(5.3.23) min
x

f(x) s. t. g(x) ≤ 0, h(x) = 0,

are decomposable at any feasible point x̄, where f : Rn → R, g : Rn → Rm, and h : Rn →
Rp are supposed to be twice continuously differentiable. Let us set ϕ(x) := ιRm− (g(x)) +
ι{0}(h(x)), I(x̄) := {i : gi(x̄) < 0}, A(x̄) := {i : gi(x̄) = 0}, and m̄ := |A(x̄)|. Then, the
constrained problem (5.3.23) can be rewritten in our basic form

min
x

ψ(x) = f(x) + ϕ(x)

and, due to ϕ(x̄) = 0, it holds

ϕ(x) = ϕ(x̄) + ιRm̄− (gA(x̄)(x)) + ι{0}(h(x)),

for all x in a neighborhood U of x̄. Now, let us define the decomposition functions ϕd :
Rm̄ × Rp → (−∞,+∞] and F : Rn → Rm̄ × Rp as follows

ϕd(y, z) := ιRm̄− (y) + ι{0}(z), F (x) :=

(
gA(x̄)(x)

h(x)

)
.

The pair (ϕd, F ) satisfies the following properties:

• The function F is twice continuously differentiable on Rn and it holds F (x̄) = 0.

• ϕd is a convex, proper, lower semicontinuous, and positively homogeneous mapping.

Moreover, in this situation, Robinson’s constraint qualification (5.3.2) is given by

Rm̄ × Rp = DF (x̄)Rn − dom ϕd =

(
∇gA(x̄)(x̄)>

∇h(x̄)>

)
Rn − Rm̄− × {0}.

Furthermore, let us note that the latter condition is actually equivalent to the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ) for nonlinear programs:

∇h(x̄) has full column rank, ∃ d ∈ Rn such that ∇gA(x̄)(x̄)>d < 0.

On the other hand, due to lin ϕd = {0} × {0}, the nondegeneracy condition immediately
reduces to the condition (

∇gA(x̄)(x̄)>

∇h(x̄)>

)
Rn =

(
Rm̄
Rp
)
.

Thus, the point x̄ is nondegenerate if and only if the matrix (∇gA(x̄)(x̄),∇h(x̄)) has full
column rank. Consequently, if the MFCQ is satisfied at x̄, then ϕ is C2-decomposable
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5. Second order theory and decomposability

at x̄ with decomposition pair (ϕd, F ). Additionally, if the Linear Independency constraint
qualification (LICQ) holds at x̄, then ϕ is C2-fully decomposable.

Next, let x̄ ∈ dom ϕ be a stationary point of problem (5.3.23) (in the sense of Definition
5.1.1) and suppose that the MFCQ holds at x̄. Then, the first order optimality conditions
take the following form

∇f(x̄) +∇gA(x̄)(x̄)λ+∇h(x̄)µ = 0, (λ, µ) ∈ ∂ϕd(0, 0) = NRm̄− (0)×N{0}(0) = Rm̄+ × Rp

and the critical cone is given by

C(x̄) = {d ∈ Rn : ∇f(x̄)>d+ ϕd(DF (x̄)d) = 0}
= {d ∈ Rn : ∇f(x̄)>d = 0, ∇gi(x̄)>d ≤ 0 ∀ i ∈ A(x̄), ∇h(x̄)>d = 0}.

By Theorem 5.3.6, it follows that the condition

max
(λ,µ)∈M(x̄)

d>∇2f(x̄)d+
∑
i∈A(x̄)

λid
>∇2gi(x̄)d+

p∑
i=1

µid
>∇2hi(x̄)d =

max
(λ,µ)∈M(x̄)

d>∇2
xxLr(x̄, λ, µ)d > 0, ∀ d ∈ C(x̄) \ {0}(5.3.24)

ensures local optimality of the stationary point x̄. Moreover, if the LICQ is satisfied at x̄,
i.e., if ϕ is fully decomposable at x̄, then the set of Lagrange multipliersM(x̄) reduces to a
singleton and x̄ is an isolated stationary point of (5.3.23). Here, Lr : Rn × Rm̄ × Rp → R,
Lr(x, λ, µ) := f(x)+〈λ, gA(x̄)(x)〉+〈µ, h(x)〉 denotes the reduced Lagrangian associated with
problem (5.3.23). As usual, the decomposability of ϕ also implies that any local solution
of the nonlinear program (5.3.23) has to satisfy the corresponding second order necessary
conditions

(5.3.25) max
(λ,µ)∈M(x̄)

d>∇2
xxLr(x̄, λ, µ)d ≥ 0, ∀ d ∈ C(x̄).

Of course, this pair of second order conditions is well-known in nonlinear optimization. Here,
in our case, the conditions (5.3.24) and (5.3.25) emerge as a special example of the general
second order theory for decomposable functions and problems.

In summary, the latter examples demonstrate the diversity and wide applicability of de-
composable functions in the context of nonsmooth optimization problems. Next, based on
various results and examples in Shapiro [217, Section 2], we will study several, general classes
of decomposable functions.

The following, first example was presented in [217, Example 2.1].

Example 5.3.16 (Max-type functions). Let ϕi : Rn → R, i = 1, ...,m, be a family of
twice continuously differentiable functions and let us consider

ϕ : Rn → R, ϕ(x) := max
1≤i≤m

ϕi(x).

Let x̄ ∈ Rn be arbitrary and let us define A(x̄) := {i : ϕi(x̄) = ϕ(x̄)}. Then, a continuity
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argument implies A(x) ⊂ A(x̄) for all x in a sufficiently small neighborhood U of x̄ and,
consequently, it holds

(5.3.26) ϕ(x) = ϕ(x̄) + max
i∈A(x̄)

{ϕi(x)− ϕ(x̄)}, ∀ x ∈ U.

Let us set m̄ := |A(x̄)| and suppose that i1, ..., im̄ are the different elements of the index set
A(x̄). Then, the functions ϕd : Rm̄ → R and F : Rn → Rm̄,

ϕd(y) := max{y1, ..., ym̄}, F (x) = ϕA(x̄)(x)− ϕ(x̄) · 1 =

ϕi1(x)− ϕ(x̄)
...

ϕim̄(x)− ϕ(x̄)

 ∈ Rm̄

have the following properties:

• F is of class C2(Rn) and it holds F (x̄) = 0.

• ϕd is convex, real valued, Lipschitz continuous, and positively homogeneous.

• Due to dom ϕd = Rm̄, Robinson’s constraint qualification obviously holds at x̄. More-
over, the derivative of F at x̄ is given by DF (x̄) = ∇ϕA(x̄)(x̄)>.

Thus, together with (5.3.26), this shows that ϕ is C2-decomposable at x̄ with decomposition
pair (ϕd, F ). If, in addition, the nondegeneracy condition

Rm̄ = DF (x̄)Rn − lin ϕd = ∇ϕA(x̄)(x̄)>Rn − R · 1

is satisfied at x̄, then ϕ is C2-fully decomposable.

The next example is inspired by [217, Example 2.2].

Example 5.3.17 (Polyhedral functions). A function ϕ : Rn → (−∞,+∞] is said to be
polyhedral if and only if its epigraph epi ϕ is a polyhedral set, i.e., if epi ϕ can be represented
in the following form

∃ C ∈ R`×(n+1), c ∈ R` : epi ϕ =
{

(x, t) ∈ Rn+1 : C(x>, t)> − c ≤ 0
}
.

Alternatively, by [208, Theorem 2.49], ϕ is a polyhedral function if only if it can be expressed
as

ϕ(x) = ϕp(x) + ιK(x) := max
1≤i≤m

{a>i x− αi}+ ιK(x),

where ai ∈ Rn, αi ∈ R, i = 1, ..., `, and K ⊆ Rn is a polyhedral set. In particular, a
polyhedral function is always convex and lower semicontinuous. Now, let x̄ ∈ dom ϕ = K
be arbitrary and let us set A(x̄) := {i : a>i x̄− αi = ϕp(x̄)}. Then, by using the calculus for
max-type functions, see, e.g., [27, Example 2.68], it follows

ϕ′p(x̄;h) = max
i∈A(x̄)

〈ai, h〉.
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Now, as in the last example, the continuity of ϕp implies A(x) ⊂ A(x̄) for all x in a certain
neighborhood U of x̄ and by applying (2.5.1), we obtain

ϕp(x) ≥ ϕ′p(x̄;x− x̄) + ϕp(x̄) = max
i∈A(x̄)

〈ai, x− x̄〉+ ϕp(x̄)

≥ max
i∈A(x̄)

{a>i x− αi} = max
i∈A(x)

{a>i x− αi} = ϕp(x).

On the other hand, since K is a polyhedral set, it follows RK(x̄) = cl RK(x̄) and, conse-
quently, Example 2.5.9 yields

ι′K(x̄;h) = ιRK(x̄)(h) = ιTK(x̄)(h), ∀ h ∈ Rn.

Moreover, by using the structure of the (polyhedral) setsK and TK(x̄), we can easily establish

ιTK(x̄)(x− x̄) = ιK−x̄(x− x̄) = ιK(x)

for all x in a sufficiently small neighborhood of x̄ (we refer to [208, Theorem 6.46 and Example
6.47] for more details). Thus, after choosing a smaller neighborhood V ⊂ U of x̄, if necessary,
we have

ϕ(x) = ϕ(x̄) + ϕ′(x̄;x− x̄), ∀ x ∈ V.

We proceed as in Example 5.3.12 and define the functions ϕd : Rn → (−∞,+∞], ϕd(y) :=
ϕ′(x̄; y) and F : Rn → Rn, F (x) := x−x̄. Then, the pair (ϕd, F ) has the following properties:

• F is of class C∞(Rn) and it holds F (x̄) = 0.

• ϕd is a convex, proper, lower semicontinuous, and positively homogeneous function.

• Obviously, the nondegeneracy condition is satisfied at x̄.

Hence, the polyhedral function ϕ is C∞-fully decomposable at any point x̄ ∈ dom ϕ with
decomposition pair (ϕd, F ).

Apparently, since the `1-norm is a polyhedral function, the results in Example 5.3.12 are
a direct consequence of the latter example. Moreover, since the composite function

ϕ(x) = µ‖x‖1 + ι[a,b](x), a, b ∈ Rn

is also polyhedral, Example 5.3.17 immediately implies that `1-optimization problems with
additional box constraints are C∞-fully decomposable at any feasible point.

In the following, we analyze the decomposability of singular value-based functions, such
as, e.g., the nuclear norm or the more general Ky Fan k-norm of a matrix. The example
is quite involved and requires various tools from matrix and eigenvalue theory. Our con-
struction essentially follows [220], [27, Example 3.98 and 3.140], [217, Example 2.3], and [63,
Proposition 4.3].

Example 5.3.18 (Singular value optimization). Let X̄ ∈ Rm×n, m ≤ n, be an arbitrary
but fixed matrix and let σ1(X̄) ≥ ... ≥ σm(X̄) denote the singular values of X̄ in decreasing
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order. Furthermore, by r1, ..., rq+1, we denote the multiplicities and by µ1 > ... > µq > 0 =
µq+1 the distinct values of the singular values σ1(X̄), ..., σm(X̄), i.e., it holds

µj = σsj+1(X̄) = ... = σsj+rj (X̄), sj :=

j−1∑
i=1

ri, j = 1, ..., q + 1.

Moreover, let
X̄ = Ū [Σ̄ 0](V̄1 V̄2)>, Σ̄ = diag(σ1(X̄), ..., σm(X̄))

be a corresponding singular value decomposition of X̄. Here, the columns of the matrices
Ū ∈ Rm×m, V̄ = (V̄1 V̄2) ∈ Rn×n are formed by the pairwise orthonormal singular vectors
ū1, ..., ūm ∈ Rm and v̄1, ..., v̄n ∈ Rn, respectively. Moreover, for some arbitrary index sets
Iu ⊂ {1, ...,m}, Iv ⊂ {1, ..., n}, we will use the abbreviations

ŪIu := Ū[·Iu] = (ūi)i∈Iu , V̄Iv := V̄[·Iv ] = (v̄i)i∈Iv .

Accordingly, for another matrix X ∈ Rm×n let

X = U(X)[Σ(X) 0](V1(X) V2(X))>, Σ(X) = diag(σ1(X), ..., σm(X)),

U(X) ∈ Rm×m, V (X) = (V1(X) V2(X)) ∈ Rn×n be the singular value decomposition of X
and let UIu := U(X)[·Iu] and VIv := V (X)[·Iv ] denote the respective submatrices of U(X)
and V (X). Now, for j = 1, ..., q + 1, let us consider the index sets

αj := {sj + 1, ..., sj + rj}, β := αq+1 ∪ {m+ 1, ..., n}

and let us define the linear operator B : Rm×n → Sm+n,

B(X) :=

(
0 X
X> 0

)
.

It is well-known that the symmetric matrix B(X) admits the following eigenvalue decompo-
sition

B(X) = P (X)

Σ(X) 0 0
0 0 0
0 0 −Σ(X)

P (X)>, P (X) :=
1√
2

(
U 0 U

V1

√
2V2 −V1

)
,

where we dropped the argument X in the definition of P (X) for a better readability. Let
us also note that the matrix P (X) is obviously orthogonal. Next, since the singular value
functions σi : Rm×n → R+ are globally Lipschitz continuous, see, e.g., [94, Section 8.6], there
exists δj > 0, such that

|σi(X)− µj | < δj , ∀ i ∈ αj and δj + δj+1 < µj − µj+1

for all j = 1, ..., q + 1 and all X in a certain neighborhood of X̄. Thus, the singular values
σi(X), i ∈ αj , stay in bounded and disjoint boxes [µj − δj , µj + δj ]. We will now define a
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µj+1 µj µj−1

τj τj−1

δj+1 δj δj−1

0

1
γj(t)

(a)

µj+1 µj

αj

αj+1

δj

δj+1

N

(b)

Figure 5.2.: Illustration of the functions γj and of the distribution of the singular values.

function that separates these different singular value boxes. In particular, let us set

c(t) :=

{
e−t

−1 if t > 0,

0 if t ≤ 0,
cj(t) :=

c(τ2
j − t)

c(τ2
j − t) + c(t− δ2

j )
, γj(t) = cj((t− µj)2),

and

τj :=
1

2


µ1 − µ2 + δ1 − δ2 if j = 1,

min{µj−1 − µj − δj−1 + δj , µj − µj+1 + δj − δj+1} if 2 ≤ j ≤ q,
µq + δq+1 − δq if j = q + 1,

then it holds γj(t) = 1 for all t ∈ [µj − δj , µj + δj ] and γj(t) = 0 for all |t− µj | > τj and all
j = 1, ..., q + 1. Moreover, the functions γj are obviously of class C∞ for all j = 1, ..., q + 1.
(The mappings γj and the underlying construction principle are also visualized in Figure
5.2). Let pi(X) ∈ Rm+n denote the i-th column of the matrix P (X) and let us define

Pj(X) := P̃j(B(X)) :=
m+n∑
i=1

pi(X)γj(λi(B(X)))pi(X)> =

{
PαjP

>
αj if j ≤ q,

PβBP
>
βB if j = q + 1,

where

Pαj := P (X)[·αj ], PβB := P (X)[·βB], βB := β ∪ {rq+1 + n+ 1, ..., n+m}.

Since the columns of the matrices Pαj and PβB span the eigenspace associated with the
collection of eigenvalues

{λi(B(X)) : i ∈ αj}, j = 1, ..., q + 1,
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5.3. Decomposable functions

the mappings Pj(X) are the orthogonal projections onto these respective eigenspaces. More-
over, the functions P̃j , j = 1, ..., q+ 1, can be interpreted as Löwner operators of the matrix
B(X). Thus, due to [18, Exercise V.3.9] or [64, Proposition 4], we can infer that P̃j is (at
least) twice continuously differentiable in a neighborhood of B(X̄) for every j = 1, .., q + 1.
Since B is a linear operator, this shows that, for all j = 1, ..., q+1, the function Pj(X) is twice
continuously differentiable in a neighborhood N of X̄. In the following, we will distinguish
two different cases.

Case 1: 1 ≤ j ≤ q. Let us define

Qj(X) := Pj(X)P̄αj ∈ Rm+n×rj , Qj(X) := Qj(X)(Qj(X)>Qj(X))−
1
2 ,

where P̄αj = P (X̄)[·αj ]. Since Pj(X) is the orthogonal projection onto the eigenspace asso-
ciated with the set of eigenvalues {λi(B(X)) : i ∈ αj}, the columns of Qj(X) are elements
of the subspace sp P (X)[·αj ]. Moreover, due to Qj(X̄) = P̄αj , it follows

Qj(X̄)>Qj(X̄) = P̄>αj P̄αj =
1

2
(Ū>αj Ūαj + V̄ >αj V̄αj ) = I ∈ Rrj×rj .

Consequently, for all X in a neighborhood of X̄, the inverse matrix root (Qj(X)>Qj(X))−
1
2

is well-defined and the matrix Qj(X) has full column rank. Additionally, it holds

Qj(X)>Qj(X) = (Qj(X)>Qj(X))−
1
2Qj(X)>Qj(X)(Qj(X)>Qj(X))−

1
2 = I.

Thus, the columns of Qj(X) are pairwise orthonormal and we obtain

(5.3.27) sp Qj(X) = sp P (X)[·αj ].

Finally, since the inverse matrix root can be written as a specific Löwner operator,

S` 3 Y = P (Y )Λ(Y )P (Y )>, Y −
1
2 =

∑̀
i=1

pi(Y )%(λi(Y ))pi(Y ), %(t) :=
1√
t
,

and since % is C∞ on R \ {0}, the function Qj(X) is also twice continuously differentiable in
a certain neighborhood of X̄. Now, let us define

Ξj : Rm×n → Srj , X 7→ Ξj(X) := Qj(X)>B(X)Qj(X).

Then, there exists a neighborhood Nj ⊂ N of X̄, such that the mapping Ξj has the following
properties:

• Ξj(X) is twice continuously differentiable on Nj .

• It holds Ξj(X̄) = Qj(X̄)>B(X̄)Qj(X̄) = 1
2(V̄ >αjX̄

>Ūαj + Ū>αjX̄V̄αj ) = µjI.

• For all X ∈ Nj , the eigenvalues of the symmetric matrix Ξj(X) coincide with the set
of singular values

{λi(Ξj(X)) : i = 1, ..., rj} = {σi(X) : i ∈ αj}.
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5. Second order theory and decomposability

• The derivative mapping DΞj(X̄) : Rm×n → Srj is onto and satisfies

DΞj(X̄)[H] = P̄>αjB(H)P̄αj = sym(Ū>αjHV̄αj ).

Since the third statement follows from (5.3.27) and from the orthogonality of Qj(X), we only
need to prove the last part. First, let us consider the derivative of the matrix root mapping

S : S` → S`, Y 7→ S(Y ) := Y
1
2 .

For every Y ∈ S`+, the function S(Y ) is uniquely characterized by the equation

S(Y ) · S(Y ) = Y.

Consequently, the derivative of S has to satisfy

DS(Y )[H] · S(Y ) + S(Y ) ·DS(Y )[H] = H, ∀ H ∈ S`.

In particular, in the case Y = I, we readily obtain DS(I)[H] = 1
2H. We then have

DQj(X̄)[H] = DQj(X̄)[H]−Qj(X̄) ·DS(I)[(DQj(X̄)[H])>Qj(X̄) +Qj(X̄)>DQj(X̄)[H]]

= MP̄αj −
1

2
P̄αj (P̄

>
αjM

>P̄αj + P̄>αjMP̄αj ) = (I − P̄αj P̄>αj )MP̄αj ,

where M := DPj(X̄)[H] ∈ Sm+n, and it follows

DΞj(X̄)[H] = (DQj(X̄)[H])>B(X̄)P̄αj + P̄>αj (B(H)P̄αj + B(X̄)DQj(X̄)[H]).

By using Ū>αjX̄ = µj V̄αj and V̄ >αjX̄
> = µjŪ

>
αj , we have P̄>αjB(X̄) = µiP̄

>
αj . Thus, it immedi-

ately follows
(DQj(X̄)[H])>B(X̄)P̄αj = P̄>αjB(X̄)DQj(X̄)[H] = 0

and we establish DΞj(X̄)[H] = P̄>αjB(H)P̄αj . Moreover, this mapping is clearly onto.

Case 2: j = q + 1. In this case, the projection Pq+1(X) takes the following form

Pq+1(X) = PβBP
>
βB =

(
Uq+1(X) 0

0 Vq+1(X)

)
,

where Uq+1(X) := Uαq+1U
>
αq+1

and Vq+1(X) := VβV
>
β . We now define

Lq+1(X) := Uq+1(X)Ūαq+1 , Lq+1(X) := Lq+1(X)(Lq+1(X)>Lq+1(X))−
1
2 ,

Rq+1(X) := Vq+1(X)V̄β, Rq+1(X) := Rq+1(X)(Rq+1(X)>Rq+1(X))−
1
2 .

Here, the mappings Uq+1(X) and Vq+1(X) are the orthogonal projections onto the left and
right eigenspaces associated with the set of singular values {σi(X) : i ∈ αq+1}. Hence,
the columns of Lq+1(X) and Rq+1(X) are elements of the subspaces sp U(X)[·αq+1] and
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5.3. Decomposable functions

sp V (X)[·β], respectively. Moreover, due to

Lq+1(X̄) = Ūαq+1 , Rq+1(X̄) = V̄β,

the matrices Lq+1(X) and Rq+1(X) have full column rank in a neighborhood of X̄. As in
the first case, it can be easily shown that the functions Lq+1(X) and Rq+1(X) are twice
continuously differentiable near X̄ and the columns of Lq+1(X) and Rq+1(X) are pairwise
orthonormal. Consequently, it readily follows

(5.3.28) sp Lq+1(X) = sp U(X)[·αq+1], sp Rq+1(X) = sp V (X)[·β].

We now define

Ξq+1 : Rm×n → Rrq+1×|β|, X 7→ Ξq+1(X) := Lq+1(X)>XRq+1(X).

Then there exists a neighborhood Nq+1 ⊂ N , such that Ξq+1 has the following properties:

• Ξq+1(X) is twice continuously differentiable on Nq+1.

• It holds Ξq+1(X̄) = 0.

• For all X ∈ Nq+1 the singular values of the matrix Ξq+1(X) coincide with the set of
singular values

{σi(Ξq+1(X)) : i = 1, ..., rq+1} = {σi(X) : i ∈ αq+1}.

• The derivative DΞq+1(X̄) : Rm×n → Rrq+1×|β| is onto and it holds

DΞq+1(X̄)[H] = Ū>αq+1
HV̄β.

Since singular values are invariant under left and right orthogonal transformations, the third
part follows again from (5.3.28). The derivative DΞq+1(X̄)[H] can be computed as in the
last case. (Here, we have to use Ū>αq+1

X̄ = 0 and V̄ >β X̄
> = 0).

Let us note that the separate discussion of the zero singular values cannot be avoided in
general. In particular, since the mapping H 7→ P̄>βBB(H)P̄βB is typically not onto, we cannot
reuse the basic construction principle from the first case to define Ξq+1(X).

Finally, let us consider the so-called Ky Fan k-norm

‖ · ‖(k) : Rm×n → R+, ‖X‖(k) :=
k∑
i=1

σi(X), k ∈ {1, ...,m},

which denotes the sum of the k-largest singular values. Using our latter constructions, we
will show that ‖ · ‖(k) is C2-fully decomposable at every X̄ ∈ Rm×n. Again, depending on
the singular value σk(X̄), we have to discuss two different cases.
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5. Second order theory and decomposability

Case 1: σk(X̄) > 0. Then, there exists 1 ≤ q0 ≤ q such that σk(X̄) ∈ αq0 and we define

F : Rm×n → R× Srq0 , F (X) :=

(∑q0−1
j=1 tr(Ξj(X)− Ξj(X̄))

Ξq0(X)− µq0I

)
,

ϕd : R× Srq0 → R, ϕd(t, Y ) := t+ s(Y )(k−sq0 ), s(Y )(k−sq0 ) :=

k−sq0∑
i=1

λi(Y ).

Here, the function s(·)(`) denotes the sum of the `-largest eigenvalues of a symmetric matrix.
Furthermore, the Ky Fan k-norm can be represented as follows:

‖X‖(k) =

q0−1∑
j=1

∑
i∈αj

σi(X) +
k∑

i=sq0+1

σi(X) =

q0−1∑
j=1

rj∑
i=1

λi(Ξj(X)) +

k−sq0∑
i=1

λi(Ξq0(X))

=

q0−1∑
j=1

tr(Ξj(X)) + s(Ξq0(X))(k−sq0 ).

Now, setting N̂ :=
⋂
j Nj , the functions ϕd and F have the following properties:

• Clearly, our preceding discussion implies that F is twice continuously differentiable on
the open set N̂ . Moreover, it holds F (X̄) = 0.

• Since s(·)(k−sq0 ) is convex and positively homogeneous, ϕd is a convex, real valued, and
positively homogeneous mapping.

• Due to λi(Y + κI) = λi(Y ) + κ for all κ and i, our latter calculation implies

‖X‖(k) = ϕd(F (X)) + ‖X̄‖(k), ∀ X ∈ N̂ .

• The derivative mapping DF (X̄) : Rm×n → R× Srq0 is given by

DF (X̄)[H] =

(∑q0−1
j=1 tr(DΞj(X̄)[H])

DΞq0(X̄)[H]

)
=

(∑q0−1
j=1 tr(P̄>αjB(H)P̄αj )

sym(Ū>αq0HV̄αq0 )

)

and it can be easily shown that the function DF (X̄) is onto. Consequently, the non-
degeneracy condition is satisfied at X̄.

Case 2: σk(X̄) = 0. In this situation, it holds σk(X̄) ∈ αq+1 and we define

F : Rm×n → R× Rrq+1×|β|, F (X) :=

(∑q
j=1 tr(Ξj(X)− Ξj(X̄))

Ξq+1(X)

)
,

ϕd : R× Rrq+1×|β| → R, ϕd(t, Y ) := t+ ‖Y ‖(k−sq+1).

Again, setting N̂ :=
⋂
j Nj , the mappings ϕd and F have the following properties:

• F is twice continuously differentiable on the neighborhood N̂ and it holds F (X̄) = 0.
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5.3. Decomposable functions

• Obviously, ϕd is a convex, real valued, and positively homogeneous function.

• As in the last case and due to µq+1 = 0, it follows

‖X‖(k) = ϕd(F (X)) + ‖X̄‖(k), ∀ X ∈ N̂ .

• The derivative mapping DF (X̄) : Rm×n → R× Rrq+1×|β| is given by

DF (X̄)[H] =

(∑q
j=1 tr(DΞj(X̄)[H])

DΞq+1(X̄)[H]

)
=

(∑q
j=1 tr(P̄>αjB(H)P̄αj )

Ū>αq+1
HV̄β

)
and is also onto.

Combining the latter cases, we establish that the Ky Fan k-norm is C2-fully decomposable
at each X̄ ∈ Rm×n. For instance, this also proves that the spectral and the nuclear norm are
fully decomposable matrix functions.

As mentioned at several points in this section, the concept of decomposable functions is
closely connected to the notion of cone reducible sets in constrained optimization. In the
following, we will clarify and explain this connections in some more detail. We start with a
definition of reducible sets.

Definition 5.3.19 (cf. [27, Definition 3.135]). Let K ⊂ Rn and C ⊂ Rm be two convex,
closed sets. The set K is said to be C`-reducible to the set C, at a point x̄ ∈ K, if there
exists a neighborhood U of x̄ and an `-times continuously differentiable function F : U → Rm
such that:

• The derivative mapping DF (x̄) : Rn → Rm is onto.

• It holds K ∩ U = {x ∈ U : F (x) ∈ C}.

We say that the reduction is pointed if the tangent cone TC(F (x̄)) is a pointed cone. If, in
addition, the set C − F (x̄) is a pointed, convex, and closed cone, we say that K is C`-cone
reducible. We can assume without loss of generality that F (x̄) = 0.

Let us note that a cone C ⊂ Rn is said to be pointed if and only if its corresponding
lineality space lin C is {0}. The following example is taken from [217] and connects cone
reducible sets and decomposable functions.

Example 5.3.20 (Cone reducible sets and decomposability). Consider the indicator
function ϕ(x) = ιK(x) and a point x̄ ∈ K, and suppose that the set K is C`-cone reducible
to the set C ⊂ Rm at x̄. Then, due to Definition 5.3.19, there exist a neighborhood U of x̄
and an `-times continuously differentiable function F : Rn → Rm such that

F (x̄) = 0, ϕ(x) = ϕ(x̄) + ιC(F (x)), ∀ x ∈ U.

Since C is a convex, closed cone, the function ϕd(y) := ιC(y) is convex, proper, lower semi-
continuous, and positively homogeneous. Moreover, since the mapping DF (x̄) is onto, the
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5. Second order theory and decomposability

nondegeneracy condition is automatically satisfied. Consequently, ϕ is C`-fully decompos-
able at x̄ with decomposition pair (ϕd, F ). On the other hand, if the indicator function
ϕ(x) = ιK(x) is C`-fully decomposable at x̄ ∈ K and if the derivative mapping of the cor-
responding decomposition function F is onto, then it can be easily shown that the set K is
C`(-cone) reducible at x̄.

Thus, the concept of decomposability can also be applied to optimization problems with
cone-reducible constraints. The class of cone-reducible sets contains many different and
interesting examples. For instance, any polyhedral set and the cone of positive semidefinite
matrices Sn+ ⊂ Rn×n are C∞-cone reducible; see [27, Example 3.139 and 3.140]. Further
examples comprise the second order cone, [25],

K = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t} = epi ‖ · ‖2,

or the epigraph of the Ky-Fan k-norm, which also includes the epigraph of the nuclear norm
as a special case, we refer to [63, Chapter 4] for more details. Let us also point out that
decomposable functions and cone-reducible sets share many of their characteristic, second
order properties. In particular, similar to decomposable functions, the curvature term of a
cone-reducible set reduces to a quadratic function on the critical cone. More information on
reducible sets and on their specific properties can be found in [27, Section 3.4.4].

In the following, we establish a connection between full decomposability of a function ϕ
and cone-reducibility of the corresponding epigraph epi ϕ.

Corollary 5.3.21. Suppose that the function ϕ : Rn → (−∞,+∞] is C`-fully decomposable
at some point x̄ ∈ dom ϕ with decomposition pair (ϕd, F ). If the mapping DF (x̄) : Rn → Rm
is onto, then the epigraph epi ϕ is C`-reducible to the set epi ϕd, at the point (x̄, ϕ(x̄)).
Additionally, if the function ϕd is pointed, i.e., if lin ϕd = {0}, then the epigraph epi ϕ is
C`-cone reducible at (x̄, ϕ(x̄)).

Proof. Let ϕ be C`-fully decomposable at x̄ ∈ dom ϕ with decomposition pair (ϕd, F ).
Then, by Definition 5.3.1, there exists a neighborhood U of x̄ such that

ϕ(x) = ϕ(x̄) + ϕd(F (x)), ∀ x ∈ U.

and for any (x, t) ∈ epi ϕ ∩ U × R, it follows

ϕ(x) ≤ t ⇐⇒ ϕd(F (x)) ≤ t− ϕ(x̄) ⇐⇒ (F (x), t− ϕ(x̄)) ∈ epi ϕd.

Clearly, this implies

epi ϕ ∩ U × R = {(x, t) ∈ U × R : (F (x), t− ϕ(x̄)) ∈ epi ϕd}.

Furthermore, since the mapping DF (x̄) : Rn → Rm is supposed to be onto, this also shows
that the epigraph epi ϕ is C`-reducible to the set epi ϕd at (x̄, ϕ(x̄)). Now, since the function
ϕd is convex, proper, lower semicontinuous, and positively homogeneous, the set epi ϕd is a
convex, nonempty, and closed cone. Moreover, due to Lemma 2.5.3 and (5.3.5), we have

Tepi ϕd(F (x̄), ϕ(x̄)− ϕ(x̄)) = Tepi ϕd(0, 0) = epi ϕ↓d(0; ·) = epi ϕd.
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Consequently, under the additional assumption lin ϕd = {0}, the cone epi ϕd is pointed and
epi ϕ is C`-cone reducible at (x̄, ϕ(x̄)).

We conclude this subsection with a simple sum and chain rule for decomposable functions.

Lemma 5.3.22. Let the functions ϕ1, ϕ2 : Rn → (−∞,+∞] be C`-decomposable at some
point x̄ ∈ Rn with corresponding decomposition pairs (ϕ1

d, F
1) and (ϕ2

d, F
2), and let ϕ1 be

real valued. Then, the function ϕ ≡ αϕ1 + βϕ2 is C`-decomposable at x̄ for every choice
α, β ≥ 0.

Proof. It can be easily shown that the functions ϕd : Rm1+m2 → (−∞,+∞], F : Rn →
Rm1+m2 ,

ϕd(y, z) := αϕ1
d(y) + βϕ2

d(z), F (x) :=

(
F 1(x)
F 2(x)

)
form a decomposition pair (ϕd, F ) of the mapping ϕ. Moreover, since the function ϕ1 is real
valued, Robinson’s constraint qualification

DF (x̄)Rn − dom ϕd =

(
DF 1(x̄)
DF 2(x̄)

)
Rn −

(
Rm1

dom ϕ2
d

)
= Rm1+m2

immediately follows from the condition DF 2(x̄)Rn − dom ϕ2
d = Rm2 . This establishes the

desired C`-decomposability of ϕ.

Lemma 5.3.23 (Chain rule). Let ϕ : Rm → (−∞,+∞] be a convex, proper, and lower
semicontinuous mapping and let G : Rn → Rm be `-times continuously differentiable in a
neighborhood of some point x̄ ∈ dom ϕ. Suppose that ϕ is C`-decomposable at G(x̄) and that
Robinson’s constraint qualification

(5.3.29) 0 ∈ int{G(x̄) +DG(x̄)Rn − dom ϕ}

holds at x̄. Then, the composite function ϕ ◦ G is C`-decomposable at x̄. Moreover, if ϕ is
C`-fully decomposable at G(x̄) and if the nondegeneracy condition

DG(x̄)Rn + lin N∂ϕ(G(x̄))(λ) = Rm, λ ∈ ∂ϕ(G(x̄)),

is satisfied at x̄, then ϕ ◦G is C`-fully decomposable at x̄.

Proof. Since ϕ is C`-decomposable at G(x̄), there exist functions F : Rm → Rp, ϕd : Rp →
(−∞,+∞] such that

(5.3.30) ϕ(y) = ϕ(G(x̄)) + ϕd(F (y))

for all y in a neighborhood V ⊂ Rm of G(x̄). Moreover, since G is continuous near x̄, there
exists an open, nonempty set U ⊂ Rn such that x̄ ∈ U and G(U) ⊂ V . Then, (5.3.30)
implies

(ϕ ◦G)(x) = (ϕ ◦G)(x̄) + ϕd(F (G(x))), ∀ x ∈ U.

Now, our goal is to show that ϕ ◦G is decomposable at x̄ with respect to the decomposition
pair (ϕd, F ◦ G). Clearly, the composite function F ◦ G : U → Rp is `-times continuously
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differentiable and we have (F ◦ G)(x̄) = 0. Since the function ϕd is part of the decom-
position pair (ϕd, F ), it is necessarily convex, proper, lower semicontinuous, and positively
homogeneous. We have already seen that Robinson’s constraint qualification (5.3.29) can be
equivalently reformulated as

0 ∈ int

{(
G(x̄)

ϕ(G(x̄))

)
+

(
DG(x̄)Rn

R

)
− epi ϕ

}
.

Furthermore, by [27, Proposition 2.97 and Corollary 2.98] and Lemma 2.5.3, this condition
is also equivalent to

(5.3.31)
(
Rm
R

)
=

(
DG(x̄)Rn

R

)
− Tepi ϕ(G(x̄), ϕ(G(x̄))) =

(
DG(x̄)Rn

R

)
− epi ϕ↓(G(x̄); ·).

Since ϕ is decomposable at G(x̄), Robinson’s constraint qualification (5.3.2), (with respect
to ϕd and F ), is satisfied at G(x̄) and, by applying Lemma 2.5.6, we have

ϕ↓(G(x̄);h) = (ϕd ◦ F )↓(G(x̄);h)

= ϕ↓d(F (G(x̄));DF (G(x̄))h) = ϕ↓d(0;DF (G(x̄))h) = ϕd(DF (G(x̄))h).

This immediately establishes

Φ · epi ϕ↓(G(x̄); ·) ⊂ epi ϕd, Φ :=

(
DF (G(x̄)) 0

0 1

)
∈ Rp+1×m+1

and, by multiplying (5.3.31) with Φ and subtracting epi ϕd, we obtain the following inclusion(
D(F ◦G)(x̄)Rn

R

)
− (epi ϕd + epi ϕd) ⊃

(
DF (G(x̄))Rm

R

)
− epi ϕd =

(
Rp
R

)
.

Moreover, since ϕd is convex and positively homogeneous, the epigraph epi ϕd is a convex
cone and it follows epi ϕd + epi ϕd ⊂ epi ϕd, (see, e.g., [11, Proposition 6.4]). Together with
the latter inclusion, this yields

D(F ◦G)(x̄)Rn − dom ϕd = Rp.

Hence, Robinson’s constraint qualification is satisfied at x̄, (with respect to the decomposition
pair (ϕd, F ◦G)), and consequently, ϕ is C`-decomposable at x̄. Now, let us suppose that ϕ
is C`-fully decomposable at G(x̄). Then, due to

lin N∂ϕ(G(x̄))(λ) = lin ϕ↓(G(x̄); ·),

we can reuse and adapt the last steps of the proof to verify that the nondegeneracy condition,

D(F ◦G)(x̄)Rn − lin ϕd = Rp,

is fulfilled at x̄. This finally shows that ϕ is C`-fully decomposable at x̄ with decomposition
pair (ϕd, F ◦G).

134



5.3. Decomposable functions

Remark 5.3.24. In [218, Proposition 3.2], Shapiro showed that sets of the form

S = {x ∈ Rn : G(x) ∈ K}

are cone reducible at some point x̄ if the set K ⊂ Rm is cone reducible at G(x̄) and if the
nondegeneracy condition holds at x̄. Hence, Lemma 5.3.23 transfers and extends this result
to (fully) decomposable functions. Let us further note that similar computational results
have also been established by Rockafellar et al., [193, 194, 208], for the composition and sum
of (fully)-amenable functions. Moreover, we want to emphasize that chain rules for amenable
functions are also available for general, nonconvex functions ϕ. For more details we refer to
[193, 194] and [208, Section 10.F].

5.3.4. The curvature of fully decomposable functions

In this subsection, we will discuss an essential property of fully decomposable functions in
some more detail. In particular, let f : Rn → R be twice continuously differentiable and
suppose that the mapping ϕ : Rn → (−∞,+∞] is convex, proper, lower semicontinuous, and
C2-fully decomposable at some stationary point x̄ ∈ dom ϕ of our initial problem

(5.3.32) min
x

ψ(x) = f(x) + ϕ(x).

Then, under the strict complementarity condition, we will establish a connection between
the curvature term ξ∗ϕ,h, which is associated with the problem (5.3.32), and the Fréchet
derivative of the proximity operator proxΛ

ϕ at x̄−Λ−1∇f(x̄). This is one of the most crucial
steps in order to combine the second order conditions (5.3.9) and (5.3.11), which are based
on the knowledge of a specific decomposition pair (ϕd, F ) of ϕ, and to prove nonsingularity
conditions for the generalized derivatives of the nonsmooth function

FΛ(x̄) = x̄− proxΛ
ϕ(x̄− Λ−1∇f(x̄)), Λ ∈ Sn++.

Now, let (ϕd, F ) be a decomposition pair of the function ϕ. The corresponding composite
optimization problem is given by

(5.3.33) min
x

ψc(x) = f(x) + ϕd(F (x)) + c̄, c̄ = ϕ(x̄).

Moreover, by Definition 5.1.5, the critical cone of the problems (5.3.32) and (5.3.33), has the
following equivalent representations

C(x̄) = N∂ϕ(x̄)(−∇f(x̄)) = {h ∈ Rn : ψ↓(x̄;h) = 0}
= {h ∈ Rn : ∇f(x̄)>h+ ϕd(DF (x̄)h) = 0}
= {h ∈ Rn : DF (x̄)h ∈ N∂ϕd(0)(λ̄)},

where λ̄ ∈ M(x̄) is an associated (unique) Lagrange multiplier. Let us recall that the strict
complementarity condition is said to be satisfied at x̄ if and only if

(5.3.34) −∇f(x̄) ∈ ri ∂ϕ(x̄).
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The next lemma shows that the nondegeneracy condition guarantees equivalence of the latter
condition and of the respective strict complementarity condition for the composite problem
(5.3.33) (in the sense of Definition 5.1.8). This result is motivated by a discussion in [217,
Section 4]. However, our proof uses different arguments.

Lemma 5.3.25. Let f : Rn → R be continuously differentiable and let ϕ : Rn → (−∞,+∞]
be a convex, proper, and lower semicontinuous mapping. Suppose that x̄ ∈ dom ϕ is a
stationary point of problem (P) and ϕ is C1-fully decomposable at x̄ with decomposition pair
(ϕd, F ). Then, the following conditions are equivalent:

−∇f(x̄) ∈ ri ∂ϕ(x̄) ⇐⇒ C(x̄) is a subspace
⇐⇒ N∂ϕd(0)(λ̄) is a subspace ⇐⇒ λ̄ ∈ ri ∂ϕd(0),

where λ̄ ∈M(x̄) is the corresponding, unique Lagrange multiplier of the problem (5.3.33).

Proof. By Lemma 5.1.10, we only need to prove the second equivalence. Moreover, from
the above discussion, it immediately follows DF (x̄)C(x̄) ⊂ N∂ϕd(0)(λ̄) and, due to the corre-
spondence

h ∈ C(x̄) ⇐⇒ DF (x̄)h ∈ N∂ϕd(0)(λ̄),

it can be easily shown that the set C(x̄) is a subspace if N∂ϕd(0)(λ̄) is a subspace. Now, on
the other hand, let z1, z2 ∈ N∂ϕd(0)(λ̄) be arbitrary and let us suppose that the critical cone
C(x̄) is a subspace. Then, the nondegeneracy condition implies

∃ hi ∈ Rn, yi ∈ lin N∂ϕd(0)(λ̄) such that zi = DF (x̄)hi + yi, i = 1, 2.

Furthermore, for i = 1, 2, we have

0 ≥ 〈zi, λ− λ̄〉 = 〈DF (x̄)hi + yi, λ− λ̄〉 = 〈DF (x̄)hi, λ− λ̄〉, ∀ λ ∈ ∂ϕd(0).

This establishes DF (x̄)hi ∈ N∂ϕd(0)(λ̄) and consequently, it follows hi ∈ C(x̄) for all i = 1, 2.
Next, since the sets C(x̄) and lin N∂ϕd(0)(λ̄) are subspaces and the normal cone N∂ϕd(0)(λ̄)
is a convex cone, we obtain

z1 + z2 = DF (x̄)(h1 + h2) + (y1 + y2) ∈ DF (x̄)C(x̄) + lin N∂ϕd(0)(λ̄)

⊂ N∂ϕd(0)(λ̄) +N∂ϕd(0)(λ̄) ⊂ N∂ϕd(0)(λ̄)

and
αz1 = DF (x̄)(αh1) + (αy1) ∈ DF (x̄)C(x̄) + lin N∂ϕd(0)(λ̄) ⊂ N∂ϕd(0)(λ̄),

for all α ∈ R. This shows that the normal cone N∂ϕd(0)(λ̄) is a subspace and concludes the
proof.

In the following, we state one of the main results of this work.

Theorem 5.3.26 (Curvature via proximity operators). Let f : Rn → R be a twice
continuously differentiable function and let ϕ : Rn → (−∞,+∞] be convex, proper, and
lower semicontinuous. Moreover, let x̄ ∈ dom ϕ be a stationary point of problem (P) and
suppose that ϕ is C2-fully decomposable at x̄. If the strict complementarity condition holds
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at x̄, then the proximity operator proxΛ
ϕ is Fréchet differentiable at ū := x̄ − Λ−1∇f(x̄) for

every Λ ∈ Sn++ and it follows

−ξ∗ϕ,h(−∇f(x̄)) = 〈h, (Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I)h〉Λ, ∀ h ∈ C(x̄),

where QΛ
ϕ(ū)+ denotes the pseudoinverse of the matrix QΛ

ϕ(ū) := Λ
1
2DproxΛ

ϕ(ū)Λ−
1
2 .

The proof of this theorem relies on a well-considered combination of various results and
concepts and beautifully connects different fields in optimization. In particular, the proof
consists of the following steps and concepts:

Second order subderivatives.

• At first, the curvature term ξ∗ϕ,h(−∇f(x̄)), which is based on parabolic second order
epiderivatives, will be connected to another, already mentioned, epigraphical framework
– the so-called second order subderivatives.

Second order sensitivity analysis of the Moreau envelope.

• Since decomposable functions are outer second order regular and twice epidifferentiable
at x̄, it can be shown that the proximity operator of ϕ is directionally differentiable at
x̄. This result is presented in [27, Example 4.106] and requires a deep background and
discussion of differentiability and sensitivity properties of minimum value functions.

• In the case of full decomposability, the directional derivative of the proximity opera-
tor can be characterized as the unique minimizer of a specific, convex and quadratic
optimization problem. The strict complementarity condition then will imply Fréchet
differentiability. Let us note that similar properties were obtained by Shapiro, [212],
for metric projections onto convex, cone-reducible sets. Thus, differentiability of the
proximity operator can be seen as a “translation” and extension of Shapiro’s work to
the proximal setting.

VU-theory, sub-Lagrangians and the U-Hessian.

• By using the theory of the quadratic sub-Lagrangian, [103], the strict complementarity
condition, and a slightly adapted result of Mifflin and Sagastizábal, [154], it is possible
to show that the convex, decomposable function ϕ admits a so-called U-Hessian at x̄
which will be precisely given by the generalized quadratic ξ∗ϕ,h(−∇f(x̄)).

• Finally, the theory and results developed in [132] and [130, Section 5], connect the
(existing) U-Hessian of ϕ with the U-Hessian of the corresponding Moreau envelope of
ϕ and the derivative of the proximity operator.

In the next paragraphs, we will introduce all relevant and necessary concepts and tools for
the proof of Theorem 5.3.26 step by step. We start with a brief discussion of second order
subderivatives.
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5. Second order theory and decomposability

Second order subderivatives

Let % : Rn → (−∞,+∞] be a proper functional and let x ∈ dom % be arbitrary. Then, the
so-called second order subderivative of % at x relative to y ∈ Rn is defined as the following
epi-limit

d2%(x|y) := e-lim
t↓0

∆2
t %(x|y), ∆2

t %(x|y)(h) :=
%(x+ th)− %(x)− t〈y, h〉

1
2 t

2
.

If the latter epi-limit exists and if it holds d2%(x|y)(0) > −∞, then % is said to be twice
epi-subdifferentiable at x relative to y. Alternatively, the second order subderivative can also
be defined by means of the lower and upper epi-limits:

d2
−%(x|y)(h) := lim inf

t↓0, h̃→h
∆2
t %(x|y)(h̃), d2

+%(x|y)(h) = sup
(tk)k∈N0

lim inf
k→∞, h̃→h

∆2
tk
%(x|y)(h̃).

Here, as usual, the limits d2
−%(x|y)(h) and d2

+%(x|y)(h) denote the lower and upper second
order subderivative of % at x relative to y, in the direction h ∈ Rn, and % is twice epi-
subdifferentiable relative to y if and only if these two limits coincide for all h ∈ Rn and it
holds d2

−%(x|y)(0) > −∞. Of course, in the latter case, the common limit is just the second
order subderivative. Let us state some basic properties of second order subderivatives:

• Suppose that % is convex and subdifferentiable at x ∈ dom %, then it holds

d2
−%(x|λ)(h) ≥ lim inf

t↓0, h̃→h

〈λ, th̃〉 − t〈λ, h̃〉
1
2 t

2
= 0, ∀ λ ∈ ∂%(x), ∀ h ∈ Rn.

• Let % be twice epi-subdifferentiable at x ∈ dom % relative to y and let f : Rn → R be
twice continuously differentiable in a neighborhood of x, then, for w := y+∇f(x) and
for all h ∈ Rn, it holds

d2(f + %)(x|w)(h) = h>∇2f(x)h+ d2%(x|y)(h).

• Let % : Rn → (−∞,+∞] be a convex, proper, lower semicontinuous, and positively
homogeneous function. Then, for all λ ∈ ∂%(0), it holds

(5.3.35) d2%(0|λ)(h) =

{
0 if %(h) = 〈λ, h〉,
+∞ if %(h) > 〈λ, h〉.

Proof. The second claim can be easily shown by using a second order Taylor expansion of
f . Now, let us briefly prove the third part. Let λ ∈ ∂%(0) be arbitrary. Then, by Lemma
2.5.13 and (5.3.5), it follows

(5.3.36) %(h) = %↓(0;h) = σ∂%(0)(h) ≥ 〈λ, h〉, ∀ h ∈ Rn.

Thus, the case “%(h) < 〈λ, h〉” cannot occur. Next, let us consider a point h ∈ Rn with
%(h) > 〈λ, h〉 and let (tk)k, tk ↓ 0, and (hk)k, hk → h, be arbitrary. Then, the epi-convergence
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of the (first order) difference quotients ∆t %(0) implies

lim inf
k→∞

%(0 + tkh
k)− %(0)

tk
− 〈λ, hk〉 = lim inf

k→∞
∆tk %(0)(hk)− 〈λ, hk〉 ≥ %↓(0;h)− 〈λ, h〉 > 0.

Hence, for every pair of sequences T := (tk)k, H := (hk)k, there exists K(T ,H) ∈ N such
that

∆tk %(0)(hk)− 〈λ, hk〉 > 0, ∀ k ≥ K(T ,H).

This immediately establishes

d2
−%(0|λ)(h) = lim inf

t↓0, h̃→h
∆2
t %(0|λ)(h̃) = lim inf

t↓0, h̃→h

2

t
(∆t %(0)(h̃)− 〈λ, h̃〉) = +∞.

Now, on the other hand, let us suppose that h ∈ Rn satisfies %(h) = 〈λ, h〉. Again, let (tk)k,
tk ↓ 0, and (hk)k, hk → h, be two arbitrary sequences. Then, inequality (5.3.36) implies

lim inf
k→∞

∆2
tk
%(0|λ)(hk) = lim inf

k→∞
%(hk)− 〈λ, hk〉

1
2 tk

≥ 0.

