
Lehrstuhl für Steuerungs- und Regelungstechnik

Technische Universität München

Univ.-Prof. Dr.-Ing. (Univ. Tokio) Martin Buss

Reachability Analysis and its Application to the

Safety Assessment of Autonomous Cars

Matthias Althoff

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Ralph Kennel

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. (Univ. Tokio) Martin Buss

2. Univ.-Prof. Dr.-Ing. Olaf Stursberg,
Universität Kassel

Die Dissertation wurde am 22.02.2010 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 07.07.2010
angenommen.

Foreword

This thesis summarizes my research during the last four years at the Institute of Automatic
Control Engineering (LSR) of the Technische Universität München. First of all, I would
like to thank all of my colleagues for the wonderful time we shared at the institute. Besides
this thank-you, I would like to mention some people who contributed to this thesis.

Clearly, this thesis would not have been possible without my Ph.D. advisor Prof. Martin
Buss who offered me a Ph.D. position and showed great trust in my abilities. I would
also like to thank Prof. Olaf Stursberg for his valuable advice and his discussions with
me, especially at the beginning of my research. Many thanks also go to Mrs. Lukowski,
Mrs. Schmid, Mrs. Werner, Mrs. Renner, and Dirk Wollherr for the administration of
my traveling, my students, and all other things that keep the institute running. I am also
grateful for the work of the system administrators Mr. Jaschik, Jens Hölldampf, Ulrich
Unterhinninghofen, Matthias Rungger, Thomas Schauß, and Stefan Sosnowski.

This thesis has been supported by the Master thesis of Igor Shevchenko and the Bachelor
theses of Buelent Sari and Alexander Mergel. I would also like to thank the proofreaders
Andrea Bauer, Iason Vittorias, Michelle Karg, Tingting Xu, Michael Strolz, and my brother
Daniel for improving this thesis. I am especially delighted that Prof. Thao Dang from the
research center Verimag in Grenoble gave me valuable advice for my thesis.

I also have to mention the stimulus from the great atmosphere and funny moments in the
office that I have shared with Marc Ueberle, Michael Strolz, and Sachit Rao in the course
of time.

Finally, I would like to thank my parents for their enduring support which brought me
into the position of writing this thesis, and their sympathy and understanding when I had
hard times.

Munich, February 2010 Matthias Althoff

iii

Contents

1. Introduction 1

1.1. Safety Verification . 1
1.2. Stochastic Safety Verification . 4
1.3. Safety Assessment of Autonomous Cars . 6
1.4. Outline of the Thesis . 7

2. Set Representations and Set Operations 10

2.1. Set Representations . 11
2.2. Exact Conversion of Set Representations 13

2.2.1. Conversion of Zonotopes . 13
2.2.2. Conversion of Multidimensional Intervals 15

2.3. Over-Approximative Conversion of Set Representations 16
2.4. Operations on Zonotopes . 17
2.5. Order Reduction of Zonotopes . 18

2.5.1. Over-Approximation Measure . 19
2.5.2. Generator Selection for Parallelotopes 19
2.5.3. Generator Selection for Zonotopes 21
2.5.4. Randomly Generated Zonotopes . 22
2.5.5. Numerical Evaluation . 22
2.5.6. Speeding up the Halfspace Conversion of Zonotopes 24

2.6. Interval Arithmetics . 26

3. Reachability Analysis 28

3.1. Introduction and State of the Art . 28
3.2. Linear Continuous Systems . 31

3.2.1. Reachable Sets of Systems without Input 32
3.2.2. Reachable Sets of Systems with Input 35
3.2.3. Numerical Examples . 39

3.3. Linear Continuous Systems with Uncertain Parameters 41
3.3.1. System Matrix Bounded by Interval Matrices 42
3.3.2. System Matrix Bounded by Matrix Zonotopes 52
3.3.3. System Matrix Bounded by Matrix Polytopes 59

3.4. Nonlinear Continuous Systems with Uncertain Parameters 61
3.4.1. Overview of Reachable Set Computations 61
3.4.2. Linearization . 63
3.4.3. Computation of the Set of Linearization Errors 65
3.4.4. Restriction of the Linearization Error 67
3.4.5. Numerical Examples . 69

v

Contents

3.5. Hybrid Systems . 72
3.5.1. Hybrid Automaton . 73
3.5.2. Overview of Reachable Set Computations 75
3.5.3. Intersections of Zonotopes with Polytopes 77
3.5.4. Enclosure of Polytopes by a Zonotope 80
3.5.5. Computing with Several Enclosing Zonotopes 82
3.5.6. Numerical Example . 83

