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Abstract—The performance of a secure communication system
such as the wiretap channel is usually characterized by its
secrecy capacity. In this paper, the issue of whether or not
the secrecy capacity is a continuous function of the system
parameters is examined. In particular, this is done for channel
uncertainty modeled via compound channels and arbitrarily
varying channels, in which the legitimate users know only that the
true channel realization is from a pre-specified uncertainty set. In
the former model, this realization remains constant for the entire
duration of transmission, while in the latter the realization varies
from channel use to channel use in an unknown and arbitrary
manner. The secrecy capacity of the compound wiretap channel is
shown to be robust in the sense that it is a continuous function of
the uncertainty set. Thus, small variations in the uncertainty set
lead to small variations in secrecy capacity. However, the secrecy
capacity of the arbitrarily varying wiretap channel is shown to be
discontinuous in the uncertainty set meaning that small variations
can lead to dramatic losses in capacity.

I. INTRODUCTION

In recent years, information theoretic approaches to se-
curity have been intensively examined as a complement to
cryptographic techniques. Such approaches establish reliable
communication and data confidentiality jointly at the physical
layer by taking the properties of the noisy channel into
account. This line of study was initiated by Wyner, who
introduced the wiretap channel in [1]. Recently, this area of
research has drawn considerable attention since it provides a
promising approach to achieve unconditional security; see for
example [2-5] and references therein.

These studies are in particular crucial for wireless com-
munication systems, since they are inherently vulnerable to
eavesdropping. Unfortunately, in practical systems channel
state information (CSI) will always be limited due to the nature
of the wireless channel and estimation/feedback inaccuracy.
Furthermore, malevolent eavesdroppers will not provide any
information about their channels to legitimate users to make
eavesdropping even harder. Accordingly, limited CSI must be
assumed to ensure reliability and data confidentiality.
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A first step in the direction of more realistic CSI assump-
tions is given by assuming that the actual channel realization
is unknown. Rather, it is only known to the legitimate users
that the true realization belongs to a known set of channels
(uncertainty set) and that it remains constant during the entire
transmission. These conditions describe the compound wiretap
channel which has been studied in [6—8]. Despite these efforts,
a general single-letter characterization of the secrecy capacity
remains unknown until now. Such a description is known only
for special cases such as degraded channels [6,7] or certain
MIMO Gaussian channels [8]. For the general case, only a
multi-letter description has been established so far [7].

The quality of CSI is further weakened by the additional
assumption that this realization may vary from channel use to
channel use in an arbitrary and unknown manner. This is the
arbitrarily varying wiretap channel (AVWC) [9-11] and it has
been shown that it makes a difference in this case whether
unassisted or common randomness (CR) assisted codes are
used. The unassisted secrecy capacity may be zero, while the
CR-assisted secrecy capacity is non-zero. In [10] a complete
characterization of the relation between the deterministic and
CR-assisted secrecy capacity is established; however, a char-
acterization of the CR-assisted secrecy capacity itself remains
open.

The analysis in this paper is driven by the following
observation: Obviously, the secrecy capacity depends on the
underlying uncertainty set. Now in general, the performance
of a communication system (in our case the secrecy capacity)
should depend in a continuous way on the system parameters
(in particular the uncertainty set). Since, if small changes in
the parameters would lead to dramatic losses in performance,
the approach at hand will most likely not be used. Indeed,
one is interested in approaches that are robust against such
variations in the sense that small variations in the uncertainty
set result in small variations in the secrecy capacity. Such a
continuous dependency is in particular desirable in the context
of active adversaries who can influence the system parameters
in a malicious way. Surprisingly, the question of continuity of
capacities is rarely discussed.

In Section II we introduce the compound wiretap channel
and a distance concept to measure how “close” two channels
are. Then in Section III, we show that the secrecy capacity
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Fig. 1. Compound wiretap channel. The transmitter encodes message J into a
codeword X™ = E(J) and transmits it over the compound wiretap channel to
the legitimate receiver, which has to decode its intended message J = p(Y)
for any channel realization s € S. At the same time, the eavesdropper has to
be kept ignorant of J in the sense that maxscs I(J; Z%) < 0n.

is a continuous function of the uncertainty set. Interpreting
the uncertainty set as the strategy space of an adversary, this
implies that secure communication over compound channels
will be robust against changes in the adversary’s strategies.

