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Abstract We propose a novel architecture for keyword spotting which is composed
of a Dynamic Bayesian Network (DBN) and a bidirectional Long Short-Term Mem-
ory (BLSTM) recurrent neural net. The DBN is based on a phoneme recognizer and
uses a hidden garbage variable as well as the concept of switching parents to dis-
criminate between keywords and arbitrary speech. Contextual information is incor-
porated by a BLSTM network, providing a discrete phoneme prediction feature for
the DBN. Together with continuous acoustic features, the discrete BLSTM output is
processed by the DBN which detects keywords in speech sequences. Due to the flex-
ible design of our Tandem BLSTM-DBN recognizer, new keywords can be added to
the vocabulary without having to re-train the model. Further, our concept does not
require the training of an explicit garbage model. Experiments on the TIMIT corpus
show that incorporating a BLSTM network into the DBN architecture can increase
the true positive rate by up to 10% at equal false positive rates.

1 Introduction

Keyword spotting aims at detecting one or more predefined keywords in a given
speech utterance. In recent years keyword spotting has found many applications,
e.g. in voice command detectors, information retrieval systems, or embodied con-
versational agents. Hidden Markov Model (HMM) based keyword spotting systems
[10] usually require keyword HMMs and a garbage HMM to model both, keywords
and non-keyword parts of the speech sequence. However, the design of the garbage
HMM is a non-trivial task. Using whole word models for keyword and garbage
HMMs presumes that there are enough occurrences of the keywords in the training
corpus and suffers from low flexibility since new keywords cannot be added to the
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system without having to re-train it. Modeling phonemes instead of whole words
offers the possibility to design a garbage HMM that connects all phoneme models
but implies that the garbage HMM can potentially model any phoneme sequence,
including the keyword itself.

In this paper we present a new Dynamic Bayesian Network (DBN) design which
can be used for robust keyword spotting and overcomes most of the drawbacks of
other approaches. Dynamic Bayesian Networks offer a flexible statistical framework
that is increasingly applied for speech recognition tasks [2, 1] since it allows for con-
ceptual deviations from the conventional HMM architecture. Our keyword spotter
does not need a trained garbage model and is robust with respect to phoneme recog-
nition errors. Unlike large vocabulary speech recognition systems, our technique
does not require a language model but only the keyword phonemizations. Thereby
we use a hidden garbage variable and the concept of switching parents [1] to model
either a keyword or arbitrary speech.

In order to integrate contextual information into the keyword spotter, we extend
our DBN architecture to a Tandem recognizer that uses the phoneme predictions of
a bidirectional Long Short-Term Memory (BLSTM) recurrent neural net together
with conventional MFCC features. Tandem architectures which combine the out-
put of a discriminatively trained neural net with dynamic classifiers such as HMMs
have been successfully used for speech recognition tasks and are getting more and
more popular [7, 9, 3]. BLSTM networks efficiently exploit past and future context
and have been proven to outperform standard methods of modeling contextual in-
formation such as triphone HMMs [5]. As shown in [13], the framewise phoneme
predictions of a BLSTM network can enhance the performance of a discriminative
keyword spotter. In [4] a BLSTM based keyword spotter trained on a fixed set of
keywords is introduced. However, this approach requires re-training of the net as
soon as new keywords are added to the vocabulary, and gets increasingly complex
if the keyword vocabulary grows. In this work we combine the flexibility of our
DBN architecture with the ability of a BLSTM network to capture long-range time
dependencies and the advantages of Tandem speech modeling.

The structure of this paper is as follows: Section 2 briefly reviews the principle
of DBNs and BLSTMs as the two main components of our keyword spotter. Section
3 explains the architecture of our Tandem recognizer while experimental results are
presented in Section 4. Concluding remarks are mentioned in Section 5.

