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Abstract. We present a general model that connects runtime monitors
for data flow tracking at different abstraction layers (e.g. a browser, a
mail client, an operating system) and show that this model is sound with
respect to a formal notion of explicit information flow. This is useful be-
cause, although the semantics of higher-level events at a single layer can
be exploited to increase the precision of the analysis, other abstraction
levels need to be considered as well in order to obtain system-wide guar-
antees. For instance, to soundly reason about the flow of a picture from
the network through a browser into a cache file or a window on the
screen, analysis results from multiple layers need to be combined.

1 Introduction

Research in data flow tracking [4,21] tackles the problem of monitoring flows of
data from sources (i.e. input parameters to methods, sockets, files) to sinks (i.e.
outputs to sockets, files). Data flow analysis systems can answer the question if
data has (potentially) flowed, or will (potentially) flow, from a source to a sink.

Dynamic approaches for data-flow tracking implement reference monitors at
various levels of abstraction: binary code, Java bytecode, operating systems, and
dedicated applications. Dynamic analyses can exploit layer-specific semantic in-
formation and be precise in the presence of reflection or call-backs. They cannot,
by definition, detect flows that are a consequence of non-executed branches and
they do impose a non-negligible runtime overhead. In the absence of OS-layer
monitoring and if monitoring is not done at the binary level, dynamic analysis
results are confined to the considered layer. In this paper, we elaborate on the
idea of using multiple monitors at different layers, with the goal of improving
the precision of the single layers by exploiting known relations between them.

As an example, consider Fig. 1 where an application loads two files from
the OS and then saves one of them with a different name. Data d, contained in
the first file file f , enters the application via container src1 (1), is propagated
through the application internals (2) and finally leaves the application (3). If dy-
namic monitoring was performed solely at the OS layer, the analysis would report
data e to have flowed to file i as well— which is sound but over-approximating.
If monitoring was solely performed at the application level, data flows at the OS
layer could not be observed, e.g., the flow of data d from file i to file h.
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Fig. 1. Intra-app data flow example.

Using monitors at multiple layers, two
in this example, allows us to increase pre-
cision of single-layer analyses, to detect and
control system-wide (rather than program-
wide) data flows, and to exploit semantic in-
formation at various layers.

It has been shown [7,25,26] that dynamic
analyses can be performed at the level of ev-
ery piece of binary code that is executed.
This obviates the need for multiple layers.
However, in addition to overhead issues of

purely dynamic solutions, at low levels it is also hard to detect and model seman-
tics of high-level events (like “take a screenshot”) or objects (like “a mail”). While
implementations of such system-wide information-flow trackers exist [7,25,26], we
are not aware of any formal description of the guarantees that can be provided.
Using monitors at levels different from the binary code, we decrease the number
of events that need to be intercepted and exploit semantic information of the
single levels.

Explicit vs. Implicit flows: From an information flow perspective it is im-
portant to consider both explicit and implicit flows (as in non-interference [9]).
This work, however, focuses on explicit data flows only, with the well-known
limitations that this choice entails. The reason is twofold: first, we want to take
advantage of the semantic information gained by monitoring high-level events
(e.g. “play” or “forward”) and those events typically involve only explicit data
flows (such as copying data from a file to another). Second, many implicit flows
are harmless in practice (i.e. the famous password-checking example [20] among
others), such that by enforcing strict non-interference one is likely to severely
hamper the intended functionality of a system. Enhancing our cross-layer anal-
ysis to include some implicit information flows while preserving functionality re-
quires considering non-trivial declassification policies and is left for future work.

The problem that we tackle is the following. We assume that there are dy-
namic analyses at two or more levels, all of them different from that of CPU-level
instructions, including operating system, application level, database, program-
ming language and window manager. How can we connect the analysis results
of the different layers, and what guarantees can we give?

Our contributions are (a) a formal definition of soundness of data flow
tracking for single levels different from that of the CPU; (b) a formal definition
of soundness of data flow tracking when multiple layers are combined; (c) a
generic schema to compose data flow analyses at various levels and that thus
enables us to detect system-wide data flows; and (d) a proof that this generic
schema returns sound data flow results, provided that the single layers are correct
and given some partial information about shared resources at both layers.

We do not discuss implementations of this model here, but we point to exam-
ples in § 7, where some strategies for cross-layer composition described here have
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been applied without a proper formal justification and with implicit assumptions
that we now make explicit. See [15] for more details.

The rest of the paper is organized as follows: § 2 introduces fundamental
concepts and sets the notation for the rest of the paper. § 3 discusses the secu-
rity guarantees for single layers. § 4 defines layer composition and extends the
soundness notion to composed systems. § 5 presents the main result of the paper,
i.e. an algorithm for soundly composing monitor results at different abstraction
layers. In § 6 we review related work and we conclude in § 7.

2 Background and Roadmap

We consider flows in systems described as tuples (E ,D, C, Σ, σi,R) for system
events E , data items D (e.g., “a picture”), and containers C (these are repre-
sentations: a pixmap, a file, a memory region, a set of network packets, and so
on). For the time being, these systems can be understood as single layers. In the
following we assume that the alphabet of system events E , the set of data items
D and the set of containers C can be of arbitrary but finite size.

States Σ are defined by a storage function of type C → P(D) that describes
which set of data is potentially stored in which container. Data items will be
often referred to as labels in the following.

The transition function R : Σ × E → Σ is the core of the data-flow tracking
model, encoding how the execution of events affects the dissemination of data
in the system (and therefore also referred to as a monitor in the following). At
runtime, events are intercepted and the data state is updated according to R.
R applied to a sequence of events is the recursive application to each event in
the sequence (i.e. R(σ, 〈e1, 〈...〉〉) = R(R(σ, e1), 〈...〉).

Abstraction layers: We will show desirable properties by relating the model
for one layer A to a very low level model ⊥ with intuitive completeness and
correctness properties. Layer A can be an operating system, a data base, a
windowing system, an application, etc. ⊥ is the level of the CPU and volatile as
well as persistent memory cells, and represents the real execution of the system.
Let V be the set of all total functions of type C⊥ → N that map containers
to actual values stored in memory. We provide level ⊥ with a function v ∈ V,
that indicates the current state of memory, and a trace execution semantics
eval : V × seq(E⊥) → V that describes the state after executing a trace, such
that the system at ⊥ is given by (E⊥,D⊥, C⊥, Σ⊥, σi,R⊥,V, eval).

