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Abstract We have investigated control of the DLR Light-Weight Robot III with
DLR Five-Finger Hand by a person with tetraplegia using the BrainGate2 Neural
Interface System. The goal of this research is to develop assistive technologies for
people with severe physical disabilities. This shall allow them to regain some inde-
pendence in the handling of objects, e.g. to drink a glass of water. First results of the
developed control loop are very encouraging and allow the participant to perform
simple interaction tasks with her environment, e.g., pick up a bottle and move it
around. To this end, only a few minutes of system training is required, after which
the system can be used.
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1 Motivation

Enabling individuals with tetraplegia to control a robot arm and hand as an assistive
device for manipulation tasks by use of intracortical motor signals could provide
significant autonomy capabilities to the concerned person. The ultimate goal is to re-
enable the person to move an assistive device naturally, instantiated by a robotic arm
with dexterous robotic hand, as if it was their own and grasp and manipulate real-
world objects. By using the higher-order control capabilities of the human brain,
i.e., selection of the goal; hand posture; global trajectory planning; etc., grasping and
object handling in unstructured environments need not be implemented in artificially
cognitive robotic systems. Rather, the robotic system should take care of the low-
level intelligence, including motion and interaction control, collision handling, and
the performance of stable grasps. Consequently, the person can depend entirely on
the safe and stable behaviour of the robot [1].

In this paper we demonstrate for the first time continuous control of a robot
arm and hand by intracortical motor signals of a person with tetraplegia, which
we believe is an important step towards the aforementioned goal.

Control of various devices by the use of intracortical and electrocorticographic
brain-computer interfaces (BCI) has been an ongoing research area for many years.
With respect to EEG-based approaches, the intra/epicortical methods excel in their
increased bandwidth, accuracy of the signal, and not requiring adaptation by the par-
ticipant. It has been shown in various studies that with intracortical BCIs humans
can move, e.g., a computer cursor on a screen or similar two-dimensional tasks
[2, 3, 4]. Furthermore, motion control of hardware devices such as a wheelchair
has been demonstrated [5, 3]. Furthermore, on-off control of the opening of a pros-
thetic hand and simple movement of a robotic arm based on neural cursor control
was shown [4]. However, continuous motor control of a full robotic arm with the
possibility to exhibit physical interaction has previously only been demonstrated
under direct cortical control by neurologically intact non-human primates [6]. This
difference is fundamental. In the case of non-human primates, the data to map the
correspondence between intracortical activity and the correlated motion of the con-
trolled limbs can be recorded, on the one side using intracortical recordings, on the
other by visually tracking the movement of the hand and fingers of the primate.
In people with tetraplegia, however, the second set of data cannot, due to the im-
pairment of the extremities, be gathered, and a different method of correlation is
required. Thereto the “embodiment” of the robotic limb by the participant plays a
central role, which has to be quantified.

2 Technical Approach

In this study our goal is to enable a person with tetraplegia to control a robotic hand-
arm system and use it as assistive device for everyday activities. Exemplary for this
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long-term goal the task is to move the robot towards a bottle which is placed on a
table, grasp it, and move it to another position.

2.1 Robotic assistive device

In our experiments we use the DLR Light-Weight Robot III (LWR-III) with the DLR
Five-Finger Hand as robotic platform. It has been designed at the German Aerospace
Center (DLR) [7] and is particularly well-suited for operation in unknown envi-
ronments which necessitate high safety capabilities [8]. The LWR-III is a 14kg, 7
degree-of-freedom robotic arm which can lift its own weight. It is equipped with
torque sensors in each joint, enabling various “Soft Robotics” control schemes such
as Cartesian impedance control and collision detection and reaction [9, 10, 11]. Its
various soft-robotics control schemes are embedded in a human-friendly state-based
control architecture [12] which allows us to develop complex interaction scenarios.
In our research, the LWR-III is equipped with the modular DLR Five-Finger Hand to
grasp and hold objects. Similar to the robot, this hand is equipped with joint torque
sensors in each active joint, allowing it to be also used in impedance control. Dur-
ing manipulation tasks this makes it robust against uncertainties in the environment
such as the position of objects to be grasped. Furthermore, this facilitates automatic,
impedance-driven grasping methods.
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Fig. 1 Closed-loop control by neural data.
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2.2 Cortical recording and decoding