Moreover, due to h ∈ dom %, the function % is directionally epidifferentiable at h. In partic-
ular, there exists (wk)k, wk → 0, such that

lim sup
k→∞

∆tk %(h)(wk) ≤ %↓(h; 0) ≤ 0.

Next, let us consider and define the specific sequence (hk)k with hk := h+ 1
2 tkw

k, k ∈ N. It
holds

lim sup
k→∞

∆2
tk
%(0|λ)(hk) = lim sup

k→∞

%(h+ 1
2 tkw

k)− %(h)
1
2 tk

− 〈λ,wk〉 ≤ %↓(h; 0)− 〈λ, 0〉 ≤ 0.

Consequently, the epi-convergence of the difference quotients ∆2
t %(0|λ) and formula (5.3.35)

follow from Lemma 2.4.3.

Second order subderivatives were extensively studied by Rockafellar [206, 207] and Poliquin
and Rockafellar [193, 194] in the context of amenable functions. A thorough discussion of
second order subderivatives can also be found in [208, Chapter 13]. Next, we present a
connection between the second order parabolic epiderivative and the subderivative of a fully
decomposable function. Let us note that similar results were obtained in [206, Theorems 4.5
and 4.7] or [208, Theorems 13.67] for fully amenable functions.

Lemma 5.3.27. Let f : Rn → R be a twice continuously differentiable function and let ϕ :
Rn → (−∞,+∞] be convex, proper, and lower semicontinuous. Furthermore, let x̄ ∈ dom ϕ
be a stationary point of problem (P) and suppose that the mapping ϕ is C2-fully decomposable
at x̄ with decomposition pair (ϕd, F ). Then, ϕ is twice epi-subdifferentiable at x̄ relative to
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ḡ := −∇f(x̄) and the second order subderivative of ϕ at x̄ is given by

d2ϕ(x̄|ḡ)(h) =

{
−ξ∗ϕ,h(ḡ) = 〈λ̄, D2F (x̄)[h, h]〉 if h ∈ C(x̄),

+∞ otherwise,

where λ̄ ∈M(x̄) denotes the associated, unique Lagrange multiplier of problem (5.3.33).

Proof. At first, in the case h /∈ C(x̄), the same arguments as in the proof of formula (5.3.35)
can be used to establish

d2
−ϕ(x̄|ḡ)(h) = +∞,

see also [208, Proposition 13.5] for a similar, general result. Next, let (tk)k, tk ↓ 0, be arbitrary
and suppose that h ∈ C(x̄) is an element of the critical cone. Moreover, let us consider
another arbitrary sequence (hk)k with hk → h. Then, for any k ∈ N sufficiently large, the
decomposability of ϕ, a second order Taylor expansion of F at x̄, and λ̄ ∈ M(x̄) ⊂ ∂ϕd(0)
yield

∆2
tk
ϕ(x̄|ḡ)(hk) =

ϕd(F (x̄+ tkh
k))− ϕd(F (x̄))− tk〈ḡ, hk〉

1
2 t

2
k

≥ 〈λ̄, F (x̄+ tkh
k)〉 − tk〈λ̄, DF (x̄)hk〉

1
2 t

2
k

= 〈λ̄, D2F (x̄)[hk, hk]〉+ o(1).

Of course, by Lemma 5.3.9, this immediately implies

lim inf
k→∞

∆2
tk
ϕ(x̄|ḡ)(hk) ≥ 〈λ̄, D2F (x̄)[h, h]〉 = −ξ∗ϕ,h(ḡ).

On the other hand, the full decomposability of ϕ and Lemma 5.3.9 also ensure the existence
of a point ŵ ∈ Rn such that

−ξ∗ϕ,h(ḡ) = inf
w∈Rn

ϕ↓↓(x̄;h,w)− 〈ḡ, w〉 = ϕ↓↓(x̄;h, ŵ)− 〈ḡ, ŵ〉.

Furthermore, by Lemma 5.3.5, we know that the mapping ϕ is twice (parabolically) di-
rectionally epidifferentiable at x̄, in the direction h ∈ C(x̄). Hence, the epi-convergence of
the (parabolic) difference quotients ∆2

t ϕ(x̄;h) and Lemma 2.4.3 imply that there exists a
sequence (wk)k, wk → ŵ, such that

lim sup
k→∞

∆2
tk
ϕ(x̄;h)(wk) = lim sup

k→∞

ϕ(x̄+ tkh+ 1
2 t

2
kw

k)− ϕ(x̄)− tkϕ↓(x̄;h)
1
2 t

2
k

≤ ϕ↓↓(x̄;h, ŵ).

Now, as in the last proof, let us define hk := h+ 1
2 tkw

k. Then, clearly, it holds hk → h and
we obtain

lim sup
k→∞

∆2
tk
ϕ(x̄|ḡ)(hk) = lim sup

k→∞

{
∆2
tk
ϕ(x̄;h)(wk)− 〈ḡ, wk〉

}
≤ ϕ↓↓(x̄;h, ŵ)− 〈ḡ, ŵ〉 = −ξ∗ϕ,h(ḡ),
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where we used h ∈ C(x̄). Thus, for every sequence (tk)k, tk ↓ 0, it followslim inf
k→∞

∆2
tk
ϕ(x̄|ḡ)(hk) ≥ −ξ∗ϕ,h(ḡ) for every sequence hk → h,

lim sup
k→∞

∆2
tk
ϕ(x̄|ḡ)(hk) ≤ −ξ∗ϕ,h(ḡ) for some sequence hk → h.

By Lemma 2.4.3, this shows that ϕ is twice epi-subdifferentiable at x̄ relative to ḡ with
d2ϕ(x̄|ḡ)(h) = −ξ∗ϕ,h(ḡ) for all h ∈ C(x̄).

Remark 5.3.28. Let us note that the first part of this proof is based on [206, Theorem 4.5],
while the derivation of the “limsup-inequality” is motivated by the proof of [27, Proposition
3.103]. However, we also want to mention that our argumentation might not be optimal
since it requires full decomposability of ϕ and existence of a maximizer ŵ of the curvature
term

−ξ∗ϕ,h(ḡ) = − sup
w
〈ḡ, w〉 − ϕ↓↓(x̄;h,w) = ϕ↓↓(x̄;h, ŵ)− 〈ḡ, ŵ〉.

It is an interesting question whether a direct discussion of the second order subderivative as
in [206] can lead to similar and more general results for C2-decomposable functions.

Second order sensitivity analysis of the Moreau envelope

In Lemma 3.1.5, we have already seen that the Moreau envelope envΛ
ϕ, Λ ∈ Sn++, of a

convex, proper, and lower semicontinuous function ϕ : Rn → (−∞,+∞] is convex and
continuously differentiable. Moreover, in section 3.3, we have discussed several second order
properties of the proximity operator proxΛ

ϕ that can be primarily traced back to the convexity
of the Moreau envelope and to the firm nonexpansiveness of proxΛ

ϕ. In this subsection,
we will additionally assume that the mapping ϕ is outer second order regular and twice
directionally epidifferentiable at a certain point of interest. This extra information will then
allow us to refine our basic differentiability results and to establish general, first and second
order directional differentiability of the proximity operator and of the Moreau envelope,
respectively.

The theoretical statements in this paragraph are essentially based on [23, Section 7.3] and
[27, Example 4.106]. However, let us emphasize that the results of Bonnans, Cominetti,
and Shapiro, [23, 27], rely on a number of involved second order sensitivity results for the
minimum value function of a general optimization problem. Here, in our specific situation,
these results and the corresponding proofs can be expressed in a compact, self-contained, and
simplified form, which will be presented in the following. For a more abstract formulation
and more details on second order sensitivity analysis we refer to [23] and [27, Section 4.7].

In the following, we will always assume that ϕ : Rn → (−∞,+∞] is a convex, proper, and
lower semicontinuous function. Furthermore, we consider the specific problem

(5.3.37) min
x

ϕ(x) +
1

2
‖ū− x‖2Λ,

where ū ∈ Rn is a fixed point and Λ ∈ Sn++ is an arbitrary parameter matrix. The unique,
optimal solution of this problem is given by the proximity operator p̄ := proxΛ

ϕ(ū) and the
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optimal value of problem (5.3.37) coincides with the Moreau envelope envΛ
ϕ(ū). In particular,

it holds

(5.3.38) envΛ
ϕ(ū) = ϕ(p̄) +

1

2
‖ū− p̄‖2Λ.

By Remark 3.1.6, the function ϕ is subdifferentiable at p̄ and the corresponding first order
optimality conditions take the following form

(5.3.39) ϕ↓(p̄;h) + 〈Λ(p̄− ū), h〉 = ϕ↓(p̄;h)− 〈∇envΛ
ϕ(ū), h〉 ≥ 0, ∀ h ∈ Rn.

Thus, the critical cone associated with problem (5.3.37) can be defined as follows:

CΛ
ū (p̄) := {h ∈ Rn : ϕ↓(p̄;h)−∇envΛ

ϕ(ū)>h = 0} = N∂ϕ(p̄)(∇envΛ
ϕ(ū)).

In the next lemmas, we want to analyze stability and sensitivity properties of problem
(5.3.37) and of the Moreau envelope envΛ

ϕ along parabolic paths of the form

u(t) := ū+ td+
1

2
t2r + o(t2), d, r ∈ Rn.

By adapting the proof of [27, Theorem 4.100] and by using the concept of outer second order
regularity, we obtain the following result.

Lemma 5.3.29. Let Λ ∈ Sn++ be arbitrary and let ϕ : Rn → (−∞,+∞] be convex, proper
and lower semicontinuous. Suppose that the function ϕ is outer second order regular at
p̄ = proxΛ

ϕ(ū) in all directions h ∈ CΛ
ū (p̄). Then, it holds

lim inf
t↓0

envΛ
ϕ(u(t))− envΛ

ϕ(ū)−∇envΛ
ϕ(ū)>d

1
2 t

2
(5.3.40)

≥ 〈∇envΛ
ϕ(ū), r〉+ min

h∈CΛ
ū (p̄)

{
‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ

ϕ(ū))
}
,

where ξϕ,h(·) = ϕ↓↓− (p̄;h, ·).

Proof. Let (tk)k, tk ↓ 0, be a sequence such that the limes inferior on the left side of (5.3.40)
is attained as (tk)k converges to zero. Furthermore, let us set uk = u(tk), pk = proxΛ

ϕ(uk),
and p̄ := proxΛ

ϕ(ū). By defining hk := t−1
k (pk − p̄), it holds pk = p̄+ tkh

k and

‖hk‖Λ =
1

tk
‖pk − p̄‖Λ ≤

1

tk
‖uk − ū‖Λ ≤ ‖d+ 1

2 tkr + o(tk)‖Λ,

where we used the Lipschitz continuity of the proximity operator. Consequently, the sequence
(hk)k is bounded and there exists h ∈ Rn and a subsequence of (hk)k that converges to h. In
the following, without loss of generality, we will drop the additional index of the subsequence
for a better readability. By further setting wk := 2t−1

k (hk − h), the proximal path pk can be
written in the form

pk = p̄+ tkh+
1

2
t2k · [2t−1

k (hk − h)] = p̄+ tkh+
1

2
t2kw

k.
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Now, a simple calculation yields

‖pk − uk‖2Λ
= ‖p̄− ū− tk(d− h+ 1

2 tk(r − w
k)− o(tk))‖2Λ

= ‖p̄− ū‖2Λ − 2tk〈Λ(p̄− ū), d− h+ 1
2 tk(r − w

k)〉
+ t2k‖d− h+ 1

2 tk(r − w
k)− o(tk)‖2Λ + o(t2k)

= ‖p̄− ū‖2Λ + 2tk〈∇envΛ
ϕ(ū), d− h〉+ t2k

{
〈∇envΛ

ϕ(ū), r − wk〉+ ‖d− h‖2Λ
}

+ o(t2k).

Hence, by applying the definition of the Moreau envelope (5.3.38), we obtain

envΛ
ϕ(uk)− envΛ

ϕ(ū)− tk∇envΛ
ϕ(ū)>d

= ϕ(pk)− ϕ(p̄) +
1

2
‖pk − uk‖2Λ −

1

2
‖p̄− ū‖2Λ − tk〈∇envΛ

ϕ(ū), d〉

= ϕ(pk)− ϕ(p̄)− tk〈∇envΛ
ϕ(ū), h〉+

1

2
t2k

{
〈∇envΛ

ϕ(ū), r − wk〉+ ‖d− h‖2Λ
}

+ o(t2k).

Dividing both sides by tk and taking the limit, k →∞, this establishes

0 = lim
k→∞

{
envΛ

ϕ(uk)− envΛ
ϕ(ū)

tk
−∇envΛ

ϕ(ū)>d

}

= lim inf
k→∞

{
ϕ(pk)− ϕ(p̄)

tk
− 〈∇envΛ

ϕ(ū), h〉+ o(tk)

}
≥ lim inf

k→∞

{
ϕ↓(p̄;h+ 1

2 tkw
k) + o(tk)

}
− 〈∇envΛ

ϕ(ū), h〉 ≥ ϕ↓(p̄;h)− 〈∇envΛ
ϕ(ū), h〉,

where we used tkwk → 0, the convexity of ϕ, and the properties of the epiderivative ϕ↓(p̄; ·).
On the other hand, since p̄ is a solution of the minimization problem (5.3.37), the optimality
conditions (5.3.39) imply

ϕ↓(p̄;h)− 〈∇envΛ
ϕ(ū), h〉 = 0

and, consequently, it follows h ∈ CΛ
ū (p̄). Next, by combining the last results, we get

ϕ(pk)− ϕ(p̄)− tkϕ↓(p̄;h) = 1
2 t

2
kτ

k,

where the remainder τk is defined as τk := 2t−2
k [envΛ

ϕ(uk) − envΛ
ϕ(ū) − ∇envΛ

ϕ(ū)>d] −
〈∇envΛ

ϕ(ū), r − wk〉 − ‖d− h‖2Λ + o(1) and satisfies tkτk → 0. Thus, since ϕ is outer second
order regular at p̄ in all directions h ∈ CΛ

ū (p̄), there exist sequences (w̃k)k and (τ̃k)k such
that w̃k − wk → 0, τ̃k − τk → 0, and τ̃k ≥ ϕ↓↓− (p̄;h, w̃k). Finally, we have

envΛ
ϕ(uk)− envΛ

ϕ(ū)−∇envΛ
ϕ(ū)>d

1
2 t

2
k

≥ ϕ↓↓− (p̄;h, w̃k) + 〈∇envΛ
ϕ(ū), r − wk〉+ ‖d− h‖2Λ + o(1)

≥ 〈∇envΛ
ϕ(ū), r〉+ ‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ

ϕ(ū)) + o(1).
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Moreover, by taking the limit k → ∞ over both sides of the latter inequality and using
h ∈ CΛ

ū (p̄), we clearly obtain (5.3.40). This concludes the proof of Lemma 5.3.29.

In order to derive an upper bound for the parabolic difference quotient in (5.3.40), we will
now discuss the second order behaviour of the Moreau envelope envΛ

ϕ along fixed proximal
paths

(5.3.41) p(t) := p̄+ th+
1

2
t2w + o(t2), p̄ = proxΛ

ϕ(ū), h ∈ CΛ
ū (p̄),

where w ∈ Rn and the o(t2)-term are chosen such that the path p(t) satisfies p(t) ∈ dom ϕ
for all t ≥ 0 sufficiently small. Due to the definition of the inner second order tangent set
and Lemma 5.2.4, it follows for all t ≥ 0

(5.3.42)
(

p̄
ϕ(p̄)

)
+ t

(
h

ϕ↓(p̄;h)

)
+

1

2
t2
(

w

ϕ↓↓+ (p̄;h,w)

)
+ o(t2) ∈ epi ϕ.

Hence, since the epiderivative ϕ↓(p̄;h) is finite, the path p(t) is feasible if there exists w ∈ Rn

with ϕ↓↓+ (p̄;h,w) <∞. The following result is based on [27, Proposition 4.83].

Lemma 5.3.30. Let Λ ∈ Sn++ be arbitrary and let ϕ : Rn → (−∞,+∞] be a convex, proper
and lower semicontinuous function. Then, it holds

lim sup
t↓0

envΛ
ϕ(u(t))− envΛ

ϕ(ū)−∇envΛ
ϕ(ū)>d

1
2 t

2
(5.3.43)

≤ 〈∇envΛ
ϕ(ū), r〉+ min

h∈CΛ
ū (p̄)

{
‖d− h‖2Λ − ζ∗ϕ,h(∇envΛ

ϕ(ū))
}
,

where ζϕ,h(·) = ϕ↓↓+ (p̄;h, ·).

Proof. Clearly, if the upper second order directional epiderivative ϕ↓↓+ (p̄;h, ·) is infinite for
all h ∈ CΛ

ū (p̄), then, due to

−ζ∗ϕ,h(∇envΛ
ϕ(ū)) = inf

w
ϕ↓↓+ (p̄;h,w)− 〈∇envΛ

ϕ(ū), w〉,

the right side of (5.3.43) equals +∞ and the inequality in Lemma 5.3.30 is trivially satisfied.
Otherwise, there exist h ∈ CΛ

ū (p̄) and w ∈ Rn such that we can construct a feasible proximal
path p(t) of the form (5.3.41). Then, by using the calculations of the proof of Lemma 5.3.29
and (5.3.42), it follows

envΛ
ϕ(u(t))− envΛ

ϕ(ū)− t∇envΛ
ϕ(ū)>d

≤ ϕ(p(t))− ϕ(p̄) +
1

2
‖p(t)− u(t)‖2Λ −

1

2
‖p̄− ū‖2Λ − t〈∇envΛ

ϕ(ū), d〉

= ϕ(p(t))− ϕ(p̄)− t〈∇envΛ
ϕ(ū), h〉+

1

2
t2
{
〈∇envΛ

ϕ(ū), r − w〉+ ‖d− h‖2Λ
}

+ o(t2)

≤ 1

2
t2
{
ϕ↓↓+ (p̄;h,w) + 〈∇envΛ

ϕ(ū), r − w〉+ ‖d− h‖2Λ
}

+ o(t2).

144



5.3. Decomposable functions

By taking the infimum with respect to w and minimizing over h ∈ CΛ
ū (p̄), we readily obtain

inequality (5.3.43).

Before continuing with the next theorem, we want to discuss the minimization problem,
which occurs in the inequalities (5.3.40) and (5.3.43), and the corresponding convex conju-
gates ξ∗ϕ,h and ζ∗ϕ,h in some more detail. Therefore, let us suppose that the function ϕ is addi-
tionally outer second order regular and twice directionally epidifferentiable at p̄ = proxΛ

ϕ(ū)

in some direction h ∈ CΛ
ū (p̄). Furthermore, let (tk)k, tk ↓ 0, be an arbitrary sequence. Then,

due to the epi-convergence of the first order difference quotients ∆t ϕ(p̄), there exists (hk)k,
hk → h, such that

lim sup
k→∞

ϕ(p̄+ tkh
k)− ϕ(p̄)

tk
≤ ϕ↓(p̄;h) ∈ R.

Next, let us define

wk := 2t−1
k [hk − h], τk := 2t−2

k [ϕ(p̄+ tkh+ 1
2 t

2
kw

k)− ϕ(p̄)− tkϕ↓(p̄;h)].

Clearly, this yields tkwk → 0 and

ϕ(p̄+ tkh+ 1
2 t

2
kw

k) = ϕ(p̄) + tkϕ
↓(p̄;h) + 1

2 t
2
kτ

k.

Using Lemma 2.5.5, and the positive homogeneity and lower semicontinuity of the epideriva-
tive ϕ↓(p̄; ·), we obtain

lim inf
k→∞

tkτ
k ≥ lim inf

k→∞
ϕ↓(p̄; tkh+ 1

2 t
2
kw

k)− tkϕ↓(p̄;h)
1
2 tk

= lim inf
k→∞

2(ϕ↓(p̄;h+ 1
2 tkw

k)− ϕ↓(p̄;h)) ≥ 0.

On the other hand, we have

lim sup
k→∞

tkτ
k = lim sup

k→∞

ϕ(p̄+ tkh
k)− ϕ(p̄)

1
2 tk

− 2ϕ↓(p̄;h) ≤ 2ϕ↓(p̄;h)− 2ϕ↓(p̄;h) = 0.

Thus, it follows tkτk → 0 and, due to the twice epidifferentiability and outer second order
regularity of ϕ, there exist (w̃k)k, w̃k − wk → 0, and (τ̃k)k, τ̃k − τk → 0, such that

ϕ↓↓(p̄;h, w̃k) = ϕ↓↓+ (p̄;h, w̃k) = ϕ↓↓− (p̄;h, w̃k) ≤ τ̃k.

Consequently, in this case, we have

−ζ∗ϕ,h(∇envΛ
ϕ(ū)) ≤ τ̃k − 〈∇envΛ

ϕ(ū), w̃k〉 < +∞.

Moreover, as in Remark 5.2.9, it follows

ϕ↓↓− (p̄;h,w) ≥ lim inf
t↓0, w̃→w

〈∇envΛ
ϕ(ū), th+ 1

2 t
2w̃〉 − tϕ↓(p̄;h)

1
2 t

2
= 〈∇envΛ

ϕ(ū), w〉,
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5. Second order theory and decomposability

and
−ξ∗ϕ,h(∇envΛ

ϕ(ū)) = inf
w

ϕ↓↓− (p̄;h,w)− 〈∇envΛ
ϕ(ū), w〉 ≥ 0.

Altogether, this finally implies

−ξ∗ϕ,h(∇envΛ
ϕ(ū)) = −ζ∗ϕ,h(∇envΛ

ϕ(ū)) ∈ [0,+∞).

Hence, in summary, if ϕ is outer second order regular and twice directionally epidifferentiable
at p̄ in every direction h ∈ CΛ

ū (p̄), then the objective function of the minimization problem

min
h∈CΛ

ū (p̄)
‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ

ϕ(ū)), ξϕ,h(w) := ϕ↓↓(p̄;h,w)

is real valued on the critical cone CΛ
ū (p̄). Now, by combining Lemma 5.3.29 and 5.3.30 and

our latter observations, we obtain the following theorem.

Theorem 5.3.31. Let Λ ∈ Sn++ be arbitrary and let ϕ : Rn → (−∞,+∞] be convex, proper,
and lower semicontinuous. Furthermore, suppose that ϕ is outer second order regular and
twice directionally epidifferentiable at p̄ = proxΛ

ϕ(ū) in all directions h ∈ CΛ
ū (p̄). Then, the

second order directional derivative (envΛ
ϕ)′′(ū; d, r) exists and it holds

(5.3.44) (envΛ
ϕ)′′(ū; d, r) = 〈∇envΛ

ϕ(ū), r〉+ min
h∈CΛ

ū (p̄)

{
‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ

ϕ(ū))
}
,

where ξϕ,h(·) = ϕ↓↓(p̄;h, ·). Moreover, the proximity operator proxΛ
ϕ is directionally differen-

tiable at ū and its derivative satisfies

(proxΛ
ϕ)′(ū; d) = arg min

h∈CΛ
ū (p̄)

{
‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ

ϕ(ū))
}
.

Proof. At first, we want to note that the following proof is based on the proofs of [24,
Theorem 4.1 and Corollary 4.1] and [27, Theorem 4.101]. Again, we will tailor the abstract
and general results in [24, 27] to our specific situation.

The second order directional differentiability of the Moreau envelope envΛ
ϕ and formula

(5.3.44) follow directly from Lemma 5.3.29 and 5.3.30, the continuity of envΛ
ϕ, and the fact

that the objective function

h 7→ Γd(h) := ‖d− h‖2Λ − ξ∗ϕ,h(∇envΛ
ϕ(ū))

is real valued on CΛ
ū (p̄). (In particular, the term on the right side of equation (5.3.44) is a real

number). Furthermore, Lemma 5.2.12 implies that the mapping h 7→ −ξ∗ϕ,h(∇envΛ
ϕ(ū)) is

convex on the critical cone CΛ
ū (p̄) ⊂ dom ϕ↓(p̄; ·). Hence, the function Γd is strongly convex

on CΛ
ū (p̄) and the optimization problem

(5.3.45) min
h∈CΛ

ū (p̄)
Γd(h)

has a unique solution ĥ ∈ CΛ
ū (p̄). Now, let (tk)k, tk ↓ 0, be an arbitrary sequence. Then, by
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5.3. Decomposable functions

combining Lemma 5.3.29 and 5.3.30 and by reconsidering the proof of Lemma 5.3.29, we see
that any accumulation point h̄ ∈ Rn of the sequence (qk)k,

qk :=
proxΛ

ϕ(u(tk))− proxΛ
ϕ(ū)

tk
, k ∈ N,

satisfies the following inequality

Γd(h̄) ≤ lim sup
k→∞

envΛ
ϕ(u(tk))− envΛ

ϕ(ū)− tk∇envΛ
ϕ(ū)>d

1
2 t

2
k

−∇envΛ
ϕ(ū)>r ≤ min

h∈CΛ
ū (p̄)

Γd(h).

Thus, the point h̄ is a solution of the minimization problem (5.3.45) and it immediately
follows h̄ = ĥ. Moreover, since (qk)k is bounded and h̄ was an arbitrary accumulation point,
the sequence (qk)k has to converge to the unique solution ĥ of problem (5.3.45). Finally,
since the proximity operator is a Lipschitz continuous function and the sequence (tk)k was
also arbitrarily chosen, we obtain

(proxΛ
ϕ)′(ū; d) = lim

t↓0

proxΛ
ϕ(u(t))− proxΛ

ϕ(ū)

t
= ĥ = arg min

h∈CΛ
ū (p̄)

Γd(h),

as desired.

Next, we are going to combine the results of Theorem 5.3.31, the full decomposability of ϕ,
and the strict complementarity condition to establish Fréchet differentiability of the proximity
operator proxΛ

ϕ. Let us mention that a similar result was already proven by Shapiro, [212,
Proposition 3.1], for projections onto cone-reducible sets. The proof of the following Lemma
is motivated by the ideas in [212].

Lemma 5.3.32. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
mapping and let ū ∈ Rn and Λ ∈ Sn++ be arbitrary. Moreover, suppose that ϕ is C2-fully
decomposable at p̄ := proxΛ

ϕ(ū). Then, the proximity operator proxΛ
ϕ is Fréchet differentiable

at ū if and only if the following strict complementarity condition is satisfied

∇envΛ
ϕ(ū) ∈ ri ∂ϕ(p̄).

Proof. Let (ϕd, F ) be a corresponding decomposition pair of ϕ. Since ϕ is C2-fully decom-
posable at p̄, Lemma 5.3.5 implies that ϕ is twice directionally epidifferentiable and outer
second order regular at p̄ in all directions h ∈ Rn with DF (p̄)h ∈ dom ϕd. Now, let h ∈ CΛ

ū (p̄)
be arbitrary, then it follows

0 = ϕ↓(p̄;h)− 〈∇envΛ
ϕ(ū), h〉 = ϕd(DF (p̄)h)− 〈∇envΛ

ϕ(ū), h〉.

Clearly, this shows DF (p̄)CΛ
ū (p̄) ⊂ dom ϕd and, consequently, Theorem 5.3.31 is applicable

and we can infer that the proximity operator proxΛ
ϕ is directionally differentiable at ū. More-

over, since proxΛ
ϕ is a Lipschitz continuous function, it is also directionally differentiable in

the Hadamard sense and its directional derivative (proxΛ
ϕ)′(ū; ·) is Lipschitz continuous.

Hence, the proximity operator proxΛ
ϕ is Fréchet differentiable at ū if and only if its di-
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5. Second order theory and decomposability

rectional derivative (proxΛ
ϕ)′(ū; ·) is a linear mapping. (Let us refer to [27, Section 2.2.1]

for more details on Hadamard and Fréchet differentiability). Furthermore, via identifying
f(x) ≡ 1

2‖x− ū‖
2
Λ, x̄ ≡ p̄, −∇f(x̄) ≡ ∇envΛ

ϕ(ū), and C(x̄) ≡ CΛ
ū (p̄), Lemma 5.3.9 implies

−ξ∗ϕ,h(∇envΛ
ϕ(ū)) = 〈λ̄, D2F (p̄)[h, h]〉, λ̄ ∈M(p̄), ∀ h ∈ CΛ

ū (p̄).

Thus, by using Theorem 5.3.31, the directional derivative (proxΛ
ϕ)′(ū; d) is the unique, optimal

solution of the following, strongly convex and quadratic program

(5.3.46) min
h∈CΛ

ū (p̄)
‖d− h‖2Λ + h>Hϕ(p̄)h, Hϕ(p̄) :=

m∑
i=1

λ̄i∇2Fi(p̄).

We can now proceed as in the proof of [212, Proposition 3.1]. Since the critical cone CΛ
ū (p̄)

coincides with the normal cone N∂ϕ(p̄)(∇envΛ
ϕ(ū)), we can utilize Lemma 5.1.10 and conse-

quently, we only need to verify that the linearity of the mapping (proxΛ
ϕ)′(ū; ·) is equivalent to

CΛ
ū (p̄) being a subspace. Additionally, since the set CΛ

ū (p̄) is a convex, nonempty, and closed
cone and by defining ϕ(h) := ιCΛ

ū (p̄)(h), the optimization problem (5.3.46) is of the form (P)
and the general first order optimality theory of section 4.1 is applicable. Therefore, let us
first suppose that the critical cone CΛ

ū (p̄) is a subspace and let us set ĥi := (proxΛ
ϕ)′(ū; di),

di ∈ Rn, i = 1, 2. Then, due to

NCΛ
ū (ū)(ĥi) = [CΛ

ū (p̄)]◦ ∩ {ĥi}⊥ = CΛ
ū (p̄)⊥,

the corresponding first order optimality conditions for problem (5.3.46) reduce to

〈Λ(ĥi − di) +Hϕ(p̄)ĥi, h〉 = 0, ∀ h ∈ CΛ
ū (p̄), ∀ i,

where we used Example 2.1.5, Example 2.5.16, Lemma 4.1.2, and the fact that CΛ
ū (p̄) is

subspace. Obviously, this establishes

(proxΛ
ϕ)′(ū;αd1 + βd2) = αĥ1 + βĥ2, ∀ α, β ∈ R,

which in turn implies the linearity of (proxΛ
ϕ)′(ū; ·). On the other hand, suppose that the

directional derivative (proxΛ
ϕ)′(ū; ·) is a linear mapping and let h̄ ∈ CΛ

ū (p̄) be arbitrary. Setting
d̄ := h̄+ Λ−1Hϕ(p̄)h̄, it holds

Λ(h̄− d̄) +Hϕ(p̄)h̄ = 0 ∈ NCΛ
ū (ū)(h̄) = [CΛ

ū (p̄)]◦ ∩ {h̄}⊥

and, thus, it follows (proxΛ
ϕ)′(ū; d̄) = h̄. Now, formula (5.3.46), the linearity of (proxΛ

ϕ)′(ū; ·),
and 0 ∈ CΛ

ū (p̄) immediately imply that the critical cone CΛ
ū (p̄) is a subspace.

Let us briefly reconsider our initial problem

min
x

f(x) + ϕ(x)

and let x̄ ∈ dom ϕ be a stationary point of the latter problem. Moreover, let us suppose that
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the function ϕ is C2-fully decomposable at x̄ and let Λ ∈ Sn++ be an arbitrary parameter
matrix. The corresponding first order optimality conditions can be represented as follows

x̄ = proxΛ
ϕ(ū), ū := x̄− Λ−1∇f(x̄).

Consequently, ϕ is “also” C2-fully decomposable at p̄ := proxΛ
ϕ(ū) = x̄ and, due to

∇envΛ
ϕ(ū) = Λ(ū− p̄) = −∇f(x̄) + Λ(x̄− proxΛ

ϕ(ū)) = −∇f(x̄),

we can formulate the following corollary, which apparently does not need a proof.

Corollary 5.3.33. Let f : Rn → R be a twice continuously differentiable function and let
ϕ : Rn → (−∞,+∞] be convex, proper, and lower semicontinuous. Suppose that x̄ ∈ dom ϕ
is a stationary point of problem (P) and let ϕ be C2-fully decomposable at x̄. Then, for
every parameter matrix Λ ∈ Sn++, the proximity operator proxΛ

ϕ is Fréchet differentiable at
ū := x̄− Λ−1∇f(x̄) if and only if the strict complementarity condition

−∇f(x̄) ∈ ri ∂ϕ(x̄)

holds at x̄.

Thus, in summary, if the convex, proper, and lower semicontinuous mapping ϕ is C2-fully
decomposable at every point x ∈ dom ϕ, then our analysis shows that the strict complemen-
tarity condition completely characterizes the Fréchet differentiability of the corresponding
proximity operator. Once more, this illustrates the abundance and the structural advan-
tages of the concept of full decomposability. We conclude this paragraph with an exemplary
application.

Example 5.3.34 (Semidefinite programming). We consider the matrix optimization
problem

(5.3.47) min
X∈Sn

f(X) s. t. X ∈ Sn+,

where f : Sn → R is a twice continuously differentiable function. Since the cone of positive
semidefinite, symmetric matrices is C∞-cone reducible at every point X ∈ Sn+, (see, e.g., [27,
Example 3.140]), it immediately follows that the indicator function ϕ : Sn → (−∞,+∞],
ϕ(X) := ιSn+(X) is C∞-fully decomposable at X ∈ Sn+. Hence, our abstract second order
framework can also be applied to general semidefinite programs of the form (5.3.47).

In the following, we briefly want to analyze the differentiability properties of the proximity
operator proxIϕ(·) = PSn+(·). Therefore, let Ū ∈ Sn be arbitrary and let us consider the
spectral decomposition of Ū ,

Ū = PΣP>, Σ = diag(σ) ∈ Sn,

where each σi, i = 1, ..., n, denotes a corresponding eigenvalue of Ū and P ∈ Rn×n is an
orthogonal matrix. Then, by [107], the proximity operator proxIϕ(Ū) can be computed as
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follows

Ū+ := proxIϕ(Ū) = PSn+(Ū) = arg min
Y ∈Sn+

1

2
‖Ū − Y ‖2F = P diag(max{σ, 0})P>.

Next, let us define the index sets

α := {i : σi > 0}, β := {i : σi = 0}, γ := {i : σi < 0}.

Then, as in [27, 183, 226, 43] and by setting ᾱ = {1, ..., n} \ α, the tangent cone TSn+(Ū+)
has the following explicit representation

TSn+(Ū+) = {H ∈ Sn : P>[·ᾱ]HP[·ᾱ] � 0}

and, due to ϕ↓(Ū+;H) = ιTSn+ (Ū+)(H), it can be shown that the critical cone reduces to

CŪ (Ū+) = {H ∈ TSn+(Ū+) : 〈Ū − Ū+, H〉 = 0}

= {H ∈ Sn : P>[·β]HP[·β] � 0, P>[·β]HP[·γ] = 0, P>[·γ]HP[·γ] = 0}.

Consequently, Lemma 5.3.32 implies that the projection PSn+(·) is Fréchet differentiable at Ū
if and only the index set β is empty, i.e., if and only if the matrix Ū is invertible. Of course,
this result is already well-known; see, e.g., [183, Corollary 10] or [226] for more details.

The VU-concept

The VU-concept was introduced by Lemaréchal, Oustry, and Sagastizábal in [130] to analyze
and express second order differentiability properties of real valued, convex and possibly
nonsmooth functions. Basically, the idea is to decompose the space

Rn = U ⊕ V

into two perpendicular subspaces U and V and to study the behavior of ϕ along this subspaces.
Typically, the gully-shaped space U is chosen such that the restriction of ϕ to the set U is
differentiable in the classical sense. On the other hand, the narrow, V -shaped space V
is parallel to the affine hull of the subdifferential of ϕ and captures the nonsmoothness
of the function ϕ. Moreover, Lemaréchal et al. developed the U-Lagrangian, LU : U →
R, of ϕ that, in contrast to the convex function ϕ, is solely defined on the U-space and
can be shown to be Fréchet differentiable at a certain point of interest. This enables the
investigation of second order properties of LU and leads to the concept of the U-Hessian
of ϕ. In [103, 155], these ideas were extended to general, real extended valued and prox-
regular functions by introducing a regularized version of the U-Lagrangian – the so-called
quadratic sub-Lagrangian. Based on the VU -concept, Mifflin and Sagastizábal [154] proposed
an algorithm for convex, real valued, and unconstrained minimization. It uses a VU -space
decomposition, bundle techniques and generates a proximal point sequence that follows a
smooth trajectory in the V-space. For more details on VU -related algorithms and applications
we refer to [60, 140, 102] and [179, 112], respectively.
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Here, we are motivated by the following facts:

• In [155] Mifflin and Sagastizábal showed that, if the quadratic sub-Lagrangian has a
generalized Hessian at 0 and the strict complementarity condition is satisfied, then the
second order subderivative of ϕ exists (at a certain point) and its value coincides with
the quadratic form induced by the U-Hessian on the subspace U .

• In [150, 152, 153] Mifflin and Sagastizábal analyzed the second order behavior of max-
type functions of the form

f : Rn → R, f(x) := max{fi(x) : i = 1, ...,m}, fi ∈ C2,

and of a class of functions with primal-dual gradient structure (pdg structure). As
in [155], they established a connection between the U-Hessian, the second order sub-
derivative and the second order parabolic epiderivative of ϕ. Moreover, under a certain
index set-based regularity condition, they derive and provide explicit formulae for the
U-Hessian and the epiderivatives.

• Finally, in [132, 130, 151], a connection between the U-Hessian of ϕ and the Hessian of
the corresponding Moreau envelope envΛ

ϕ is presented. We will utilize this connection
to complete our theoretical “detour” and to derive an intrinsic characterization of the
curvature ξ∗ϕ,h(−∇f(x̄)), h ∈ U , in terms of the Fréchet derivative of the proximity
operator proxΛ

ϕ – just as presented in Theorem 5.3.26.

Let us briefly recall our current situation to clarify the motivational aspects of the latter
observations. Let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let x̄ ∈ dom ϕ be a stationary point of problem (P). Furthermore, let Λ ∈ Sn++

be given and suppose that ϕ is C2-fully decomposable at x̄. Then, by setting ḡ := −∇f(x̄)
and by using the notation of the proof of Lemma 5.3.32 and Lemma 5.3.27, it follows

(5.3.48) d2ϕ(x̄|ḡ)(h) = −ξ∗ϕ,h(ḡ) = h>Hϕ(x̄)h, ∀ h ∈ C(x̄).

Thus, the second order subderivative has obviously a Hessian-like structure. Moreover, in-
spired by the mentioned results for max-type and pdg-structured functions, this also indicates
that a similar connection between second order parabolic epiderivatives, second order sub-
derivatives, and U-Hessians does also exist for the class of fully decomposable functions.
However, at this point and in contrast to [150, 155, 153, 152], we cannot directly infer that
ϕ has a U-Hessian at x̄.

Our task is now as follows. First, we will introduce the U-, and V-space, the quadratic sub-
Lagrangian, and several helpful and necessary VU -tools. Then, we extend the computational
and theoretical results of Mifflin and Sagastizábal to the class of fully decomposable functions.
In particular, by mimicking the proof of [155, Theorem 3.2], we will show that the second
order subderivative d2ϕ(x̄|ḡ) coincides with the second order subderivative of the quadratic
sub-Lagrangian. Invoking equation (5.3.48) and Theorem 2.4.4, and using the convexity of
the second order difference quotients, this finally implies thatHϕ(x̄) is actually the U-Hessian
of ϕ at x̄, as expected. Applying the results of Lemaréchal et al. [132, 130], we are then able
to conclude the proof of Theorem 5.3.26. An overview of the various representations of the
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5. Second order theory and decomposability

−ξ∗ϕ,h(ḡ) = h>Hϕ(x̄)h, h ∈ C(x̄)

• Curvature via parabolic epiderivatives and
full decomposability.

• Lemma 5.3.9.

−ξ∗ϕ,h(ḡ) = d2ϕ(x̄|ḡ)(h), h ∈ C(x̄)

• Curvature via second order subderivatives.

• Lemma 5.3.27.

−ξ∗ϕ,h(ḡ) = 〈h, [Λ− 1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ,

where h ∈ C(x̄) ∼= U , ū = x̄ − Λ−1∇f(x̄),
and

QΛ
ϕ(ū) = Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2 .

• Curvature via the Fréchet derivative of the
proximity operator proxΛ

ϕ.

• Theorem 5.3.26.

−ξ∗ϕ,h(ḡ) = 〈h,HΦΛ(0)h〉U , h ∈ U

• Curvature via U-Hessians and quadratic
sub-Lagrangians.

• Theorem 5.3.39.

Figure 5.3.: Different expressions of the curvature term −ξ∗ϕ,h(ḡ) and illustration of concept
of the proof of Theorem 5.3.26.

curvature term −ξ∗ϕ,h(ḡ) and of the different steps of the proof of Theorem 5.3.26 is given in
Figure 5.3.

As in the last subsection, we start with a slightly more general setting that includes the
stationary case as a special case (see, e.g., Corollary 5.3.33 and the preceding discussion).
Therefore, let ū ∈ Rn, Λ ∈ Sn++ be arbitrary and let us suppose that ϕ is C2-fully decom-
posable at the point p̄ := proxΛ

ϕ(ū). Moreover, let us set ḡ := ∇envΛ
ϕ(ū). Here, we consider

the following subspaces

(5.3.49) U := lin N∂ϕ(p̄)(ḡ), U⊥ = aff ∂ϕ(p̄)− ḡ, V := U⊥,Λ,

where the latter operation is defined via

v ∈ V = U⊥,Λ :⇐⇒ 〈u, v〉Λ = 0, ∀ u ∈ U .

Since the bilinear form 〈·, ·〉Λ : Rn×Rn → R represents a scalar product on Rn×Rn and U is
a closed subspace, it immediately follows U = V⊥,Λ = [U⊥,Λ]⊥,Λ. Let us note, that the space
U does not depend on the specific choice of the subgradient ḡ, i.e., we have U = lin N∂ϕ(p̄)(g)
for every g ∈ ∂ϕ(p̄). Furthermore, if the strict complementarity condition ḡ ∈ ri ∂ϕ(p̄) is
satisfied, then the lineality space operation “lin” is superfluous.

Now, let us define nU := dim U , nV := dim V and let Ū ∈ Rn×nU , and V̄ ∈ Rn×nV be
two basis matrices of the subspaces U and V, respectively. Then, the projection of a vector
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5.3. Decomposable functions

x ∈ Rn onto the sets U and V can be calculated via

PU (x) = Ū [Ū>ΛŪ ]−1Ū>Λx =: ŪxU , PV(x) = V̄ [V̄ >ΛV̄ ]−1V̄ >Λx =: V̄ xV

and we have the following space decomposition formula

x = Ū [Ū>ΛŪ ]−1Ū>Λx+ V̄ [V̄ >ΛV̄ ]−1V̄ >Λx = ŪxU + V̄ xV =: xU ⊕Λ xV ∈ RnU × RnV .

Due to ι∗U = ιU⊥ , the latter formula is just a simple application of Moreau’s decomposition
principle, Theorem 3.2.5,

x = PΛ
U (x) + Λ−1PΛ−1

U⊥ (Λx) = PΛ
U (x) + PΛ

V (x).

This terminology can also be naturally extended to scalar products and norms. It holds

• 〈x, y〉Λ = 〈ŪxU + V̄ xV ,ΛŪyU + ΛV̄ yV〉 = 〈ŪxU , ŪyU 〉Λ + 〈V̄ xV , V̄ yV〉Λ
=: 〈xU , yU 〉U ,Λ + 〈xV , yV〉V,Λ,

• ‖x‖2Λ =
(
x>U x>V

)(Ū>ΛŪ Ū>ΛV̄
V̄ >ΛŪ V̄ >ΛV̄

)(
xU
xV

)
=: ‖xU‖2U ,Λ + ‖xV‖2V,Λ,

where we used the Λ-orthogonality of the basis matrices Ū and V̄ . Let us note that, besides
the original definition (5.3.49), the subspaces U and V are also often identified with the
subspaces RnU and RnV , respectively. In particular, we will work with the following notions:

• u ∈ U ⊂ Rn ⇐⇒ u = uU ⊕Λ 0 ⇐⇒ V̄ >Λu = 0.

• u ∈ U ∼= RnU ⇐⇒ ∃ ũ ∈ Rn : Ūu = ũ.

Additionally, if necessary, we will also use the terms

〈·, ·〉U : RnU × RnU → R, ‖x‖2U = 〈x, x〉U , 〈·, ·〉V : RnV × RnV → R, ‖y‖2V = 〈y, y〉V

to denote the scalar product and the corresponding, induced norm on RnU and RnV .

Next, for ĝ := Λ−1ḡ, we define the so-called quadratic sub-Lagrangian of ϕ at p̄

ΦΛ : U → [−∞,+∞], ΦΛ(u) := inf
v∈V

ϕ(p̄+ u⊕Λ v)− 〈ĝV , v〉V,Λ +
1

2
‖v‖2V,Λ

and the associated multi-valued mapping

WΛ : U ⇒ V, WΛ(u) := arg min
v∈V

ϕ(p̄+ u⊕Λ v)− 〈ĝV , v〉V,Λ +
1

2
‖v‖2V,Λ.

These two definitions are essentially based on the work of Hare and Poliquin [103], but, in
contrast to [103, 130], do also take account of the parameter matrix Λ and of the induced
V-geometry. In comparison, the original U-Lagrangian, introduced by Lemaréchal, Oustry,
and Sagastizábal, [130], is only well-defined for convex, real valued functions ϕ : Rn → R
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5. Second order theory and decomposability

and has the following form

LU (u) := inf
v∈V

ϕ(p̄+ u⊕ v)− 〈ḡV , v〉V , (Λ = I).

Hence, by adding the quadratic term 1
2‖v‖

2
V,Λ, Hare and Poliquin successfully extended the

concept of the U-Lagrangian to real extended valued and possibly nonconvex functions.

In the following, we present several important properties of the quadratic sub-Lagrangian.
More precisely, we will show that the quadratic sub-Lagrangian is convex, Lipschitz contin-
uous in a neighborhood of 0, and Fréchet differentiable at 0. Let us note that the convexity
of ϕ significantly simplifies the discussion of the quadratic sub-Lagrangian and that most of
our proofs are easy extensions of the corresponding proofs for the original U-Lagrangian.

Lemma 5.3.35. Let Λ ∈ Sn++ be arbitrary. The functions ΦΛ and WΛ have the following
properties:

(i) The function ΦΛ is convex, proper, and lower semicontinuous. In particular, it holds
ΦΛ(0) = ϕ(p̄).

(ii) It holds WΛ(u) 6= ∅ for all u ∈ dom ΦΛ and WΛ(0) = {0}.

Proof. In [103, Theorem 5 and Proposition 6], a proof of these two statements is provided
for the general nonconvex and prox-regular setting. Here, similar to [130, Theorem 3.2], we
will explicitly exploit the convexity of ϕ. First, let us note that the quadratic sub-Lagrangian
can be written as a marginal function

ΦΛ(u) = inf
v∈V

θ(u, v), θ(u, v) := ϕ(p̄+ u⊕Λ v)− 〈ĝV , v〉V,Λ +
1

2
‖v‖2V,Λ.

Since the function θ : RnU×RnV → (−∞,+∞] is obviously convex, we can utilize [11, Propo-
sition 8.26]. This establishes convexity of the quadratic sub-Lagrangian ΦΛ. Furthermore,
using ḡ ∈ ∂ϕ(p̄), it follows

(5.3.50) θ(u, v)− θ(0, 0) ≥ 〈ḡ, u⊕Λ v〉 − 〈ĝV , v〉V,Λ +
1

2
‖v‖2V,Λ = 〈ĝU , u〉U ,Λ +

1

2
‖v‖2V,Λ

and consequently, we have

θ(u, 0) ≥ ΦΛ(u) = inf
v∈V

θ(u, v) ≥ ϕ(p̄) + 〈ĝU , u〉U ,Λ, ∀ u ∈ U .

Clearly, this implies ΦΛ(0) = ϕ(p̄) and shows that the quadratic sub-Lagrangian is a proper
function. The lower semicontinuity of ΦΛ follows from [103, Theorem 7] and will not be dis-
cussed here. Let us continue with the verification of the second part. Apparently, inequality
(5.3.50) also implies that for every fixed u ∈ U , the function θ(u, ·) is coercive on the subspace
V. Moreover, for all u ∈ dom ΦΛ, we can further deduce that θ(u, ·) : V → (−∞,+∞] is a
convex, proper, and lower semicontinuous mapping. Thus, by Lemma 4.2.3, all level sets of
θ(u, ·) are bounded and WΛ(u) has to be nonempty. The formula WΛ(0) = {0} immediately
follows from (5.3.50).
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5.3. Decomposable functions

Lemma 5.3.36. Let Λ ∈ Sn++ be arbitrary. Then, the quadratic sub-Lagrangian ΦΛ is locally
Lipschitz continuous and Fréchet differentiable at 0 and its gradient satisfies ∇ΦΛ(0) = Ū>ḡ.

Proof. Since ΦΛ is a convex marginal function

ΦΛ(u) = inf
v∈V

θ(u, v), θ(u, v) := ϕ(p̄+ Ūu+ V̄ v)− 〈V̄ ĝ, V̄ v〉Λ +
1

2
‖v‖2V̄ >ΛV̄ ,

we can apply [11, Proposition 16.46] to characterize the subdifferential ∂ΦΛ(0). In particular,
it holds

w ∈ ∂ΦΛ(0) ⇐⇒
(
w
0

)
∈ ∂θ(0,WΛ(0)) =

(
Ū>

V̄ >

)
∂ϕ(p̄)−

(
0

V̄ >ΛV̄ ĝ

)
⇐⇒ Ū(Ū>ΛŪ)−1w ∈ Λ−1∂ϕ(p̄)− V̄ ĝ
⇐⇒ ΛŪ(Ū>ΛŪ)−1w ∈ ∂ϕ(p̄)− ΛV̄ ĝ ⊂ U⊥ + ḡ − ΛV̄ ĝ,

where we used WΛ(0) = {0}, Lemma 2.5.15, and (5.3.49). Multiplying the latter inclusion
with Ū> yields

w ∈ Ū>U⊥ + Ū>ḡ − Ū>ΛV̄ ĝ = {Ū>ḡ}.

