
Automation of Manual Tasks for Minimally Invasive Surgery

H. Mayer, I. Nagy, D. Burschka and A. Knoll

Robotics and Embedded Systems

Technical University Munich

{mayerh|nagy|burschka|knoll}@in.tum.de

E.U. Braun, R. Lange and R. Bauernschmitt

Department of Cardiovascular Surgery

German Heart Center Munich

{brauneva|lange|bauernschmitt}@dhm.mhn.de

Abstract— We have developed an experimental system for
minimally invasive surgery providing force feedback and au-
tomation of recurring task. The system consists of four robotic
arms, which can be equipped with either minimally invasive
instruments or a stereo camera. The master console provides a
stereo view of the field of operation and two input devices can
feed back forces to the user. We have utilized this system to
assess the possibility of automating difficult handling tasks like
surgical knot tying. In order to achieve this, a novel approach
for human-machine skill transfer was developed. It constitutes
an extension to learning by demonstration, which is a well
known paradigm of robotic learning.

Index Terms— learning by demonstration, skill transfer,
robotic surgery

I. INTRODUCTION

In recent years, minimally invasive surgery has drawn

the attention of both surgeons and researchers on the field

of robotics. While the former developed new techniques

for surgical interventions in order to improve the treatment

of patients, the latter have predominantly worked on the

enhancement of the applicability of minimally invasive in-

struments. A remarkable example of such enhancements is

the daVinciTMmachine [1], actually providing a complete

telemanipulator for minimally invasive interventions. The

instruments can be controlled remotely by a surgeon sitting

at a master console, which can be placed somewhere in the

operation theater. The master console is equipped with so-

phisticated input devices, which provide an intuitive handling

of the instruments (Cartesian control without any chopstick

effect). However, these advantages come at the price of

reduced immersiveness, since the surgeon cannot feel any

forces exerted onto the situs. In addition, working speed is

significantly reduced, which renders these types of opera-

tions stressful for both patients and surgeons. In order to

research on the improvement of these disadvantages, we have

developed an experimental system for minimally invasive

surgery incorporating force feedback and automation. While

the results of the research on force feedback have already

been published [2], we focus in this paper on automation

of recurring tasks in minimally invasive surgery. We have

chosen robotic knot-tying as a reference application since it

combines many of the difficulties occurring in automation.

One of them is the handling of limp objects like surgical

threads, whose positional behavior can hardly be predicted.

Another issue is the overall calibration of the kinematic

chain, which is disturbed by many influences (like positional

inaccuracy, distortion of the instruments and play).

II. MATERIALS AND METHODS

The findings of this research project have been assessed

within a realistic scenario of robotic heart surgery. As

mentioned above, minimally invasive knot-tying has been

chosen as a benchmark task, because it provides an extent of

complexity, which requires new strategies for structuring and

transferring information. Some other authors have already

addressed the issue of surgical knot-tying [3], [4], [5], but

they did not apply a knot-tying task under a combination of

the following aggravating circumstances: manipulators with

trocar kinematics, real suture material and real tissue. In

addition, their work was rather focused on analyzing the

knot-tying task instead of its automation.

A. Robotic System

Fig. 1. Hardware Setup: Ceiling mounted robots with surgical instruments

We have conducted our experiments with a system for

robot-assisted minimally invasive surgery, which was de-

veloped by the authors [6]. The slave manipulator of the

system consists of four robots (Mitsubishi MELFA 6SLTM,

Mitsubishi Electric Corp.), which are mounted on a gantry

on the ceiling (cf. fig. 1). The robots are equipped with min-

imally invasive instruments, which are originally deployed

with the daVinciTMsurgical system (Intuitive Surgical, Inc.).

The robot is concatenated with the surgical instrument by

a magnetic coupling, which prevents the instrument from

damages in case of a severe collision. The instruments are

powered by small servo motors, which are integrated into

the coupling mechanism. Optionally, one of the robots can

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.16

260

be equipped with a stereo camera instead of an instrument.