Commanding the robot by the human via decoded neural data is done with the
BrainGate2 Neural Interface System (CAUTION: Investigational Device. Limited
by Federal (U.S.) Law to Investigational Use). In the BrainGate2 system, a 10×10-
electrode array (4×4mm platform, 1.5mm electrode length) implanted in the human
motor cortex records spikes of nearby neurons.

As the electrode array records the extracellular voltage fluctuations from multiple
neurons, a manual spike sorting is performed to isolate single units for each elec-
trode. Spike sorting of intracortically recorded signals is still a subject of ongoing
research [13, 14]. Despite the fact that there are algorithms for automated spike sort-
ing, we preferred to use a manual sorting in these experiments, because this proved
to be functional in other BrainGate2 experiments [4]. Spikes from single units were
isolated when possible, but occasionally spiking activity from more than one neu-
ron may have been grouped together as a single unit [4, 2, 15]. Spikes from each
channel were then summed in non-overlapping 100ms bins.

During training, the subject was asked to attempt moving the arm in tandem with
the robot arm, matching its velocity as closely as possible. End-point velocity x of
the robot arm along with binned spike rate z was used to build a Kalman filter [16].
Briefly, the Kalman filter predicts the current velocity of the subject’s attempted arm
movement using both its previous prediction and the current binned spike rate. More
specifically, the predicted velocity is the solution to dual linear equations

zt = Hxt +Q, (1)
xt+1 = Axt +W (2)

Both W and Q are zero-mean, Gaussian-distributed noise matrices, H linearly re-
lates velocity to spike rate, while A linearly relates how the velocity changes across
a single time-step. Details on how to calculate these matrices along with filter imple-
mentation can be found in [17]. In addition, a linear discriminant analysis classifier
decodes imagined grasps into a binary signal which can be used as a control input,
e.g., for clicking or grasping.

2.3 Integrated system

In previous studies it has been shown that it is possible to continuously control
a computer cursor (with click) via BrainGate [2, 3, 4]. The closed-loop control
scheme, incorporating the human action and perception is depicted in Figure 1. The
loop consists of following entities:

1. Participant with tetraplegia imagines making desired motion with her own arm/hand;
2. Neural data is decoded to desired velocity by BrainGate2;
3. Robot is controlled to follow the encoded velocity profile, while
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4. Virtual Environment limits the robot workspace to a defined area; and
5. Grasping of objects is performed when triggered by cortex-decoded grasp inten-

tion (a pre-programmed sensor based grasp strategy is performed).

The overall system structure is depicted in Figure 2. It consists of the BrainGate2
which sends desired endpoint velocities to the robot and receives the current status
of the robot via UDP. This feedback from the robot is used when the robot hits
the virtual workspace boundaries. It triggers an auditory feedback to the participant
and resets the Kalman history to erase any previous momentum in the direction
of the boundary. The robot is controlled by a high-level hybrid state-machine in
combination with the low-level robot control kernel that incorporates safe collision
handling [12].

The connection to the control core of the robot is realized via the real-time com-
munication protocol Ardnet [18] which was developed at DLR. Using a hybrid state-
machine provides an simple-to-use interface, with which we create complex robot
interaction scenarios. All task-relevant parameters such as, e.g., configuration of the
virtual environment, velocity limits and reaction strategies in case of collision can
easily be defined depending on the current state of the task execution. This high-
level part of the controller architecture runs on a Windows PC at a soft-realtime rate
of ≈ 100Hz.

On the hard-realtime control kernel, which uses VxWorks as an operating system,
all algorithms run at a 1kHz rate and handle the motion control, virtual environment,
collision avoidance, detection and reaction.