Now, by utilizing Lemma 2.5.12 and Theorem 2.2.1, it follows that ΦΛ is locally Lipschitz
continuous near 0. Moreover, in this case, since the subdifferential ∂ΦΛ(0) = {Ū>ḡ} is a
singleton, [11, Proposition 17.26] is applicable and we obtain ∇ΦΛ(0) = Ū>ḡ. Hence, the
quadratic sub-Lagrangian ΦΛ is Fréchet differentiable at 0; see also [11, Proposition 17.36].

Consequently, the quadratic sub-Lagrangian ΦΛ has a higher regularity than the convex
base-function ϕ which allows to analyze and characterize second order properties of ΦΛ via
classical tools. Now, due to

∇ΦΛ(0)>h = 〈Ū(Ū>ΛŪ)−1Ū>Λĝ, Ūh〉Λ = 〈Ū ĝU , Ūh〉Λ = 〈ĝU , h〉U ,Λ, h ∈ U ,

the vector ĝU is called U-gradient of ϕ at p̄. Moreover, we say that ΦΛ has a generalized
Hessian at 0 if and only if there exists a symmetric, positive semidefinite operator HΦΛ(0) ∈
RnU×nU such that

(5.3.51) ΦΛ(h)− ΦΛ(0)−∇ΦΛ(0)>h− 1

2
〈h,HΦΛ(0)h〉U = o(‖h‖2U ), (h→ 0).

If the generalized Hessian HΦΛ(0) exists, then we call it a U-Hessian for ϕ at x̄. Let
us emphasize that the generalized Hessian HΦΛ(0) must not be confused with the classical
Hessian∇2ΦΛ(0) of the function ΦΛ. In particular, the expansion (5.3.51) does not guarantee
twice Fréchet differentiability of ΦΛ at 0 since the quadratic sub-Lagrangian typically need
not be differentiable in a neighborhood of 0. The next lemma mathematically clarifies the
term “U-Hessian” and combines [130, Corollary 3.5] and [154, Lemma 3.1].

Lemma 5.3.37. Let Λ ∈ Sn++ be arbitrary and suppose that the condition ḡ ∈ ri ∂ϕ(p̄) is
satisfied. Let us consider a V-space minimizer function v(h) ∈ WΛ(h), h ∈ dom ΦΛ. Then,
the following statements hold:
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5. Second order theory and decomposability

(i) It holds v(h) = o(‖h‖U ), h→ 0.

(ii) Additionally, if the quadratic sub-Lagrangian has a generalized Hessian at 0, then it
holds v(h) = O(‖h‖2U ), h→ 0, and we obtain

ϕ(p̄+ h⊕Λ v(h)) = ϕ(p̄) + 〈ĝ, h⊕Λ v(h)〉Λ +
1

2
〈h,HΦΛ(0)h〉U + o(‖h‖2U ),

for all h ∈ U sufficiently small.

Proof. We only prove the first part of Lemma 5.3.37. A proof of the second part can
be found in [154, Lemma 3.1]. The strict complementarity condition ḡ ∈ ri ∂ϕ(p̄) and the
definition of the subspace V imply that there exists ε > 0 such that

ĝ +
ε

‖v‖V,Λ
· 0⊕Λ v ∈ Λ−1∂ϕ(p̄), ∀ v ∈ V \ {0}.

Hence, as in (5.3.50), we have

θ(u, v)− θ(0, 0) ≥ 〈ĝU , u〉U ,Λ +
1

2
‖v‖2V,Λ + ε‖v‖V,Λ,

and for v(h) ∈WΛ(h), it follows

ΦΛ(h)− ΦΛ(0)−∇ΦΛ(0)>h = θ(h, v(h))− θ(0, 0)− 〈ĝU , h〉U ,Λ

≥ 1

2
(‖v(h)‖V,Λ + 2ε)‖v(h)‖V,Λ ≥ ε‖v(h)‖V,Λ.

Now, the Fréchet differentiability of ΦΛ immediately establishes v(h) = o(‖h‖U ), as h → 0.
Moreover, let us note that, due to Theorem 2.2.1, the continuity of ΦΛ is equivalent to the
condition 0 ∈ int dom ΦΛ. Thus, by Lemma 5.3.35 (ii), we have WΛ(h) 6= ∅ for all h ∈ U
sufficiently small and the V-space minimizer function v(h) is well-defined in a neighborhood
of 0.

Connecting second order subderivatives and U-Hessians

In the following, we show that the second order subderivatives of the quadratic sub-Lagrangian
ΦΛ and of the convex function ϕ coincide. This result is strongly motivated by [154, Theorem
3.2] and covers the case when existence of the U-Hessian or the generalized Hessian of ΦΛ

cannot be guaranteed in advance.

Lemma 5.3.38. Let Λ ∈ Sn++ be an arbitrary parameter matrix and let the strict comple-
mentarity condition ḡ ∈ ri ∂ϕ(p̄) be satisfied. Furthermore, let us suppose that the function
ϕ is twice epi-subdifferentiable at p̄, relative to ḡ. Then, the quadratic sub-Lagrangian ΦΛ is
twice epi-subdifferentiable at 0, relative to g0 := ∇ΦΛ(0) and the corresponding second order
subderivative of ΦΛ at 0 is given by

(5.3.52) d2ΦΛ(0|g0)(hU ) = d2ϕ(p̄|ḡ)(h), ∀ h = hU ⊕Λ 0 ∈ U .
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Proof. Let u ∈ dom ΦΛ be arbitrary and let v(u) ∈ WΛ(u) be a corresponding V-space
minimizer function. Then, it holds

ΦΛ(u) = θ(u, v(u)) ≤ ϕ(p̄+ u⊕Λ v)− 〈ĝV , v〉V,Λ + 1
2‖v‖

2
V,Λ, ∀ v ∈ V,

and it readily follows

(5.3.53) ΦΛ(u)− ΦΛ(0)−∇ΦΛ(0)>u ≤ ϕ(p̄+ u⊕Λ v)− ϕ(p̄)− 〈ĝ, u⊕Λ v〉Λ + 1
2‖v‖

2
V,Λ.

Next, let (tk)k, tk ↓ 0, be an arbitrary sequence and fix any h = hU ⊕Λ 0 ∈ U . Since ϕ is
twice epi-subdifferentiable at p̄ relative to ḡ, there exists a sequence (hk)k ⊂ Rn, hk → h,
such that

lim sup
k→∞

∆2
tk
ϕ(p̄|ḡ)(hk) ≤ d2ϕ(p̄|ḡ)(h).

Moreover, using the VU -structure, we obtain

hk = hkU ⊕Λ h
k
V , p̄+ tkh

k = p̄+ (tkh
k
U )⊕Λ (tkh

k
V),

and hkU → hU , hkV → 0. Now, from (5.3.53) and for all k sufficiently large, it follows

ΦΛ(tkh
k
U )− ΦΛ(0)− tk〈∇ΦΛ(0), hkU 〉U

1
2 t

2
k

≤ ∆2
tk
ϕ(p̄|ḡ)(hk) + ‖hkV‖2V,Λ

and
lim sup
k→∞

∆2
tk

ΦΛ(0|g0)(hkU ) ≤ d2ϕ(p̄|ḡ)(h) + lim sup
k→∞

‖hkV‖2V,Λ = d2ϕ(p̄|ḡ)(h).

On the other hand, let (hkU )k ⊂ RnU be an arbitrary sequence that converges to hU and let
us define

hk := hkU ⊕Λ
1

tk
v(tkh

k
U ).

Now, by Lemma 5.3.37 (i), we have v(tkh
k
U ) = o(‖tkhkU‖U ), k →∞. Consequently, it follows

hk → hU ⊕Λ 0 =: h and we obtain

ΦΛ(tkh
k
U )− ΦΛ(0)− tk〈∇ΦΛ(0), hkU 〉U

1
2 t

2
k

=
ϕ(p̄+ tkh

k)− ϕ(p̄)− tk〈ḡ, hk〉
1
2 t

2
k

+
‖v(tkh

k
U )‖2V,Λ
t2k

.

Taking the limes inferior k →∞ over both sides of the latter equality and using the second
order epi-subdifferentiability of ϕ, this yields

lim inf
k→∞

∆2
tk

ΦΛ(0|g0)(hkU ) ≥ d2ϕ(p̄|ḡ)(h) + lim inf
k→∞

‖v(tkh
k
U )‖2V,Λ
t2k

= d2ϕ(p̄|ḡ)(h).

In summary, we have shown, that for any sequence (tk)k, tk ↓ 0, it holdslim inf
k→∞

∆2
tk

ΦΛ(0|g0)(hkU ) ≥ d2ϕ(p̄|ḡ)(h) for every sequence hkU → hU ,

lim sup
k→∞

∆2
tk

ΦΛ(0|g0)(hkU ) ≤ d2ϕ(p̄|ḡ)(h) for some sequence hkU → hU .
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5. Second order theory and decomposability

Thus, due to Lemma 2.4.3, the difference quotients ∆2
t ΦΛ(0|g0) epi-converge to the second

order subderivative d2ϕ(p̄|ḡ) on U and it holds

d2ΦΛ(0|g0)(hU ) = d2ϕ(p̄|ḡ)(h),

for all h = hU ⊕Λ 0 ∈ U .

Next, we will merge our different results and observations. Therefore, let x̄ ∈ dom ϕ be a
stationary point of problem (P) and suppose that ϕ is C2-fully decomposable at x̄. Moreover,
as usual, let us set ū := x̄−Λ−1∇f(x̄) and let the strict complementarity condition be satisfied

−∇f(x̄) ∈ ri ∂ϕ(x̄).

Then, we have the following identifications

x̄ = p̄ = proxΛ
ϕ(ū), −∇f(x̄) = ḡ = ∇envΛ

ϕ(ū), C(x̄) = N∂ϕ(x̄)(−∇f(x̄)) = U ,

where we used the stationarity of x̄, Definition 5.1.5 and Lemma 5.1.10. Furthermore, by
Lemma 5.3.27, the stationarity of x̄ and the full decomposability of ϕ imply that ϕ is twice
epi-subdifferentiable at x̄ relative to ḡ and it holds

d2ϕ(x̄|ḡ)(h) = −ξ∗ϕ,h(ḡ) = h>Hϕ(x̄)h, ∀ h ∈ C(x̄).

In particular, if (ϕd, F ) is a corresponding decomposition pair of ϕ, then the symmetric and
positive semidefinite matrix Hϕ(x̄) ∈ Rn×n is given by

(5.3.54) Hϕ(x̄) :=
m∑
i=1

λ̄i∇2Fi(x̄),

where λ̄ ∈ M(x̄) is the associated, unique Lagrange multiplier of the decomposed problem
(5.3.33). Clearly, at this point, Lemma 5.3.38 is applicable and we can infer that the quadratic
sub-Lagrangian is twice epi-subdifferentiable at 0, relative to g0. We obtain

d2ΦΛ(0|g0)(hU ) = d2ϕ(x̄|ḡ)(h) = h>Hϕ(x̄)h, ∀ h (= hU ⊕Λ 0) ∈ C(x̄).

Now, rephrasing the second order epi-subdifferentiability of the function ΦΛ, the latter equa-
tion means that for every sequence (tk)k, tk ↓ 0, the family of convex difference quotients
∆2
tk

ΦΛ(0|g0) : U → (−∞,+∞],

∆2
tk

ΦΛ(0|g0)(h) =
ΦΛ(tkh)− ΦΛ(0)− tk∇ΦΛ(0)>h

1
2 t

2
k

, h ∈ U ∼= RnU

epi-converges to the convex and real valued function Ξϕ : U → R,

Ξϕ(h) := 〈h, Ū>Hϕ(x̄)Ūh〉U , h ∈ U .

Thus, by Theorem 2.4.4, the sequence (∆2
tk

ΦΛ(0|g0))k converges uniformly to the limit func-
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tion Ξϕ on every compact subset C ⊂ U , i.e., we have

(5.3.55) lim
k→∞

sup
h∈C
|∆2

tk
ΦΛ(0|g0)(h)− Ξϕ(h)| = 0.

Let us recall that the convexity and Lipschitz continuity of the quadratic sub-Lagrangian
ΦΛ implies 0 ∈ int dom ΦΛ. (We refer to the Lemmas 5.3.35, 5.3.36 and to Theorem 2.2.1
for details). Hence, for all k sufficiently large and all h ∈ C ⊂ U , the difference quotient
∆2
tk

ΦΛ(0|g0)(h) is well-defined, finite valued, and, consequently, we do not necessarily need to
work with ρ-truncations in equation (5.3.55). Specifically, for every sequence (hk)k, hk → 0,
hk 6= 0, it holds

lim
k→∞

|ΦΛ(hk)− ΦΛ(0)−∇ΦΛ(0)>hk − 1
2Ξϕ(hk)|

1
2‖hk‖2

= lim
k→∞

|∆2
‖hk‖ΦΛ(0|g0)(h̃k)− Ξϕ(h̃k)| = 0,

where h̃k := hk/‖hk‖, k ∈ N. This shows

ΦΛ(h)− ΦΛ(0)−∇ΦΛ(0)>h− 1

2
〈h, Ū>Hϕ(x̄)Ūh〉U = o(‖h‖2U ), h→ 0,

and thus, the symmetric and positive semidefinite matrix HΦΛ(0) := Ū>Hϕ(x̄)Ū is a gen-
eralized Hessian of ΦΛ at 0 and a U-Hessian for ϕ at x̄. Let us summarize our latter results
in the following theorem.

Theorem 5.3.39. Let Λ ∈ Sn++ be arbitrary, let f : Rn → R be twice continuously differen-
tiable, and let ϕ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous mapping.
Furthermore, let x̄ ∈ dom ϕ be a stationary point of problem (P) and suppose that ϕ is C2-
fully decomposable at x̄. If the strict complementarity condition holds at x̄, then the quadratic
sub-Lagrangian ΦΛ has a generalized Hessian HΦΛ(0) at 0, which is also a U-Hessian for ϕ
at x̄, and it holds

HΦΛ(0) = Ū>Hϕ(x̄)Ū ,

where the symmetric, positive semidefinite matrix Hϕ(x̄) is specified in (5.3.54).

Before proceeding with the next paragraph, let us mention that our proof of Theorem 5.3.39
is strongly motivated by [195] and [196, Theorem 6.7]. In particular, Poliquin and Rockafellar
used the concept of epi-subdifferentiability and a similar (but more complex) argumentation
to establish existence of second order-type expansions in a much more general context. We
are now able to finish the proof of Theorem 5.3.26.

Completion of the proof of Theorem 5.3.26

In this last step of the proof, we will connect the U-Hessian of ϕ at x̄ and the Fréchet
derivative of the proximity operator proxΛ

ϕ at ū := x̄ − Λ−1∇f(x̄). Let us assume that all
conditions in Theorem 5.3.39 (or Theorem 5.3.26) are satisfied. Then, as in [130, Proposition
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5.2], we obtain

envΛ
ϕ(ū+ hU ⊕Λ 0) = envΛ

ϕ(p̄+ (ĝU + hU )⊕Λ ĝV)

= min
(u,v)∈U×V

ϕ(p̄+ u⊕Λ v) +
1

2
‖(ĝU + hU − u)⊕Λ (ĝV − v)‖2Λ

= min
u∈U

[
min
v∈V

ϕ(p̄+ u⊕Λ v) +
1

2
‖ĝV − v‖2V,Λ

]
+

1

2
‖ĝU + hU − u‖2U ,Λ

= min
u∈U

ΦΛ(u) +
1

2
‖ĝV‖2V,Λ +

1

2
‖ĝU + hU − u‖2U ,Λ

= envŪ
>ΛŪ

ΦΛ
(ĝU + hU ) +

1

2
‖ĝV‖2V,Λ,

for all h = hU ⊕Λ 0 ∈ C(x̄). (Clearly, since the quadratic sub-Lagrangian is a convex, proper,
and lower semicontinuous function and the matrix Ū>ΛŪ is positive definite, the Moreau
envelope envŪ

>ΛŪ
ΦΛ

is well-defined). Moreover, due to

envΛ
ϕ(ū+ 0⊕Λ 0) = ϕ(p̄) +

1

2
‖p̄− ū‖2Λ = ϕ(p̄+ 0⊕Λ 0) +

1

2
‖(ĝU − 0)⊕Λ (ĝV − 0)‖2Λ,

it immediately follows proxŪ
>ΛŪ

ΦΛ
(ĝU ) = 0. Since the quadratic sub-Lagrangian ΦΛ has a

generalized Hessian at 0, an important result of Lemaréchal and Sagastizábal [132, Theorem
3.1] implies

∇2envŪ
>ΛŪ

ΦΛ
(ĝU ) = Ū>ΛŪ − Ū>ΛŪ

[
HΦΛ(0) + Ū>ΛŪ

]−1
Ū>ΛŪ .

Let us note that the proof of [132, Theorem 3.1] strongly relies on [108, Theorem 2.12]
and that the results in [108, 132] are only formulated for finite valued, convex functions.
However, a careful examination of the different arguments and steps used in the proofs of
[132, Theorem 3.1] and [108, Theorem 2.12] shows that finiteness is only required locally
in a neighborhood of the point of interest. Thus, since ΦΛ is Lipschitz continuous near 0
and its corresponding subdifferential ∂ΦΛ is nonempty and compact in a neighborhood of 0,
the results of Hiriart-Urruty, Lemaréchal, and Sagastizábal are applicable in our situation.
Now, on the other hand, invoking Corollary 5.3.33, the proximity operator proxΛ

ϕ is Fréchet
differentiable at ū and we obtain ∇2envΛ

ϕ(ū) = Λ− ΛDproxΛ
ϕ(ū). In particular, this yields

Ū>ΛŪ − Ū>ΛDproxΛ
ϕ(ū)Ū = Ū>∇2envΛ

ϕ(ū)Ū = ∇2envŪ
>ΛŪ

ΦΛ
(ĝU )

= Ū>ΛŪ − Ū>ΛŪ
[
Ū>Hϕ(x̄)Ū + Ū>ΛŪ

]−1
Ū>ΛŪ .

Consequently, using Lemma 3.3.5 (i), the matrix Ū>ΛDproxΛ
ϕ(ū)Ū has to be positive definite

and we can infer

Ū>Hϕ(x̄)Ū = Ū>ΛŪ
[
Ū>ΛDproxΛ

ϕ(ū)Ū
]−1

Ū>ΛŪ − Ū>ΛŪ .

Furthermore, by Lemma 3.3.6, it follows DproxΛ
ϕ(ū)h ∈ N∂ϕ(p̄)(ḡ) = C(x̄) = U for all h ∈ Rn.

This readily establishes
V̄ >ΛDproxΛ

ϕ(ū) = 0,
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and
[ΛDproxΛ

ϕ(ū)]V̄ = [ΛDproxΛ
ϕ(ū)]>V̄ = [DproxΛ

ϕ(ū)]>ΛV̄ = 0,

where we used the symmetry of the matrices ΛDproxΛ
ϕ(ū) and Λ. Finally, we get the following

U-characterization of the Fréchet derivative of proxΛ
ϕ

DproxΛ
ϕ(ū) = [Ū(Ū>ΛŪ)−1Ū> + V̄ (V̄ >ΛV̄ )−1V̄ >]ΛDproxΛ

ϕ(ū)

= Ū(Ū>ΛŪ)−1Ū>ΛDproxΛ
ϕ(ū)[Ū(Ū>ΛŪ)−1Ū> + V̄ (V̄ >ΛV̄ )−1V̄ >]Λ

= Ū(Ū>ΛŪ)−1
[
Ū>ΛDproxΛ

ϕ(ū)Ū
]
(Ū>ΛŪ)−1Ū>Λ.

Next, setting A> := Λ
1
2 Ū(Ū>ΛŪ)−1 and B := Ū>ΛDproxΛ

ϕ(ū)Ū , we obtain[
Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2
]+

= A>B(BAA>B)−1(AA>)−1A = A>B(B[Ū>ΛŪ ]−1B)−1[Ū>ΛŪ ]A

= A>(Ū>ΛŪ)B−1(Ū>ΛŪ)A = Λ
1
2 Ū
[
Ū>ΛDproxΛ

ϕ(ū)Ū
]−1

Ū>Λ
1
2 .

Hence, by defining QΛ
ϕ(ū) := Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2 and combing our computational results, we

have for every h = hU ⊕Λ 0 ∈ C(x̄)

−ξ∗ϕ,h(ḡ) = 〈h,Hϕ(x̄)h〉 = 〈hU , [Ū>Hϕ(x̄)Ū ]hU 〉U = 〈hU , Ū>[Λ
1
2QΛ

ϕ(ū)+Λ
1
2 − Λ]ŪhU 〉U

= 〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ.

This concludes the proof of Theorem 5.3.26. Although the latter characterization seems
to be somewhat complicated, it allows a fully intrinsic description of the curvature of ϕ
in terms of the Fréchet derivative DproxΛ

ϕ(ū). In particular, we can formulate and assess
second order necessary and sufficient conditions for problem (P) without knowing a specific
decomposition pair (ϕd, F ) of ϕ, the corresponding (unique) Lagrange multiplier λ̄ ∈M(x̄),
or the second order derivative of F . Moreover, in contrast to the U-Hessian based formulation,
this representation does also not depend on the basis matrices Ū and V̄ . Finally, let us
mention that if the parameter matrix Λ satisfies Λ = λ−1I, λ > 0, then the curvature
formula takes the much simpler form

−ξ∗ϕ,h(ḡ) = λ〈h, [Dproxλ
−1I
ϕ (ū)+ − I]h〉, ∀ h ∈ C(x̄).

At this point, let us briefly state some additional properties of the matrix QΛ
ϕ(ū) and of its

pseudoinverse, which will be needed in the subsequent section. Clearly, due to Lemma 3.3.5,
the matrix QΛ

ϕ(ū) is symmetric and, for all h = hU ⊕Λ 0 ∈ C(x̄) ≡ U , it holds

QΛ
ϕ(ū)+QΛ

ϕ(ū)Λ
1
2h = Λ

1
2 ŪB−1Ū>Λ

1
2A>BAΛ

1
2h = Λ

1
2 Ū(Ū>ΛŪ)−1Ū>Λh = Λ

1
2h.

Similarly, we also get QΛ
ϕ(ū)QΛ

ϕ(ū)+Λ
1
2h = Λ

1
2h.
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5.4. Nonsingularity conditions

In this section, we combine our latest results and apply the alternative, prox-based represen-
tation of the curvature term −ξ∗ϕ,h(ḡ) to derive nonsingularity conditions for the generalized
derivatives of the nonsmooth mapping FΛ.

We first start with a simple observation that is motivated by a result of Pieper [191,
Lemmas 3.14 and 3.15], for a Normal map-related formulation. Let us note that the proof
of Lemma 5.4.1 can be seen as a prototype for the subsequent generalizations.

Lemma 5.4.1. Let f : Rn → R be a twice continuously differentiable function and let
ϕ : Rn → (−∞,+∞] be convex, proper, and lower semicontinuous. Furthermore, let x ∈ Rn,
Λ ∈ Sn++ be given and let us set u := x − Λ−1∇f(x). For a fixed element V ∈ ∂proxΛ

ϕ(u)
suppose that the following second order-type condition is satisfied

(5.4.1) h>∇2f(x)h+ 〈h, (I − V )h〉Λ > 0, ∀ h ∈ ran V \ {0}.

Then, the matrix W = I − V (I − Λ−1∇2f(x)) is invertible.

Proof. Let us assume that W is not invertible. Then, there exists h ∈ Rn, h 6= 0, such
that Wh = 0. Setting d := (I − Λ−1∇2f(x))h, this implies h = V d, (i.e., h ∈ ran V \ {0}),
and V h = h+ V Λ−1∇2f(x)h. Moreover, we obtain

0 = 〈h,Wh〉Λ = 〈h,Λ(I − V )h〉+ 〈V h,∇2f(x)h〉
= 〈h,Λ(I − V )h〉+ 〈h,∇2f(x)h〉+ 〈V Λ−1∇2f(x)h,∇2f(x)h〉
= 〈h, (I − V )h〉Λ + 〈h,∇2f(x)h〉+ 〈ΛV [Λ−1∇2f(x)h], [Λ−1∇2f(x)h]〉
≥ h>∇2f(x)h+ 〈h, (I − V )h〉Λ,

where we used the positive semidefiniteness of the matrix ΛV ; see Lemma 3.3.5 (i). However,
invoking condition (5.4.1), we deduce h = 0 which contradicts our assumption. Hence, the
matrix W must be invertible.

Clearly, if the Hessian∇2f(x) is positive definite on ran V \{0}, then the second order-type
condition (5.4.1) is satisfied. More specifically, we have the following result.

Lemma 5.4.2. Let f : Rn → R be a twice continuously differentiable function and let
ϕ : Rn → (−∞,+∞] be convex, proper, and lower semicontinuous. Furthermore, let x ∈ Rn,
Λ ∈ Sn++ be given and let us set u := x − Λ−1∇f(x). Suppose that the Hessian ∇2f(x) is
positive definite, then every matrix W ∈ WΛ(x),

WΛ(x) := {W ∈ Rn×n : W = I − V (I − Λ−1∇2f(x)), V ∈ ∂proxΛ
ϕ(u)},

is invertible and there exists C ∈ R such that

‖W−1‖ ≤ C, ∀ W ∈ WΛ(x).

Proof. Due to Lemma 5.4.1, we only need to verify that the matrices W ∈ WΛ(x) are
uniformly boundedly invertible. Therefore, let V ∈ ∂proxΛ

ϕ(u) and r ∈ Rn be arbitrary and

162



5.4. Nonsingularity conditions

consider the equation
Wh = (I − V (I − Λ−1∇2f(x))) · h = r.

Multiplying both sides of the latter equation with Λ
1
2 yields

(5.4.2) (I − Λ
1
2V Λ−

1
2 (I − Λ−

1
2∇2f(x)Λ−

1
2 )) · Λ

1
2h = Λ

1
2 r.

Now, Lemma 3.3.5 (i) implies that the matrix Ṽ := Λ
1
2V Λ−

1
2 = Λ−

1
2 [ΛV ]Λ−

1
2 is symmetric,

positive semidefinite and its eigenvalues are bounded by 1. Let

Λ−
1
2 [ΛV ]Λ−

1
2 = PΣP>, Σ = diag(σ1, ..., σn),

be a corresponding eigenvalue decomposition of Ṽ and let us define the index sets

α := {i : σi = 0}, β := {i : σi ∈ (0, ε)}, γ := {i : σi ∈ [ε, 1]}

for some arbitrary but fixed ε ∈ (0, 1). Then, setting H̃ := P>Λ−
1
2∇2f(x)Λ−

1
2P , equation

(5.4.2) can be equivalently rewritten as follows

[I − Σ(I − H̃)] · P>Λ
1
2h = P>Λ

1
2 r.

Moreover, by setting h̃ := P>Λ
1
2h, r̃ := P>Λ

1
2 r, B := diag(σβ), G := diag(σγ), and Γ :=

G−1(I − G) the latter system can also be discussed w.r.t. the index sets α, β, and γ,I I
G

 0 0 0

BH̃[βα] BH̃[ββ] BH̃[βγ]

0 0 0

+

 I 0 0
0 I − B 0

H̃[γα] H̃[γβ] H̃[γγ] + Γ

h̃αh̃β
h̃γ

 =

r̃αr̃β
r̃γ

 .

Now, the remaining part of the proof utilizes a technique that was applied in [156, Lemma
4.3.2] to prove bounded invertibility in an `1-setting. Specifically, let R, S, and T denote
the three different matrices occurring in the last equation. Then, the idea is to determine
ε ∈ (0, 1) in a way such that Banach’s perturbation lemma is applicable and invertibility of
the matrix R · (S + T ) can be inferred.

Using G−1
[ii] ∈ [1, ε−1] and Γ[ii] ∈ [0, ε−1(1− ε)], we obtain the following estimates:

• ‖R−1‖ < ε−1.

• λmin(H̃[γγ] + Γ) ≥ λmin(H̃[γγ]) ≥ λmin(Λ−
1
2∇2f(x)Λ−

1
2 ) ≥ λmax(Λ)−1λmin(∇2f(x)).

• For any arbitrary pair of index sets I,J ⊂ {1, ..., n}, it holds

‖H̃[IJ ]‖2 = ‖I[I·]H̃I[·J ]‖2 ≤ ‖I[I·]‖2‖H̃‖2‖I[·J ]‖2
= ‖Λ−

1
2∇2f(x)Λ−

1
2 ‖2 ≤ λmin(Λ)−1λmax(∇2f(x)) =: Cs.

• For all v = (v>α , v
>
β , v

>
γ )> ∈ Rn, it holds

‖Sv‖2 ≤ C2
s‖B‖2 · (‖vα‖+ ‖vβ‖+ ‖vγ‖)2 ≤ 3C2

s ε
2 · ‖v‖2
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and a simple block elimination yields

‖T −1v‖2 ≤ ‖vα‖2 + (1− ε)−2‖vβ‖2 + C2
t,ε · (‖vα‖+ ‖vβ‖+ ‖vγ‖)2

≤ (1 + (1− ε)−2 + 3C2
ε ) · ‖v‖2,

where Cε := max
{

λmax(Λ)
λmin(∇2f(x))

, κ(Λ)κ(∇2f(x))
1−ε

}
.

Clearly, for every 0 < ε ≤ ε̄ := 1 − 0.5
√

2, the constant Cε is bounded above by Cε̄ and for
the specific choice ε := ε̄min{1, (3Cs

√
1 + C2

ε̄ )−1} ≤ ε̄ it follows

‖ST −1‖ ≤ 3Csε
√

1 + C2
ε ≤ ε̄ < 1.

Thus, by Banach’s perturbation lemma, we establish

‖[R · (S + T )]−1‖ ≤ ‖R−1‖ · ‖T −1‖
1− ‖ST −1‖

≤
√

3(1 + C2
ε̄ )

ε(1− ε̄)
=: Crst.

At this point, let us emphasize that the constants ε and Crst are independent of the index
sets α, β, and γ, the matrix P , and of the eigenvalues of V . Consequently, the latter estimate
holds uniformly for all V ∈ ∂proxΛ

ϕ(u). Now, reconsidering our initial system of equations,
we readily obtain

‖h̃‖2 = ‖h̃α‖2 + ‖h̃β‖2 + ‖h̃γ‖2 ≤ C2
rst(‖r̃α‖2 + ‖r̃β‖2 + ‖r̃γ‖2) = C2

rst‖r̃‖2.

Finally, due to

‖h̃‖ = ‖h‖Λ ≥
√
λmin(Λ)‖h‖, ‖r̃‖ = ‖r‖Λ ≤

√
λmax(Λ)‖r‖,

we can conclude that the bound in Lemma 5.4.2 holds with C :=
√
κ(Λ)Crst.

Remark 5.4.3. Suppose that VΛ ⊂ Rn×n is a given subset and that the matrices ΛV and
Λ(I − V ) are symmetric and positive semidefinite for every V ∈ VΛ. Then, the proof of
Lemma 5.4.2 shows that the (possibly larger) collection of matrices

W̃Λ(x) := {W ∈ Rn×n : W = I − V (I − Λ−1∇2f(x)), V ∈ VΛ}

is also uniformly boundedly invertible (with the same constant C).

We now present the main result of this section.

Theorem 5.4.4. Let f : Rn → R be twice continuously differentiable and let ϕ : Rn →
(−∞,+∞] be a convex, proper, and lower semicontinuous mapping. Furthermore, let x̄ ∈
dom ϕ be a stationary point of problem (P) and suppose that ϕ is C2-fully decomposable at
x̄ and that the strict complementarity condition,

−∇f(x̄) ∈ ri ∂ϕ(x̄),

is satisfied. Then, the proximity operator proxΛ
ϕ is Fréchet differentiable at ū := x̄−Λ−1∇f(x̄)
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and the second order conditions

(5.4.3) h>∇2f(x̄)h+ 〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ > 0, ∀ h ∈ C(x̄) \ {0}

are necessary and sufficient for the quadratic growth condition 5.3.10. Moreover, if the latter
second order sufficient condition is satisfied at x̄, then the following statements do hold:

(i) The stationary point x̄ is a strict local minimum and an isolated stationary point of
problem (P).

(ii) If, in addition, the proximity operator proxΛ
ϕ is semismooth at ū, then the function FΛ

is strictly differentiable at x̄ and its Fréchet derivative DFΛ(x̄) is nonsingular.

Proof. The Fréchet differentiability of the proximity operator proxΛ
ϕ follows from Corollary

5.3.33. Now, let (ϕd, F ) be an appropriate decomposition pair of the function ϕ. Then,
Theorem 5.3.26 and our preceding discussion implies

〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ = 〈λ̄, D2F (x̄)[h, h]〉

for all h ∈ C(x̄). (Here, λ̄ denotes the unique Lagrange multiplier associated with the de-
composed problem (5.3.33)). Consequently, the second order conditions (5.4.3) and (5.3.11)
coincide and applying Theorem 5.3.6, we can infer that the conditions (5.4.3) are necessary
and sufficient for the quadratic growth condition (5.3.10). Moreover, x̄ is also a strict locally
optimal solution and an isolated stationary point of problem (P). Let us continue with the
proof of the second part.

Since the proximity operator is Fréchet differentiable and semismooth at ū, Theorem 2.6.7
implies that proxΛ

ϕ is strict differentiable at ū. Hence, as a composition of strictly differen-
tiable functions, the mapping FΛ is also strictly differentiable at x̄. In particular, it follows
∂FΛ(x̄) = {DFΛ(x̄)}. Next, as in Lemma 5.4.1, suppose there exists h ∈ Rn \ {0} such that
DFΛ(x̄)h = 0. Then, it follows

(5.4.4) DFΛ(x̄)h = 0 ⇐⇒ h = DproxΛ
ϕ(ū)(I − Λ−1∇2f(x̄))h.

Consequently, Lemma 3.3.6 implies h ∈ C(x̄) \ {0} and we have

QΛ
ϕ(ū)+QΛ

ϕ(ū)[Λ−
1
2∇2f(x̄)h] = Λ

1
2h−QΛ

ϕ(ū)+Λ
1
2h.

Setting V := DproxΛ
ϕ(ū), we obtain

〈h,DFΛ(x̄)h〉Λ = 〈h,Λ(I − V )h〉+ 〈ΛV h,Λ−1∇2f(x̄)h〉

= h>∇2f(x̄)h+ 〈h,Λ(I − V )h〉+ 〈QΛ
ϕ(ū)[Λ−

1
2∇2f(x̄)h], [Λ−

1
2∇2f(x̄)h]〉

= h>∇2f(x̄)h+ 〈h,Λ(I − V )h〉+ 〈ΛV Λ−1∇2f(x̄)h, [I − Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 ]h〉

= h>∇2f(x̄)h+ 〈(I − V )h,Λ
1
2QΛ

ϕ(ū)+Λ
1
2h〉

= h>∇2f(x̄)h+ 〈h,Λ−
1
2QΛ

ϕ(ū)+Λ
1
2h〉Λ − 〈QΛ

ϕ(ū)Λ
1
2h,QΛ

ϕ(ū)+Λ
1
2h〉

= h>∇2f(x̄)h+ 〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ,
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where we used (5.4.4), the properties of the Moore-Penrose inverse, i.e.,

QΛ
ϕ(ū) = QΛ

ϕ(ū)QΛ
ϕ(ū)+QΛ

ϕ(ū),

the symmetry of the matrices ΛV , QΛ
ϕ(ū), and h ∈ C(x̄) ≡ U . Clearly, the second order suf-

ficient conditions (5.4.3) now imply h = 0, which contradicts our assumption. Consequently,
the matrix DFΛ(x̄) has to be nonsingular. This finishes the proof of Theorem 5.4.4.

In the following, we briefly summarize our previous results and connect our observations
to the convergence theory of the semismooth Newton method. Therefore, let the functions
f : Rn → R, ϕ : Rn → (−∞,+∞] be given and suppose that the assumptions (A.2)–(A.3)
are satisfied. Let the sequences (xk)k and (Λk)k be generated by Algorithm 2 and let x∗ ∈ Rn
and Λ∗ ∈ Sn++ be accumulation points of the sequences (xk)k and (Λk)k, respectively. If the
parameter matrices Λk, k ∈ N, remain in a bounded set K ⊂ Sn++, i.e., if assumption (B) is
satisfied, then Theorem 4.3.2 implies that x∗ is a stationary point of problem (P). Moreover,
if ϕ is C2-fully decomposable at x∗ with decomposition pair (ϕd, F ) and if the second order
sufficient conditions

(5.4.5) h>∇2f(x∗)h+ 〈λ̄, D2F (x∗)[h, h]〉 > 0, ∀ h ∈ C(x∗) \ {0}, λ̄ ∈M(x∗),

hold at x∗, then Theorem 5.3.11 shows that condition (D.5) is fulfilled. Additionally, if the
accumulation points x∗ and Λ∗ satisfy the conditions (D.1)–(D.3) and if the strict comple-
mentarity condition

(5.4.6) −∇f(x∗) ∈ ri ∂ϕ(x∗)

holds at x∗, the latter second order sufficient conditions can be equivalently represented as
follows

(5.4.7) h>∇2f(x∗)h+ 〈h, [Λ−
1
2∗ QΛ∗

ϕ (u∗)+Λ
1
2∗ − I]h〉Λ∗ > 0, ∀ h ∈ C(x∗) \ {0},

where u∗ = x∗ − Λ−1
∗ ∇f(x∗) and QΛ∗

ϕ (u∗) = Λ
1
2∗DproxΛ∗

ϕ (u∗)Λ
− 1

2∗ . Furthermore, in this
situation, the second order conditions (5.4.5) or (5.4.7) imply that the elements of Clarke’s
subdifferential ∂FΛ∗(x∗) are uniformly boundedly invertible and consequently, by Remark
4.3.7, assumption (D.4) is satisfied.

Thus, in short, if the nonsmooth function is C2-fully decomposable and if the strict comple-
mentarity condition is fulfilled, then the second order sufficient conditions (5.4.5) or (5.4.7)
essentially yield fast local convergence of Algorithm 2.

We conclude this subsection with two illustrating examples.

Example 5.4.5 (Group sparsity). Let us reconsider the group-sparse optimization prob-
lem

min
x

f(x) + ϕ(x), ϕ(x) :=
s∑
i=1

ωi‖xgi‖2,

and let the groups gi, i = 1, ..., s, form a disjoint partitioning of the set {1, ..., n}. Moreover,
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5.4. Nonsingularity conditions

let x̄ ∈ Rn be a stationary point of the latter problem and let us set

Λ[gigj ] =

{
Λi := λ−1

i I if i = j,

0 otherwise,
λi > 0, 1 ≤ i, j ≤ s.

As usual, we then define ū := x̄−Λ−1∇f(x̄) and consider the index sets A(x̄) := {i : x̄gi = 0}
and I(x̄) := {i : x̄gi 6= 0}. As in Example 4.2.18, the proximity operator proxΛ

ϕ(ū) has the
following group-wise representation:

proxΛ
ϕ(ū)gi = prox

λ−1
i I

ωi‖·‖2(ūgi) = ūgi − PB‖·‖2 (0;ωiλi)(ūgi) =
ūgi
‖ūgi‖2

max{‖ūgi‖2 − ωiλi, 0}.

Now, the stationarity of x̄ implies{
i ∈ A(x̄) =⇒ proxΛ

ϕ(ū)gi = 0 ∧ ‖ūgi‖2 ≤ ωiλi,
i ∈ I(x̄) =⇒ proxΛ

ϕ(ū)gi 6= 0 ∧ ‖ūgi‖2 > ωiλi

and, by Corollary 5.3.33, the proximity operator is Fréchet differentiable at ū if and only if
the index set

A±(x̄) = {i ∈ A(x̄) : ‖ūgi‖2 = ωiλi} = {i ∈ A(x̄) : ‖∇f(x̄)gi‖2 = ωi}

is empty. In this case, the Fréchet derivative of proxΛ
ϕ at ū is given by

DproxΛ
ϕ(ū)[gigj ] =

{
Ξi if i = j,

0 if i 6= j,
Ξi :=

{
0 if i ∈ A(x̄),
‖ūgi‖2−ωiλi
‖ūgi‖2

I + ωiλi
‖ūgi‖32

ūgi ū
>
gi if i ∈ I(x̄)

and it holds

[
Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2
]+
[gigj ]

=

{
Ξ̂i if i = j,

0 if i 6= j,
Ξ̂i =

{
0 if i ∈ A(x̄),

[Ξi]−1 if i ∈ I(x̄).

Moreover, for i ∈ I(x̄), the matrix Ξ̂i can be calculated explicitly by using the Sherman-
Morrison-Woodbury formula:

Ξ̂i =

(
1 +

ωiλi
‖ūgi‖2 − ωiλi

)
I − ωiλi
‖ūgi‖2 − ωiλi

·
ūgi ū

>
gi

‖ūgi‖22
.

Again, from the stationarity of x̄, we deduce ‖x̄gi‖2 = |‖ūgi‖2 − ωiλi| = ‖ūgi‖2 − ωiλi, and
‖ūgi‖2 · x̄gi = ‖x̄gi‖2 · ūgi for all i ∈ I(x̄). Finally, this shows

〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ

=
s∑
i=1

λ−1
i h>gi [Ξ̂

i − I]hgi =
∑
i∈I(x̄)

h>gi

[
ωi
‖x̄gi‖

I − ωi
‖x̄gi‖32

x̄gi x̄
>
gi

]
hgi −

∑
i∈A(x̄)

1

λi
‖hgi‖22.
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For h ∈ C(x̄), the latter formula reduces to

〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ =

∑
i∈I(x̄)

h>gi

[
ωi
‖x̄gi‖

I − ωi
‖x̄gi‖32

x̄gi x̄
>
gi

]
hgi

and coincides with the representation of the curvature term −ξ∗ϕ,h(−∇f(x̄)) that was cal-
culated in Example 5.3.13, as expected. Thus, since the proximity operator proxΛ

ϕ is a
semismooth function, (see, e.g., Example 4.2.18), the strict complementarity condition,

−∇f(x̄) ∈ ri ∂ϕ(x̄) ⇐⇒ A±(x̄) = ∅,

and the second order sufficient conditions

h>∇2f(x̄)h+ 〈h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]h〉Λ > 0, ∀ h ∈ C(x̄) \ {0}

ensure invertibility of the Fréchet derivative of FΛ at x̄ and locally q-superlinear convergence
of Algorithm 2.

Example 5.4.6 (Semidefinite programming). Next, we want to apply our nonsingularity
results to semidefinite programs of the form

min f(X) s. t. X ∈ Sn+,

where f : Sn → R is a twice continuously differentiable function. Let X̄ ∈ Sn+ be a stationary
point of the latter problem and let us set Ū := X̄ − λ∇f(X̄), λ > 0. As in Example 5.3.34,
we consider the following spectral decomposition of Ū

Ū = PΣP>, Σ = diag(σ) ∈ Sn,

and the associated index sets

α := {i : σi > 0}, β := {i : σi = 0}, γ := {i : σi < 0}.

Moreover, let us set

Ū+ := proxλIϕ (Ū) = PSn+(Ū) = P diag(max{σ, 0})P>.

In Example 5.3.34, we have seen that the strict complementarity condition is equivalent to
the invertibility of the matrix Ū . Thus, in this case, we have β = ∅ and the metric projection
PSn+ is Fréchet differentiable at Ū . In particular, by using [46, Proposition 4.3], it holds

DPSn+(Ū)[H] = P (Ω� (P>HP ))P>, Ω[ij] =


max{σi, 0} −max{σj , 0}

σi − σj
if σi 6= σj ,

1 if σi = σj , i ∈ α,
0 if σi = σj , i ∈ γ,

for all H ∈ Sn and 1 ≤ i, j ≤ n. In the following, let us suppose that the eigenvalues of Ū
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5.4. Nonsingularity conditions

are arranged in decreasing order. This implies P = (P[·α], P[·γ]) and setting H̄ := P>HP ,
the term DPSn+(Ū)[H] can be further simplified to

DPSn+(Ū)[H] = P

(
H̄[αα] Ω[αγ] � H̄[αγ]

H̄>[αγ] � Ω>[αγ] 0

)
P>.

Moreover, due to Ω[ij] = σi
σi−σj 6= 0 for all i ∈ α, j ∈ γ, it immediately follows

[DPSn+(Ū)]+[H] = P

(
H̄[αα] H̄[αγ] � Ω[αγ]

H̄>[αγ] � Ω>[αγ] 0

)
P>.

Now, defining

Ω� ∈ Rn×n, Ω�[ij] :=

{
−σj
σi

if i ∈ α, j ∈ γ,

0 otherwise,

we readily obtain

〈H, [DPSn+(Ū)]+[H]−H〉 = tr

(
PH̄

(
0 H̄[αγ] � Ω�[αγ]

H̄>[αγ] � Ω�,>[αγ] −H̄[γγ]

)
P>
)

= tr

((
H̄[αγ](H̄

>
[αγ] � Ω�,>[αγ]) ?

? H̄>[αγ](H̄[αγ] � Ω�[αγ])− H̄[γγ]H̄[γγ]

))
= 2 · tr(H̄>[αγ](H̄[αγ] � Ω�[αγ]))− ‖H̄[γγ]‖2F ,

where we used the symmetry of H and the invariance of the trace operation under cyclic
permutations. Furthermore, an easy calculation yields

tr(H̄>[αγ](H̄[αγ] � Ω�[αγ])) = tr

(
H̄

(
0
−diag(σγ)

)
H̄

(
diag(1� σα)

0

))
= tr

(
P

(
0
−diag(σγ)

)
P>HP

(
diag(1� σα)

0

)
P>H

)
and from the stationarity of X̄ we deduce

X̄ = Ū+ = P

(
diag(σα)

0

)
P>, λ∇f(X̄) = X̄ − Ū = P

(
0
−diag(σγ)

)
P>.

Consequently, we have

tr(H̄>[αγ](H̄[αγ] � Ω�[αγ])) = λ〈∇f(X̄), HX̄+H〉

and

〈H, [DPSn+(Ū)]+[H]−H〉Λ = 2〈∇f(X̄), HX̄+H〉 − 1

λ
‖H̄[γγ]‖2F , Λ = λ−1I.

Hence, since for all H ∈ C(X̄) ≡ CŪ (Ū+), it holds H̄[γγ] = P>[·γ]HP[·γ] = 0 (see Example
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5.3.34), the curvature term reduces to the well-known formula

〈H, [DPSn+(Ū)]+[H]−H〉Λ = 2〈∇f(X̄), HX̄+H〉.

Let us also refer to [215] and [27, Section 5.3 and 5.3.5] for more details on second order
conditions for semidefinite programs. In particular, since the metric projection PSn+ is a
semismooth function (see, e.g., [229]), the strict complementarity condition and the second
order optimality condition,

∇2f(X̄)[H,H] + 2〈∇f(X̄), HX̄+H〉 > 0, ∀ H ∈ C(X̄) \ {0},

guarantee invertibility of the Fréchet derivative of FΛ(X) := X − PSn+(X − λ∇f(X)) at X̄.
Let us note that, in this situation, fast local convergence of Algorithm 2 can only be expected
under the additional and restrictive assumption X̄ ∈ Sn++ (this is exactly condition (D.2) in
Assumption 4.3.6). However, the results of this example can be immediately applied to a
pure and local semismooth Newton method.

5.5. Extensions

In this section, we demonstrate the broad applicability and the advantages of the concept
of decomposability and, based on our second order and nonsingularity results, we derive an
analogue second order framework for general convex composite problems of the form

(Pc) min
x∈Rn

ψc(x) := f(x) + φ(G(x)),

where f : Rn → R, G : Rn → Rm are given, twice continuously differentiable functions and
the mapping φ : Rm → (−∞,+∞] is convex, proper, and lower semicontinuous, as usual.
In the following, let x̄ ∈ G−1(dom φ) be an arbitrary stationary point of the problem (Pc)
and let us suppose that φ is C2-fully decomposable at G(x̄) with decomposition pair (φd, F ).
Furthermore, let us assume that the nondegeneracy condition

(5.5.1) DG(x̄)Rn + lin N∂φ(G(x̄))(λ) = Rm, λ ∈ ∂φ(G(x̄)),

holds at x̄. The first order necessary optimality conditions associated with problem (Pc) can
be characterized as follows

(5.5.2) ∇f(x̄) +DG(x̄)>λ̄ = 0, λ̄ ∈ ∂φ(G(x̄)).

In particular, the nondegeneracy condition implies that the set of Lagrange multipliers,

M(x̄) = {λ ∈ ∂φ(G(x̄)) : ∇f(x̄) +DG(x̄)>λ = 0},

is nonempty and reduces to the singletonM(x̄) = {λ̄}. Moreover, by Lemma 5.3.23, we can
infer that the composite function φ ◦ G is C2-fully decomposable at x̄ with decomposition
pair (φd, F ◦G).

Now, let Γ ∈ Sm++ be an arbitrary parameter matrix. Then, the KKT conditions (5.5.2)
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can be equivalently represented as the following system of equations

ΨΓ : Rn × Rm → Rn × Rm, ΨΓ(x, λ) :=

(
∇f(x) +DG(x)>λ

G(x)− proxΓ
φ(G(x) + Γ−1λ)

)
=

(
0
0

)
and thus, every KKT pair (x̄, λ̄) of the problem (Pc) corresponds to a solution of the latter
system and vice versa. Therefore, we can again apply the semismooth Newton method to
approximately solve the nonsmooth system of equations

(5.5.3) ΨΓ(x, λ) = 0

and to compute a stationary point of the convex composite problem (Pc). Let us emphasize
that the mapping ΨΓ plays a similarly important role as the nonsmooth function FΛ. Clearly,
ΨΓ can be seen as an adequate generalization of FΛ taking account of the more general and
more difficult structure of the convex composite problem (Pc). Our goal is now to extend our
second order results and to establish appropriate nonsingularity conditions for the generalized
derivatives of the nonsmooth mapping ΨΓ.

As for the initial problem (P), we first discuss and clarify the different notions of stationar-
ity emerging from the decomposability of problem (Pc). The first order optimality conditions
for the decomposed problem

(5.5.4) min
x∈Rn

f(x) + φd((F ◦G)(x)) + c̄, c̄ = φ(G(x̄)),

formally take the following form

∃ µ̄ ∈ Rp : ∇f(x̄) +D(F ◦G)(x̄)>µ̄ = 0, µ̄ ∈ ∂φd(0).

