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Abstract

Nowadays more and more devices of daily life are con-
nected to each other and are integrated into massively
distributed networks of embedded devices. These devices
range from consumer electronics such as digital picture
frames or internet radios to embedded devices such as
fridges or home control in general. The service-oriented
paradigm is the main concept to implement complex, het-
erogeneous and large IT systems. However, if it comes to
embedded devices, resource constraints imposed by the un-
derlying hardware, such as 8-Bit micro controllers, require
efficient protocols. This often prohibits the use of technolo-
gies known from the Web service domain, the major imple-
mentation of the service-oriented paradigm. Nevertheless,
a quick and seamless information flow between embedded
devices and Web services is already today an important re-
quirement for many application scenarios, e.g., real-time
aware production management or the Internet of Things.
Within this paper, we present an approach that takes ben-
efit of traditional SOA implementations, such as Web ser-
vice interfaces and an IP compatible addressing schema.
One advantage of the solution is that it can be implemented
on resource constraint devices. The main innovations are
combination of web service mechanisms with a data-centric
processing paradigm to εServices at the device level and
enabling a generic Service Bridge as an agnostic mediator
between the Web Service world and the εService world on
networked embedded devices.

1 Introduction

Traditionally, many devices were not network-enabled or
were executed within an isolated device network. Such de-
vices and systems were the domain of experts for embedded
system. The ongoing decline in prices for network-enabled
hardware devices has created several application domains
for sensor/actor networks such as building automatisation.
Currently, one can observe the trend to create interfaces be-
tween these physical devices on the one hand and enterprise
systems on the other hand [6, 10].

Furthermore, interoperability is of great importance. The
networks typically consist of heterogeneous components
e.g. with different requirements and thus using different
communication protocols or processors. To reduce the com-
plexity, a modular architecture that supports the integration
of different components, both related to software and hard-
ware components, is required. Furthermore, also the devel-
opers have changed. While previously device domain ex-
perts were involved in the development of the systems, the
systems must now be configurable and manageable by non-
experts and even end users. In the area of home automation
for example, the configuration of the sensor/actor network
should be possible for the tenants. Therefore, new devel-
opment and configuration tools are required that provide
user-friendly graphical user interfaces on platforms they are
used to. Nowadays commonly known platforms are, for in-
stance, web browsers which, for instance, are already used
by end users to configure wireless routers. Most of these
requirements in the domains of interoperability, modularity
and tool support can be addressed by the service-oriented
paradigm. The emphasis of this approach is on reusable
software components that can interact on a basis of com-



monly known protocols. The predominant implementation
is based on web services and the different protocols of this
area.

In different projects [9], implementations were devel-
oped for resource-constrained devices. However, the mini-
mal requirements for implementing a web service stack are
still very high due to the processing of character data and the
required data conversion in data types required for the data
processing. While many developers claim that due to the
decline in prices the used hardware components will soon
be powerful enough to run this software, this is only one
side of the coin. For the other side the tremendous growth
of applications and the limitations in bandwidth have to be
taken into account which does not follow Moore’s law. In
many of the new application domains such as building con-
trol, a processor for sensors that can run a Web service stack
will be too cost-intensive.

Therefore, approaches that support very resource-
constraint controllers are required. Furthermore, not only
the computational power of the controllers is constrained,
but also the network bandwidth. ZigBee [16], one of the
major standards for ad-hoc sensor networks, for example is
designed to support only small messages in the range of a
few bytes. Standard XML messages are much too long to
be used in these networks. Within this paper, we suggest
a solution that takes into account on the one hand the re-
source constraints of current sensor/actor networks but on
the other hand adopts web service protocols to ease the in-
teraction of web services known from IT systems with these
sensor/actor networks. The proposed solution offers the fol-
lowing benefits:

1. Look&Feel of a Web Service: Web services can eas-
ily send data requests to devices. For the calling web
service, it makes no difference whether a standard web
service or a constrained device is the end point of the
request.

2. Resource minimal implementation of the SOA middle-
ware: the device world differs from the web service
world. The data flow is typically static and directed
from the sensor to the actuator. This behaviour can be
modelled with a data centric processing paradigm, in
which services are implemented as operators that pro-
cess and transform an underlying data stream.

