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Abstract— Model-based development tools are one possible
solution to handle the increasing complexity of mechatronic
systems. While traditional approaches often separate design of
hardware and software, especially in mechatronic systems hard-
ware/software interaction is the most critical component. Hence,
both aspects must be considered in this context. The goal is a
model-based development tool for software/hardware co-design
including the generation of efficient code for the respective
target platforms. EasyLab is a modular and easily expandable
development tool especially suitable for such applications. Its
objectives are to facilitate reusability and to accelerate the
development process. It raises the level of abstraction and
thus simplifies the development of mechatronic systems even
for unexperienced users. A graphical user interface provides
various modeling languages that are easy to use. By employing
platform optimized generation of the code, efficiency of the
resulting programs can be guaranteed, which we demonstrate
on a set of experimental mechatronic systems.

I. INTRODUCTION

Mechatronic and embedded systems are becoming increas-
ingly complex. While sophisticated tools for the develop-
ment of the mechanical and electronic parts are available,
the implementation of the software is typically done from
scratch. Due to shortened product life cycles and an emerg-
ing need for flexibility, this approach is not feasible any
more. Development tools for hardware/software co-design
are required that raise the level of abstraction to accelerate
the development process, but guarantee an efficient and
reliable implementation to match the resource constraints of
mechatronic systems.

For standard software, model-based development [1] has
become state of the art in software engineering. Several
model-based development tools, such as Matlab/Simulink
[2] or Scade [3] are available for the domain of embedded
systems. However, these tools rely on the generation of
ANSI-C code and therefore can only be used to implement
the application functionality. Code for hardware related as-
pects and other non-functional properties has to be manually
implemented by the developer. This code however forms
the majority of the code required for mechatronic systems.
The major reason why the generation of such code is not
supported is the platform dependency of the code. Due to
the vast heterogeneity of hardware [4], it is not possible
to implement a code generator that supports all possible
hardware platforms a priori. Rather, a suitable development
tool must be designed in a way that it can be easily expanded
to support further platforms.

This paper presents the development tool EasyLab that
targets the development of mechatronic systems. The main
contributions of this work are a tool with a high level of
abstraction that simplifies and accelerates development, a
fully modular design to support reusability, a completely
integrated solution for hardware/software co-design, and the
possibility to generate efficient, hardware-dependent code.

The developer benefits from the abstraction of a graphical
development interface similar to widespread graphical envi-
ronments such as Matlab/Simulink or LabView. In contrast to
existing tools, EasyLab allows the specification of hardware
characteristics and generation of corresponding code. The
tool is expandable in two dimensions: regarding the mod-
eling and the code generation functionality. Expandability
with respect to the modeling functionality is achieved by
relying on actor-oriented design [5]. An actor is a software
component and can for instance realize a PID controller, but
also the triggering of a sensor or actuator. Expandability with
respect to the code generation functionality is achieved by a
template-based approach [6]. The main difference between
template-based and component-based [7] approaches is the
high adaptability of templates. It is therefore possible to
generate very efficient code [8].

The outline of this paper is as follows. First, we introduce
the Match-X construction kit, which is one of the main
target platforms of EasyLab. The main part of the paper
covers design and implementation of EasyLab. We introduce
two graphical programming languages as well as other key
features of the application, such as code generation and
simulation. To illustrate the software modeling process with
EasyLab, we present two experimental setups that were
built during the development of EasyLab. Finally, we list
related and future work and summarize the goals and results
presented in this paper.

II. HARDWARE TARGET PLATFORMS

EasyLab is designed to support different microcontroller
and processor architectures with a rich set of peripherals and
has a focus on resource-constrained systems. For an overview
of EasyLab’s capability to model these aspects of hardware,
see section III-B. To demonstrate the potential of our ap-
proach, a modular hardware architecture is preferable. We
therefore chose the Match-X construction kit as a reference
platform which is explained in the following.
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A. The Match-X Construction Kit