(Here, we assume that F : Rm → Rp is a p-dimensional mapping). Due to the nondegeneracy
condition and the full decomposability of φ ◦ G, the following constraint qualifications are
satisfied w.r.t. x̄

0 ∈ int{G(x̄) +DG(x̄)Rn − dom φ}, 0 ∈ int{F (G(x̄)) +D(F ◦G)(x̄)Rn − dom φd}.

Thus, settingMc(x̄) := {µ ∈ ∂φd(0) : ∇f(x̄) + D(F ◦ G)(x̄)>µ = 0}, the discussion of the
first order necessary condition on page 87f. implies

Mc(x̄) 6= ∅ ⇐⇒ (ψc)
↓
−(x̄;h) ≥ 0, ∀ h ∈ Rn ⇐⇒ M(x̄) 6= ∅.

Consequently, x̄ is also a stationary point of the decomposed problem (5.5.4) (in the sense of
Mc(x̄) 6= ∅) and the set of the corresponding Lagrange multipliers necessarily has to reduce
to a singleton Mc(x̄) = {µ̄} ⊂ Rp. Moreover, as in Remark 5.3.3, the stability property
of Robinson’s constraint qualification guarantees that the latter equivalence does also hold
for every stationary point in a certain neighborhood of x̄. Hence, every isolated stationary
point of problem (Pc) is also an isolated stationary point of the decomposed problem (5.5.4)
and vice versa. In addition, if x̄ is an isolated stationary point, then the uniqueness of
the Lagrange multiplier λ̄ implies that the pair (x̄, λ̄) is an isolated, local solution of the
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nonsmooth equation (5.5.3). On the other hand, if (x̄, λ̄) is an isolated solution of the
system (5.5.3), then there exists ε > 0 such that

(5.5.5) M(x) = ∅, ∀ x ∈ Bε(x̄) \ {x̄}, M(x̄) ∩Bε(λ̄) = {λ̄},

i.e., x̄ is an isolated stationary point of the convex composite problem (Pc). As a consequence
and similar to the discussion of ordinary decomposable problems in section 5.3, it suffices
to analyze second order conditions for the decomposed problem (5.5.4) and to pass the
stationarity results to the initial convex composite problem (Pc). Fortunately, since the
composite function ϕ ◦G is C2-fully decomposable at x̄, we can reuse and apply our theory
and results of section 5.3 to the decomposed problem (5.5.4).

Next, we derive an explicit connection between the Lagrange multipliers λ̄ and µ̄. The
stationarity of x̄ implies that the function Π(y) := φ↓(G(x̄); y) is proper and subdifferentiable
at 0 and it holds ∂Π(0) = ∂φ(G(x̄)). Moreover, since Robinson’s constraint qualification

0 ∈ int{F (G(x̄)) +DF (G(x̄))Rm − dom φd} = int{DF (G(x̄))Rm − dom φd}

holds at G(x̄) (this follows from the full decomposability of φ), we have

Π(y) = (φd ◦ F )↓(G(x̄); y) = φ↓d(F (G(x̄));DF (G(x̄))y) = φd(DF (G(x̄))y), ∀ y ∈ Rm,

where we used Lemma 2.5.6 and (5.3.5). Applying Lemma 2.5.15, we can infer

∂Π(0) = DF (G(x̄))>∂φd(0)

and thus, ∂φ(G(x̄)) = DF (G(x̄))>∂φd(0). Consequently, if µ̄ ∈ Mc(x̄) is a Lagrange multi-
plier of the decomposed problem, then it follows

∇f(x̄)−DG(x̄)>[DF (G(x̄))>µ̄] = 0, DF (G(x̄))>µ̄ ∈ ∂φ(G(x̄)).

Hence, DF (G(x̄))>µ̄ is also a Lagrange multiplier of the initial problem (Pc) and the unique-
ness of λ̄ implies

λ̄ = DF (G(x̄))>µ̄.

In the following, based on Theorem 5.3.6, we formulate second order necessary and suffi-
cient conditions for the convex composite problem (Pc). Let us recall that the critical cone
C(x̄) associated with problem (Pc) is given by

C(x̄) = {h ∈ Rn : DG(x̄)h ∈ N∂φ(G(x̄))(λ̄)}
= {h ∈ Rn : ∇f(x̄)>h+ φ↓(G(x̄);DG(x̄)h) = 0}.

Furthermore, we will also need the Lagrange function

L : Rn × Rm → R, (x, λ) 7→ L(x, λ) := f(x) + 〈λ,G(x)〉.

Theorem 5.5.1. Let f : Rn → R, G : Rn → Rm be twice continuously differentiable
and let φ : Rm → (−∞,+∞] be a convex, proper, and lower semicontinuous mapping.
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Let x̄ ∈ G−1(dom φ) be given and assume that φ is C2-fully decomposable at G(x̄) with
decomposition pair (φd, F ). Moreover, suppose that the nondegeneracy condition

DG(x̄)Rn + lin N∂φ(G(x̄))(λ) = Rm, λ ∈ ∂φ(G(x̄))

is satisfied at x̄. Then, the following statements hold:

(i) (Second order necessary conditions). Suppose that x̄ is a locally optimal solution of
problem (Pc). Then, for every h ∈ C(x̄) the following inequality is satisfied

h>∇2
xxL(x̄, λ̄)h+ 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉 ≥ 0.

Here, λ̄ ∈ M(x̄) and µ̄ ∈ Mc(x̄) are the unique Lagrange multipliers associated with
the problems (Pc) and (5.5.4), respectively.

(ii) (Second order sufficient conditions). Let x̄ be a stationary point of the initial mini-
mization problem (Pc). Then, the quadratic growth condition,

(5.5.6) f(x) + φ(G(x)) ≥ f(x̄) + φ(G(x̄)) + α‖x− x̄‖2,

holds for some α > 0 and all x in a neighborhood of x̄ if and only if the following second
order sufficient condition is satisfied,

(5.5.7) h>∇2
xxL(x̄, λ̄)h+ 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉 > 0, ∀ h ∈ C(x̄) \ {0}.

In the latter case, x̄ is a (strict) locally optimal solution and an isolated stationary
point of problem (Pc).

Proof. Due to the full decomposability of φ ◦G and

〈µ̄,D2(F ◦G)(x̄)[h, h]〉 = 〈µ̄,DF (G(x̄))D2G(x̄)[h, h] +D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉
= 〈λ̄, D2G(x̄)[h, h]〉+ 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉,

Theorem 5.5.1 simply follows from Theorem 5.3.6 and Remark 5.3.8.

As in last section, we will now show that the term

〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉

exactly represents the possible curvature of the nonsmooth function φ. Accordingly, for some
arbitrary parameter matrix Γ ∈ Sm++ and by using the strict complementarity condition, we
will also derive an additional, alternative characterization in terms of the Fréchet derivative
of the proximity operator proxΓ

φ at ū := G(x̄) + Γ−1λ̄ that is independent of the specific
decomposition pair (φd, F ).

In this paragraph, we mainly recreate the argumentation in Lemma 5.3.9 for the more
general convex composite setting. Therefore, let us define Y := DG(x̄)C(x̄)+lin N∂φ(G(x̄))(λ̄)
and let y ∈ Y be arbitrary. Then, there exist h ∈ C(x̄) and d ∈ lin N∂φ(G(x̄))(λ̄) such that
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y = DG(x̄)h+ d and we have

Π(y) = φ↓(G(x̄);DG(x̄)h+ d) = sup
λ∈∂φ(G(x̄))

〈λ,DG(x̄)h+ d〉(5.5.8)

= φ↓(G(x̄);DG(x̄)h) + 〈λ̄, d〉 = −〈∇f(x̄), h〉+ 〈λ̄, d〉 = 〈λ̄, y〉,

where we used h ∈ C(x̄), and the stationarity of x̄. (Let us recall, that the stationarity of x̄
implies that φ is subdifferentiable at G(x̄)). On the other hand, due to

Π(y) = φd(DF (G(x̄))y),

it follows DF (G(x̄))Y ⊂ dom φd. Consequently, by Lemma 5.3.5, the mapping φ is twice
directionally epidifferentiable at G(x̄) on Y and, using Lemma 5.2.5 and (5.3.6), we obtain

φ↓↓(G(x̄); y, w) = φ↓↓d (F (G(x̄));DF (G(x̄))y,DF (G(x̄))w +D2F (G(x̄))[y, y])

= φ↓d(DF (G(x̄))y;DF (G(x̄))w +D2F (G(x̄))[y, y])

for all y ∈ Y. Now, let us fix an arbitrary element y ∈ Y. Then, setting ȳ := G(x̄) and
w̄ := D2F (ȳ)[y, y], it holds

−ξ∗φ,y(λ̄) = inf
w∈Rm

〈−λ̄, w〉+ φ↓↓(ȳ; y, w)(5.5.9)

= inf
w∈Rm

〈−λ̄, w〉+ φ↓d(DF (ȳ)y,DF (ȳ)w + w̄),

where ξφ,y(·) := φ↓↓(ȳ; y, ·). Next, as in Remark 5.2.9, we have

φ↓d(DF (ȳ)y;ω) = φ↓↓d (F (ȳ);DF (ȳ)y, ω)

≥ lim inf
t↓0, ω̃→ω

〈µ̄, tDF (ȳ)y + 1
2 t

2ω̃〉 − t · φd(DF (ȳ)y)
1
2 t

2
= 〈µ̄, ω〉,

where we used µ̄ ∈ ∂φd(0), DF (ȳ)>µ̄ = λ̄, and (5.5.8). Together with (5.3.8), this implies

φ↓d(DF (ȳ)y; 0) = φ↓↓d (F (ȳ);DF (ȳ)y, 0) = 0

and thus, the mapping Υ : Rp → (−∞,+∞], Υ(ω) := φ↓d(DF (ȳ)y;ω + w̄) is convex, proper,
and lower semicontinuous. Hence, the Fenchel-Rockafellar duality framework can again be
applied to dualize the problem (5.5.9). Specifically, setting %(ω) := 〈−λ̄, ω〉, the dual problem
is formally given by

max
v

%∗(DF (ȳ)>v)−Υ∗(−v)

and by repeating the computations in Lemma 5.3.9, we obtain the following representation

max
v
〈−v, w̄〉 s. t.


−v ∈ ∂φd(0),

λ̄+DF (ȳ)>v = 0,

〈v,DF (ȳ)y〉+ φd(DF (ȳ)y) = 0.
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Since the third condition is automatically satisfied for all y ∈ Y and since it holds

{µ̄} ⊆ {v ∈ ∂φd(0) : DF (ȳ)>v = λ̄} ⊆ Mc(x̄) = {µ̄},

we finally deduce

(5.5.10) max
v

%∗(DF (ȳ)>v)−Υ∗(−v) = 〈µ̄,D2F (ȳ)[y, y]〉.

Now, as in Lemma 5.3.9 and using the full decomposability of φ, it can be shown that there
is no gap between the primal problem (5.5.9) and the dual problem (5.5.10). Moreover, the
infimum that defines the curvature term −ξ∗φ,y(λ̄) is attained at some ŵ ∈ Rm, i.e., it holds

−ξ∗φ,y(λ̄) = φ↓↓(ȳ; y, ŵ)− 〈λ̄, ŵ〉.

Next, as in Lemma 5.3.27, using µ̄ ∈ ∂φd(0), λ̄ = DF (ȳ)>µ̄, and a second order Taylor
expansion of F at ȳ, we establish the following lower bound for the second order difference
quotient

∆2
tk
φ(ȳ|λ̄)(yk) =

φd(F (ȳ + tky
k))− φd(F (ȳ))− tk · 〈λ̄, yk〉

1
2 t

2
k

≥ 〈µ̄, F (ȳ + tky
k)〉 − tk · 〈µ̄,DF (ȳ)yk〉

1
2 t

2
k

= 〈µ̄,D2F (ȳ)[yk, yk]〉+ o(1),

where (tk)k, tk ↓ 0, and (yk)k, yk → y ∈ Y, are arbitrarily chosen. Furthermore, let us note
that the nondegeneracy condition (5.5.1) and (5.5.8) imply

Y = {y ∈ Rm : φ↓(G(x̄); y) = 〈λ̄, y〉} = N∂φ(G(x̄))(λ̄).

Thus, by combining the latter facts and reconsidering the proof of Lemma 5.3.27, it can be
readily shown that φ is twice epi-subdifferentiable at ȳ = G(x̄) relative to λ̄ and it follows

d2φ(G(x̄)|λ̄)(y) = −ξ∗φ,y(λ̄) = 〈µ̄,D2F (G(x̄))[y, y]〉

for all y ∈ Y. In particular, this also implies

d2φ(G(x̄)|λ̄)(DG(x̄)h) = 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉, ∀ h ∈ C(x̄).

Now, let us briefly discuss an appropriate adaption of the VU -theory. Again, let Γ ∈ Sm++

be an arbitrary parameter matrix. Then, by using ū = G(x̄) + Γ−1λ̄ and the stationarity of
x̄, we have

p̄ := proxΓ
φ(ū) = G(x̄), ḡ := ∇envΓ

φ(ū) = Γ(G(x̄) + Γ−1λ̄− proxΓ
φ(ū)) = λ̄.

Hence, in this case, the strict complementarity condition apparently reduces to

(5.5.11) λ̄ ∈ ri ∂φ(G(x̄))
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5. Second order theory and decomposability

and the U- and V-space can be defined via

U := lin N∂φ(G(x̄))(λ̄) = lin Y, V := [U ]⊥,Γ.

(If the strict complementarity condition (5.5.11) is satisfied, then the lineality space operation
in the definition of the subspace U is superfluous). Thus, at this point, it is clear that the VU -
concept and our theoretical results, which were presented and discussed in the last section,
can be naturally extended and applied to the convex composite problem (Pc). Specifically,
the associated quadratic sub-Lagrangian takes the following form

ΦΓ : U → [−∞,+∞], ΦΓ(u) := inf
v∈V

φ(G(x̄) + u⊕Γ v)− 〈λ̂V , v〉V,Γ +
1

2
‖v‖2V,Γ,

where λ̂ := Γ−1λ̄ = Γ−1ḡ. Moreover, let us suppose that Ū and V̄ are two basis matrices
whose columns span the subspaces U and V, respectively. If the strict complementarity
condition (5.5.11) is fulfilled, Lemma 5.3.38 implies that the quadratic sub-Lagrangian ΦΓ is
twice epi-subdifferentiable at 0, relative to g0 := ∇ΦΓ(0) = Ū>λ̄ and it follows

d2ΦΓ(0|g0)(yU ) = d2φ(G(x̄)|λ̄)(y) = y>Hφ(G(x̄))y, ∀ y = yU ⊕Γ 0 ∈ U ≡ Y,

where the symmetric, positive semidefinite matrix Hφ(G(x̄)) ∈ Rm×m is given by

Hφ(G(x̄)) :=

p∑
i=1

µ̄i∇2Fi(G(x̄)).

Hence, as in Theorem 5.3.39, we can infer that ΦΓ has a generalized Hessian at 0 and it holds
HΦΓ(0) = Ū>Hφ(G(x̄))Ū . Combining our latter calculations, Theorem 5.3.39, the proximal
VU -calculus on page 159f., and using

y := DG(x̄)h = [DG(x̄)h]U ⊕Γ 0 ∈ U ≡ Y, ∀ h ∈ C(x̄),

we finally obtain

−ξ∗φ,h(λ̄) = 〈DG(x̄)h,Hφ(G(x̄))DG(x̄)h〉 = 〈yU , [Ū>Hφ(G(x̄))Ū ]yU 〉U
= 〈DG(x̄)h, [Γ−

1
2QΓ

φ(ū)+Γ
1
2 − I]DG(x̄)h〉Γ,

where QΓ
φ(ū) := Γ

1
2DproxΓ

φ(ū)Γ−
1
2 and ξφ,h(·) := φ↓↓(G(x̄);DG(x̄)h, ·).

Let us note that although the set of “critical directions” DG(x̄)−1C(x̄) is a more intuitive
and plausible choice for the U-space, it cannot be used here. In particular, in this case, the
second order subderivative d2ΦΓ(0|g0) is not necessarily finite on the whole subspace U and
we cannot apply Theorem 5.3.39 and the VU -calculus. Thus, our duality argument in (5.5.9)
and (5.5.10) is formulated for directions of the more complex set Y from the start.

We now present our extended invertibility result for convex composite problems.

Theorem 5.5.2. Let f : Rn → R, G : Rn → Rm be twice continuously differentiable and let
φ : Rm → (−∞,+∞] be a convex, proper, and lower semicontinuous mapping. Furthermore,
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5.5. Extensions

let x̄ ∈ G−1(dom φ) be a stationary point of problem (Pc) and suppose that φ is C2-fully
decomposable at G(x̄) and that the nondegeneracy condition,

DG(x̄)Rn + lin N∂φ(G(x̄))(λ) = Rm, λ ∈ ∂φ(G(x̄)),

is satisfied at x̄. Additionally, let λ̄ denote the unique Lagrange multiplier associated with
the stationary point x̄ and assume that the strict complementarity condition

λ̄ ∈ ri ∂φ(G(x̄))

holds at x̄. Then, for every Γ ∈ Sm++, the proximity operator proxΓ
φ is Fréchet differentiable

at ū := G(x̄) + Γ−1λ̄ and, setting QΓ
φ(ū) := Γ

1
2DproxΓ

φ(ū)Γ−
1
2 , the second order conditions

h>∇2
xxL(x̄, λ̄)h+ 〈DG(x̄)h, [Γ−

1
2QΓ

φ(ū)+Γ
1
2 − I]DG(x̄)h〉Γ > 0, ∀ h ∈ C(x̄) \ {0},

are sufficient and necessary for the quadratic growth condition (5.5.6). In particular, if the
latter second order sufficient condition is satisfied, then the following implications do hold:

(i) The point x̄ is a strict local minimum and an isolated stationary point of the problem
(Pc). Moreover, the pair (x̄, λ̄) is also an isolated local solution of the equation

ΨΓ(x, λ) = 0.

(ii) If the proximity operator proxΓ
φ is semismooth at ū, then the mapping ΨΓ is strictly

differentiable at (x̄, λ̄) and its Fréchet derivative DΨΓ(x̄, λ̄) is nonsingular.

Proof. By Lemma 5.3.32, the proximity operator proxΓ
φ is Fréchet differentiable at ū =

G(x̄) + Γ−1λ̄ if and only if the strict complementarity condition

λ̄ = ∇envΓ
φ(ū) ∈ ri ∂φ(G(x̄))

is satisfied. Now, let (φd, F ) be a corresponding decomposition pair of the mapping φ. Then,
our preceding discussion establishes

〈DG(x̄)h, [Γ−
1
2QΓ

φ(ū)+Γ
1
2 − I]DG(x̄)h〉Γ = 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉

for all h ∈ C(x̄). (As usual, µ̄ denotes the unique Lagrange multiplier of the decomposed
problem (5.5.4)). Consequently, Theorem 5.5.1 implies that x̄ is a (strict) local minimum
and an isolated stationary point of problem (Pc). Moreover, using the uniqueness of λ̄ and as
we have already shown, the pair (x̄, λ̄) is also an isolated solution of the nonsmooth system
of equations

ΨΓ(x, λ) = 0.

As in Theorem 5.4.4, the semismoothness and Fréchet differentiability of the proximity op-
erator proxΓ

φ establish strict differentiability of the KKT mapping ΨΓ at (x̄, λ̄).

The rest of the proof is strongly motivated by a general nonsingularity result of Sun [226,
Proposition 3.2] for nonlinear semidefinite programming. Furthermore, we will also follow
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5. Second order theory and decomposability

the proof of Theorem 5.4.4. The derivative of ΨΓ at (x̄, λ̄) is given by

DΨΓ(x̄, λ̄) =

(
∇2
xxL(x̄, λ̄) DG(x̄)>

(I − V )DG(x̄) −V Γ−1

)
, V := DproxΓ

φ(ū).

Now, suppose that there exists 0 6= h = (hx, hλ) ∈ Rn+m such that DΨΓ(x̄, λ̄)h = 0. Clearly,
this implies

(5.5.12) ∇2
xxL(x̄, λ̄)hx +DG(x̄)>hλ = 0, (I − V )DG(x̄)hx − V Γ−1hλ = 0

and it follows

(5.5.13) DG(x̄)hx = V (DG(x̄)hx + Γ−1hλ).

Hence, applying Lemma 3.3.6, we deduce DG(x̄)hx ∈ N∂φ(G(x̄))(λ̄) ≡ U , i.e., it holds hx ∈
C(x̄). Moreover, since the matrix QΓ

φ(ū) obviously has the same structural properties as the
matrix QΛ

ϕ(ū) from the last section, we also have

(5.5.14) QΓ
φ(ū)+QΓ

φ(ū)Γ−
1
2hλ = [QΓ

φ(ū)+ − I]Γ
1
2DG(x̄)hx

and we obtain

〈hx,∇2
xxL(x̄, λ̄)hx +DG(x̄)>hλ〉

= (hx)>∇2
xxL(x̄, λ̄)hx + 〈V (DG(x̄)hx + Γ−1hλ), hλ〉

= (hx)>∇2
xxL(x̄, λ̄)hx + 〈Γ

1
2DG(x̄)hx + Γ

1
2hλ,QΓ

φ(ū)Γ−
1
2hλ〉

= (hx)>∇2
xxL(x̄, λ̄)hx + 〈QΓ

φ(ū)[Γ
1
2DG(x̄)hx + Γ

1
2hλ], [QΓ

φ(ū)+ − I]Γ
1
2DG(x̄)hx〉

= (hx)>∇2
xxL(x̄, λ̄)hx + 〈DG(x̄)hx, [Γ−

1
2QΓ

φ(ū)+Γ
1
2 − I]DG(x̄)hx〉Γ,

where we used (5.5.13), (5.5.14), the basic identities of the Moore-Penrose inverse, and the
symmetry of QΓ

φ(ū). Thus, the second order sufficient conditions imply hx = 0 and from
(5.5.12), it follows

DG(x̄)>hλ = 0, V Γ−1hλ = 0.

Next, by applying the nondegeneracy condition, we can infer that there exist u ∈ Rn and
v ∈ N∂φ(G(x̄))(λ̄) such that hλ = DG(x̄)u+ v. Furthermore, due to v ∈ N∂φ(G(x̄))(λ̄) ≡ U , it
holds

QΓ
φ(ū)+QΓ

φ(ū)Γ
1
2 v = Γ

1
2 v

and consequently, we finally get

〈hλ, hλ〉 = 〈hλ, DG(x̄)u+ v〉 = 〈Γ−
1
2hλ,Γ

1
2 v〉 = 〈QΓ

φ(ū)+Γ
1
2V Γ−1hλ,Γ

1
2 v〉 = 0.

Altogether, this implies h = 0, which contradicts our assumption. Hence, the Fréchet deriva-
tive DΨΓ(x̄, λ̄) must be nonsingular, as desired.

Of course, if the proximity operator proxΓ
φ is directionally differentiable in a certain neigh-
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borhood of ū = G(x̄) + Γ−1λ̄, Theorem 2.5.21 (ii) and Theorem 5.5.2 immediately yield that
every sequence of iterates (xk, λk)k generated by the semismooth Newton method(

∇2
xxL(xk, λk) DG(xk)>

(I − Vk)DG(xk) −VkΓ−1

)(
sx

sλ

)
= −ΨΓ(xk, λk),

(
xk+1

λk+1

)
=

(
xk

λk

)
+

(
sx

sλ

)
,

Vk ∈ ∂proxΓ
φ(uk), uk := G(xk) + Γ−1λk, converges q-superlinearly to the local and isolated

solution (x̄, λ̄) if the respective initial point (x0, λ0) ∈ Rn×Rm is chosen sufficiently close to
(x̄, λ̄). We conclude this chapter with some final observations and remarks on future research
directions.

Further extensions, full equivalence, and remarks

At first, let us mention that it is straightforward to extend our results to equality constrained
problems of the form

min
x∈Rn

f(x) + φ(G(x)) s. t. h(x) = 0,

where the additional function h : Rn → Rp is supposed to be twice continuously differentiable,
as usual. More specifically, if the extended nondegeneracy condition(

∇h(x̄)>

DG(x̄)

)
Rn +

(
{0}

lin N∂φ(G(x̄))(λ)

)
=

(
Rp
Rm
)
, λ ∈ ∂φ(G(x̄)),

is satisfied, then, by considering the proof of Lemma 5.3.23, it can be readily shown that the
function

% : Rn → (−∞,+∞], %(x) = φ(G(x)) + ι{0}(h(x))

is C2-fully decomposable at x̄. Furthermore, in this case, the corresponding KKT-mapping
ΨΓ takes the following form

ΨΓ(x, λ, µ) :=

∇f(x) +DG(x)>λ+∇h(x)µ
G(x)− proxΓ

φ(G(x) + Γ−1λ)

h(x)


and a similar invertibility result as in Theorem 5.5.2 can be established. However, a detailed
discussion of this problem is beyond the scope of this thesis.

Another possible extension arises from the quite apparent, but interesting question whether
the assertion in Theorem 5.5.2 is also true for the opposite direction. In particular, let
us suppose that the strict complementarity condition holds at x̄, the proximity operator
proxΓ

φ is semismooth at ū = G(x̄) + Γ−1λ̄, and that the Fréchet derivative DΨΓ(x̄, λ̄) is
nonsingular. Then, can it be shown that the nondegeneracy condition (5.5.1) and the second
order sufficient condition in Theorem 5.5.2 are satisfied at x̄?

In fact, by using the concept of strongly regular solutions of generalized equations and
the so-called uniform quadratic growth condition, the answer to this question seems to be
affirmative if the stationary point x̄ is additionally assumed to be a local solution of the
optimization problem (Pc). In this situation, we can argue as follows:
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• The invertibility of DΨΓ(x̄, λ̄) implies that the KKT-pair (x̄, λ̄) is an isolated local
solution of the system of equations

ΨΓ(x, λ) = 0

and by (5.5.5), this shows that λ̄ is a locally unique Lagrange multiplier. Moreover,
using the convexity of the setM(x̄), this already establishes global uniqueness of the
multiplier λ̄, i.e., we haveM(x̄) = {λ̄}. Thus, by Lemma 5.1.11 (ii), the nondegeneracy
condition must hold at x̄.

• Applying Clarke’s inverse function theorem [49, Theorem 1], it can be shown that
the mapping ΨΓ is a locally Lipschitz homeomorphism near (x̄, λ̄), i.e., there exists
a neighborhood O of (x̄, λ̄) such that the restricted function ΨΓ|O : O → ΨΓ(O)
is Lipschitz continuous and bijective on O and its inverse mapping is also Lipschitz
continuous. Then, as in [226, Remark 3.1], it follows that the pair (x̄, λ̄) is a strongly
regular solution of the generalized equation

0 ∈
(
∇xL(x, λ)
−G(x)

)
+

(
{0}

∂φ∗(λ)

)
.

Now, if x̄ is a locally optimal solution of problem (Pc), Theorem 5.20 in [27] is appli-
cable and we can infer that the uniform quadratic growth condition is satisfied. Thus,
since the uniform quadratic growth condition implies the classical quadratic growth
condition, Theorem 5.5.1 shows that the second order sufficient condition (5.5.7) must
hold at x̄.

• Additionally, by mimicking the proof of [217, Theorem 5.2] it can be shown that, under
the nondegeneracy and the strict complementarity condition, the uniform quadratic
growth and the second order sufficient condition are actually equivalent. Moreover,
if φ is decomposable at G(x̄) with decomposition pair (φd, F ) such that DF (G(x̄)) is
onto, then [27, Theorem 5.20 and 5.24] imply that (x̄, λ̄) is a strongly regular solution
of the above generalized equation and ΨΓ is a locally Lipschitz homeomorphism. A
well-known inverse function theorem by Kummer [128] now yields invertibility of the
derivative DΨΓ(x̄, λ̄).

Of course, our argumentation is only preliminary and the latter steps have to be verified
more carefully. However, this brief discussion clearly demonstrates the deep connection
between these different concepts. For more details on strong regularity and the uniform
second order growth condition, we refer to Robinson [202], Sun [226], and the sections 5.1.3–
5.1.5 in [27].

Let us note that this adumbrated equivalence has already been investigated in a much
broader and more general context. In particular, in [202] Robinson analyzed connections
between the strong regularity of KKT points, nonsingularity conditions, and a second order
strong sufficient condition for nonlinear programming. Similar results were obtained by
Bonnans, Ramírez [25] and Wang, Zhang [250] for second order cone programming, and by
Sun et al. [226, 43] and Ding [63] for nonlinear semidefinite programs and other matrix
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optimization problems. For these specific problems, explicit representations and formulae
for the corresponding Clarke subdifferentials, the critical cones, and the curvature terms are
available and it is possible to derive full equivalence between the mentioned concepts and
the nonsingularity of all elements in ∂ΨΓ(x̄, λ̄) without the strict complementarity condition.
Moreover, since these problems all have a fully decomposable structure, the mentioned strong
second order sufficient condition can formally be represented in the following form

h>∇2
xxL(x̄, λ̄)h+ 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉 > 0, ∀ h ∈ aff C(x̄) \ {0}.

Thus, in comparison to the original second order condition (5.5.7) and in order to cope with
the missing strict complementarity, the larger set aff C(x̄) has to be used and the curvature
term −ξφ,h(λ̄) is “substituted” by the quadratic form

h 7→ 〈µ̄,D2F (G(x̄))[DG(x̄)h,DG(x̄)h]〉,

which is also well-defined for h /∈ C(x̄). Let us again emphasize that full equivalence results
are only available for very specific cone reducible problems. To the best of our knowledge,
general results are not yet known.

Finally, strong regularity has also been analyzed in a second order variational context.
In particular, by using new computational results for the coderivative mapping, Outrata
and Ramírez [180] and Mordukhovich et al. [159] derived a variational-based connection
between strong regularity and strong stability concepts and the so-called Aubin property of
the associated critical point mapping for second order cone programs. Again, more general
connections and results which yield an equivalent (variational-based) characterization of
the strong second order sufficient condition and the invertibility of all elements in Clarke’s
subdifferential ∂ΨΓ(x̄, λ̄) are not yet available.
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variational inequalities

In this chapter, we consider and investigate numerical methods for generalized variational
inequality problems (in short GVIPs) of the following form:

find x ∈ G−1(dom ϕ) such that

(Pvip) 〈F (x), y −G(x)〉+ ϕ(y)− ϕ(G(x)) ≥ 0, ∀ y ∈ Rn.

As usual, we will assume that ϕ : Rn → (−∞,+∞] is a convex, proper, and lower semicontin-
uous function. Furthermore, the mappings F, G : Ω ⊂ Rn → Rn are typically supposed to be
continuous on an open set Ω ⊂ Rn that contains the domain G−1(dom ϕ). The generalized
variational inequality (Pvip) subsumes many different classes of variational inequalities. In
particular, the abstract problem (Pvip) includes the family of mixed variational inequalties,

find x ∈ dom ϕ such that

〈F (x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀ y ∈ Rn,

which are also known as variational inequalities of the second kind or hemivariational in-
equalities [173, 181, 167, 175]. Moreover, in the special case ϕ(·) = ιK(·), where K ⊂ Rn is
a convex, nonempty, and closed set, the latter problem reduces to the classical variational
inequality,

find x ∈ K such that
〈F (x), y − x〉 ≥ 0, ∀ y ∈ K,

which has been studied extensively during the last decades and is commonly used to model
Nash equilibria problems, nonlinear complementarity problems, saddle point problems or
problems arising in nonlinear mechanics or economics [113, 91, 77, 75, 126, 172]. Of course,
there also exist other types of generalized variational inequalities that are not immediately
covered by the problem (Pvip). For instance, the function F can operate as a general multi-
function, or the set K in the classical variational inequality may also depend on the solution
x which leads to the class of so-called quasi-variational inequalities, see [164, 8, 176, 73, 74].
For more details on these different classes of variational inequalities and applications, we
refer to the surveys and monographs [104, 77, 75, 76] and the references therein.

Similar to the derivation of the first order necessary optimality conditions in section 4.1,
Solodov [223] showed that every solution x̄ ∈ Rn of the generalized variational inequality
(Pvip) can be equivalently characterized by an alternative, proximal-type equation,

(Evip) V Λ(x̄) := G(x̄)− proxΛ
ϕ(G(x̄)− Λ−1F (x̄)) = 0, Λ ∈ Sn++,
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that can be interpreted as a natural residual for the problem (Pvip) and naturally extends the
nonsmooth mapping FΛ from the last chapter. Additionally, Solodov [223] also introduced
a regularized gap and a D-gap function that generalize existing merit functions for classical
variational inequality problems. Here, a nonnegative function % : Rn → R+ is called merit
function for the problem (Pvip) if and only if the following correspondence is satisfied:

x̄ is a solution of (Pvip) ⇐⇒ x̄ ∈ G−1(dom ϕ) and %(x̄) = 0.

Thus, in general, merit functions allow to recast the problem (Pvip) as constrained optimiza-
tion problems of the form

(Pmer) min
x

%(x) s. t. G(x) ∈ dom ϕ,

such that every global solution x̄ of the latter problem with %(x̄) = 0 is also a solution of the
generalized variational inequality (Pvip). Now, based on these observations and motivated by
our previous results, our key idea is to apply the semismooth Newton to solve the nonsmooth
system V Λ(x) = 0 and to combine it with an iterative algorithm for a merit function-based
reformulation of the generalized variational inequalities. Here, we choose Solodov’s D-gap
function as a suitable merit function and a simple descent method for this purpose. Again,
we embed these two different algorithmic components in a multidimensional filter framework
to control the acceptance of the semismooth Newton steps and to achieve both global and
local fast convergence.

Our approach can be seen as an extension of the algorithm presented in [120]. Here,
Kanzow and Fukushima proposed a combination of the semismooth Newton method for (Evip)
and a D-gap function-based descent method to solve box constrained variational inequalities.
Moreover, a sufficient decrease condition is used to monitor the acceptance of the Newton
steps and to establish global convergence. In this respect, let us also refer to von Heusinger et
al. [245, 247] and Dreves et al. [68] where a similar approach is investigated in the context of
generalized Nash equilibrium problems and using the so-called Nikaido-Isoda function. Sun
et al. [227] and Kanzow and Fukushima [121] also studied a different type of algorithm that
implements a generalized Newton scheme to minimize the D-gap function and to directly solve
the corresponding optimization problem (Pmer). Furthermore, for box constrained variational
inequalities, Kanzow and Fukushima [121] showed that a stationary point x∗ of the D-gap
function is a solution of the variational inequality if the derivative DF (x∗) is a P -matrix. In
[224], Solodov and Tseng developed a dynamical parameter strategy for the D-gap function
and obtained similar stationarity results for more general variational inequalities with a
bounded feasible set K. Other D-gap function related approaches comprise the Newton-type
methods presented in [189, 190] and are discussed extensively in [76, Section 10.4]. So far,
the literature we have mentioned centers on methods that are based on the D-gap function
and that utilize higher order information. Clearly, this only covers a small percentage of the
different approaches and methodologies available for variational inequalities. However, since
a more comprehensive survey is out of the scope of this work, we again refer to the excellent
monographs by Facchinei and Pang [75, 76] and the references therein.

Our discussion of the generalized variational inequality problem (Pvip) is strongly moti-
vated by the observation that the D-gap function can be used to define an alternative base
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algorithm to substitute the proximal gradient method in Algorithm 2. Moreover, such a merit
function-based approach may also allow us to globalize the semismooth Newton method in
situations where first order objective function-based descent methods fail or are simply not
available. In the following, we provide three different examples that connect the generalized
variational inequality problem with other nonsmooth problems considered in this thesis.

• Nonsmooth optimization problems. In the case G = I and F = ∇f , the generalized
variational inequality (Pvip),

〈∇f(x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0,

clearly coincides with the first order optimality conditions of the nonsmooth problem
(P), which were discussed and analyzed in chapter 4.

• Convex composite problems. In the following, let us reconsider the convex composite
problem

min
x∈Rn

ψc(x) := f(x) + φ(F (x)),

where f : Rn → R, F : Rn → Rm are twice continuously differentiable functions and
φ : Rm → (−∞,+∞] is a convex, proper, and lower semicontinuous mapping. Let
x̄ ∈ F−1(dom φ) be a local solution of the latter problem and suppose that Robin-
son’s constraint qualification is satisfied at x̄. Then, by Theorem 5.1.2, there exists a
Lagrange multiplier λ̄ ∈ Rm such that

∇f(x̄) +DF (x̄)>λ̄ = 0, λ̄ ∈ ∂φ(F (x̄)).

Moreover, due to Lemma 2.5.14, the inclusion λ̄ ∈ ∂φ(F (x̄)) is equivalent to F (x̄) ∈
∂φ∗(λ̄). Thus, the first order necessary conditions are satisfied if and only if the fol-
lowing two conditions are fulfilled:

〈∇f(x̄) +DF (x̄)>λ̄, y − x̄〉 = 0, ∀ y ∈ Rn,
φ∗(z)− φ∗(λ̄)− 〈F (x̄), z − λ̄〉 ≥ 0, ∀ z ∈ Rm.

By combining those two conditions, we conclude that x̄ is stationary point of the convex
composite problem if and only if there exists λ̄ ∈ Rm such that (x̄, λ̄) is a solution of
the generalized variational inequality

find (x, λ) ∈ Rn × Rm such that:〈(
∇f(x) +DF (x)>λ

−F (x)

)
,

(
y
z

)
−
(
x
λ

)〉
+ φ∗(z)− φ∗(λ) ≥ 0, ∀ (y, z) ∈ Rn × Rm.

Clearly, in this case, we have

x ≡ (x, λ), F (x) ≡
(
∇f(x) +DF (x)>λ

−F (x)

)
, G(x) ≡

(
x
λ

)
,

and ϕ(x) ≡ ιRn(x) + φ∗(λ).
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• Nonlinear saddle point problems. Suppose that L : Rn × Rm → R is a continuously
differentiable function and let the mappings φ : Rn → (−∞,+∞] and ψ : Rm →
(−∞,+∞] be convex, proper, and lower semicontinuous. Furthermore, let us set

Θ : Rn × Rm → [−∞,+∞], Θ(x, y) := L(x, y) + φ(x)− ψ∗(y)

and let us consider the following general saddle point problem

find (x̄, ȳ) ∈ dom ϕ× dom ψ∗ such that:

Θ(x̄, y) ≤ Θ(x̄, ȳ) ≤ Θ(x, ȳ), ∀ (x, y) ∈ Rn × Rm.

Then, using the convexity of φ, ψ∗ and the differentiability of L, it can be shown that
the point (x̄, ȳ) ∈ dom ϕ× dom ψ∗ is a solution of the latter problem if and only if it
satisfies the following two conditions:

〈∇xL(x̄, ȳ), x− x̄〉 + ϕ(x)− ϕ(x̄) ≥ 0, ∀ x ∈ Rn,
〈−∇yL(x̄, ȳ), y − ȳ〉+ ψ∗(y)− ψ∗(ȳ) ≥ 0, ∀ y ∈ Rm.

Thus, (x̄, ȳ) is a saddle point of the function Θ if and only if it is a solution of the
generalized variational inequality (Pvip) where

x ≡ (x, y), F (x) ≡
(
∇xL(x, y)
−∇yL(x, y)

)
, G(x) ≡

(
x
y

)
,

and ϕ(x) ≡ φ(x) + ψ∗(y). The saddle point problem is also strongly related to the
so-called minimax and maximin problems

inf
x∈Rn

sup
y∈Rm

L(x, y) + φ(x)− ψ∗(y), sup
y∈Rm

inf
x∈Rn

L(x, y) + φ(x)− ψ∗(y).

More specifically, if (x̄, ȳ) is a saddle point, then it can be easily shown that x̄ is a
solution of minimax problem and ȳ is a solution of the corresponding maximin problem,
respectively. Hence, in the special setting

K : Rn → Rm, L(x, y) := 〈K(x), y〉,

and using the identity ψ∗∗ = ψ, our proposed variational framework can be applied to
solve nonlinear and nonsmooth problems of the general form

min
x

ϕ(x) + ψ(K(x)).

At this point, let us mention that if the mapping K : Rn → Rm is linear, then the
latter problem can be solved by Chambolle and Pock’s primal-dual algorithm [42] or via
an alternating direction method [91, 71]. Furthermore and very recently, Clason and
Valkonen [241, 51] also studied and analyzed an extended (primal-dual-based) approach
for the more general nonlinear setting. Clearly, this demonstrates the relevance of the
considered class of variational problems.
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6.1. Characterization and existence of solutions

This chapter is organized as follows. In section 6.1, we derive several reformulations of the
generalized variational inequality and based on [75, Chapter 2], we state different conditions
that ensure solvability of the problem (Pvip). Moreover, we will also reuse the concept of outer
second order regularity and decomposability and present a new second-order type condition
yielding local uniqueness of a solution of (Pvip). In section 6.2, based on [76, 223], we discuss
various basic properties of the regularized gap and the D-gap function for the generalized
variational inequality problem (Pvip). In particular, we will provide generalizations and
extensions of different stationarity results that were derived by Facchinei and Pang in [76]
for classical variational inequality problems and that can be used to characterize “optimality”
of stationary points of the regularized gap function and the D-gap function. In section 6.3,
we present an Armijo-type descent method and a globalized semismooth Newton method for
the problem (Pvip) and analyze their convergence properties in detail.

From now on, we will always assume that ϕ : Rn → (−∞,+∞] is a conxex, proper, and
lower semicontinuous mapping.

6.1. Characterization and existence of solutions

In the following, we briefly introduce monotonicity concepts for the generalized variational
inequality and discuss conditions that guarantee existence of a solution of the problem (Pvip).
We start with an investigation of alternative representations of the problem (Pvip) resembling
the first order optimality conditions that were analyzed in the previous chapters. At first, let
us note that the variational inequality (Pvip) can be equivalently rephrased as the following
generalized equation:

find x ∈ G−1(dom ϕ) such that
−F (x) ∈ ∂ϕ(G(x)).

Thus, by (3.1.2), this immediately implies that x ∈ G−1(dom ϕ) is a solution of the general-
ized variational inequality (Pvip), if and only if the point x is a zero of the so-called natural
residual V Λ : Rn → Rn,

(6.1.1) V Λ(x) := G(x)− proxΛ
ϕ(G(x)− Λ−1F (x)) = 0,

where Λ ∈ Sn++ is an arbitrary parameter matrix. Again, let us notice that the nonsmooth
mapping V Λ plays a similar role as its counterpart FΛ(x) = x− proxΛ

ϕ(x−Λ−1∇f(x)) from
the previous chapters. Now, if x ∈ Rn is a solution of the problem (Pvip), then it holds

〈F (x), th〉+ ϕ(G(x) + th)− ϕ(G(x)) ≥ 0, ∀ t > 0, ∀ h ∈ Rn

and hence, we can infer

(6.1.2) 〈F (x), h〉+ ϕ↓(G(x);h) ≥ 0, ∀ h ∈ Rn.

On the other hand, by setting h = y − G(x) and using Lemma 2.5.5, the latter inequality
also implies

〈F (x), y −G(x)〉+ ϕ(y)− ϕ(G(x)) ≥ 0, ∀ y ∈ Rn.
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In summary, these simple computations establish the following lemma, which apparently
does not need a proof.

Lemma 6.1.1. Let F,G : Ω→ Rn be given functions and suppose that the open set Ω ⊂ Rn
contains the domain G−1(dom ϕ). Then, the following conditions are mutually equivalent:

(i) The point x̄ is a solution of the generalized variational inequality (Pvip).

(ii) It holds −F (x̄) ∈ ∂ϕ(G(x̄)).

(iii) The point x̄ ∈ G−1(dom ϕ) satisfies the condition

〈F (x̄), h〉+ ϕ↓(G(x̄);h) ≥ 0, ∀ h ∈ Rn.

(iv) Let Λ ∈ Sn++ be arbitrary. The point x̄ is a solution of the fixed point-type equation

V Λ(x̄) = G(x̄)− proxΛ
ϕ(G(x̄)− Λ−1F (x̄)) = 0.

Similar to our terminology for convex composite problems and to Definition 5.1.5, we now
define the critical cone associated with the generalized variational inequality (Pvip) via

C(x) := {h ∈ Rn : 〈F (x), h〉+ ϕ↓(G(x);h) ≤ 0}.

Hence, if x̄ is a solution of the problem (Pvip), then the critical cone C(x̄) again coincides
with the normal cone N∂ϕ(G(x̄))(−F (x̄)). In the subsequent sections, we will also work with
the cone

CG(x) := {h ∈ Rn : DG(x)h ∈ C(x)} = DG(x)−1C(x),

which we will refer to as the G-critical cone.

Next, we state several monotonicity concepts for the function F that will be used to derive
and formulate existence conditions. The following definition is quite standard, see, e.g., [75,
Section 2.3 and Definition 2.3.1] or [223, 176].

Definition 6.1.2. Let Ω ⊂ Rn be an open set and let the functions F,G : Ω→ Rn be given.
Then, the mapping F is called

(i) G-monotone on Ω if it holds

〈F (x)− F (y), G(x)−G(y)〉 ≥ 0, ∀ x, y ∈ Ω.

(ii) strictly G-monotone on Ω if it holds

〈F (x)− F (y), G(x)−G(y)〉 > 0, ∀ x, y ∈ Ω and x 6= y.

(iii) (ξ,G)-monotone on Ω for some ξ > 1 if there exists a constant µ > 0 such that

〈F (x)− F (y), G(x)−G(y)〉 ≥ µ‖x− y‖ξ, ∀ x, y ∈ Ω.

Furthermore, F is called strongly G-monotone if F is (2, G)-monotone on Ω.
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If the function G is the identity mapping then we will drop the “G-” prefix in Definition
6.1.2 and the latter properties coincide with the conventional monotonicity concepts. Similar
to [75, Proposition 2.3.2], the monotonicity properties of F and G can also be alternatively
characterized via their derivatives and appropriate semidefiniteness assumptions. We will
not give a proof here.

Lemma 6.1.3. Let Ω ⊂ Rn be an open set and let the functions F,G : Ω→ Rn be continu-
ously differentiable on Ω. Then, it holds:

(i) F is G-monotone on Ω if and only if

〈DF (x)h,DG(x)h〉 ≥ 0, ∀ h ∈ Rn, ∀ x ∈ Ω.

(ii) F is strictly G-monotone on Ω if it holds

〈DF (x)h,DG(x)h〉 > 0, ∀ h ∈ Rn \ {0}, ∀ x ∈ Ω.

(iii) F is (2, G)-monotone on Ω if and only if there exists a constant µ > 0 such that

〈DF (x)h,DG(x)h〉 ≥ µ‖h‖2, ∀ h ∈ Rn, ∀ x ∈ Ω.

The next lemma presents several basic existence conditions and results for the generalized
and the mixed variational inequality. A more refined and thorough discussion of the existence
of solutions for classical variational inequalities can be found in the monograph [75, Sections
2 and 3]. Motivated by [75, Proposition 2.2.3, Theorem 2.3.3, and Exercise 2.9.11], we obtain
the following result.

Lemma 6.1.4. Let F,G : Ω→ Rn be given and let Ω ⊂ Rn be an open set that contains the
domain G−1(dom ϕ). It holds:

(i) If F is strictly G-monotone on Ω, then the generalized variational inequality (Pvip) has
at most one solution.

Now, suppose that G is the identity mapping. Then, the following two statements are valid.

(ii) Let us further suppose that ϕ is coercive on Ω and there exist x∗ ∈ dom ϕ and constants
ϑ > 0, ξ ≥ 0 such that

lim inf
‖x‖→∞, x∈Ω

〈F (x), x− x∗〉
‖x‖ξ

≥ ϑ.

Then, the problem (Pvip) has a solution.

(iii) If F is ξ-monotone for some ξ > 1 and if there exists x∗ ∈ dom ϕ such that ∂ϕ(x∗) 6= ∅,
then the generalized variational inequality (Pvip) has a unique solution on Ω.

Proof. Suppose that F is strictly G-monotone on Ω and let x̄, x̂ ∈ G−1(dom ϕ), x̄ 6= x̂, be
two different solutions of (Pvip). Then, it holds

〈F (x̄), G(x̂)−G(x̄)〉+ ϕ(G(x̂))− ϕ(G(x̄)) ≥ 0,

〈F (x̂), G(x̄)−G(x̂)〉+ ϕ(G(x̄))− ϕ(G(x̂)) ≥ 0.
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Thus, adding both inequalities and using the strict G-monotonicity of F yields the following
contradiction

0 ≤ 〈F (x̄)− F (x̂), G(x̂)−G(x̄)〉 < 0.

The remaining existence results essentially follow from [75, Exercise 2.9.11]. A more detailed
proof is provided in the appendix in section A.3.

Remark 6.1.5. In the general case G 6= I, existence of solutions can be established when
the functions F and G are Lipschitz continuous and strongly monotone. In this situation,
the mapping

x 7→ x− V Λ(x), Λ ∈ Sn++,

can be shown to be a contraction and thus, by Banach’s famous fixed point theorem, must
possess a unique fixed point that is also a solution of the generalized variational inequality
(Pvip). Let us emphasize that this result heavily relies on a correct balance of the Lipschitz
constants and the monotonicity parameters and is only valid in certain situations. Here, we
will not present these dependencies. However, let us refer to Noor et al. [174, 177] for a more
detailed examination and similar results.

In the following, based on the second order theory in chapter 5, we introduce second
order-type conditions that ensure local uniqueness of solutions. Similar to our observations
in chapter 5, the concept of outer second order regularity allows to formulate rather mild
conditions. In particular, this theorem generalizes and extends a related result of Facchinei
and Pang [75, Proposition 3.3.4], see also [75, Section 3.3].

Theorem 6.1.6. Suppose that F,G : Ω ⊂ Rn → Rn are continuously differentiable on an
open set Ω containing G−1(dom ϕ) and let x̄ ∈ G−1(dom ϕ) be a solution of the problem
(Pvip). Furthermore, let G be twice continuously differentiable on a neighborhood of x̄ and
assume that the mapping ϕ is outer second order regular at G(x̄) on DG(x̄)CG(x̄). Then, the
second order-type condition

(6.1.3) 2〈DF (x̄)h,DG(x̄)h〉 − ξ∗ϕ,h(−F (x̄)) > 0, ∀ h ∈ CG(x̄) \ {0},

where ξϕ,h(·) := ϕ↓↓− (G(x̄);DG(x̄)h; ·), implies that x̄ is an isolated solution of the generalized
variational inequality (Pvip).