As the joint torque sensors of the robot enable to directly command on joint
torque level, we use a virtual environment that generates repulsive wrenches for lim-
iting the robot workspace. These virtual walls create a repelling Cartesian wrench
depending on the relative distance and velocity between the robot and the wall. Via
the transposed Jacobian, the Cartesian wrench is mapped into joint torques which
then can be easily added to the desired torques generated by the nominal Cartesian
impedance controller.
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Furthermore, the joint torque sensors together with a good dynamic model of
the robot allow for the detection and estimation of external forces applied by real
world objects, such as an object to be grasped or the table the object is placed on.
Depending on the task such a contact can be unexpected and trigger a human-safe
reactive behaviour, or it can be intentional, for instance when putting down a bottle.
Thereby this modality can be used to induce the robotic hand to release the grasp in
a pre-programmed motion sequence.

2.4 Neural Decoder Building

To set up the model parameters for the decoders, a short filter-building procedure
(10–15min) is required. During this period the participant is told to watch a pre-
programmed motion of the robot and mentally imagine performing a corresponding
arm motion, by attempting to follow the robot hand’s motion with her own wrist.

The motion of the robot consists of center-out-and-back movements with a si-
nusoidal velocity profile. The training space consists of four targets in the table top
plane and one target above the center position. This sums up to five possible trajec-
tories, given that the robot moves back to the center position after reaching one of
the targets. The targets are colour-coded as depicted in Fig. 3. To minimize reaction
time issues, the target the robot will move to is vocally announced shortly before the
robot starts moving towards it.

The filter-building procedure is divided into different blocks wherein the se-
quence of trajectories is randomly permuted. The peak velocity of the motion is kept
constant within one block and a training period consists of blocks with either slower
(0.1m/s) or faster (0.2m/s) peak velocity. Furthermore grasp encoding, instructing
the robotic hand to close, is trained in a separate set of blocks. These training blocks
are run at the larger velocity. When the center position is reached, the robot auto-

Fig. 3 Trajectories uses for
filter-building procedure
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matically performs a grasp motion, during which the participant is asked to imagine
a short but firm grasp.

As the filter-building paradigm relies on motion imagination which should mimic
the real, participant-observed robot motion, our training approach provides an intu-
itive and physically relevant interface for robot control.

3 Experiments and Results

To validate the functionality of our approach, we executed a sequence of steps in var-
ious research sessions during the last years. Initially, encoded recorded intracortical
data was used offline to control the simulated robot arm and hand in a realistic sce-
nario. This software implements a full dynamics simulation of the robotic system,
allowing us to quantify the viability of the approach and usability of the encoded
cortical data. Furthermore, it allowed us to define velocity and positional scaling
factors to ensure safe and convenient interfacing between the participant and the
robot.

In a second set of experimental sessions, the participant was given BrainGate-
based control over the aforementioned robot simulator. In these sessions a virtual
environment illustrating a kitchen scenario (see Fig. 4) was shown to the participant
on a computer screen. In this environment the robot was mounted on top of a table.

Fig. 4 Screenshot of the full dynamics robot simulation
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The task was to grasp a glass standing on the table, move it to a target position, and
release it again. A series of research sessions validated the success of the approach,
and allowed us to further adjust the robot control parameters.

In order to perform tasks similar to those in the simulator sessions, the participant
was given direct BrainGate-based control over the real DLR-LWR-III with Hand in
a third set of experiments

The setup with the real robotic system is depicted in Fig. 5. We will refer to
individual days in which the participant controlled the robot as sessions.

From the data collected in the training phase as described above, the neural de-
coder is parameterized and the participant is given control over the robot. The par-
ticipant is initially restricted to moving the robot in single x, y and z Cartesian di-
mensions. This allows us to evaluate the functionality of the decoders and enabled
the participant to more easily explore the mapping between neural activity (i.e.,
intended movement) and robot motion. The grasp/click decoding is evaluated sepa-
rately in a simple grasp/no grasp task.