The master console consists of an aluminum frame, which

can be quickly adapted to new geometries. The user’s

place is located in front of the main in-/output devices,

two PHANToMTMhaptic displays. Their controller boxes are

stored at the base of the frame. The PHANToMs themselves

are assembled upside down. This arranges for less constricted

flexibility of the stylus pen. The 3D display is placed on top

of the frame in a way not reducing the working space of the

PHANToMs. As an additional input modality, foot switches

are placed at the footwell of the console. One is dedicated

as emergency exit while the function of the others can be

arbitrarily engaged by software. In addition, forces occurring

at the instruments are measured by strain gauge sensors and

fed back by means of the haptic devices.

B. Generalization and Instantiation

In order to provide automation of certain recurring tasks,

the user has to demonstrate the corresponding trajectories

to the system. One prerequisite for the development of our

application was the system being able to reproduce the task

even after just one demonstration (which significantly dis-

tinguishes this approach from the ones of other authors [7]).

Therefore, each trajectory is decomposed into smaller parts,

socalled motion primitives [8], which constitute meaningful

interactions of the end effectors with the environment. This

decomposition is achieved by scanning the trajectory for

prominent features like inflection points, occurring forces or

rapid changes of the speed of the end effector. Since the

description of these features is very general, it is not possible

to base a sensible decomposition merely on them. Therefore,

we use patterns of each task, which consist of a temporal

ordered sequence of the features introduced above. These

patterns can be easily constructed by the user and they are

matched against the detected features in the trajectory. If a

match is detected, the trajectory is decomposed as described

by the pattern. Otherwise, the trajectory is rejected for not

being a valid demonstration of the task.

Once a task has been demonstrated by the user with at

least one valid performance of the skill, it is possible to

instantiate the task at an arbitrary position in the working

space. The only prerequisite is that the user establishes an

appropriate initial condition. For our knot-tying example this

means to pierce through the tissue and grab the needle

with the right hand, and the loose end of the thread with

the third instrument. Afterwards, the knot-tying task can be

instantiated by pressing a foot switch. At this moment, the

manual input of the user will be blocked and a skill is

generated, which is suitable for the actual situation. After

a preview of the execution of the skill was displayed, the

corresponding trajectory can be actually carried out by the

robots.

The instantiation of a task at the desired position is accom-

plished by the following steps: generation of the trajectories

of each primitive of the task, connecting these trajectories

to form a skill, and displaying a preview of the skill

in the simulation environment. During the decomposition

of trajectories, four types of primitives are identified: 2D

movements, linear movements, force controlled movements

and synchronized movements. We have developed different

methods of instantiation for each type of primitive:

2D Movement: On the basis of the extracted features, we

could instantiate this primitive by means of an adequately

transformed 2D spline. Otherwise, the usage of splines

has some significant shortcomings: The most important is

that any shift of the interpolation points (which might be

necessary due to the adaptation to obstacles in the new envi-

ronment) can lead to unfavorable trajectories [9]. In addition,

it is difficult to store temporal features like speed in splines,

since the dependency between interpolation parameter and

arc length is nonlinear.

Therefore, we propose the usage of dynamical systems

known from fluid dynamics in order to derive and generalize

the corresponding information (a preliminary version of this

method has been published in [6]). So far, there has been

only little research on dynamical systems for the adaption

and generation of motion primitives. Ijspeert et. al [10]

have employed dynamical systems as generators for motion

patterns in order to mimic locomotion of animals. A related

approach has been proposed by Okada et. al. [11]. They

have exploited the entrainment phenomenon of dynamical

systems in order to stabilize motions of a humanoid robot.

The desired trajectory is implemented as an attractor of the

recursive definition of the robot’s motion. Whenever the start-

ing posture (i.e. the corresponding joint space configuration)

lies outside the desired trajectory, the system converges back

to it after a while. The system itself is invariant through

time (constant vector field) and all parameters are known

a-priori (no learning algorithm). They have successfully

employed this procedure in combination with the formula of

an inverted pendulum in order to stabilize the squat motion of

a humanoid robot. Both approaches mentioned above operate

on the joint-level of motion generation, whereas the proposed

method generates trajectories in Cartesian space.

While we will use an online fluid simulation, some ap-

proaches utilize a stationary streamline function to plan

trajectories for mobile robots [12], [13]. A 3D version of

this so-called panel method [14] has been proposed by

Zhang et al. [15] for motion planning of flying robots.

Since computing power was quite limited at the time, these

approaches has been revitalized lately by other authors [16].