The Match-X construction kit consists of modular com-
ponents that can be flexibly assembled into complex mecha-
tronic systems. The construction kit forms the first stage
of controller hardware development for mechatronic systems
and provides a way to efficiently prototype such systems. The
development process along with mechanical and electrical
interfaces of the hardware building blocks are specified in a
standard of the VDMA1 [9]. The standard also describes the
transition to small batch production as well as series produc-
tion. Figure 1 shows the geometry of a building block from
the Match-X construction kit. Figure 2 shows a completely
assembled stack of three building blocks. The block at the
bottom contains a voltage regulator and features an RS485
interface, the block in the middle contains a Microchip
PIC18F2520 microprocessor and the topmost block allows
attachment of sensors and actuators. Although the size of
these building blocks is very small, the microcontroller is
clocked with 20 MHz and is thus suitable to perform complex
controller tasks.
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Fig. 1. Geometry of a building block from the Match-X construction kit
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Fig. 2. Example stack of three Match-X blocks

1The German Association of Machinery Manufacturers.

B. Other Target Platforms
To point out the universality of this approach, EasyLab

does not only focus on the Match-X hardware construction
kit, but also on a variety of other microcontroller platforms.
In this paper, we show the results of an evaluation where we
used EasyLab to design the application logic for a complex
control task running on an ATMEL ATmega128 micropro-
cessor. We also plan to support other microprocessor types
like ARM and Fujitsu processors.

III. EASYLAB

EasyLab provides a high-level programming environment
for the design of software for mechatronic systems. Due
to the raised level of abstraction, even people unexperi-
enced in microcontroller programming can develop complex
applications using various graphical modeling languages.
The design process is based on the selection of functional
components (actors) that can be connected to form the
application. One can distinguish between two different types
of actors: hardware dependent actors (e.g., a software com-
ponent controlling a sensor) and hardware independent actors
(e.g., basic mathematical operations or more complex ones
like various controllers). As model of computation, the syn-
chronous data flow model is chosen as it reflects the typical
engineering approach. However, a pure data flow model is
too inflexible to express typical application behavior. This
issue can be targeted by the combination of different models
of computation (modal models [5]). EasyLab combines state
machines with data flow graphs to allow an easy and intuitive
modeling of the application. Based on the models, the tool
allows both simulation and the generation of efficient code.
The core features of EasyLab are explained in the following.

A. Graphical Modeling Languages
EasyLab supports two graphical modeling languages:
1) Structured flow chart: The structured flow chart lan-

guage (SFC) describes the states of a program and how state
transitions are performed. The language has been designed
in the style of EN 61131-3 [10] (part “SFC”).

States of SFC programs are references to sub-programs
that can be described in any of the available languages. Thus,
a state is either an SFC program itself or a reference to an
SDF program (see below) which is executed periodically.
Consequently, SDF programs are the leaves in the recursive
specification of an SFC program. An SFC program has
exactly one initial state.

Elements in the SFC language that determine the control
flow are state sequences, alternative branches (conditional
execution), parallel branches, jumps and program termina-
tion.

Both sequential and alternative composition are based on
conditions that are defined as Boolean expressions consisting
of Boolean constants and variables as well as comparisons.
Comparisons contain arithmetic expressions composed of
functions and operators on constants and global and local
variables. Local variables refer to values computed right
before the respective condition.

Figure 3 shows two example programs in SFC language.
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Fig. 3. Example programs in SFC language; (a) alternative branches with
Boolean conditions c1 and c2, (b) parallel branches; t1, t2 and t3 are
Boolean transition conditions

2) Synchronous data flow: The synchronous data flow
language (SDF) consists of a directed multigraph where each
node is the instance of a certain actor type. Edges in the graph
denote the data flow between actor instances. An actor type
is defined by a set of typed input and output connectors
as well as internal state variables. Furthermore, the actions
start, stop, step are defined for each actor type which are
used for initialization and finalization as well as to define the
actor’s effect. For code generation and simulation, actions
are implemented as code templates and shared libraries
respectively.

To support reuse and abstraction, actor types can be
defined using hierarchical composition. Input and output
connectors of a composed actor type Ac are mapped to
distinguished connectors (named input and output interfaces)
of an embedded SDF graph defining the step action of Ac.
Output interfaces can be used as local variables in SFC
transition conditions as pointed out above.

Variables, namely input/output connectors and state vari-
ables, are typed to ensure that only compatible interfaces
can be connected. To disambiguate, there may be at most
one edge connected to each input connector.