A in contrast is some distinct higher layer. Set L denotes the set of all these
high levels, while L⊥ = L ∪ {⊥}. Data D is layer-independent. For † ∈ L, C†
denotes the set of representations of some data item at layer †. To relate two
layers, we assume pairs of functions γ and α that relate events and containers
as follows. The idea is that an A-level container corresponds to a set of ⊥-
level containers (volatile and persistent memory cells) and an A-level action to
a sequence of CPU -level instructions (machine instructions such as MOV, BNE,

ADD, LEQ). For a layer † ∈ L⊥, each state σ† ∈ Σ† is defined by the respective
storage function. Additionally, for ⊥, v ∈ V encodes the memory state.
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Relating events and states: In the following we will introduce abstraction and
concretization functions that relate events and states at a higher abstraction level
with ⊥. This notation will allows us to define formal soundness properties. Note
that our goal is to reason about what happened at the⊥ level, without monitoring
it, by assuming partial information on the abstraction/concretization functions.
This will be made operationally in practice by oracles, as we will discuss in § 5.
For the moment, concretization and abstraction functions are ideal : they relate
to “what has really happened” in a monitored system, and where for instance
scheduling of concurrent processes has already been fixed.

Traces are sequences of events that reflect the execution of some functionality
at a specified layer. Traces are sequences of events that reflect the execution of
some functionality at a specified layer. A trace t ∈ seq(E†) at layer † ∈ L
is thus the sequence of events generated by the system during a specific run
(e.g “print x” or “mov AX,BX”). At the ⊥-level, traces are mere sequences of
CPU instructions. We assume events to be unique to exactly one level and to
contain an implicit timestamp and duration, yielding a natural order on a trace’s
events. Each event at a higher layer corresponds to a sequence of CPU-level
instructions. For simplicity’s sake, we assume that we can bijectively map an
abstract sequence of events to a concrete sequence of ⊥-events. This embodies
the fundamental assumption of a single-core system: all traces can be uniquely
sequentialized. While a single-core can simulate parallelism alternating execution
of different tasks, we assume that events at high levels happen sequentially (e.g.
first save file1 and then load file2). This allows us to use a simpler notation in
these introductory sections. In § 5 we relax this assumption, because serializable
traces can capture also concurrent executions.

Moreover, we deliberately discard events at ⊥ that do not correspond to an
event at a higher layer, e.g. those generated by an application for which there
is no explicit monitor. The implication is that our approach can only be sound
w.r.t. those CPU-level instructions for which a monitor at some level exists.

In the following, we define abstraction and concretization functions for events
and states. For this purpose, we redefine α and γ as follows. Let † ∈ L:

Events : γ† : seq(E†)→ seq(E⊥), α† : seq(E⊥)→ seq(E†)
States : γ† : Σ† → Σ⊥, α† : Σ⊥ → Σ†
Containers : γ† : C† → P(C⊥), α† : C⊥ → P(C†).

such that
γ†(σ†) =

{
(c⊥, σ†(c†)) : c† ∈ dom(σ†) ∧ c⊥ ∈ γ†(c†)

}
α†(σ⊥) = {(c†, σ⊥(c⊥)) : c⊥ ∈ dom(σ⊥) ∧ c† ∈ α†(c⊥)}.

Additionally, ∀C ⊆ C† : γ†(C) =
⋃
c∈C γ†(c) and ∀C ⊆ C⊥ : α†(C) =

⋃
c∈C α†(c).

For each layer † ∈ L we assume the existence of a special container cU† that
represents the abstraction of all those ⊥-level containers not observable at the
†-level (∀c⊥ ∈ C⊥ : (∀c† ∈ C† \ {cU† } : α†(c⊥) 6= c†) =⇒ (α†(c⊥) = cU† )). By

definition σ(cU† ) = D for any state σ.
State and trace union: Given two states σ1 and σ2 at the same abstraction

level, let σ1 onσ σ2 = {(c,D) | D = σ1(c) ∪ σ2(c)}. Recall that events at any
level are assumed to be unique and to contain an implicit timestamp, yielding a
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natural order on a trace’s events. We denote by t1 ont t2 the time-ordered trace
consisting of unique elements of t1 and t2.

Roadmap. In the following we give a high-level account on the strategy used
in the rest of the paper to justify the proposed cross-layer algorithm.

(1) We relate the notion of taint propagation at the lowest abstraction layer
(⊥) with that of weak secrecy. (2) We define a notion of soundness for a single
layer A with respect to ⊥. The intuition behind this definition is that the taint
propagation in A (specified by RA) must be coherent with respect to taint prop-
agation happening at ⊥. This definition offers a semantic characterization for
single monitors at any level. (3) We then define composed states σA⊗B as pairs
of states (σA, σB) at different layers and give a notion of sound composed mon-
itor. (4) We construct and prove the soundness of a composed monitor R̂A⊗B
that relies on the soundness of monitors RA and RB at the single layers and on
partial information on γ. (5) We show an example where additional information
about A and B can lead to a more precise cross-layer tracking and (6) we use
it to motivate the usefulness of further oracles that encode partial information
about γ and α. (7) We construct a composed monitor ṘA⊗B that relies on the
soundness of single layer monitors RA and RB and on the information from the
oracles and show its soundness.

Thanks to the above construction, we can connect existing data-flow tracking
analyses for different layers of abstraction (e.g. [24,13,16]) to capture data flows
across layers, and show overall soundness, or weak secrecy, respectively.

3 Security guarantees at single layers

In the following, we define the notion of information flow which will be the
fundamental security property guaranteed by our framework. We use this notion
to show soundness of the propagating data flow monitors at various layers.

3.1 Step 1: Security property at the ⊥ layer

Data-flow tracking estimates which containers are “dependent” from the data
stored in some other containers after a system run. The strongest guarantees in
this sense are given by Non-Interference [9], which relates inputs and outputs in
terms of pairs of executions (or state of variables before and after executing a
program [23]).

Definition 1 (Non-interference). Let CiH , CoH ⊆ C⊥ be sets of containers at
⊥ and CiL, CoL their complements. A trace t⊥ ∈ seq(E⊥) respects non-interference
w.r.t. this partition of the containers if

∀v, v′ ∈ V :
∧

c∈Ci
L

v(c) = v′(c) =⇒
∧

c∈Co
L

eval(v, t⊥)(c) = eval(v′, t⊥)(c)
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low) containers, are independent from its complement (the high containers)
after execution of a trace at ⊥. This represents the notion of absence of flows
from high to low containers. As discussed in the introduction, in this work we
focus on explicit information flows. A relaxed notion of non-interference which
captures such flows is weak-secrecy [22].