2 Keyword Spotter Components

Our Tandem keyword spotter architecture consists of two major components: a Dy-
namic Bayesian Network processing observed speech feature vectors to discriminate
between keywords and non-keyword speech, and a BLSTM network which takes in
to account contextual information to provide an additional discrete feature for the
DBN. The following sections will shortly review the basic principle of DBNs and
BLSTMs.
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2.1 Dynamic Bayesian Network

Dynamic Bayesian Networks can be interpreted as graphical models G(V,E) which
consist of a set of nodes V and edges E. Nodes represent random variables which
can be either hidden or observed. Edges - or rather missing edges - encode con-
ditional independence assumptions that are used to determine valid factorizations
of the joint probability distribution. Dynamic Bayesian Networks are the graphical
models of choice for speech recognition tasks, since they consist of repeated tem-
plate structures over time, modeling the temporal evolution of a speech sequence.
Conventional Hidden Markov Model approaches can be interpreted as implicit graph
representations using a single Markov chain together with an integer state to repre-
sent all contextual and control information determining the allowable sequencing. In
this work however, we decided for the explicit approach, where information such as
the current phoneme, the indication of a phoneme transition, or the position within
a word is expressed by random variables. As shown in [2], explicit graph repre-
sentations are advantageous whenever the set of hidden variables has factorization
constraints or consist of multiple hierarchies.

2.2 Bidirectional LSTM Network

The basic idea of bidirectional recurrent neural networks [11] is to use two recurrent
network layers, one that processes the training sequence forwards and one that pro-
cesses it backwards. Both networks are connected to the same output layer, which
therefore has access to complete information about the data points before and af-
ter the current point in the sequence. The amount of context information that the
network actually uses is learned during training, and does not have to be specified
beforehand.

Analysis of the error flow in conventional recurrent neural nets (RNNs) resulted
in the finding that long time lags are inaccessible to existing RNNs since the back-
propagated error either blows up or decays over time (vanishing gradient problem).
This led to the introduction of Long Short Term Memory (LSTM) RNNs [8]. An
LSTM layer is composed of recurrently connected memory blocks, each of which
contains one or more recurrently connected memory cells, along with three multi-
plicative “gate” units: the input, output, and forget gates. The gates perform func-
tions analogous to read, write, and reset operations. More specifically, the cell input
is multiplied by the activation of the input gate, the cell output by that of the output
gate, and the previous cell values by the forget gate. Their effect is to allow the net-
work to store and retrieve information over long periods of time. If, for example the
input gate remains closed, the activation of the cell will not be overwritten by new
inputs and can therefore be made available to the net much later in the sequence by
opening the output gate. This principle overcomes the vanishing gradient problem
and gives access to long range context information.
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Combining bidirectional networks with LSTM gives bidirectional LSTM, which
has demonstrated excellent performance in phoneme recognition [5], keyword spot-
ting [4], and emotion recognition [12]. A detailed explanation of BLSTM networks
can be found in [6].

3 Architecture

The Tandem BLSTM-DBN architecture we used for keyword spotting is depicted
in Figure 1. The network is composed of five different layers and hierarchy levels
respectively: a word layer, a phoneme layer, a state layer, the observed features, and
the BLSTM layer (nodes inside the grey shaded box). For the sake of simplicity
only a simple LSTM layer, consisting of inputs it , a hidden layer ht , and outputs ot ,
is shown in Figure 1, instead of the more complex bidirectional LSTM which would
contain two RNNs.

The following random variables are defined for every time step t: qt denotes the
phoneme identity, qps

t represents the position within the phoneme, qtr
t indicates a

phoneme transition, st is the current state with str
t indicating a state transition, and xt

denotes the observed acoustic features. The variables wt , wps
t , and wtr

t are identity,
position, and transition variables for the word layer of the DBN whereas a hidden
garbage variable gt indicates whether the current word is a keyword or not. A sec-
ond observed variable bt contains the phoneme prediction of the BLSTM. Figure 1
displays hidden variables as circles and observed variables as squares. Deterministic
conditional probability functions (CPFs) are represented by straight lines and zig-
zagged lines correspond to random CPFs. Dotted lines refer to so-called switching
parents [1], which allow a variable’s parents to change conditioned on the current
value of the switching parent. Thereby a switching parent can not only change the
set of parents but also the implementation (i.e. the CPF) of a parent. The bold dashed
lines in the LSTM layer do not represent statistical relations but simple data streams.