After the functionality of the decoder is validated, the participant is asked to
either move towards a target drawn on the table, or a bottle filled with water was

Fig. 5 Experimental setup with the participant observing the LWR-III with hand
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placed on the table to be grasped and moved to another location. The grasping and
lifting of the object was triggered by the grasp decoder and then autonomously
performed by the robot, provided the object was detected in the robotic hand.

As the workspace of the robot was limited by a set of virtual walls; an acoustic
signal indicated when the robot touched one of these walls.

A typical session lasted approximately 3–4 hours and consisted of several repe-
titions of training and evaluation phases.

The results we report on are still very preliminary. They are based on a very
limited set of research sessions done with one participant only. In particular, the
results we present here are based on five sessions with simulated robot and three
sessions with the real robot system.

Figure 6 shows clippings of a video taken during a research session in which
the participant moved the robot towards a bottle, successfully grasps it, and brings
it over to a target location. Though this trial only covers one-dimensional control
plus click/grasp control of the robot, it clearly demonstrates the functionality of the
overall system.

As can be seen in Fig. 6 (A), the task starts with the robot hand placed in the
center of the workspace and the bottle located ≈ 20 cm left of it. Moving towards
the bottle (B), the robot reaches it and slightly tilts it over (C). The participant sees
that and (D) corrects the robots position so that the bottle stands stably between the
fingers of the hand for the participant to initiate a grasp command (E). The lifting

Fig. 6 Stills taken from a video showing 1D control plus grasp by picking up a bottle
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of the bottle (F) is autonomously performed as soon as the robotic hand detects
the successful grasp using its integrated torque sensors. After the bottle is lifted
the participant is requested to put it down on the black target in the center of the
workspace. This is successfully done as can be seen in (G)(H)(I).

Fig. 7 shows the robot end-effector position over time. The figure clearly shows
an overshoot when reaching for the bottle. This indicates that there could be some in-
ertia or time delay affecting the decoded velocities, which we presume to be caused
by the nature of the Kalman filter. We can also see that the participant is able to
correct for this overshoot, and can eventually, though preceded by some aberrant
motion, put the bottle down almost perfectly in the center of the target location.

These experimental results demonstrate the ability of the participant to move to
the bottle, initiate a grasp when needed, and put the bottle down at a defined target
location. Other trials have, however, also demonstrated considerable aberrant mo-
tion. Several factors may have contributed to suboptimal performance, including a
relatively small neuronal unit count when compared to recent non-human primate
results [6], non-stationarities in the response properties of neural units to intended
movement, and imperfect sorting of individual neural units. Furthermore, we sus-
pect that a suboptimal experimental setting, in which the participant must be kept
outside the reach space of the robot, negatively influences the results, since they sig-
nificantly reduce the interpretation of the three-dimensional visual scene. We intend
to address these issues in future research sessions.
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4 Conclusion

In this paper we have described a method to enable a tetraplegic participant using
the BrainGate2 cortical implant to control a robotic assistive device consisting of the
DLR Light-Weight Robot III and DLR Five-Finger Hand II. Preliminary research, in
which the participant, after a short training period, is given control of the robot arm
and hand, are encouraging and show the ease of integration between the system and
the participant: with only learning required at the system side, the participant can
immediately use the system to regain very basic grasping and handling capabilities.

Even though these results are still very preliminary, they are very promising.
Our insights are based on six simulator sessions and three sessions with the actual
robotic system, all having been done with the same participant. Despite the fact
that in all research sessions the number of active neurons was significantly less
compared to non-human primate experiments [6], all experiments demonstrated the
ability of the participant to obtain usable control of the robotic arm through visual
feedback. Furthermore, our preliminary results suggest a correlation between the
control accuracy and feedback gains of the robotic system (i.e., the responsiveness
of the mechanical system to external stimuli). Moreover, the shaping of the visual
scene seemed to play a non-negligible role. Further research sessions are planned to
parameterise these effects.

A detailed description of the results obtained in these experiments will be pub-
lished in subsequent papers.
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