A set of predefined primitive data types as well as higher
user-defined data types like arrays and structures are avail-
able. A template mechanism allows for efficient definition of
polymorphic operations (e.g., arithmetic operations), while a
type coercion algorithm guarantees the generation of correct
and memory-optimal code [11].

The semantics of the SDF language is as follows: When
a graph is executed for the first time (i.e., the corresponding
SFC state has been entered), the actors’ start actions are
executed (in arbitrary order). While the corresponding SFC
program remains in the same state, the actors’ step actions
are periodically executed according to a static schedule.
When the SFC state is left, the stop actions are executed
(in arbitrary order).

Various algorithms have been found that statically compute
valid schedules for multi-rate synchronous data flow graphs
(if they exist) and have bounded buffer memory requirements
[12], [5]. Depending on the structure of the graph, single
appearance schedules can be found to minimize the amount
of code [13], [14] and buffer sizes [15].

The SDF language is designed in the style of EN 61131-3
[10] (part “FBD”). We will present an example program in
SDF language in figure 5 later in this paper.

B. Hardware Model

A key feature in mechatronic systems is the interaction
between software and hardware. However, the interface be-
tween these components and of course also the hardware
itself varies between different systems. This means that
designing applications for mechatronic systems can only
succeed if the modeling tool also allows modeling hardware
aspects of the respective systems.

EasyLab’s hardware model includes all aspects that are
necessary to describe the interaction of the software part
of a mechatronic system and the hardware, e.g., sensors,
actuators, input and output interfaces. Hence, a device type
library specifies which actor instances may be used in a
certain hardware environment. In conjunction with a resource
management algorithm, it restricts the user to the set of
hardware resources that is actually available.

The device descriptions also specify how hardware re-
sources are represented in the application logic and how these
representations are mapped to the real hardware (see also
section III-D). As for actor types in the SDF language, device
types are defined using actions start, stop and step specifying
the behavior when the application starts, terminates or when
a single step in the SFC program is performed. To guaran-
tee correct operation, access to the underlying hardware is
buffered using a set of input and output variables.

C. Code Generation

EasyLab features an integrated code generator that trans-
forms the application model into code suitable for the
respective compiler. This is achieved by assigning a code
template to each primitive element in the respective modeling
language. Currently, models are transformed into C code
(supporting the mcc18 and avr-gcc compiler tool chains).

In the generated code, each state and transition condition
of an SFC program is represented as a function performing
an action and returning the address of the function to be
executed next (inspired by the continuation passing style
of functional programming languages). References to sub-
programs have the effect of executing the respective pro-
gram and returning a function to be executed next, usually
the subsequent transition condition. Functions representing
transition conditions have no side effects and evaluate the
respective Boolean expression.

While the transformation of SFC programs into executable
programs is straightforward, the implementation of multi-rate
data flow graphs into efficient code relies on static scheduling
techniques as pointed out in section III-A.2.
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Invoking the compiler as well as transferring the program
to the target device is also integrated into EasyLab. We are
working on further model transformations that optimize the
generated code in terms of memory usage and runtime.

D. Runtime Library

In the sections above, we implicitly stated that employing
code templates is sufficient to distinguish how a certain
functionality is implemented across different microprocessor
architectures. Although this might be true, writing a separate
code template for each target architecture is tedious and
scales badly. Furthermore, it would be very hard to ensure
the functional consistency of the various code templates.
Therefore, we added another layer in between the code
templates and the actual hardware: a set of platform-specific
runtime libraries.

Each runtime library provides basic hardware-related func-
tionality that is common among almost all types of micropro-
cessors (digital and analog I/O, communication via UART,
etc.) as well as some software-only features (data structures
optimized for low resource usage, fixed-point arithmetic,
etc.). The runtime libraries for all target platforms implement
a common interface that is designed to allow implementation
of a subset of all possible features if some features are not
supported by the respective microprocessor.

After code generation, the runtime library corresponding
to the selected microcontroller is linked against the generated
program. This allows code templates to use the common
interface exposed by all runtime libraries, hence making them
much more compact and less error-prone. Furthermore, this
design will improve the possibility to optimize the code
contained in the code templates because they have less
dependencies on the actual hardware and are formulated on
a higher level of abstraction.

