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Abstract— The state-of-the-art in control of hand prosthetics
is far from optimal. The main control interface is represented
by surface electromyography (EMG): the activation potentials
of the remnants of large muscles of the stump are used in a non-
natural way to control one or, at best, two degrees-of-freedom.
This has two drawbacks: first, the dexterity of the prosthesis
is limited, leading to poor interaction with the environment;
second, the patient undergoes a long training time. As more
dexterous hand prostheses are put on the market, the need for
a finer and more natural control arises. Machine learning can
be employed to this end. A desired feature is that of providing
a pre-trained model to the patient, so that a quicker and better
interaction can be obtained.

To this end we propose model adaptation with least-squares
SVMs, a technique that allows the automatic tuning of the
degree of adaptation. We test the effectiveness of the approach
on a database of EMG signals gathered from human subjects.
We show that, when pre-trained models are used, the number
of training samples needed to reach a certain performance is
reduced, and the overall performance is increased, compared
to what would be achieved by starting from scratch.

I. INTRODUCTION

In the framework of advanced, active hand prosthetics
we are witnessing a technology transfer from robotics and
mechatronics. Touch Bionics’s i-LIMB [1] prosthetic hand,
with its five degrees-of-freedom, is a real breakthrough
with respect to the previous state-of-the-art, Otto Bock’s
SensorHand Speed [2], which is essentially an open-close
mechanism. Dexterity of hand prostheses is still far from
that of state-of-the-art non-prosthetic mechanical hands, such
as, e.g., the DLR II [3] (not to mention a human hand, of
course), but things are getting better thanks to the afore-
mentioned inter-disciplinary exchange (see Figure 1). Several
EU-funded projects (e.g., CyberHand [4] and SmartHand [5])
testify the enthusiasm in the field.

The simplest, cheapest and therefore most used technique
for interfacing the patient with the prosthesis is surface
electromyography (EMG): activation potentials of the pa-
tient’s stump residual muscles are detected to move the hand
to predefined positions. But the control schema employed
is rather poor, using two or three electrodes to issue an
“open/close” command or, in the more advanced case of the
i-LIMB, to choose among a predefined set of grasp shapes.
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Fig. 1. (a) Touch Bionics’s i-LIMB prosthetic hand (reproduced from
[1]); (b) the DLR-II mechanical hand; (c) Otto Bock’s SensorHand Speed
(reproduced from [2]).

In order to control the prosthesis in a more natural way,
machine learning can be used to better interpret the standard
EMG signals. In the typical case, the patient is asked to
imagine, e.g., a pinch grip; the related EMG pattern is then
used to obtain a pinch grip with the required force from
the prosthesis. A degree of control unknown so far can be
thus obtained, improving the patient’s life and shortening the
training time. We envision adaptive prosthetics, a framework
where a patient enters a virtuous loop of reciprocal learning,
whereas so far (s)he has to learn how to control the prosthesis
from scratch.

To further improve this loop it would be desirable to pre-
train the prosthesis with a model which will be then refined
and adapted on-line to the patient. In machine learning, this
is called model adaptation: a system that adapts to a data
distribution as it shifts over time. In our proposed method
model adaptation works by constraining at each step a new
model to be close to one of a set of pre-trained models stored
in the memory of the prosthesis. The degree of closeness
and the choice of the pre-trained model to use are done
automatically by estimating the generalization power, using
the leave-one-out error.

To check whether this idea works we apply it to a set of
EMG data collected from 10 healthy subjects. Each subject
was asked to grasp a force sensor using three different grips;
meanwhile, we recorded the electrical activity of the muscles
that are most involved in the hand/wrist movements and the
force exerted by the subject on an off-the-shelf force sensor.
The experimental results show that our intuition is correct:
the proposed adaptation method, on average, shortens the
training time and also gives better overall performances, with
less training samples. This is true for the classification of the
grasp types and for the prediction of the force applied.
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The paper is structured as follows: after a brief review of
related work, we describe our method (Section II) and the
EMG database (Section III). Section IV shows the experi-
mental results and lastly Section V contains the conclusions.

