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Abstract— The fundamental basis of any cognitive system
is perception - all reasoning is based on it. In the past,
a lot of research has been done to achieve a sophisticated
environment model. However, most of the approaches are
based on geometrical reconstruction, which is not sufficient
for several scenarios. In this paper, we investigate image-based
localization and environment modeling to provide a robust and
accurate perception from a single camera. Experiments furnish
proof for high pose accuracy and realistic modeling. Further,
some application scenarios and preliminary results within these
applications are presented.

I. INTRODUCTION

Cognitive systems need an appropriate model of their
environment in order to act and execute tasks. For path and
motion planning, purely geometric models are usually used
which bear information about the distances of objects of
interest or obstacles and thus help to avoid collisions. For
some tasks, it is not only the geometry of the environment
but also its appearance which plays an important role. An
image based mismatch detection, e.g., is less complex in
2D as a full search in cartesian space. A common approach
for environment modeling in computer graphics is to map
textures onto triangles of a mesh-based geometry model
of the scene. The texture might be chosen view-dependent
which enhances the authenticity of such models. However, it
requires sophisticated and computationally expensive meth-
ods like raytracing to model translucent or reflective objects
in a realistic way. Image-based rendering techniques ([1])
turned out to be very suitable for the photorealistic modeling
of such objects because computational complexity does not
depend on the properties of the environment. A densely
acquired set of images is stored and used together with
approximate geometry information in order to predict virtual
images in a given viewpoint space. Taking this set of images
as a reference model, future observations of one or multiple
cognitive systems can be stored if changes in the environment
happen so that the model can be updated at any time.

To allow image-based model generation out of a set of
images, the exact pose of the camera for each image has
to be known. In the past, many different approaches have
been developed to estimate a robot’s pose. Most of them are
based on laser range sensors, because of its high accuracy
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and the fact that the required data is directly obtained with-
out cumbersome preprocessing. However, there are several
disadvantages using lasers. First of all, you are using an
active sensor emitting laser rays, which makes the use within
a human environment questionable. The robustness of the
laser depends on the environment: the rays can be reflected
by specular surfaces or go through objects made out of
glass. Concerning a kitchen or also a factory environment,
you usually have to deal with such surfaces and, at least in
the kitchen, also with humans. Further, there are two other
advantages using images for localization: we can use the
same sensor as we use for the image based modeling and
the error of the localization correlates with the error of the
modeling algorithm from image data.

To this end, we present in this work a robust localization
algorithm, which is applied to a novel probabilistic approach
for image-based view synthesis. Unlike other methods in
literature, our localization scheme does not require explicit
markers in the environment. Experimental results show that
this combination allows for photorealistic prediction of the
appearance of a cognitive robot’s environment which can
serve as a reference for the current observation. By this,
cognitive processes like the generation of visual surprise
triggers can be supported.

Hence, we are dealing with several fields of research. We
reference related work in the respective sections.

The remainder of this paper is structured as follows. In
Section II, we present our algorithm for visual camera local-
ization. Section III describes a novel probabilistic approach
for image-based view synthesis. Before we conclude this
work, we present in Section IV some experimental results
and outline the integration of our module into the demon-
stration scenarios envisioned in the cluster of excellence
CoTeSys.

II. VISUAL LOCALIZATION

A lot of research has been done within the field of visual
localization to speed up and to increase the accuracy of
image-based pose estimation. In this chapter, we describe
an accurate and real-time capable algorithm to estimate the
position of a camera within a monocular image sequence.
Therefore, we use only the calibrated images without any
external references as for example artificial markers or the
dimensions of a known object in the world. We show how
we enhance and combine state of the art algorithms to solve
the visual localization problem.



A. Feature tracking using an extended KLT tracker

To localize a robot in the world from an image sequence,
you first have to recognize the motion of the world in
that video stream. In the last years, several different kinds
of trackers have been developed. Blob-, line-, edge- and
point-tracker and several combinations of these, but also
more uncommon methods, as for example trackers of local
energy (by the phase discrepancy in the spectral range of an
image [13]) or support vector tracker ([14]).

