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Abstract— Minimal Invasive Surgery demands for utmost
precise and reliable camera control to prevent any harm to
the patient during operations. We therefore introduce a robot-
driven camera that can be controlled either manually by a
joystick, or by speech to ensure free hands and feet, and
reduced cognitive workload of the surgeon. Speech control
is chosen as simple, yet highly robust command and control
application. However, due to high stress, and partially fatigue,
emotional factors can play a life decisive role in the operational
situation. As any misunderstanding of the surgeon’s intent
can easily lead to patient injuries by mis-movement of the
camera, emotional factors are integrated in the human-robot
interaction. In this work we therefore discuss the recording
of a 3,035 turns database of spontaneous emotional speech
in real life surgical operations. Known to be a challenge,
we employ a high dimensional acoustic feature space, and
subset optimization for recognition of positive versus negative
emotion for interaction adaptation, surgeon self-monitoring,
and potential adaptation of acoustic models within speech
recognition. Promising 75.5% mean accuracy can be reported
in a cross-operation recognition task given the severe condition
of usage in real medical operations.

I. INTRODUCTION

Laparoscopic surgery as opposed to open surgery offers
distinct benefits as reduced pain, shorter hospitality, and
quicker convalescence to the patients. However, the surgeon
loses direct visual control so that the view of the operating
field has to be displayed on a screen using a laparoscopic
camera. During laparoscopic interventions, a camera as-
sistant usually holds the laparoscope for the surgeon and
positions the scope according to the surgeon’s instructions.
Such kind of operation is inefficient for the surgeon since
commands are often interpreted and executed erroneously
by the assistant. The camera view may be suboptimal and
unstable, because the telescope is sometimes aimed incor-
rectly and vibrates due to the assistant’s hand trembling. For
an acceptable control a certain amount of experience from
the assistant, and a mutual surgeon-assistant understanding
are necessary but usually difficult to obtain. The introduction
of a telemanipulator system for guiding the telescope, in aim
to replace the human assistant, is a significant step toward
the solution of this problem. A user-friendly design of the
human-robot interface to control the telemanipulator thereby
plays an important role in this step.

Nishikawa et al. published another user interface solution
using the real-time visual tracking of a surgeon’s face to

guide the laparoscope [7]. Fast reaction time, high position-
ing accuracy, and easy and intuitive camera guidance are
positive outcomes of an experimental study. However, the
surgeon felt a little fatigue in the cervix from a lot of rolling
face motions [7].

Most laparoscope positioning systems proposed so far use
input devices such as joysticks, foot pedals, and similar
human-robot interfaces. However, this type of interfaces
poses additional burden on surgeons. Furthermore, he already
uses his hands or feet to control a variety of other surgical
tools [5], [14]. Implementation of a voice control interface is
an effective approach to overcome these drawbacks since the
verbal instructions are natural for a human, and the use of
neither hands nor feet is required in controlling the laparo-
scope. Up to now, the voice control interface was introduced
for several laparoscope positioning systems [1], [4], [6].
However, due to long reaction time, limited reliability, and a
user dependent interface these systems could not achieve the
required acceptance. This is in particular true, as the emo-
tional factor throughout operations has been widely ignored.
We therefore developed a novel speech control interface for
the newly designed and produced laparoscope positioning
robot SoloAssistTM (AktorMed, Barbing, Germany).

The specialty of this interface is it’s integration of social
competence by acoustic emotion recognition. In the case
of a confused or angry surgeon the interface initializes a
security callback dialog to certify that the understood camera
direction is correct. Likewise accidental patient injury by
wrong movements shall be reduced. Further, this provides
an affective (self-)profile of the surgeon for his own analysis
or to enable automatic safety-alert functions. Finally, it
allows for acoustic model (AM) adaptation within the speech
recognizer to improve on robustness: Schuller et al. demon-
strated effectiveness of online emotional model adaptation to
overcome typical losses arising from emotionally coloured
speech [12].

The paper is structured as follows: in section II the
robot for the camera control is introduced. Next, in sec-
tion III requirements and realization for Automatic Speech
Recognition (ASR) are discussed. The acoustic features are
explained in section IV, and their reduction to relevant ones
in section V. In section VI we describe the recording of the
SIMIS database of 3,035 speech turns of real operations and
spontaneous emotions for tests of the emotion recognition
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TABLE I
DEFINITION OF THE SPEECH INTERFACE COMMANDS FOR THE

SOLOASSISTTM AND INFLUENCE ON CARTESIAN AND INVARIANT

POINT CONTROL. cw. AND ccw. ABBREVIATE CLOCK-, AND

COUNTERCLOCKWISE, rot. ROTATION, RESPECTIVELY.