A. Related Work

The use of surface forearm EMG to control active hand
prostheses dates back to the Fifties and was brought to
the market by Otto Bock Orthopaedic Industry, Inc. [6].
EMG works by detecting a muscle’s activation potential,
a fast oscillating signal whose root-mean-square is non-
linearly related to the force exerted by the muscle [7]. Since
amputees are usually left with little of their forearm, it has so
far been necessary to carefully detect the patient’s residual
muscles with the strongest activity. These muscles are used,
still nowadays, to control one, or at best two degrees-of-
freedom. For example, the usual control schema of Otto
Bock’s SensorHand Speed prosthetic hand maps wrist flexion
to hand closing and wrist extension to hand opening.

The situation hasn’t changed for a long time because
the EMG signal is badly conditioned, being influenced
by sweat, muscular fatigue, inter-arm differences and non-
hand-related muscular activity (supination/pronation, walk-
ing, raising one’s arms and so on; see [8] for a survey).
Only in the 1990s it became apparent that machine learning
could be used to classify hand postures via the EMG. In their
seminal work, Bitzer and van der Smagt [9] used a Support
Vector Machine (SVM) to robustly classify six different hand
postures. Neural networks and LWPR [10] have been used
to the same end (see, e.g., [11], [12], [13]) to classify up to
11 hand/finger postures and movements, and to approximate
the force involved in the grasp. As long as it is trained for
a sufficient time, that is it explores a relevant portion of the
input space, a well-employed machine learning method will
be able to take into account all of the EMG signal’s problems.

As far as we know, there is no EMG database present
in the machine learning community, which could serve our
purpose. In some of the aforementioned papers, analogous
data sets (but most likely smaller than ours) are reported
about, but there is no mention of their availability. Regarding
model adaptation, several approaches has been proposed. In
[14] many of them are compared and benchmarked, however
most of them are computationally inefficient because a re-
training over new and old data is needed. An approach that
does not use re-training, based on SVM has been proposed
in [15]. As far as we know this work is the first attempt to
use model adaptation in the domain of EMG prosthetics.

II. MATHEMATICAL FRAMEWORK

This section describes our mathematical framework. We
first introduce the basic notation (Section II-A), then we
present our algorithm for online model adaptation (Section
II-B).

A. Background

Assume xi ∈ Rm is an input vector and yi ∈ R is its
associated output. Given a set {xi, yi}li=1 of samples drawn

from an unknown probability distribution, we want to find a
function f(x) such that it determines best the corresponding
y for any future sample x. This is a general framework
that includes both regression and classification. The problem
can be solved in various ways. Here we will use kernel
methods and in particular Least-Squares Support Vector
Machines (LS-SVM) [16]. In LS-SVM the function f(x)
is built as a linear model w · φ(x) + b, where φ(·) is a non-
linear function mapping input samples to a high-dimensional
(possibly infinite-dimensional) Hilbert space called feature
space. Rather than being directly specified, the feature space
is usually induced by a kernel function K(x,x′) which
evaluates the inner product of two samples in the feature
space itself, i.e. K(x,x′) = φ(x) · φ(x′). A common kernel
function is the Gaussian kernel

K(x,x′) = exp(−γ||x− x′||2) (1)

that will be used in all our experiments.
The parameters of the linear model, w and b, are found

by minimizing a regularized least-squares loss function [16].
This approach is similar to the well-known formulation of
Support Vector Machines (SVMs), the difference being that
the loss function is the square loss. While this does not in-
duce a sparse solution, it makes it possible to write the leave-
one-out error in closed form and with a negligible additional
computational cost [17]. This is known to be approximately
an unbiased estimator of the classifier generalization error
[18]. This property is useful to find the best parameters for
learning (e.g. γ in (1)) and it will be used in our adaptation
method. Note that we use the same formulation to solve both
regression and classification problems.