Due to its speed and its robustness, the Kanade-Lucas-
Tomasi (KLT) tracker ([9], [10], [11], [12]) is supposed to fit
our requirements best. However, if you apply the convolution
kernels to the whole image, you are not able to process VGA
images (640x480 pixels) in real-time (25 Hz). Therefore, we
enhanced this tracker by several features. The most important
and processing-time saving improvements are:

1) Limitation of the image processing routines to small
patches around the features to track. Therefore, we
compared the run time of three different implemen-
tations:
• the default way, where the entire image is pro-

cessed,
• a definition of regions of interests (ROIs) around

the features within the image and processing only
these parts of the image and

• a patch-based alternative, where instead of pro-
cessing within the entire image, new subimages
around the ROIs are used as the new input to
the orignal KLT. As relation to the prior image,
only the position of the patch within that image is
stored.

Tests have shown, that if you track just a few features
in large images, then the patch alternative is the more
time efficient one. The ROI implementation is always
slower than either the standard or the patch method.
The processing time of the various KLT variants are
compared in Table I (Section IV).

2) Linear feature propagation: The first derivative of the
feature motion is saved and in the next step it is added
to the propagated search window. This allows for fewer
tracking iterations and larger feature displacements
between the images. Further, the size of the ROIs
(patches) can be reduced.

3) We also introduced the Intel®’s Integrated Performance
Library1 (IPP) routines and achieved a speed up of
about 200 times for the convolution functions.

B. Finding stereo correspondences for KLT features

Due to the fact that we use a monocular camera, but work
without any markers and we also do not know the exact size
of one or more objects in the image, we need a stereo camera
system to get the scale of the translation. This is the only
reason why we use a second camera - the whole localization
algorithm and all the other algorithms described in the next

1http://www.intel.com/cd/software/products/asmo-na/eng/302910.htm

sections are based on a monocular video stream. If the exact
scale is not needed the second camera is not needed.

W.l.o.g. we assume that the left camera is our main
camera, where the features are tracked. The right camera has
only supporting purpose, namely to calculate the distance of
the points from the camera, as it is necessary to provide
the exact scale for the localization algorithm (see Section
II-C). To find the stereo correspondences, we use again the
KLT tracker to select good features to track in both images.
Then we apply the tracker to search for matches of the left
features in the right camera. Therefore, the tracker does not
check every pixel along the epipolar line like it is proposed
in [16] but only at the locations found by the prior applied
select-good-feature algorithm ([11]) in a small band around
the epipolar line. This select-good-feature method, proposed
for KLT tracking, is not designed to be a good detector in
the sense of re-detect the same features in an other image.
Mostly not the same points are found, but usually the points
are quite close to the real correspondences. Increasing the
number of interesting features in the right image and using
them as starting points for the KLT tracker leads to a subpixel
accurate and fast stereo matching method. Of course this
method works only as long as there is a not too large affine
transformation between the feature windows. This is not the
case in a stereo image pair, where the cameras are mounted
parallel on a rig.

C. RVGPS: robustified motion estimation between two im-
ages

Knowing the optical flow for some features, you can
estimate the motion of the camera with respect to the world
coordinate system. In the past, several algorithms have been
developed to calculate the extrinsic parameters of an image
sequence. First of all, various point algorithms, especially the
8- ([16]) and 5-point ([15]) algorithm have to be mentioned
as maybe currently the most popular ones. Other basic
approaches are the iterative methods as the 3-point algorithm
([17]), vision-based GPS (VGPS - [18], [19]) or bundle
adjustment algorithms ([16]).

We use VGPS for our processing, due to its low com-
plexity and its speed. VGPS estimates the transformation
between the current and a reference image. Thus, no bias is
accumulating as it would be the case in stepwise approaches.
Someone may now think that there will be uncertainties, if
we use a tracker, which tracks the features between images
and if we estimate the transformation refering to a “far”
distant reference. Tests have shown, that the KLT tracker
drifts only little over time. Even after a large movement
of the camera. Figure 1 shows some patches, as described
in Subsection II-A, during a camera motion from different
viewpoints. Even if we apply large camera movements, the
affine distortion can be recognized very well in the whole
patches. The center of the feature is drifting only up to 2
pixels from the original point. Our algorithm can deal with
large affine distortions, keeping the error small enough for a
robust pose estimation, while the underlying tracker is still
fast enough to track in real time.



(a) Patch 17 in the images 4, 635, 718 and 827.

(b) Patch 30 in the images 4, 635, 718 and 827.

Fig. 1. These two patch sequences are taken from the same image stream
and illustrate the affine transformation due to varying point of views. After
the whole movement the center of the KLT patch drifts about one pixel,
which is small enough for a robust pose estimation.