In Section IV we introduce the AVWC and study its secrecy
capacity in Section V. We see that the unassisted secrecy
capacity of the AVWC can be discontinuous in the uncertainty
set. The practical relevance of this observation is that such
unassisted schemes might not be robust in the sense that small
variations can lead to dramatic losses in secrecy capacity.
In particular in the context of active adversaries this means
that small changes in the adversary’s strategy can lead to a
completely different behavior of the system.!

II. COMPOUND WIRETAP CHANNELS

We begin with the compound wiretap channel in which the
actual channel realization is unknown to the users as depicted
in Fig. 1. It is known only that it is constant during the entire
duration of transmission and lies in a known uncertainty set.

Let X, ), and Z be finite input and output sets and S be
an arbitrary state set. Then for given state s € S and input
and output sequences z" € X", y™ € V", and z" € Z" of
length n, the discrete memoryless channels to the legitimate
receiver and the eavesdropper are given by W (y"|a™) =
[T2: Ws(yilz) and V(2" [2") = [T;L, Vi(zilzi).

Then the (marginal) compound channel to the legitimate
receiver is defined by the family of channels for all s € S as
W = {W,}secs. Similarly, we define the compound channel
to the eavesdropper as V = {V; }ses.

Definition 1. The discrete memoryless compound wiretap
channel is given by the families of pairs of compound channels
with common input as

QW = {W,V} = {Ww,, VS}WSGW,VSGV'

INotation: (0,1) and [0, 1] are the open and closed intervals between 0
and 1; Ha(-) is the binary entropy function; H(-||Pxy) and I(-;-||Pxy)
mean that the entropy and mutual information are evaluated according to
the probability distribution Pxy; P(X) denotes the set of all probability
distributions on X; ||Px — Qx| is the total variation distance between Px
and Qx on X defined as ||Px — Qx| = >, cx |Px(z) — Qx (z)|.

We consider a block code of arbitrary but fixed length n.
Let 7, = {1,..., J,} be the set of confidential messages.

Definition 2. An (n,J,)-code C consists of a stochastic en-
coder

E:J,—PAX" (L
and a deterministic decoder at the legitimate receiver
o:Y" = Tn. 2)

Remark 1. For the compound wiretap channel it suffices to
consider codes as defined above. However, we will see that
for the AVWC in Section IV we need more sophisticated
code concepts based on common randomness; so-called CR-
assisted codes. In this context, we will then refer to codes of
Definition 2 as unassisted codes.

When the transmitter has sent the message j € J,, and the
legitimate receiver has received y" € )", its decoder is in
error if ¢(y™) # j. Then for an (n, J,)-code C, the average
probability of error for channel realization s € S is given by

en(slIC) :ﬁz D

JETn a™EX™ yn:p(yn)#j

W (y"|=z") E(z"j)-

To ensure the confidentiality of the message for all channel
realizations s € S, we require sup,csI(J;Z7|C) < o,
for some (small) §,, > 0 with J the random variable uni-
formly distributed over the set of messages J, and Z] =
(Zs1,Zs2, ..., Zs ) the output at the eavesdropper for channel
realization s € S. This criterion is known as strong secrecy.

Definition 3. A rate R > 0 is said to be an achievable secrecy
rate for the compound wiretap channel if for any 7 > 0 there
exist an n(7) € N, positive null sequences { A, } nen, {0n Fnens
and a sequence of (n,J,)-codes {Cy}nen such that for all
n > n(r) we have 2 log J, > R—7, sup,cs €,(s[|Cn) < An,
and

sup [(M; Z2||Cp) < 6.
SES

The secrecy capacity C'g @) of the compound wiretap chan-

nel with uncertainty set 20U is given by the supremum of all
achievable secrecy rates R.

In [6] an achievable secrecy rate for finite uncertainty sets
and the weak secrecy criterion is established. The result has
been strengthened in [7] and [8] to hold also for strong secrecy
and arbitrary (not necessarily finite or countable) uncertainty
sets. For degraded channels it has been shown in [6] that this
secrecy rate is actually the secrecy capacity.

Although a single-letter expression for the secrecy capacity
that holds in the general, non-degraded, case is still unknown,
a multi-letter description was established in [7].

Theorem 1 ([7]). The secrecy capacity Cs(28) of the com-

pound wiretap channel with uncertainty set 27 is

1
Cs(W) = lim — max
0 1 U— X1 (v, 2m) 3)
x (inf 1(U3Y)") = sup I(U; 49)
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for U — X" — (Y, Z) forming a Markov chain.