To formally define this property in our context, consider a trace t⊥ ∈ seq(E⊥).
We say that its branch-free version bf(t⊥) consists of the same assembly-level
instructions in the same order, except for branch statements such as BNE (branch-
non-equal), which are removed from the observed trace. Of course there are no
branches in one actually executed trace. There are, however, conditional jumps
like branch-not-equal that may lead to implicit, or control-flow-based informa-
tion flows. In order to cater to explicit flows only, these instructions are ig-
nored, i.e. removed. The resulting trace then corresponds to one path through
the CFG of the original program where all conditional nodes are replaced by
empty statements. By doing so, our notion of security becomes the verification
of non-interference on a sequence of explicit data flows only.

Definition 2 (Weak secrecy). Let CiH , CoH ⊆ C⊥ be sets of containers at ⊥. A
trace t⊥ ∈ seq(E⊥) respects weak-secrecy w.r.t. CiH , CoH if its branch-free version
bf(t) respects non-interference w.r.t. CiH ,CoH .

Note that non-interference in general does not imply weak secrecy. Moreover,
our construction is not intended to guarantee non-interference: we need it to
define weak secrecy only. A monitor R⊥ propagates labels (i.e. data items) in-
between containers as the consequence of the execution of a trace.

Definition 3. A monitor R⊥ is sound w.r.t. weak-secrecy if given an initial
state σi, for all data items d ∈ D, all traces t⊥ ∈ seq(E⊥) respect weak-secrecy for
the initial partition of the containers as induced by d: CiH = {c ∈ C⊥ | d ∈ σi(c)}
and, at the end of trace t⊥, the resulting partition of the containers as computed
by the monitor: CoH = {c ∈ C⊥ | d ∈ R⊥(σi, t⊥)(c)}.

In other words, if R⊥ claims a container c does not hold data d after the
execution of a trace, then the values of c are independent from the values of
d in the weak-secrecy sense. In the following, R#

⊥ indicates the (virtual) most
precise sound monitor at level ⊥, i.e. for all d ∈ D and t⊥ ∈ seq(E⊥), the output

partition CoH induced by any sound monitor includes that induced by R#
⊥.

Sources and destinations From the point of view of R#
⊥, events move data

from a container to another: an instruction typically reads from a certain memory
region and writes to another. We say that for any given event e and a transition
function R#

⊥, the functions SR#
⊥

: E⊥ → 2C⊥ and DR#
⊥

: E⊥ → 2C⊥ denote,

respectively, the set of source and the set of destination containers of the events.
We assume the two functions to be given as an oracle of the event, such that for
all ⊥-containers c, states σ and data items d,

d ∈ R#
⊥(σ, e)(c) =⇒ d ∈ σ(c) ∨ (∃c′ ∈ SR#

⊥
(e) : d ∈ σ(c′) ∧ c ∈ DR#

⊥
(e)).
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In other words, if after executing e a certain container c holds d, then this was
already present before the execution of e, or there was a flow from a container
in the sources of e (making c a destination).

Note that there could be coarse partitions that fulfill this property. In the fol-
lowing we assume that the oracle provides the most precise ones in the sense that
e respects weak secrecy w.r.t. SR#

⊥
(e), C⊥\DR#

⊥
(e), and w.r.t C⊥\SR#

⊥
(e),DR#

⊥
(e).

In other words, there is non-interference between the partitions induced by
sources and destinations and their dual complement. Intuitively, this ensures
that all relevant sources and all relevant destinations are captured and no more.

We overload the notation of S and D for traces of events t ∈ seq(E⊥) as
SR⊥(t) =

⋃
e∈t SR#

⊥
(e) and DR#

⊥
(t) =

⋃
e∈tDR#

⊥
(e). A similar overloading ap-

plies to sets of events. We also extend the notation for events and monitors at
higher layers of abstraction, SR† and DR† for † ∈ L, such that the same relation
between R†, containers and data holds at level †.

3.2 Step 2: Soundness at a single layer

An A-level state of the system, σA, is sound if, for every container cA, the set
of data stored in cA is a superset of the data “actually” stored in it, i.e. of the
data stored in the concretization of cA. For this reason, soundness is defined
w.r.t. a ⊥-state. In the following, we assume a fixed pair of γA/αA w.r.t. which
soundness is defined.

Definition 4. A state σA is sound w.r.t. σ⊥, written σ⊥ ` σA, iff

∀cA ∈ CA : σA(cA) ⊇
⋃

c⊥∈γA(cA)

σ⊥(c⊥).

This implies that ∀σA ∈ ΣA : γA(σA) ` σA and that ∀σ⊥ ∈ Σ⊥ : σ⊥ ` αA(σ⊥).
The data flow analysis for A is sound w.r.t. ⊥ (i.e., it respects weak-secrecy) if

RA preserves the soundness of the state (w.r.t. the canonicalR#
⊥ of Definition 3).

Definition 5 (Soundness of single layer monitor). A monitor RA at a

level A is sound w.r.t. ⊥, written R#
⊥ ` RA, if given an initial state σi⊥ ` σiA,

modeling any trace of events tA ∈ seq(EA) results in a state σA which is sound

with respect to the state reached by the canonical R#
⊥ at ⊥ for γA(tA). Formally,

∀tA ∈ seq(EA), σiA ∈ ΣA, σi⊥ ∈ Σ⊥ : R#
⊥ ` RA ⇐⇒ σi⊥ ` σiA ∧R#

⊥(σi⊥, γA(tA)) ` RA(σiA, tA).

As direct corollary, SR#
⊥

(γA(e)) ⊆ γA(SRA
(e)) and DR#

⊥
(γA(e)) ⊆ γA(DRA

(e)).

4 Guarantees for Multiple Layers

A monitoring infrastructure is unsound if there exists a container at a higher
abstraction layer that ignores the presence of data in its concretization. Unless
one performs tracking at the level of single machine instructions, this situation
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is likely, and we cannot expect to achieve system-wide soundness in practice.
What we can do, however, is to show cross-layer soundness: under the strong
assumption of having sound models of two (or n) layers, we can show that if data
moves exclusively within or in-between these layers, and we have information
about their shared resources, our cross-layer model captures all cross-layer flows.

4.1 Step 3: Layer composition

We proceed to define a notion of layer composition and discuss possible ways
in which events observable at one layer may interfere with another layer. We
then show a first overly-conservative way to model composition and prove its
soundness. In the following, we focus on a system composed by two layers only;
n-layered systems can be modeled by applying the same concepts recursively
to each further layer. Without loss of generality we assume that CA ∩ CB = ∅
for each pair of distinct A,B ∈ L⊥. Given two sound models for two layers of
abstractions A and B in a system, our goal is to define a sound model for the
system composed by A and B, denoted A⊗B.