Actually, EasyLab’s runtime library offers at least a sub-
set of the functionality of operating systems for resource-
constrained platforms (e.g., Contiki [16], TinyOS [17],
FreeRTOS [18]). With these systems, application code is
developed against a given API and a firmware image is
obtained by linking both the user-supplied and the operating
system’s code into a monolithic firmware image. In fact,
EasyLab’s modular approach (see section III-F) allows for
the implementation of an alternative runtime library on top
of existing operating systems like those mentioned above.

E. Simulation

Besides the generation of code, EasyLab also features
direct simulation of models (i.e., without code generation).
In order to simulate as much of the mechatronic system
as possible, EasyLab simulates both application code and
hardware devices. While simulation can be used to detect
design errors early in the development process or if the
hardware is currently not available, it is also possible to
perform control tasks directly in simulation mode.

In this context, EasyLab has successfully been used to
control the mobile robot platform Robotino R© over a wireless
network connection using appropriate device plugins (see

next section). A line follow application that is based on the
robot’s camera and several image processing actors has been
used to verify the performance of the simulation component.

F. Expandability

The application is built up in a modular way to ensure
reusability of programs developed for one target application
in other projects. A developer may expand the functionality
of EasyLab in the following dimensions:
• New actor types can be added to the actor type library.

For each actor type, an annotated code template as well
as a simulation plugin have to be specified. Actors can
be reused in any project developed with EasyLab.

• New hardware models may be added to the device type
library. This allows a developer to add completely new
combinations of hardware components. This is espe-
cially useful for the Match-X construction kit, where
hardware modules may be combined in many ways.
Hardware-specific actor types can be configured to be
only available if a certain device instance is added to
the project.

• New compiler tool chains may be added. This is nec-
essary if a new type of processor is to be used as
target platform for EasyLab. Tool chains specify which
external programs are used to build the application and
transfer it to the target device. They also influence how
the code is generated. As this approach may not provide
enough flexibility for all situations, a developer also has
the choice of implementing the requested functionality
as part of the EasyLab runtime library that is then linked
to the project according to the selected tool chain.

IV. EVALUATION

Two sample applications were implemented to demon-
strate the benefits of the developed tool, namely the modular
design of the system with respect to both hardware and
software and the efficiency of the generated code.

A. Pneumatic Cylinder

The first evaluation scenario involves a pneumatic cylinder
that is controlled by a microcontroller from the Match-X
construction kit. The cylinder has two magnetic valves for
expanding and retracting a piston. Furthermore, an analog
sensor measures the current position of the piston. Figure
4 shows the experimental setup. The Match-X stack used
in this experiment consists of the following building blocks:
voltage regulator, CPU, A/D converter (for analog sensor
input) and two drivers for inductive loads (one per valve).

The control task that should be achieved is to move the
piston to a predefined position and to hold that position even
if some force is applied to the piston. Since no proportional
valves were available at the time of writing this paper, the
corresponding control program is quite simple.

For all hardware sensors and actuators, adequate software
actors are available in EasyLab. Figure 5 shows the program
as an SDF graph. The constant pos defines the set point and
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Fig. 4. Pneumatic cylinder experimental setup

tol gives a certain tolerance for the position of the piston
to avoid oscillation. The controller regulates the piston to a
position in the interval [pos− tol, pos + tol].
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Fig. 5. Pneumatic cylinder controller in SDF language

B. Inverted Pendulum

The second experiment, a more complex control task
points out the efficiency of the generated code. The inverted
pendulum is a well-known experimental setup to demonstrate
control tasks [19]. It consists of an electric motor that
drives a cart mounted on a linear rail. A rod that can be
freely deflected is attached to the cart. Figure 6 shows the
experimental setup.

Electric motor,
rotation sensor
attached to motor axis

Freely deflectable rod

Rotation sensor attached
to pendulum axis

Fig. 6. Inverted pendulum experimental setup

The goal of the experiment is to accelerate the pendulum
by moving the cart from one side to the other until the rod
is in an upright position and hold the rod in that position
afterwards. During both stages, the cart should be aligned to
the center of the rail to prevent it from moving off the rail.

The experimental setup features two sensors and one
actuator: one sensor measures the position of the cart, the

second one measures the inclination of the rod. The only
actuator is the electric motor, for which we regulate the
voltage.