III. CONTINUITY OF COMPOUND SECRECY CAPACITY

Here, we analyze the secrecy capacity Cs(20) of the
compound wiretap channel and show that it is a continuous
function of the uncertainty set 93. Therefore, we need a
concept to measure the distance between two wiretap channels.

A. Distance between Compound Wiretap Channels

Let (W,V) and (W, V) be two wiretap channels. We define
the distance between two (marginal) channels based on the
total variation distance as

d(W, W) = max 2; Wiyle) = Wla)| @)
y
d(V,V) = max Z |V (z]z) — ‘7(2|:c)| (4b)
z€EZ

and between the corresponding wiretap channels as
d(W,V), (W, V)) = max {d(W, W),d(V,V)}.

Next, we extend this concept to the compound case. Ac-
cordingly, let 2; = (Wi, V1) and Wy = (Wa, Vs) with
index sets S; and Sy be two uncertainty sets for compound
wiretap channels with marginal compound channels W; =
{Ws, }sies, and V; {Vi,}siesi» @ = 1,2, We define
distances between the legitimate compound channels as

di(W1, W2) = max min d(Ws,, W.,)

dy(W1,W5) = max min d(W,,, W,,)

51 €81 52E€S2

and between the eavesdropper compound channels as
di(V1,Vs) = d(Vs,, Vs
1(V1,V2) = max min d(V,,Vi,)
d = d(Vs;, Vs
2(V1,V2) = max min d(Vs,, Vs,)-
Definition 4. The distance D(201,2,) between two com-
pound wiretap channels with uncertainty sets 2J; and 25 is
defined as

D(EhEQ) = Inax {d1(W1,W2),d2(W1,W2)7

S GG 5
GV V) b))

The distance D(20;,20,) between two compound wiretap
channels with uncertainty sets 20, and W, characterizes how
“close” or similar these two compound wiretap channels are.
Accordingly, it also measures how well one compound wiretap
channel can be approximated by another one.

B. Continuity of Compound Secrecy Capacity

Here we study what happens if there are small variations
in the uncertainty set. Obviously, it is desirable to have a
continuous behavior of the secrecy capacity: Small variations
in the uncertainty set should only lead to small variations in
the corresponding secrecy capacity. For the analysis, we need
two important lemmas. Similar results first appeared in [12]
and [13] in the context of quantum information theory.

Lemma 1. Let X and Y be finite alphabets and ¢ € (0,1)
be arbitrary. Then for all joint probability distributions
PXY7QXY € 'P(X X y) with ||PXY — QxyH < € it holds
that

|H(Y|X||Pxy) — H(Y|X||QXY)| < 01(e, 1Y)
with 01(€,|Y|) = 2elog || + 2H2(e).

Proof: The proof is an adaptation of the corresponding
proof in [12] for quantum sources. For completeness, the proof
can be found in the extended version [14]. |

Lemma 2. Let X and Y be finite alphabets and W, W:x —
P(Y) be arbitrary channels with

AW, W) < e

(6)

(7

for some € > 0. For arbitrary n € N, let U be an arbitrary
finite set, Py € P(U) the uniform distribution on U, and
E(x™u), 2™ € X™ an arbitrary stochastic encoder, cf. (1).
We consider the probability distributions

Pyyn(u,y") Z W (y"|a")E(z" |u) Py (u)
anexn

Py (u,y™) Z W (y"[2") E(2"|u) Py (u),
anexn

Then it holds that
[1(U;Y™|[P) — I(U; Y™ P)| < nda(e, V)
| V)) = 4elog || + 4Hz ().

Proof: The proof is an adaptation of the proof in [13] for
quantum capacities. For completeness, the proof can be found
in the extended version of this work [14]. ]

®)
with o€

Note that the right hand sides of (6) and (8) depend only
on the size of the output alphabet )/, but they are independent
of X and U respectively. This will be crucial for Theorem 2.

Theorem 2. Let ¢ € (0,1) be arbitrary. Let 2, and W,
be uncertainty sets with corresponding state sets S and S
defining two compound wiretap channels. If

D(El,ﬁg) S €,
then it holds that
|Cs(2W1) — Cs(Ws)| < (e, V], 12]) )

with §(e,|Y|,|Z|) = 4elog|V||Z| + 8Hz(€) a constant de-
pending on the distance € and the alphabet sizes || and | Z|.