We begin by defining the composed system using the abstraction and con-
cretization functions to compose the observations of monitors at the single layers.
Let CA⊗B = CA ∪ CB be the set of of containers in the composed system and
TA⊗B ⊆ seq(EA)× seq(EB) the set of event traces, given by pairs of traces in A
and B. We denote the composed state σA⊗B ∈ ΣA⊗B ⊆ ΣA × ΣB as a pair of
states in layers A and B respectively. For this notion of states, we derive an ideal
(w.r.t ⊥) composed monitor given by concretization and abstraction functions.

When talking about the state of the system or about traces in a multilayered
system A⊗B, we use the notation |† to denote the projection to layer †.

Mathematically speaking, it is simple to compose two monitors as follows.

Definition 6 (Ideal composed monitor). Let tA and tB be traces at layers A
and B, respectively, and σiA and σiB initial sound states. Let σ⊥A⊗B = γA(σiA) onσ
γB(σiB), t⊥A⊗B = γA(tA) ont γB(tB) and σ

′⊥
A⊗B = R#

⊥(σ⊥A⊗B , t
⊥
A⊗B). The function

R#
A⊗B : ΣA⊗B × TA⊗B → ΣA⊗B is defined as:

R#
A⊗B((σiA, σ

i
B), (tA, tB)) = (αA(σ

′⊥
A⊗B), αB(σ

′⊥
A⊗B)).

Practically speaking, we usually do not have access to the particular sequence
of events occurring at ⊥, i.e., to the ideal R#

⊥ monitor and to precise concretiza-
tion/abstraction functions for the containers. However, as we did for the single
layers, we can characterize sound approximations of composed monitors.

Definition 7 (Soundness of composing monitor). A monitor RA⊗B is

sound w.r.t ⊥, written R#
A⊗B ` RA⊗B if for all σA, σB , tA, tB with σ′ =

RA⊗B((σA, σB), (tA, tB)) the projections to A-level containers σ′|A and B-level

containers σ′|B are sound w.r.t. R#
⊥(γA(σA) onσ γB(σB), γA(tA) ont γB(tB)).
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4.2 Step 4: Sound monitor based on state relation

Let two containers at different layers cA and cB be related, written cA ∼ cB , if
their ⊥-concretizations overlap (γA(cA) ∩ γB(cB) 6= ∅). Without any additional
information about related containers in A and B, the only sound approximation
for σ′ = RA⊗B(σ, (tA, tB)) is ∀c ∈ CA⊗B : σ′(c) = D, i.e. every container possibly
contains any data. This is because some data d may be transferred to a container
cB by some event eB ∈ EB , and if cA ∼ cB , d would also be stored in γA(cA)
because of the non-empty intersection of the concretizations. Unless d is stored
in cA, this is a violation of the soundness of A⊗B (cf. Definition 4).

However, assuming information about related containers to be known (see
§ 5.3), and leveraging source and sink operators, it is easy to build a sound
monitor R̂A⊗B that conservatively approximates all the data-flows induced by
a trace of events by propagating the data from every source of the trace to any
destination of the trace and to any container related to the destinations.

4.3 Formalization and Soundness proof of R̂A⊗B

Leveraging the source and destination sets, a sound monitor for the composed
system R̂A⊗B : ΣA⊗B × TA⊗B → ΣA⊗B can be defined as follows:

∀c ∈ CA⊗B :

R̂A⊗B(σ, (tA, tB))(c) =

{
σ(c) ∪

⋃
c′∈SA⊗B

σ(c′) if c ∈ DA⊗B ∨ ∃ c̃ ∈ DA⊗B : c ∼ c̃
σ(c) otherwise

with SA⊗B = SRA
(tA) ∪ SRB

(tB) and DA⊗B = DRA
(tA) ∪ DRB

(tB).

Theorem 1 (Soundness). If σ⊥ ` σA, σ⊥ ` σB, R#
⊥ ` RA and R#

⊥ ` RB,

then R̂A⊗B((σA, σB), (tA, tB)) is sound, i.e. R#
A⊗B ` R̂A⊗B.

The intuition behind the proof is that there cannot exist a container c at
A (resp. B) such that: (1) its concretizations at ⊥ contain new labels d with
respect to the initial state, (2) c is not in DA⊗B and (3) there is no c ∼ c̃ with
c̃ ∈ DA⊗B , i.e. R̂A⊗B can only reach sound states.

Proof. Let σ′A = R̂A⊗B((σA, σB), (tA, tB))|A, σi⊥ the initial state at bottom,
such that σi⊥ ` σA, and tA⊗B = γA(ta) on γB(tb). Assume that there exists data
d and containter cA such that d 6∈ σ′A(cA) but ∃ c⊥ ∈ γA(σ′A(cA)) : d ∈ c⊥. By
definition of SR#

⊥
then either (1) d ∈ γA(σA)(c⊥) or (2) ∃ c′⊥ ∈ SR#

⊥
(tA⊗B) : d ∈

c′⊥ and c⊥ ∈ DR#
⊥

(tA⊗B). Since σi⊥ ` σA and the composed monitor only adds

data to containers, then (2) must hold. By soundess of RA and RB , it follows
that c′⊥ ∈ SR#

⊥
(tA⊗B) ⊆ γA(SRA

(ta)) ∪ γB(SRB
(tb)) and c⊥ ∈ DR#

⊥
(tA⊗B) ⊆

γA(DRA
(ta))∪γB(DRB

(tb)), and thus ∃ cA⊗B ∈ SA⊗B : d ∈ cA⊗B and ∃ c′A⊗B ∈
DA⊗B : c⊥ ∈ γ†(c′A⊗B). This implies that either cA = c′A⊗B or cA ∼ c′A⊗B .

But then, since R̂A⊗B propagates all data in SA⊗B to DA⊗B and to all related
containers, then d ∈ cA, which is a contradiction. A similar argument holds for
an unsound approximation of B. ut
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� �0

A

B

?

S
D

S
D

S D

Fig. 2. Composition of potential flows between layers for a trace (tA, tB). Circles repre-
sent the whole memory. Partitions are induced by sources and destinations of the trace
at the respective layer. Note the resulting non-interference property at ⊥ (arrow).

As depicted in Fig. 2, there cannot be flows to memory regions outside the
destination set.
R̂A⊗B is a sound but very conservative monitor (any data read by any event

in the trace is appended to the destination of any event). In the next section we
see how to leverage additional information about the relation between A and B
to obtain a more precise monitor for the combined system.

5 Cross-layer Models

Although the complete definition of γ and α may not be available, it is often the
case that, in some contexts, partial information about it is known by domain
experts (e.g. the set of related containers). The goal of this section is to model
such partial information in form of oracles and to formalize a refined data flow
tracking model that, leveraging these oracles, provides more precise results. The
key idea is that if more information about the relation between A and B is
available, a more precise sound model can be constructed.