2 Two Worlds Unite

While SOAs are a suitable programming paradigm for
both, Internet-based Web services and embedded networks,
the characteristics of individual services differ in both
application domains. To avoid ambiguities, we will use
the terms SOA and service for Web service (WS) based
SOAs, and the terms εSOA and εService for SOAs in

the embedded network domain. First, we want to show
the similarities and differences between both notions of
services and why it is a feasible approach to differentiate
between the embedded world and the rest.

2.1 The Notion of Services

The first aspect we want to compare is the communica-
tion principles. In contrast to Web Services, εServices often
only support asynchronous communication (fire&forget 1),
because of limitations in the employed network protocols
and real-time constraints. When a service is called, it pro-
cesses the incoming data and then changes its state and /
or produces output data. Another aspect where Web Ser-
vices and εServices differ is that εServices have long liv-
ing instances, which are not persisted between service in-
vocations, but kept in memory permanently. εService are
instantiated once, when the corresponding application 2 is
deployed and terminated when the application is stopped.

2.2 Data-Centric Embedded SOA

Our approach assumes that a data centric processing
model, often also called an actor oriented programming
model [13] or a data stream based programming model,
is used in the embedded network. These programming
paradigms allow the separation of functional components
(εServices) from non-functional aspects like communica-
tion and management. Therefore, it is possible to restrict the
data flow to the pure functional data and to avoid the neces-
sity of sending semantic information. The components can
be described in a domain specific model with well defined
interfaces (ports) and are interconnected by a middleware.
The used εServices can produce, consume and alter data
to provide application functionality. Due to the step wise
relisation of applications based on existing components i.e.
services, most applications are realized by chaining small
services which provide one specific artifact of functionality
to the application. This approach also increases code reuse
and inherently supports the distributed execution of appli-
cations, because the individual services can be distributed
over the nodes in the network. In a data centric processing
model, applications are built by chaining together services.
An important aspect thereby is that each of the individual
services is not aware of any preceding or subsequent ser-
vices in this chain. This knowledge is kept in the message
routing layer, which decides where to send the output data
of each service. In the Web service domain on the other

1If a reliable message transmission is required, it is implemented within
the middleware in our approach.

2Application here stands for services coupled into a chain to perform a
specific action
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Figure 1. Service Composition

hand, typically remote-procedure-call paradigms are used.
In this case, the service itself specifies the next service in
the data processing chain.

In the following sections, we will refer to our prototyp-
ical implementation of such a middleware, which is pre-
sented in [4]. However, the presented concepts are appli-
cable for other middleware approaches as well, as long as
these also persuade a data centric programming model. In
order to get a more realistic model of the real world, our
middleware provides two different kinds of εServices. The
first kind of services are hardware services. These services
provide an interface to bring hardware capabilities to the
application (e.g. sensing).

Logic services consume data provided by hardware ser-
vices (sensors) or by other logic services. The data pro-
vided by a logic service can be consumed by a further logic
services or by a hardware service (actor). Figure 1 shows
a simple application pattern following this paradigm com-
prising two services; one for a light switch sensor, one for
the light switch relay.

2.3 Integration of Both Worlds

The upcoming challenge for application developers in
general is the integration of both worlds, Web services on
the one side and embedded Services on the other side. Real-
time awareness3 for manufacturing or logistics becomes an
essential requirement: a break in information exchange be-
tween the embedded world and the business back-end is not
tolerable anymore. Failures and delays on the device level
have to be reported fast, in order to allow the timely execu-
tion of compensatory actions. This requirements is for ex-
ample placed by flexible production environments, which
have to be (re-)configurable from back-end services to re-
duce downtimes and support on-demand production.

3In this context, the expression “real-time” does not imply hard timing
constraints as known from the embedded world, but should be read as “data
should be supplied in a timely manner”. This is due to the reason that the
Web services consuming data from the embedded networks do not provide
real-time guarantees at all.

Figure 2. Web Services and Embedded Ser-
vices - Two Views

The integration of the IT and the embedded system has
to be performed in two ways, as shown in Figure 2. A de-
veloper familiar with Web service technologies should be
able to interact with services from the embedded world just
like he would interact with any other Web service. E.g., if a
business process is modeled with BPEL [3] (as depicted in
the lower left part of Figure 2), the process designer should
be able to use εServices to acquire or submit information to
field level devices. On the other hand, a developer famil-
iar with application development for embedded networks
should have access to services in the enterprise back-end in
the same manner as he accesses other embedded services.
E.g., if data has to be transmitted to a back-end Web ser-
vice, it should be sufficient to simply route the correspond-
ing data stream to the remote service (as depicted in the
lower right part of Figure 2).