Command left right forward backward down up
Cartesian x- x+ y- y+ z- z+
Inv. point tilt- tilt+ cw. rot. ccw. rot. zoom+ zoom-

performance in detail. Finally, we provide results in section
VII, and draw conclusions in section VIII.

II. LAPAROSCOPE POSITIONING ROBOT

The laparoscope positioning robot SoloAssistTM is the
first mechatronic device with a fluid actuation system allow-
ing enhanced power transmission and positioning compared
to other technologies. Integrated pressure sensors for each
actuation permit pushing the system manually at any time
out of the operating field, which is a significant feature for
patient safety. Implementation of nonmetallic materials as
carbon fiber in the upper part of the system with low level
artifacts allows for additional X-Ray applications (c.f. Fig.
1). The SoloAssistTM, resembling to a human arm, has an
extended working range with 360 degrees radius in both
directions of movement, an inclination of up to 80 degrees,
and penetration depth of maximal 250 mm depending on
the current telescope length. The system, with a weight of
18 kg, is simple to dock in various rail positions, and can
be dismantled quickly and easily. A joystick integrated on
a laparoscopic handhold with exchangeable instruments, a
small hand panel, and a foot pedal are used input devices so
far. For an optimal positioning, the SoloAssistTM robot is
calibrated at the trocar point, which serves as a pivot. The
defined invariant point allows the calculation of individual
axial movements for tilting the telescope and performing
circular motion. Furthermore, automatic leveling of the sight
facility on the monitor, regardless of the telescope position,
is permitted.

Fig. 1. The camera positioning robot SoloAssistTM (AktorMed, Barbing,
Germany)

There are two control modes for the SoloAssistTM compared
to other laparoscope positioning systems: one is the common

Cartesian control (x, y, z), which is usually used to set the
trocar point, and the other is the invariant point control,
where the x and y axes are replaced by tilting and circular
motion referring to the invariant point, and the z axis
corresponds to the zoom in and out function of the telescope.
Accordingly, the instructions as depicted in Table I were
defined for the speech control.

The SoloAssistTM runs on a windows operating sys-
tem and the visual programming environment ICONNECT
(Micro-Epsilon, Ortenburg, Germany). On a separate com-
puter the received speech commands from the headset are
processed by passing through the speech recognition soft-
ware as described in section III. Afterwards the filtered di-
rection commands are transmit to the SoloAssistTM control.
We chose the UDP network protocol for fast data transfer
between the two computers. For safety reasons during the
evaluation, the joystick received higher priority, and the
ICONNECT feedbacks the information after receiving the
direction commands. The according information flow is
visualized in Fig. 2.

Fig. 2. Speech control interface for the SoloAssist

III. SPEECH CONTROL

A number of requirements must be satisfied as the camera
is held by a robot as described during invasive operations:

• The ASR engine must be robust: it will work in a
live operation room in which more than one surgeon
may speak at a time, and ambient noise arising from
further medical machines is given. Emotional coloring
of speech clearly needs to be dealt with. As the camera
will be inserted into the patient’s body, any mistake
is not acceptable. Likewise, very high reliability is
demanded from the ASR engine.

• The cognitive workload of the surgeon has to be min-
imized at any time. The user’s mental model of the
speech control has therefore to be kept utmost simple
and intuitive.

• No push-to-talk by manual activation shall be demanded
from the surgeon to keep the hands and feet free as
named, and reduce cognitive workload arising from the
coordination of manual activation and speaking at the
right time. The ASR engine will therefore stay in a
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listening mode, that is open microphone. However, to
avoid confusion with speech directed to assistants dur-
ing operation, we decided for keyword initializing, here.
This means, speech control is activated and deactivated
by speech itself, or automatically deactivated, if no
suiting command is recognized within a set time.

• The ASR engine has to communicate with the robot
in a fast and stable way. Operations are carried out
efficiently and seriously. Long and significantly varying
delays between speech commands and camera move-
ments are non-tolerable.

• The robot possesses two moving modes: a short precise,
and a long distance move. The inserted camera is
mostly used to move short distances, to avoid accidental
injuries. However, the optional fast move improves the
operation’s efficiency. This latter move may not be
confused, accidentally by ASR.

