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Abstract. We present an effective and fast method for static hand ges-
ture recognition. This method is based on classifying the different ges-
tures according to geometric-based invariants which are obtained from
image data after segmentation; thus, unlike many other recognition meth-
ods, this method is not dependent on skin color. Gestures are extracted
from each frame of the video, with a static background. The segmen-
tation is done by dynamic extraction of background pixels according to
the histogram of each image. Gestures are classified using a weighted
K-Nearest Neighbors Algorithm which is combined with a nave Bayes
approach to estimate the probability of each gesture type.
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1 Introduction

When humans interact with one another – and with artificial agents – they make
extensive use of a range of non-verbal behavior in addition to communicating
via speech. Processing and understanding the non-verbal parts of human com-
munication are crucial to supporting smooth interaction between a human and
a robot.

We concentrate on the task of hand-gesture recognition: recognizing and clas-
sifying the hand shapes and motions of a human user in the context of a coop-
erative human-robot assembly task. Hand gestures play an important role in
this type of interaction, both as an accompaniment to speech and as a means
of input in their own right. For example, if a user wants to tell a robot to pick
up a certain object among many other objects, it can be difficult to indicate
the desired object using only speech. However, if the user combines saying “Pick
up that object.” with a pointing gesture at the target object, this can be easier
to process. Hand gestures can also themselves provide strong indications of the
users intentions in the absence of speech: for example, users might move their
hand near an object in preparation for picking it up, or may hold out their hand
to indicate that they need the robot to hand over a particular object.
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In this paper, we introduce and evaluate a method to recognize the following
three types of gestures in a human-robot dialog system: pointing, grasping and
holding out (Figure 1).

Fig. 1. Pointing, grasping, and holding-out gestures

The paper is organized as follows: we begin by discussing related work in
the area of gesture recognition, particularly related approaches to the sub-tasks
of image segmentation and classification. In the main part of the paper, we
present a fast, robust and easy-to-implement gesture recognition algorithm which
differentiates between three gesture classes mentioned above, and which can be
extended to other similar applications. After the algorithm has been described
in detail, we describe an experiment in which gestures from the JAST project
were recognized and classified with an overall accuracy of 93%. At the end of
the paper, we draw some conclusions and summarize results of this work.

2 Related Work

Many methods have been developed recently to perform successful gesture recog-
nition. Most of these systems consist of two main steps: segmentation and ex-
traction of invariants, and classification of gestures. In this section we discuss
how similar applications perform these two steps.

2.1 Extracting Invariants

Invariants are shape descriptors extracted from an image that are independent of
the viewpoint [1]. Using invariants for recognition greatly simplifies the process
of object recognition because it allows objects to be compared with reference
models regardless of the orientation. Before extracting invariants, it is necessary
to segment the recognized image to extract the relevant objects or regions of
interest and to omit the irrelevant data.

For hand-gesture recognition, some researchers have tried to do the early
segmentation process using skincolor histograms [2–5]. The problem with these
methods is that they do not work well in cases when there are some other objects
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in the scene with the same color as skin color, or where the hand has other
colors. In the target JAST application, the background is static and can easily
be eliminated (e.g. using methods described in [6]), so we concentrate instead
on the geometric characteristics of the objects.

Zhou et al. [2] extracted invariants for gesture recognition using overlapping
sub-windows, and characterized them with a local orientation histogram feature
description indicating the distance from the canonical orientation. This makes
the process relatively robust to noise, but very time-consuming indeed.

Kuno and Shirai [7] used seven invariants to do handgesture recognition,
including the position of the fingertip. This is not practical when we have not
only pointing gestures, but also several other gestures, like grasping. However,
the invariants they extracted inspired us for some future improvements.

2.2 Classification

Classification is a method to assign a class to a point (vector in spaces of more
than two dimensions) in N - dimensional space. The classes may be predefined
and learned beforehand (supervised learning), or may be extracted automatically
based on a similarity metric (unsupervised learning).

A näıve Bayes classifier assigns the most likely class to a given example given
its feature vector, simplifying the task greatly by assuming that the features
are independent given a class. Such classifiers are robust, simple to implement
and computationally efficient – and, despite the often unrealistic assumption of
independence, they are frequently very successful in practice. Many techniques
have been developed to improve the performance of näıve Base classifiers; Zheng
and Webb [8] provide an overview of efforts in this area.