Recently, there has also been work on analyzing trajectories

by means of dynamical systems. Dixon et al. [17] have

proposed a method for segmenting primitives based on linear

dynamical systems. Although, this can be used to segment

and store motion patterns, the expressiveness of the derived

primitives is limited, and therefore, they cannot be used

for generalization (which was not the intention of their

work). Each of the projects mentioned above uses time-

invariant dynamical systems, which lead to uncomplex and

stable solutions for movements in joint space. Contrarily, our

goal is to provide trajectory generation in Cartesian space

for rather complex motions (e.g. self-crossing trajectories).

Therefore, we need a time-dependent system, which can

261

reproduce complex trajectories. Such systems are applied in

fluid dynamics, where they are used to simulate physical

circumstances, e.g. in a wind tunnel. Streaklines occurring

in these environments are nothing else than trajectories of

particles in a fluid. So far, there has been no attempt to utilize

this form of trajectory generation for robotic applications.

For our approach we have chosen a dynamical system based

on the Navier Stokes Equations. These equations describe

the behavior of a viscous, incompressible fluid exposed to

friction and external forces. The derivation of the equations

can be found in various books on fluid dynamics (e.g. [18]):

∂−→u

∂t
+ (−→u · ∇)−→u + ∇p = ν∆−→u +

−→
f (1)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2)

∇ is the Nabla operator and ∆ is the Laplace operator: ∆ =
∇·∇ = ∇2; −→u is the velocity of the fluid, ν its viscosity and
−→
f are external forces like gravity. As mentioned above, the

primitives we want to represent with this dynamical system

are already in 2D space. During feature extraction we have

stored the plane parameters of the demonstration in the task-

specific knowledge base. Therefore, equations 1 and 2 can

be simplified to:

∂u

∂t
+

∂p

∂x
= ν

(

∂2u

∂x2
+

∂2u

∂y2

)

−
∂u2

∂x
−

∂ (uv)

∂y
+ fx (3)

∂v

∂t
+

∂p

∂y
= ν

(

∂2v

∂x2
+

∂2v

∂y2

)

−
∂ (uv)

∂x
−

∂v2

∂y
+ fy (4)

∂u

∂x
+

∂v

∂y
= 0 (5)

where u and v are velocities in x and y direction, re-

spectively. We evaluate the equations by means of finite

differences within a rectangular area, which is subdivided

into a grid of equal cells. Within these cells the partial

derivatives can be replaced by local difference quotients -

e.g.
[

∂u
∂x

]

ij
7−→

uij−ui−1j

d
, where d is the length of each

cell. The actual implementation operates on a grid of at least

50 × 50 cells.

Evaluation of velocities is not centered within a cell, but

distributed to a staggered grid in order to assure numeric

stability. A detailed description of this methodology can be

found in [19]. In addition to discretization, we have to fix

the velocities at the boundaries of the simulated area. We

will set them to zero, since we want the fluid to adhere

to boundaries or objects within the stream. Velocities of

particles near a boundary will be relatively small, but due

to the nature of this equations, no particle will ever reach

or even penetrate a boundary. Therefore, a kind of collision

avoidance is included in our system from scratch. Of course,

this only affects the position of the end-effector, which will

be generated from particle simulation - other parts of the

robot still can collide. We will provide a solution to the

problem of external collisions below.

With the help of these boundary conditions, we can also

define obstacles within the area of simulation in order to

adapt the trajectory to new environments. Each 2D movement

primitive will be instantiated by a 2D fluid simulation, which

is transformed onto the plane stored during feature extraction.

Stirring of the fluid is achieved by sampling new points

from the spline representation of the corresponding primitive.

In this case, equidistant sampling with length d is applied.

There is no analytical solution to guarantee an arc length

of d for spline S(x), since ∆x cannot be determined from

S(x+∆x) = S(x)+d (note that ∆x refers to a distance and

has nothing to do with the Laplace operator in equation 1).

