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Abstract: As multicore PCs begin to get the standard, it becomes increasingly important to utilize these resources. Thus
we present a multithreaded realtime vision system, which distributes tasks to given resources on a single off-
the-shelf multicore PC, applying an optimal-backoff scheduling strategy. Making use of an asynchronous
data management mechanism, the system also shows non-blocking and wait-free behaviour, while data access
itself is randomized, but weighted. Furthermore, we introduce the top-down concept of Interpretation-Based
Preselection in order to enhance data retrieval and a tracking based data storage optimization.
On the performance side we prove that functional decomposition and discrete data partitioning result in an
almost linear speed-up due to excellent load balancing with concurrent function- and data-domain paralleliza-
tion.

1 Introduction

The multicore integration of off-the-shelf PCs is
clearly observable with recent hardware development.
Correlated to this, algorithms have to be developed
that exploit parallel resources and generate the ex-
pected proportional speed-up with the number of
cores. A computer vision (CV) system is a perfect
prove of the algorithmic concept we present in this
paper, because it requires high computational effort
and realtime performance. The vision system is part
of the JAST (“Joint Action Science and Technology”)
human-robot dialog system. The overall goal of the
JAST project is to investigate the cognitive and com-
municative aspects of jointly-acting agents, both hu-
man and artificial (Rickert et al., 2007).

Vision processing in the JAST system (Figure 1)
is performed on the output of a single camera, which
is installed directly above the table looking downward
to take images of the scene. The camera provides an
image stream of 7 frames per second at a resolution
of 1024× 768 pixels. The output of the vision pro-
cess (recognized objects, gestures, and parts of the
robot) has to be sent to a multimodal fusion compo-

Figure 1: The JAST human-robot interaction system

nent, where it is combined with spoken input from
the user to produce combined hypotheses represent-
ing the user’s requests.



According to our research field of interest, the
vision system is required to publish object, gesture,
and robot recognition results simultaneously and in
realtime, although continuous realtime result com-
putation is not feasible. Therefore the JAST vision
setup is well suited for investigations on paralleliza-
tion techniques and data flow coordination.We pro-
pose a multithreaded vision system based on a high
level of abstraction from hardware, operating system,
and even lower level vision tasks like morphological
operations.This minimizes the overhead for commu-
nicational tasks, as the amount of data transferred de-
creases in an abstract representation. Furthermore,
the scalability of the system with integration of mul-
tiple cores can be examined soundly by connecting
different machines to the JAST system, each running
a copy of the vision system (details in Section 4).

2 Parallel Computation

On an abstract level two major parallelization sce-
narios may be identified: distribution of processing
tasks on multiple machines on one side and distribu-
tion of tasks on a single machine with multiple pro-
cessors and / or cores on the other.

Many approaches employing the distributed sce-
nario have been proposed, see (Choudhary and Patel,
1990) for an overview regarding CV or (Wallace et al.,
1998) for a concrete implementation. However, with
recent development in integration of multiple cores
the latter scenario also becomes more relevant. Thus
there is increasing demand for algorithms fully ex-
ploiting parallel resources on a single PC. This is es-
pecially the case, where computational power easily
reaches the limits – e.g. in computer vision.

2.1 Communication

In parallel environments one can generally apply ei-
ther synchronous or asynchronous communication
strategies for data exchange between processes or
threads. Though being robust, due to its blocking
nature a synchronous approach can cause problems
especially for realtime systems where immediate re-
sponses have to be guaranteed. For this case asyn-
chronous non-blocking communication mechanisms
(ACM) have been proposed. With ACMs informa-
tion is dropped when capacities exceed – which is ac-
ceptable as long as the system does not block. Non-
blocking algorithms can be distinguished into being
lock-free and wait-free (Sundell and Tsigas, 2003).
Lock-free implementations guarantee at least one pro-
cess to continue at any time (with the risk of starva-

tion). Wait-free implementations avoid starvation as
they guarantee completion of a task in a limited num-
ber of steps (Herlihy, 1991).

According to (Simpson, 2003), ACMs can be clas-
sified based on the destructiveness of data access. The
classification of ACM protocols by (Yakovlev et al.,
2001) distinguishes data access with respect to their
overwriting and re-reading permission. One can find
manifold implementations of ACMs regarding each
of these classification schemes. Some common im-
plementations, e.g. from (Sundell and Tsigas, 2003)
use lock-free priority queues or employ FIFO-buffers
(Matsuda et al., 2004).