Nevertheless, some enhancements have been added to the
VGPS algorithm to react to bad features, like occlusions,
disocclusions and virtual features, which every tracker has to
deal with. We use a least-squares M-estimator to minimize
the absolute error, which is the difference between the new
feature position in the image and the reprojection of the
old position by the estimated transformation. This outlier
detection is not only used to weigh them, but also to mark
them as invalid and to exclude them from tracking. This
prevents these features to have a too large influence on the
pose estimation because the position is always calculated
with respect to the first frame. The error caused by these
features becomes irrelevant after the camera has performed
a significant translation (see 4(b)). This yields to a bias free
pose estimation.

Obviously, the initial feature set gets lost after some time,
because the features leave the field of view of the camera.
Every time the amount of trackable features drops under
a defined threshold, a new feature set becomes initialized
using the stereo images. Such a re-initialization can not be
done in real-time and takes a few seconds depending on the
number of features and the size of the image. Therefore, it
is swapped to a parallel thread. After the initialization thread
has terminated, the features are projected to the current image
by the transformation accumulated since the start of the
thread.

Due to the fact that the motion estimation is ill condi-
tioned, if all features lie within a small area of the image, the
centroid of the feature point cloud and its projection on the
image plane are calculated. In case that the centroid leaves
a specified inner area of the image, the initialization of a
new feature set is triggered even if enough features are still
trackable.

The old feature sets and their centroids are saved in
a history and the reprojection of their centroids on the
current image is used to determine which set allows the best
conditioned motion estimation. If it is an other set than the
currently active one, its features are projected on the image
plane and are tried to track. Thus, the bias accumulated with
each new feature set becomes removed moving backward
and in the case the camera is returning to its origin, even on
a different trajectory, the bias becomes zero again.

D. Summary of the visual navigation algorithm

Below you find a summary of the steps executed by the
algorithm:

1) Selection of good features to track.
2) Estimation of the real distance of the features using a

stereo camera.
3) Tracking the features from image to image.
4) Localization using robustified VGPS (RVGPS) and

removing bad features (mismatches and wrong corre-
spondences) as suggested by RVGPS.

5) If features are moving out of the image or not enough
features could be tracked, the current feature set is
saved and step 1 and 2 are executed again.

6) In each step it is checked if the centroid of any feature
set in the history is closer to the center than the centroid
of the current set. If yes, then the current set is saved
and the old feature set is used. Jump to step 3.

III. IMAGE-BASED VIEW PREDICTION

One type of image-based scene representation that recently
has become very popular uses view-dependent geometry
and texture. Instead of computing a global geometry model
which is valid for any view point and viewing direction,
the geometry of the scene is estimated locally and holds
only for a small region in the viewpoint space. It has been
shown that this approach is suitable especially when the
scene contains specular and translucent objects. Hence, view-
dependent geometry is the basis for our algorithm which
is described in this section. In the following, the term
“reference image” denotes the left image of a captured stereo
pair.

A. Per-pixel depth maps and view selection

In order to predict novel virtual views from captured image
data, correspondences between the pixels in the reference
images have to be established. Hence, for each reference
image, a depth map is calculated, which for each pixel stores
the distance of the scene with respect to the camera (z-
coordinate in local camera coordinate system). In order to
handle occlusions, we select multiple left images from other
stereo pairs for intensity matching. A matching cost volume
is calculated like in [2] with multiple left images from other
stereo pairs and their pose information from Section II.
Loopy belief propagation [3] then minimizes the matching
cost globally and yields the most probable depth value for
each pixel, assuming that the scene is smooth between depth
discontinuities. Fig. 2 shows a reference image (left) together
with the computed depth map (right). The depth map is
illustrated by a grayscale image where high intensity values
represent near scene points and low intensities far scene
points. A triangulated mesh is reconstructed from each depth
map and simplified with the algorithm in [4] for fast view
synthesis.

Each time a virtual image is synthesized only a small
subset of all reference images contributes to view interpo-
lation. In real-world environments most surfaces are non-
Lambertian which means that the reflected intensity depends



Fig. 2. A reference image (left) together with its computed depth map
(right). High intensity values represent scene points which are near to the
camera, low intensities correspond to far scene points.

on the position of the viewer. Hence, in our approach, the
reference cameras are ranked in terms of their orthogonal
distance with respect to predefined rays within the viewing
frustum of the virtual camera. Before a new frame is ren-
dered, the seven closest ones are selected.