The Service Bridge 4is the mediator between these two
worlds: it has the capability to generally translates mes-
sages in a service agnostic way to faciliate communication
between services in both Worlds. By that it provides an ab-
straction layer that supports both of the above mentioned
views. This leads to the following four different interaction
scenarios.

Continuous interaction with the embedded network In
this scenario, an external Web service continuously inter-
acts with one or more services in the embedded network,
e.g., to retrieve measurement values or to submit externally
acquired data. In order to keep the communication over-
head low and to support non-periodic interactions, the com-
munication between services is managed via subscriptions,
i.e., a Web service developer subscribes to the output of an
embedded service or announces data submissions to the in-
put of an embedded service. The management of these data
subscriptions can be done with established technologies like
WS-Eventing[15], which is not in the focus of this paper.

4There may exist multiple bridges and a dynamic bridge selection to
avoid a single point of failure. We differentiate between a bridge for the
case where on both networks the same information is obtainable from a
gateway where the gateway only provides a selection of information.
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Figure 3. Service Bridge

Ad-hoc interaction with the embedded network In con-
trast to the previous scenario, the interaction between ser-
vices is not planned beforehand via subscriptions, but oc-
curs dynamically. RPC-style Web service invocations are
an example for this kind of interactions, e.g., in order to re-
trieve the current measurement value of a sensor, an exter-
nal service could invoke a getData method on an embedded
service.

Continuous interaction with external Web services In
this scenario, a developer from the embedded domain wants
to retrieve data from or submit data to an external Web ser-
vice in a periodic fashion. This interaction has to support
the stream based paradigm used in the embedded network,
i.e., to submit data to the external service the developer
routes a stream to the Web service, to receive data he routes
a stream from the Web service to the embedded service.

Ad-hoc interaction with external Web services The last
interaction mode is not meaningful for data centric services
as used in the embedded domain. In the embedded world,
applications are installed by chaining services running on
the individual nodes. As the individual services have no
knowledge about the concrete wiring, reconfigurations of
the application are only triggered by end-users (typically in
the web service domain) or the middleware, but not by the
εServices.

3 Bridging the Gap: Services to the Field

After stating the different interaction schemes between
web services and εServices, this section discusses the main
concepts of the implementation: IP-compatible addressing
and the Service Bridge.

3.1 IP-compatible Addressing

A main requirement for a seamless integration of the web
service world on the one hand and the εSOA world on the
other hand is a compatible addressing scheme. As the Inter-
net Protocol is the de facto standard for most used protocols,

we advocate an IP-compatible addressing scheme. This ap-
proach resembles the approach in [12]. However in contrast
to this approach of virtual IP addresses; the IP address is
actually used for the routing algorithms within our middle-
ware. All devices in the εSOA world have an IP address,
even if the underlying network uses a different addressing
scheme5. The bridge monitors all incoming messages at the
IP layer and intercepts messages targeted at an εService.
These messages are translated into suitable packet formats
and forwarded to the εService. Figure 3 shows a possible
scenario. A web service call is routed via the bridge. The
bridge monitors the messages and translates the message to
the ZigBee protocol. The mapping of the Web service call
to the specific service and port is performed by analyzing
the WSDL description.

3.2 Service Bridge

If a developer wants to access an external Web service
from the embedded world, the Service Bridge creates a vir-
tual embedded service representing this Web service. The
virtual service’s in- and outputs are created according to
the WSDL description of the Web service. For continu-
ous interaction, the One-way and Notification WSDL port
types are supported. A One-way port in a WSDL specifies a
port, which only receives messages. The virtual service will
therefore possess a corresponding input. Analogously, an
output is created for every Notification port of the WSDL.
The correlation between these ports is stored in an inter-
nal mapping table in the Service Bridge. From the view
of the embedded network, the virtual service is offered by
the node hosting the Service Bridge. In order to send data
to the external Web service, an embedded service can send
data to the input of the virtual service running on the Ser-
vice Bridge node. The arriving messages are intercepted
by the Service Bridge and converted to a SOAP call. The
destination Web service is determined with the mapping ta-
ble and the message is forwarded to its destination in the
Web service world. Incoming SOAP messages are treated
analogously: they are intercepted by the Service Bridge and
converted to embedded network messages. These messages
are injected to the network, as if the output of the virtual
service created them.