After extending our notation to capture the duration of events, we illustrate
an example of using additional information to improve tracking precision; after-
ward, we abstractly define properties for the oracles (operationally, the oracles
are implementation-specific and have to be instantiated by experts); and finally,
we show an algorithm that, given two instances of the model and of the oracles,
soundly approximates their composition.

Events in A⊗B: In the single layers, events are assumed to be instantaneous.
However, in a multi-layer context the duration of an event at one layer may span
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over several timesteps at the other layer. For instance, an event like LOAD() may
be considered atomic at an application layer, although it corresponds to many
system call events at the operating system layer. For this reason, it is useful to
distinguish between the moment in time when an event e begins and the moment
when it ends when reasoning about multiple layers.

Without loss of generality, the following assumes that every monitor for a
layer † is defined over events in E−† ⊆ E†×{S,E}, where the suffixes S and E for
an event e indicate, respectively, the beginning and the end of the execution of e.
R−† denotes a monitor for such traces. While for simplicity’s sake, we assume high
level events to happen sequentially, serialized traces could also capture interleav-
ing of events, e.g. 〈eS , e′S , eE , e′E〉. Note that, at level ⊥, events are still serialized
(single-core assumption, § 2). To simplify the notation, whenever a trace contains
a certain event eS directly followed by eE , we write both events as e, e.g. instead
of 〈LOADs(), READs(), READe(), LOADe()〉 we write 〈LOADs(), READ(), LOADe()〉.

5.1 Serialized events

Let tS(e) : E → N and tE(e) : E → N be two functions that return, respectively,
the time at which a certain event e starts and ends. In the context of multiple
layers, we assume that for any event e† ∈ E† it holds that e† terminates only
after starting (tS(e†) < tE(e†)) and that for every event e observed, the single
layer monitors report an event eS at time tS(e) to notify the beginning of e and
an event eE at time tE(e) to notify its end. In concrete implementations it is
usually possible to observe or approximate these two aspects of any event.

For † ∈ L, let E−† ⊆ E†×{S,E} be the set of such indexed events that denote

when events in E† start and end. Let ser : seq(E†)→ seq(E−† ) the operator that

converts a trace of events t† ∈ seq(E†) into its indexed equivalent t−† ∈ seq(E−† )

by replacing every event e† ∈ t† with the sequence 〈eS† , eE† 〉.

Lemma 1. For each monitor R† († ∈ L), there always exists a monitor R−† :

Σ† × E−† → Σ† such that ∀σ† ∈ Σ†,∀t† ∈ seq(E†) : R†(σ, t†) = R−† (σ, ser(t†)).

Proof. Given R†, the monitor R−† , defined as R−† (σ, (e†, i)) = σ if i = S and

R−† (σ, (e†, i)) = R†(σ, e†) if i = E, respects the property. ut

It is hence safe to assume, without loss of generality, that every monitor for
a layer † is defined over events in E−† . We denote such a monitor R−† .

Definition 8 (Serializable trace). A trace t = (tA, tB) is serializable if for
every pair of events eA ∈ tA, eB ∈ tB, tS(eA) 6= tS(eB) and tE(eA) 6= tE(eB).

Let EA⊗B = EA ∪ EB and E−A⊗B = EA⊗B × {S,E}. If a trace t = (tA, tB) ∈
seq(EA) × seq(EB) is serializable, then it is possible to construct a trace t− ∈
seq(E−A⊗B) that is equivalent to t, in the sense that it is possible to reconstruct
each one given the other. t− is given by the events in ser(tA) ont ser(tB) sorted
by timestamp. The monitor for the composed system ṘA⊗B described in step 7
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of this work assumes the trace of input events t = (tA, tB) to be serializable and
provided as a sequence of events in E−A⊗B (ṘA⊗B : ΣA⊗B × E−A⊗B → ΣA⊗B).

Note that we can relax the assumption on the serializable traces because
any trace of events tA⊗B = (tA, tB) in A⊗B can be seen as longest possible
concatenation of subtraces ti = (tiA, tiB), such that any event starting in ti also
terminates within ti and viceversa and such that (t1A :: t2A :: .. :: tnA) = tA and
(t1B :: t2B :: .. :: tnB) = tB . Then, for each ti,

RA⊗B(σ, ti) =

{
Ṙ(σ, ti) if ti is serializable

R̂(σ, ti) otherwise

RA⊗B is a sound monitor that is no less precise than R̂(σ, t) and does not
require t to be serializable. In the next section, we illustrate an example of how
precision of the tracking can be further increased by aggregating information
from different layers.

5.2 Step 5: Increasing precision — Example

Consider an application loading file f and two monitors, one for the application
(A) and one for the operating system (B), both sound w.r.t. ⊥. This generates
the trace t = 〈LOADs(f), OPEN(f, fd), READ(fd), CLOSE(fd), LOADe(f)〉 where
the first and last events happen at layer A and all the others at layer B (Fig. 3).

Because files are not properly modeled in A, the source of the transfer in
A is given by cUA (see definition of cU in § 2). Because the file is unknown to
the application, it could possibly carry any data. This explains why ∀σ† ∈ Σ† :
σ†(cU† ) = D. The execution of t|A induces then a flow of all data D from cUA to
cA, where cA is an internal container of the application, e.g. a document.

At the OS level, the file has a proper abstraction. Let filef be such a container
and d the data item stored in it. The execution of t|B is then modeled in B as
a flow from filef to container mapp representing the memory of the application.

If A and B were considered in isolation, the storage of cA and mapp after the
execution of t would be, respectively, D and d. Using the model presented in Step
4, instead, both containers would contain D, a sound but coarse approximation.

 

 

  
U

Ac Ac appm
    

)( UAc )( appm
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Fig. 3. Example of application loading a file, according to single layer monitors. Dotted
sets represent actual SR#

⊥
and DR#

⊥
sets.
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A better approximation can be provided by observing that γB(file f ) ⊆
γA(cUA) and γA(cA) ⊆ γB(mapp), the latter because any internal object of the
application is stored within its process memory.

Assuming the application process has not accessed any other sensitive data,
the content of all the ⊥-containers in γB(mapp) after the execution of t, including
those in γA(cA), is at most d, as reported by R−B and because of its soundness.
Therefore, a more precise monitor for the combined system would model t as a
flow from γB(file f ) to γA(cA), thus estimating that after the execution both cA
and mapp contain d. Note that this result is more precise than R−A’s estimation.