Proof: Let £ > 0 be arbitrary but fixed. There exists an
§1 = 81(&) such that

inf (U Y"|[P*) > I(U:Y"|[P*) ~ ¢

s1ES
By assumption, there also exists an §3 = $3(81) such that
d(W§1v W§2) <€
This implies

L@ Y|P — I Y™ P2)] < ndale, [ V)
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by Lemma 2, cf. (8). With this we obtain
inf I(U;Y"||P°) > I(U; Y”HP”) — ndo(e

51€S1

1Y) =

> inf I(U;Y"||P%) — nda(c, |V]) — (10)
52E€82
Note that relation (10) holds for all £ > 0. Since, the left hand

side does not depend on 9, we obtain

inf I(U

51E€S1

;Y|P > ing L({U;Y™||P??) — nda(e, |V)).
$2€852
We observe that if we exchange the roles of S; and S; in
the previous derivation, we end up with a similar expression,

where infima over S; and S, are interchanged. Accordingly,

| inf I(U Y|P — 1nf I(U Y[P)| < ndy(e, | V).

s1€ES

The same arguments lead to

| sup I(U; Z"|| P*) —

sup 1(U; Z"||P**)| < nda(e, |Z])
51E€81

EPISD
so that we conclude

inf I(U;Y"™||P*) — sup I(U;Z"||P*")

51€81 $1€8
— ( inf I(U;Y"™|P*) — sup I(U; Z”||P52))‘
52E€S2 $9ESH
<| inf I(U;Y"||P?) — inf I(U;Y"||P*?)
s1E€81 S2E€Ss
+ | sup I(U; Z"||P°') — sup I(U;Z"||P*?)
$1€S1 52€S2
< ndy(e, [YV]) + nda(e, | Z]) = nd(e, V], |Z])
with d(e, | V|, | Z]|) = 4elog|V||Z| + 8 Hz(€). But this implies

for the secrecy capacities

inf I(U;Y"||P*) —

- I(U; Z2"|| P )
n ( s1E€81 Sub ( || )

51E€S1

1
< — n S2) __ mn ED)
< n(szlrelfQI(U Y™ || P*2) SilgpoI(U Z"|| P ))
+ (e, |V],12])

so that

CS(El) S CS(®2)+5(€a |y|7|Z|) (11)

Again, we can exchange the roles of S; and S in the
derivatioizlbove to obtain a relation as in (11) where C's(20;)
and Cg(205) are interchanged. Thus, we have

|Cs(2W1) — Cs(Wo)| < d(e, V1,1 2])

which proves the desired result. ]

Finally, we want to highlight that the continuity of the
secrecy capacity was established without having a single-letter
description available. Although a multi-letter characterization
of the secrecy capacity as given in Theorem 1 might be hard to
compute, it is extremely useful for deriving certain properties
such as continuity as demonstrated in Theorem 2.

n

Y N
S T
X’VL
’ £
zZn,
[State 5"4—:

Fig. 2. Arbitrarily varying wiretap channel. In contrast to the compound
wiretap channel, the transmission is now governed by an unknown state
sequence s™ € S™ of length n, which may vary in an unknown manner
from channel use to channel use.

Zm%) <6

IV. ARBITRARILY VARYING WIRETAP CHANNEL

We continue our analysis with the arbitrarily varying wire-
tap channel. In contrast to the previously studied compound
wiretap channel, the unknown channel realization may vary in
an unknown and arbitrary manner from channel use to channel
use as depicted in Fig. 2.

As for the compound wiretap channel in Section II let X,
Y, and Z be finite input and output sets and S be a finite state
set. Then for a fixed state sequence s™ € S™ of length n, the
discrete memoryless channel to the legitimate receiver is given

by W2 (y"[2") = W (y"am, ) = [11, W (yilas, s2).

Then the family of channels for all s € S™ defines
the (marginal) AVC to the legitimate receiver as W =
{W2h }sncsn. In addition, for any probability distribution
q € P(8S) we define the averaged channel as

ZW ylz, s)

seS

Wo(ylz) = (12)

An important property of an AVC is the so-called concept
of symmetrizability as defined below.

Definition 5. An AVC is called symmetrizable if there exists
a stochastic matrix o : X — P(S) such that

Y Wiylwr, s)o(sles) = > W(ylas, s)o(s|z1)
s€S seS
holds for all 1,22 € X and y € ).
Roughly speaking, a symmetrizable AVC can “simulate”

a valid input, which makes it impossible for the decoder to
decide on the correct codeword.

Similarly for the channel to the eavesdropper, we de-
fine the discrete memoryless channel as V7 (z"[x") =
V(2™ a™, s") =[], V(zi|z;, s;) for given state sequence
s"™ € S". Further, we set V = {V}snesn and Vy(z|z) =
Y oses Vzlz, s)q(s) for g € P(S).