B. Model Adaptation

Let us assume we have N pre-trained models stored in
memory, trained off-line on data acquired on N different
subjects. When the prosthetic hand starts to be used by
subject N +1, the system begins to acquire new data. Given
the differences among the subjects’ arms and as well in the
placement of the electrodes, these new data will belong to a
new probability distribution, in general different from the N
previously modeled and stored. Still, as all subjects perform
the same grasp types, it is reasonable to expect that the new
distribution will be close to at least one of those already
modeled; then, it should be possible to use one of the pre-
trained model as a starting point for training using the new
data. We expect that, by doing so, learning should be faster
than using the new data alone. To solve this problem we
generalize the framework for adaptation proposed in [15] for
SVMs: the basic idea is to slightly change the regularization
term of the SVM cost functional, so that the solution will be
”close” to the pre-trained one. The optimization problem is
[15]

min
w,b

1
2
‖w −w′‖2 + C

l∑
i=1

ξi

subject to ξi ≥ 0, yiw · φ(xi) + b ≥ 1− ξi (2)
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where w′ is a pre-trained model. In order to tune the
closeness of w to w′, we introduce a scaling factor β
weighing the pre-trained model; also, we use the square
loss and therefore resort to the LS-SVM formulation. This
way the leave-one-out error can be evaluated in closed form,
enabling automatic tuning of β. The optimization problem
reads now like this:

min
w,b

1
2
‖w − βw′‖2 +

C

2

l∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi (3)

and its solution is

w = βw′ +
l∑

i=1

αiφ(xi), αi ∈ R . (4)

Hence, the adapted model is given by the sum of the
pre-trained model w′ (weighted by β) and a new model
w obtained from the new samples. (Note that when β is
0 we recover the original LS-SVM formulation without any
adaptation to previous data.) As far as the leave-one-out error
is concerned, we have that

α = R(Y − βŶ ) (5)

where α is the vector of the αi’s in (4), Y is the vector of the
yi, Ŷ is the vector of the predictions of the previous model,
and R = (K +1/C)−1 with K denoting the kernel matrix,
i.e., Kij = K(xi,xj). Let α′ = RY and α′′ = RŶ ; from
the equation above, and using the same steps in [19], we
have that the prediction on sample i, when removed from
the training set, is

yi −
α′i
Rii

+ β
α′′i
Rii

(6)

from which the leave-one-out-error is easily evaluated, ac-
cording to the required measure of accuracy for the problem
at hand. Notice that, in the above formula, β is the only
parameter; hence, it is possible to set it optimally in order
to minimize the leave-one-out error while at the same time
choosing the best pre-trained model for adaptation.

Notice also that the complexity of the algorithm is domi-
nated by the evaluation of the matrix R, which must anyway
occur while training; thus, the computational complexity of
evaluating the leave-one-out error is negligible, if compared
to the complexity of training. As a last remark, we underline
that the pre-trained model w′ can be obtained by any training
algorithm, as far as it can be expressed as a weighted sum of
kernel functions. The framework is therefore very general.

III. DATABASE

A. Subjects and setup

We acquired data from ten healthy subjects, two women
and eight men, nine right-handed and one left-handed, of
an average age of 30.9 ± 8.45 years. The subjects were

generally naı̈ve with respect to the recording procedure. We
placed on each subject’s dominant forearm 7 surface EMG
electrodes. The number of electrodes and their positions were
chosen, visually and by palpation, according to the medical
literature [20]. This procedure allowed us to identify the most
relevant flexor and extensor muscles of the forearm, and to
record their EMG activity from the spots that should be least
affected by signal cross-talk1. The chosen locations were:
• on the forearm ventral side: near the wrist, above

the flexor pollicis longus; centrally, above the flexor
digitorum superficialis; near the elbow, above the flexor
digitorum profundus; and near the wrist, above the flexor
digitorum superficialis again;

• on the forearm dorsal side: near the wrist, above the ex-
tensor pollicis brevis/abductor pollicis longus; centrally,
above the extensor digitorum communis and extensor
digiti minimi.