What this scenario illustrates is that one layer has a more precise knowledge
than the other about the sources of a certain event (e.g. the content of the
file), while the other layer has a finer-grained understanding of the destination
of the transfer (e.g. the app-specific container cA). Let the term cross actions
indicate those high-level operations, like “‘Application x loading file f’”
in the example (cf. Fig. 4), that correspond to traces of events at both layers in
which this intuition holds.

In the following, we characterize events in this kind of traces, by referring
to IN,OUT and INTRA as behaviors of events. If a certain cross action generates
two events eA ∈ E−A and eB ∈ E−B such that γA(SR−A (eA)) ⊆ γB(SR−B (eB)) and

γB(DR−B (eB)) ⊆ γA(DR−A (eA)), we say that eA is an OUT event and that eB is an

IN event. If an event is neither IN nor OUT then it is an INTRA event. In completely
independent layers or when a layer is considered in isolation, every event is an
INTRA event. In a multi-layer context an INTRA event at layer † propagates data
within † according to R−† and, in turn, to any other layer via related containers.

Hence, in addition to the dependency between layers generated by related
containers and discussed in § 4.2, we consider also a second class of cross-layer
flows, i.e. those due to IN and OUT events.

Definition 9. A cross-layer flow of data is generated by either: (1) the result of
executing an event that transfers data to a container at one layer that is related
with a container at the other layer, or (2) a cross action generating a sequence
of events at both layers that includes at least one IN event at one layer and at
least one respective OUT event at the other layer.

The intuition behind IN and OUT events is that, in spite of what the single
layer monitors may estimate, the only data flowed to the destinations of a certain
IN event (e.g. LOAD()) is at most the same data read by the respective OUT events
(e.g. READ()). In the next subsections we capture the two kinds of cross-layer
dependencies described in Definition 9 in form of two oracles, which describe the
relation between two layers. Provided an instantiation of these oracles, and the
models for the layers, it is possible to automatically generate a sound precise
model for the whole system composed by both layers (§ 5.4).
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5.3 Step 6: Oracles definition

XA oracle: Information about related container, as needed by the model de-
scribed in Step 4, can be captured by oracle XA : CA⊗B → P(CA⊗B), which
maps each container c to the set of all the containers related to c at other layers.

Oracle Property 1

∀c ∈ CA⊗B : XA(c) = {c′ ∈ CA⊗B | ∃l ∈ L : c′ ∈ Cl ∧ c /∈ Cl ∧ c ∼ c′}.

Leveraging XA, it is also possible to model the sync operator, which will
be useful in the following. Given a state of the system, sync : ΣA⊗B → ΣA⊗B
returns a new state in which all the data stored in each container have been
propagated to all the related containers at other layers, i.e. ∀c ∈ CA⊗B , σ ∈
ΣA⊗B • sync(σ)(c) = σ(c) ∪ ⋃c′∈XA(c)

σ(c′). Because the sync operator only

adds data to containers, it is easy to prove that if σ is a sound state (cf. § 3.2),
then σ′ = sync(σ) is also a sound state.

XB oracle: In a multi-layer system, the behavior of a given event may differ
in different contexts. For instance, a READ() event signaled by the operating
system is related to a LOAD() event at the application layer, only if the process
that invoked the system call is the application’s one and if the target file of
the system call is the same file being loaded by the application. Similarly, if
the application is loading two files at the same time, then a sound and precise
modeling needs to associate each LOAD() with the respective READ() events only.

To model this distinction, we use a unique identifier, called scope id, for each
distinct instance of a cross action. All the IN and OUT events at both layers that
pertain to a certain cross action are associated to that cross action’s scope id.

This is captured by oracle XB : E−A⊗B × Σ → {IN, OUT, INTRA} × SCOPE ,
where SCOPE is the set of scope ids, like ‘Application x loading file f’.
XB maps each event to its respective behavior in the context of a cross action.

It is also important to aggregate and store the content of the data being
transferred by the OUT events in a way that is usable by the next corresponding
IN event, because multiple IN(OUT) events may correspond to the same OUT(IN)
event, e.g. one LOAD() event may correspond to multiple READ() system calls.

For each scope id sc, we model the existence of an intermediate container csc
for the cross layer flow. Storage information for the intermediate containers (Csc)
must be part of the system state in form of storage function ssc : Csc → P(D).

Let cs be a source of an OUT event and cd a destination of the respective IN

event. We model the flow from cs to cd in two steps: first as a flow from cs to
the intermediate container csc and then as a flow from csc to cd. For this reason,
in this work we consider only serialized traces, (i.e. where the sorting of indexed
events by timestamp is unique, cf. Definition 8), and where IN events take place
after the respective OUT events. This assumption is not restrictive in practice
and always held in concrete instantiations [16,15].

In summary, augmenting the set of states for the composed system ΣA⊗B ⊆
ΣA ×ΣB × (Csc → P(D)), we can encode the relation between two given layers
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READe(fd
′, pid)

LOADs(f)

OPENe(f, fd)

LOAD(f)

READe(fd, pid) CLOSEe(fd)

LOADe(f)

t

A

B
t0 t1 t2 t3 t4 t5

‘Application x loading file f’

Fig. 4. Example of cross action. The XB oracle applied to generic READe(..) events
at time t0 returns (INTRA, ∅). The READe(..) event at time t3 instead, being part of
the loading cross action, corresponds to (OUT, ‘Application x loading file f’). The
respective IN event at layer A is the LOADe(..) event at time t5.

A and B by using the oracles XA : CA⊗B → 2CA⊗B and XB : E−A⊗B ×ΣA⊗B →
{IN, OUT, INTRA} × SCOPE , which, by definition, guarantee the following:

Oracle Property 2 Let t ∈ seq(E−A⊗B) be a trace of events terminating with

the event ei, identified as IN by the oracle XB . Let EO ⊆ E−A⊗B be a set of
respective (i.e. w.r.t. the same scope) events in t identified as OUT by the oracle

XB . Then, in an ideal monitoring (R#
A⊗B) of t, the destinations of ei contains

at most the content of the sources of all the events in EO.
Formally, let te denote the subtrace of events in trace t from the beginning un-

til event e included, and let σe be a short notation for the state reached by the ideal
monitor R#−

A⊗B after executing te from the initial state, i.e. σe = R#−
A⊗B(σi, te).

The oracles, then, guarantee that(
XB (σe

I

, eI) = (IN, sc) ∧
∀e ∈ EO : XB (σe, e) = (OUT, sc)

)
=⇒ σe

I

(DR#(eI)) ⊆ ⋃e∈EO σe(SR#(e)),

where R# stands for R#−
A⊗B.

