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Abstract 

In this paper, it is shown that synthetic images can be used to preadjust a lane tracking algorithm 
which is developed by Audi. This was achieved by setting up a heterogeneous hardware-in-the-loop 
testbed. It includes the highly configurable and extendable simulation “Virtual Test Drive”. The main 
components are a traffic simulation, visualization and a sensor model which supplies ground truth data 
about the street lanes. Additionally, the visualization is used to generate synthetic camera sensor data. 
The testbed also contains a realistic driving dynamics simulation and a real image processing ECU 
(which is represented as a standard PC in the early development stages). One of the modules on the 
image processing ECU is a lane tracking algorithm. The algorithm is designed to calculate the 
transition curves while driving. This information can be used as input for driving assistance functions, 
e.g. lane departure warning. By running the lane tracker on a synthetic image it is possible to compare 
the results of the lane tracker with the ground truth data provided by the simulation. In this particular 
case, the information has been used to adjust the expected system error variance of one state variable. 

Résumé 
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Introduction 
As cameras and other sensors become increasingly common in modern production cars, image 
processing allows new active approaches to improve comfort and safety. Popular examples are 
pedestrian or vehicle detection systems to avoid collisions but also lane detection to help the driver 
stay on track. 

Those algorithms are conventionally tested with real sensor data and their results are validated with 
ground truth. However, ground truth is difficult to measure. For example video data for a car tracker 
would need to be labelled with the exact positions and velocities of both the ego and the target cars 
and the size and orientation of the other cars. Creating those labels is very time-consuming. For these 
reasons generating synthetic images to simulate vision-based algorithms is of raising importance [5]. 

Testbed Architecture 
The Virtual Test Drive (VTD) simulation framework allows users to fulfil a wide range of different 
simulation tasks throughout the entire development process of driver assistance and active safety 
systems. Depending on the exact use case of the tasks, different types of simulators can be used [1].  

In this case, a PC-based VTD-simulator is connected to a hardware-in-the-loop (HIL) simulator and an 
image processing electronic control unit (ECU). Additional electronic automotive systems, such as 
ECUs, sensors, and actuators, can be connected to the HIL-simulator. With this extended system it is 
possible to test complete functions from top to bottom, e.g. a lane departure warning lamp can be 
activated as soon as the ego car is crossing a lane inside the virtual environment.  

 

Figure 1: Testbed Architecture 

Each simulator type uses the same core components to handle the data flow within the simulation. The 
extended simulation components, for example vehicle dynamics, driver model, visualization and 
traffic simulation, are used to simulate road users and the environment. Target components are related 
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to the development of an aimed assistance system, e.g. choosing of appropriate sensors, developing 
algorithms and evaluating the use of certain actuators. The fully modular framework allows varying 
extended and target components in each simulator type. It is running in real-time on a regular PC. 

In this use case, the visualization is used to generate virtual camera images. Before generating these 
images however, it is necessary to set up the intrinsic and extrinsic camera parameters, e.g. its 
installation position and projection matrix. These parameters are also used by the image processing 
ECU to calculate the corresponding results. The virtual images are transferred to the HIL with a 
dedicated connection. 

Another component in the Virtual Test Drive architecture is the sensor manager. It consists of a plug-
in architecture which allows the user to include arbitrary sensor models in the simulation framework. 
In this configuration, a perfect sensor plug-in is used, which returns position data of traffic vehicles 
and road lane information. This is used as ground truth data to compare to the results of the tested lane 
tracking algorithm.  

The driver component of the Virtual Test Drive environment is “driving” the external vehicle 
dynamics. The external driving dynamics needs an input vector by the driver model, including pedal 
states, steering wheel angle and the four wheels’ positions vector in six degrees of freedom.  

The HIL-system calculates the vehicle dynamics of the ego car within its own simulator. In order to 
accomplish these tasks, an intensive communication between VTD and the HIL-simulator is 
necessary. This is achieved by using a broadcast oriented network protocol which allows the computer 
cluster to work on a virtual shared memory architecture. Each node of the network has the ability to 
share data with all other network nodes at same time. The communication layer is implemented using 
the Automotive Data and Time triggered Framework [2].  

The HIL-system is simulating all missing electronic components, such as sensors, actuators and ECU. 
It provides a simulation of necessary bus data and stimulates discrete inputs. Furthermore, the 
simulated sensor data has to match the position of detected obstacles in the video image.  

The lane tracking algorithm is part of an image processing ECU that is connected to the simulation 
framework. Through an interface of the hardware controller, virtual camera images from Virtual Test 
Drive can be received and processed. The recognized lanes can be displayed inside additional tools or 
be written to files [2].  

Also, the ground truth data can be stored in text files. Then, these files can be loaded into an 
independent analysis application where several plots and diagrams can be generated to compare the 
results. 

Lane Tracking Algorithm 
The lane tracker is a computer vision based system which predicts the curvature of the road lanes in 
front of the car.  

The implementation of the lane tracker is based on the “4D-approach” described by [4] and has been 
developed by the Audi department for Advanced Driver Assistance Systems. The steps of the general 
tracking procedure are only described briefly here; for more detailed information on the underlying 
models the reader is deferred to [3]. 