Proof. The proof of this theorem is similar to the proof of Theorem 5.2.8 (ii), see also
section A.2. Let us suppose that x̄ is not an isolated solution of the generalized variational
inequality (Pvip). Then, there exists a sequence (xk)k of solutions of (Pvip) with xk 6= x̄,
for all k ∈ N, that converges to x̄, as k → ∞. Furthermore, setting tk := ‖xk − x̄‖ and
hk := t−1

k (xk − x̄), we may assume that hk converges to some point h 6= 0 (after extracting
an appropriate subsequence if necessary). Using the optimality of xk and a first order Taylor
expansion of G(xk) at x̄, we readily obtain

〈F (xk), tkDG(x̄)hk〉+ ϕ(G(x̄) + tkDG(x̄)hk + o(tk))− ϕ(G(x̄)) + o(tk) ≤ 0.

Thus, dividing both sides of the latter inequality by tk and taking the limes inferior k →∞,
this yields

〈F (x̄), DG(x̄)h〉+ ϕ↓(G(x̄);DG(x̄)h) ≤ 0.
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Consequently, by Lemma 6.1.1 (iii) and the definition of the G-critical cone, it follows h ∈
CG(x̄) \ {0}. Next, writing

xk = x̄+ tkh+ 1
2 t

2
k · [2t−1

k (hk − h)], wk := 2t−1
k (hk − h),

we obviously have tkwk → 0 and hence, a second order Taylor expansion of G at x̄ yields

G(xk) = G(x̄) + tkDG(x̄)h+ 1
2 t

2
kν

k, νk := DG(x̄)wk +D2G(x̄)[h, h] + o(1).

Accordingly, we obtain

〈F (xk), G(xk)−G(x̄)〉 = 〈F (x̄) + tkDF (x̄)hk + o(tk), G(xk)−G(x̄)〉
= −tkϕ↓(G(x̄);DG(x̄)h) + 1

2 t
2
k〈F (x̄), νk〉+ t2k〈DF (x̄)hk, DG(x̄)h〉+ o(t2k).

Combining the latter facts, this immediately establishes

ϕ(G(x̄) + tkDG(x̄)h+ 1
2 t

2
kν

k)− ϕ(G(x̄))− tkϕ↓(G(x̄);DG(x̄)h) ≤ 1
2 t

2
kτ

k,

where we set τk := −〈F (x̄), νk〉 − 2〈DF (x̄)hk, DG(x̄)h〉 − o(1) and used the fact that xk

is a solution of the generalized variational inequality (Pvip) for all k ∈ N. Hence, due to
tk(ν

k, τk) → 0, k → ∞, and h ∈ CG(x̄), the outer second order regularity of ϕ is applicable
and there exist sequences (ν̃k)k and (τ̃k)k such that

τ̃k − τk → 0, ν̃k − νk → 0, τ̃k ≥ ϕ↓↓− (G(x̄);DG(x̄); ν̃k)

for all k ∈ N. Altogether, we now obtain

0 ≥ τk − τ̃k + 〈F (x̄), νk − ν̃k〉+ o(1) + 2〈DF (x̄)hk, DG(x̄)h〉

+ 〈F (x̄), ν̃k〉+ ϕ↓↓− (G(x̄);DG(x̄)h, ν̃k)

≥ τk − τ̃k + 〈F (x̄), νk − ν̃k〉+ o(1) + 2〈DF (x̄)hk, DG(x̄)h〉 − ξ∗ϕ,h(−F (x̄)).

Finally, taking the limit k →∞, this clearly contradicts condition (6.1.3).

Remark 6.1.7. Let us note that the following second order-type condition

〈DF (x̄)h,DG(x̄)h〉 > 0, ∀ h ∈ CG(x̄) \ {0},

does also ensure local uniqueness of a solution x̄ ∈ G−1(dom ϕ) of the generalized variational
inequality (Pvip) if the function ϕ is not outer second order regular or if G is not twice
differentiable. This result can be derived in a similar (but easier) fashion to Theorem 6.1.6.
In particular, reusing the notation and mimicking the first steps of the proof of Theorem
6.1.6, a first order Taylor expansion of F (xk) and G(xk) at x̄ establishes

0 ≥ 〈F (xk), G(xk)−G(x̄)〉+ ϕ(G(xk))− ϕ(G(x̄))

≥ 〈F (x̄) + tkDF (x̄)hk + o(tk), G(xk)−G(x̄)〉 − 〈F (x̄), G(xk)−G(x̄)〉
= t2k〈DF (x̄)hk, DG(x̄)hk〉+ o(t2k).
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Clearly, taking the limit k → ∞, this produces the same contradiction as in the proof of
Theorem 6.1.6. Again, let us refer to [75, Proposition 3.3.4] for comparison.

For general mixed variational inequalities of the form (Pvip) the second order-type con-
dition (6.1.3) seems to be new. Let us also mention that Shapiro [219] derived several
local uniqueness results for classical variational inequalities that can be associated with a
quadratic growth condition for the regularized gap function and that can be established un-
der weaker differentiability assumptions. In the following, we briefly discuss the curvature
term ξ∗ϕ,h(−F (x̄)) and present some implications in the decomposable setting.

Suppose that x̄ ∈ G−1(dom ϕ) is a solution of the problem (Pvip) and let h ∈ CG(x̄) be
arbitrary. Then, using −F (x̄) ∈ ∂ϕ(G(x̄)) and similar to Remark 5.2.9 and the discussion
in section 5.5, it holds

ξϕ,h(w) = ϕ↓↓− (G(x̄);DG(x̄)h,w) ≥ −〈F (x̄), w〉, ∀ w ∈ Rn.

Thus, it follows −ξ∗ϕ,h(−F (x̄)) = infw 〈F (x̄), w〉 + ξϕ,h(w) ≥ 0. Moreover, this shows that
the second-order type conditions (6.1.3) are generally weaker than the sufficient conditions
presented in [75, Proposition 3.3.3 and Remark 3.3.4] or in Remark 6.1.7.

Now, let us assume that ϕ is C2-fully decomposable at G(x̄) and let (ϕd, H) be a corre-
sponding decomposition pair. Then, due to Lemma 5.3.5, ϕ is twice directionally epidiffer-
entiable and outer second order regular at G(x̄) in all directions h ∈ Rn with DH(G(x̄))h ∈
dom ϕd. In particular, this implies that the function ϕ is outer second order regular at G(x̄)
on DG(x̄)CG(x̄) and on C(x̄) = N∂ϕ(G(x̄))(−F (x̄)). Furthermore, as in section 5.5, we can
establish the following equivalence:

−F (x̄) ∈ ∂ϕ(G(x̄)) ⇐⇒ ∃ µ̄ ∈ ∂ϕd(0) : F (x̄) +DH(G(x̄))>µ̄ = 0.

Next, as shown in Lemma 5.1.11, the nondegeneracy condition,

DH(G(x̄))Rn + lin N∂ϕd(0)(µ̄) = Rm,

implies that the vector µ̄ ∈ Rm is uniquely determined and hence, analogous to Lemma 5.3.9,
it follows

−ξ∗ϕ,h(−F (x̄)) = 〈µ̄,D2H(G(x̄))[DG(x̄)h,DG(x̄)h]〉, ∀ h ∈ CG(x̄).

Consequently, the curvature term −ξ∗ϕ,h(−F (x̄)) can again be represented as an appropriate
quadratic form. Moreover, under the strict complementarity condition,

−F (x̄) ∈ ri ∂ϕ(G(x̄)),

and invoking Lemma 5.3.32, we can infer that the proximity operator proxΛ
ϕ has to be Fréchet

differentiable at the point ū := G(x̄)− Λ−1F (x̄). Additionally, in this situation, the critical
cone C(x̄) = N∂ϕ(G(x̄))(−F (x̄)) is also a subspace. Collecting these preparatory components
and reconsidering the proof of Theorem 5.3.26 or the different steps in section 5.5, it is
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possible to derive the following prox-based, intrinsic characterization of the curvature term

−ξ∗ϕ,h(−F (x̄)) = 〈DG(x̄)h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]DG(x̄)h〉Λ, ∀ h ∈ CG(x̄),

where QΛ
ϕ(ū) = Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2 . We will not go into further detail here. However, let us

note that this representation will again be advantageous and helpful when analyzing local
convergence properties of the semismooth Newton method later on.

6.2. Merit and gap functions for GVIPs

In this section, we introduce the regularized gap function and the D-gap function for the
generalized variational inequality problem (Pvip) and discuss their main properties in detail.

6.2.1. The regularized gap function

The regularized gap function was originally proposed by Auchmuty [5] and Fukushima [86]
for classical variational inequalities. For a given function F : Rn → Rn and a set K ⊂ Rn it
takes the form:

Ggap : Rn → R, x 7→ Ggap(x) := max
y∈K

〈F (x), x− y〉 − 1

2
‖x− y‖2Λ, Λ ∈ Sn++.

Indeed, Auchmuty and Fukushima were the first who showed that this gap function is an
appropriate merit function for the variational inequality problem and that it possesses all the
properties described in the beginning of this chapter. Its overall popularity primarily stems
from the fact that the regularized gap function is continuously differentiable whenever the
function F is continuously differentiable. Thus, first order methods, such as the projected
gradient descent method, can be applied to solve the corresponding gap function-based op-
timization problem (Pmer). Moreover, the regularized gap function is also often utilized to
construct a globalization framework for fast, but only locally convergent methods, see, e.g.,
[231, 269] and [76, Section 10.4.4]. For more information on the regularized gap function and
other merit function-based approaches, we refer to [86, 185, 186, 76].

In the following, we present an extended definition of the regularized gap function for
generalized variational inequalities that is due to Solodov [223]. Let us also mention that
Patriksson [185, 186] considered a similar extension for a specific class of GVIPs with G = I.

Definition 6.2.1. Let the functions F : Ω→ Rn and G : Ω→ Rn be defined on an open set
Ω ⊂ Rn that contains the domain G−1(dom ϕ) and let Λ ∈ Sn++ be an arbitrary parameter
matrix. The regularized gap function GΛ : Ω→ [−∞,+∞] is defined as

GΛ(x) := max
y∈Rn

{
〈F (x), G(x)− y〉+ ϕ(G(x))− ϕ(y)− 1

2
‖G(x)− y‖2Λ

}
,

for all x ∈ Ω.

The following lemma establishes an alternative representation of the regularized gap func-
tion GΛ that will be useful for our further investigation.
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Lemma 6.2.2. Let F,G : Ω→ Rn be given and let Ω ⊂ Rn be an open set that contains the
domain G−1(dom ϕ). Let Λ ∈ Sn++ be an arbitrary parameter matrix. Then, it holds

GΛ(x) =
1

2
‖F (x)‖2Λ−1 + ϕ(G(x))− envΛ

ϕ(G(x)− Λ−1F (x))

for all x ∈ Ω.

Proof. A direct calculation shows

GΛ(x) = ϕ(G(x))− min
y∈Rn

{
ϕ(y) +

1

2

(
2〈−Λ−1F (x),Λ(G(x)− y)〉+ ‖G(x)− y‖2Λ

)}
= ϕ(G(x)) +

1

2
‖Λ−1F (x)‖2Λ − min

y∈Rn

{
ϕ(y) +

1

2
‖G(x)− Λ−1F (x)− y‖2Λ

}
=

1

2
‖F (x)‖2Λ−1 + ϕ(G(x))− envΛ

ϕ(G(x)− Λ−1F (x)),

as desired.

Unfortunately, Lemma 6.2.2 immediately implies that the regularized gap function cannot
be expected to be continuously differentiable in general. Clearly, in the classical setting, the
nonsmooth term transparent text expansion

ϕ(G(x)) = ιK(G(x)) =

{
0 if G(x) ∈ K,
+∞ otherwise

vanishes whenever the vector G(x) is feasible. However, this is not the case for more general
choices of ϕ. Now, throughout this section, we will use the following abbreviation

u(x) := G(x)− Λ−1F (x), Λ ∈ Sn++.

Next, we derive several important properties of the regularized gap function and verify
that GΛ is an appropriate merit function for the generalized variational inequality (Pvip).
See also [223, Theorem 4] and [76, Theorem 10.2.3, Remark 10.3.8] for similar results.

Lemma 6.2.3. Let F : Ω→ Rn and G : Ω→ Rn be two given continuous functions and let
Ω ⊂ Rn be an open set containing the domain G−1(dom ϕ). Let Λ ∈ Sn++ be an arbitrary
parameter matrix. Then, the following two statements are valid.

(i) The regularized gap function is lower semicontinuous on Ω and it holds

GΛ(x) ≥ 1

2
‖V Λ(x)‖2Λ ≥ 0, ∀ x ∈ Ω.

(ii) It holds GΛ(x) = 0 if and only if x is a solution of the variational inequality (Pvip).

Proof. Since the Moreau envelope envΛ
ϕ is continuously differentiable, (see Lemma 3.1.5),

the lower semicontinuity of the gap function GΛ follows from the continuity of F , G, and the
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lower semicontinuity of ϕ. Moreover, an easy calculation yields

GΛ(x) =
1

2
‖F (x)‖2Λ−1 −

1

2
‖proxΛ

ϕ(u(x))− u(x)‖2Λ + ϕ(G(x))− ϕ(proxΛ
ϕ(u(x)))

≥ 1

2
‖F (x)‖2Λ−1 −

1

2
‖Λ−1F (x)− V Λ(x)‖2Λ + 〈∇envΛ

ϕ(u(x)), V Λ(x)〉

= 〈F (x), V Λ(x)〉 − 1

2
‖V Λ(x)‖2Λ + 〈ΛV Λ(x)− F (x), V Λ(x)〉 =

1

2
‖V Λ(x)‖2Λ.

Clearly, this also shows that any zero of the regularized gap function GΛ is a solution of the
problem (Pvip). On the other hand, if x is a solution of the generalized variational inequality,
then it holds G(x) = proxΛ

ϕ(u(x)) and it follows

GΛ(x) =
1

2
‖F (x)‖2Λ−1 −

1

2
‖G(x)− u(x)‖2Λ = 0.

This finishes the proof of Lemma 6.2.3.

The latter results clearly suggest to compute solutions of the generalized variational in-
equality (Pvip) via minimization of the regularized gap function. More specifically, let us
define the so-called regularized gap program:

(6.2.1) min
x

GΛ(x), s. t. G(x) ∈ dom ϕ.

Now, if x̄ is a stationary point of the latter problem satisfying GΛ(x̄) = 0, then Lemma 6.2.3
implies that this point is also a solution of the variational inequality (Pvip). In this respect,
any stationary point of the regularized gap program will be called variational optimal if it is
also a solution of the problem (Pvip). Obviously, every variational optimal stationary point
is automatically a global solution the minimization problem (6.2.1).

In general, however, we cannot expect that stationary points of the regularized gap function
or of the regularized gap program (6.2.1) are solutions of the generalized variational inequality
(Pvip) without any further assumptions. In the following, based on related results for classical
variational inequalities in [76, Section 10.2.1], we want to derive several equivalent conditions
that guarantee variational optimality of stationary points of the regularized gap function.

Let us note that such a discussion is particularly important if the regularized gap func-
tion GΛ is used as a merit function for optimization problems of the type (P) or (Pc), as
has already been indicated in the introductory part of this chapter. Here, solutions of the
generalized variational inequality (Pvip) or of the nonsmooth equation (6.1.1) correspond to
stationary points of the initial minimization problem and thus, variational optimality is an
essential requirement for global convergence.

Thus, let x̄ be an arbitrary stationary point of problem (6.2.1) and suppose that Robinson’s
constraint qualification

0 ∈ int{G(x̄) +DG(x̄)Rn − dom ϕ}

is satisfied at x̄. Then, using

∇envΛ
ϕ(u(x̄)) = Λ(u(x̄)− proxΛ

ϕ(u(x̄))) = ΛV Λ(x̄)− F (x̄),
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the corresponding first order necessary optimality conditions take the following form

(GΛ)↓(x̄;h) = ϕ↓(G(x̄);DG(x̄)h) + F (x̄)>Λ−1DF (x̄)h

−∇envΛ
ϕ(u(x̄))>(DG(x̄)− Λ−1DF (x̄))h

= ϕ↓(G(x̄);DG(x̄)h) + 〈V Λ(x̄), DF (x̄)h〉+ 〈F (x̄)− ΛV Λ(x̄), DG(x̄)h〉 ≥ 0

for all h ∈ Rn. Moreover, by using Lemma 2.5.5, Lemma 2.5.11 (ii), and the characterization
of the proximity operator, we obtain

ϕ(proxΛ
ϕ(u(x)) + h)− ϕ(proxΛ

ϕ(u(x)))(6.2.2)

≥ ϕ↓(proxΛ
ϕ(u(x)), h) ≥ 〈∇envΛ

ϕ(u(x)), h〉 = 〈ΛV Λ(x)− F (x), h〉,

for any vector x ∈ Rn and all h ∈ Rn. Clearly, this yields

ϕ↓(proxΛ
ϕ(u(x)), h) > −∞, ∀ h ∈ Rn,

and, if the function ϕ is additionally continuous at proxΛ
ϕ(u(x)) then we have

dom ϕ↓(proxΛ
ϕ(u(x)), ·) = Rm.

Now, for a vector x ∈ G−1(dom ϕ) and an arbitrary matrix Λ ∈ Sn++, we define the sets

T Λ(x) := {h ∈ Rn : ϕ↓(G(x);h) + ϕ↓(proxΛ
ϕ(u(x));−h) ≤ 0}

and
N (x) := {h ∈ Rn : ϕ↓(G(x);h) + 〈F (x), h〉 = 0}.

Since the directional epiderivatives ϕ↓(G(x); ·) and ϕ↓(proxΛ
ϕ(u(x)); ·) are convex and posi-

tively homogeneous, it immediately follows that the sets T Λ(x) and N (x) are convex cones.
Furthermore, if x̄ is a stationary point of the regularized gap function GΛ and Robinson’s
constraint qualification is satisfied at x̄, then our latter computations and Lemma 2.5.11 (i)
imply

(6.2.3) ϕ↓(G(x̄); 0) = 0.

Consequently, ϕ is subdifferentiable at G(x̄) and again by applying Lemma 2.5.11 (ii), we
have

ϕ↓(G(x̄);h) > −∞, ∀ h ∈ Rn.

In this case, the cones T Λ(x̄) and N (x̄) are nonempty and, due to the lower semicontinuity
of the directional epiderivatives, they are also closed sets.

In the following, we discuss an important special case. LetK ⊂ Rn be a convex, nonempty,
and closed set and let us consider the indicator function ϕ(x) := ιK(x). Then, due to Example
2.5.9, it holds

ϕ↓(x;h) = ιTK(x)(h), ∀ x ∈ K, ∀ h ∈ Rn.
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Hence, for any x ∈ G−1(dom ϕ) = G−1(K), we obtain

T Λ(x) = TK(G(x)) ∩ (−TK(PΛ
K(u(x)))

and the critical cone reduces to

C(x) = {h ∈ TK(G(x)) : 〈F (x), h〉 ≤ 0} = TK(G(x)) ∩ {F (x)}◦ ⊂ {F (x)}◦.

Moreover, if the function G is the identity mapping, then it follows

T Λ(x) = TK(x) ∩ (−TK(PΛ
K(x− Λ−1F (x))))

and the cones T Λ(x) and T Λ(x)∩C(x) coincide with the cones “Tc(x;K)” and “Tc(x;K,F )”
that were introduced and discussed by Facchinei and Pang in [76, Section 10.2.1]. Let us also
note that Robinson’s constraint qualification is automatically fulfilled when G is the identity
mapping. In what follows, we will show that the cones T Λ(x) and T Λ(x) ∩ C(x) represent
the correct generalizations of the objects “Tc(x;K)” and “Tc(x;K,F )”. This will then allow
us to extend the variational optimality result in [76] to the generalized variational setting.

Before we present the full theorem, let us assume that x̄ is a solution of the generalized
variational inequality (Pvip) and that Robinson’s constraint qualification is satisfied. Then,
it holds V Λ(x̄) = 0 and thus, we can infer G(x̄) = proxΛ

ϕ(u(x̄)). Therefore, the cone T Λ(x̄)
reduces to the following set

T Λ(x̄) = {h ∈ Rn : ϕ↓(G(x̄);h) + ϕ↓(G(x̄);−h) = 0} = lin ϕ↓(G(x̄); ·),

where we used the subadditivity of the epiderivative ϕ↓(G(x̄); ·) and (6.2.3). Moreover, as
we have already seen, the critical cone C(x̄) admits the following representation:

C(x̄) = {h ∈ Rn : 〈F (x̄), h〉+ ϕ↓(G(x̄);h) = 0} = N∂ϕ(G(x̄))(−F (x̄)) = N (x̄).

Consequently, if x̄ solves the generalized variational inequality (Pvip), then the sets T Λ(x̄)
and T Λ(x̄) ∩ C(x̄) are equal to the lineality space of the normal cone N∂ϕ(G(x̄))(−F (x̄)) and
the cone N (x̄) coincides with the critical cone; let us refer to the discussion in section 5.1.3
for further details.

In the following result and similar to [76, Theorem 10.2.5], we need the cones T Λ(x̄),
T Λ(x̄) ∩ C(x̄), and N (x̄) for a stationary point x̄ of (6.2.1) that is not (yet) known to be a
solution of the problem (Pvip).

Theorem 6.2.4. Let the mappings F, G : Ω ⊂ Rn → Rn be continuously differentiable on the
open set Ω ⊂ Rn and suppose that Ω contains the domain G−1(dom ϕ). Let Λ ∈ Sn++ be an
arbitrary parameter matrix and let x̄ ∈ G−1(dom ϕ) be a stationary point of the regularized
gap function GΛ. Furthermore, let us assume that Robinson’s constraint qualification is
satisfied at x̄. Then, the following three statements are equivalent:

(i) x̄ solves the generalized variational inequality (Pvip).

(ii) The cone T Λ(x̄) ∩ C(x̄) is contained in N (x̄).
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(iii) The implication below holds:

(6.2.4)
d ∈ T Λ(x̄) ∩ C(x̄)

DF (x̄)>d ∈ [DG(x̄)−1T Λ(x̄)]◦

}
=⇒ d ∈ N (x̄).

Proof. We proceed as in [76, Theorem 10.2.5]. If x̄ is a solution of the variational inequality
(Pvip), then we have already shown, that the cone T Λ(x̄) coincides with the linear subspace
lin N∂ϕ(G(x̄))(−F (x̄)). Consequently, statement (i) implies (ii). Since the implication “(ii)⇒
(iii)” is obvious, it remains to be shown that part (iii) implies (i). We start with a quite easy
observation. Due to (2.5.1), we have

ϕ↓(G(x̄);−V Λ(x̄)) + ϕ↓(proxΛ
ϕ(u(x̄));V Λ(x̄))

≤ ϕ(G(x̄)− V Λ(x̄))− ϕ(G(x̄)) + ϕ(proxΛ
ϕ(u(x̄)) + V Λ(x̄))− ϕ(proxΛ

ϕ(u(x̄)))

= ϕ(proxΛ
ϕ(u(x̄)))− ϕ(G(x̄)) + ϕ(G(x̄))− ϕ(proxΛ

ϕ(u(x̄))) = 0.

Thus, it follows d := −V Λ(x̄) ∈ T Λ(x̄). Now, by using the optimality conditions (6.2.2) and
setting h = V Λ(x̄), we obtain

(6.2.5) ϕ↓(proxΛ
ϕ(u(x̄));V Λ(x̄)) + 〈F (x̄), V Λ(x̄)〉 ≥ ‖V Λ(x̄)‖2Λ

and hence, we readily establish

ϕ↓(G(x̄); d) + 〈F (x̄), d〉 ≤ −ϕ↓(proxΛ
ϕ(u(x̄));−d) + 〈F (x̄), d〉 ≤ 0.

This shows that the vector d must be an element of the cone T Λ(x̄) ∩ C(x̄). Next, we will
verify the second condition in (6.2.4). Again, by using (6.2.2), we get

ϕ↓(proxΛ
ϕ(u(x̄));−DG(x̄)h)− 〈ΛV Λ(x̄)− F (x̄),−DG(x̄)h〉 ≥ 0

for all h ∈ Rn. Now, adding the latter inequality and the stationarity condition

(GΛ)↓(x̄;h) = ϕ↓(G(x̄);DG(x̄)h) + 〈V Λ(x̄), DF (x̄)h〉+ 〈F (x̄)− ΛV Λ(x̄), DG(x̄)h〉 ≥ 0,

we infer

〈−V Λ(x̄), DF (x̄)h〉 ≤ ϕ↓(G(x̄);DG(x̄)h) + ϕ↓(proxΛ
ϕ(u(x̄));−DG(x̄)h), ∀ h ∈ Rn.

Thus, for all h ∈ DG(x̄)−1T Λ(x̄), it follows

〈DF (x̄)>d, h〉 = 〈−V Λ(x̄), DF (x̄)h〉 ≤ 0

and we can conclude DF (x̄)>d ∈ [DG(x̄)−1T Λ(x̄)]◦. Consequently, by (6.2.4), we deduce
d ∈ N (x̄) and hence, using (6.2.5), this implies

‖V Λ(x̄)‖2Λ ≤ ϕ↓(G(x̄); d) + ϕ↓(proxΛ
ϕ(u(x̄));−d) ≤ 0.

This shows that x̄ is a solution of the generalized variational inequality (Pvip) and finishes
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the proof of Theorem 6.2.4.

In the following, we briefly consider the special case of a mixed variational inequality for
which an easy characterization of the conditions in Theorem 6.2.4 is available. Therefore, let
us suppose that the function G is the identity mapping and let x̄ ∈ dom ϕ be a stationary
point of the regularized gap function. Then, our argumentation in the proof of Theorem
6.2.4 showed

(6.2.6) − V Λ(x̄) ∈ T Λ(x̄) ∩ C(x̄), −DF (x̄)>V Λ(x̄) ∈ T Λ(x̄)◦ ⊂ [T Λ(x̄) ∩ C(x̄)]◦.

Consequently, if the matrix DF (x̄) is strictly copositive on the cone T Λ(x̄) ∩ C(x̄), i.e., if it
holds

〈h,DF (x̄)h〉 > 0, ∀ h ∈ T Λ(x̄) ∩ C(x̄) \ {0},

then (6.2.6) immediately implies that x̄ is a solution of the generalized variational inequality
(Pvip). Moreover, if DF (x̄) is strictly copositive on the critical cone C(x̄), then by Remark
6.1.7, we can even infer that x̄ is an isolated solution of the problem (Pvip). This observation
is analogous to the corresponding result for classical variational inequalities, see [76, Corollary
10.2.7].

6.2.2. The D-Gap function

The D-gap function was first introduced by Peng [188] and Yamashita et al. [257] and is
defined as the difference of two regularized gap functions. This elegant approach formally
eliminates the nonsmooth term “ϕ(G(x))” and thus resolves several disadvantages of the
regularized gap function. In particular, Peng and Yamashita et al. showed that the D-gap
function is a merit function and that the corresponding D-gap program (Pmer) allows to
reformulate the classical variational inequality as an unconstrained optimization problem. In
the last decade, the D-gap function has been analyzed by various authors and in different
contexts [227, 257, 121, 120, 224, 76, 223, 245, 246]. In the following, we will consider an
extended version of the D-gap function for generalized variational inequalities and discuss
its properties.

First, we give a precise definition of the D-gap function that is again due to Solodov [223].

Definition 6.2.5. Let A,B ∈ Sn++, B � A, be arbitrary parameter matrices and let F,G :
Rn → Rn be given functions. The D-gap function of the generalized variational inequality
problem (Pvip) is defined as

HA,B : Rn → R, HA,B(x) := GA(x)−GB(x)

for all x ∈ Rn.

Using Lemma 6.2.2, we immediately obtain the following alternative representation of the
D-gap function

HA,B(x) =
1

2
‖F (x)‖2A−1−B−1 + envBϕ (G(x)−B−1F (x))− envAϕ (G(x)−A−1F (x)).

Thus, by applying Lemma 3.1.5, we deduce the next differentiability result.
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Lemma 6.2.6. Let A,B ∈ Sn++, B � A, be arbitrary parameter matrices and suppose
that the mappings F,G : Rn → Rn are continuously differentiable on Rn. Then, the D-gap
function HA,B is also continuously differentiable on Rn and it holds

∇HA,B(x) = DG(x)>
(
BV B(x)−AV A(x)

)
−DF (x)>(V B(x)− V A(x)).

Now, similar to Solodov [223, Theorem 6], we derive two important growth conditions for
the D-gap function. In particular, the estimates below will show that the D-gap function is
in fact a merit function for the problem (Pvip).

Lemma 6.2.7. Let A,B ∈ Sn++, B � A, be arbitrary matrices and let F,G : Rn → Rn be
given functions. Then, it holds

1

2
‖V B(x)‖2B−A ≤ HA,B(x) ≤ 1

2
‖V A(x)‖2B−A, ∀ x ∈ Rn.

Hence, HA,B is nonnegative on Rn and a vector x ∈ Rn is a solution of the generalized
variational inequality problem (Pvip) if and only if HA,B(x) = 0.

Proof. Setting pa := proxAϕ (G(x)−A−1F (x)) and pb := proxBϕ (G(x)−B−1F (x)) and using
the optimality principle (6.2.2), we readily get

HA,B(x) =
1

2
‖F (x)‖2A−1−B−1 +

1

2
‖V B(x)−B−1F (x)‖2B −

1

2
‖V A(x)−A−1F (x)‖2A

+ ϕ(pb)− ϕ(pa)

≥ 1

2
‖V B(x)‖2B − 〈F (x), V B(x)− V A(x)〉 − 1

2
‖V A(x)‖2A

+ 〈AV A(x)− F (x), V A(x)− V B(x)〉

=
1

2
‖V B(x)‖2B − 〈V B(x), V A(x)〉A +

1

2
‖V A(x)‖2A ≥

1

2
‖V B(x)‖2B−A.

On the other hand, due to

ϕ(pb)− ϕ(pa) ≤ 〈BV B(x)− F (x), V A(x)− V B(x)〉,

the upper estimate can be established in a similar fashion. The last claim obviously follows
from Lemma 6.1.1 (iv).

Next, we show that the norm of the natural residual ‖V A(x)‖ does not grow to much with
respect to the parameter matrix A. This result is a straightforward extension of Lemma
4.1.3 where we considered the case F ≡ ∇f and G ≡ I.

Lemma 6.2.8. Let F,G : Rn → Rn be given functions and let A,B ∈ Sn++ be two arbitrary
symmetric and positive definite matrices. Then, for all x ∈ Rn and for W := B−

1
2AB−

1
2 , it

follows

‖V A(x)‖ ≤
1 + λmax(W ) +

√
1− 2λmin(W ) + λmax(W )2

2

λmax(B)

λmin(A)
‖V B(x)‖.
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Proof. The proof is almost identical to the proof presented in [236]. More precisely, by using
the optimality principle (6.2.2) separately for proxAϕ (G(x) − A−1F (x)) and proxBϕ (G(x) −
B−1F (x)) and by adding the resulting inequalities, we readily obtain

〈BV B(x)−AV A(x), V B(x)− V A(x)〉 ≤ 0.

(The same inequalities were also used in the proof of the last lemma). From this point, we
can proceed as in [236, Lemma 3].

Remark 6.2.9. Let A,B ∈ Sn++, B � A, be given and let (Ak)k, (Bk)k ⊂ Sn++ be two
families of symmetric, positive definite matrices. Suppose that there exist matrices ΛbM �
Λbm � ΛaM � Λam � 0 such that

ΛbM � Bk � Λbm, ΛaM � Ak � Λam, ∀ k ∈ N.

Then, similar to Remark 4.1.4 and by combining Lemma 6.2.7 and 6.2.8, it is possible to
derive the bounds

λ · ‖V A(x)‖ ≤ ‖V Ak(x)‖ ≤ λ · ‖V A(x)‖

and
λ ·HA,B(x) ≤ HAk,Bk(x) ≤ λ ·HA,B(x)

for all k ∈ N, x ∈ Rn and some constants λ, λ > 0 which do not depend on k, Ak or Bk.
Hence, if the parameter matrices (Ak)k, (Bk)k remain in bounded (and separated) sets, then
the latter inequalities imply

HAk,Bk(xk)→ 0 ⇐⇒ HA,B(xk)→ 0, and V Ak(xk)→ 0 ⇐⇒ V A(xk)→ 0,

as k →∞. Again, if the functions HA,B or V A are used within an iterative procedure, this
shows that the parameter matrices A and B are allowed to change in each iteration.

Similar to the previous section, we will now derive several equivalent conditions that guar-
antee variational optimality of a stationary point x̄ ∈ G−1(dom ϕ) of the D-gap function.
(A stationary point of the D-gap function will again be called variational optimal if it is a
solution of the problem (Pvip)). Again, our methodology is strongly motivated by related
results of Facchinei and Pang that were established for classical variational inequalities, see
[76, Section 10.3]. Now, let A, B ∈ Rn×n be two arbitrary parameter matrices satisfying

A := α−1I, B := β−1I, α > β > 0

and let x ∈ G−1(dom ϕ) be given. Let us mention that the following definitions and results
can also be formulated for more general parameter matrices A,B ∈ Sn++. However, since in
the fully general setting, the intuition behind the subsequent objects becomes less clear, we
decided to present a “streamlined” version for the simpler, one-dimensional parametrizations.
Thus, for ua(x) := G(x)−A−1F (x) and ub(x) := G(x)−B−1F (x), let us define

Πa(h) := ϕ↓(proxAϕ (ua(x));h), Πb(h) := ϕ↓(proxBϕ (ub(x));h).
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Moreover, let us consider the following sets

T A,B(x) := {h ∈ Rn : Πb(h) + Πa(−h) ≤ 0},

CA,B(x) := {h ∈ Rn : 〈F (x), h〉 ≤ Πb((B −A)−1Ah) + Πa((A−B)−1Bh)},

and

NA,B(x) := {h ∈ Rn : 〈F (x), h〉 = Πb((B −A)−1Ah) + Πa((A−B)−1Bh)}.

Again, as in the last section, the properties of the epiderivatives Πa and Πb imply that the
sets T A,B(x), CA,B(x), and NA,B(x) are convex, nonempty, and closed cones. Furthermore,
if x̄ ∈ G−1(dom ϕ) is a solution of the generalized variational inequality (Pvip), then it holds

G(x̄) = proxAϕ (ua(x̄)), G(x̄) = proxBϕ (ub(x̄))

and the cone T A,B(x̄) coincides with the lineality space of the normal cone N∂ϕ(G(x̄))(−F (x̄)).
Now, by using the positive homogeneity of the epiderivative ϕ↓(G(x̄); ·), we obtain

Πb(B −A)−1Ah) + Πa((A−B)−1Bh) =
β

α− β
ϕ↓(G(x̄);h) +

α

α− β
ϕ↓(G(x̄);−h).

Hence, in this situation, it holds

lin ϕ↓(G(x̄); ·) = T A,B(x̄) ⊂ T A,B(x̄) ∩ CA,B(x̄) ⊂ NA,B(x̄).

Before stating the main result of this section, let us note that the cones CA,B(x̄) and NA,B(x̄)
can also be simplified as follows:

CA,B(x) := {h ∈ Rn : (α− β)〈F (x), h〉 ≤ αΠa(−h) + βΠb(h)},
NA,B(x) := {h ∈ Rn : (α− β)〈F (x), h〉 = αΠa(−h) + βΠb(h)}.

Theorem 6.2.10. Let the mappings F, G : Rn → Rn be continuously differentiable and let
A = α−1I, B = β−1I be arbitrary parameter matrices with α > β > 0. Furthermore, let
x̄ ∈ G−1(dom ϕ) be a stationary point of the D-gap function HA,B and suppose that the
matrix DG(x̄) is invertible. Then, the following three statements are equivalent:

(i) x̄ solves the generalized variational problem (Pvip).

(ii) The set T A,B(x̄) ∩ CA,B(x̄) is contained in NA,B(x̄).

(iii) The implication below holds:

(6.2.7)
d ∈ T A,B(x̄) ∩ CA,B(x̄)

DF (x̄)>d ∈ DG(x̄)>[T A,B(x̄)]◦

}
=⇒ d ∈ NA,B(x̄).

Proof. Since the first implication “(i) ⇒ (ii)” follows from our preceding discussion and
the second implication “(ii) ⇒ (iii)” is rather obvious, we directly start with the verification
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of the remaining direction “(iii) ⇒ (i)”. Let us define d := V B(x̄)−V A(x̄) = proxAϕ (ua(x̄))−
proxBϕ (ub(x̄)). Then, by using the optimality principle (6.2.2), it follows

Πb(d) + Πa(−d) ≤ ϕ(proxBϕ (ub(x̄)) + d)− ϕ(proxBϕ (ub(x̄)))

+ ϕ(proxAϕ (ua(x̄))− d)− ϕ(proxAϕ (ua(x̄))) = 0.

This obviously implies d ∈ T A,B(x̄). Moreover, using the second inequality in (6.2.2), we
readily establish the following estimates:

• Πb((B −A)−1Ad) ≥ 〈BV B(x̄)− F (x̄), (B −A)−1A[V B(x̄)− V A(x̄)]〉,

• Πa((A−B)−1Bd) ≥ 〈F (x̄)−AV A(x̄), (B −A)−1B[V B(x̄)− V A(x̄)]〉.

Now, due to (B−A)−1B = I + (B−A)−1A and by adding the latter inequalities, we obtain

Πb((B −A)−1Ad) + Πa((A−B)−1Bd)(6.2.8)

≥ 〈BV B(x̄)−AV A(x̄)− (B −A)V A(x̄), (B −A)−1Ad〉+ 〈F (x̄), d〉
= ‖d‖2A(B−A)−1B + 〈F (x̄), d〉

and hence, it holds d ∈ CA,B(x̄). Similarly, the optimality principle (6.2.2) also implies

Πb(DG(x̄)h) ≥ 〈BV B(x̄)− F (x̄), DG(x̄)h〉, Πa(−DG(x̄)h) ≥ 〈F (x̄)−AV A(x̄), DG(x̄)h〉

for all h ∈ Rn. Next, by summing the latter inequalities, we get

〈DG(x̄)>[BV B(x̄)−AV A(x̄)], h〉 ≤ Πb(DG(x̄)h) + Πa(−DG(x̄)h) ≤ 0

for all h ∈ Rn with DG(x̄)h ∈ T A,B(x̄). Hence, this shows DG(x̄)>[BV B(x̄) − AV A(x̄)] ∈
[DG(x̄)−1T A,B(x̄)]◦. Now, due to the invertibility of the matrix DG(x̄), a general, compu-
tational result of Bonnans and Shapiro, [27, Lemma 3.27], is applicable and it follows

[DG(x̄)−1T A,B(x̄)]◦ = DG(x̄)>[T A,B(x̄)]◦.

Consequently, since the stationarity of x̄ implies

(6.2.9) ∇HA,B(x̄) = DG(x̄)>[BV B(x̄)−AV A(x̄)]−DF (x̄)>d = 0,

we immediately establish DF (x̄)>d ∈ DG(x̄)>[T A,B(x̄)]◦ and from (6.2.7) and (6.2.8) we
deduce d = 0. Finally, by combining the invertibility of the matrix DG(x̄), V A(x̄) = V B(x̄),
and (6.2.9), we obtain

V A(x̄) = V B(x̄) = 0.

This completes the proof of Theorem 6.2.10.

Remark 6.2.11. A careful examination of the proof of Theorem 6.2.10 shows that the
implication “(iii) ⇒ (i)” does also hold for more general parameter matrices A,B ∈ Sn++.
However, in this case, the connection between the sets T A,B(x̄) ∩ CA,B(x̄) and NA,B(x̄) is
not clear and thus, full equivalence as in Theorem 6.2.10 cannot be directly inferred.
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Now, let A,B ∈ Sn++, B � A, be given parameter matrices and suppose that the function
G is the identity mapping. Furthermore, let x̄ ∈ dom ϕ be an arbitrary stationary point of
the D-gap function and let us set d := V B(x̄) − V A(x̄). Then, the proof of Theorem 6.2.10
implies

d ∈ T A,B(x̄) ∩ CA,B(x̄), DF (x̄)>d ∈ T A,B(x̄)◦ ⊂ [T A,B(x̄) ∩ CA,B(x̄)]◦.

Consequently, similar to our observations in the previous subsection, if the matrix DF (x̄) is
strictly copositive on the cone T A,B(x̄)∩ CA,B(x̄), then it follows d = 0 and thus, by (6.2.9),
x̄ must be a solution of the generalized variational inequality (Pvip).

The next result concludes this subsection and establishes a sufficient condition for co-
ercivity of the natural residual mapping and of the D-gap function. Lemma 6.2.12 is an
extension of [76, Proposition 10.3.9] and is based on a monotonocity-type assumption (as in,
e.g., Lemma 6.1.4).

Lemma 6.2.12. Let F : Rn → Rn and G : Rn → Rn be Lipschitz continuous with moduli
LF and LG, respectively. Moreover, suppose that there exist x∗ ∈ G−1(dom ϕ) and constants
ϑ > 0, ξ > 1 such that ϕ is subdifferentiable at G(x∗) and it holds

(6.2.10) lim
‖x‖→∞

〈F (x)− F (x∗), G(x)−G(x∗)〉
‖x− x∗‖ξ

≥ ϑ.

Then, the functions ‖V A‖ and HA,B are coercive on Rn for every arbitrary choice of A,B ∈
Sn++ with B � A.

Proof. Let us write ϑ∗ := ‖F (x∗)‖ and proxAϕ (G(x) − A−1F (x)) = G(x) − V A(x). Then,
by using (6.2.2) and the Lipschitz continuity of the functions F and G, it holds

ϕ(proxAϕ (G(x)−A−1F (x)))− ϕ(G(x∗))

≤ 〈AV A(x)− F (x), G(x)− V A(x)−G(x∗)〉
= 〈F (x∗)− F (x), G(x)−G(x∗)〉 − 〈AV A(x)− F (x), V A(x)〉

+ 〈AV A(x)− F (x∗), G(x)−G(x∗)〉
≤ 〈F (x∗)− F (x), G(x)−G(x∗)〉 − ‖V A(x)‖2A

+ ((LF + LG‖A‖)‖x− x∗‖+ ϑ∗)‖V A(x)‖+ LGϑ
∗‖x− x∗‖.

Now, since ϕ is subdifferentiable at G(x∗), it follows

ϕ(proxAϕ (G(x)−A−1F (x)))− ϕ(G(x∗)) ≥ 〈λ∗, G(x)−G(x∗)− V A(x)〉
≥ −LG‖λ∗‖‖x− x∗‖ − ‖λ∗‖‖FA(x)‖,

where λ∗ ∈ ∂ϕ(G(x∗)) is an arbitrary subgradient. Next, by combining the last inequalities
and setting C(x) := (LF + LG‖A‖)‖x− x∗‖+ ϑ∗ + ‖λ∗‖, we obtain

‖V A(x)‖ ≥ ‖x− x
∗‖ξ

C(x)

{
〈F (x)− F (x∗), G(x)−G(x∗)〉

‖x− x∗‖ξ
− LG(ϑ∗ + ‖λ∗‖)
‖x− x∗‖ξ−1

}
.
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Clearly, due to ξ > 1 and (6.2.10), the term within the curly brackets is strictly positive as
‖x‖ tends to infinity, while the outer factor ‖x− x∗‖ξ/C(x) diverges to +∞. Using Lemma
6.2.7, this establishes the coercivity of ‖V A‖ and HA,B.

As mentioned in Remark 4.3.4, this result can be utilized to ensure boundedness of the
iterates of the semismooth Newton method that was discussed in chapter 4. Let us finally
note that condition (6.2.10) is obviously satisfied if the function F is (ξ,G)-monotone on Rn.

6.3. Numerical algorithms for GVIPs

In this section, we propose and analyze different numerical algorithms for the solution of the
generalized variational inequality (Pvip). Our investigation focuses on a globalized semis-
mooth Newton method that uses semismooth Newton steps for the nonsmooth equation

V Λ(x) = G(x)− proxΛ
ϕ(G(x)− Λ−1F (x)) = 0, Λ ∈ Sn++,

to augment a merit function-based descent method for the problem (Pvip). Similar to Algo-
rithm 2, we utilize the abstract multidimensional filter mechanism presented in section 4.2.3
to connect these two different algorithmic components.

In the following, as a consequence of our preceding discussions, we will only consider D-gap
and regularized gap function-based approaches. In particular, since the D-gap function was
shown to be continuously differentiable, a simple gradient descent method can be chosen as
an underlying base algorithm to globalize the semismooth Newton method. Moreover, if the
function G is the identity mapping, then the regularized gap program,

min
x

GΛ(x) =
{

1
2‖F (x)‖2Λ−1 − envΛ

ϕ(x− Λ−1F (x))
}

+ ϕ(x) s. t. x ∈ dom ϕ,

reduces to an optimization problem of the form (P) and thus, a specialized version of the
proximal gradient descent method represents another suitable base algorithm in this case. At
this point, let us clarify that an algorithm for the generalized variational inequality (Pvip) is
said to be globally convergent if and only if every accumulation point of a generated sequence
of iterates is also a stationary point of an appropriate and associated merit function. Since
stationary points of the regularized gap function do not necessarily correspond to stationary
points of the D-gap function and vice versa, we want to emphasize that this terminology
obviously depends on the chosen merit function.

In contrast to the D-gap function based approach, the minimization of the regularized
gap function GΛ may again result in a constrained minimization problem. Here, similar to
Algorithm 2, feasibility of the Newton iterates has to be enforced in order to guarantee global
and local convergence. Since one of our initial motivations for studying generalized variational
inequalities was to circumvent this additional restriction, we will mainly concentrate on a
D-gap function-based globalization that is also well-defined for infeasible input vectors from
now on. Nevertheless, let us note that the stationarity results in Theorem 6.2.4, which were
derived for the regularized gap function, have a much simpler and more natural form than
the corresponding conditions for the D-gap function. Furthermore, the computation of the
gap function GΛ also only requires the evaluation of a single proximity operator while the
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Algorithm 3: D-Gap Function-Based Gradient Descent Method
S0 Initialization: Choose x0 ∈ Rn, B0 � A0 � 0, β, γ ∈ (0, 1). Set iteration k := 0.

while ∇HAk,Bk(xk) 6= 0 do
S1 Compute a new direction dk = −∇HAk,Bk(xk).

S2 Choose a maximal Armijo stepsize σk ∈ {1, β, β2, β3, ...} ⊂ (0, 1] satisfying

HAk,Bk(xk + σkd
k) ≤ HAk,Bk(xk) + σkγ · ∇HAk,Bk(xk)>dk.

S3 Set xk+1 = xk + σkd
k and choose Ak+1, Bk+1 ∈ Sn++ with Bk+1 � Ak+1.

k ← k + 1.

application of the D-gap function incorporates the calculation of two different proximity
operators.

The D-gap function-based descent method is summarized in the next subsection. The
proposed semismooth Newton method will be presented in subsection 6.3.2 in detail.

6.3.1. A D-gap function-based descent method

In the following, we consider a basic gradient descent method with an Armijo-type linesearch
technique to solve the D-gap program

min
x

HA,B(x), A,B ∈ Sn++, B � A.

Let us emphasize that our approach to minimize the D-gap function is well-known in nonlin-
ear programming. Moreover, it can be seen as a special case of the proximal gradient method
with f ≡ HA,B, ϕ ≡ 0, and Λ ≡ I. The details are formulated in Algorithm 3. Again, the
parameter matrices A,B ∈ Sn++ are allowed to change adaptively.

The following theorem is an immediate consequence of Theorem 4.2.10. For various related
results and specific parameter strategies for Ak and Bk we refer to [257, 224] and [76, Section
10.4.1].

Theorem 6.3.1 (Global convergence). Let the functions F,G : Rn → Rn be continuously
differentiable and let the sequences (xk)k, (Ak)k, and (Bk)k be generated by Algorithm 3.
Furthermore, suppose that there exist k∗ ∈ N and A∗, B∗ ∈ Sn++, B∗ � A∗, such that

Ak = A∗ and Bk = B∗, ∀ k ≥ k∗.

Then, every accumulation point x∗ of (xk)k satisfies ∇HA∗,B∗(x∗) = 0 and is thus a station-
ary point of the D-gap function HA∗,B∗.

6.3.2. A semismooth Newton method for generalized variational inequalities

The globalized semismooth Newton method we have described so far can be clearly seen as
an adaption of Algorithm 2 for generalized variational inequalities. Similar to Algorithm 2,
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Algorithm 4: Globalized Semismooth Newton Method for GVIPs
S0 Initialization: Choose an initial point x0 ∈ Rn, Λ0 ∈ Sn++, B0 � A0 � 0, β, γ, γF ∈ (0, 1),

and F−1 = ∅. Set iteration k := 0.

while ∇HAk,Bk(xk) 6= 0 do
S1 If k = 0 or xk was obtained in step S3, add θ(xk) to the filter: Fk = Fk−1 ∪ {θ(xk)}.

Otherwise, set Fk = Fk−1. Choose Ak+1, Bk+1,Λk+1 ∈ Sn++ with Bk+1 � Ak+1.

S2 Compute the semismooth Newton step sk via M(xk)sk = −V Λk(xk). If this is not
possible go to step S4.

S3 Set xk+1 = xk + sk and check if xk+1 is acceptable for the filter Fk:

max
1≤j≤p

(
qj − θj(xk+1)

)
≥ γF max

1≤j≤p
θj(x

k+1), ∀ q ∈ Fk.

If xk+1 is acceptable for Fk skip step S4 and S5.

S4 Compute the direction dk = −∇HAk,Bk(xk) and choose a maximal Armijo step
σk ∈ {1, β, β2, β3, ...} ⊂ (0, 1] satisfying

HAk,Bk(xk + σkd
k) ≤ HAk,Bk(xk) + σkγ · ∇HAk,Bk(xk)>dk.

S5 Set xk+1 = xk + σkd
k.

k ← k + 1.

to obtain a new Newton step, we have to solve the linear system of equations

M(xk)sk = −V Λk(xk),

where M(xk) is a generalized derivative of the natural residual V Λk at xk and Λk is the
current parameter matrix. Again, the trial point xk + sk is accepted as a new iterate if it is
acceptable for the current filter Fk, i.e., whenever the filter value θ(xk+sk) ≡ θ(xk+sk,Λk+1)
fulfills the acceptance test (4.2.11). More specifically, if the trial point xk + sk satisfies the
filter conditions, then we set xk+1 = xk + sk, update the filter Fk+1 = Fk ∪ {θ(xk)} and
start the next iteration. Otherwise, the Newton step is rejected and we perform a step of
the D-gap function-based descent method.