According to these requirements we decided for an ut-
most restrained vocabulary command and control design
with commands as depicted in Table I. At present, ASR is
realized by an HMM recognizer basing on 3 state inner word
phoneme tri-phones with Bakis model topology basing on
MFCC 1-12 plus energy and derived speed plus acceleration
regression coefficients (c.f. section IV). The usage of a
phoneme based recognizer allows for flexible exchange of the
terms to personalize the vocabulary to a surgeon’s preference.
The AM is trained on the WSJ corpus [8] and adapted
by the SIMIS database as introduced in VI. As we focus
on emotion recognition, herein, the reader is referred to
[12] for details on AM adaptation. The vocabulary consists
of the highly limited 10 terms camera, quit, move, stop,
up, down, left, right, forward, and backward. Further, we
included models for short and long silences, breathing, and
beeps deriving from further machines in the operation room.
These models were trained on the SIMIS database, too. The
grammar is chosen as context free word-loop solution. A
short, high-pitched beep sound is played when the speech
window opens after key-word recognition. For closure of the
open speech time window a lower pitched beep is played
to the surgeon. Each recognized command within the open
speech window that possesses high confidence prolongs the
speech window accordingly to allow for multiple command
sequences without the need of repeated keyword initializing.
Additionally, the acoustic features and classifier as described
in the following sections can be used to verify the speaker,
to avoid activation by environmental babble noise.

IV. ACOUSTIC FEATURES

A strictly systematic generation of features was chosen
for the construction of a large feature space as basis for
subsequent selection of relevant features. Such an approach
generally leads to >1k features [17], [3]. Our basis is a
set of 37 typical acoustic Low-Level-Descriptors (LLD) well
known to carry information about paralinguistic effects [10]
shown in Table II. We group the features into the common
types duration (DUR), energy (EN), pitch (F0), formants
(FX), cepstral (CEP), and voice quality (VQ). Duration

features thereby model temporal aspects having milliseconds
(ms) as unit. Voice quality is covered by jitter and shimmer,
and Harmonics-to-Noise Ratio (HNR); c.f. below.

Duration features model temporal aspects having the
basic unit milliseconds, such as position in time or lengths
of intervals.

Energy features model intensity, based on the speech
signal’s amplitude, with implicit or explicit normalisation and
perceptual modeling.

Pitch is the acoustic equivalent to the perceptual unit pitch
- measured in Hz - and often perceptually modelled e.g. by
use of semi-tone intervals.

Formants (i.e. spectral maxima) are known to model
spoken content, especially lower ones. Higher ones however
also represent speaker characteristics. Each one is fully
represented by its position, amplitude, and bandwidth.

Cepstral (Mel-Frequency-Cepstral)-Coefficients (MFCC)
base on a homomorphic transform with equidistant band-
pass-filters on the Mel-scale. They tend to strongly depend
on the spoken content, but have been proven beneficial in
practically any speech processing task.

Voice quality is often described by jitter and shimmer -
micro-perturbations based on pitch and intensity - and the
Harmonics-to-Noise Ratio (HNR).

In order to calculate LLD, first the speech signal is
transformed to 16 kHz, 16 bit. In general, a Hamming
window function is used, except for the calculation of F0 and
HNR, where a Hanning window has been chosen. We use
100 fps with semi-overlapping windows. Energy resembles
simple log frame energy. F0 and HNR calculation base on
the time-signal ACF with window correction. Formants base
on 18-point LPC with root-solving and a pre-emphasis factor
α = 0.7. F0 and formant trajectories are globally optimized
by use of Dynamic Programming. LLD are smoothed by
according techniques as semi-tone-interval filters or simple
moving average low-pass-filtering to overcome noise. As a
next step we add delta coefficients for each LLD.

Following the typical static classification strategy used in
the related recognition of emotion [3], we next employ a
total of 19 statistical functionals to each of the 37× 2 LLD.
The obtained multivariate time series of variable length is
projected on a single 1406 dimensional feature vector. Here
again we decided for a typical selection of common func-
tionals covering the first four statistical moments, quartiles,
extremes, ranges, positions, and zero-crossings as depicted
in Table II. The three position related functionals lead to a
sub-group of features with the physical unit of ms which
are treated as duration features, though having a number of
diverse LLD as basis. We refrained from inclusion of further
duration related features such as those based on e.g. lengths
of pauses or syllables, because this information cannot easily
be integrated in the strictly systematic generation approach:
it is modeled in a general value series rather than in a time
series.