Definition 6. The discrete memoryless arbitrarily varying

wiretap channel is given by the families of pairs of channels
with common input

= {W V} { sﬂ ) Vn }W:nyeW,Vs’ﬁlGV'
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A. Unassisted and CR-Assisted Codes

The definition of an unassisted (n,.J,)-code C for the
AVWC is the same as for the compound wiretap channel in
Definition 2: It consists of a stochastic encoder as in (1) and
a deterministic decoder as in (2).

The difference lies in the reliability and secrecy criteria as
we have now to consider state sequences s € S™ of length n.
Thus, for given s™ € S™ the average probability of decoding
error at the legitimate receiver is

|}n| SO S Wy, s EE"])

JETn " €X™ p(y™)#]

én(s"]|C) =

and the confidentiality of the message is measured by
SUpgnegn 1(J; Z2.||C) < 6, with Z7, = (Zs,, Zs,, ..., Zs,, ).

sn sn

Definition 7. A rate R > 0 is said to be an achievable secrecy
rate for the AVWC if for any 7 > 0 there exist an n(7) € N,
positive null sequences {\, }nen, {0n }nen, and a sequence of
(n, Jn)-codes {Cy, }nen such that for all n > n(r) we have
LlogJn = R — T, supncgn €n(s"[|Cn) < Ay, and

sup I(J; Z25.||Cp) < 0.

S’n
snesSn

(13)

The unassisted secrecy capacity Cs(20) of the AVWC with
uncertainty set 2 is given by the supremum of all achievable
secrecy rates R.

Unfortunately, such unassisted approaches do not suffice to
establish reliable communication over symmetrizable AVCs,
cf. Definition 5; indeed, the corresponding capacity is zero in
this case [10, 11]. This necessitates the use of more sophisti-
cated strategies based on common randomness. It enables the
transmitter and the receiver to coordinate their choices of the
encoder (1) and the decoder (2) according to v € G,,.

The reliability and secrecy constraints from above extend
to CR-assisted codes in a natural way. Then, the definitions
of a CR-assisted achievable secrecy rate and the CR-assisted
secrecy capacity Cg cr(20) follow accordingly.

B. Capacity Results

Studies have been undertaken in order to understand the
secrecy capacity of the AVWC [9-11] and the relation between
the secrecy capacities for unassisted and CR-assisted codes has
been completely characterized in [10, Theorem 2].

Theorem 3 ([10]). If the CR-assisted secrecy capacity satisfies
Cs,cr(20) > 0, then the unassisted secrecy capacity is given
by

Cs(W) = Cs,cr(20)

if and only if the AVC W to the legitimate receiver is non-
symmetrizable. If the AVC W is symmetrizable, then Cs(20) =
0. If Cs(W) = 0 and Cs,cr(2W) > O, then the AVC W is
symmetrizable.

The unassisted secrecy capacity C's(20) of the AVWC 207 is
completely known in terms of its CR-assisted secrecy capacity
Cs,cr(2). However, a characterization of Cgcr(20) itself

remains open. Only for the special case of a best channel to
the eavesdropper is an achievable secrecy rate known [10].

V. DISCONTINUITY OF AVWC SECRECY CAPACITY

Here we study the continuity of the unassisted secrecy
capacity Cg(20) of the AVWC with uncertainty set 2.
Theorem 3 provides only a characterization in terms of its
corresponding CR-assisted secrecy capacity Cgcr(20), but
unfortunately, no explicit characterization is known in terms
of entropic quantities. Thus, the analysis becomes much more
complicated and involved compared to the compound wiretap
channel where such a (multi-letter) characterization is known.

Nonetheless, we will be able to show that the unassisted
secrecy capacity Cs(20) is discontinuous in the uncertainty
set 2U. Similar to the compound wiretap channel, we ask the
question: if the distance between two AVWCs is small, i.e.,
D(201,205) < ¢, does this imply that Cs(20;) — Cs(2Ws) is
small as well?

In more detail, let {20,},cn be a sequence of finite
uncertainty sets, which converge to a finite set 20* in terms of
D-distance. The question is then whether or not this implies

Jim Cs(Wn) = Cs (). (14)

Since no complete characterization of Cig(20*) is known, we
will examine this question via a simple example to show
that (14) does not hold in general. However, this simple
example already indicates the fundamentally different behavior
compared to the compound wiretap channel.