In contrast to Algorithm 2, the feasibility condition G(xk+sk) ∈ dom ϕ and the additional
growth conditions (4.2.18) and (4.2.19) are not required to establish global convergence. The
details of the method are summarized in Algorithm 4.

Next, we state several assumptions that are essential for our convergence analysis.

Assumption 6.3.2. Let the sequences (xk)k, (Ak)k, (Bk)k, and (Λk)k be generated by Al-
gorithm 4 and suppose that x∗ ∈ Rn and A∗, B∗,Λ∗ ∈ Sn++ are accumulation points of (xk)k,
(Ak)k, (Bk)k, and (Λk)k, respectively. Let us consider the following conditions:

(F.1) There exists k∗ ∈ N such that Ak = A∗, Bk = B∗, and Λk = Λ∗ for all k ≥ k∗.
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(F.2) The proximity operator proxΛ∗
ϕ : Rn → Rn is semismooth at u∗ := G(x∗)−Λ−1

∗ F (x∗).

(F.3) There exist constants k∗ ∈ N and C > 0 such that for all k ≥ k∗, every matrix
Mk := M(xk) ∈ ∂V Λk(xk) is nonsingular with ‖M−1

k ‖ ≤ C.

If, in addition, the accumulation point x∗ is a solution of the generalized variational inequality
(Pvip), then we assume:

(F.4) The accumulation point x∗ is an isolated solution of problem (Pvip).

In the following, we discuss global and local convergence properties of Algorithm 4 in
detail. In particular, by utilizing the conditions presented in Assumption 6.3.2, our analysis
allows to extend well-known convergence results for classical variational inequalities, see, e.g.,
[120, Theorem 3.5] or [76, Theorem 10.4.9].

Theorem 6.3.3. Let the functions F,G : Rn → Rn be continuously differentiable and let the
sequences (xk)k, (Ak)k, (Bk)k, and (Λk)k be generated by Algorithm 4. Furthermore, suppose
that assumption (F.1) is satisfied. Then, it holds:

(i) Every accumulation point x∗ of the sequence (xk)k is a stationary point of the D-gap
function HA∗,B∗.

(ii) Suppose that infinitely many Newton steps are acceptable to the filter. In this case, every
accumulation point of the sequence (xk)k is a solution of the generalized variational
inequality (Pvip).

(iii) Let x∗ be an accumulation point of the sequence (xk)k and suppose that x∗ is a solu-
tion of the problem (Pvip). Furthermore, assume that the conditions (F.2)–(F.4) are
satisfied. Then, the following statements are valid:

• The whole sequence (xk)k converges to x∗.

• Algorithm 4 eventually turns into a pure semismooth Newton method and the
sequence (xk)k converges locally q-superlinearly to x∗.

• If, in addition, the proximity operator proxΛ∗
ϕ is α-order semismooth at u∗ for

some α ∈ (0, 1] and the derivatives DF (x) and DG(x) are Lipschitz continuous
near x∗, then the order of convergence is 1 + α.

Proof. Since part (i) clearly follows from Theorem 6.3.1 and part (ii), we first verify the
second part. Therefore, let x∗ ∈ Rn be an arbitrary accumulation point of the sequence (xk)k
and let (xk)K be a corresponding subsequence that converges to x∗. Similar to our analysis
in chapter 4, we will work with the following sets

KN := {k : xk was generated by the Newton method},
KD := {k : xk was generated by the D-gap function-based method}.

Since we perform infinitely many Newton steps, the sequence (V Λk(xk))KN converges to
zero by the abstract filter result that was presented in Lemma 4.3.1. Moreover, in the case
|K ∩ KN | =∞, this already implies

V Λk(xk)→ V Λ∗(x∗) = 0, K 3 k →∞,
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where we used assumption (F.1) and the continuity of F , G, and proxΛ∗
ϕ . Hence, by Lemma

6.1.1 (iv), we conclude that x∗ is a solution of the generalized variational inequality (Pvip).
Next, let us consider the case |K ∩ KN | < ∞. Due to Lemma 6.2.8, Remark 6.2.9, and
condition (F.1), there exists a constant λ such that

0 ≤ HA∗,B∗(xk) ≤ λ · ‖V Λ∗(xk)‖, ∀ k ≥ k∗.

Thus, by taking the limit KN 3 k →∞ and using HAk,Bk(xk) = HA∗,B∗(xk) for all k ≥ k∗,
this establishes

HA∗,B∗(xk)→ 0, as KN 3 k →∞.

Since the algorithm does not terminate after a finite number of steps, the descent property
of the D-gap function-based gradient method,

HA∗,B∗(xk+1) < HA∗,B∗(xk), ∀ k + 1 ∈ KD, k ≥ k∗,

yields HA∗,B∗(x∗) = 0. This finishes the proof the first two parts.

Now, in order to prove part (iii), let us additionally assume that the accumulation point
x∗ is a solution of the generalized variational inequality problem (Pvip). Moreover, for a
moment, let us suppose that only finitely many Newton steps are performed. In this case,
Algorithm 4 reduces to the D-gap function-based gradient descent method and similar to our
preceding discussion, we obtain

HA∗,B∗(xk)→ 0, as k →∞.

Consequently, together with part (ii) this implies that every accumulation point of the se-
quence (xk)k is a solution of the problem (Pvip). Hence, by assumption (F.4) we conclude
that x∗ is an isolated accumulation point of (xk)k. To show convergence of the entire se-
quence (xk)k, we again want to apply the result of Moré and Sorensen [160] that was already
used in Theorem 4.3.10 and 4.3.12. Thus, let (xk)K be a subsequence that converges to the
isolated accumulation point x∗. Then, due to condition (F.3), there exist constants C > 0
and k0 ≥ max{k∗, k∗} such that ‖M−1

k ‖ ≤ C for all k ≥ k0. Thus, for all k ∈ K, k ≥ k0, it
holds

‖xk+1 − xk‖ ≤

{
C‖V Λ∗(xk)‖ if k + 1 ∈ KN ,
‖∇HA∗,B∗(xk)‖ if k + 1 ∈ KD.

Next, since x∗ is a solution of the problem (Pvip), we have V A∗(xk) → 0, V B∗(xk) → 0,
and V Λ∗(xk) → 0 as K 3 k → ∞. By Lemma 6.2.6, this implies ‖∇HA∗,B∗(xk)‖ → 0 for
K 3 k → ∞ and altogether, we deduce (‖xk+1 − xk‖)K → 0. Thus, in this situation, [160,
Lemma 4.10] again yields that the whole sequence (xk)k converges to x∗.

The rest of the proof is identical to the proof of Theorem 4.3.10 and Theorem 4.3.12.

Remark 6.3.4. Let us note that, in order to establish the (global) convergence results in
Theorem 6.3.3 (i)–(ii), it suffices to assume that the parameter matrices Λk, k ∈ N stay in
a compact set K ⊂ Sn++. Moreover, in part (iii), if assumption (F.3) is substituted by the
stronger CD-regularity condition that was presented in Remark 4.3.7, then condition (F.4)
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is again a consequence of the semismoothness of V Λ∗ and [182, Proposition 3]. In this case,
assumption (F.4) is superfluous and can be omitted.

In contrast to the discussion of Algorithm 2 in chapter 4, the D-gap function-based glob-
alization strategy notably simplifies the convergence analysis of Algorithm 4. On the other
hand, without any further assumptions, we can only guarantee global convergence to sta-
tionary points of the D-gap function. In particular, if Algorithm 4 is used to solve our initial
nonsmooth problem (P), then the generated Newton and D-gap steps only operate on the
first order optimality condition,

〈∇f(x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀ y ∈ Rn,

and the connection to the underlying optimization problem (P) is no longer taken into
account. However, if the Hessian ∇2f is positive definite at some accumulation point x∗ and
if V Λ∗ ≡ FΛ∗ is semismooth at x∗, then Lemma 5.4.2, Remark 6.3.4, and condition (6.2.7)
imply that all assumptions of Theorem 6.3.3 (iii) are satisfied. Thus, in this situation, x∗ is
an isolated stationary point and a globally optimal solution of problem (P) and Algorithm 4
is ensured to converge locally q-superlinearly to x∗. See also Theorem 4.3.10 and 4.3.12 for
comparison.

In the spirit of our second order analysis in chapter 5, we will now show that the assump-
tions (F.3) and (F.4) are fulfilled whenever a certain second-order type condition and the
strict complementarity condition hold at a solution of problem (Pvip). The proof of the fol-
lowing theorem essentially relies on the techniques that were presented and used in Theorem
5.4.4 and 5.5.2 and finishes this section.

Theorem 6.3.5. Let F,G : Ω → R be continuously differentiable functions and let Ω ⊂ Rn
be an open set that contains the domain G−1(dom ϕ). Furthermore, let x̄ ∈ G−1(dom ϕ) be a
solution of the problem (Pvip) and let G be twice continuously differentiable in a neighborhood
of x̄. Additionally, let us suppose that ϕ is C2-fully decomposable at G(x̄) and assume that
the strict complementarity condition

−F (x̄) ∈ ri ∂ϕ(G(x̄))

holds at x̄. Then, for every parameter matrix Λ ∈ Sn++, the proximity operator proxΛ
ϕ is

Fréchet differentiable at ū := G(x̄)− Λ−1F (x̄) and the second order-type conditions

2〈DG(x̄)h,DF (x̄)h〉+ 〈DG(x̄)h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]DG(x̄)h〉Λ > 0, ∀ h ∈ CG(x̄) \ {0},

where QΛ
ϕ(ū) := Λ

1
2DproxΛ

ϕ(ū)Λ−
1
2 , imply the following properties:

(i) The point x̄ is an isolated solution of the generalized variational inequality (Pvip).

(ii) If the proximity operator proxΛ
ϕ is semismooth at ū, then the mapping V Λ is strictly

differentiable at x̄ and its Fréchet derivative DV Λ(x̄) is nonsingular.

Proof. The first part was already shown in Theorem 6.1.6 and in the subsequent discussion.
At this point, let us recall that if the mapping ϕ is C2-fully decomposable at G(x̄) and if the
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strict complementarity condition is satisfied at x̄, then it holds

−ξ∗ϕ,h(−F (x̄)) = 〈DG(x̄)h, [Λ−
1
2QΛ

ϕ(ū)+Λ
1
2 − I]DG(x̄)h〉Λ, ∀ h ∈ CG(x̄).

The strict differentiability is again a consequence of Theorem 2.6.7. Next, let us assume that
the matrix DV Λ(x̄) is not invertible. Then, there exists h ∈ Rn \ {0} such that

DG(x̄)h = W (DG(x̄)− Λ−1DF (x̄))h, W := DproxΛ
ϕ(ū).

Hence, Lemma 3.3.6 implies DG(x̄)h ∈ N∂ϕ(G(x̄))(−F (x̄)) and it follows h ∈ CG(x̄) \ {0}.
Since the operator QΛ

ϕ(ū) has the same basic properties as its associated counterparts in
Theorem 5.4.4 or 5.5.2, we also have

[QΛ
ϕ(ū)+QΛ

ϕ(ū)]Λ
1
2DG(x̄)h = Λ

1
2DG(x̄)h,

see, e.g., subsection 5.3.4 for details. Thus, we obtain

[QΛ
ϕ(ū)+QΛ

ϕ(ū)]Λ−
1
2DF (x̄)h = [I −QΛ

ϕ(ū)+]Λ
1
2DG(x̄)h.

Furthermore, by using the symmetry of the matrix QΛ
ϕ(ū) and the properties of the Moore-

Penrose pseudoinverse, we get

〈DF (x̄)h,DV Λ(x̄)h〉 − 〈DF (x̄)h,DG(x̄)h〉

= −〈DF (x̄)h,WDG(x̄)h〉+ 〈Λ−
1
2DF (x̄)h,QΛ

ϕ(ū)Λ−
1
2DF (x̄)h〉

= −〈DF (x̄)h,WDG(x̄)h〉+ 〈[QΛ
ϕ(ū)− I]Λ

1
2DG(x̄)h, [I −QΛ

ϕ(ū)+]Λ
1
2DG(x̄)h〉

= −〈DF (x̄)h,WDG(x̄)h〉+ 〈[QΛ
ϕ(ū)− I]Λ

1
2DG(x̄)h,Λ

1
2DG(x̄)h〉 − ξ∗ϕ,h(−F (x̄))

= −ξ∗ϕ,h(−F (x̄)).

Now, due to DV Λ(x̄)h = 0 and h ∈ CG(x̄) \ {0}, the latter calculations and the second
order-type conditions imply

〈DF (x̄)h,DG(x̄)h〉 > 0.

However, since the curvature term −ξ∗ϕ,h(−F (x̄)) is nonnegative for all h ∈ CG(x̄), this yields
the contradiction

0 = 〈DF (x̄)h,DV Λ(x̄)h〉 = 〈DF (x̄)h,DG(x̄)h〉 − ξ∗ϕ,h(−F (x̄)) > 0.

Consequently, we deduce h = 0. This concludes the proof of Theorem 6.3.5.
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In this chapter, we present numerical results and discuss the competitiveness of the semis-
mooth Newton method that was proposed in chapter 4 for different nonsmooth optimization
problems and in comparison with several state-of-the-art algorithms.

Let us note that the numerical comparisons for `1-regularized problems in section 7.1 and
7.2 are essentially based on the work [157] and that several parts have already appeared in a
similar form in [157]. However, we also want to emphasize that the results reported in this
thesis were obtained by using a more refined and improved version of Algorithm 2 and thus,
are not immediately comparable with the results in [157].

All tests in this chapter were performed under MATLAB v8.5 (R2015a) on an iMac 27”
with Intel Core i5 3,2 GHz and 16 GB of memory.

7.1. Convex `1-regularized least squares problems

At first, based on a test framework in [13], we provide an extensive numerical comparison of
different `1-optimization methods, that are particulary designed to solve either basis pursuit
denoising problems of the form

(BPσ) min
x∈Rn

‖x‖1 s. t. ‖Ax− b‖2 ≤ σ

or corresponding `1-regularized quadratic problems of the form

(QPµ) min
x∈Rn

1

2
‖Ax− b‖22 + µ ‖x‖1 =: ψ(x).

From now on and for `1-least squares problems of the form (QPµ), we will refer to the
specialized version of Algorithm 2 as SNF-L1 (semismooth Newton filter) method.

Remark 7.1.1. Clearly, due to the nonnegativity of the quadratic term f(x) = 1
2‖Ax− b‖

2
2,

the objective function ψ of problem (QPµ) is coercive, i.e., there exists at least one solution
and the set of all possible solutions must be bounded. Moreover, since f is convex, quadratic,
and twice continuously differentiable on Rn and since the `1-norm is obviously real valued and
positively homogeneous, the assumptions (A.1) and (C.1)–(C.3) are satisfied. Thus, Theorem
4.3.3 and Remark 4.3.4 guarantee that the SNF-L1 method converges globally. Additionally,
and as sketched in Example 5.3.12, if a certain submatrix of the Hessian ∇2f(x) = A>A is
positive definite, then the conditions for local fast convergence are fulfilled.

We start with several implementational aspects of the SNF-L1 algorithm.
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7.1.1. Algorithmic details and implementation

We now briefly describe algorithmic and numerical details of the SNF-L1 method. We want to
point out that the following considerations mainly focus on the class of convex and quadratic
problems (QPµ).

Λ-strategy. In our implementation, the parameter matrix Λk ∈ Sn++ is chosen based on
the following simple strategy:

Λk := τ−1
k I, τk ∈ [τm, τM ], 0 < τm < τM .

In the first iteration, we use τ0 = 6 as initial value. Afterwards, the parameter τk is adjusted
to approximate the inverse Lipschitz constant of the gradient ∇f(x) = A>(Ax − b). More
specifically, we set

(7.1.1) λ1
k =

‖xk − xk−1‖
‖∇f(xk)−∇f(xk−1)‖

, λ2
k = max{min{λ1

k, τM}, τm}, k > 1.

Finally, in order to prevent outliers, we calculate a weighted mean of λ2
k and of the previous

parameters τj , j = 1, ..., k − 1. This mean is then used as the new step size parameter τk.

Newton system. In Example 4.2.16 we have already shown that for `1-problems of the
form (QPµ) the nonsmooth mapping FΛk : Rn → Rn is given by

FΛk(xk) = τk∇f(xk) + P[−µτk,µτk]n(xk − τk∇f(xk)).

Moreover, as also mentioned in Example 4.2.16 and setting uk := xk − τk∇f(xk), we will
work with the following generalized derivates

M(xk) := τk(I −D(xk)) ·A>A+D(xk),

where the diagonal matrix D(xk) is uniquely determined via

D(xk)[ii] =

{
0 if |uki | > µτk,

1 if |uki | ≤ µτk,
∀ i = 1, ..., n.

Now, in each iteration we have to solve the system of equations

M(xk)sk = −FΛk(xk),

in order to obtain the next Newton step sk. Thus, the performance of our algorithm highly
depends on efficient strategies for solving those systems. By taking advantage of the structure
of the generalized derivative M(xk) and using a simple block elimination technique we can
reduce the computational complexity and end up with the smaller problem

skA = −FΛk
A (xk),

(A>A)[II]s
k
I = −τ−1

k FΛk
I (xk)− (A>A)[IA]s

k
A,(7.1.2)
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7.1. Convex `1-regularized least squares problems

Table 7.1.: Summary of parameters and their default values

Ccont
1 , Ccont

2 , Ccont
max factors for the continuation update formula, Ccont

1 = 0.535,
Ccont

2 = − log10(0.65) and maximum number of iterations Ccont
max = 10

β, γ parameters for the quasi-Armijo condition, β = 0.1, γ = 0.1
τ0, τm, τM parameter for the adaptive choice of Λk, τ0 = 6, τm = 10−3, τM = 104

γF factor for the filter acceptance criterion, γF = 7 · 10−2

CG-tol, CG-maxit parameters to control the accuracy of the CG method, CG-tol = 0.1,
CG-maxit = 10

where we set A = A(xk) := {i : |uki | ≤ µτk} and I = I(xk) := {i : |uki | > µτk}. Instead
of solving (7.1.2) directly, we consider a regularized version of the submatrix of the Hessian
(A>A)[II] + ρI with ρ = ρ(xk) := ‖FΛk(xk)‖. This leads to the numerically more robust
formulation

(7.1.3) (A>A+ ρI)[II]s
k
I = −τ−1

k FΛk
I (xk)− (A>A)[IA]s

k
A

and corresponds to a reformulation of the Newton system with the regularized matrix Mρ,
which was already introduced in (4.3.17). The remaining problem (7.1.3) is approximately
solved by an early terminated (preconditioned) CG method. Since `1-minimization algo-
rithms are usually used for large-scale applications and the matrix A typically involves di-
rect or inverse discrete cosine, wavelet, or related transforms, the computational effort of
every iteration is dominated by the number of applications of A and A> to a vector. For
convenience, we will use the terms A- and A>-call to describe an application of A or A>.
Furthermore, let CA denote the complexity of applying A or A>. Then the complexity of a
single, successful Newton iteration of the SNF-L1 algorithm is given by 2CA + 2CA · cg-iter
(two calls are used to evaluate the right-hand side of equation (7.1.3)). Furthermore, if the
current iterate is not acceptable to the filter, we have to apply A (and A>) once more to
obtain an alternative shrinkage step. This complexity bound motivates us to solve the linear
system (7.1.3) only approximately, in order to keep the number of CG iterations as low as
possible. Hence, we choose a rather mild stopping criterion for the CG method and set the
relative tolerance to 10−1 and the maximum number of iterations to 10.

Filter. In our implementation, we choose a filter function θ : Rn → Rp+ of type (4.2.8)
with the following decomposition pattern

I1 = {1, ..., `}, I2 = {`+ 1, ..., 2`}, ..., Ip = {(p− 1)`+ 1, ..., n}, ` =
[
n
p

]
.

We use p = 1000, but experiments show that the algorithm is quite insensitive to the choice
of p. Of course, the required filter storage increases proportional to p.

Continuation. The continuation with respect to µ [98] has become a common and suc-
cessful tool to further improve the performance of `1-optimization algorithms. The idea is to
solve the problem (QPµ) for a sequence of different µ values. At first, starting with a usually
large parameter µ0 > µ, an approximate solution x∗0 of the problem (QPµ0) is computed.
We then decrease the regularization parameter, i.e., we choose µ1 satisfying µ0 > µ1 ≥ µ
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and solve (QPµ1) with x∗0 as initial point. This procedure is repeated until the current
regularization parameter µj coincides with our desired parameter µ or a termination cri-
terion for the problem (QPµ) is satisfied. Practical experience and numerical experiments
in [78, 98, 256, 13] showed that this homotopy scheme can enhance the performance of `1-
optimization methods significantly. Encouraged by this general observation we embedded
the SNF-L1 method in a continuation framework. Particularly, we choose

µ0 = max
{
Ccont

0 ‖b‖∞, µ
}
, Ccont

0 = min
{

0.25, 2.2 · (‖b‖∞/µ)−
1
3

}
and decrease the current homotopy parameter µj according to the following update formula

µj+1 = max{γjµj , µ}, (0, 1] 3 γj = 1− Ccont
1

(
µj
µ0

)Ccont
2

,

Ccont
1 , Ccont

2 ∈ (0, 1) (see Table 7.1). Here, our specific choice of µ0 is based on a scale
invariance argument: if the magnitude of the input data b is increased by a factor, the con-
tinuation scheme is supposed to adapt in a similar way. This motivates the above ansatz
µ0 = Ccont

0 ‖b‖∞, where the additional damping factor Ccont
0 is introduced to avoid dispro-

portionately high initial values. Furthermore, we observed that a logarithmically decreasing
update of the regularization parameter yields better numerical results. Thus, we have chosen
an adaptive update formula such that the reduction of µj gets smaller if the total number of
continuation steps increases. We set x∗j := xk+1

j and reduce µj whenever the total number of
iterations within a single continuation phase exceeds the bound Ccont

max = 10 or a good New-
ton step is performed, i.e., when the Newton iterate xk+1

j = xkj + skj satisfies the following
decrease condition

‖FΛk+1(xk+1
j )‖ ≤ 0.5 ‖FΛk(xkj )‖, k ≥ 0,

where xkj denotes the k-th iterate of the j-th subproblem (QPµj ), k > 0 and x0
j := x∗j−1. An

exemplary visualization of the development of the continuation phases with respect to the
number of A- and A>-calls can be found in Figure 7.2.

Initial point and stopping tolerance. We choose x0 = 0 as initial point and terminate
SNF-L1 when the current residual falls below a given tolerance ε, i.e.,

(7.1.4) ‖FΛk(xk)‖ ≤ ε,

where we dropped the additional continuation index for convenience. We want to emphasize
that the term FΛk has to be understood in its original sense, i.e., here FΛk depends on the
initial regularization parameter µ. The tolerance ε influences the level of accuracy, we will
work with ε ∈ {1, 10−1, 10−2, 10−4, 10−6}. Table 7.1 summarizes the default setting of the
parameters of SNF-L1.

7.1.2. State-of-the-art methods

In this section we state main ideas and basic structural aspects of several state of the art
methods, which will be used later in our numerical comparison. We will work with `1-
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7.1. Convex `1-regularized least squares problems

algorithms that are designed for efficient large-scale optimization and can take advantage of
fast implementations of the A or A> application.

Fixed Point Continuation method (FPC) [98]. The Fixed Point Continuation method
is a first order algorithm for solving the problem (QPµ) or more general `1-problems with
convex f . It is a direct realization of the fixed point iteration

(7.1.5) xk+1 = proxΛ
µ‖·‖1(xk − τ∇f(xk)), Λ = τ−1I, τ > 0

with an additional continuation scheme for the `1-regularization parameter µ. FPC-BB
is an advanced version of FPC that uses Barzilai-Borwein steps to improve performance.
The code can be found online at http://www.caam.rice.edu/~optimization/L1/fpc/. All
parameters were set to default values.

FPC Active Set (FPC-AS) [253]. FPC-AS is an extended two-phase version of the
FPC method and is designed to solve (QPµ). In the first stage a specialized, nonmonotone
version of Algorithm 1 with Λ = τ−1I and a Barzilai-Borwein heuristic for the parameter
τ is used to determine an active set. Motivated by Greedy algorithms for `1-optimization,
FPC-AS then solves a smooth subproblem on this active set with a L-BFGS method. The
algorithm is embedded in a continuation scheme. The code is available at http://www.caam.
rice.edu/~optimization/L1/FPC_AS/. All parameters were set to default values.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [12]. FISTA is an ac-
celerated proximal gradient method that resembles Nesterov’s fast gradient schemes for con-
vex problems [169]. It can be seen as an extension of the fixed-point iteration (7.1.5) with
an additional extrapolation step. In our numerical experiments we implemented FISTA as
described [12, Section 4] and with constant step size L = 1.

Gradient Projections for Sparse Reconstruction (GPSR) [78]. GPSR is based
on the well-known projected gradient technique for constrained optimization problems. By
splitting x = v1− v2 into its positive and negative part v1 and v2 the `1-regularized problem
(QPµ) is smoothed and reformulated as a quadratic program with positivity constraints for
v1 and v2. In our experiments we tested GPSR with continuation and an alternative version
with Barzilai-Borwein step sizes (we refer to GPSR-BB). As recommended by the authors
and proposed in [13], all parameters were set to default except the number of continuation
steps was set to 40, the ToleranceA variable was set to 10−3, and the MiniterA variable was
set to 1. The code is available at http://www.lx.it.pt/~mtf/GPSR/.

NESTA [13]. NESTA is built on Nesterov’s smoothing technique for convex and possibly
nonsmooth functions and applies this technique to the constrained `1-problem (BPσ). In [13]
it was shown that the performance of Nesterov’s framework can be significantly improved
by using a continuation scheme on the smoothing parameter that characterizes the level of
smoothing of the `1-norm. We tested NESTA with different smoothing parameters, µ ∈
{0.01, 0.02, 10−8} (unfortunately, the meaning of µ here is different from its standard use
in this section) and two continuation scenarios, where the number of continuation steps
was set to either T = 4 or T = 5. All other parameters were set to default, except, as
proposed in [13], the tolerance variable δ was set to 10−7. The code can be found at http:
//www-stat.stanford.edu/~candes/nesta/.
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Primal-Dual Method (PD) [42]. Chambolle and Pock’s primal-dual method is able to
solve general nonsmooth problems of the form

(7.1.6) min
x∈Rn

ϕ(x) + %(Kx),

where the functions ϕ : Rn → (−∞,+∞] and % : Rm → (−∞,+∞] are convex, proper,
and lower semicontinuous functions and K ∈ Rm×n is a given matrix. In each iteration, the
method successively performs the following steps:

yk+1 = proxσ
−1I
%∗ (yk + σKx̄k),

xk+1 = proxτ
−1I
ϕ (xk − τK>yk+1),

x̄k+1 = xk+1 + θ(xk+1 − xk).

If the step sizes σ and τ satisfy στ‖K‖2 < 1 and if it holds θ = 1, then the sequence (xk, yk)
converges to a saddle point of the corresponding primal-dual formulation of problem (7.1.6).
For the `1-problem (QPµ), we set ϕ(x) := µ‖x‖1, %(y) := 1

2‖y− b‖
2
2, and K := A. Moreover,

since the convex conjugate %∗ is strongly convex with convexity parameter γ = 1, we can use
an accelerated version of the primal-dual method that is presented in [42, Section 5] (in this
variant the variables σ, τ , and θ are updated adaptively in each iteration). We implemented
the accelerated primal-dual method as specified in [42, Algorithm 2] and set τ0 = 1, σ0 = 1,
and γ = 0.9.

Sparse reconstruction by separable approximation (SpaRSA) [256]. The method
SpaRSA was developed to solve the general problem (P). For (QPµ) it is an iterative
shrinkage-based algorithm and therefore resembles FPC. SpaRSA also uses Barzilai-Borwein
steps and a continuation technique to accelerate its performance. Online code can be obtained
at http://www.lx.it.pt/~mtf/SpaRSA/. Again, as recommended, we set all parameter to
default and adopt the parameter modifications in GPSR-BB.

Spectral projected gradient (SPGL1) [242]. SPGL1 solves the basis pursuit prob-
lem (BPσ) via finding roots of a corresponding one-dimensional nonlinear equation. This
procedure involves solving a sequence of so-called LASSO problems

min
x∈Rn

‖Ax− b‖2 s. t. ‖x‖1 ≤ τ

for different values of τ . In [242] a spectral projected gradient method is used to efficiently
compute approximate solutions of the above least squares problems. The code is available
at http://www.cs.ubc.ca/labs/scl/spgl1/. All parameters were set to default values.

Alternating Direction Method of Multipliers (YALL1) [258]. The YALL1 package
provides a general alternating direction method [92, 89, 91, 71] that can solve a variety of
constrained and unconstrained `1-problems. Similar to the primal-dual method it introduces
an auxiliary variable to split the objective function into two separate parts. The resulting
reformulated problem is then solved with an Augmented Lagrange method in an alternating
fashion. Let us note that the performance of YALL1 strongly depends on how efficiently its
corresponding subproblems can be solved. In our numerical comparison, since the measure-
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ment matrix A will be chosen as an orthogonal projector with AA> = I, the different steps
of the YALL1-algorithm are given by simple and fast update rules. For more details on the
alternating direction method we refer to [91, 71, 258] and to section 7.3.2. Online code can
be found at http://yall1.blogs.rice.edu/. All parameters were set to default values.

7.1.3. Numerical comparison

To compare SNF-L1 with several other methods we use a slightly modified test framework
from the NESTA package [13]. The problem setting is identical to the one proposed in [13]
and is specified as follows. At first, we generate a sparse signal x̄ ∈ Rn of length n = 5122 =
262144 with k = [n/40] = 5553 nonzero entries. Here, the k different indices i ∈ {1, ..., n}
are randomly chosen and the magnitude of each nonzero component is determined via

x̄i = η1(i)10dη2(i)/20,

where η1(i) ∈ {−1,+1} is a symmetric random sign and η2(i) is uniformly distributed in
[0, 1]. The signal has dynamic range of d dB and we consider d ∈ {20, 40, 60, 80}. The matrix
A ∈ Rm×n takes m = n/8 = 32768 random cosine measurements, i.e., Ax = (dct(x))J ,
where the index set J ⊂ {1, ..., n}, |J | = m, is initialized randomly and dct is the discrete
cosine transform. Finally, the input data b ∈ Rm is obtained by adding Gaussian noise with
standard deviation σ̄ = 0.1 to Ax̄.

Since NESTA and SPGL1 solve the basis pursuit problem (BPσ) while all other mentioned
algorithms solve the unconstrained problem (QPµ) we need to compute a corresponding pair
(σ, µ) to gain comparable results at first. Therefore, we run SPGL1 to generate an approx-
imate solution of the problem (BPσ0) with σ0 =

√
m+ 2

√
2mσ̄ and to obtain an estimate

µ(σ0) from its dual solution. Afterwards, we use the SNF-L1 algorithm with stopping crite-
rion

‖F I(xk)‖ ≤ 10−12

to compute a high precision solution x∗ of the problem (QPµ(σ0)) and set σ = ‖Ax∗ − b‖.
Then the problems (QPµ) and (BPσ) should be almost equivalent. Now, the SNF-L1 method
is run again with stopping rule

(Cnat) ‖F I(xk)‖ ≤ ε

and with different tolerances ε to create a series of reference solutions. We modified the
stopping criterion of each algorithm; the other algorithms now terminate at iteration k when
the current iterate xkalg satisfies the following relative stopping criterion

(Crel)
|ψ(xkalg)− ψ(x∗)|

ψ(x∗)
≤
|ψ(x∗snf)− ψ(x∗)|

ψ(x∗)
,

where x∗snf denotes the solution of the SNF-L1 method. Moreover, we also performed a
second independent test series where each algorithm uses the condition (Cnat) as stopping
criterion. In this case, termination and accuracy of the different methods is solely controlled
by the stopping rule (Cnat) and do no longer depend on the results of SNF-L1.
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Table 7.2.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 20 dB using the stopping criteria (Crel) and (Cnat) (best
NESTA configuration was used: µ = 10−8, T = 4).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-L1 91 91 227 227 260 260 289 289 342 342
FISTA 70 56 203 149 474 349 1879 1480 4333 3549
FPC 372 374 514 432 778 646 1490 1332 2385 2118
FPC-BB 148 150 180 174 269 206 960 802 DNC 1588
FPC-AS 80 74 218 212 311 312 393 409 454 434
NESTA 570 570 DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 551 561 675 614 902 818 1481 1387 DNC 2026
GPSR-BB 390 418 445 435 522 487 753 706 1055 964
PD 86 104 420 307 1127 839 DNC 7698 DNC DNC
SpaRSA 485 503 528 521 559 550 628 621 702 688
SPGL1 66 58 152 124 192 181 DNC DNC DNC DNC
YALL1 60 56 144 126 223 202 399 374 620 558

In the following, we consider the dynamic ranges d ∈ {20, 40, 60, 80} and the tolerances
ε ∈ {1, 10−1, 10−2, 10−4, 10−6}. Since an application of A or A> corresponds to the evaluation
of a dct or idct function, the total number of A- and A>-calls is an important measure of
efficiency. For our two different test series these total numbers will be denoted by #Arel and
#Anat, respectively. Thus, along with the corresponding total runtime of each algorithm,
our numerical comparison is based on a discussion of the different, achieved #Arel and #Anat
values. We report DNC (did not converge) if convergence is not reached after #Arel = 20000
or #Anat = 20000 calls. The Tables 7.2, 7.3, 7.4, and 7.5 contain the mean values of the
numbers #Arel and #Anat over 10 random trials; the three best results from each column
are shaded. Accordingly, the Tables A.1, A.2, A.3, and A.4 contain the corresponding mean
values of the total runtimes trel and tnat of the different algorithms. Here, we set trel = DNC
or tnat = DNC when the respective algorithm did not converge within 20000 A-calls. Again,
the three best results fro each column are shaded. For the sake of clarity, the Tables A.1–
A.4 have been moved to the Appendix A.4.1. In Figure 7.1 we illustrate the change of the
absolute value of 128 randomly chosen components of the iterate with respect to the number
of A- and A>-calls. Each plot is associated with one of the tested algorithms and shows the
development of the iterate for a single run with dynamic range d = 40 dB. Furthermore, the
maximum number of A- and A>-calls that is necessary to capture all zero components of the
optimal solution x∗ is marked with a green line. Similar illustrations for the other dynamic
ranges d ∈ {20, 60, 80} can be found in the Appendix A.4.1, see Figures A.1–A.3.

It was observed in [13, 139] that `1-optimization algorithms react sensitively on changes
of the dynamic range and their performances usually deteriorate with increasing dynamic
range. Our experiments also confirm this behavior for the modified test framework.
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Table 7.3.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 40 dB using the stopping criteria (Crel) and (Cnat) (best
NESTA configuration was used: µ = 10−1, T = 5).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-L1 180 180 459 459 496 496 542 542 610 610
FISTA 196 234 555 421 1193 833 4280 2934 7543 6402
FPC 367 378 997 679 1531 1203 2867 2355 3925 3561
FPC-BB 160 169 441 223 975 648 2309 1797 DNC 3192
FPC-AS 252 164 448 324 542 526 616 608 703 676
NESTA 374 DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 461 472 836 698 1082 942 1692 1469 DNC DNC
GPSR-BB 428 467 583 493 781 668 1287 1101 1695 1559
PD 165 240 718 582 2158 1769 DNC DNC DNC DNC
SpaRSA 478 519 566 538 621 596 738 703 821 799
SPGL1 100 110 286 228 342 318 DNC DNC DNC DNC
YALL1 131 202 451 392 812 676 1894 1517 2804 2516

SPGL1 is very efficient at low and middle precisions. However, SPGL1 does not converge
in the high precision examples. In the low precision case, it takes about 4 times as many
A applications on the 80 dB signal as on the 20 dB signal (for lower tolerances this factor
diminishes to 3). Figure 7.1 (k) demonstrates that SPGL1 quickly detects zero and nonzero
components of the optimal solution x∗.

The Barzilai-Borwein version of GPSR outperforms the regular GPSR version in both
number of A- and A>-calls and CPU time, though it cannot keep up with the results of
SNF-L1. In general, GPSR-BB requires twice as many A- and A>-calls at 80 dB than at 20
dB. The runtimes for 80 dB and 20 dB differ by a factor between 1.6 and 2.6.

SpaRSA needs a comparatively large number of A- and A>-calls at low dynamic range and
low precision tests. For fixed dynamic range it only requires about 1.5–1.9 times as many
A- and A>-calls to compute a very accurate solution as in the low precision case. Besides,
SpaRSA shows good performance with large dynamic range and requires less A- and A>-calls
than SNF-L1 in the 80 dB example (see Table 7.5). However, concerning computational time,
SpaRSA does not succeed in outperforming SNF-L1. Both GPSR-BB and SpaRSA show a
similar development of their iterates. The Figures 7.1 (h) and (j) illustrate that almost all
zero components of x∗ are captured within the very first iterations. However, there are several
outliers that prevent fast convergence to the correct zero pattern. Compared to SNF-L1, a
large number of A-calls is needed to detect the small nonzero components of x∗, see also
Figures A.1–A.3. In general, we observe that both SpaRSA and GPSR-BB become more
competitive in the problems with higher dynamic range.

The NESTA algorithm did not converge in most of our tests. This can be traced back to
NESTA’s smoothing of the `1-norm that is used in the algorithm and the resulting relatively
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Table 7.4.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 60 dB using the stopping criteria (Crel) and (Cnat) (here,
NESTA did not converge).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-L1 378 378 666 666 702 702 765 765 860 860
FISTA 641 630 1149 946 1896 1543 4939 4213 9340 8511
FPC 625 521 1700 1177 2328 1937 3820 3497 5376 5098
FPC-BB 236 225 1212 690 1838 1446 3329 3006 DNC DNC
FPC-AS 243 214 648 598 717 690 791 779 898 883
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 726 455 1233 1007 1519 1354 2200 2066 DNC DNC
GPSR-BB 453 462 800 614 1049 912 1634 1526 2253 2158
PD 420 561 1636 1422 4597 4765 DNC DNC DNC DNC
SpaRSA 546 563 649 609 721 686 847 827 943 927
SPGL1 168 168 389 319 459 434 DNC DNC DNC DNC
YALL1 606 1046 2492 2322 3986 3961 7610 7598 11346 11019

Table 7.5.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 80 dB using the stopping criteria (Crel) and (Cnat) (here,
NESTA did not converge).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-L1 644 644 939 939 979 979 1058 1058 1174 1174
FISTA 2297 2293 3030 2757 4019 3650 7948 7222 12716 12753
FPC 1243 834 2526 1816 3271 2800 5080 4723 6674 6685
FPC-BB 499 256 1773 1064 2518 2047 4331 3975 DNC DNC
FPC-AS 390 397 784 738 836 824 950 935 1072 1083
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 2079 980 2674 2366 3017 2818 3846 3700 DNC DNC
GPSR-BB 596 424 1004 782 1249 1100 1849 1737 2388 2389
PD 1158 1476 4140 3729 11196 12357 DNC DNC DNC DNC
SpaRSA 584 529 747 673 820 789 964 947 1072 1076
SPGL1 250 245 475 378 562 529 DNC DNC DNC DNC
YALL1 5445 8530 DNC DNC DNC DNC DNC DNC DNC DNC
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7.1. Convex `1-regularized least squares problems

Table 7.6.: Total number of iterations, shrinkage steps S-iter and A- and A>-calls averaged
over 10 independent runs. The minimum and maximum value of S-iter over the
10 runs are shown in smaller font. The method SNF-L1a4 uses a fixed parameter
choice τk = τ = 4.

Method ε : 10−2 ε : 10−6 ε : 10−10

iter S-iter #Anat iter S-iter #Anat iter S-iter #Anat

SNF-L1
20 dB

22 0(0/0) 260 25 0(0/0) 342 31 0(0/0) 461
SNF-L1a 22 0(0/0) 260 24 0(0/0) 346 25 0(0/0) 410
SNF-L1a4 22 0(0/0) 272 26 0(0/0) 373 27 0(0/0) 437

SNF-L1
40 dB

46 0(0/0) 496 51 0(0/0) 610 58 0(0/0) 773
SNF-L1a 46 0(0/0) 496 48 0(0/0) 595 50 0(0/0) 724
SNF-L1a4 49 0(0/0) 506 52 0(0/0) 609 53 0(0/0) 737

SNF-L1
60 dB

70 0(0/0) 702 77 0(0/0) 860 86 0(0/0) 1060
SNF-L1a 70 0(0/0) 702 73 0(0/0) 820 75 0(0/0) 943
SNF-L1a4 87 5(4/9) 807 89 5(4/9) 917 91 5(4/9) 1053

SNF-L1
80 dB

105 1(0/2) 979 114 1(0/2) 1174 125 1(0/2) 1410
SNF-L1a 105 1(0/2) 979 109 1(0/2) 1131 110 1(0/2) 1238
SNF-L1a4 105 2(0/4) 999 109 2(0/4) 1122 111 2(0/4) 1264

low sparsity of NESTA’s solutions (see Figures 7.1 and A.1–A.3 (b)). Thus, with increasing
accuracy NESTA seems to fail at sufficiently decreasing the `1-norm of its iterates and satis-
fying the conditions (Crel) and (Cnat). Nevertheless, the results of the low precision problems
and the results reported in [13, 157] indicate that NESTA is a very robust method regarding
changes of the dynamic range.

At low and middle precision the FPC-BB method outperforms its regular FPC version
and converges much faster. For fixed dynamic range the performance of both approaches
degrades as the stopping tolerance is reduced, requiring about 6–18 times more iterations.
Furthermore, FPC-BB did not converge for almost all high precision examples. FPC-AS
generally performed very well; it takes about 2.3–4.9 times as many A- and A>-calls at 80
dB than at 20 dB. For dynamic range d ∈ {20, 40, 60} about 2.8–5.6 times as many A- and
A>-calls are used to compute a very accurate solution as to compute a low precision solution,
whereas SNF-L1 only needs 1.8–3.7 times more calls. According to Figure 7.1 all variants of
FPC need about 200–400 A-calls until they start to reliably identify zero components of x∗.
While FPC-BB and FPC-AS manage to detect all zero components within 200 A-calls, FPC
requires a large number of additional A-calls to find the correct sparsity pattern. Besides
SPGL1, FPC-AS is the only tested method that detects small nonzero components of x∗ as
fast as SNF-L1.

FISTA and the PD method are outperformed by most other algorithms. For fixed dynamic
range, FISTA needs about 5.5–60 times as many A- and A>-calls to compute a high precision
solution as to calculate a low precision solution. In our experiments, FISTA seems to be
mainly attractive for problems with low dynamic range and low accuracy. As SPGL1, the
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Figure 7.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 40 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample (the
following NESTA configuration was used: µ = 10−8, T = 4).
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(l) YALL1

Figure 7.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 40 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample. (best
NESTA configuration was used: µ = 10−8, T = 4)
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Figure 7.2.: Change of residual with respect to the total number of A- and A>-calls. The blue
bar at the bottom of each plot visualizes the continuation scheme of SNF-L1.
Each single box depicts one specific continuation phase with fixed µj . Shrinkage
steps are marked in red color.

primal-dual method did not converge in the high precision examples. Usually, it requires
about 10 times as many A-calls for the middle precision examples as for the low precision
problems with ε = 1. Although the Figures 7.1 and A.1–A.2 (i) show that the PD method
quickly detects all zero components of x∗ for dynamic range d ∈ {20, 40, 60}, both FISTA
and the PD method fail in successfully locating the small nonzero components of the optimal
solution x∗.

The performance of the YALL1 algorithm rapidly decreases with increasing dynamic range.
While YALL1 achieves good results in the 20 dB case, it performs rather poor in the examples
with higher dynamic range. More specifically, YALL1 takes about 18–21 times as many A
applications on the 40 and 60 dB signal than on the 20 dB signal. Furthermore, it did not
converge in the 80 dB examples (see Table 7.5). The Figures A.2 and A.3 (l) in the appendix
also indicate that YALL1 does not correctly detect all zero components of x∗.
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Figure 7.3.: Convergence of the residual with respect to the number of iterations. Each
subfigure contains two images that depict the same trial for different intervals of
iterations.

The proposed method SNF-L1 compares quite positively to the other solvers. It performs
especially well at low dynamic range. The Tables 7.2 and 7.3 demonstrate the efficiency of
SNF-L1 and its competitiveness in this regime. Although SNF-L1 generally is a bit more
sensitive to increasing dynamic range than, e.g., GPSR-BB or SpaRSA, its performance
consistently stays competitive with the other methods. Moreover, our experiments in the
Tables 7.2–7.5 show the particular strength of SNF-L1 in efficiently computing high accuracy
solutions.

We now investigate the local convergence properties in some more detail. Since SNF-L1
terminates the CG iteration quite early, we also consider SNF-L1a, a version of SNF-L1
where the stopping criteria for the inner CG solves are adaptively adjusted to enforce more
accurate solves in the final phase of convergence. To achieve this, SNF-L1a applies a simple
adaptive update rule for the CG parameters. If the residual ‖FΛk(xk)‖ falls below a certain
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tolerance we adjust CG-maxit and CG-tol appropriately and solve the Newton system with
higher accuracy. For SpaRSA, FPC-AS, SNF-L1 and SNF-L1a, we investigate the change
of the current residual ‖F I(xk)‖ depending on the number of A- and A>-calls (Figure 7.2)
and depending on the total number of iterations (Figure 7.3). We perform a single trial and
consider dynamic ranges d ∈ {20, 40, 60, 80}. The results are summarized in the Figures 7.2
and 7.3.

The following effects can be observed. Independently of the dynamic range, both SNF-L1
and SNF-L1a provide competitive results and generally need much less A- and A>-calls than
SpaRSA or FPC-AS to compute very accurate solutions. Figure 7.3 shows that the adaptive
choice of the CG parameters results in local superlinear convergence of SNF-L1a, as predicted
by the theory. Due to the coarse accuracy used in SNF-L1, superlinear convergence cannot be
expected here and thus our original SNF-L1 implementation converges at a (good) linear rate.
We also see that adaptivity as implemented in SNF-L1a can be a means for further increasing
the performance of SNF-L1, since in the considered cases, SNF-L1a generally requires even
less A- and A>-calls than SNF-L1, although the system (7.1.3) is solved with much higher
accuracy. Thus, Figures 7.2 and 7.3 clearly confirm the potential and the efficiency of the
SNF-L1 method in the high precision regime.

We conclude this section with a short discussion of the filter. Typically, in consistency
with our observations regarding SNF-L1’s rate of convergence, only few Newton iterates are
rejected by the filter and the acceptance condition. To be more precise, our experiments and
the results in Table 7.6 indicate that unacceptable Newton iterations mainly occur among
trials with high dynamic range d = 80 dB and at low precision (see also Figure 7.2). Moreover,
as shown in Table 7.6, the additional adaptive scheme for the step size parameter τk further
stabilizes the SNF-L1 method and reduces the overall number of proximal gradient steps and
A- or A>-calls. Hence, in the convex quadratic example, our numerical results demonstrate
that the SNF-L1 method finally turns into a locally fast converging, pure semismooth Newton
method.

7.2. Nonconvex `1-problems with Student’s-t penalty

One particular strength of Algorithm 2 is that it is applicable to nonconvex problems. To
evaluate the semismooth Newton method for nonconvex problems, we replace the Gaussian
noise by errors with a Student’s-t distribution, which is heavy-tailed and thus generates
more outliers. It is known that least squares functionals ‖Ax− b‖2 are tailored to Gaussian
noise, while a suitable misfit measure for data contaminated by Student’s-t errors is given
by [4, 2, 3]

∑m
i=1 ψ([Ax− b]i) where

ψ : R→ R, ψ(y) := log

(
1 +

y2

ν

)

228



7.2. Nonconvex `1-problems with Student’s-t penalty

Table 7.7.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 20 dB using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 354 354 906 906 1280 1280 1888 1888 2323 2323
FPD 716 574 3283 1869 5452 4174 DNC 17087 DNC DNC
FPD-BBµ 554 1996 2372 2082 4337 4327 DNC DNC DNC DNC
FPD-BBv 752 631 3411 1648 6371 6106 DNC DNC DNC DNC

Table 7.8.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 40 dB using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 1298 1298 2651 2651 3134 3134 3956 3956 4545 4545
FPD 4365 4788 9731 7785 14255 11495 DNC DNC DNC DNC
FPD-BBµ 2252 3405 4369 3608 9070 7800 DNC DNC DNC DNC
FPD-BBν 448 703 1700 852 6528 5249 DNC DNC DNC DNC

is the Student’s-t penalty function with the degrees of freedom parameter ν > 0 (see Figure
7.4 (a)). The function ψ is nonconvex and we consider the following nonconvex problem:

(7.2.1) min
x∈Rn

m∑
i=1

ψ([Ax− b]i) + µ‖x‖1.

For more information about robust inversion, Student’s-t approaches and related applications
we refer to [2, 1] and the references therein.

In the following, we discuss the behavior of Algorithm 2 for the nonconvex problem (7.2.1).
Based on an extension of the test framework of the convex example we compare the globalized
semismooth Newton method with variants of Algorithm 1 and FPC-BB.

7.2.1. Algorithms and implementational details

In this section we list implementational details of the semismooth Newton method for (7.2.1)
and describe the setting of the generalized fixed point descent (FPD) methods.

Semismooth Newton Method (SNF-T). We will refer to the Student’s-t version of
Algorithm 2 as SNF-T. SNF-T inherits its structure and concepts from SNF-L1 (section
7.1.1). As SNF-L1a, it implements an adaptive strategy for the CG parameters. Thus, the
system (7.1.3) is solved with higher accuracy when the current residual is small enough. The
parameters of the additional filter conditions (4.2.18) and (4.2.19) are set to α1 = α2 = 5,
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Figure 7.4.: In subfigure (a), a plot of the Gaussian (- -) and the Student’s-t penalty function
(-) with ν = 0.25 is shown. Subfigure (b) shows the convergence of the residual
with respect to the number of iterations. The left figure contains the results for
a single run with 20 dB; on the right, dynamic range d = 40 dB is considered.