We employed the electrodes Aurion ZeroWire wireless
EMG electrodes [21]. Moreover the subjects were given a
FUTEK LMD500 Hand Gripper force sensor [22] in order
to measure the force applied by her/his hand during the
recording.

We used a standard National Instruments data acquisition
board (NI-USB6211) connected to the receiver of the EMG
wireless device and to the force sensor, in order to record the
sensors’ signals and the exerted force. We set the sampling
rate of the board at 2kHz, since it is known that the raw
EMG relevant bandwidth lies between 15 and 500Hz. See
Figure 3 for an example.

B. Data acquisition and pre-processing

We first considered a rest condition, so to define the
baseline of the EMG activity. We then proceded with the
data recording: the subject kept her/his arm still and relaxed
on a table, and was asked to grasp the force sensor using, in
turn, three different grips (Figure 2).

The subject freely repeated each grasping action for 100
seconds, resting for 30 seconds in between grasps. In order
to gather more data and diminish the effect of local errors,
the whole procedure was repeated twice. As a whole, each
subject’s recording resulted in about 2.4× 106 samples.

Unlike commercial EMG electrodes, such as, e.g., Otto
Bock’s MyoBock electrodes [23] that return the on-board
computed Root-Mean Square (RMS) of the EMG signal,
the electrodes employed here return the “raw” EMG signal.
Nevertheless, it is well-known [7], [8] that the force exerted
by a muscle is strongly related to the RMS of the EMG
signal, rather than to the raw signal. For this reason, in
order to have a signal that is as similar as possible to a
control signal, we decided to evaluate the RMS, electrode
by electrode.

For a given mono-variate discrete time-varying signal, the
RMS is defined as the mean of the squares of the signal val-
ues, evaluated over a certain time-window TRMS . Roughly

1But notice that some of the aforementioned muscles are deep into the
forearm, so that muscle cross-talk cannot be completely avoided.
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(a) (b) (c)

Fig. 2. The three different grips employed in the experiment: (a) index precision grip; (b) other fingers precision grip; (c) power grasp.

(a) (b)

Fig. 3. (a) typical raw EMG and force signals; (b) frequency diagram of the EMG signal.

speaking, the RMS acts like an envelope extraction plus a
low-pass filter, whose cutoff frequency grows smaller as the
time-window grows larger (i.e., as TRMS becomes higher).
For this reason, high values of TRMS imply an ostensible
delay in the resulting signal that is due to responsiveness of
the synthesized output signal. It becomes slower and slower
as the TRMS value increases, since more “samples” are
averaged to obtain a significant value. The choice of TRMS

is therefore crucial to produce a signal which is maximally
related to the force signal, unaffected by high-frequency
noise, and with an acceptable lag. However, it must be
noted here that the EMG signal, being directly related to
the muscle activation potentials, happens to anticipate the
muscle movements2. Therefore, in practical applications, it
can be considered as acceptable a wider lag than what one
would expect. This is useful since it allows us to increase
TRMS , if necessary.

We are not aware of any systematic way of setting a good
value of TRMS in such a framework. Therefore we found
TRMS heuristically, according to some initial experiments.

Figure 3 (panel (a)) shows a few seconds of typical
force/EMG behavior: it is apparent that the EMG signal starts

2The electromechanical delay (EMD) of a muscle is defined as the interval
between the onset of the electrical activity of the muscle (EMG) indicating
its activation by the neural system and the onset of the resulting change
in the mechanical variable observed. The delays reported range from 25 to
100ms for different muscles and tasks [24].

oscillating when the force signal starts increasing. It is also
quite clear that the amplitude of the envelope of the EMG is
related to the force, as indicated in the literature. Panel (b)
shows the frequency analysis of the same EMG signal: as
one can see, the meaningful bandwidth lies in the interval
known from the literature.

This enables us to safely sub-sample the EMG signal
after having applied the RMS. Assuming that TRMS is
not too small, we subsampled both the EMG and force
signal at 25Hz, taking one sample every 80 of the original
sequence. This considerably reduced the amount of data to be
processed, namely to about 30.000 samples for each subject.