Table III shows the obtained distribution of features among
the introduced types. A partition of these feature candidates
will be selected for classification in the next step.
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TABLE II
ACOUSTIC LOW-LEVEL-DESCRIPTORS AND FUNCTIONALS

LLD (37× 2) Functionals (19)
Pitch Mean

Energy Standard Deviation
Envelope Zero-Crossing-Rate

Formant 1-5 amplitude Quartile 1
Formant 1-5 bandwidth Quartile 2
Formant 1-5 frequency Quartile 3
MFCC Coefficient 1-16 Quartile 1 - Minimum

HNR Quartile 2 - Quartile 1
Shimmer Quartile 3 - Quartile 2

Jitter Maximum - Quartile 3
∆Pitch Centroid

∆Energy Skewness
∆Envelope Kurtosis

∆Formant 1-5 amplitude Maximum Value
∆Formant 1-5 bandwidth Relative Maximum Position
∆Formant 1-5 frequency Minimum Value
∆MFCC coefficient 1-16 Relative Minimum Position

∆HNR Maximum Minimum Range
∆Shimmer Position of 95% Roll-Off-Point

∆Jitter

TABLE III
DISTRIBUTION OF FREQUENCY OF ACOUSTIC FEATURES AMONG TYPES.

DUR: DURATION, EN: ENERGY, F0: PITCH, FX: FORMANTS, CEP:
CEPSTRAL, VQ: VOICE QUALITY.

Type DUR EN F0 FX CEP VQ
[#] 222 64 32 480 512 96

V. FEATURE SELECTION

In order to improve the performance and speed of pro-
cessing of emotional speech, the optimal relevant attributes
for classification must be selected [11]. This section will
describe the according process: an attribute evaluator based
on Correlation-based Feature Subset-selection (CFS) is used,
herein [18]. Generally, a target function is needed as opti-
mization criterion throughout reduction of the feature space.

CFS evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature
along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while
having low inter correlation are preferred. The evaluator was
set to identify locally predictive attributes, which means it
could iteratively add attributes with the highest correlation
with the class, as long as there is not already an attribute
in the subset that possesses a higher correlation with the
attribute in question. Further, counts for missing values
were distributed across other values in proportion to their
frequency.

Exhaustive search is usually not an option in speech
emotion recognition [15], especially in our case of a > 1k
feature space and 3,035 instance database. We therefore
decided for a Sequential Forward Floating Search (SFFS)
[9] - the most commonly used search in this field [15], [17],
[11]. This means the space of attribute subsets is processed
by greedy hill climbing augmented with a backtracking
facility. Setting the number of consecutive non-improving
nodes allows control of the level of backtracking done.

Generally, SFFS may start with the empty set of attributes
and search forward, known as best first, start with the full set
of attributes and search backward, or start at any point and
search in both directions (by considering all possible single
attribute additions and deletions at a given point). Herein,
the search direction was chosen forward as a small number
of final features was expected, to keep complexity low. The
final feature set size was determined by a consecutive number
of 50 feature additions without further gain in accuracy
by polynomial one-vs.-one Support Vector Machine (SVM)
classification with Sequential Minimal Optimization learning
[18]. It shall be noted that optimization of the feature space
needs to be carried out only once prior to the actual online
usage. The number of selected features varies form 58 to
114 throughout latter experiments. Likewise, on the average
approximately 10 percent of the original 1406 features were
selected, meaning 90 percent of them were regarded as
redundancy and deleted.

VI. SIMIS DATABASE

In order to test and train the described emotion recog-
nition, a database of emotional speech within the real life
situation needed to be recorded. This database of Speech In
Minimal Invasive Surgery (SIMIS) will be introduced now.
The quality and quantity of the database have a strong effect
on the final performance. To get the best results, a large
database should be collected from the live environment and
handled with. This process consists of three main steps:
recording of operations, segmentation of speech, and labeling
of the emotion classes for each segment.

All kinds of noise such as coughing, machine noises or
babble over-talk should be recorded with the speech so that
the final results based on this kind of database would be
valuable and reliable. 10 live surgeries were recorded with
both headset and room microphone in an operation room of
the Clinic r.d. Isar of TUM in Munich, Germany, where there
were normally one main surgeon and 6 to 10 surgical assis-
tants. These recorded operations were all minimal invasive
surgeries such as stomach or gall operations, which took 1
hour on the average. The recording format is 16 bit, and the
sample rate is 16 kHz. Active condenser microphones were
used, each.