α3 = 10−1 and η = 0.8. Due to the different scale invariance properties, continuation is not
performed with respect to the regularization parameter µ but for the degree of freedom ν,
i.e., µ is kept fixed throughout the iteration process. We used the same update formula as
in the convex case except the damping factor Ccont

0 was set to

Ccont
0 = min

{
0.1, 2.2 · (‖b‖∞/ν2)−

1
3

}
and Ccont

max was set to 20. Finally, x0 = A>b was used as initial point and we worked with
fixed parameter matrices of the form Λ = τ−1I and τ = 6. All remaining parameters were
not changed.

Fixed point descent methods (FPD). FPD is an implementation of the globally con-
vergent proximal gradient method, Algorithm 1. The parameters for the quasi-Armijo con-
dition were set to β = 0.1, γ = 0.1 and we used Λ = τ−1I, τ = 6. Furthermore, we tested
two variants of FPD that are based on FPC-BB. FPD-BBµ uses a continuation strategy
for µ and the quasi-Armijo condition is substituted by a Barzilai-Borwein framework with a
nonmonotone linesearch technique. The continuation scheme and the choice of the BB steps
and parameters were adopted from FPC-BB. As SNF-T, FPD-BBν applies a continuation
to the degree of freedom parameter ν. Again the scheme and concept of FPC-BB was used
except the initial value ν0 was set to max{0.1 · ‖b‖∞, ν}. All methods were initialized with
x0 = A>b.
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Figure 7.5.: Change of the residual with respect to the total number of A- and A>-calls. this

7.2.2. Numerical comparison

Our comparison is based on the test framework of the convex example. More precisely, the
reference signal x̄ ∈ Rn, n = 5122, and the matrix A ∈ Rm×n, m = n/8, are generated as
specified in section 7.1.3 and the input data b ∈ Rm is obtained by adding Student’s-t noise
with degree of freedom 4, that is rescaled by 0.1, to Ax̄. Now, as described in 7.1.3, several
reference solutions are computed by SNF-T and the stopping criteria of the other methods
are changed to (Crel) and (Cnat), respectively.

All algorithms were run with µ = 0.07 and degree of freedom ν = 0.25. We consider
dynamic range d ∈ {20, 40} and tolerances ε ∈ {1, 10−1, 10−2, 10−4, 10−6}. Again we report
DNC, when convergence is not reached after a total number of #Arel = 20000 or #Anat =
20000 A-calls. Table 7.7 and 7.8 contain the mean values of #Arel and #Anat over 10 random
trials; the best result from each column is shaded. The corresponding total CPU times can
be found in Table A.5 and A.6 in the appendix.

At first, we observe that, due to the additional nonconvexity all algorithms need a relatively
high number of A- and A>-calls to show convergence. As in the convex case, the Barzilai-
Borwein methods FPD-BBµ and FPD-BBν generally outperform their regular FPD version
and converge faster. The continuation strategy of FPD-BBν proves to be very efficient at
low precision and at larger dynamic range. However, in the 20 dB case, FPD and FPD-BBµ
achieve better results and converge faster than FPD-BBν with respect to the CPU time.
Compared to SNF-T, FPD and FPD-BBν degrade much faster as the stopping tolerance
is reduced, requiring about 8–30 times more iterations. Surprisingly, none of the other
algorithms converged at the high precision examples.

The results in Table 7.7 and 7.8 demonstrate that SNF-T possesses similar convergence
properties as SNF-L1 and is, again, especially well-suited for recovering high precision so-
lutions. Figure 7.4 (b) and 7.5 strengthen this impression and illustrate that transition to
local superlinear convergence is also achieved in the nonconvex setting. As in the convex
example only few Newton iterates are rejected by the filter and consequently, due to the
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7. Applications and numerical results

rare update of ϕk, we observed that the majority of the accepted Newton iterations satisfies
the growth condition (4.2.19). The remaining iterates, which satisfy condition (4.2.18), are
usually performed at the beginning or the end of a trial or after a proximal gradient step.

7.3. Group sparse least squares problems

In this paragraph, we evaluate the semismooth Newton method on convex group sparse
problems of the following type

(GSµ) min
x∈Rn

f(x) + µ
s∑
i=1

‖xgi‖2, f(x) :=
1

2
‖Ax− b‖22.

As usual, we assume that the different groups gi ⊂ {1, ..., n}, i = 1, ..., s, form a disjoint
partitioning of the set {1, ..., n}. Our numerical comparison will be again based on the test
framework presented in [13] and section 7.1. A detailed description of the construction of
the subsampled data vector b ∈ Rm, the measurement matrix A ∈ Rm×n, and of the test
setting can be found in section 7.3.3.

In contrast to the `1-norm regularization, the group sparse penalty term

(7.3.1) ϕ(x) = µ
s∑
i=1

‖xgi‖2

allows to model and add information about the sparsity pattern of the solutions of problem
(GSµ). In particular, any solution x̄ ∈ Rn of the latter least squares problem will possess
a certain group sparse structure, i.e., the components of x̄ are clustered in different groups
that are either zero or nonzero. The minimization problem (GSµ) is also known as the
group lasso problem [262] and is a specific example of a problem with so-called joint sparsity
constraints [70, 235, 85]. Its effectiveness has been proven in various applications such as
variable selection [262, 115], machine and multiple kernel learning [7, 115], or gene selection
and logistic regression [144].

In the following, we compare Algorithm 2 with several state-of-the-art methods that were
already considered in the convex `1-example. For instance, we will also investigate a variant
of the SPGL1 method that solves a constrained version of the problem (GSµ):

(GSσ) min
x∈Rn

s∑
i=1

‖xgi‖2 s. t. ‖Ax− b‖2 ≤ σ.

By reusing the basic constructions of the `1-comparison, we build a similar, high dimensional
test framework for group sparse problems. We first start with a more detailed discussion of
the implementation of the semismooth Newton method for problem (GSµ).
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7.3. Group sparse least squares problems

7.3.1. Algorithmic description

We will refer to the group sparse version of Algorithm 2 as SNF-GS. In the following, we
describe the basic components of the SNF-GS method.

Λ-strategy. As in the `1-case, we will work with simple parameter matrices of the form

Λk := τ−1
k I, τk ∈ [τm, τM ], k > 1,

where the variable τk is again chosen to estimate the inverse Lipschitz constant of the gradient
∇f(x) = A>(Ax− b) and is updated according to (7.1.1). The initial value is set to τ0 = 500
and we used τm = 10−3, τM = 104.

Newton system. As described in Example 4.2.18, the nonsmooth residual function FΛk

can be computed group-wise via

FΛk(xk)gi = τk∇f(xk)gi + PB‖·‖2 (0,µτk)(x
k
gi − τk∇f(xk)gi), ∀ i = 1, ..., s.

Moreover, setting uk := xk−τk∇f(xk), we will work with the following generalized derivatives

M(xk) := τk(I −D(xk)) ·A>A+D(xk),

where the block-structured matrix D(xk) is uniquely determined by

D(xk)[gigj ] = 0, D(xk)[gigi] =

{
I if ‖ukgi‖2 ≤ µτk,
µτk
‖ukgi‖2

I − µτk
‖ukgi‖

3
2
ukgi(u

k
gi)
> if ‖ukgi‖2 > µτk,

for all 1 ≤ i, j ≤ s and i 6= j. As usual, the most expensive part of the algorithm is the
computation of the next Newton step sk which again involves finding a solution of the linear
system of equations

(7.3.2) M(xk)sk = −FΛk(xk).

Let us emphasize that the matrix M(xk) is never build explicitly in our implementation.
Instead, we utilize an iterative method which only requires matrix-vector multiplications to
compute an approximate solution of the latter system. Here, in contrast to the SNF-L1
method, we directly solve the full and nonsymmetric system (7.3.2) with a GMRES method.
Let us note that by introducing the index sets A = A(xk) := {i : ‖ukgi‖2 ≤ µτk} and
I = I(xk) := {i : ‖ukgi‖2 > µτk} and using a group-wise block elimination, the system (7.3.2)
can again be reduced to a symmetric and smaller system of equations that, for instance,
can be solved with a conjugate gradient method. However, in our numerical experiments,
we observed that the CG method needs a relatively large number of iterations to achieve
convergence. Hence, we implemented a GMRES-based strategy to solve the system (7.3.2).
Furthermore and similar to the `1-case, we also consider the regularized and numerically
more robust formulation

[M(xk) + ρI]sk = −FΛk(xk), ρ = ρ(xk) = ‖FΛk(xk)‖.
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7. Applications and numerical results

Figure 7.6.: Construction of the group pattern. Each image visualizes one basic group con-
figuration for a 8× 8 signal. Larger group patterns are generated by combining
the depicted group blocks and randomly assigning the different groups.

(a)

-10 0 10

(b)

-10 0 10

(c)

Figure 7.7.: Visualization of the experimental data. In subfigure (a), the group pattern of a
512×512 reference signal x∗ with a total of 4096 groups is shown. Subfigure (b)
illustrates the corresponding sparsity pattern of x∗. The generated signal has
dynamic range 20 dB and 409 nonzero groups. In subfigure (c), a reconstruction
of a noisy and undersampled version of the signal x∗ is presented (we took 12.5%
random discrete cosine measurements and added Gaussian noise with zero mean
and variance σ = 0.1).

As in the `1-example, we will count the number of applications of the matrices A and
A> and use this number as a measure of efficiency and to compare the different algorithms.
The terms A-call, A>-call, and CA will again denote an application of the matrices A or
A> and will specify the complexity of an A- or A>-call, respectively. Since each inner step
of the GMRES solver requires two A-calls, the complexity of a single Newton iteration of
the SNF-GS method is given by 2CA + 2CA · gmres-iter (two A-calls are used to calculate
FΛk(xk)). To reduce the overall number of A-calls, we implemented an adaptive scheme
that controls the maximum number of GMRES iterations and the accuracy of the GMRES
method. Specifically, at the beginning, we set the relative tolerance GMRES-tol to 0.2 and
the maximum number of iterations GMRES-max to 10. If the current residual ‖FΛk(xk)‖
falls below a certain tolerance, we adjust GMRES-tol and GMRES-max and solve the system
(7.3.2) with higher accuracy.

Continuation. Motivated by our previous experiments and results, we implemented a
simple continuation framework for the regularization parameter µ. Here, we choose µ0 =
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7.3. Group sparse least squares problems

Table 7.9.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 20 dB and noise level σ̄ = 0.1.

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-GS 109 109 149 149 199 199 289 289 289 289
ADMM 211 68 387 240 757 450 1904 888 1904 1330
FISTA 130 68 294 202 696 568 3353 2160 3353 4716
FPD-BB 131 65 203 159 320 279 630 519 630 741
PD 87 91 118 148 190 259 1688 1252 1688 6795
SpaRSA 389 388 415 409 488 480 736 651 736 853
SPG-GS 84 70 129 114 213 194 DNC DNC DNC DNC

0.05 · ‖A>b‖∞ and use the following update formula

µj+1 = max{γjµj , µ}, (0, 1] 3 γj = min{0.01 · iter, 0.8},

where iter denotes the current iteration number. Thus, in contrast to SNF-L1, the damping
factor γj increases linearly as the total number of iterations increases. Again, the current
regularization parameter µj will be reduced whenever the number of inner iterations of a
single continuation phase is larger than Ccont

max = 10.

Filter and globalization. In our numerical tests, we experienced that the implemented
continuation scheme and the adaptive step size strategy ensure convergence of semismooth
Newton method even without the filter globalization. This is not completely surprising since
a similar behavior can also be observed for the `1-problems in section 7.1; see, e.g., Table
7.6. Nevertheless, we integrated the filter mechanism as a safeguard in our implementation.
Here, we again choose a filter function θ : Rn → Rs+ of the type (4.2.8) with the following
specifications:

γF = 10−3, Ij = gj , ∀ j = {1, ...s}.

Hence, in this case, the filter function θ does also take account of the group-wise structure
of the natural residual FΛk .

Initial point and stopping criterion. As in the `1-case, we choose x0 = 0 as default
initial point and terminate SNF-GS if the current residual ‖FΛk(xk)‖ is smaller than a given
tolerance.

7.3.2. State-of-the-art methods

For our numerical comparison, we will mainly focus on methods that were already considered
in the `1-test framework and that can also handle group sparse problems of the form (GSµ)
or (GSσ). In particular, we will reuse FISTA, SpaRSA, SPGL1, and the primal dual method
for our experiments. (Here, we refer to the group sparse version of SPGL1 as SPG-GS).
For each approach, additional code for the computation of the objective function and of the
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Table 7.10.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 20 dB and noise level σ̄ = 0.01.

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-GS 209 209 283 283 402 402 561 561 686 686
ADMM 133 29 366 147 815 347 1495 799 1813 1258
FISTA 302 16 992 270 3722 824 DNC 6342 DNC DNC
FPD-BB 518 93 1401 195 2465 1063 3955 3020 4647 5000
PD 171 26 271 261 363 360 451 476 485 567
SpaRSA 445 452 613 473 1251 593 2220 1670 2730 3066
SPG-GS 142 137 440 184 1355 340 DNC DNC DNC DNC

group sparse proximity operator is provided. Moreover, we also use the same modifications
and parameter settings as specified in section 7.1.2.

Although SpaRSA’s continuation scheme has been developed for `1-problems, it also led to
a significant speedup in the group sparse case. Thus, in our tests, SpaRSA is run with contin-
uation and all continuation parameters were set to default except the number of continuation
steps was set to 40 and the initial regularization parameter µ0 was changed to

µ0 = max
i=1,...,s

‖[A>b]gi‖2.

In the following, we derive an alternating direction method for the constrained problem
(GSσ) and briefly describe a variant of the FPC-BB algorithm for the group sparse least-
squares problem (GSµ).

Alternating Direction Method of Multipliers (ADMM). In [61], Deng et al. present
and provide an extension of the YALL1 package for group sparse problems. Unfortunately,
their algorithmic framework and their online code is not directly applicable to the problems
considered in this section. Thus, we implemented our own version of ADMM to solve the
constrained problem (GSσ). Next, we give an overview of ADMM and of our proposed ver-
sion; for more general information about ADMM, see, e.g., [91, 71]. The classical alternating
direction method goes back to Glowinski and Marrocco [92] and Gabay and Mercier [89] and
is designed for problems of the form

min
x,y

ϕ(x) + ψ(y) s. t. Ax+By = c,

where ϕ : Rn → (−∞,+∞] and ψ : Rm → (−∞,+∞] are convex, proper, and lower
semicontinuous functions and A ∈ R`×n, B ∈ R`×m, c ∈ R` are given. The constraint
Ax + By = c couples the variables x and y and usually arises from a reformulation of a
general convex composite problem. The basic idea of the alternating direction method is to
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7.3. Group sparse least squares problems

Table 7.11.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 40 dB and noise level σ̄ = 0.1.

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-GS 257 257 386 386 453 453 556 556 668 668
ADMM 377 192 778 380 1130 555 1416 901 1807 1247
FISTA 793 293 3028 876 5528 2146 9220 8276 15117 DNC
FPD-BB 1016 233 1728 903 2335 1489 2832 2672 DNC 3844
PD 249 253 333 312 403 383 510 648 729 1156
SpaRSA 516 478 982 530 1435 844 1811 1732 2337 2620
SPG-GS 283 147 812 275 1266 648 DNC DNC DNC DNC

perform a successive and alternating minimization of the associated augmented Lagrangian

L(x, y, λ) := ϕ(x) + ψ(y) + 〈λ,Ax+By − c〉+
β

2
‖Ax+By − c‖22,

where λ ∈ R` denotes the Lagrange multiplier and β > 0 is a penalty parameter. Now, for
the group sparse problem (GSσ), we introduce the auxiliary variables z = x and t = σ. This
leads to the following formulation:

min
x,z,t

µ

s∑
i=1

‖xgi‖2 s. t. (Az − b, t) ∈ epi ‖ · ‖2, x− z = 0, t− σ = 0.

In our implementation, we also use different penalty parameters for the constraints x = z
and t = σ, i.e., setting y = (z, t) ∈ Rn+1 and λ = (λz, λt) ∈ Rn+1, we consider the Lagrangian

L(x, y, λ) := ϕ(x) + ψ(y) + 〈λ, y − (x>, σ)>〉+
β1

2
‖x− z‖22 +

β2

2
(t− σ)2,

where ψ(y) = ψ(z, t) = ιepi ‖·‖2(Az − b, t) and ϕ is the group sparse penalty term as defined
in (7.3.1). In this case, the update steps of the alternating direction method are given by

xk+1 = arg min
x∈Rn

L(x, yk, λk) = proxβ1I
ϕ (zk + β−1

1 λkz),

yk+1 = arg min
y∈Rn+1

L(xk+1, y, λk) = proxBψ

((
xk

σ

)
−B−1λk

)
, B =

(
β1I 0
0 β2

)
,

λk+1 = λk + γB(yk+1 − ((xk+1)>, σ)>).

Clearly, the most complex part of each ADMM iteration is the computation of the proximity
operator proxBψ . However, if the matrix A is an orthogonal projector and satisfies AA> = I,
then Example 3.2.9 implies that proxBψ has an explicit representation. In this situation, the
total complexity of a single ADMM iteration reduces to two A-calls. In our implementation,
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Table 7.12.: Total number of A- and A>-calls #Arel and #Anat averaged over 10 independent
runs with dynamic range 40 dB and noise level σ̄ = 0.01.

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-GS 401 401 476 476 788 788 1024 1024 1224 1224
ADMM 307 179 535 383 835 568 1468 936 1695 1303
FISTA 2282 165 5255 1178 12928 3439 DNC DNC DNC DNC
FPD-BB 4733 308 7885 404 11291 4986 DNC 13372 DNC DNC
PD 656 224 806 783 946 974 1179 1244 1254 1448
SpaRSA 528 518 2018 535 5583 978 12708 7738 DNC 15942
SPG-GS 337 297 2876 336 7200 665 14869 10166 DNC DNC

we use the parameters γ = 1.618, β1 = 0.3/mean(b), β2 = 3/mean(b) and set x0 = 0 and
λ0 = 0. Furthermore, no continuation was used for the penalty parameters β1 and β2.

Fixed point descent method (FPD-BB). As in the nonconvex `1-test framework,
FPD-BB is an implementation of the globally convergent, proximal gradient scheme, Algo-
rithm 1. Similar to FPC-BB, we use Barzilai-Borwein step sizes to build the parameter ma-
trices Λk = τ−1

k I and the quasi-Armijo condition is substituted by a nonmonotone line search
technique. Again, we apply a simple continuation strategy to adapt the parameter µ and to
accelerate convergence. More specifically, we set µ0 = 0.05·‖A>b‖∞ and after a fixed number
of steps the new regularization parameter µj+1 is calculated via µj+1 = max{0.7 · µj , µ}.

7.3.3. Numerical comparison

Again, our test framework is based on the NESTA package [13] and on the experiments in
section 7.1. At first, we generate a random group pattern by combining a suitable number
of basic and fixed, lower dimensional group configurations and by randomly assigning the
different groups. A visualization of the construction of the group pattern and a specific
example can be found in Figure 7.6 and 7.7. Next, we generate a group sparse reference
signal x̄ ∈ Rn of length n = 5122 = 262144 with a total of s = [n/64] = 4096 groups
and with k = 409 nonzero groups. Similar to the `1-test framework, the k different groups
i ∈ {1, ..., s} are randomly chosen and the nonzero components of x̄ are determined via

x̄gi = η1(i)10dη2(i)/20 · 1gi ,

where η1(i) ∈ {−1,+1} is a random sign and η2(i) is uniformly distributed in [0, 1]. The
matrix A ∈ Rm×n, m = n/8, is based on random cosine measurements and is constructed
as specified in section 7.1.3. Finally, the input data b ∈ Rm is obtained by adding Gaussian
noise with standard deviation σ̄ ∈ {0.1, 0.01} to Ax̄.
Since ADMM and SPG-GS solve the constrained group sparse problem (GSσ) while all

other algorithms solve the unconstrained problem (GSµ), we again need to compute a corre-
sponding pair of parameters σ and µ first. Here, we simply reuse the procedure described in
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Figure 7.8.: Change of the residual with respect to the total number of A- and A>-calls. thi

section 7.1.3 to obtain comparable problem settings. In particular, as an intermediate step,
SNF-GS is used to compute a high precision solution x∗ of the group sparse problem (GSµ)
that satisfies

‖F I(x∗)‖ ≤ 10−12.

Afterwards and identical to the convex `1-test framework, the SNF-GS method is run with
different stopping tolerances to generate a series of reference solutions. Moreover, the stop-
ping criteria of the other methods are again changed to (Crel) and (Cnat).

In the following test, we consider the dynamic ranges d ∈ {20, 40}, the noise level σ̄ =
{0.1, 0.01}, and the tolerances ε ∈ {1, 10−1, 10−2, 10−4, 10−6}. Since an application of A or
A> again corresponds to the evaluation of a dct or idct function, our numerical comparison
will focus on the total number of A- and A>-calls #Arel and #Anat, respectively. We report
DNC (did not converge) if convergence is not reached after a total number of #Arel = 20000
or #Anat = 20000 calls. The Tables 7.9, 7.10, 7.11, and 7.12 contain the mean values of the
numbers #Arel and #Anat over 10 random trials; the two best results from each column are
shaded. The mean values of the corresponding, total CPU times trel and tnat are summarized
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Figure 7.9.: Convergence of the residual with respect to the number of iterations. The left
figure contains the results for a single run with σ̄ = 0.1; on the right, the noise
level σ̄ = 0.01 is considered.

in the Tables A.7–A.10 and can be found in section A.4.3 in the appendix. In Figure 7.10 we
visualize the change of the `2-norm of 128 randomly chosen group-components of the iterate
with respect to the number of A- and A>-calls. Each plot shows the development of the
iterate for a single run with dynamic range d = 40 dB. Additionally, the maximum number
of A- and A>-calls that is required to detect all zero groups of the optimal solution x∗ is
marked with a green line. A similar visualization for dynamic range d = 20 dB is provided
in the appendix, see Figure A.4.

SPG-GS has a similar behavior as its `1-version SPGL1 and performs especially well on the
low and middle precision problems. However, for σ̄ = 0.01 and using the relative stopping
criterion (Crel), it requires up to 10 times as many A-calls as SNF-GS to show convergence.
Similar to the `1-experiments, SPG-GS does not converge in the high precision examples.
Figure 7.10 (h) also again demonstrates that SPG-GS quickly detects the correct zero and
nonzero groups of the solution x∗.

The proximal gradient schemes FISTA and FPD-BB are outperformed by the other algo-
rithms in most cases. More specifically, the performance of both methods quickly degrades as
the stopping tolerance ε is reduced. In general, FISTA needs 10–100 times as many A-calls
to compute a very accurate solution as to compute a low precision solution and thus, it often
does not converge in the harder examples with smaller noise level σ̄ = 0.01. While FPD-BB
achieves good results in the experiment with dynamic range 20 dB and σ̄ = 0.1 (see Table
7.9), its overall performance deteriorates in the other test examples. Both methods require
a relatively large number of steps and A-calls to detect the correct group sparsity pattern.
Surprisingly and in contrast to our previous observations, the performance of both methods
also significantly depends on the chosen stopping criterion.

For group sparse problems, the overall performance of SpaRSA is not as stable as in the
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(b) SNF-GS-(sub)
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Figure 7.10.: Change of the `2-norm of 128 randomly chosen groups of the iterate of a single
run with dynamic range 40 dB and σ̄ = 0.1 with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero groups of the high precision solution x∗ within the sample.

`1-case. For fixed dynamic range SpaRSA requires about 3.7–6 times as many A-calls at
σ̄ = 0.01 than at the more noisy case σ̄ = 0.1. As FPD-BB, it needs a relatively large
number of A applications to capture the active and inactive groups of x∗, see Figure 7.10 (g)
and A.4 (g).

In contrast to the `1-experiments in section 7.1, the primal-dual method achieves very
good results. In particular, it is very efficient for the test problems with lower noise level
σ̄ = 0.01, see also Figure 7.8. Here, the PD method takes about 3 times as many A-calls
on the 40 dB signal than on the 20 dB examples (see Table 7.10 and 7.12). Similar to the
other tested methods, its performance generally depends on the chosen stopping criterion
(we refer to Table 7.9 for details). The Figures 7.10 (f) and A.4 (f) demonstrate that the
PD method quickly and efficiently captures the correct sparsity pattern of the solution x∗.
However, it usually requires more iterations and A applications to locate groups with small
nonzero components. ADMM achieves very stable results throughout the test framework
and performs especially well on problems with lower noise level. For fixed dynamic range
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(f) PD
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(h) SPG-GS

Figure 7.10.: Change of the `2-norm of 128 randomly chosen groups of the iterate of a single
run with dynamic range 40 dB and σ̄ = 0.1 with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero groups of the high precision solution x∗ within the sample.

and fixed noise level σ̄, it requires about 5.5–13 times as many A-calls to compute a high
precision solution than to compute a low precision solution, whereas SNF-GS only needs
2.6–3.2 times as many A-calls. This rather slow convergence can be seen in Figure 7.8 and is
also reflected in the slow reduction of the zero groups (see also Figure A.4 (c)). Nevertheless,
our results show that ADMM is very robust regarding changes of the dynamic range or of
the noise level σ̄.

The results in the Tables 7.9–7.12 show that SNF-GS compares very positively to the other
algorithms and performs particularly well at the higher noise level σ̄ = 0.1. Again, our tests
confirm that the semismooth Newton method is very efficient in computing high precision
solutions. Moreover, the Figures 7.8 and 7.9 clearly demonstrate that transition to local,
q-superlinear convergence can also be observed in the group sparse setting. In constrast
to the `1-problems, SNF-GS only approximately detects the correct sparsity pattern and
requires a comparably high number of A-calls to reduce the zero group components. This
effect is mainly caused by our regularization strategy that is applied to the full system (7.3.2);
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see section 7.3.1. Hence, we also tested SNF-GS-(sub), a simple variant of SNF-GS, that
performs a subspace correction step on the active set A = A(xk). As illustrated in Figure
7.10 and A.4 this adjustment clearly improves the overall quality of the iterates.

Thus, in summary, our experiments indicate the competitiveness of the globalized semis-
mooth Newton method and demonstrate its particular strength in obtaining high accuracy
solutions for different, convex, and nonconvex problems.
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A.1. The proximal gradient method: Global convergence

In the following, we prove global convergence of the proximal gradient method presented
in section 4.2.2. The proof is essentially based on a result of Tseng and Yun [236] for a
nonsmooth coordinate descent method. Let us also note that the proof uses similar arguments
as the standard convergence analysis of the classical gradient descent method; see, e.g., [17,
Proposition 1.2.1] or [239, Satz 7.7].

Proof A.1.1 (Proof of Theorem 4.2.10). Suppose that Algorithm 1 does not terminate
within a finite number of steps and let the sequences (xk)k, (Λk)k, and (σk)k be generated
by Algorithm 1. As in the proof of Lemma 4.2.8, we have

lim sup
σ↓0

ψ(xk + σdk)− ψ(xk)

σ
− γ∆k ≤ −(1− γ)‖dk‖2Λk < 0.

Hence, it holds (σk)k ⊂ (0, 1] and ψ(xk+1) < ψ(xk) for all k ∈ N.

Now, let x̄ ∈ Rn be an arbitrary accumulation point of the sequence (xk)k and let (xk)K
be a corresponding subsequence that converges to x̄. Since the sequence (ψ(xk))k is mono-
tonically decreasing, it converges to some limit ξ ∈ R∪{−∞}. On the other hand, the lower
semicontinuity of ψ implies

lim inf
K3k→∞

ψ(xk) ≥ ψ(x̄).

Consequently, it holds ξ ≥ ψ(x̄) ∈ R. Next, by using the Armijo step size rule, we have

ψ(x0)− ψ(x̄) ≥
∞∑
k=0

ψ(xk)− ψ(xk+1) ≥
∞∑
k=0

σkγλm‖dk‖2.

This immediately yields σk‖dk‖2 → 0, as k → ∞. Now, suppose that FΛ(x̄) 6= 0 for some
Λ ∈ Sn++. Due to the continuity of FΛ and using the convergence xk → x̄, K 3 k → ∞,
there exists ` ∈ K such that

‖FΛ(xk)‖ ≥ 1

2
‖FΛ(x̄)‖ > 0, ∀ k ∈ K, k ≥ `.

Next, since the parameter matrices remain in a bounded set, we can utilize Remark 4.1.4,
i.e., there exists λ = λ(λm, λM ,Λ) > 0 such that

(A.1.1) ‖dk‖ = ‖FΛk(xk)‖ ≥ λ · ‖FΛ(xk)‖ > 0, ∀ k ∈ K, k ≥ `.
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In particular, this implies
σk → 0, K 3 k →∞.

Thus, there exists ˜̀ ∈ K, ˜̀ ≥ ` such that σk ≤ β for all k ∈ K, k ≥ ˜̀ and the Armijo
condition in step S2 of Algorithm 1 is not satisfied for β−1σk > σk, i.e., it holds

ψ(xk + β−1σkd
k)− ψ(xk) > γβ−1σk∆

k.

We obtain

γ∆k <
ψ(xk + β−1σkd

k)− ψ(xk)

β−1σk

≤ f(xk + β−1σkd
k)− f(xk)

β−1σk
+ ϕ(proxΛk

ϕ (u(xk)))− ϕ(xk)

=
f(xk + β−1σkd

k)− f(xk)

β−1σk
−∇f(xk)>dk + ∆k

Now, as in Lemma 4.2.8, we have xk + β−1σkd
k ∈ dom ϕ ⊂ Ω for all k ∈ K, k ≥ ˜̀. Finally,

a first order Taylor expansion yields

(1− γ)λm‖dk‖ ≤ −(1− γ)
∆k

‖dk‖
≤ f(xk + β−1σkd

k)− f(xk)

β−1σk‖dk‖
− ∇f(xk)>dk

‖dk‖
=
o(σk‖dk‖)
σk‖dk‖

.

Taking the limit K 3 k →∞, this clearly leads to a contradiction to inequality (A.1.1) and
we can conclude the proof of Theorem 4.2.10.

A.2. Second order conditions

In this section, we present a detailed proof of the second order necessary and sufficient
conditions, which were introduced and discussed in section 5.2. The proof summarizes and
recreates several significant results of Bonnans and Shapiro, [27, Theorem 3.45, 3.83, and
Proposition 3.105], and rigorously “transfers” their argumentation to the convex composite
setting. For the sake of completeness, let us also refer to Bonnans et al. [24, Theorem 3.1,
3.2, and 4.1; Section 5]. Let us note that this section is intended to complement our second
order results on a theoretical level and to illustrate the application and interaction of the
concepts of second order regularity, second order tangent sets, and higher order, parabolic
epidifferentiability.

In the proof, we will utilize the following property of second order tangent sets, see [27,
Proposition 3.34]. Let S ⊂ Rn be a convex set and let x ∈ S, h ∈ TS(x) be arbitrary. Then,
it follows

T i,2S (x, h) + TTS(x)(h) ⊂ T i,2S (x, h) ⊂ TTS(x)(h)

and

(A.2.1) T 2
S(x, h) + TTS(x)(h) ⊂ T 2

S(x, h) ⊂ TTS(x)(h).
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Consequently, if 0 ∈ T i,2S (x, h), then we have T i,2S (x, h) = T 2
S(x, h) = TTS(x)(h). (For instance,

this is satisfied, when S is a polyhedral set).

Now, as usual, let φ : Rn → (−∞,+∞] be a convex, proper, and lower semicontinuous
function and let x ∈ dom φ, h ∈ Rn be given. Moreover, let us suppose that the epiderivative
φ↓(x;h) is finite. Then, due to Example 2.1.5 and Lemma 2.5.3, it holds

TTepi φ(x,φ(x))(h, φ
↓(x;h)) = cl{Tepi φ(x, φ(x)) + sp[(h, φ↓(x;h))]}

= cl{epi φ↓(x; ·) + sp[(h, φ↓(x;h))]}.

Thus, combing (A.2.1) and Lemma 5.2.4, it follows

(A.2.2) cl{T + epi ϕ↓(x; ·)} ⊂ epi ϕ↓↓− (x;h, ·)

for any subset T ⊂ epi ϕ↓↓− (x;h, ·). (Here, we used the fact that the outer second order
tangent set epi ϕ↓↓− (x;h, ·) is a closed set). We now turn to the proof of Theorem 5.2.8.

Proof A.2.1 (Proof of Theorem 5.2.8). Let us start with the verification of the second
order necessary conditions.

Proof of part (i). Let x̄ be a local solution of problem (Pc). Then, it holds ψc(x) ≥ ψc(x̄)
for all x in a certain neighborhood of x̄. Consequently, for every w ∈ Rn and h ∈ C(x̄), it
follows

0 ≤ lim inf
t↓0, w̃→w

ψc(x̄+ th+ 1
2 t

2w̃)− ψc(x̄)− t(ψc)↓−(x̄;h)
1
2 t

2
= (ψc)

↓↓
− (x̄;h,w).

By taking the infimum of the latter inequality over all w ∈ Rn, we obtain

(A.2.3) inf
w

(ψc)
↓↓
− (x̄;h,w) ≥ 0

for all h ∈ C(x̄). Since Robinson’s constraint qualification is satisfied at x̄ and the term
φ↓(F (x̄);DF (x̄)h) is finite for all h ∈ C(x̄) we can apply the chain rule in Lemma 5.2.5 to
compute the second order directional epiderivative (ψc)

↓↓
− (x̄;h,w); it holds:

(ψc)
↓↓
− (x̄;h,w) = ∇f(x̄)>w + h>∇2f(x̄)h+ φ↓↓− (F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)[h, h]).

Thus, the infimum expression on the left side of the second order condition (A.2.3) is equiv-
alent to the following problem

inf
w,t
∇f(x̄)>w + h>∇2f(x̄)h+ t s. t. φ↓↓− (F (x̄);DF (x̄)h,DF (x̄)w + w̄) ≤ t,

where w̄ := D2F (x̄)[h, h]. Furthermore, setting ξφ,h(·) := φ↓↓− (F (x̄);DF (x̄)h, ·), we obtain

inf
w,t
∇f(x̄)>w + h>∇2f(x̄)h+ t s. t. (DF (x̄)w + w̄, t) ∈ epi ξφ,h.

In order to dualize the latter problem, we need to replace the possibly nonconvex epigraph of
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the lower second order directional epiderivative by an appropriately chosen convex expression.
Of course, if we minimize over a slightly smaller set, the optimal value of the resulting
problem will also be bounded below by zero. Hence, let us consider an arbitrary convex
function ζ(·) ≥ ξφ,h(·) = φ↓↓− (F (x̄), DF (x̄)h, ·). Then, it follows epi ζ ⊂ epi ξφ,h and, due to
(A.2.2), we obtain

Ξ := cl{epi ζ + epi φ↓(F (x̄); ·)} ⊂ epi ξφ,h.

Moreover, since Ξ is the closure of the sum of two convex sets, this set is also closed and
convex. Thus, we can apply the Fenchel-Rockafellar duality framework to the convex problem

(A.2.4) inf
w,t
∇f(x̄)>w + h>∇2f(x̄)h+ t+ ιΞ(DF (x̄)w + w̄, t).

Specifically, defining Π(y, γ) := ιΞ(y + w̄, γ) and %(y, γ) := ∇f(x̄)>y + h>∇2f(x̄)h+ γ, the
dual problem of (A.2.4) is formally given by

max
v,τ
−%∗(DF (x̄)>v, τ)−Π∗(−v,−τ),

(see, e.g., [11, Chapter 15 and Definition 15.19]). The convex conjugates %∗ and Π∗ can be
computed as follows

• %∗(DF (x̄)>v, τ) = −h>∇2f(x̄)h+ sup
y,γ
〈y,DF (x̄)>v −∇f(x̄)〉+ γ(τ − 1)

= −h>∇2f(x̄)h+ ι{y:∇f(x̄)+DF (x̄)>y=0}×{1}(−v, τ),

• Π∗(−v,−τ) = sup
y,γ
−〈y, v〉 − γτ − ιΞ(y + w̄, γ) = 〈w̄, v〉+ σΞ(−v,−τ).

Thus, using λ ≡ −v, the dual problem can be rewritten as the following constrained program

max
λ

h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − σΞ(λ,−1) s. t. ∇f(x̄) +DF (x̄)>λ = 0.

Next, let us fix an arbitrary element (ȳ, γ̄) ∈ epi ζ. Then, by Lemmas 2.1.8 and 2.5.3, it
follows

dom σΞ ⊂ dom σ(ȳ,γ̄)+epi φ↓(F (x̄);·) ⊂ Nepi φ(F (x̄), φ(F (x̄))).

Moreover, due to Lemma 2.5.14, we have

∂φ(F (x̄))× {−1} = Nepi φ(F (x̄), φ(F (x̄))) ∩ Rm × {−1},

and, consequently, it holds σΞ(λ,−1) = +∞ if λ /∈ ∂φ(F (x̄)). Hence, the dual problem takes
the following final form

(A.2.5) max
λ∈M(x̄)

h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − σΞ(λ,−1).

In addition, utilizing [11, Theorem 15.23 and Proposition 15.24], there is no duality gap be-
tween the primal problem (A.2.4) and the dual problem (A.2.5) when the following regularity
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condition is satisfied:

(A.2.6) 0 ∈ int

{(
DF (x̄)Rn

R

)
− dom Π

}
= int

{(
w̄ +DF (x̄)Rn

R

)
− Ξ

}
.

In section 5.1, we worked with an equivalent representation of Robinson’s constraint qualifi-
cation, see page 92 or [27, Proposition 2.97, Corollary 2.98] for details. Using this alternative
formulation, Robinson’s constraint qualification implies(

Rm
R

)
=

(
DF (x̄)Rn

R

)
− epi φ↓(F (x̄), ·) ⊂

(
ȳ
γ̄

)
+

(
DF (x̄)Rn

R

)
− Ξ.

Clearly, this easily establishes (A.2.6) and shows that problem (A.2.4) and (A.2.5) coincide
and have the same optimal value, which is bounded below by zero. Now, due to epi ζ ⊂ Ξ
and Lemma 2.1.8, it immediately follows

σΞ(λ,−1) ≥ σepi ζ(λ,−1) = sup
(y,γ)∈epi ζ

〈y, λ〉 − γ = ζ∗(λ).

and, by (A.2.5) and (A.2.3), we have

max
λ∈M(x̄)

h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − ζ∗(λ) ≥ inf
w

(ψc)
↓↓
− (x̄;h,w) ≥ 0,

for all h ∈ C(x̄). This concludes the proof of the first part of Theorem 5.2.8.

Proof of part (ii). Let us suppose that the second order growth condition does not hold
at the stationary point x̄. Then, there exist sequences (xk)k ⊂ F−1(dom ϕ) and (αk)k ⊂ R
such that

xk → x̄, αk ↓ 0, k →∞
and

(A.2.7) ψc(x
k) ≤ ψc(x̄) + αk‖xk − x̄‖2.

Let us define tk := ‖xk − x̄‖ and hk := (xk − x̄)/tk. Then, by passing to a subsequence if
necessary, we can assume that (hk)k converges to some h ∈ Rn with ‖h‖ = 1. This readily
establishes

(ψc)
↓
−(x̄;h) = lim inf

k→∞
ψc(x̄+ tkh

k)− ψc(x̄)

tk
≤ lim inf

k→∞
αk‖xk − x̄‖ = 0.

Thus, since x̄ satisfies the first order necessary conditions, it follows h ∈ C(x̄) \ {0}. Further-
more, it can be easily seen, that the vector xk can be rewritten in the following form

xk = x̄+ tkh+
1

2
t2k[2t

−1
k (hk − h)].

Setting wk := 2t−1
k (hk − h), we have tkwk → 0 and using inequality (A.2.7), it holds

ψc(x̄+ tkh+
1

2
t2kw

k) ≤ ψc(x̄) + tk(ψc)
↓
−(x̄;h) +

1

2
t2k · 2αk.
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Hence, since h ∈ C(x̄) and Robinson’s constraint qualification is satisfied at x̄, the outer
second order regularity of φ and Lemma 5.2.7 imply that there exist sequences (w̃k)k and
(α̃k)k such that w̃k − wk → 0, α̃k − αk → 0, and

2α̃k ≥ (ψc)
↓↓
− (x̄;h; w̃k).

Moreover, the second order sufficient condition (5.2.4) implies that there exist ε > 0 and
λ̄ ∈M(x̄) such that

(A.2.8) h>∇2f(x̄)h+ 〈λ̄, D2F (x̄)[h, h]〉 − ξ∗φ,h(λ̄) ≥ ε.

Now, applying the chain rule for lower second order directional epiderivatives, λ̄ ∈ M(x̄),
Fenchel’s inequality, and (A.2.8), we obtain

0 ≥ h>∇2f(x̄)h+ 〈λ̄, D2F (x̄)[h, h]〉 − 〈λ̄, DF (x̄)w̃k +D2F (x̄)[h, h]〉

+ φ↓↓− (F (x̄);DF (x̄)h,DF (x̄)w̃k +D2F (x̄)[h, h])− 2α̃k

≥ h>∇2f(x̄)h+ 〈λ̄, D2F (x̄)[h, h]〉 − ξ∗φ,h(λ̄)− 2α̃k ≥ ε− 2α̃k.

Since (αk)k converges to zero, taking the limit k →∞ yields the desired contradiction. This
finishes the proof of the second order sufficient conditions (5.2.4).

Finally, let us suppose that the function ξφ,h(·) = φ↓↓− (F (x̄);DF (x̄)h, ·) is convex and that
the quadratic growth condition (5.2.5) is fulfilled in a certain neighborhood of x̄. Let w̃ ∈ Rn
and h ∈ C(x̄) \ {0} be arbitrary. Then, for all t > 0 sufficiently small it follows

ψc(x̄+ th+ 1
2 t

2w̃)− ψc(x̄)− t(ψc)↓−(x̄;h)
1
2 t

2
≥ 2α‖h+ 1

2 tw̃‖
2

Thus, we have
(ψc)

↓↓
− (x̄;h,w) ≥ 2α‖h‖2 > 0

for all w ∈ Rn. Since ξφ,h is assumed to be convex, we can apply the duality arguments of
the proof of part (i) and set ζ ≡ ξφ,h. This shows

max
λ∈M(x̄)

h>∇2f(x̄)h+ 〈λ,D2F (x̄)[h, h]〉 − ξ∗φ,h(λ) ≥ inf
w

(ψc)
↓↓
− (x̄;h,w) > 0

and concludes the proof of Theorem 5.2.8.

A.3. Variational inequalities: Existence of solutions

In this paragraph, we verify existence of solutions of the generalized variational inequality
(Pvip) under a coercivity and monotonicity assumption. The proof of this result follows the
guidelines in [75, Exercise 2.9.11] and is presented for the sake of completeness.
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Proof A.3.1 (Proof of Lemma 6.1.4). For k ∈ N, we consider the following multifunction

Φk : B̄k(0) ⇒ B̄k(0), Φk(x) := arg min
y∈B̄k(0)

〈F (x), y〉+ ϕ(y) =: θ(y).

Since the function θ : Rn → (−∞,+∞] is convex, proper, and lower semicontinuous, Weier-
strass’ Theorem implies that the set Φk(x) is nonempty for all x ∈ B̄k(0) and all k ∈ N
sufficiently large. Moreover, by using the convexity of ϕ, we immediately see that Φk(x) is
also a convex set for all x ∈ B̄k(0) and all k ∈ N. Now, let us consider arbitrary points
x̄, ȳ ∈ B̄k(0) and sequences (xn)n, (yn)n such that

xn → x̄, yn → ȳ, yn ∈ Φk(x
n), ∀ n ∈ N.

Then, from the definition of Φk, it follows

〈F (xn), yn〉+ ϕ(yn) ≤ 〈F (xn), y〉+ ϕ(y), ∀ y ∈ B̄k(0).

Hence, taking the limes inferior n → ∞, we readily obtain ȳ ∈ Φk(x̄). This shows that the
mapping Φk is closed and thus, by Kakutani’s fixed-point theorem [75, Theorem 2.1.19], the
multifunction Φk possesses a fixed point xk ∈ B̄k(0),

xk ∈ Φk(x
k),

for all k ≥ K and someK ∈ N; we refer to [75, Definition 2.1.16 and Theorem 2.1.19] for more
details. Since every accumulation point of the sequence (xk)k≥K obviously corresponds to a
solution of the generalized variational inequality (Pvip), we will now show that the additional
conditions in part (ii) and (iii) of Lemma 6.1.4 guarantee boundedness of the sequence (xk)k.
(Clearly, if the sets Ω or dom ϕ are bounded, then we can conclude the proof here).

Thus, let us suppose that the assumptions in Lemma 6.1.4 (ii) are satisfied and that the
sequence (xk)k≥K is not bounded. Then, there exist ϑ > 0 and ξ ≥ 0 such that

lim inf
k→∞

〈F (xk), xk − x∗〉
‖xk‖ξ

≥ ϑ.

Consequently, the coercivity of ϕ implies

lim inf
k→∞

{
〈F (xk), xk − x∗〉

‖xk‖ξ
+
ϕ(xk)− ϕ(x∗)
‖xk‖ξ

}
≥ ϑ.

and hence, for all k ≥ K sufficiently large, we obtain

〈F (xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ≥ ϑ ·max{1, ‖xk‖ξ} ≥ ϑ.

However, this clearly is a contradiction to xk ∈ Φk(x
k) and shows that the sequence (xk)k≥K

has to be bounded.

Next, to prove the third part of Lemma 6.1.4, let us suppose that F is ξ-monotone for
some ξ > 1 and that ϕ is subdifferentiable at x∗ with λ∗ ∈ ∂ϕ(x∗). Then, for all k ≥ K with
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x∗ ∈ B̄k(0), we obtain

〈F (x∗), x∗ − xk〉 ≥ 〈F (xk)− F (x∗), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ≥ ‖xk − x∗‖ξ + 〈λ∗, xk − x∗〉.

This immediately implies
‖xk − x∗‖ξ−1 ≤ ‖F (x∗) + λ∗‖

and again establishes the desired boundedness of the sequence (xk)k≥K . The asserted unique-
ness of the solution follows from Lemma 6.1.4 (i).