Assuming a speech sequence of length T , the DBN structure specifies the factor-
ization

p(g1:T ,w1:T ,wtr
1:T ,wps

1:T ,q1:T ,qtr
1:T ,qps

1:T ,str
1:T ,s1:T ,x1:T ,b1:T ) =

T

∏
t=1
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t ,qt)p(str

t |st) f (qtr
t |q

ps
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T

∏
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(1)

with p(·) denoting random conditional probability functions and f (·) describing
deterministic CPFs.
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Fig. 1 Structure of the Tandem BLSTM-DBN keyword spotter

The size of the BLSTM input layer it corresponds to the dimensionality of the
acoustic feature vector xt whereas the vector ot contains one probability score for
each of the P different phonemes at each time step. bt is the index of the most likely
phoneme:

bt = max
ot

(ot,1, ...,ot, j, ...,ot,P) (2)

The CPFs p(xt |st) are described by Gaussian mixtures as common in an HMM
system. Together with p(bt |st) and p(str

t |st), they are learnt via EM training. Thereby
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str
t is a binary variable, indicating whether a state transition takes place or not. Since

the current state is known with certainty, given the phoneme and the phoneme po-
sition, f (st |qps

t ,qt) is purely deterministic. A phoneme transition occurs whenever
str

t = 1 and qps
t = S provided that S denotes the number of states of a phoneme. This

is expressed by the function f (qtr
t |q

ps
t ,qt ,str

t ). The phoneme position qps
t is known

with certainty if str
t−1, qps

t−1, and qtr
t−1 are given.

The hidden variable wt can take values in the range wt = 0...K with K being
the number of different keywords in the vocabulary. In case wt = 0 the model is in
the garbage state which means that no keyword is uttered at that time. The vari-
able gt is then equal to one. wtr

t−1 is a switching parent of wt : if no word transi-
tion is indicated, wt is equal to wt−1. Otherwise a word bigram specifies the CPF
p(wt |wtr

t−1 = 1,wt−1). In our experiments we simplified the word bigram to a ze-
rogram which makes each keyword equally likely. Yet, we introduced differing a
priori likelihoods for keywords and garbage phonemes:

p(wt = 1 : K|wtr
t−1 = 1) =

K ·10a

K ·10a +1
(3)

and
p(wt = 0|wtr

t−1 = 1) =
1

K ·10a +1
. (4)

The parameter a can be used to adjust the trade-off between true positives and false
positives. Setting a = 0 means that the a priori probability of a keyword and the prob-
ability that the current phoneme does not belong to a keyword are equal. Adjusting
a > 0 implies a more aggressive search for keywords, leading to higher true positive
and false positive rates. The CPFs f (wtr

t |qtr
t ,wps

t ,wt) and f (wps
t |qtr

t−1,w
ps
t−1,w

tr
t−1) are

similar to the phoneme layer of the DBN (i.e. the CPFs for qtr
t and qps

t ). However,
we assume that “garbage words” always consist of only one phoneme, meaning that
if gt = 1, a word transition occurs as soon as qtr

t = 1. Consequently wps
t is always

zero if the model is in the garbage state. The variable qt has two switching parents:
qtr

t−1 and gt . Similar to the word layer, qt is equal to qt−1 if qtr
t−1 = 0. Otherwise, the

switching parent gt determines the parents of qt . In case gt = 0 - meaning that the
current word is a keyword - qt is a deterministic function of the current keyword wt
and the position within the keyword wps

t . If the model is in the garbage state, qt only
depends on qt−1 in a way that phoneme transitions between identical phonemes are
forbidden.