B. View synthesis

Novel virtual views are synthesized in a two-pass proce-
dure. In the first rendering pass, the color data of the se-
lected reference images which is associated with the triangle
vertices of the view-dependent meshes is warped into the
virtual view. Pixels that lie inside the projected triangles are
interpolated from the color values at the corners. The second
rendering pass then determines the final color of each pixel
in the virtual view. Common approaches like in [5] and [6]
use pose information and geometry cues like normal vectors
in order to calculate deterministic interpolation weights so
that the final color is a weighted sum of the reference color
data. However, since it is still a challenging task to recover
the correct scene geometry with state-of-the-art computer
vision methods, a view synthesis scheme has to deal with
erroneous correspondences between the images and with the
uncertainty about the true color value at a given pixel in the
virtual image.

We present in this work a novel approach for view
synthesis which infers probabilistic models for the single
pixel colors in the virtual image. It is assumed that the
warped color values of the reference images are data samples
X = [x1,x2, . . . ,x7] which are independently drawn from a
Gaussian distribution whose mean value µ is identical to the
true color value at the respective pixel in the virtual view. Fig.
3 illustrates this in case of four selected reference cameras.
Each sample is a RGB-tripel xk = [xR,k, xG,k, xB,k]T , k =
1, . . . , 7 which results in a likelihood function for a multi-
variate Gaussian distribution

p(X | µ,Σ) = (1)

=
7∏

k=1

1

(2π)
3
2

1∣∣Σ∣∣ 12 exp
{
− 1

2 (xk − µ)T Σ−1 (xk − µ)
}
.

Σ = E
[
(xk − µ) (xk − µ)T

]
is a 3×3 covariance matrix

and
∣∣Σ∣∣ denotes its determinant. Here, E [·] is the expectation

of a random variable.
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Fig. 3. View synthesis: The pixels of the virtual image are predicted from
a set of reference images. The color values from the reference images are
assumed to be samples from a Gaussian distribution whose mean is the true
color value.

The task of the second rendering pass is to find an accept-
able estimate for the true color value µ. A common method
to determine the parameters of a probability distribution
from sample data is maximum-likelihood (ML) estimation.
The goal is to calculate the values µML and ΣML from
the sample data which maximize the log-likelihood function
ln p (X | µ,Σ). It can be shown that the ML estimate of the
mean is obtained by

µML =
1
7

7∑
k=1

xk (2)

Thus, the estimated color value at a given pixel position in
the virtual image is the arithmetic mean of the pixels colors
from the seven reference images.

C. Relevance for cognitive processes

For pure view synthesis, the covariance of the sample
data is of minor importance and thus is not computed.
However, it bears information about the uncertainty about
the predicted color and therefore is important for cognitive
processes like surprise detection. In [8] we show that if
the set of samples X is augmented by a sample provided
by the currently captured image, which is the observation
of a cognitive system, surprise can be quantified by the
difference between the prior and posterior distribution over
the covariance. As shown in [7], surprise is a crucial cue
for the direction of human attention to unexpected events.
In cognitive systems surprise influences belief states about
the environment and action plans in unforeseen situations.
Image-based modeling provides a way to rapidly generate
pixel-wise surprise triggers which can be further processed
by other cognitive instances of a technical system.

IV. RESULTS

In principle, our module for visual camera localization and
image-based environment modeling can be integrated into
any demonstration scenario in CoTeSys. In this section, we
show some test results of our visual navigation algorithm and



the visual output obtained from our image-based modeling
technique applied to a household scene.

In our studies, we use a KLT-package provided by Stan
Birchfield at the Clemson University2. Table I compares the
processing time of the various KLT implementations (see
section II-A). For this test, an AMD® Athlon(tm) 64 X2
Dual Core Processor 3800+ has been used. The result is the
mean of 100 tracking runs using 7x7 pixel features. You can
see that the processing time of the patch variant does not
depend on the image size, while the overhead to extract the
patches increases proportionally to the number of features.
If there are too many features to track, the processing of
the whole image is preferred to prevent that the same image
regions of adjacent patches are processed multiple times.

image size 320x240 640x480
search range 3 10 3 10
# features 50 150 50 150 50 150 50 150
whole image 22 38 34 59 75 100 110 140
ROIs 17 41 44 99 45 69 91 160
patches 15 46 55 164 15 47 56 170

TABLE I
PROCESSING TIMES (IN MS) OF THE VARIOUS KLT-VARIANTS.