A.4. Numerical results: Further figures and tables

On the following pages, we provide additional numerical results for the `1-regularized and
group sparse test problems. The tables report the averaged, total CPU times and variants
of the Figures 7.1 and 7.10 for different dynamic ranges are shown.
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A.4. Numerical results: Further figures and tables

A.4.1. Convex `1-regularized least squares

Table A.1.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 20 dB using the stopping criteria (Crel) and (Cnat) (best NESTA
configuration was used: µ = 10−8, T = 4).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-L1 2.5 2.5 5.8 5.8 6.5 6.6 7.2 7.3 8.4 8.4
FISTA 2.2 2.3 6.2 6.0 14.6 14.0 57.8 59.4 133.2 143.2
FPC 12.0 14.7 16.6 17.3 25.2 25.5 48.4 52.8 76.9 84.1
FPC-BB 4.8 5.8 5.8 6.9 8.9 8.3 32.5 34.2 DNC 68.3
FPC-AS 2.5 2.7 5.8 6.6 8.1 9.2 9.8 11.6 11.8 12.7
NESTA 13.5 13.5 DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 16.2 19.0 20.0 20.9 27.2 28.3 45.7 49.1 DNC 72.1
GPSR-BB 12.7 17.1 14.5 17.7 17.3 20.3 25.6 30.4 36.9 42.1
PD 2.6 4.2 12.7 12.6 33.9 33.4 DNC 312.4 DNC DNC
SpaRSA 13.5 17.6 14.7 18.6 15.7 19.5 17.8 22.5 20.3 25.2
SPGL1 2.4 2.4 5.4 5.2 7.0 7.6 DNC DNC DNC DNC
YALL1 1.6 1.6 3.8 3.7 6.0 5.9 10.7 11.0 16.8 16.4

Table A.2.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 40 dB using the stopping criteria (Crel) and (Cnat) (best NESTA
configuration was used: µ = 10−1, T = 5).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-L1 5.1 5.0 11.9 11.9 12.7 12.7 13.8 13.8 15.4 15.3
FISTA 6.1 9.5 17.1 17.0 36.8 32.9 132.4 115.3 231.8 255.0
FPC 11.9 14.9 32.6 26.9 49.7 47.2 92.8 92.7 127.7 139.1
FPC-BB 5.1 6.6 14.9 9.1 33.2 27.4 78.9 77.8 DNC 145.8
FPC-AS 7.0 5.5 11.8 10.4 13.9 15.1 15.7 17.2 18.7 20.2
NESTA 9.1 DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 13.6 15.9 25.4 24.1 33.3 33.0 52.5 52.1 DNC DNC
GPSR-BB 14.0 19.1 19.4 20.3 26.8 28.4 45.1 48.6 60.1 69.8
PD 5.0 9.7 21.6 23.3 65.6 69.6 DNC DNC DNC DNC
SpaRSA 13.3 18.3 16.0 18.9 17.7 21.4 21.3 25.5 23.9 29.5
SPGL1 3.9 5.0 10.6 9.8 12.8 13.8 DNC DNC DNC DNC
YALL1 3.5 5.9 12.1 11.4 21.7 19.6 50.9 43.9 75.3 72.7
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Figure A.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 20 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample (the
following NESTA configuration was used: µ = 10−8, T = 4).
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Figure A.1.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 20 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample. (the
following NESTA configuration was used: µ = 10−8, T = 4)
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Figure A.2.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 60 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample (the
following NESTA configuration was used: µ = 10−8, T = 4).
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Figure A.2.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 60 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample. (the
following NESTA configuration was used: µ = 10−8, T = 4)
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Figure A.3.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 80 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample (the
following NESTA configuration was used: µ = 10−8, T = 4).
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Figure A.3.: Change of the absolute value of 128 randomly chosen components of the iterate
of a single run with dynamic range 80 dB with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero components of the high precision solution x∗ within the sample. (the
following NESTA configuration was used: µ = 10−8, T = 4)
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Table A.3.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 60 dB using the stopping criteria (Crel) and (Cnat) (here, NESTA
did not converge).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-L1 10.6 10.6 17.7 17.6 18.5 18.4 19.9 19.9 22.1 22.1
FISTA 20.1 25.3 35.6 37.9 58.6 61.8 151.8 167.6 289.4 338.1
FPC 20.3 20.6 55.2 46.3 75.4 76.1 124.0 137.3 175.8 200.3
FPC-BB 7.9 9.0 41.3 29.1 62.6 61.8 113.6 128.9 DNC DNC
FPC-AS 7.0 7.5 17.1 18.3 18.7 20.5 21.2 23.5 24.9 28.3
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 22.1 15.4 38.3 35.2 47.3 47.8 68.8 73.4 DNC DNC
GPSR-BB 14.7 18.7 27.5 25.7 36.7 39.5 58.0 68.0 80.2 97.1
PD 12.5 22.3 48.6 56.4 137.3 189.7 DNC DNC DNC DNC
SpaRSA 15.4 20.0 18.6 21.5 20.6 24.7 24.5 30.3 27.1 34.6
SPGL1 6.7 7.9 14.6 14.0 17.4 19.0 DNC DNC DNC DNC
YALL1 16.3 30.7 66.8 68.1 106.6 116.1 204.2 222.6 300.4 323.2

Table A.4.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 80 dB using the stopping criteria (Crel) and (Cnat) (here, NESTA
did not converge).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-L1 18.1 18.4 25.3 25.5 26.2 26.4 28.0 28.4 30.7 31.0
FISTA 71.2 92.7 94.2 110.9 125.1 146.5 244.6 288.3 390.1 508.4
FPC 40.4 33.1 82.0 71.7 106.5 110.5 164.8 186.4 215.4 263.5
FPC-BB 17.0 10.5 60.5 45.6 86.2 88.3 147.3 171.9 DNC DNC
FPC-AS 10.8 12.7 20.9 22.9 22.4 25.5 26.3 30.2 30.8 37.0
NESTA DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
GPSR 65.0 34.6 83.6 84.9 94.5 101.3 120.5 133.3 DNC DNC
GPSR-BB 20.1 17.4 34.8 34.0 43.7 48.8 65.3 78.5 85.0 108.8
PD 35.0 60.2 123.9 148.4 332.0 490.5 DNC DNC DNC DNC
SpaRSA 16.5 18.8 21.5 24.4 23.6 29.0 27.5 35.3 31.6 40.3
SPGL1 10.3 12.0 18.1 17.5 21.7 23.9 DNC DNC DNC DNC
YALL1 146.4 251.6 DNC DNC DNC DNC DNC DNC DNC DNC
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A.4.2. Nonconvex `1-optimization problems

Table A.5.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 20 dB using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 9.2 9.0 21.7 21.5 30.0 29.9 43.5 43.3 53.5 52.3
FPD 23.0 22.9 103.6 74.6 172.8 166.0 DNC 728.1 DNC DNC
FPD-BBµ 18.8 86.2 80.5 90.3 146.8 188.5 DNC DNC DNC DNC
FPD-BBv 26.2 27.7 116.8 71.7 216.1 265.5 DNC DNC DNC DNC

Table A.6.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 40 dB using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

#Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat #Arel #Anat

SNF-T 34.3 33.8 65.8 65.3 76.4 76.0 94.7 93.9 107.3 106.7
FPD 140.0 191.3 309.8 311.8 454.3 461.2 DNC DNC DNC DNC
FPD-BBµ 77.4 147.9 149.6 157.8 310.8 338.9 DNC DNC DNC DNC
FPD-BBv 15.2 30.2 58.0 36.9 223.5 228.0 DNC DNC DNC DNC
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A.4.3. Group sparse problems

Table A.7.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 20 dB and σ̄ = 0.1 using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-GS 4.3 4.3 5.9 5.8 8.6 8.6 14.8 14.9 14.8 14.8
ADMM 7.4 2.9 13.4 10.0 26.5 19.0 66.0 37.3 66.1 55.2
FISTA 4.2 2.9 9.5 8.6 22.6 24.2 107.7 91.9 107.9 200.0
FPD-BB 4.9 3.2 7.6 7.7 12.1 13.5 23.6 25.0 23.5 34.8
PD 2.8 3.9 3.8 6.3 6.0 11.1 52.9 53.4 53.4 283.1
SpaRSA 11.0 14.1 11.9 15.0 14.3 18.2 22.5 25.6 22.5 33.8
SPG-GS 3.4 3.4 5.2 5.7 8.7 9.8 DNC DNC DNC DNC

Table A.8.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 20 dB and σ̄ = 0.01 using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-GS 8.4 8.4 11.4 11.4 17.9 17.9 28.2 28.2 38.7 38.4
ADMM 4.6 1.2 12.7 6.2 28.1 14.6 52.0 33.7 62.3 53.0
FISTA 9.7 0.7 32.1 11.6 119.9 35.0 DNC 269.9 DNC DNC
FPD-BB 19.5 4.5 52.8 9.6 92.9 52.1 148.9 148.1 175.9 245.5
PD 5.4 1.1 8.5 11.2 11.5 15.5 14.2 20.4 15.3 24.2
SpaRSA 12.7 16.8 18.4 17.8 39.1 23.1 71.2 69.6 88.5 129.9
SPG-GS 5.5 6.5 16.8 8.6 52.0 16.2 DNC DNC DNC DNC
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Table A.9.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 40 dB and σ̄ = 0.1 using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-GS 10.3 10.3 16.1 16.0 19.8 19.8 26.6 26.6 36.1 36.2
ADMM 13.2 7.7 27.1 15.5 39.8 22.3 49.4 36.5 62.9 51.7
FISTA 25.8 12.0 98.4 35.6 180.0 87.2 298.3 336.7 489.6 DNC
FPD-BB 38.6 10.9 65.6 41.9 88.8 68.6 107.0 123.7 DNC 181.6
PD 8.0 10.4 10.6 12.8 13.0 15.6 16.2 26.6 23.2 48.1
SpaRSA 15.0 17.3 30.8 19.4 45.2 32.2 57.9 69.9 74.7 107.7
SPG-GS 11.1 6.7 31.7 12.7 49.6 28.8 DNC DNC DNC DNC

Table A.10.: Total CPU time (in sec.) trel and tnat averaged over 10 independent runs with
dynamic range 40 dB and σ̄ = 0.01 using the stopping criteria (Crel) and (Cnat).

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

trel tnat trel tnat trel tnat trel tnat trel tnat

SNF-GS 16.1 16.0 19.1 19.1 35.9 35.8 49.8 50.2 66.0 66.0
ADMM 10.6 7.4 18.5 16.2 29.1 23.7 50.7 39.2 59.3 55.7
FISTA 74.0 7.0 169.9 49.7 418.1 145.0 DNC DNC DNC DNC
FPD-BB 180.0 14.8 300.1 19.6 423.0 238.8 DNC 640.9 DNC DNC
PD 21.1 9.5 26.0 33.3 30.2 41.2 37.1 53.0 40.4 62.1
SpaRSA 15.4 19.4 64.8 20.1 184.6 39.4 418.1 332.3 DNC 692.2
SPG-GS 12.8 13.4 106.2 15.2 267.8 30.4 582.6 466.5 DNC DNC
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Figure A.4.: Change of the `2-norm of 128 randomly chosen groups of the iterate of a single
run with dynamic range 20 dB and σ̄ = 0.1 with respect to the number of A-
and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero groups of the high precision solution x∗ within the sample.
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and A>-calls. Green line: maximum number of A-calls that is needed to detect
all zero groups of the high precision solution x∗ within the sample.

265





Bibliography

[1] A. Aravkin, J. V. Burke, and G. Pillonetto, Robust and trend-following Stu-
dent’s t Kalman smoothers, SIAM J. Control Optim., 52 (2014), pp. 2891–2916.

[2] A. Aravkin, M. P. Friedlander, F. J. Herrmann, and T. van Leeuwen,
Robust inversion, dimensionality reduction, and randomized sampling, Math. Program.,
134 (2012), pp. 101–125.

[3] A. Aravkin, M. P. Friedlander, and T. van Leeuwen, Robust inversion via
semistochastic dimensionality reduction, in IEEE Conf. on Acoustics, Speech and Signal
Process. (ICASSP), IEEE, 2012, pp. 5245–5248.

[4] A. Aravkin, T. van Leeuwen, and F. J. Herrmann, Robust full-waveform in-
version using the student’s t-distribution, SEG Tech. Program Expanded Abstr., 30
(2011), pp. 2669–2673.

[5] G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal.
Optim., 10 (1989), pp. 863–874.

[6] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-
inducing penalties, Foundations and Trends R© in Machine Learning, 4 (2011), pp. 1–
106.

[7] F. R. Bach, Consistency of the group lasso and multiple kernel learning, J. Mach.
Learn. Res., 9 (2008), pp. 1179–1225.

[8] C. Baiocchi and A. Capelo, Variational and quasivariational inequalities, A Wiley-
Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[9] W. Bajwa, J. Haupt, G. Raz, and R. Nowak, Compressed channel sensing, in
Conf. on Info. Sciences and Systems (CISS), Princeton, New Jersey, March 2008, pp. 5–
10.

[10] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J.
Numer. Anal., 8 (1988), pp. 141–148.

[11] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator
theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de
la SMC, Springer, New York, 2011.

[12] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

267



Bibliography

[13] S. Becker, J. Bobin, and E. J. Candès, NESTA: a fast and accurate first-order
method for sparse recovery, SIAM J. Imaging Sci., 4 (2011), pp. 1–39.

[14] S. Becker and M. J. Fadili, A quasi-Newton proximal splitting method. Preprint,
available at arXiv, 1206.1156v2.

[15] A. Ben-Tal and J. Zowe, Necessary and sufficient optimality conditions for a class
of nonsmooth minimization problems, Math. Program., 24 (1982), pp. 70–91.

[16] , Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl., 47
(1985), pp. 483–490.

[17] D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1999. Second edition.

[18] R. Bhatia, Matrix analysis, vol. 169 of Graduate Texts in Mathematics, Springer-
Verlag, New York, 1997.

[19] J. M. Bioucas-Dias and M. A. T. Figueiredo, A new TwIST: two-step iterative
shrinkage/thresholding algorithms for image restoration, IEEE Trans. Image Process.,
16 (2007), pp. 2992–3004.

[20] J. Bolte, A. Daniilidis, and A. Lewis, The łojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems, SIAM J. Op-
tim., 17 (2006), pp. 1205–1223 (electronic).

[21] , Tame functions are semismooth, Math. Program., 117 (2009), pp. 5–19.

[22] J. F. Bonnans and R. Cominetti, Perturbed optimization in Banach spaces. I. A
general theory based on a weak directional constraint qualification, SIAM J. Control
Optim., 34 (1996), pp. 1151–1171.

[23] J. F. Bonnans, R. Cominetti, and A. Shapiro, Sensitivity analysis of optimization
problems under second order regular constraints, Math. Oper. Res., 23 (1998), pp. 806–
831.

[24] , Second order optimality conditions based on parabolic second order tangent sets,
SIAM J. Optim., 9 (1999), pp. 466–492.

[25] J. F. Bonnans and H. Ramírez C., Perturbation analysis of second-order cone
programming problems, Math. Program., 104 (2005), pp. 205–227.

[26] J. F. Bonnans and A. Shapiro, Nondegeneracy and quantitative stability of pa-
rameterized optimization problems with multiple solutions, SIAM J. Optim., 8 (1998),
pp. 940–946.

[27] , Perturbation analysis of optimization problems, Springer Series in Operations
Research, Springer-Verlag, New York, 2000.

[28] J. V. Burke, Descent methods for composite nondifferentiable optimization problems,
Math. Program., 33 (1985), pp. 260–279.

268



Bibliography

[29] , Second order necessary and sufficient conditions for convex composite NDO,
Math. Program., 38 (1987), pp. 287–302.

[30] J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite
optimization, Math. Program., 71 (1995), pp. 179–194.

[31] J. V. Burke and R. A. Poliquin, Optimality conditions for non-finite valued convex
composite functions, Math. Program., 57 (1992), pp. 103–120.

[32] R. H. Byrd, G. M. Chin, J. Nocedal, and F. Oztoprak, A family of second-order
methods for convex `1-regularized optimization, Math. Program., (2015), pp. 1–33.

[33] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for
matrix completion, SIAM J. Optim., 20 (2010), pp. 1956–1982.

[34] E. J. Candès and B. Recht, Exact matrix completion via convex optimization,
Found. Comput. Math., 9 (2009), pp. 717–772.

[35] E. J. Candès and J. Romberg, Quantitative robust uncertainty principles and op-
timally sparse decompositions, Found. Comput. Math., 6 (2006), pp. 227–254.

[36] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact sig-
nal reconstruction from highly incomplete frequency information, IEEE Trans. Inform.
Theory, 52 (2006), pp. 489–509.

[37] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections:
universal encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[38] , The power of convex relaxation: near-optimal matrix completion, IEEE Trans.
Inform. Theory, 56 (2010), pp. 2053–2080.

[39] E. Casas, R. Herzog, and G. Wachsmuth, Analysis of spatio-temporally sparse op-
timal control problems of semilinear parabolic equations. Preprint, available at https:
//www.tu-chemnitz.de/mathematik/part_dgl/publications.de.php, March 2015.

[40] , Optimality conditions and error analysis of semilinear elliptic control problems
with L1 cost functional, SIAM J. Optim., 22 (2012), pp. 795–820.

[41] A. Chambolle, An algorithm for total variation minimization and applications, J.
Math. Imaging Vision, 20 (2004), pp. 89–97.

[42] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex prob-
lems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[43] Z. X. Chan and D. Sun, Constraint nondegeneracy, strong regularity, and nonsin-
gularity in semidefinite programming, SIAM J. Optim., 19 (2008), pp. 370–396.

[44] C. Chen, Y.-J. Liu, D. Sun, and K.-C. Toh, A semismooth Newton-CG based
dual PPA for matrix spectral norm approximation problems, Mathematical Program.,
(2014), pp. 1–36.

269

https://www.tu-chemnitz.de/mathematik/part_dgl/publications.de.php
https://www.tu-chemnitz.de/mathematik/part_dgl/publications.de.php


Bibliography

[45] J. Chen and X. Huo, Theoretical results on sparse representations of multiple-
measurement vectors, IEEE Trans. Signal Process., 54 (2006), pp. 4634–4643.

[46] X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued
functions with applications to semidefinite complementarity problems, SIAM J. Optim.,
13 (2003), pp. 960–985 (electronic).

[47] Y. Chen, R. Ranftl, and T. Pock, A bi-level view of inpainting-based image com-
pression. Preprint, available at arXiv, 1401.4112v2.

[48] G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu, Epi-
graphical projection and proximal tools for solving constrained convex optimization prob-
lems, Signal, Image and Video Processing, (2014), pp. 1–13.

[49] F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), pp. 97–
102.

[50] , Optimization and nonsmooth analysis, vol. 5 of Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second ed.,
1990.

[51] C. Clason and T. Valkonen, Stability of saddle points via explicit coderivatives
of pointwise subdifferentials. Preprint, submitted, available at https://www.uni-due.
de/~adf040p/preprints/SaddlepointStability.pdf, September 2015.

[52] P. L. Combettes and J.-C. Pesquet, Proximal thresholding algorithm for mini-
mization over orthonormal bases, SIAM J. Optim., 18 (2007), pp. 1351–1376.

[53] , Proximal splitting methods in signal processing, in Fixed-point Algorithms for
Inverse Problems in Science and engineering, vol. 49 of Springer Optim. Appl., Springer,
New York, 2011, pp. 185–212.

[54] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Model. Simul., 4 (2005), pp. 1168–1200 (electronic).

[55] R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions,
Appl. Math. Optim., 21 (1990), pp. 265–287.

[56] , On pseudo-differentiability, Trans. Amer. Math. Soc., 324 (1991), pp. 843–865.

[57] M. Coste, An introduction to o-minimal geometry. Inst. Rech. Math., Univ.
de Rennes, available at https://perso.univ-rennes1.fr/michel.coste/polyens/
OMIN.pdf, November 1999.

[58] , An introduction to semialgebraic geometry. Inst. Rech. Math., Univ. de Rennes,
https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf, October 2002.

[59] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, Sparse solutions to lin-
ear inverse problems with multiple measurement vectors, IEEE Trans. Signal Process.,
53 (2005), pp. 2477–2488.

270

https://www.uni-due.de/~adf040p/preprints/SaddlepointStability.pdf
https://www.uni-due.de/~adf040p/preprints/SaddlepointStability.pdf
https://perso.univ-rennes1.fr/michel.coste/polyens/OMIN.pdf
https://perso.univ-rennes1.fr/michel.coste/polyens/OMIN.pdf
https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf


Bibliography

[60] A. Daniilidis, C. Sagastizábal, and M. Solodov, Identifying structure of nons-
mooth convex functions by the bundle technique, SIAM J. Optim., 20 (2009), pp. 820–
840.

[61] W. Deng, W. Yin, and Y. Zhang, Group sparse optimization by alternating direc-
tion method. Technical Report, TR11-06, Department of Computational and Applied
Mathematics, Rice University, 2011.

[62] J. Dieudonné, Foundations of modern analysis, Academic Press, New York-London,
1969.

[63] C. Ding, An introduction to a class of matrix optimization problems, PhD Dissertation,
National University of Singapore, 2012.

[64] C. Ding, D. Sun, and K.-C. Toh, An introduction to a class of matrix cone pro-
gramming, Math. Program., 144 (2014), pp. 141–179.

[65] Y. Dong, M. Hintermüller, and M. Neri, An efficient primal-dual method for
L1TV image restoration, SIAM J. Imaging Sci., 2 (2009), pp. 1168–1189.

[66] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–
1306.

[67] A. L. Dontchev and R. T. Rockafellar, Implicit functions and solution map-
pings, Springer Series in Operations Research and Financial Engineering, Springer,
New York, second ed., 2014.

[68] A. Dreves, A. von Heusinger, C. Kanzow, and M. Fukushima, A globalized
Newton method for the computation of normalized Nash equilibria, J. Global Optim.,
56 (2013), pp. 327–340.

[69] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, Single-pixel imaging via compressive sampling, IEEE
Signal Process. Mag., 25 (2008), pp. 83–91.

[70] M. F. Duarte, S. Sarvotham, M. B. Wakin, D. Baron, and R. G. Bara-
niuk, Joint sparsity models for distributed compressed sensing, in Online Proceedings
of the Workshop on Signal Processing with Adaptive Sparse Structured Representa-
tions (SPARS), Rennes, France, 2005.

[71] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Math. Program., 55
(1992), pp. 293–318.

[72] F. Facchinei, A. Fischer, and C. Kanzow, Regularity properties of a semismooth
reformulation of variational inequalities, SIAM J. Optim., 8 (1998), pp. 850–869 (elec-
tronic).

[73] F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Ann. Oper.
Res., 175 (2010), pp. 177–211.

271



Bibliography

[74] F. Facchinei, C. Kanzow, and S. Sagratella, Solving quasi-variational inequal-
ities via their KKT conditions, Math. Program., 144 (2014), pp. 369–412.

[75] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and com-
plementarity problems. Vol. I, Springer Series in Operations Research, Springer-Verlag,
New York, 2003.

[76] , Finite-dimensional variational inequalities and complementarity problems. Vol.
II, Springer Series in Operations Research, Springer-Verlag, New York, 2003.

[77] M. C. Ferris and J.-S. Pang, Engineering and economic applications of comple-
mentarity problems, SIAM Rev., 39 (1997), pp. 669–713.

[78] M. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse
reconstruction: application to compressed sensing and other inverse problems, IEEE J.
Sel. Topics Signal Process., 1 (2007), pp. 586–598.

[79] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian
functions, Math. Program., 76 (1997), pp. 513–532.

[80] S. Fitzpatrick and R. R. Phelps, Differentiability of the metric projection in
Hilbert space, Trans. Amer. Math. Soc., 270 (1982), pp. 483–501.

[81] R. Fletcher, Practical methods of optimization, A Wiley-Interscience Publication,
John Wiley & Sons, New York, second ed., 2001.

[82] R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint, and A. Wächter,
Global convergence of a trust-region SQP-filter algorithm for general nonlinear pro-
gramming, SIAM J. Optim., 13 (2002), pp. 635–659 (2003).

[83] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function,
Math. Program., 91 (2002), pp. 239–269.

[84] R. Fletcher, S. Leyffer, and P. L. Toint, On the global convergence of a filter-
SQP algorithm, SIAM J. Optim., 13 (2002), pp. 44–59 (electronic).

[85] M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint
sparsity constraints, SIAM J. Numer. Anal., 46 (2008), pp. 577–613.

[86] M. Fukushima, Equivalent differentiable optimization problems and descent methods
for asymmetric variational inequality problems, Math. Program., 53 (1992), pp. 99–110.

[87] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order-
cone complementarity problems, SIAM J. Optim., 12 (2001/02), pp. 436–460 (elec-
tronic).

[88] M. Fukushima and H. Mine, A generalized proximal point algorithm for certain
nonconvex minimization problems, Internat. J. Systems Sci., 12 (1981), pp. 989–1000.

272



Bibliography

[89] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation, Computers & Mathematics with
Applications, 2 (1976), pp. 17–40.

[90] C. Geiger and C. Kanzow, Theorie und Numerik restringiererter Optimierungsauf-
gaben, Springer-Lehrbuch Masterclass, Springer Berlin Heidelberg, 2002.

[91] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting
methods in nonlinear mechanics, vol. 9 of SIAM Studies in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.

[92] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet
non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle, 9 (1975),
pp. 41–76.

[93] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, Fast alternating
direction optimization methods, SIAM J. Imaging Sci., 7 (2014), pp. 1588–1623.

[94] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, fourth ed.,
2013.

[95] N. I. M. Gould, S. Leyffer, and P. L. Toint, A multidimensional filter algorithm
for nonlinear equations and nonlinear least-squares, SIAM J. Optim., 15 (2004), pp. 17–
38.

[96] N. I. M. Gould, C. Sainvitu, and P. L. Toint, A filter-trust-region method for
unconstrained optimization, SIAM J. Optim., 16 (2005), pp. 341–357.

[97] R. Griesse and D. A. Lorenz, A semismooth Newton method for Tikhonov func-
tionals with sparsity constraints, Inverse Problems, 24 (2008), pp. 035007, 19.

[98] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for l1-minimization:
methodology and convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.

[99] E. Hans and T. Raasch, Global convergence of damped semismooth Newton methods
for `1 Tikhonov regularization, Inverse Problems, 31 (2015), pp. 025005, 31.

[100] W. L. Hare, Nonsmooth optimization with smooth substructure, PhD Dissertation,
Simon Fraser University, 2004.

[101] , Functions and sets of smooth substructure: relationships and examples, Comput.
Optim. Appl., 33 (2006), pp. 249–270.

[102] , Numerical analysis of VU-decomposition, U-gradient, and U-Hessian approxima-
tions, SIAM J. Optim., 24 (2014), pp. 1890–1913.

[103] W. L. Hare and R. A. Poliquin, The quadratic sub-Lagrangian of a prox-regular
function, in Proceedings of the Third World Congress of Nonlinear Analysts, Part 2
(Catania, 2000), vol. 47, 2001, pp. 1117–1128.

273



Bibliography

[104] P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlin-
ear complementarity problems: a survey of theory, algorithms and applications, Math.
Program., 48 (1990), pp. 161–220.

[105] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-
point problem: from contraction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119–
149.

[106] R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal
control of partial differential equations, SIAM J. Control Optim., 50 (2012), pp. 943–
963.

[107] N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear
Algebra Appl., 103 (1988), pp. 103–118.

[108] J.-B. Hiriart-Urruty, The approximate first-order and second-order directional
derivatives for a convex function, in Mathematical Theories of Optimization (Genova,
1981), vol. 979 of Lecture Notes in Math., Springer, Berlin-New York, 1983, pp. 144–
177.

[109] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis,
Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.

[110] J.-B. Hiriart-Urruty, J.-J. Strodiot, and V. H. Nguyen, Generalized Hessian
matrix and second-order optimality conditions for problems with C1,1 data, Appl. Math.
Optim., 11 (1984), pp. 43–56.

[111] L. Hoeltgen, S. Setzer, and J. Weickert, An optimal control approach to find
sparse data for Laplace interpolation, in Energy Minimization Methods in Computer
Vision and Pattern Recognition, vol. 8081 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2013, pp. 151–164.

[112] M. Huang, L.-P. Pang, and Z.-Q. Xia, The space decomposition theory for a class
of eigenvalue optimizations, Comput. Optim. Appl., 58 (2014), pp. 423–454.

[113] T. Ichiishi, Game theory for economic analysis, Economic Theory, Econometrics, and
Mathematical Economics, Academic Press, Inc., New York, 1983.

[114] A. D. Ioffe, An invitation to tame optimization, SIAM J. Optim., 19 (2008), pp. 1894–
1917.

[115] R. Jenatton, J.-Y. Audibert, and F. Bach, Structured variable selection with
sparsity-inducing norms, J. Mach. Learn. Res., 12 (2011), pp. 2777–2824.

[116] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal methods for
hierarchical sparse coding, J. Mach. Learn. Res., 12 (2011), pp. 2297–2334.

[117] K. Jiang, D. Sun, and K.-C. Toh, An inexact accelerated proximal gradient method
for large scale linearly constrained convex SDP, SIAM J. Optim., 22 (2012), pp. 1042–
1064.

274



Bibliography

[118] , Solving nuclear norm regularized and semidefinite matrix least squares problems
with linear equality constraints, in Discrete Geometry and Optimization, vol. 69 of
Fields Inst. Commun., Springer, New York, 2013, pp. 133–162.

[119] , A partial proximal point algorithm for nuclear norm regularized matrix least
squares problems, Math. Program. Comput., 6 (2014), pp. 281–325.

[120] C. Kanzow and M. Fukushima, Solving box constrained variational inequalities by
using the natural residual with D-gap function globalization, Oper. Res. Lett., 23 (1998),
pp. 45–51.

[121] , Theoretical and numerical investigation of the D-gap function for box constrained
variational inequalities, Math. Program., 83 (1998), pp. 55–87.

[122] M. Karow, Geometry of spectral value sets, PhD Dissertation, Universität Bremen,
2003.

[123] K. Koh, S.-J. Kim, and S. Boyd, An interior-point method for large-scale l1-
regularized logistic regression, J. Mach. Learn. Res., 8 (2007), pp. 1519–1555.

[124] M. Kojima and S. Shindo, Extension of Newton and quasi-Newton methods to sys-
tems of PC1 equations, J. Oper. Res. Soc. Japan, 29 (1986), pp. 352–375.

[125] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recom-
mender systems, Computer, 42 (2009), pp. 30–37.

[126] A. S. Kravchuk and P. J. Neittaanmäki, Variational and quasi-variational in-
equalities in mechanics, vol. 147 of Solid Mechanics and its Applications, Springer,
Dordrecht, 2007.

[127] J. B. Kruskal, Two convex counterexamples: A discontinuous envelope function and
a nondifferentiable nearest-point mapping, Proc. Amer. Math. Soc., 23 (1969), pp. 697–
703.

[128] B. Kummer, Lipschitzian inverse functions, directional derivatives, and applications
in C1,1 optimization, J. Optim. Theory Appl., 70 (1991), pp. 561–581.

[129] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for min-
imizing composite functions, SIAM J. Optim., 24 (2014), pp. 1420–1443.

[130] C. Lemaréchal, F. Oustry, and C. Sagastizábal, The U-Lagrangian of a convex
function, Trans. Amer. Math. Soc., 352 (2000), pp. 711–729.

[131] C. Lemaréchal and C. Sagastizábal, More than first-order developments of con-
vex functions: primal-dual relations, J. Convex Anal., 3 (1996), pp. 255–268.

[132] , Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries,
SIAM J. Optim., 7 (1997), pp. 367–385.

[133] A. S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM J. Optim., 13 (2002),
pp. 702–725 (electronic) (2003).

275



Bibliography

[134] A. S. Lewis and S. J. Wright, A proximal method for composite minimization.
Preprint, available at arXiv, 0812.0423v2.

[135] C. Li and X. Wang, On convergence of the Gauss-Newton method for convex com-
posite optimization, Math. Program., 91 (2002), pp. 349–356.

[136] C. Li, W. Yin, H. Jiang, and Y. Zhang, An efficient augmented Lagrangian method
with applications to total variation minimization, Comput. Optim. Appl., 56 (2013),
pp. 507–530.

[137] T. T. Y. Lin and F. J. Herrmann, Compressed wavefield extrapolation, Geophysics,
72 (2007), pp. 77–93.

[138] Y.-J. Liu, D. Sun, and K.-C. Toh, An implementable proximal point algorithmic
framework for nuclear norm minimization, Math. Program., 133 (2012), pp. 399–436.

[139] D. A. Lorenz, Constructing test instances for basis pursuit denoising, IEEE Trans.
Signal Process., 61 (2013), pp. 1210–1214.

[140] Y. Lu, L.-P. Pang, F.-F. Guo, and Z.-Q. Xia, A superlinear space decomposition
algorithm for constrained nonsmooth convex program, J. Comput. Appl. Math., 234
(2010), pp. 224–232.

[141] M. Lustig, D. L. Donoho, and J. M. Pauly, Sparse MRI: The application of
compressed sensing for rapid MR imaging, Mag. Resonance Med., 58 (2007), pp. 1182–
1195.

[142] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing
MRI, IEEE Signal Process. Mag., 25 (2007), pp. 72–82.

[143] D. Malioutov, M. Cetin, and A. Willsky, A sparse signal reconstruction perspec-
tive for source localization with sensor arrays, IEEE Trans. Signal Process., 53 (2005),
pp. 3010–3022.

[144] L. Meier, S. van de Geer, and P. Bühlmann, The group Lasso for logistic re-
gression, J. R. Stat. Soc. Ser. B Stat. Methodol., 70 (2008), pp. 53–71.

[145] F. Meng, D. Sun, and G. Zhao, Semismoothness of solutions to generalized equa-
tions and the Moreau-Yosida regularization, Math. Program., 104 (2005), pp. 561–581.

[146] F. Meng, G. Zhao, M. Goh, and R. De Souza, Lagrangian-dual functions and
Moreau-Yosida regularization, SIAM J. Optim., 19 (2008), pp. 39–61.

[147] C. A. Micchelli, L. Shen, and Y. Xu, Proximity algorithms for image models:
denoising, Inverse Problems, 27 (2011), pp. 045009, 30.

[148] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM
J. Control Optimization, 15 (1977), pp. 959–972.

[149] R. Mifflin, L. Qi, and D. Sun, Properties of the Moreau-Yosida regularization of
a piecewise C2 convex function, Math. Program., 84 (1999), pp. 269–281.

276



Bibliography

[150] R. Mifflin and C. Sagastizábal, On VU-theory for functions with primal-dual
gradient structure, SIAM J. Optim., 11 (2000), pp. 547–571 (electronic).

[151] , Proximal points are on the fast track, J. Convex Anal., 9 (2002), pp. 563–579.

[152] , Primal-dual gradient structured functions: second-order results; links to epi-
derivatives and partly smooth functions, SIAM J. Optim., 13 (2003), pp. 1174–1194
(electronic).

[153] , On the relation between U-Hessians and second-order epi-derivatives, European
J. Oper. Res., 157 (2004), pp. 28–38.

[154] , A VU-algorithm for convex minimization, Math. Program., 104 (2005), pp. 583–
608.

[155] , Relating U-Lagrangians to second-order epi-derivatives and proximal-tracks, J.
Convex Anal., 12 (2005), pp. 81–93.

[156] A. Milzarek, Ein semiglattes Newton-Verfahren mit mehrdimensionaler Filter-
Globalisierung zur Lösung von `1-Minimierungsproblemen, Bachelor’s Thesis, Tech-
nische Universität München, 2010.

[157] A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional
filter globalization for l1-optimization, SIAM J. Optim., 24 (2014), pp. 298–333.

[158] B. S. Mordukhovich, Variational analysis and generalized differentiation. I, vol. 330
of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2006.

[159] B. S. Mordukhovich, J. V. Outrata, and M. E. Sarabi, Full stability of locally
optimal solutions in second-order cone programs, SIAM J. Optim., 24 (2014), pp. 1581–
1613.

[160] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 553–572.

[161] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilber-
tien, C. R. Acad. Sci. Paris, 255 (1962), pp. 2897–2899.

[162] , Propriétés des applications “prox”, C. R. Acad. Sci. Paris, 256 (1963), pp. 1069–
1071.

[163] , Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965),
pp. 273–299.

[164] U. Mosco, Implicit variational problems and quasi variational inequalities, in Nonlin-
ear Operators and the Calculus of Variations (Summer School, Univ. Libre Bruxelles,
Brussels, 1975), Springer, Berlin, 1976, pp. 83–156. Lecture Notes in Math., Vol. 543.

[165] N. Movahedian, Nonsmooth calculus of semismooth functions and maps, J. Optim.
Theory Appl., 160 (2014), pp. 415–438.

277



Bibliography

[166] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and
M. Lustig, Fast `1-SPIRiT compressed sensing parallel imaging MRI: scalable paral-
lel implementation and clinically feasible runtime, IEEE Trans. Med. Imag., 31 (2012),
pp. 1250–1262.

[167] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivaria-
tional inequalities and applications, vol. 188 of Monographs and Textbooks in Pure
and Applied Mathematics, Marcel Dekker, Inc., New York, 1995.

[168] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103
(2005), pp. 127–152.

[169] , Gradient methods for minimizing composite functions, Math. Program., 140
(2013), pp. 125–161.

[170] A. Y. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, in
Int. Conf. on Mach. Learn. (ICML), Banff, Canada, 2004.

[171] M. K. Ng, R. H. Chan, and W.-C. Tang, A fast algorithm for deblurring models
with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851–866
(electronic).

[172] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game
Theory, Cambridge University Press, New York, NY, USA, 2007.

[173] M. A. Noor, Mixed variational inequalities, Appl. Math. Lett., 3 (1990), pp. 73–75.

[174] M. A. Noor, General nonlinear mixed variational-like inequalities, Optimization, 37
(1996), pp. 357–367.

[175] M. A. Noor, Generalized mixed variational inequalities and resolvent equations, Pos-
itivity, 1 (1997), pp. 145–154.

[176] , Some developments in general variational inequalities, Appl. Math. Comput.,
152 (2004), pp. 199–277.

[177] M. A. Noor, K. I. Noor, and E. Al-Said, Existence results for extended general
nonconvex quasi-variational inequalities, in Nonlinear Analysis, vol. 68 of Springer
Optim. Appl., Springer, New York, 2012, pp. 503–512.

[178] P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: inertial proximal algorithm for
nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388–1419.

[179] F. Oustry, A second-order bundle method to minimize the maximum eigenvalue func-
tion, Math. Program., 89 (2000), pp. 1–33.

[180] J. Outrata and H. Ramírez C., On the Aubin property of critical points to perturbed
second-order cone programs, SIAM J. Optim., 21 (2011), pp. 798–823.

[181] P. D. Panagiotopoulos, Hemivariational inequalities, Springer-Verlag, Berlin, 1993.

278



Bibliography

[182] J.-S. Pang and L. Qi, Nonsmooth equations: motivation and algorithms, SIAM J.
Optim., 3 (1993), pp. 443–465.

[183] J.-S. Pang, D. Sun, and J. Sun, Semismooth homeomorphisms and strong stability
of semidefinite and Lorentz complementarity problems, Math. Oper. Res., 28 (2003),
pp. 39–63.

[184] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends R© in Opti-
mization, 1 (2014), pp. 127–239.

[185] M. Patriksson, Merit functions and descent algorithms for a class of variational
inequality problems, Optimization, 41 (1997), pp. 37–55.

[186] M. Patriksson, Nonlinear programming and variational inequality problems, vol. 23
of Appl. Optim., Kluwer Acad. Publ., Dordrecht, 1999.

[187] P. Patrinos, L. Stella, and A. Bemporad, Forward-backward truncated Newton
methods for convex composite optimization. Preprint, available at arXiv, 1402.6655.

[188] J.-M. Peng, Equivalence of variational inequality problems to unconstrained mini-
mization, Math. Program., 78 (1997), pp. 347–355.

[189] J.-M. Peng and M. Fukushima, A hybrid Newton method for solving the variational
inequality problem via the D-gap function, Math. Program., 86 (1999), pp. 367–386.

[190] J.-M. Peng, C. Kanzow, and M. Fukushima, A hybrid Josephy-Newton method for
solving box constrained variational inequality problems via the D-gap function, Optim.
Methods Softw., 10 (1999), pp. 687–710.

[191] K. Pieper, Finite element discretization and efficient numerical solution of elliptic and
parabolic sparse control problems, PhD Dissertation, Technische Universität München,
2015.

[192] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual
algorithms in convex optimization, in IEEE Int. Conf. on Comp. Vision, (ICCV), Nov
2011, pp. 1762–1769.

[193] R. A. Poliquin and R. T. Rockafellar, Amenable functions in optimization,
in Nonsmooth Optimization: Methods and Applications (Erice, 1991), Gordon and
Breach, Montreux, 1992, pp. 338–353.

[194] , A calculus of epi-derivatives applicable to optimization, Canad. J. Math., 45
(1993), pp. 879–896.

[195] , Generalized Hessian properties of regularized nonsmooth functions, SIAM J. Op-
tim., 6 (1996), pp. 1121–1137.

[196] , Prox-regular functions in variational analysis, Trans. Amer. Math. Soc., 348
(1996), pp. 1805–1838.

279



Bibliography

[197] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math.
Oper. Res., 18 (1993), pp. 227–244.

[198] L. Qi and D. Sun, A survey of some nonsmooth equations and smoothing Newton
methods, in Progress in Optimization, vol. 30 of Appl. Optim., Kluwer Acad. Publ.,
Dordrecht, 1999, pp. 121–146.

[199] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming,
58 (1993), pp. 353–367.

[200] Z. Qin, K. Scheinberg, and D. Goldfarb, Efficient block-coordinate descent algo-
rithms for the group Lasso, Math. Program. Comput., 5 (2013), pp. 143–169.

[201] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–
501.

[202] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980),
pp. 43–62.

[203] , Generalized equations and their solutions. II. Applications to nonlinear program-
ming, Math. Programming Stud., (1982), pp. 200–221. Optimality and Stability in
Math. Program.

[204] , Local structure of feasible sets in nonlinear programming. II. Nondegeneracy,
Math. Programming Stud., (1984), pp. 217–230. Math. Program. at Oberwolfach, II
(Oberwolfach, 1983).

[205] , Local structure of feasible sets in nonlinear programming. III. Stability and sen-
sitivity, Math. Programming Stud., (1987), pp. 45–66. Nonlinear Analysis and Opti-
mization (Louvain-la-Neuve, 1983).

[206] R. T. Rockafellar, First- and second-order epi-differentiability in nonlinear pro-
gramming, Trans. Amer. Math. Soc., 307 (1988), pp. 75–108.

[207] , Second-order optimality conditions in nonlinear programming obtained by way of
epi-derivatives, Math. Oper. Res., 14 (1989), pp. 462–484.

[208] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317 of
Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1998.

[209] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal
algorithms, Phys. D, 60 (1992), pp. 259–268.

[210] S. Salzo and S. Villa, Convergence analysis of a proximal Gauss-Newton method,
Comput. Optim. Appl., 53 (2012), pp. 557–589.

[211] S. Scholtes, Introduction to piecewise differentiable equations, Springer Briefs in Op-
timization, Springer, New York, 2012.

280



Bibliography

[212] A. Shapiro, Differentiability properties of metric projections onto convex sets.
Preprint, available at http://www.optimization-online.org/DB_HTML/2013/11/
4119.html, November 2013.

[213] , On differentiability of metric projections in Rn. I. Boundary case, Proc. Amer.
Math. Soc., 99 (1987), pp. 123–128.

[214] , Directionally nondifferentiable metric projection, J. Optim. Theory Appl., 81
(1994), pp. 203–204.

[215] , First and second order analysis of nonlinear semidefinite programs, Math. Pro-
gram., 77 (1997), pp. 301–320. Semidefinite Programming.

[216] , On uniqueness of Lagrange multipliers in optimization problems subject to cone
constraints, SIAM J. Optim., 7 (1997), pp. 508–518.

[217] , On a class of nonsmooth composite functions, Math. Oper. Res., 28 (2003),
pp. 677–692.

[218] , Sensitivity analysis of generalized equations, J. Math. Sci. (N. Y.), 115 (2003),
pp. 2554–2565. Optimization and Related Topics, 1.

[219] , Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res.,
30 (2005), pp. 109–126.

[220] A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5
(1995), pp. 552–569.

[221] J. Shi, W. Yin, S. Osher, and P. Sajda, A fast hybrid algorithm for large-scale
`1-regularized logistic regression, J. Mach. Learn. Res., 11 (2010), pp. 713–741.

[222] Z. Shi and R. Liu, Large scale optimization with proximal stochastic newton-type gra-
dient descent, in Machine Learning and Knowledge Discovery in Databases, vol. 9284 of
Lecture Notes in Computer Science, Springer International Publishing, 2015, pp. 691–
704.

[223] M. V. Solodov, Merit functions and error bounds for generalized variational inequal-
ities, J. Math. Anal. Appl., 287 (2003), pp. 405–414.

[224] M. V. Solodov and P. Tseng, Some methods based on the D-gap function for solving
monotone variational inequalities, Comput. Optim. Appl., 17 (2000), pp. 255–277.

[225] G. Stadler, Elliptic optimal control problems with L1-control cost and applications
for the placement of control devices, Comput. Optim. Appl., 44 (2009), pp. 159–181.

[226] D. Sun, The strong second-order sufficient condition and constraint nondegeneracy
in nonlinear semidefinite programming and their implications, Math. Oper. Res., 31
(2006), pp. 761–776.

281

http://www.optimization-online.org/DB_HTML/2013/11/4119.html
http://www.optimization-online.org/DB_HTML/2013/11/4119.html


Bibliography

[227] D. Sun, M. Fukushima, and L. Qi, A computable generalized Hessian of the D-gap
function and Newton-type methods for variational inequality problems, in Complemen-
tarity and Variational Problems (Baltimore, MD, 1995), SIAM, Philadelphia, PA, 1997,
pp. 452–473.

[228] D. Sun and J. Han, On a conjecture in Moreau-Yosida approximation of a nonsmooth
convex function, Chinese Sci. Bull., 42 (1997), pp. 1423–1426.

[229] D. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002),
pp. 150–169.

[230] L. Sun, J. Liu, J. Chen, and J. Ye, Efficient recovery of jointly sparse vectors, in
Advances in Neural Information Processing Systems, (NIPS), 23, 2009.

[231] K. Taji, M. Fukushima, and T. Ibaraki, A globally convergent Newton method for
solving strong monotone variational inequalities, Math. Program., 58 (1993), pp. 369–
383.

[232] Q. Tran-Dinh, A. Kyrillidis, and V. Cevher, An inexact proximal path-following
algorithm for constrained convex minimization, SIAM J. Optim., 24 (2014), pp. 1718–
1745.

[233] J. S. Treiman, The linear nonconvex generalized gradient and Lagrange multipliers,
SIAM J. Optim., 5 (1995), pp. 670–680.

[234] , The linear nonconvex generalized gradient, in World Congress of Nonlinear An-
alysts ’92, Vol. I–IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, pp. 2325–2336.

[235] J. A. Tropp, Algorithms for simultaneous sparse approximation: Part II: Convex
relaxation, Signal Process., 86 (2006), pp. 589–602.

[236] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable
minimization, Math. Program., 117 (2009), pp. 387–423.

[237] M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth
equations with applications to nonlinear mixed complementarity problems, SIAM J.
Optim., 11 (2001), pp. 889–917.

[238] , Semismooth Newton methods for variational inequalities and constrained opti-
mization problems in function spaces, vol. 11 of MOS-SIAM Series on Optimization,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

[239] M. Ulbrich and S. Ulbrich, Nichtlineare Optimierung, Birkhäuser, Basel, 2012.

[240] M. Ulbrich, S. Ulbrich, and L. N. Vicente, A globally convergent primal-dual
interior-point filter method for nonlinear programming, Math. Program., 100 (2004),
pp. 379–410.

[241] T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with
applications to MRI, Inverse Problems, 30 (2014), pp. 055012, 45.

282



Bibliography

[242] E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis
pursuit solutions, SIAM J. Sci. Comput., 31 (2008/09), pp. 890–912.

[243] , Theoretical and empirical results for recovery from multiple measurements, IEEE
Trans. Info. Theory, 56 (2010), pp. 2516–2527.

[244] L. van den Dries, Tame topology and o-minimal structures, vol. 248 of London Math-
ematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1998.

[245] A. von Heusinger, Numerical methods for the solution of the generalized Nash equi-
librium problem, PhD Dissertation, Universität Würzburg, 2009.

[246] A. von Heusinger and C. Kanzow, Optimization reformulations of the generalized
Nash equilibrium problem using Nikaido-Isoda-type functions, Comput. Optim. Appl.,
43 (2009), pp. 353–377.

[247] A. von Heusinger, C. Kanzow, and M. Fukushima, Newton’s method for com-
puting a normalized equilibrium in the generalized Nash game through fixed point for-
mulation, Math. Program., 132 (2012), pp. 99–123.

[248] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham,
D. Takhar, K. F. Kelly, and R. G. Baraniuk, An architecture for compressive
imaging, in IEEE Int. Conf. on Imag. Process. (ICIP), Oct 2006, pp. 1273–1276.

[249] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization
algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008),
pp. 248–272.

[250] Y. Wang and L. Zhang, Properties of equation reformulation of the Karush-Kuhn-
Tucker condition for nonlinear second order cone optimization problems, Math. Meth-
ods Oper. Res., 70 (2009), pp. 195–218.

[251] Z. Wen, A. Milzarek, M. Ulbrich, and H. Zhang, Adaptive regularized self-
consistent field iteration with exact Hessian for electronic structure calculation, SIAM
J. Sci. Comput., 35 (2013), pp. A1299–A1324.

[252] Z. Wen and W. Yin, A feasible method for optimization with orthogonality con-
straints, Math. Program., 142 (2013), pp. 397–434.

[253] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse recon-
struction based on shrinkage, subspace optimization, and continuation, SIAM J. Sci.
Comput., 32 (2010), pp. 1832–1857.

[254] Z. Wen, W. Yin, H. Zhang, and D. Goldfarb, On the convergence of an active-set
method for `1 minimization, Optim. Methods Softw., 27 (2012), pp. 1127–1146.

[255] R. S. Womersley, Local properties of algorithms for minimizing nonsmooth composite
functions, Math. Program., 32 (1985), pp. 69–89.

283



Bibliography

[256] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by
separable approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479–2493.

[257] N. Yamashita, K. Taji, and M. Fukushima, Unconstrained optimization reformu-
lations of variational inequality problems, J. Optim. Theory Appl., 92 (1997), pp. 439–
456.

[258] J. Yang and Y. Zhang, Alternating direction algorithms for `1-problems in compres-
sive sensing, SIAM J. Sci. Comput., 33 (2011), pp. 250–278.

[259] J. Yang, Y. Zhang, and W. Yin, An efficient TVL1 algorithm for deblurring
multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009),
pp. 2842–2865.

[260] L. Yang, D. Sun, and K.-C. Toh, SDPNAL+: a majorized semismooth Newton-
CG augmented Lagrangian method for semidefinite programming with nonnegative con-
straints, Math. Program. Comput., 7 (2015), pp. 331–366.

[261] Y.-L. Yu, On decomposing the proximal map, in Advances in Neural Information
Processing Systems 26, Curran Associates, Inc., 2013, pp. 91–99.

[262] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped
variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49–67.

[263] Y. Yuan, Conditions for convergence of trust region algorithms for nonsmooth opti-
mization, Math. Program., 31 (1985), pp. 220–228.

[264] , On the superlinear convergence of a trust region algorithm for nonsmooth opti-
mization, Math. Program., 31 (1985), pp. 269–285.

[265] S. Yun and K.-C. Toh, A coordinate gradient descent method for `1-regularized
convex minimization, Comput. Optim. Appl., 48 (2011), pp. 273–307.

[266] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory,
in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center,
Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, pp. 237–424.

[267] H. Zhang and W. W. Hager, A nonmonotone line search technique and its ap-
plication to unconstrained optimization, SIAM J. Optim., 14 (2004), pp. 1043–1056
(electronic).

[268] X.-Y. Zhao, D. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method
for semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737–1765.

[269] D. L. Zhu and P. Marcotte, Modified descent methods for solving the monotone
variational inequality problem, Oper. Res. Lett., 14 (1993), pp. 111–120.

284


	Abstract
	Acknowledgements
	Notations
	Introduction
	Convex and nonsmooth analysis
	Preliminary definitions and tangent cones
	Basics and semicontinuity
	Tangent cones
	Sublinear functions and support functions
	Robinson's constraint qualification

	Convexity and the convex conjugate
	Multifunctions
	Epi-convergence
	Directional (epi-)derivatives and subdifferentials
	Directional (epi-)differentiability
	The convex subdifferential
	The Bouligand and the Clarke subdifferential

	Semismoothness

	The proximity operator
	Definitions and basic properties
	Proximal calculus and examples
	Semismoothness and second order properties

	A globalized semismooth Newton method for nonsmooth optimization problems
	First order optimality conditions
	Algorithmic framework
	Assumptions
	A proximal gradient method with an Armijo-type linesearch technique
	A multidimensional filter framework
	The full algorithm

	Convergence analysis
	Global convergence
	Fast local convergence


	Second order theory and decomposability
	A first second order sufficient condition and isolated stationarity
	First order necessary conditions
	Second order conditions and the strict constraint qualification
	Constraint nondegeneracy and the strict complementarity condition
	Isolated stationarity

	No gap second order conditions
	Second order directional (epi-)derivatives and second order tangent sets
	Outer second order regularity and second order conditions

	Decomposable functions
	Decomposability
	Properties of decomposable functions and decomposable problems
	Examples and calculus
	The curvature of fully decomposable functions

	Nonsingularity conditions
	Extensions

	Numerical methods for generalized variational inequalities
	Characterization and existence of solutions
	Merit and gap functions for GVIPs
	The regularized gap function
	The D-Gap function

	Numerical algorithms for GVIPs
	A D-gap function-based descent method
	A semismooth Newton method for generalized variational inequalities


	Applications and numerical results
	Convex 1-regularized least squares problems
	Algorithmic details and implementation
	State-of-the-art methods
	Numerical comparison

	Nonconvex 1-problems with Student's-t penalty
	Algorithms and implementational details
	Numerical comparison

	Group sparse least squares problems
	Algorithmic description
	State-of-the-art methods
	Numerical comparison


	Additional material
	The proximal gradient method: Global convergence
	Second order conditions
	Variational inequalities: Existence of solutions
	Numerical results: Further figures and tables
	Convex 1-regularized least squares
	Nonconvex 1-optimization problems
	Group sparse problems


	Bibliography