The centre of a lane is modelled as a transition curve whose curvature at distance l  along its pathway 
is described by the equation 
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lcclc ⋅+= 10)(  

where 00 1 rc =  is the curvature of the circle with radius 0r  in the starting point of the transition 

curve. Parameter 1c  describes the change in curvature along the pathway. To calculate the expected 

positions of lane markers, bordering the own lane, the width B  of the lane must be taken into account. 
In order to compensate for the relative position of the ego vehicle towards the position of the transition 
curve’s origin some other parameters are estimated: 

� pitch angle θθθθ  of the vehicle’s x-axis towards the ground plane, 

� yaw angle ψψψψ  of the vehicle’s x-axis towards the tangent to the transition curve at its origin, 

� lateral offset offY
 of the vehicle towards the origin of the transition curve. 

In each iteration of the tracking loop the estimated state vector 1
ˆ

−kx
r

 is predicted to the current time 

step k  using a transition matrix. Using the predicted state vector ∗
kx̂
r

 the lane centre transition curve 

model is calculated and support points along the pathway are created. For each support point the 
expected points on the left and the right lane border are produced by moving a distance of 2B±  
along the perpendicular to the tangent to the transition curve model at the particular support point. In a 
next step these points are projected to the imaging chip using the known camera pose within the 
vehicle and a pin hole camera model. This result in pixel positions where edge points of lane markers 
are expected and can be looked for with an adaptive convolution mask, as described in Figure 2. 

 

 

Figure 2: Example of adaptive convolution mask 

In the update step of the Extended Kalman Filter the measurement residuals )ˆ( ∗− kkk xHz
r

 are 

determined, weighted by the Kalman Gain K  and added to the last predicted state vector: 

)ˆ(ˆˆ ∗∗ −+= kkkkk xHzKxx
rrr

 

Thus, the prediction for the next time step can be performed. For simplicity reasons the equations for 
the computation of the error covariance matrix are omitted here. 

An example of the lane tracker working on real images can be seen in Figure 3. Figure 4 shows the 
algorithm working on rendered synthetic image.  

 

 

measured point 
min 

max measured point 
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Figure 3: Lane tracking on a real image 

 
Figure 4: Lane tracking on a synthetic image 

Preadjustment of the Lane Tracking Algorithm 
The following paragraph describes one possibility to preadjust the lane tracking algorithm for the 
estimation of the lane curvature c0 using the simulation environment.  

The scenario chosen is a car ride on a flat, empty virtual highway in a right curve (Figure 4). The 
sensor inputs required by the lane tracker consists of the camera image, in this case the rendered view 
of the scene and dynamic information (speed and yaw rate) Latter is usually provided by the ESP. In 
this case, it is replaced by EGO vehicle dynamics data.  

During the adjustment of the algorithm, the expected values are compared against measured values. 
The expected values represent ground truth values of the simulation, whereas the measured values are 
result values of the running algorithm.  

One drawback is that certain parts of the simulation are not perfect, for example lane markings are 
modeled as sequences of straight lines. This leads to a minimum expected system error which would 
be achieved once the models of the simulation on one hand and the tracking system on the other hand 
are synchronized and properly calibrated. The partly unknown effects of the differences between the 
simulated world and the internal model of the tracker can be compensated by the tracker through 
adjusting the system error covariance matrix Q of the Kalman filter. 
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 Figure 5: Test 1, too high uncertainty                         Figure 6: Test 3, too low uncertainty 

The system error assumption directly affects the impact of the new measurement on the last predicted 
values. A higher uncertainty results in a higher influence of the measurement. Therefore, assuming 
high uncertainty leads to noisy estimates, since the noise of the measurement directly affects the 
estimated state variable. Thus, it is interesting to know the minimum value of the assumed system 
error for which the estimator can still follow reality (here: virtual reality) within the allowed maximum 
latency time. This leads to the optimal assumption for the requirements of a specific driver assistance 
system.  
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Figure 7: Test 2, medium uncertainty 

The charts above show both the ground-truths of the curvature as well as the estimated results of the 
lane detector as a function of time, where positive values represent a right curve.  

In Figure 5 the system error was set to an extremely high value, so there is a great noise on the 
estimated curvature. Figure 6 shows the results for a too low error assumption. While this low value 
completely eliminates the jitter effects, the estimator could not follow the ground truth anymore. For 
Figure 7 the value was set to a medium value, so there is less jitter, but the estimator can still follow 
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the dynamic of the reference value. It can be seen, that there is an optimal value for the error 
assumption, for which the results should lie between the results shown in Figure 6 and Figure 7.  

Conclusions 
The Virtual Test Drive simulation environment combined with a hardware- in- the- loop simulator 
offers the application engineer a unique chance to preadjust and test real electronic control units in a 
lab. It is now possible to do functional trials in a closed loop set-up. This approach can help to 
decrease the amount of real road trials and thereby to save costs and to reduce risks for man and 
machine, respectively. 

The example use case described in this paper demonstrates the potential of this simulation testbed. The 
results proved that it is possible to optimize the estimation quality by adapting the covariance matrix. 
The major benefit of this testbed is the opportunity to automate parameter studies using ground truth 
data and a weighting function to measure the quality of the results. Nonetheless, it is always necessary 
validate the adaptations in real road trials.    
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