The Service Bridge does not directly support ad-hoc in-
teraction with external Web services. We do not think, if
needed at all, it will reflect rare cases as this mode violates
the data centric processing paradigm in the sensor network.
Several benefits of data centric systems, like free place-
ment of services, splitting and re-using of data streams, etc
are only achievable if the individual services which operate
on a data stream are implemented “locally”, i.e., produce

5In this case, the routing to the next hop is realized by the addressing
scheme of the underlying network
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their outputs solely depending on the data received. An ad-
hoc interaction would require the service to decide which
external Web service it should address, what violates this
paradigm. If the ad-hoc interaction is needed anyway, it can
be mimicked by installing temporary data streams for the
duration of the invocation. The message exchange in this
case is the same as in the continuous interaction scenario.

In order to make an embedded service accessible from
the Web service world, a WSDL generator creates a WSDL
document describing the embedded service’s interfaces. It
will contain a Notification type port for every output of the
service and a One-way port for every input of the service.
Analogously to the interaction with external Web services,
the correlation between these ports is added to a mapping
table. Additionally, the newly generated WSDL is made
available through a UDDI based discovery interface, which
allows users form the Web service world to search for spe-
cific embedded services. The message exchange in the con-
tinuous interaction mode is the same as described in the pre-
vious paragraphs.

Finally the support for ad-hoc interactions initiated from
Web services requires mediation between the pull based re-
quest/response invocation scheme in the WS domain and
the push based communication paradigm in the embedded
world.

In this case, the Service Bridge will install a caching ser-
vice and extend the WSDL with a “getter” method for the
corresponding output. The caching service has two inputs
and one output. The data input is connected with the out-
put of the target service. The caching service will always
store the latest data received at this input. If a message is
sent to the second input, the trigger input, the caching ser-
vice will send the stored data from the cache output. The
last measurement produced by the target service is there-
fore pullable via a call to the trigger input. If an embedded
device supports on demand data acquisition, i.e., data ac-
quisition can be triggered via submission of a message, the
cache service is not needed. Upon the arrival of a request
the Service Gateway will trigger the measurement at the tar-
get service and send the reply to the Web service.

Summarizing this section it has to be concluded that even
though the Service Bridge has to provide means to interme-
diate between Web services and εService this mediation is
generic thus service agnostic and does not require adapta-
tions if new services are added.

4 Demonstrator

A smart building to support energy efficiency and an ex-
cellent quality of life at the same time is one of the main
drivers in home and building automation and characterized
by buzzwords like Intelligent House or Smart Home. Al-
though the necessary technologies for implementing this

Figure 4. Smart Home Demonstrator

vision are already available, general rollout has not taken
place yet. One reason may be the significant installa-
tion costs especially in private households. On the other
hand, sophisticated building automation is increasingly in-
stalled in industrial and business buildings, especially to
lower management costs. Traditional building automation
approaches emulate classical wired switched circuits and
become significantly complex with an increasing or even
changing number of sensors and actuators. This becomes
even worse if further optimization criteria such as power ef-
ficiency are considered. We therefore selected the building
automation scenario to demonstrate our εSOA as we believe
that our approach fulfills the various requirements in this
domain.

Based on our εSOA platform, we developed a demon-
strator, which covers a future home automation scenario.
The assembling of our demonstrator is shown in Figure 4.
We assume that in the next years, energy providers use dy-
namically changing energy prices in order to influence the
overall energy consumption depending on the energy avail-
ability and the wholesale energy market. We further assume
that some kind of power storage system, such as the bat-
tery of an electric car, will temporarily be available in fu-
ture homes. Based in these assumptions, we implemented
the following scenario: A household comprising a battery
and loads (a refrigerator and 2 lights) with different power
consumption and energy saving options. One task of the au-
tomation logic is to optimize the power consumption costs
throughout the day. If energy prices are low, the battery is
charged and the refrigerator cools down to a lower bound.
If prices are high, the house is disconnected from the power
grid if the battery is fully charged and then draws its en-
ergy in peak price situations from the battery. Additionally,
the refrigerator is put to energy saving mode, i.e., it stops
cooling until an upper temperature bound is reached. The
electricity prices are provided by an external Web service,
which is ’̈bridged’̈ by a Service Bridge into the network.
This is an example for scenario of continuous interaction
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with an external Web service as described in the previous
section.