So far, we have solved this problem by a binary search: Let

∆x be an arbitrary initial value and S(x) map to a coordinate

within the cell with velocities uij and vij . Then, we check

if |(S(x + ∆x)) − (S(x) + d)| falls below a predefined

threshold ǫ. If (S(x + ∆x)) − (S(x) + d) yields a positive

number exceeding ǫ, we try S(x + 0.5∆x). Otherwise, if

(S(x + ∆x)) − (S(x) + d) yields a negative number less

than −ǫ, we try S(x − 0.5∆x), and so forth. Normally,

this binary search converges in less than five steps, if ǫ has

been chosen appropriately. Afterwards, we have to test if

S(x+∆x) lies within a fluid cell. If the point lies outside the

simulation area or within an obstacle cell, we project it to the

nearest valid point within the fluid. Once we have sampled

an applicable point Sx from the trajectory, we can determine

the speed at this point with the help of the features of the

original trajectory, which has been stored in the task-specific

part of the knowledge base. Afterwards, we interpolate the

neighboring values of uij , vij , uij+1 and vi+1j ; i.e. we

calculate a preset for these velocities at time step tn. All other

velocities within the grid a derived from fluid simulation.

We can now throw a particle into the stream and it will be

attracted by the instantiated trajectory of the corresponding

primitive. Since we know the position and orientation of the

simulation grid, we can generate suitable 3D points in order

to instantiate the primitive in the new environment (cf. fig.

2). Since the simulation is only refreshed at discrete points

in time (t0 < tn < tmax), we have to apply an interpolation

again in order to get positions at arbitrary points in time.

Fortunately, this works well even for tiny time steps.

Fig. 2. 2D primitive after fluid simulation (left) and embedded into the
skill (right)

Linear Movement: The instantiation of linear movements

is comparably easy. All we need is shifting the start and end

point to the desired position and connect them with a straight

line (cf. purple parts of fig. 3).

262

Force Controlled Movement: Although this primitive is

basically a straight line movement, its instantiation yields

some further issues. We have extracted the maximum force

and the end points of the corresponding primitives. An

intuitive instantiation is moving the gripper along the line

between start and end point, until the desired force occurs. In

practice, it might happen that the gripper has reached the end

point before the maximum force is reached. Therefore, we

make allowance for this by elongating the line by 25% of its

original length (cf. fig. 3, right end of the green trajectory).

When the corresponding skill is performed, the gripper is

opened once the recorded force is exceeded. Regardless of

the position of opening, the gripper moves to the end of

the line. This behavior guarantees a deterministic execution

of the skill, which can be reviewed during simulation (i.e.

without forces actually applied). Afterwards, the gripper has

to move back to the original end of the movement (without

the 25% extension) in order to continue.

Fig. 3. Instantiation of a force controlled movement

Synchronized Movement: A synchronized movement can

only exist in connection with a 2D movement. A mapping

function between the synchronized movement and the cor-

responding 2D movement is stored during feature extrac-

tion. This can be used now to produce the points of the

synchronized motion. The mapping function is applied to

every point of the 2D primitive we want to synchronize

with (cf. fig. 4). Most probably, the starting point of the

synchronized primitive will not coincide with the end point

of the preceding primitive of the skill. Therefore, both have

to be concatenated by a straight line movement.

Fig. 4. Synchronized primitive (dark yellow) and reference movement
(light yellow)

C. Simulation environment

For an offline evaluation of the newly generated trajec-

tories, a simulation environment of the system has been

developed (cf. fig. 5). The GUI comprises an interface to

a 3D model of the scene, which can be manipulated in

realtime. For each object in the scene, a context menu can be

displayed (on the left side) by clicking on the corresponding

model. This provides a possibility to adjust the parameters

of the underlying object. For example the joint angles of the

robots can be altered this way. In addition, the simulation

environment also incorporates a key framing module and all

Fig. 5. simulation environment: Interventions can be assessed offline

trajectories constructed in the simulation can be checked by

a collision detection.