The intuition here is that if the oracle XB states that a certain event e is an IN

event in a trace, then the execution of e will transfer to e’s destination containers
at most the data stored in the sources of the respective past OUT events. This is
the key behind the refined precision offered by ṘA⊗B in comparison to R̂A⊗B .

5.4 Step 7: Algorithm for sound composition

We now come to the main result of this paper. Our goal is to show that, given an
instantiation of the oracles for which the two properties defined in § 5.3 hold, a
composition algorithm considering such oracles is sound w.r.t. an ideal monitor
at ⊥, and thus to weak-secrecy.

Let γA⊗B be the overloading of γ for CA⊗B , ΣA⊗B , E−A⊗B and traces of

events in E−A⊗B . Given the models for A and B and these two oracles, the model
A⊗B for the composed system is specified as follows: First, the set of con-
tainers in the system CA⊗B is given by CA ∪ CB ∪ Csc, where Csc is the set of
intermediate containers (which represent no real container in the system, i.e.
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ALGORITHM 1: ṘA⊗B((σA, σB , ssc), e)

1 sscRET ←−ssc; σARET ←−σA; σBRET ←−σB ;
2 (beh, sc) ←−XB ((σA, σB , ssc), e);
3 switch beh do
4 case INTRA
5 if e ∈ E−A then σARET←−R

−
A(σA, e);

6 else σBRET←−R
−
B(σB , e);

7 case IN
8 if e ∈ E−A then σARET←−(σA[t← σA(t) ∪ ssc(csc)]t∈D

R−
A

(e));

9 else σBRET←−(σB [t← σ(t) ∪ ssc(csc)]t∈D
R−

A

(e));

10 case OUT
11 if e ∈ E−A then
12 sscRET←−ssc[csc ← σA(t)]t∈S

R−
A

(e);

13 σARET←−R
−
A(σA, e);

14 else
15 sscRET←−ssc[csc ← σB(t)]t∈S

R−
A

(e);

16 σBRET←−R
−
B(σB , e);

17 return sync(σARET , σBRET , sscRET )

∀c ∈ Csc • γA⊗B(c) = ∅). Secondly, a state of the system σA⊗B ∈ ΣA⊗B cor-
responds to the state of the two layers A and B and the storage function for
intermediate containers ssc, σ = (σA, σB , ssc).

Given two sound instantiations of the model for A and B and the two oracles
defined above, a sound and precise model of the data flows within and across
these two layers is captured by ṘA⊗B defined in Algorithm 11 .

Theorem 2. Given two oracles XA and XB , for which properties 1 and 2 hold,
two monitors for two layers R−A, R−B, an initial state σA⊗B = (σA, σB) and a
serializable trace of events t ∈ seq(E−A⊗B), if σ⊥ ` σA, σ⊥ ` σB, R⊥ ` R−A and

R⊥ ` R−B, then ṘA⊗B((σA, σB), (tA, tB)) is sound, i.e. R#
A⊗B ` ṘA⊗B.

Proof. We provide an inductive argument for the soundness of our approach over
the length of the trace.

Base Case. Given a trace composed by the single event e, and assuming the
state of the system is the initial state σi, there are three cases for the cross-layer
behavior of e, and they are defined by the oracle XB (line 2). Assume e is an
event in A (the case for B is analogous).

If the behavior of e is INTRA, it means that e is not part of any cross-layer
flow and is thus modeled as a layer internal event using R−A. In this case, the
execution of e may either generate new flows of data within A, (captured by
R−A and sound because R⊥ ` R−A), or to B (via related containers). The latter

1 Let m be a function of type S → T and X ⊆ S. m′ = m[x ← expr ]x∈X indicates a
function S → T such that m′(y) = expr for any y ∈ X and m′(y) = m(y) otherwise.
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kind of flows is captured by the sync operation (line 17), which propagates the
possibly new content to the related containers in B, identified by the XA oracle.

If the behavior of the first event is OUT, the algorithm will write the content
of its sources to its target (line 13) (sound estimation thanks to single layer
soundness) and to an intermediate container (line 12). Because intermediate
containers have no concretization in ⊥, their content is irrelevant for soundness
check; we thus end up in the same state as for the INTRA event and, after syncing
the content with the containers at the other layer (line 17), confirm the soundness
using the same argument.

The case of e being an IN event is not contemplated because the first event
cannot be an IN event by assumption (traces represent real executions, and IN

events only take place after at least one respective OUT event, cf. § 5.2).

Inductive Case. Given t = tp :: e and assuming σ = ṘA⊗B(σiA⊗B , t
p) sound

w.r.t σ⊥ = R⊥(σi⊥, γA⊗B(tp)) by inductive hypothesis, we show that the state

σ′ = ṘA⊗B(σ, e) is also sound. As before, we assume e to be an event at level A
(the case for B is analogous).

As in the previous case, the set of opened scopes is used only to decide the
cross-layer behavior of e and is sound by the oracle assumption. Similarly as
before, e can be either an INTRA, an IN or an OUT event.

If e is an INTRA event, then the same argument of the base case applies, i.e.
the estimation given by R−A and the sync operator is sound.

If e is an OUT event, then the behavior remains the same as for the base case,
being an OUT event equivalent to an INTRA event and being the intermediate con-
tainers not relevant for soundness purposes due to their empty ⊥-concretization.

The core of the model is the transition relation in case e is an IN event. Let
sc be the scope of e given by XB . Every container in the destination of e is
updated with the data stored in the intermediate container csc (line 8).

The intuition of soundness of this step is the following: Let EO be the set of
all those OUT event in tp associated to the same scope sc of e. Each event in EO

transferred the content of its sources to csc (line 12). The content of such sources
is a sound overapproximation of the content of their concretization, because any
state reached during execution of trace tp is sound by inductive hypothesis. Let
teo be the subtrace of t from the beginning until eo (excluded).

Because no event can delete content from csc, σ(csc) is a conservative es-
timation of the content of all the sources of the events in EO, i.e. σ(csc) ⊇⋃
eo∈EO

⋃
c∈S
R#
⊥
(γA⊗B(eo))R

#
⊥(γA⊗B(σ), γA⊗B(teo))(c), which by oracle property

2 is a superset of the content of the concretization of the destination containers
of e. Thus, transferring the content of σ(csc) to the destinations of e (line 8)
results in a sound state.