Furthermore, tenants can monitor the system by estab-
lishing a connection to an εService that provides the cur-
rent operation state of devices in the household abd also
the overall cost of energy consumption. This represents the
scenario of continuous interaction with an εService as dis-
cussed in the previous section.

Finally, the tenants can also query the current tempera-
ture of the refrigerator or configure the control system e.g.
setting the lower temperature bound. This this is an example
of the ad-hoc interaction scenario in which the web services
interacts with the device network in an ad-hoc fashion.

There are other functional requirements not presented in
detail here, e.g., the home has to connect to the power grid if
the summed consumption of all devices exceeds the power
of the battery, the battery should not be completely depleted
depending of the mobility requirements of the eCar, etc.
The used ZigBee based motes possess a set of I/O devices
used to read signals from the switches and turn on or off the
loads. The programmable phone, for instance, can be used
to monitor sensor readings and to adjust thresholds, such as
the pricing parameters to trigger reduced power consump-
tion of devices such as the fridge.

5 Related Work

The major contribution of our approach is the integration
of the data-centric embedded world and the Web service
world. Most existing approaches try to map one approach
to the other world.

For the embedded world, standardized middleware archi-
tectures target specific application domains, e.g., KNX[1]
for the building automation domain or AUTOSAR[2] for
automotive applications. These approaches work on a very
low abstraction level and therefore lack support for a seam-
less integration with external services. Especially, because
the data processing paradigm used in these approaches is
not directly compatible with service oriented principles.

Similar to our approach, a service / component oriented
approach is followed by the OASiS[11], MORE[14] and
RUNES[5] projects. However, these projects do not pro-
vide means for service agnostic binding with external Web
services.

A web service based approach is persuaded by other
projects, such as SIRENA[9] or SOCRADES[7]. These
projects are based on the idea that an adopted Web service
stack is present at the device level, the DPWS[8] stack. Due
to this assumption, the resource requirements on these de-
vices are rather high. Current implementations of a DPWS
stack including the OS and a TCP/IP stack require a static
memory footprint of 500 kB [9]. In contrast, a prototypi-
cal implementation of our middleware requires only 12 kB.

Therefore, applications, where dynamic invocations of ser-
vices provided by devices play a central role, will most
probably be implemented using approaches such as DPWS.
If however the service wiring is predominantly static and
resource constraints influence the design, our approach is
more suitable.

6 Conclusion and Future Work

In this paper we presented a new approach of εServices
and Service Bridge for a generic integration of IP-based
Web service and embedded services which use specialized
transport protocols. For this approach we assume that a ser-
vice oriented programming paradigm is required on device
level due to the high degree of decentralization in embedded
networks.

Contrary to quite a number of other projects we do not
think that service oriented approaches ends on the gateway
to the embedded domain. On the contrary we demonstrate
that it is reasonable to run complete Web service stacks on
embedded devices even if theses possesses only reduced ca-
pabilities like DPWS stack for example.

The presented approach in this paper rather combines
a service oriented approach with a data centric processing
paradigm. Even though closely related to Web services the
data centric paradigm requires mediation between the Web
service world and the embedded world.

An outstanding feature of the chosen approach is that
the mediation between Services and Web Services can be
provided by a Service Bridge which is agnostic to the actu-
ally bridged service. Thus we can offer application devel-
opers for embedded networks the possibility to seamlessly
interact with Web services located outside of the embedded
network, and Web service developers the possibility to ac-
cess services in the embedded network just like any other
Web service without taking care of the bridge in between.
The paper discusses the possible interaction schemes be-
tween Web Services and εServices at device level, presents
the main tasks of the Service Bridge, and presents a demon-
strator that shows the feasibility of this approach using the
example of an energy building management. To further
the optimization potential of the presented integrated ap-
proach we are currently developing tools that select appro-
priate routing techniques and calculate a eService place-
ment based on non-functional requirements such as maxi-
mal latency or reliability for data links. Furthermore, we
are developing concepts for a semantical description of eS-
ervices to automate the chaining of services in view of con-
figuration costs reduction.
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