The automatic speech pre-segmentation is based on en-
ergy in the time domain. Firstly, the recorded audio file is
multiplied with a Hamming window function. The window’s
width is set to 512 sample points, while the frame length
which specifies the intervals between the values is set to 256
sample points. A mean log power value of 5 consecutive
frames is calculated. If this value exceeds 50 dB, the current
frame is regarded as speech onset. After onset detection, 60
consecutive frames with a log power value less than 21 dB
are regarded as speech offset. To prevent loss of speech infor-
mation, 5 frames are added at both, the start and the end. This
very basic segmentation prevents loss of potential speech
turns, but demands for a manual check in a subsequent step.
This was ensured by one annotator. The thresholds were
iteratively optimized on the data. 10 records of different
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invasive surgeries such as stomach and gall operations were
segmented into speech turns with the strategy described. The
results of the semi-automatic segmentation by time and turns
is detailed in Table IV. The total time of each surgery took
from 36 minutes to 80 minutes. The speech time took from
roughly 5 minutes to 17 minutes. The number of segments
reached from 159 to 523.

In the next step three experienced male annotators manu-
ally labeled these speech segments within 5 emotion classes
chosen from an open initial labeling set with respect to
frequency of occurrence and the target application: neutral,
happy, angry, impatient, and confused. Turns with majority
agreement were attributed to the according majority emotion,
usually being a 100% agreement. In the rare case of total
divergence, the turns where mapped onto neutral, which
likewise functions as a garbage class. This strategy was
chosen, as one cannot simply ignore speech turns in the real
life application. The final labeling results are also found in
Table IV. From these labeling results it can be seen that
the “neutral” emotional speech’s duration is almost half of
the total speech duration, and the negative emotional (angry
and impatient) speech’s duration is more than a quarter of
the total speech showing the high pressure in this work
environment. Apart from emotional annotation, one expe-
rienced labeler transcribed the spoken content on the word
level including the filler models named in section III. For
word-level transcription additional 10 operations have been
recorded to provide sufficient data for ASR model adaptation.
Usually, the commands would be robot-directed. However,
sparse human-to-human conversation is also recorded. All
turns of the operation leading surgeon captured via the
headset are considered, herein.

VII. EXPERIMENTAL RESULTS

Next, the results of the automatic emotion classification
as proposed on the SIMIS database are introduced. For
benchmark results of the recognition engine on further and
public sets as the Berlin Emotional Speech Database (EMO-
DB) or Speech Under Simulated and Actual Stress (SUSAS)
the reader is referred to [2], [16]. Reported is the F1 value
which is used in the interest of having a unique performance
measure. Here, F1 is defined as the uniformly weighted
harmonic mean of RR and CL: 2·CL·RR/(CL+RR). RR
is the overall recognition rate (number of correctly classified
cases divided by total number of cases or weighted average);
CL is the ‘class-wise’ computed recognition rate, i.e. the
mean along the diagonal of the confusion matrix in percent,
or unweighted average [3]. The measures for SVM with a
parameterization as named in section V are provided.

The original manually labeled emotion classes can be
regarded as 3 types according to the dimensional approach
in emotion theory: positive, negative, and neutral. Happy
thereby is the only positive emotion. Angry, and impatient
are considered negative emotions, and neutral and confused
are understood as neutral emotions, herein. This is realized
by clustering and re-tagging of instances, accordingly. An
even more constrained mapping maps the neutral and positive

TABLE V
RESULTS DIVERSE EMOTION COMBINATIONS, SVM, SIMIS DATABASE,

10-FOLD CROSS VALIDATION. A, H , I ABBREVIATE ANGRY, HAPPY,
AND IMPATIENT, RESPECTIVELY. THE DIMENSION (DIM) OF THE

OPTIMAL FEATURE VECTOR, AND THE NUMBER OF LEARNING

INSTANCES PER CLASS ARE ALSO DEPICTED.

Emotion dim H I A RR CL F1

type [#] [#] [#] [#] [%] [%] [%]
H, A 87 404 - 265 81.3 80.2 80.9
H, I 82 404 405 - 70.0 70.4 70.2

H, A+I 114 404 670 74.6 72.1 72.9

TABLE VI
RESULTS POSITIVE VS. NEGATIVE EMOTION, SVM, DATABASE SIMIS,

LEAVE-ONE-OPERATION-OUT.

[%] µ σ max
RR 75.5 7.7 92.5
CL 71.4 10.6 92.3
F1 73.3 9.1 92.4

instances into one cluster to further boost performance:
thereby we discriminate only whether a feed-back dialog
needs to be initialized or not.