K-nearest neighbors (KNN) classifiers have a good performance when the
attributes of a system are linearly separable. It finds the K nearest (already
classified) vectors in the space to the input. The class which has the most vectors
in those K neighbors is chosen to be the class of the input vector. K-nearest
neighbors with distance weighting (KNNDW) is an improvement which has been
proved to outperform KNN in many cases [9]. In this method, the contribution
of each neighbor to the overall classification is weighted by its distance from the
point being classified.

The most relevant work to our method has been performed by Frank et al.
[10] which introduces a locally weighted näıve Bayes (LWNB) classifier. Their
evaluation on UCI dataset shows that LWNB outperforms KNN and KNNDW
when K is big enough. Other refinements, like instance cloning local nave Bayes
(ICLNB) [11], have also been introduced which manipulate the training data to
get a better performance from the Bayes classifier.

In our implementation, we use a combination of KNNDW and LWNB to get
a better performance without manipulating the training data or any complicated
modification. The complete explanation can be found in Section 4.
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3 Preoprocessing

The first step in the gesture-recognition process is to process the raw images
from the overhead camera to extract the background and to identify Regions of
Interest (ROI) for the gesture-recognition process. Once ROIs have been identi-
fied, the next step is to extract the geometric invariants from the binary image
for use in classification. For each ROI we define the following invariants:

1. Number of points
2. Length of the outer contour
3. Change of gradient in x direction
4. Change of gradient in y direction

Since the user’s hands enter the image from outside the camera view, we
consider for gesture recognition only those ROIs which end at one of the four
sides of the image (table).

For extracting the invariants, only a specific, predefined area of the end part
of the ROI is processed. This way a completely stretched hand will be processed
from the wrist to the finger tips. Next, the outer contour of the object is ex-
tracted, where the length of this contour is the second invariant.

Then we explore the contour to find the x-y gradient changes, which corre-
sponds to the number of changes in direction. We refer to these points as gradient
points. To avoid noise, we inspect only the changes in direction which last for a
known number of steps (three steps in our application).

Supposing that we have m invariants, we have a vector with m (which is four
in our application) dimensions.

Inv(m) = {a1, a2, . . . , am} (1)

During the training phase (Section 4.1), the resulting vector is added to the
training pool; during the classification phase (Section 4.2), it is compared against
the three gesture classes for identification.

4 Gesture Recognition

Before performing classification, a training pool is created based on a range
of gestures produced by different users, where each training instance is labeled
with its gesture class. The invariants from this pool are stored for use in the
classification process. In Section 4.1, we describe the training process, while in
Section 4.2 we describe how classification proceeds.

Note that we are classifying static gestures, while the user’s hands could
be in motion. We therefore wait for the system to reach a stable state before
performing training or classification. A stable state is detected by tracking the
coordinates of the ROIs and initiating gesture recognition only once the coordi-
nates remain constant for several frames.
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4.1 Training Phase

For the training phase, the user moves his or her hand in different positions and
angles for each of the gestures, using both the left and right hands. As stated
before, we have three classes of gestures:

C(m) = {c1, c2, c3} (2)

All the extracted invariants are saved in a simple text file. It is recommended
that the training is done with a couple of users with different hand size and shape
so that the classifier becomes more robust. In our application we used four users’
hands. For each gesture around 150 samples is sufficient, so at the end of the
training process we have a file consisting of 500 to 600 labeled gestures.

The vectors in the file have one more dimension in comparison with the
invariant vector because of the class-id. If we assume that there are n vectors in
the file (n samples) then each vector will be:

Trn(m) = {i0, i1, . . . , im} (3)
i0 ⊆ C

After constructing this pool of labeled invariant vectors, classification is able
to proceed.