A. Secrecy Capacity with Discontinuity Point

The aim of this part is to construct an AVWC whose
unassisted secrecy capacity has a discontinuity point. To do so,
we consider a communication scenario with input and output
alphabets of sizes |X| =2, Y| =3, |Z| =2, and |S| = 2.

Let us first consider the communication channel to the
legitimate receiver. To construct a suitable AVC for this link,
we make use of an example [15, Example 1]. We follow this
example and construct an AVC to the legitimate receiver with
uncertainty set

W= {W, W} (15)

where

1 0 0 0 0 1
Wl._<0 0 1> and Wg._<0 1 O)'

We know from [15] that W then defines a symmetrizable AVC
so that its unassisted capacity is zero, i.e., C(W) = 0.
Further, with the channel

~ (1 0 0
W= <O 1 0)
we define the trivial AVC whose two elements are identical as
W= {W,W}. (16)

Now, for the channel to the eavesdropper, we define the

“useless” channel -
Ve (% %) . (a7
2 2
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Then the set V = {V, V'} defines a corresponding AVC to the
eavesdropper.

These definitions finally create with (15), (16), and (17) the
following two AVWCs specified by their uncertainty sets:

W= {W,V} and W:={W,V},

Moreover, we can define a convex combination of these two
AVWCs as

W) = {{W1(\), Wa(M)}, Y} for 0 <A<
with convex combinations
Wi(A) = Wix = (1 - AWy + AW
Wo(A\) = Won = (1 — \)Wy + AW.
This is indeed a convex combination of the eavesdropper AVC
as well which is trivial as we have identical elements.

Now, the following result shows that the unassisted secrecy
capacity C's(20())) is discontinuous in A.

Theorem 4. The following holds for the previous example:
1) The CR-assisted secrecy capacity Cs cr(20(N)) is con-
tinuous in X for all X € [0,1] and it holds that

min O&CR(QB()\)) > 0.

(19)
A€[0,1]

2) The unassisted secrecy capacity Cg(20(X)) is continu-
ous in X for all X € (0,1]. It holds thar Cs(25(0)) =0
and further that

lim C5(W(N) >0,

i.e., A\ =0 is a discontinuity point of Cs(-).

(20)

Proof: Due to space constraints the proof is relegated to
the extended version of this work [14]. [ |

Remark 2. Now for the case A = 0 in Theorem 4 we see the
following: Whenever the legitimate users try to communicate
at a positive rate, the adversary can jam the communication
such that the decoding error at the legitimate receiver is always
greater than 1/4 since the W is symmetrizable (see also [11]
for a more detailed discussion). Although the secrecy criterion
is satisfied, no reliable communication is possible. See [14] for
further details.

On the other hand, for A > 0 we have Cs(20(\)) > 0
so that in this case reliable and secure communication is
possible. However, from this we cannot draw conclusions
about C's(20(0)) by taking the limit A\ — 0, since A = 0
is a discontinuous point. Thus, it is not robust since small
variations can result in a dramatic loss in secrecy capacity.

Remark 3. This technique can easily be extended to obtain
examples with discontinuities for general sets X, ), and S;
cf. [14].

Remark 4. In principle, the eavesdropper has different jam-
ming strategies: increasing the secrecy leakage I(.J; Z2.||C)
or increasing the decoding error €,(s"||C) of the legitimate
receiver. The example above shows that the second strategy is
particularly effective for AVWCs.

VI. CONCLUSION

The analysis of this paper was motivated by the question
of whether the secrecy capacity depends continuously on the
uncertainty set or not. Obviously, a continuous behavior is
desirable as then small changes in the uncertainty set result
in only small changes in the secrecy capacity. This becomes
particularly relevant in the context of active adversaries where
the uncertainty set describes the strategy space of an adversary.
In addition, such a continuous behavior is also a necessary
condition for the existence of codes that are robust against
uncertainties. Since if the secrecy capacity is already discon-
tinuous, a robust code design will not be possible at all.

Surprisingly, the answer to this question depends highly on
the abilities of the adversary — even for the simplest case
of an uncertainty set containing two elements. If the actual
realization from this uncertainty set remains constant, this is
the compound wiretap channel and the corresponding secrecy
capacity is continuous. However, if the adversary is allowed to
vary in an unknown and arbitrary manner between these two
realizations during the transmission, the legitimate users have
to deal with an AVWC and its unassisted secrecy capacity can
be discontinuous in the uncertainty set.
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