In more details, it is clear from the algorithm (line 8) that e only appends the
content of the intermediate container to its target. If this violates the soundness
definition, there must exists a container c ∈ DR−A (e) and a data d ∈ D such

that d 6∈ σ′(c) while there exists a container c⊥ ∈ γA⊗B(c) that contains d in
σ′⊥ = R⊥(σ⊥, γA(e)). Note that:
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1. If d ∈ σ⊥(c⊥), the soundness of σ requires that d ∈ σ(c). But d ∈ σ(c) is not
possible, because IN events such as e only append data to their destination,
and d ∈ σ(c) =⇒ d ∈ σ′(c). Therefore d 6∈ σ(c⊥).

2. If d 6∈ σ(c⊥) and d ∈ σ′(c⊥), it means that the event e⊥ ∈ E⊥ that transferred
d to c⊥ must be part of γA(e).

3. If e⊥ ∈ γA(e), d ∈ R−A(σ, e)(c), becauseR−A is sound. But d 6∈ ṘA⊗B(σ, e)(c).
Being e an IN event, this can only happen if d ∈ σ(csc), where sc is the scope
of the cross-layer event e is part of (line 8). In order for ṘA⊗B to be unsound,
it must be the case that d 6∈ σ(csc).

4. Because e is an IN event, at least one corresponding OUT event must have
taken place in tp. Let EO be the set of all the OUT events in tp that are
related to e (i.e. with the same scope id sc). From oracle property 2, there
must exists an event eo ∈ EO in the trace, such that d ∈ σO⊥(γB(SR−B (eO))),

where σO is the state of the system right before the execution of eO and σO⊥
is its concretization.

5. Being σO a state of the system reachable by a subtrace of t, σO⊥ ` σO by
inductive hypothesis. Such soundness implies that if d ∈ σO⊥(γB(SR−B (eO))),

then d ∈ σO(SR−B (eO)). Being eO an OUT event with respect to scope sc,

d ∈ ṘA⊗B(σO, eO)(ssc) (line 12). In particular, because the content of inter-
mediate containers is never erased (multiple repetitions of the same cross-
layer events are assigned different scope ids), d ∈ ṘA⊗B(σO, eO)(ssc) =⇒
d ∈ σ(ssc), which is impossible because d 6∈ σ(csc) (see point 3)

6. =⇒ absurd, i.e. it is not possible that the state σ′ = ṘA⊗B(σ, e) is not
sound.

ut

The intuition is that, for INTRA events, ṘA⊗B behaves similarly to R̂A⊗B ,
and therefore it is sound, and for OUT events related to a scope sc, the content of
the sources is also stored in a container csc, from where it can be “read” by the
corresponding IN events and transferred to their destinations. The soundness
then comes from oracle property 2.

6 Related Work

In terms of system-wide data flow tracking, we distinguish three classes of so-
lutions in the literature. The first class includes solutions that focus on a single
layer, like the operating system [10,12,8], the hypervisor [26] or the hardware
level [4]. With respect to our model, hardware level solutions could be seen as
the the ⊥ layer. Despite recent improvements in efficiency both at the software
[1] and hardware level [6], solutions in this class fail to capture the high-level
semantics of events and objects (e.g. “forward a mail”).

The second class of solutions includes those approaches that consider multiple
instantiations of the same solution for one specific level of abstraction, usually
the application layer. This class of work includes solutions like [11] and [19],
where the inter-application flow tracking relies on the simultaneous execution of
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the sender and the receiver events, both at the application layer. None of them
can model a flow of data toward resources at different layers, e.g toward a file;
given a monitor for the second layer, this is instead possible with our model.

The third class of related work includes approaches that consider multiple
layers of abstractions at the same time. [17] is a work from the area of prove-
nance aware storage systems, where representations of data are considered at
three system layers at the same time (network, file system, workflow engine).
Depending on the type of the content being handled, this work relies on track-
ing solutions that interact with each other and exchange taint results across
different layers. Similarly, the Garm tool [7], aims at tracking data provenance
information across multiple applications and machines. Garm instruments appli-
cation binaries to track and store the data flow within and across applications,
and to monitor interactions with the OS. Although both [17] and [7] address
multiple layers of abstraction at the same time, none describes a general model
applicable to a different number or type of layers, but each rather focuses on
hard-coded solutions for the specific layers of abstraction considered.

[18] addresses multiple layers of abstraction generically by integrating a basic
data flow tracking schema with a usage control framework. Here, the specification
of the cross-layer dependencies is performed ad-hoc and all the monitors are
executed in parallel in an independent fashion. Step 6 of [18] defines the meaning
of cross-layer flows at the semantics model, but does not provide any notion of
soundness, nor any operationalized way to monitor such flows at runtime.

A work more related to ours is Shrift [16], a solution for system-wide hybrid
information flow tracking. Shrift replaces the runtime monitoring of an applica-
tion with a statically computed mapping between its inputs and outputs, which
is used at runtime by an operating system layer monitor to model data flows
through the application. While using the model presented here, [16] does not
describe cross layer flows in general.

7 Conclusions

In this paper we presented a formal definition of soundness, in terms of a relaxed
notion of non-interference (weak-secrecy), for system-wide data flow tracking
at and across different layers of abstraction. This semantic characterization of
soundness is the first of its kind and represents the paper’s first contribution.

We also proposed a generic schema to compose data flow analyses at various
levels. Our schema relies on the existence of partial oracles that spell out the
relation between the different levels in an actual system. The operationalization
of the composition as an algorithm for runtime monitoring and the proof of its
soundness represent the second major contribution of this research.

It is crucial to make the oracle assumptions explicit, even though in practice it
is challenging to prove that single layer monitors and oracles are accurate, due for
instance to non-deterministic low level interleavings and implementation details
such as temporary variables and files. Such assumptions are usually reasonable,
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given that domain experts can accurately model the data-flow propagation of
single high-level events, and whenever relations between layers are well known.

We have instantiated the framework described in this work to connect in-
stantiations for different layers of abstraction, including a mail client [14], X86
binaries [2], Java Bytecode [16], and different operating systems [24,10], proving
its feasibility. We argue that the genericity of the approach makes it possible to
capture other solutions for data flow tracking from the literature, e.g. [27,5,3], as
single-layer monitor instances, and to connect them to trackers at other layers
in a sound manner. We do not discuss implementation details and experiments
here, but refer to [15] for more information.

In sum, our proposed cross-layer algorithm ṘA⊗B conservatively estimates
and synchronizes the data propagation state between layers or inside one layer
given that monitors are sound in isolation, that oracles are accurate, and that
traces are serializable. Our implementation experiments show that these con-
ditions are met often in practice, allowing for a sound and precise analysis. If,
however, some of these conditions are not met, then one is forced to use a more
conservative analysis (like R̂A⊗B) which propagates data from all sources to all
destinations of a trace. Ultimately, if sources and destinations are unknown, the
only possible sound analysis is to propagate all data to all containers
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