2.2 Parallelization Techniques

According to (Culler et al., 1999) we have to distin-
guish parallelization techniques by means of data-
domain or function-domain. With function-domain
parallelization the overall computation process is di-
vided into stages and each thread works on a sepa-
rate stage. In contrast to this, with data-domain par-
allelization data is partitioned and each partition re-
quires the same computation performed by equally
designed threads (Chen et al., 2007). This distinction
may be correct and worthy for low level vision tasks
like edge detection, but this paper will show, that on
a higher level a carefully modeled CV system does
not require this distinction. Moreover a combined ap-
proach can be derived and, on the basis of an asyn-
chronous data management, a system implementing
both aspects can perform very well in practice.

Aiming this goal, we first have to deliberately de-
sign anchor points for distributed computation. Also,
the level of abstraction considering computational
tasks matters in terms of parallelization. In order
to avoid unnecessary overhead regarding communica-
tion and take full advantage of the multicore environ-
ment, we decided to model concurrent computation
on a high level of abstraction. Therefore, we do not
intend to parallelize primitive control-structures – like
for-loops – specific to a programming language. In-
stead we try to identify major and subsequently minor
tasks of computation (see Fiture 2).

For function-domain parallelization we assume,
that the division into well-defined functional submod-
ules is feasible. In the processing layer of the pro-
posed CV system this is obviously the case, as we can
identify three major functional stages: Preprocess-
ing, Analysis and Interpretation and Postprocessing.
Further refinement divides these stages into subtasks.
Modules implementing a task independently pick a
data partition (also called data item below), analyze it
and write it back. In case new items are created within



Figure 2: Architectural overview

the analysis, these are also stored in the corresponding
data management queue (see Section 3).

As the recognition process is decomposable in
the function-domain, we now have to achieve data-
domain parallelization in order to prove our claim.
Hence we have to specify the functional tasks accord-
ing to the need of multiple instantiation of the pro-
cessing modules. We therefore derive the following
approach from the non-blocking paradigm of ACMs:
as we want to publish cyclicly in realtime, we rather
publish incomplete analysis results of a scene than
waiting for a complete analysis that would block the
system meanwhile. This allows multiple concurrent
module instances for the analysis of data items as long
as the data management is implemented threadsafe
(see Section 3). According to (Chen et al., 2007) we
are thus able to implement data-domain paralleliza-
tion, which is the second part of our claim.

2.3 Scheduling

There is one catch in such an implementation of the
ACM: we risk that a module requests certain data
from the data management, which is not available at
the moment. In this case the data management deliv-
ers a NULL-data item, so modules have to deal with
these items as well.

Therefore we propose an algorithm which, when-
ever a NULL-item is received, tries to suspend module
instances for an optimal amount of time, until a cor-
rect data item is expected to be delivered again. An
incremental back-off time b(c) may be calculated as
follows:

b(c) = min
(

c · i,
(

a · j
n

))
(1)

In (1) the parameter c denotes the counter for the

number of tries since the last correct data item has
been received by the module, i denotes the predefined
back-off increment in milliseconds, a is the maximum
age of a data item until it is deleted, j the number of
module instances operating on the same task and n
the current number of items matching the request. If
a NULL-data item is retrieved, c is incremented and
the module is immediately suspended for a time b(c)
again. In case a correct item could be delivered, c is
reset to 0 and the item is processed.

The back-off strategy tries to optimally calculate
suspension periods for instances not needed at the
moment, but at the same time to provide an instance
whenever needed. The first argument of min calcu-
lates an incremental amount of time for the module in-
stance to sleep and the second argument represents the
expected mean time until the next correct data item
can be delivered. This value is then used as the maxi-
mum amount of time to suspend a module instance.

3 Data Management

Implementing an adequate data access strategy for
concurrent requests is crucial for the proposed sys-
tem. The strategy has to ensure integrity and consis-
tency of data and as well provide error management
policies. One also has to consider priorization when-
ever a module requests to write while another simul-
taneously wants to read data from or write data to the
storage. Another important point is the deletion of
data items when they expire.

Considering modularity, we organize data access
in a data management layer (right part of Figure 2).
A natural approach for the implementation is based
on the Singleton design pattern (Gamma et al., 1998).
Singleton implementations only provide a single in-
stance of an object to the overall system, so in our case
any request from an analysis module must call the sin-
gle instance of the data management (DM). Here, de-
rived from common standards (Message Passing In-
terface Forum, 1995), data items are managed in
limited-size priority-queues.

Error handling in the DM layer can be imple-
mented straight forward, as the layer simply delivers
NULL-data items whenever an erroneous request was
received, a queue was empty or no suitable data item
could be found. The error handling approach utilizing
NULL-data items is wait-free, because it completes in
a limited number of steps.

Organizing the single instance in a threadsafe
manner concerning read and write accesses ensures
integrity and consistency. In order to achieve this, the
DM module is organized as a bundle of queues, each



queue for a different type of data item (see Figure 2).