D. Virtual obstacles generated by the GPU pipeline

One major issue, which we have not addressed so far, is the

treatment of possible collisions of the robots. While direct

collisions of the end effectors and objects in the working

space can easily be modeled by obstacle cells, handling

external collisions requires much more effort. Movements of

the end effector in its working space might induce collisions

of parts of the robots carrying the instruments. In our path

planning method for 2D movements (the fluid simulation),

the working space of the end effector is discretized to a

grid. Therefore, we can check each cell of this grid for

external collisions, and if so, mark the corresponding cell

as so-called virtual obstacle, which will be treated like a

normal obstacle during simulation. In order to achieve this,

each cell is subdivided into 5 × 5 subcells, allowing for a

better resolution. The end effector is set to the 3D position of

each subcell (the grid is already transformed to the desired

position) and the inverse kinematics is applied to this 3D

point. The resulting angles are applied to the robots and

the new configuration is checked for collisions by means

of an oriented bounding box test. If any collision occur in

one of its subcells, the corresponding cell will be treated as

virtual obstacle. The complete procedure of deriving virtual

obstacles is depicted in fig. 6.

inverse kinematics

!!! !!! CollisionCollision !!!!!!
virtual

obstacles

instantiated tasklet

obstacle (working space)

Fig. 6. Generation of virtual obstacles for collision detection

For our application examples we have used a grid of

263

50 × 50 cells, each of them featuring 5 × 5 subcells. In

order to generate virtual obstacles for this example, the

inverse kinematics and the collision test has to be applied

250×250 = 62500 times, which renders this method compu-

tationally quite expensive. Therefore, we have developed an

implementation, which exploits the computing power of the

graphics processing unit (GPU) of modern graphics cards.

We use certain features of the OpenGL pipeline of those

cards, which is depicted in fig. 7.

Line(); Triangle();OpenGL command:

interpolation

projection

assembly

raster

connectivity informationvertices

Apply texture with
fragment shader

Copy result to
framebuffer

Fig. 7. OpenGL pipeline for rendering of 3D objects [source: Light-

house3D.com]

Usually 3D related programs interact with the graphics

card via OpenGL commands. Basically, these commands

provide the card with new geometric information of a scene,

which is going to be displayed on the screen. This trans-

formation of 3D information into a 2D viewport image on

the frame buffer is called rendering. In short, the render-

ing process is divided into two major parts: rasterization

and texturing. Rasterization is the process of converting

the 3D vector-based object of the scene into pixel-based

fragments on a 2D plane. Those are forwarded to the texture

engine, which optionally projects predefined images onto

the fragments (in most cases images to emulate certain

surface materials like stone or wood etc.). For most currently

distributed cards, both processes rasterization and texturing

can be controlled by interchangeable code segments, vertex

shaders and fragment shaders, respectively.

We have exploited this principle to implement a fast gener-

ation of virtual obstacles (cf. fig. 8). When a 2D primitive

is instantiated by means of fluid simulation, the simulation

grid is transformed to the right place. Therefore, its corners

span a rectangle in 3D space. We will refer to the corners

as points [(x1, y1, z1), ..., (x4, y4, z4)]. In order to initialize

our algorithm, we paint an OpenGL rectangle, which is

always parallel to the viewport (i.e. it will be projected

on a rectangle in the frame buffer). We set the colors

of its corners to values [(x1, y1, z1), ..., (x4, y4, z4)], i.e.

the coordinates of the corners of the simulation grid are

interpreted as colors of the corners of the painted rectangle.

In addition, we replace the default vertex shader of the

graphics card with an own version. This program simply tells

the card to linearly interpolate the colors of the corners when

coloring the rasterized fragments. If we access the colors of

the fragments1 in the buffer of the card now, we get the

interpolated coordinates on the simulation grid.

We can control the resolution of the grid by adjusting the

rectangle painted with the OpenGL interface (e.g. if we want

to have a resolution of 250×250 subcells, we simply draw a

rectangle of 250×250 pixels. Each fragment of the rectangle

will be forwarded to the texture engine in order to apply

the fragment shader. Theoretically, this process is performed

in parallel for all fragments in the buffer, but practically,

parallelization is limited by the number of shading units (up

to 96 on currently distributed graphics cards). The program

of the fragment shader can access all properties of a single

fragment in the pipeline. Therefore, we can access the color

information of the fragments and use it as input for the

shader we have installed on the graphics card. Our version

of the fragment shader interprets the color information of the

fragments as coordinates on the simulation grid (i.e. positions

of the end effector of our system).