4.2 Classification Phase: Combining KNNDW and LWNB

To classify the extracted invariant, we first find the K nearest neighbors which
are calculated based on the weighted distance of each training vector to the input
invariant. Formally, we define the distance-weighting vector as:

Wdist(m) = {wDist1, wDist2, . . . , wDistm} (4)

The distance from the extracted invariant to training vector n can then be
computed in Euclidean space as follows:

distn(tr, Inv) =

√√√√ m∑
i=1

(Trn(i)− Inv(i))2

wDisti
(5)

We also normalize the distance so that all the values will be in [0, 1]. Next,
we choose the K vectors from the training pool which have the shortest distance
to the given invariant.

c(x) = {Trx(1), distx} (6)
x = {1, . . . ,K
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A normal näıve Bayes probability for the class of the given invariant will then
be

p (C(j)|x) =
∑K

x=1 δ (C(j), c(x))
K

(7)

δ(a, b) =
{

1 if a = b
0 otherwise (8)

where j is the index of each class (type of gesture).
To improve the result, we add weights to the neighbors. This weight wB(x) =

f(dx) is a function of the Euclidian distance of each vector dx, which can be any
monotonically decreasing function. In our application, we experimented with a
functions like f(dx) = (1− dx) or f(dx) = (dx)−p for various p, but the function
which produces the best classification performance was:

wB(x) = f(dx) =
1− dx

1 + dx
(9)

Using these weights, we define our locally weighted näıve Bayes probability
by weighting equation 4.2 as

p (C(j)|x) =
∑K

x=1 wB(x)δ (C(j), c(x))∑K
y=1 wB(y)

(10)

Then we can simply choose the class with the highest probability.

c(Inv) = argmaxj=1,...,3p (C(j)|x) (11)

The classification algorithm can be summarized as follows:

1. Find the k-nearest neighbors with weighted distance from the training pool.
2. Find the näıve Bayes probability of each, while weighted disproportional to

their distance.
3. Choose the class of the vector with the highest probability.

5 Experimental Results

In order to test the recognition algorithm we constructed a training pool with less
than 200 samples for each of the gestures, for a total of 580 samples in the training
pool. These samples were made by three persons in different lighting conditions.
Then we created a testing pool with about 40 samples for each gesture by a
person other than those three whose gestures were represented in the training
pool.

The highest overall performance without weighting the invariants shows 91.3%
correct classifications with K = 4.

After trying many combinations of weights on the members of invariants, we
found the best weighting vector wDist to be Wdist(m) = {0.6, 0.6, 1.0, 1.0}. That
is, the gradient changes are both weighted at 1.0, while the number of points
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and contour length are weighted at 0.6. This result is intuitively acceptable: the
range of objectpoints and length of contour is much wider than the number of
changes in gradients.

Testing the recognition system with distance weighting, we achieved the re-
sults shown in Figure 2. It is quite obvious that after applying distance weighting
the performance increases and the fluctuation decreases. We observed that when
K ≥ 7 the performance starts to sink. The best performance seemed to be for
4 ≤ K ≤ 7.

Fig. 2. Classification result with distance weighting

Running the full gesture-recognition process on a frame takes less than 50 msec
on average. Of this time, segmentation takes 20–30 msec, while the recognition
process takes 10–20 msec.

6 Conclusion

We have described a static gesture recognition method to distinguish between
three gestures types: pointing, grasping and holding out. The process is based
on classifying invariants of image blocks using a locally weighted näıve Bayes
and K-nearest neighbors classifier.

The preprocessing is done by an adaptive method first extracting the back-
ground, which is considered to be unicolored (surface of the table), and segment-
ing the remaining pixels into regions of interest afterwards.

Four invariants of each ROI are then extracted. These invariants are: Number
of pixels, length of the outercontour and changes in x and y gradients. The
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extracted invariants are then compared against the invariants in a pool of labeled
examples created during a training phase for each type of the gestures. The
best suitable type of gesture is then given by using a locally weighted nave
Bayes classifier which is fed by the K-nearest neighbors of each invariant in the
invariants pool.

After classification, an appropriate algorithm is applied in order to obtain
symbolic information according to the type of gesture. This information is the
finger-tip and its angle for pointing gestures, area of grasping for grasping ges-
tures and the center of hand-pit for holding out type.

In an experiment, the whole process takes less than 50 msec in total and has
an overall performance of about 93% at identifying the correct gesture type.
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