3.1 Data Access

Threadsafe concurrent data access is realized by en-
capsulating synchronization. Concerning ACMs, the
CV system proposed here implements a Pool-ACM in
either classification scheme mentioned in Section 2.1.
Regarding the Simpson classification, as we do have
non-destructive read operations, but write operations
include deletion of items, and respectively regarding
the Yakovlev classification, as we allow overwriting
in a write operation and do not delete items when
reading them from the storage.

Concretely, an instance of a processing module
sends a request for storage or retrieval of a data item
of a certain kind by calling one of the DM operations
provided to the processing layer:

write<Queue>(Item):void

read<Queue>():Item

The retrieval strategy selects a data item to deliver
according to the evaluation of a stochastical func-
tion. The function is based on the asumption that
a data item (re-)detected in the near past must be
prioritized to one that last occured many cycles ago
– as it may have already disappeared or removed.
Since each item in a queue Q has a timestamp, we
weigh the items i ∈ Q according to their age ai =
now− timestamp(i) such that the weight increases,
the younger items are:

∀i ∈ Q : wi = 1− ai

maxage
(2)

A new queue of pointers to data items from the orig-
inal queue is built afterwards. The new queue, on
which the actual retrieval operation is performed, is
filled with at least one pointer to each data item. In
fact, according to the weight wi of an item i, a number
of duplicates di of each pointer is pushed to the queue:

∀i ∈ Q : di =
1

argmin j∈Q(w j)
·wi (3)

Subsequently the random selection on the pointer
queue is performed where more recent items are pri-
oritized automatically as more pointers to the corre-
sponding data-items exist.

3.2 Locking

Before applying the weight to the items of a queue,
we have to exclude elements that match the precondi-
tion described below. As an item cannot be altered by
two processing modules concurrently, we introduce a

locking-mechanism for items. Nevertheless the “non-
blocking” nature of data access can still be guaranteed
due to the error handling approach described earlier.
Before a data item is delivered to the processing layer,
the state of the item is changed to locked. Locked
items are not allowed to be delivered to any other in-
stance and so are excluded from the weighting step.
Releasing the lock is in responsibility of the module
processing the item.

Another important problem to discuss is the be-
haviour of the system in case of concurrent WRITE or
READ operations concering a specific queue. Con-
current READ operations are allowed at any time,
but in case a WRITE operation is requested all re-
trieval requests and concurrent WRITE requests must
be blocked meanwhile. Therefore the system has to
implement a mechanism utilizing cascaded mutual
exclusions.

Again a single operation may be blocked, but the
overall system is not. If a mutex can not be aquired
at the moment, in case of a READ operation a NULL-
item is delivered and in case of a WRITE operation no
operation is executed. This behaviour is conform to
the definition of an asynchronous non-blocking algo-
rithm, as it is wait-free.

3.3 Enhancements

In order to enhance performance of READ operations,
we introduce the concept of Interpretation-Based Pre-
selection. We assume that certain data items are not
relevant for dedicated tasks. For example a gesture-
recognition module could only be interested in a re-
gion, that enters the scene from the bottom (Ziaie
et al., 2008) or a visualization module might only dis-
play objects from within the last 100ms, but skipping
gestures totally.

In order to completely leave the relevance deci-
sion to the processing modules, we propose a mecha-
nism evaluating a predicate, that is passed within the
request. According to the predicate the exlusion step
before weighting a queue’s items is adapted: now not
only locked, but also items that do not match the pred-
icate are removed. Thus the search space for retrieval
can be restricted, but the non-deterministic selection
algorithm can still be applied. We now extend the
trivial retrieval definition from Section 3.1 to the fol-
lowing:

read<Queue>(Predicate):Item

Predicate is a non-empty binary predicate that
evaluates to True or False on each data item of
the specified queue. Processing modules are al-
lowed to use item attributes for the implementation
of their own predicates. For sophisticated predicate



designs some items provide state attributes for track-
ing or attributes indicating the status of the analysis
(analyzedBy<module>). We call these attributes
Priority Attributes.

An enhancement strategy for WRITE operations
can also be implemented by our data management
module. Considering that data items in a queue are
timed, it is possible to track them from one cycle
to the following. Therefore we define a compare-
method that is applied automatically on a storage re-
quest. The method evaluates symbolic or meta at-
tributes like classification, color, approximate posi-
tion, number of points or width and height. Whenever
the DM module receives a storage request for a for-
merly recognized item, only neccessary attributes are
updated, all priority attributes (especially the unique
id) instead are kept. For example, considering an item
fixed and fully analyzed, the existing item just gets all
non-priority attributes (such as the timestamp, posi-
tion, etc.) updated, but the updated item is not marked
for analysis again.

4 Results and Conclusion

For the evaluation of the system a dual core
Intel c©Pentium IV system and a quad core In-
tel c©Xeon system were utilized. For comparison the
hardware configurations using a sequential version of
the system are also shown. We used a sample video
with a resolution of 1024× 768 and a duration of 30
seconds at a sampling rate of 7 frames per second.
The results refer to the analysis without data mainte-
nance enhancements and postprocessing switched off.