Now, we can perform the inverse kinematics of our system

in order to derive the angle of the robot bearing the corre-

sponding end effector. Once these angles are available, we

can apply an OBB collision detection. We can check for

collisions with objects, whose positions are enlisted in the

fragment shader. Therefore, collision checks are currently

limited to one robot. The results of the collision checks are

painted on the frame buffer. Afterwards, we can access the

pixels on the frame buffer and generate virtual obstacles from

it (cf. fig. 8). During generation, certain preliminaries have

to be met, e.g. all obstacle cells need at least two direct

neighbors in order to guarantee stability of the simulation

algorithm.

Use 3D coordinates as color
information for vertices

Draw rectangle with
OpenGL

Vertex Shader:
+ Rasterization
+ Interpolation

Fragmet Shader 1:
Inverse Kinematics
Input: interpolated colors as coordinates
Output: write robot angles to texture

Fragmet Shader 2:
OBB Collision Detection
Input: robot angles from texture
Output: write collisions to framebuffer

Extract obstacle cells
from framebuffer

Fig. 8. Generate virtual obstacles with OpenGL pipeline

III. RESULTS

After the collision-free primitives are instantiated in a

new environment by the methods introduced above, we

have access to separated trajectories for each gripper. The

next step is to synchronize the trajectories as it is required

1A fragment refers to a pixel in the OpenGL pipeline of the graphics
card, which is augmented with certain features like color information, depth,
surface normal etc.

264

by the underlying task. For example, before the first 2D

movement (winding of the thread) of the automated knot

can be performed, we have to wait until the left hand gripper

has finished its linear movement towards the winding point.

Such waiting times are inserted by simply duplicating the

corresponding position in the trajectory of the gripper, which

has to wait. This is always possible, since the primitives in a

skill are independent from each other, i.e. the gripper stops

after the execution of each primitive.

Once the primitives are synchronized, the trajectory of the

complete skill can be displayed in the simulation environ-

ment (cf. fig. 9). Optionally, it is possible to simulate the

movements of the instruments and robots during performance

of the skill. This is helpful to detect errors in the knot-tying

process or to reveal additional collisions. If all checks have

been performed successfully, the trajectory can be carried out

in the real-world scenario. After completing the automated

knot-tying procedure, the user can continue with manual

control. So far we have reached a success rate of approx.

50% for the application of knot-tying within our scenario.

Though this rate might be comparably small, it shows that

automation is possible in minimally invasive robotic systems.

IV. CONCLUSION

We have presented an approach of learning by

demonstration, which is based on a single demonstration

of the task. Our reference application for automation is

minimally invasive knot-tying. User demonstrations are

decomposed into meaningful primitives by matching user

generated patterns against features in the trajectory. Any

primitive, which has been generated this way, can be

applied to new environments. For 2D movements we have

developed an approach based on fluid dynamics. The

demonstration is used to stir a fluid. A locally adjusted

trajectory of this movement can be generated by throwing

a particle into the stream. In addition, this method provides

an intrinsic obstacle avoidance, since no streamline can

intersect with obstacles. In order to consider external

collisions of the robots bearing the end effectors, we have

introduced the concept of virtual obstacles, which can be

treated analogously with the same algorithm. The presented

framework was successfully applied to the real-world

application of robotic knot-tying. We are planning to

increase the success rate of skill application by a proper

revision of the hardware. Therefore, we hope to get rid of

mechanical play and increase the quality of calibration.

Fig. 9. Task application in new environment

REFERENCES

[1] G. Guthart and J. Salisbury. The IntuitiveTM Telesurgery System:
Overview and Application. Proceedings of the IEEE International

Conference on Robotics and Automation; San Francisco, USA; 2000,
pp. 618-621.

[2] H. Mayer, I. Nagy, A. Knoll, E.U. Braun, R. Bauernschmitt and R.
Lange. Haptic Feedback in a Telepresence System for Endoscopic
Heart Surgery. MIT PRESENCE: Teleoperators and Virtual Environ-

ments ; MIT press, vol. 16, no. 5, pp. 459-470, 2007.
[3] J.Takamatsu, T. Morita, K. Ogawara, H. Kimura and K. Ikeuchi.

Representation for Knot-Tying Tasks. IEEE Transaction on Robotics;
IEEE Robotics and Automation Society, vol. 22, no. 1, pp. 65-78,
2006.

