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Abstract— This paper presents a concept of a smart working
environment designed to allow true joint-actions of humans
and industrial robots. The proposed system perceives its envi-
ronment with multiple sensor modalities and acts in it with an
industrial robot manipulator to assemble capital goods together
with a human worker. In combination with the reactive behav-
ior of the robot, safe collaboration between the human and the
robot is possible.Furthermore, the system anticipates human
behavior, based on knowledge databases and decision processes,
ensuring an effective collaboration between the human and
robot. As a proof of concept, we introduce a use case where an
arm is assembled and mounted on a robot’s body.

I. INTRODUCTION

The state-of-the-art in human-robot collaboration is mainly
based on a master-slave level where the human worker tele-
operates the robot or programs it off-line allowing only static
tasks to be executed. To ensure safety, the workspaces of
humans and robots are strictly separated in time or in space.
For instance, in the automobile industry, human workers are
completely excluded from the production lines where robots
execute assembly steps. On the other hand, robots are not
integrated in assembly line manufacturing along with human
workers.

These approaches do not take advantage of the potential
for humans and robots to work together as a team, where
each member has the possibility to actively assume con-
trol and contribute towards solving a given task based on
their capabilities. Such a mixed-initiative system supports a
spectrum of control levels, allowing the human and robot to
support each other in different ways, as needs and capabilities
change throughout a task [1]. With the subsequent flexibil-
ity and adaptability of a human-robot collaboration team,
production scenarios in permanently changing environments
as well as the manufacturing of highly customized products
become possible.

A. Motivation

To enable an effective collaboration, recent research in
the field of psychology has focused on cognitive processes
of joint-action among humans [2]. Psychological studies
[3] show that in collaborating human teams, an effective

coordination requires participants that plan and execute their
actions in relation to what they anticipate from the other team
member, and not just react on the other’s current activities.
Hence, for an efficient human-robot team, this knowledge
needs to be transfered to a given set-up. The benefit of
anticipatory action in a human-robot context is shown in [4],
where a significant improvement of task efficiency compared
to reactive behavior was possible. Following [5], a common
representation of human and robot capabilities has to be
found, because it is important for a collaborating team to
know the skills of the other partner in order to assign certain
difficult tasks according to specific skills correctly.

This work aims to integrate industrial robots in human-
dominated working areas using multiple input modalities to
allow a true peer-to-peer level of collaboration. Thus, a smart
working environment for joint-action between a human and
an industrial robot is presented as an experimental set-up
consisting of various sensors monitoring the environment
and the human worker, an industrial robot, an assembly line
supplying the manufacturing process with material and tools,
and a working table.

B. Related Work

Human-Robot collaboration using peer-to-peer approaches
has lately become one of the central research issues in
robotics.

[6] presents KAMARA a human-robot team using a multi-
agent control architecture. Their mobile system was built
up with a two-arm-manipulator and an overhead-camera. A
proactive collaboration based on the recognition of intentions
is described in [7]. Intention can be considered as a state of
mind of the human that can not be measured directly. But
vice versa, human action is a result of intention. Therefore
[7] use Dynamic Bayesian Networks (DBNs) to deal with
these uncertainties. [8] presents a cognitive architecture for
a humanoid robot to allow it to interact with a human
in a kitchen scenario. This architecture is organized in a
hierarchical way, using three layers that specify the behavior
of the robot in various situations. Leonardo [9] is a fully-
embodied humanoid robot with social skills that enable the



robot to learn and collaborate effectively in human settings.
Mel the robotic penguin [10] acts as a host for a research
lab, guiding visitors through the demonstration of a research
prototype. The NASA peer-to-peer human-robot interaction
system [11] is designed to allow humans and robots to
collaborate on joint tasks: cooperation in this system mainly
takes place when one agent asks another for help while
dealing with a situation. The approach in [12] describes a
scenario where a human and a robot system with two robotic
arms build together a wooden model of an aircraft using an
cognitive architecture divided into the high-level components
input, interpretation, representation, reasoning, and output
with several functional modules.

C. Organization of the Paper

The remainder of this paper is organized as follows:
Section II describes in detail the system set-up and its
high-level architecture. Section III gives an overview of the
hardware and the used input modalities. The demonstration
use case is specified in Section IV. Section V concludes the
paper.