To demonstrate the efficiency of the code generated by
EasyLab, we implemented the system using an ATMEL AT-
mega128 microcontroller with a clock frequency of 16 MHz.
First, we augmented EasyLab to allow us to access the sensor
values necessary to achieve the task. For this purpose, we
added a new actor type that returns the current value of the
respective sensor as well as its derivative.

A suitable controller for a self-erecting inverted pendulum
consists of two modes (swing-up and balance), which are
implemented in terms of the SFC program depicted in
figure 7. The controller used to erect the rod is based on a
heuristic using a proportional-velocity cart position controller
that swings the rod back and forth until the rod has a
maximum deviation of ε to the upright position (first state
in SFC program and subsequent transition condition). The
second state corresponds to the execution of the balance SDF
program according to equation (1) (see below), which can
be derived from a linear state-space model of the pendulum
using the linear quadratic regulator (LQR) technique. While
the balance state is never left, the final jump was added to
obtain a well-formed program.

Balance

Swing-up

Swing-up

|αi| < ε

⊥

Fig. 7. Inverted pendulum SFC program

For the ith step, let αi be the inclination of the rod (in
radiants), ∂αi the angular velocity and let αi = 0 if the rod
is in erect position. Let ci be the position of the cart, ∂ci its
velocity and c = 0 if the cart is in its center position. Then
a PID controller used to balance the pendulum in upright
position can be defined as follows, where Un is the voltage
to drive the motor with at step n ≥ 0 (constants k1, . . . , k6

depend of the physical characteristics of the rod):

Un = k1 · αn + k2 · ∂αn + k3 ·
n∑

i=0

αi

+ k4 · cn + k5 · ∂cn + k6 ·
n∑

i=0

ci (1)

The transformation of above formula into an SDF program
is straightforward.
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V. RELATED WORK

EasyLab is unique in the sense that it supports hard-
ware/software co-design without focusing on a specific set
of hardware platforms. It is expandable both regarding mod-
eling and code generation.

Several other tools and projects influenced the develop-
ment of EasyLab. The graphical user interface is in the
style of state-of-the-art tools like Matlab/Simulink [2] that
also provide data flow design based on actors. The theory
behind actors is however derived from the project Ptolemy
[5]. In contrast to both tools, EasyLab augments the notion
of actors by introducing hardware related actors which is
a precondition for successful hardware/software co-design.
The introduction of typed data flow allows for the generation
of code tailored to resource-constrained target architectures.

EasyLab uses synchronous data flow graphs and structured
flow charts as model of computation, as defined in EN
61131-3 [10]. While there are several other tools such as
CoDeSys that are compliant with this norm, EasyLab is the
only one that can be augmented for a specific hardware plat-
form and can thus generate optimized hardware-dependent
code. The concept for code generation is based on previous
work on template-based code generation [6], [20].

VI. SUMMARY

In this work, we presented a new model-based program-
ming tool for mechatronic systems. In contrast to well-known
tools from the world of embedded systems, EasyLab also
provides components that are specialized for mechatronic
systems, where the diversity of the used hardware is much
more relevant than in other types of embedded systems.

We have also shown that EasyLab allows both modeling of
software and hardware functionality and introduced the two
graphical modeling languages that have been implemented
so far, namely synchronous data flow (SDF) and state flow
charts (SFC).

Finally, we presented two demonstration setups that
showed that the workflow of programming mechatronic
systems is the same for different types of microprocessor
platforms. The inverted pendulum setup demonstrates that
the code generated by EasyLab performs well and is suitable
for real-time control tasks.

VII. FUTURE WORK

We are currently working on a remote debugging facility
for programs generated by EasyLab whose purpose is to
provide transparent real-time access to the state of a mecha-
tronic system at the granularity of the underlying model.
It is based on code instrumentation and a marshaling layer
that is tailored to the resources and communication interfaces
that are available in typical embedded systems. Thus, firmly
integrated inspection and manipulation of both data and
program state at the model level will increase the abstraction
also in the debugging phase of the product development
cycle.

We also plan to extend EasyLab to support networked
(distributed) mechatronic systems. The time-triggered model

[21] seems to be a feasible approach that integrates well with
the synchronous data flow employed in the current stage.
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