First, classification results of exemplary single combina-
tions of emotion pairs by deletion and clustering of classes
are shown in Table V. The recognition rate varies from 70.0%
to 81.3%, and the mean recall rate almost resembles the
recognition rate deriving from the more or less balanced
distribution among chosen classes. It seems well solvable
to distinguish happy and angry or happy and impatient, as
opposed to the usual expectation of valance to be hardly
separable.

Next, the result for our final use-case is depicted: positive
vs. negative, whereby all neutral instances are mapped onto
positive and need to be handled. As this highly unbalances
the distribution throughout training, random up-sampling
throughout classifier learning is chosen as counter-strategy.
To keep the conditions throughout evaluation close to the
real-life scenario, a leave-one-operation-out cross-validation
of 10 cycles is chosen. Likewise, the conditions are max-
imally varied, each. The performance is depicted in Table
VI, and shows the increased difficulty of this task. Mean,
standard deviation, and the maximum are provided. From
this table one can tell that the maximum recognition rate is
considerably high at 92.5%. However, considering the mean
of 75.5%, a considerable number of false positives will have
to be faced.

VIII. CONCLUSION AND FUTURE WORK

In this paper we introduced speech-based camera control
in minimal invasive surgery by integration of emotional
factors. One of the main achievements of this work is
the recording and labeling of 3,035 turns of spontaneous
real-life emotional speech. Such data is very sparse in the
field of emotion recognition, yet mandatory to obtain a
realistic impression of performances. The recordings clearly
show the need of handling of emotional speech: only 53%
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TABLE IV
DISTRIBUTION OF SPEECH TURNS AMONG EMOTION BY TIME AND TURN NUMBER WITHIN THE SIMIS DATABASE.

Time & turns operation speech neutral happy angry impatient confused
type [m:s] [m:s] [#] [m:s] [#] [m:s] [#] [m:s] [#] [m:s] [#] [m:s] [#]
Gall 36:49 6:05 190 2:30 69 1:13 48 0:58 26 0:54 31 0:30 16
Gall 76:14 8:13 308 4:29 151 1:01 56 1:06 34 1:23 57 0:14 19
Gall 34:24 4:45 159 3:18 109 0:24 18 0:30 15 0:09 5 0:24 12
Gall 36:36 8:41 257 6:11 174 1:47 49 0:21 7 0:38 18 0:15 10

Fundoplicatio 54:33 15:05 456 8:26 248 1:01 41 1:57 51 2:30 75 1:11 41
Fundoplicatio 76:25 16:44 523 10:31 331 1:22 57 1:23 37 2:05 54 1:23 44
Sigma wedge 80:08 14:03 201 7:35 97 1:19 21 1:08 19 1:20 19 2:41 45
Sigma wedge 53:59 12:01 340 7:04 189 1:14 43 0:34 22 1:57 53 1:00 33
Sigma wedge 53:51 13:22 295 9:04 204 0:47 22 0:57 15 1:35 31 0:59 23

Stomach 71:01 15:18 306 6:25 121 2:15 48 2:05 39 2:59 62 1:34 35
Total 574:00 114:17 3035 65:33 1509 15:45 403 10:09 265 15:30 405 10:11 278

of the surgeon-robot interaction turns were labeled neutral
throughout annotation. By a brute-force feature generation
and subsequent CFS-SFFS space optimization 75.5% accu-
racy could be reached for the discrimination of positive and
negative emotion by SVM. This figure has to be considered
as impressive, given that no utterances were skipped. As op-
posed to this, usually a pre-selection of “friendly” prototype
instances is chosen in practically any other work, even on
spontaneous data [3]. This already allows for initialization
of safety feed-back dialogs in case of negative emotion, and
profiling of the surgeon’s emotion during emotion. However,
results will have to be interpreted carefully.

Future work will investigate the benefit of the working
prototype in a long term usability study in the operation
room. Also, we aim at detailed evaluation of ASR in the live
usage and the benefit of emotional adaptation. ASR shall also
be augmented by speech enhancement through Switching
Linear Dynamic Models [13]. Finally, the SIMIS database
shall be enlarged and made partly public in a second version.
Thereby further valuable information on statistical properties
of the duration of emotion periods shall be considered, as it
is expected that emotion periods can not be very short in a
real situation. Thus, contextual information on the predecent
emotion can be of help to further boost accuracies.
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