II. THE COGNITIVE SYSTEM

A. Demonstration Scenario - The Cognitive Factory

As defined in [13], cognitive systems follow longterm
goals, e.g. to reach a destination by autonomous driving or
the assembly of a product. Furthermore, a cognitive system
perceives its environment via sensors, processes the sensor
input and reacts to situations based on knowledge in an
appropriate way. This behavior is achieved by closing the
cognition loop Perception, Cognition and Action as depicted
in Figure 1.

Perception Action

Cognitive Skills

Cognitive System

Interfaces to the environment

Fig. 1. Definition of cognitive systems using a closed loop of perception,
cognition using cognitive skills, and action

One demonstrator of such cognitive systems in the
CoTeSys-cluster is the Cognitive Factory [14] consisting of
an automatic assembly station (project CogMaSh - Cognitive
Machine Shop), purely human dominated assembly (project
ACIPE - Adaptive Cognitive Interaction in Production Envi-
ronments [15]) and hybrid assembly presented in this paper
(project JAHIR - Joint Action for Humans and Industrial
Robots). The benefits of all three assembly systems will
be combined in later stages of expansion of the Cognitive

Factory to support more effective manufacturing of a range
of products.
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Fig. 2. Overview of the high-level architecture that enables joint action
using multimodal observation cues. The light grey boxes represent the
interfaces to the “real world”. The dark gray boxes are the knowledge
databases. The white boxes are the parts that enable together with the
knowledge databases cognitive skills.

B. Definition of the high-level architecture

The high-level architecture was defined according to
research results of cognitive neuro-scientists covering the
aspects of successful joint action: joint attention, action
observation, task sharing and action coordination [2]. In
the following sections we will explain in detail the defined
modules that can cover these aspects.

Figure 2 shows the modules of the defined JAHIR archi-
tecture and their connections among each other to realize
joint action between human and robot.

1) Joint Attention: For cooperation between robot and
human, it is important that both partners coincide on the
same objects and topics and create a perceptual common
ground and shared representation [2]. That means that the
system has to be able to know where the human’s focus-
of-attention is. The focus-of-attention can be extracted from
data gained by visual sensor devices (cameras) using tracking
techniques (e.g. [16]) or from data gloves [17]. Therefore, the
system needs to recognize e.g. a gesture as pointing gesture,
compute the location indicated by the human worker and then
transform this information to estimate his focus-of-attention.
Thus, an internal system representation of the environment
is needed that is always kept up to date with information
from the sensors (workspace model).

In addition to pointing gestures, the head orientation of the
human worker can be used to compute his focus-of-attention.
According to behavioral studies [18], the head orientation is
directly connected to the human’s focus-of-attention. Getting



the information about the head orientation can be done e.g.
with tracking techniques using mutual information presented
in [19].

The extraction will be done in the module focus-of-
attention that loops back to the sensors to give directly
control commands to a pan tilt unit to follow the human’s
focus-of-attention. Related work using attention has been
done e.g. in [20], [21].

Joint attention implies that the both partners coincide on
the same objects. In the current production scenario, these
objects are the parts and tools that might be used. This
knowledge is stored in the database Known Objects. To
recognize objects a template based approach is used in the
module Object Recognition.

2) Task Sharing: To manage a predefined goal, in this
case the assembly of a product, the robot-system needs to
know about the task in the production process as well as the
human worker along with skill rated steps. Therefore, the
representation of the tasks should be as generic as possible to
be able to change the role allocation dynamically even during
the production. The knowledge of the building steps, plans,
and skill primitives is represented by the database module
Building Plan which is part of the high-level architecture
depicted in Figure 2.

3) Action Observation and Coordination: All information
perceived by the sensors builds up an internal representa-
tion of the working environment, the workspace model. In
addition to the perceived data, the workspace model may
also carry information of the inventory (e.g. how much parts
are stocked), the assembly line (e.g. which part is on the
assembly line), and the worktable (e.g. information where
parts that are already in use can be placed).

This information is used in the decision making process
(Decision Maker) to decide the next action step along with
the knowledge about the task from the Building Plan module,
the sensor information, and the extracted features (e.g. the
focus-of-attention). The system has to start the execution
of the likeliest next step in order to reach a anticipatory
behavior that is important for efficient collaboration. If new
sensor-input changes the situation and thus the decision, the
system needs to change its behavior seamlessly.

To control the movement of the robot (module Motion
Control), real time control of the robot is needed. Because
the robot and the human worker share the same work space,
the movements of the robot cannot be programmed off-line
for safety reasons. After starting to execute the next step
twoards reaching the assembly goal, the robot has to be aware
of obstacles (e.g. the human worker’s hand, body, or arm)
and react in such situations in real-time to avoid collisions
with them. In Figure 2 this reactive behavior is represented
by the direct connection of the Sensors module to the Motion
Control of the robot.