As a last data pre-processing step, we removed from the
sample set those samples for which the applied force was
lower than a specific threshold, in order to get a clearer
representation of the activation potentials. This threshold was
chosen in order to remove a minimal fraction of the samples.
Of course, we fully retained the samples corresponding to the
baseline rest condition. This is why we chose to record this
condition before the data acquisition.

IV. EXPERIMENTAL RESULTS

We conducted two different experiments, one to predict
the force measured by the force sensor and another one to
classify the grasp type.

As already mentioned in Section II-B, our working as-
sumption is to have N pre-trained models stored in memory;
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new data comes from subject N + 1 and the system starts
training, to build the N + 1’th model. The performance is
then evaluated using unseen data from subject N + 1. To
simulate this scenario and to have a reliable estimation of
the performance, we use a leave-one-out approach: out of
the 10 subjects for which we have data recordings, we train
9 models off-line. These correspond to the N stored models
in memory, while data from the remaining subject are used
for the adaptive learning of the N+1’th model. The training
sequences are random subsets from the entire dataset, that is
they are taken without considering the order in which they
were acquired. This procedure is repeated 10 times, using in
turn all the recorded subjects for the adaptive learning of the
model.

To assess the performance of the proposed adaptation
method we compared it to two baseline methods. The first
one, that we call Prior, consists in using only the pre-trained
models without updating them with the new training data.
Therefore we consider only the best performance obtained
by one of the 9 pre-trained models, corresponding to the
best-case scenario. The second one, NoAdapt, is plain LS-
SVM using only the new data for training, as it would be in
the standard scenario without adaption.

As a measure of performance, for classification we use the
standard classification rate; for regression, the performance
index is the correlation coefficient evaluated between the
predicted force signal and the real one. The choice of the cor-
relation coefficient, as opposed to the more standard Mean-
Square Error, is suggested by a practical consideration: when
driving a prosthesis, or even a non-prosthetic mechanical
hand, we are not interested in the absolute force values
desired by the user/subject, since mechanical hands usually
cannot apply as much force as human hands do, for obvious
safety reasons3. We are rather concerned about getting a
signal which is strongly correlated with the user/subject’s
will.

To build the pre-trained models we used the standard SVM
algorithm. All the parameters to be set during training (C and
γ of the gaussian kernel) were chosen by cross-validation.
In the following Figures, error bars (when present) denote
±1 standard deviations with respect to the average values.

We have considered a maximum of 360 training samples
and the final performance, averaged across the subjects, for
NoAdapt is 89.2% and 0.811, respectively for classifica-
tion and regression. With our adaptation method we get
instead 90.2% and 0.85. Figure 4 shows in more details
the difference in classification (panel (a)) and regression
(panel (b)) performance obtained by our method with respect
to NoAdapt. As one can see, adaptation uniformly obtains
a better performance, with the exception of classification
when the number of samples is below 150: in that case
a slight loss of about 1% can appear. In the worst cases,
the performance of NoAdapt is re-obtained. Notice also that
standard deviations are rather large when training is done

3Or, e.g., in teleoperation scenarios, they could be able to apply much
more force than a human hand can.

on too few samples. This is due to the high variance of the
leave-one-out error technique when too few training samples
are considered.

Depending on the subject, the improvement can be quite
large: up to about 15% higher rate for classification and
about 0.15 points stronger correlation for regression. In
average, for classification, the gain is almost 5% when there
are only 30 training samples. It settles to around 1% with
smaller standard deviation, as the number of training samples
increases. For regression, we have a correlation coefficient
about 0.04 points uniformly stronger in average.