Note that the design of the CPF p(qt |qtr
t−1,qt−1,w

ps
t ,wt ,gt) entails that the DBN

will strongly tend to choose gt = 0 (i.e. it will detect a keyword) once a phoneme
sequence that corresponds to a keyword is observed. Decoding such an observation
while being in the garbage state gt = 1 would lead to “phoneme transition penal-
ties” since the CPF p(qt |qtr

t−1 = 1,qt−1,w
ps
t ,wt ,gt = 1) contains probabilities less

than one. By contrast, p(qt |qtr
t−1 = 1,wps

t ,wt ,gt = 0) is deterministic, introducing
no likelihood penalties at phoneme borders.
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4 Experiments

Our keyword spotter was trained and evaluated on the TIMIT corpus. The feature
vectors consisted of cepstral mean normalized MFCC coefficients 1 to 12, energy,
as well as first and second order delta coefficients. For the training of the BLSTM,
200 utterances of the TIMIT training split were used as validation set while the net
was trained on the remaining training sequences. The BLSTM input layer had a size
of 39 (one for each MFCC feature) and the size of the output layer was also 39
since we used the reduced set of 39 TIMIT phonemes. Both hidden LSTM layers
contained 100 memory blocks of one cell each. To improve generalization, zero
mean Gaussian noise with standard deviation 0.6 was added to the inputs during
training. We used a learning rate of 10−5 and a momentum of 0.9.

The independently trained BLSTM network was then incorporated into the DBN
in order to allow the training of the CPFs p(bt |st). During the first training cycle
of the DBN, phonemes were trained framewisely using the training portion of the
TIMIT corpus. Thereby all Gaussian mixtures were split once 0.02% convergence
was reached until the number of mixtures per state increased to 16 and 32 respec-
tively. In the second training cycle segmentation constraints were relaxed, whereas
no further mixture splitting was conducted. Phoneme models were composed of
three hidden states each.

We randomly chose 60 keywords from the TIMIT corpus to evaluate the keyword
spotter. The used dictionary allowed for multiple pronunciations. The trade-off pa-
rameter a (see Equation 3) was varied between 0 and 10.
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Fig. 2 Part of the ROC curve for the DBN keyword spotter and the Tandem BLSTM-DBN approach
using different values for the trade-off parameter a. Left side: 16 Gaussian mixtures; right side 32
Gaussian mixtures

Figure 2 shows a part of the Receiver Operating Characteristics (ROC) curves for
the DBN and the Tandem BLSTM-DBN keyword spotter, displaying the true posi-
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tive rate (tpr) as a function of the false positive rate (fpr). Note that due to the design
of the recognizer, the full ROC curve - ending at an operating point tpr=1 and fpr=1
- cannot be determined, since the model does not include a confidence threshold
that can be set to an arbitrarily low value. The most significant performance gain of
context modeling via BLSTM predictions occurs at an operating point with a false
positive rate of 0.2%: there, the Tandem approach can increase the true positive rate
by 10%. Conducting the McNemar’s test revealed that the performance difference
between the BLSTM-DBN and the DBN is statistically significant at a common sig-
nificance level of 0.01. For higher values of the trade-off parameter a, implying a
more aggressive search for keywords, the performance gap becomes smaller as more
phoneme confusions are tolerated when seeking for keywords. Thereby 16 mixtures
performed slightly better than 32 mixtures.

5 Conclusion

This paper introduced a Tandem BLSTM-DBN keyword spotter that makes use of
the phoneme predictions generated by a bidirectional Long Short-Term Memory
recurrent neural net. We showed that the incorporation of contextual information via
BLSTM networks leads to significantly improved keyword spotting results. Since
the whole concept is based on a Tandem phoneme recognizer and does not consider
specific keywords during the training phase, new keywords can be added without
having to re-train the network.

Future works might include a combination of triphone and BLSTM modeling as
well as processing the entire vector of BLSTM output activations instead of exclu-
sively using the most likely phoneme prediction.
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