C. System Architecture and Implementation

JAHIR uses a distributed system architecture divided into
the modules presented in the preceding section with several
submodules categorized in perceiving (sensors), cognition

(knowledge database, processing units, and state-machine)
and actuator modules (robot-control and User-Interfaces).
Since the image-processing modules require a lot of com-
puting power and controlling the robot on-line requires
commands on a 7ms timing cycle, the system modules are
divided among multiple computers. Communication between
these modules is realized with the middleware ICE - Internet
Communication Engine [22].

Fig. 3. Simulation of the experimental set-up

D. Knowledge and its Representation

As mentioned in Section II-B.2 the system needs to
know about or be able to learn the assembly plan. It is
also important to know what tools are available and what
objects can be used on. This domain and task knowledge is
represented in a first order logic in a knowledge database.
Additional information perceived from the different sensors
is also stored in the database for further reasoning purposes.
For recognized containers on the workbench, information
about their color, location, content and remaining number of
parts are recorded as can be seen in this PROLOG-example
code:

container(red, 44, 44, ’nuts’, [12]).
container(blue, -9, -4, ’screws’, [10]).

The system observes the humans activity within the shared
workspace with multiple sensors and collects information
about the current context. In combination with the knowledge
about the next assembly steps, the system has a basis on
which anticipation can be realised. An example is that the



system has perceived that a certain part has been taken by
the worker and knows that a tool is required for the next
manufacturing step. The system can then try to locate this
tool and, if successful, grab it and hand it over to the human.
Combined with knowledge about the worker’s current focus-
of-attention, it might be necessary to attract his attention to
the handover position. An example of retrieving what part
has been grabbed by the user is given below:

gesture(grabbing, 42.72127, 45.55154).

taken(PART) :-
gesture(grabbing, XG, YG),
container(C, XC, YC, PART, [A]),
abs(XG-XC)<5,
abs(YG-YC)<5,
A>0,
A2 is A-1,
retract(container(C, XC, YC, PART, [A])),
assert(container(C, XC, YC, PART, [A2])),
assert(taken(PART)),
nl.

taken(’nuts’).

container(red, 44, 44, ’nuts’, [11]).

The sensors detect a gesture at the given example location
XG and YG. The system is trying to find out if the user has
taken a PART and what part he has taken. Therefore, the
gesture has to be of type grabbing and needs to occur close
enough to a container with color C at Position XC and YC.
In addition, the number of parts A in this container has to be
larger than zero. In the presented example the system then
assumes that the part nuts has been picked and the remaining
number of parts in this container is reduced to A2.

III. SHARED WORKBENCH FOR JOINT ASSEMBLY

The set-up of the smart working environment depicted in
the Figures 5 and 4consists of various sensors monitoring the
human worker to anticipate and recognize his behavior and
to be able to react in dangerous and unforeseen situations in
an appropriate way. As assistant to the human worker in the
production scenario, an industrial robot manipulator is used
which has access to an assembly line and can nearly reach
the whole workbench.

The industrial robot manipulator arm used in the set-up
is a Mitsubishi robot RV-6SL. It can pick up objects with a
maximum weight of six kilograms and a can move within a
radius of 0.902 m. Furthermore, the robot is able to change
the currently installed gripper by himself at a station to
choose the one who fits best for the next task.

The following sections summarize the multimodal input
modalities that can be extracted in the experimental set-up:

A. Visual Modality
In total four firewire cameras can be used in the smart

working environment to gain information on the visual

Fig. 4. Shared workspace of human and robot

channel. One camera is mounted close to the tool center
point of the manipulator and can be used for the detection of
known objects and their position in the working environment
to solve tasks including hand-over of parts and tools. To
recognize objects lying on the desk the robot moves in
a predefined position. The known objects are stored as
templates in a database and are used in different scales and
rotations to detect regions-of-interest and classify them using
template-matching [23].

As depicted in 5 the remaining three firewire-cameras
are mounted on a cage that covers the workspace. Camera
I and II are directed from left above and right above to
the workspace. These calibrated cameras can be used for a
non-invasive pose estimation and tracking of the human’s
hands in world-coordinates. The trajectories of the hands
can be used to infer the human’s intention as well as a
safe motion planing for the robot. Camera III is directed
from the front to record the human’s head and estimate its
position and rotation in space with mutual information [19]
to estimate the focus-of-attention. Another possiblity using
Camera III is the adaption of the system to a specific worker
by recognizing specific faces. Examples for adaption are to
offer a well trained worker less support than a newbie to the
system, or to use a different hand-over position for a left-
handed worker. The mounted cameras reveal the possibility
to record the whole production process and use this data for
off-line experiments, training, and the evaluation of adequate
algorithms having always the same conditions.