Performance results shown in the tables below are
only approxmiate values due to high dependency on
the scenes that have to be analyzed. The more objects
exist, and the more complex objects get (in the JAST-
project also object assemblys are to be analyzed) the
longer the analysis takes. In case there are very few
objects or the scene remains static, overall analysis is
possibly performed in realtime. This would be con-
tradicting on of our preconditions from Section 1, so
for our evaluation video we feed the system with dy-
namic input data, like humans continuously moving
objects on the table and the robot picking pieces.

In Table 1 the first column describes the hardware
configuration, the second column shows the total sys-
tem load and the third column, the (mean) LOAD RA-
TIO, weighs the core with highest against the core
with the lowest load.

The values shown in the table were computed
from 5-10 averaged samples, each taken with mpstat
over a period of five seconds. For example a mean ra-

Table 1: Total core utilization

CONFIGURATION CPU % LOAD RATIO

Dual Core (seq.) 52.12 8.20
Dual Core (parallel) 84.13 1.03
Quad Core (seq.) 27.55 36.32
Quad Core (parallel) 51.63 1.07

tio of 36.32 on the quad core is caused by an average
load of 93.84% on the core with highest load com-
pared to only 2.58% on the core with lowest load. The
total utilization in this configuration clearly shows
that de facto only one core is used for processing
while the others remain idle. In contrast to this, one
can see an almost optimal distribution in the parallel
scenarios with a load ratio of around 1.0.

Table 2 shows the processing performance of the
hardware configurations described above. Now the
reason for the quad core parallel configuration only
having a total load of 51.63 % becomes clear: there
is simply nothing to do for the machine as the input
video is only sampled at 7 frames per second.

Table 2: Performance of Processing

CONFIGURATION TIME FREQUENCY

Dual Core (seq.) 228.7s 0.92fps
Dual Core (parallel) 30.0s 3.57fps
Quad Core (seq.) 196.6s 1.07fps
Quad Core (parallel) 30.0s 6.95fps

Processing with the sequential version of the sys-
tem is slightly faster on the quad core compared to
the dual core machine due to internal OpenCV par-
allelization and scheduling of the operating system.
But still it is only capable of processing the video in
≥ 3 minutes. Regarding this, another important prop-
erty of the asynchronous parallel version becomes
clear: processing a 30s-video only takes 30 seconds.
This can be achieved because of the non-blocking be-
haviour. In case computing power exceeds (see sec-
ond row of Table 2) the asynchronous implementation
drops frames, regions and objects from data queues in
order to keep the system from blocking. We find that
the system still reaches the desired realtime publish-
ing frequency, but the results published are not com-
plete. In fact we see, that it takes a few cycles until
each region extracted from a frame is analyzed and
results are present.

Normally this does not influence the result, as
items can be tracked. But in case of quickly moving
objects, it remains as a drawback, because the sim-
ple feature-based tracking method applied in the cur-
rent system often fails to map these objects correctly



in a sequence of frames. Consequently, the system
assumes items having appeared and begins the analy-
sis: the new items are locked (although they are just
duplicates of existing ones) and computing power is
wasted. This problem particularly occures for quick
hand movements. The worst case would be a mov-
ing hand shortly occluding formerly recognized ob-
jects, as both the hand and the objects are probably
lost and their regions need to be redetected and rean-
alyzed completely.

Figure 3 shows a performance estimation for the
analysis frequency in two input scenes. As we expect,
the results show, that parallelizing in the data domain
produces almost linear performance gain with the
number of processors. This can be achieved, because
heavy computing is mainly done within the analy-
sis and interpretation stage, where tasks can be dis-
tributed very well. In Figure 3 the measuring points
for one core are inferred from performance of sequen-
tial version, as we have seen in Table 1 that only one
core is used there.

Figure 3: System performance with data domain paral-
lelization

Still to mention is that with the data manage-
ment enhancement from Section 3.3 the performance
even in a sequential version of the system improves
up to 25 Hz as long as the extracted regions can be
tracked. When the scene changes, computational ef-
fort is needed, so the performance decreases. Here
the advantage of the multithreaded system becomes
clear: due to function domain parallelization and non-
blocking behaviour the system still publishes in real-
time, although the results may be incomplete.

A further factor influencing the system perfor-
mance is the system configuration. The vision sys-
tem configuration can be customized via an XML file.
Here one can specify the number of module instances.
This corresponds to a priorization within the data do-
main: one could for example start a larger number
of objectrecognition modules while on the other hand
just starting one or two gesturerecognition modules.
Due to the scheduling strategy of the operating sys-
tem, the objectrecognition would be prioritized in this
case.
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