To get a more detailed idea of the results obtained, con-
sider now Figure 5, concerning the classification experiment.
Panel (a) shows the performance obtained on the best-case
subject, that is, a subject for whom a very good match has
been found among the pre-trained models, while panel (b)
shows the performance for the worst-case subject. In the
best case the gain is about 3% after 360 samples, while
in the worst case we basically re-obtain the performance
of NoAdapt, as soon as enough samples from the new
distribution are considered. Essentially, our method improves
things if a good match can be found, and does no harm
if none exists. Similar observations can be done for the
regression task (Figure 6). In the best case, the correlation
is about 0.06 points uniformly stronger, whereas in the
worst case NoAdapt’s performance is obtained. Note also the
performance of Prior, constantly inferior to NoAdapt and our
method.

The worst-case subjects represent the paradigmatic case
of no previous models matching the current distribution; as
a consequence, the parameter β was automatically set to a
very small value. In this case, there is essentially no transfer
of prior knowledge. But it is reasonable to claim that the
overall performance of the method would increase along with
the number of stored models, since this would mean a larger
probability of finding a matching pre-trained model.

In the long run, a large database of pre-trained models,
possibly categorized in order to avoid too hard a computa-
tional burden, would definitely help getting uniformly better
performances.

V. CONCLUSIONS

The model adaptation method presented in this paper
stems from a problem in adaptive hand prosthetics, namely:
is it possible to help a patient to learn to use a dexterous
hand prosthesis by exploiting the common features found in
models trained upon other patients? The answer, at least as
far as healthy subjects are concerned, is yes: we have hereby
presented a novel method for model adaptation in machine
learning, using Least-Squares SVMs; the idea is to build a
SVM solution which is close to one of a set of pre-stored
models. The choice of which model to use among the pre-
trained ones, as well as the parameter β, determining the
degree of closeness to start the training from, are completely
automatic, as we use an estimation of the generalization error.

We tested our method on a database built with EMG and
force data from 10 healthy subjects, trying to improve the
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(a) (b)

Fig. 4. Classification (a) and regression (b) performance difference obtained by our method with respect to NoAdapt.

(a) (b)

Fig. 5. Classification: (a) classification rate gain of the adapted model compared to NoAdapt and Prior on the best-case subject; (b) classification rate
gain for the worst-case subject.

(a) (b)

Fig. 6. Regression: (a) correlation strength gain of the adapted model compared to NoAdapt and Prior for the best-case subject; (b) correlation gain for
the worst-case subject.

training times and asymptotic performance of one subject by pre-training on other subjects. The outcome of the ex-
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periment is positive: our method gains consistently both in
the classification and regression tasks in the best and average
cases, and it resorts to the non-adaptive performance in the
worst.

Therefore, it is apparent that a large amount of knowledge
stored in LS-SVM models is common to all subjects, which
is obviously due to the analogies among the tasks performed
by the subjects, as well as to the anatomical similarities
among the arms and the careful positioning of the electrodes
on the subjects’ forearms. A further interesting point is that,
almost uniformly, models obtained by adaptation from a pre-
trained model obtain a better performance than those trained
from scratch. This result is somehow surprising, although
very encouraging, and subject of future research.

Notice that we present no results on a real pros-
thetic/robotic hand so far — this is subject of immediate-
future research. We successfully applied a similar system
to the DLR-II mechanical hand (see [11], [12]), and since
the accuracy of the system presented here is analogous to
that of the one therein, there is no reason why the results
presented here should not apply as well in the practical
case. One interesting possibility is that of using this system
to speed up the adaptation of an already existing dexterous
hand prostheses, such as, e.g., Touch Bionics’s i-LIMB [1]
prosthetic hand, as already mentioned in the introduction.

Lastly, let us consider the fact that, most likely, the overall
performance of the method will increase when more subjects
are available, since this would mean a larger probability
of finding a matching pre-trained model. In a clinical set-
ting, this means that after an experimental phase, adaptive
prostheses employing this method could actually be built.
It remains, of course, to discover whether this idea can be
transferred to amputees: amputations are, obviously, non-
controlled, traumatic events (except in some cases), and
therefore stumps exhibit much more variability than healthy
forearms. This is the subject of ongoing as well as future
research.
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