B. Dataglove for Gestures

For detecting gestures like pointing or grasping, a P5 Data-
glove is available which delivers the coordinates of the hand
as well as information about finger bending. A disadvantage
of this modality is that the accuracy of the position data
is approximately 1 to 2 cm and the hand has to be closer
than 1 meter to the sensor tower. Because a more reliable
location of the hand position is required for the handover,
an extra stereo infrared based marker tracking system with
higher accuracy (0.1 cm) can be used. At the same time,



Fig. 5. Experimental set-up of the JAHIR smart working environment.
Camera I and II are directed to the working table to track the hands of the
human, camera III is directed to the head of the human worker to estimate
its position and rotation.

this more robust tracking enables the observation of a larger
workspace. However, due to working with infrared light the
measurement is very sensitive to sunlight.

C. Photonic Mixer Device

For more complex image segmentation tasks, such as those
needed for vision-based hand tracking or object recognition,
the novel Photonic Mixer Device technology collects depth-
information in real-time. The camera emits infrared light and
measures the time-of-flight to calculate distances from the
camera. It has a resolution of 64 x 48 Pixels at 25 frames
per second. A more detailed description about this sensor
and the used calibration techniques can be found in [24].

D. Speech Recognition

To enable control by voice, a speech recognition module
will be integrated. Starting with a few commands to the
system using a head-mounted microphone to prevent distur-
bances, results of another project (MUDIS: A MUltimodal
DIalogue System for Intuitive Human-Robot Interaction)
dealing with natural dialogues will be considered and in-
tegrated in the JAHIR-setup in the near future leading to a
more natural and intuitive way of communication between
user and robot.

E. Dealing with Data

The realtime-database presented in [25] will be used for
realtime data recording. Currently, this database is used
in cognitive vehicles to record large amounts of sensor
data. Recording the perceived data brings up two major
advantages:

• The recorded sensor-input can be taken for replay or
simulation of certain situations. In addition, the gathered

material can be analysed by humans e.g. to reveal
gestures used in the production process, or to see if
the worker is frightened.

• The data can be used for benchmarking purpose. Dif-
ferent implementations can be tested on the same data
under the same conditions. After the new systems prove
to work better than the old one, they can be used on the
real set-up. The recorded database of sensor data can
also be used by other projects to evaluate their system
in an unknown environment.

IV. USE CASE

The use case of the JAHIR-demonstrator will evolve in
time as the capabilities of the system grow and more results
of related projects will be integrated.

As initial demonstration scenario of joint-action, the as-
sembly of parts of a LEGO Alpha-Rex has been chosen,
inspired by the vision of robots building robots. Furthermore
this product is easy to disassemble and therefore can be
reused for experimental studies. It can also be adapted to
the desired degree of complexity that seems reasonable. The
focus of this use case is the hand-over of work-pieces and
tools from a human to the robot and vice-versa. The assembly
steps of the human worker can be seen in Figure 6.

In the beginning the robot picks the sensor and hands it
over to the human. The same is done with the pre-assembled
arm. The human either knows how to assemble the product
or can retrieve the relevant assembly information from a
display. However, he fetches screws and nuts from containers
located on the table required to connect the sensor to the arm.
The system monitors the human activities via the multimodal
input channels listed in Section III. The system realizes that
a wrench could be useful for the next workstep. The tool is
located by the system and handed over to the worker. The
human fixes the sensor to the arm. Afterwards, the Alpha-
Rex-Body is handed over from the robot to the human. The
arm is mounted to the body and the sensor is connected with
a cable to the core of the Alpha-Rex. The finished Alpha-Rex
is handed over to the robot.

V. CONCLUSIONS

We have presented the design of a joint-action assembly
demonstrator that allows cooperation between humans and
robots in a shared workspace. The main idea of the system
is to enable peer-to-peer collaboration using multiple input
modalities and a cognitive backbone. Efficiency in the col-
laboration can be reached with an anticipatory behaviour of
the robot system which is combined with reactive behaviour
to guarantee safety.
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Fig. 6. Steps of assembling an Alpha-Rex-Arm
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