Figure 4 illustrates the results of the visual navigation
algorithm (see Section II-C) using images from a 25 Hz
VGA video stream. In Figure 4(a) the estimated orientation
becomes compared to ground truth, which are the poses of
the robot. In Figure 4(b) the translation error is displayed. In
the right figure the algorithm detects and removes wrong
initialized features as soon as their error becomes large
enough. Thus, a robust pose estimation is provided.
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Fig. 4. These figures show the results of a ground truth test, where a camera
has been mounted on a high precision KUKA robot. Figure 4(a) shows the
orientation measured by the robot (red) and the rotation estimated by the
presented algorithm (blue).

For the assistive household scenario in CoTeSys, we
envision the acquisition of an image-based model of a typical
household environment, which is the basis for cognitive
processes like visual surprise detection. Figure 5 (left) shows
the acquisition of a set of images with a stereo camera
head (640x480 pixels) mounted on a Pioneer 3-DX robot
during AUTOMATICA 2008. The robot went along an
approximately circular trajectory around a table set with
household objects like glasses, plates etc. with the stereo
camera looking towards the objects and capturing 213 pairs

2http://www.ces.clemson.edu/˜stb/klt/

of images. The set of images was subsampled by a factor of
two and processed as described in Sections II and III.

Fig. 5. (Left): Acquisition of a set of images with a stereo camera head
mounted on a Pioneer 3-DX. (Right): A virtual image rendered from selected
reference images. The virtual camera is placed at a position where there is
no real camera.

Figure 6 shows two screenshots of the visual navigation
algorithm where the tracking and pose estimation results are
visualized. The yellow squares are the propagated feature
positions, while the small yellow circles are the reprojections
of features according to the estimated position and their 3D
structure. The red circles stand for the currently tracked
features. If there are yellow squares without any circles it
means, that these are bad features which could not be tracked.
The large circle illustrates the projection of the centroid of a
feature set. Somewhere between Figure 6(a) and Figure 6(b)
the feature set has changed, because the features moved out
of the image. The white circles at the left border of Figure
6(b) stand for the reprojection of the old feature set.

(a) Screenshot image 89 (b) Screenshot image 146

Fig. 6. These are screenshots of the visual navigation algorithm applied
to the image sequence, which is also used for the image based environment
modeling (see Section III).

The visual localization results for that image sequence are
illustrated in Figure 7. The time slots where the camera
images could not be stored on the hard disk due to the
swapping mechanism, can be easily detected as white gaps
in the trajectory. However, swapping does not affect the
accuracy of the used algorithm.

A virtual image rendered from several reference cameras
with the view synthesis algorithm described Section III is
depicted in Figure 5 (right). Note that the virtual camera was
placed at a position where no real image had been captured
during acquisition. The objects of interest on the table,
including the two glasses, are predicted in a photorealistic
way.

The left image in Figure 8 illustrates the poses of some
reference cameras which were estimated with our visual
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Fig. 7. 3D-plot of the localization results, which where used for the model
generation in Section III. The pioneer was programmed to drive a quarter
circle around the scene.

localization method in Section II. The reference cameras
are represented by a part of their viewing frusta. The seven
colored cameras are the ones which were selected with our
view selection method in Section III whereas the white ones
are not involved in the prediction of the virtual image shown
in this figure. The photorealistic virtual view is largely free
of visual artifacts which emphasizes that the accuracy of the
localization data is acceptable for image-based modeling.
The right image in Figure 8 shows a close-up view onto
the objects of interest. Thus, even if the position of the
virtual camera is chosen far off the trajectory of the reference
cameras, acceptable predictions can be achieved with reliable
geometry estimates.

Fig. 8. (Left): A virtual image which shows apart from the scene some of
the reference cameras which are depicted by a part of their viewing frusta.
The colored reference cameras are chosen by the view selection algorithm
and contribute to rendering this virtual image. (Right): A close-up virtual
view onto the objects of interest.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an approach for image-based
environment modeling for cognitive technical systems. A
novel visual localization technique working on stereo im-
ages is applied to a probabilistic approach for image-based
view synthesis. Experimental results show that this method
provides photorealistic predicted images, even in challenging
real-world household environments with glasses. Further-
more, we outlined the possible integration of our work into
the demonstration scenarios in CoTeSys.

Even though the visual localization is quite accurate and
robust, we still have many ideas how to improve its modules.
There are also some plans to integrate the image-based
view prediction in the popular player/stage/gazebo-project3.

3http://playerstage.sourceforge.net/

Further, we want to build a better geometric model to provide
an object segmentation in the 3D space. Combined with the
visual representation of the world, this is supposed to lead
to a human like, domain independent basis for every high
level module as for example a surprise trigger or object
classification.
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