[4] P. Hynes, G. Dodds and A. Wilkinson. Uncalibrated visual-servoing
of a dual-arm robot for MIS suturing. In: Proceedings of the IEEE In-

ternational Conference on Biomedical Robotics and Biomechatronics;
Pisa, Italy; 2006, pp. 204-209.

[5] M. Kitagawa, A. Okamura, B. Bethea, V. Gott and W. Baumgart-
ner. Analysis of suture manipulation forces for teleoperation with
force feedback. In Proceedings of the Fifth International Conference

on Medical Image Computing and Computer Assisted Intervention

(MICCAI), T. Dohi and R. Kikinis (Eds.), Lecture Notes in Computer

Science; Springer-Verlag, vol. 2488, pp. 155-162, 2002.
[6] H. Mayer, I. Nagy, A. Knoll, E.U. Braun, R. Lange and R. Bauern-

schmitt. Adaptive Control for Human-Robot Skilltransfer: Trajectory
Planning Based on Fluid Dynamics. Proceedings of the IEEE Inter-

national Conference on Robotics and Automation; Rome, Italy; 2007,
pp. 1800-1807.

[7] K. Ogawara, J. Takamatsu, H. Kimura and K. Ikeuchi. Estimation of
Essential Interaction from Multiple Demonstrations; In Proceedings

of the IEEE International Conference on Robotics and Automation;
Taipei, Taiwan; 2003, pp. 3893-3898.

[8] M. Matarić. Sensory-Motor Primitives as a Basis for Learning by
Imitation: Linking Perception to Action and Biology to Robotics.
Imitation in Animals and Artifacts, K. Dautenhahn and C. Nehaniv,
editors; MIT Press, Cambridge, MA, 2002, pp. 392-422.

[9] S. Schaal, A. Ijspeert and A. Billard. Computational Approaches to
Motor Learning by Imitation. Philosophical transactions of the Royal

Society of London, series B; vol. 358, no.1431, pp. 537-547, 2003.
[10] A. Ijspeert, A. Crespi and J. Cabelguen. Simulation and Robotic Stud-

ies of Salamander Locomotion. Applying Neurobiological Principles
to the Control of Locomotion in Robots. Neuroinformatics; vol. 3, no.
3, pp. 171-196, 2005.

[11] M. Okada, K. Osato and Y. Nakamura. Motion Emergency of Hu-
manoid Robots by an Attractor Design of a Nonlinear Dynamics.
Proceedings of the IEEE International Conference on Robotics and

Automation; Barcelona, Spain; 2005, pp. 18-23.
[12] J. Decuyper and D. Keymeulen. A Reactive Robot Navigation Sys-

tem Based on a Fluid Dynamics Metaphor. Proceedings of the 1st

Workshop on Parallel Problem Solving from Nature (Lecture Notes in

Computer Science); Springer-Verlag, vol. 496, pp. 356-362, 1990.
[13] J. Kim and P. Khosla. Real-time Obstacle Avoidance Using Harmonic

Potential Functions. IEEE Transactions on Robotics and Automation;
vol. 8, no. 3, pp. 338-349, 1992.

[14] J. Hess. Review of Integral-Equation Techniques for Solving Potential-
Flow Problems with Emphasis on the Surface Method. Computer

Methods in Applied Mechanics and Engineering; vol. 5, pp. 145-196,
1975.

[15] Y. Zhang and K. Valavanis. A 3-D Potential Panel Method for Robot
Motion Planning. Robotica ; vol. 15, no. 4, pp. 421-434, 1997.

[16] S. Waydo and R. Murray. Vehicle Motion Planning Using Stream
Functions. Proceedings of the IEEE International Conference on

Robotics and Automation; Taipei, Taiwan, pp. 2484-2491, 2003.
[17] K. Dixon and P. Khosla. Trajectory Representation Using Sequenced

Linear Dynamical Systems. Proceedings of the IEEE International

Conference on Robotics and Automation; Barcelona, Spain; 2005, pp.
3925-3930.

[18] T. Chung. Computational fluid dynamics. Cambridge University Press,
New York, USA, 2002.

[19] T. Griebel, T. Dornseifer and T. Neunhoeffer. Numerical simulation
in fluid dynamics. A practical introduction. SIAM Monographs on

Mathematical Modeling and Computation (3); Society for Industrial
and Applied Mathematics, Philadelphia, USA, 1997.

265