3.6. Summary . 84

4. Stochastic Reachability Analysis 87

4.1. Introduction and State of the Art . 87
4.2. Enclosing Hulls of Probability Density Functions for Linear Systems 90

4.2.1. Solution of the Ornstein-Uhlenbeck Process 91
4.2.2. Representation of Enclosing Probabilistic Hulls 92
4.2.3. Operations on Probabilistic Zonotopes 95
4.2.4. Enclosing Probabilistic Hulls of Systems without Input 96
4.2.5. Enclosing Probabilistic Hulls of Systems with Input 100
4.2.6. Probability of Entering an Unsafe Set 102
4.2.7. Extension to non-Gaussian Initial and Input Distribution 104
4.2.8. Numerical Examples . 105

4.3. Markov Chain Abstraction . 108
4.3.1. Discretization of the State and Input Space 109
4.3.2. Transition Probabilities . 110
4.3.3. Stochastic Reachable Sets from Markov Chains 116
4.3.4. Numerical Examples . 118

4.4. Summary . 120

5. Safety Assessment of Autonomous Cars 122

5.1. Introduction and State of the Art . 122
5.2. Basic Concept . 124
5.3. Modeling of Traffic Participants . 126

5.3.1. Lateral Dynamics . 127
5.3.2. Longitudinal Dynamics . 127
5.3.3. Violation of Traffic Regulations . 129

5.4. Abstraction of Traffic Participants to Markov Chains 130
5.4.1. Reachable Set of Traffic Participants 130
5.4.2. Offline Computations . 132
5.4.3. Online Computations . 133

5.5. Behavior Modeling . 134
5.5.1. General Computation . 135
5.5.2. Road Following . 137
5.5.3. Vehicle Following . 140
5.5.4. Intersection Crossing . 144
5.5.5. Lane Changing . 147
5.5.6. Known Behavior . 151

5.6. Crash Probability . 153
5.6.1. Computational Realization . 154

vi

Contents

5.6.2. Efficient Computation . 156
5.6.3. Discussion . 156

5.7. Comparison to Monte Carlo Simulation . 158
5.7.1. Basic Approach . 159
5.7.2. Random Number Generation . 160
5.7.3. Input Generation . 161
5.7.4. Comparison of Probability Distributions 164
5.7.5. Comparison of Crash Probabilities 167
5.7.6. Examination of Interacting Vehicles 169
5.7.7. Discussion . 172

5.8. Driving Experiment . 173
5.8.1. Experimental Vehicle MUCCI . 174
5.8.2. Scenario . 174

5.9. Summary . 176

6. Conclusion and Future Directions 179

6.1. Conclusion . 179
6.2. Future Directions . 181

A. Proofs 184

A.1. Over-approximation of the Reachable Set due to Inputs 184
A.2. Spectral Density of Stochastic Piecewise Constant Signals 186

B. Monte Carlo Integration 187

Bibliography 189

vii

Notations

Conventions

The following fonts are used for different types of symbols:

• Sets: Number sets are denoted by blackboard bold letters (N, R, . . .), interval sets
are denoted by Zapf Chancery letters (P , X , . . .), and other sets in Euclidean space
are denoted by standard calligraphic letters (P, X , . . .).

• Sets of matrices: Interval matrices are denoted analogously to interval sets by Zapf
Chancery letters (A , B, . . .), zonotope matrices by standard calligraphic letters with
raised Z (AZ , BZ , . . .), and general sets of matrices by standard calligraphic letters
(A, B, . . .).

• Left and right limits of intervals or interval matrices are denoted by over- and un-
derlines, respectively, e.g. A ∈ [A,A].

• Scalars and vectors are denoted by lowercase letters. Matrices and variables indexed
by more than two indices (tensors) are denoted by uppercase letters.

• Random variables are denoted by bold letters.

• Enclosing hull variables are denoted by Ralph Smith’s Formal Script Font (H , R,
. . .).

• Functions and operators are denoted by typewriter letters (inv(), CH(), . . .).

Elements of a vector c are written as ci, elements of a matrix A as Aij , and elements of
a tensor of third order Φ as Φijk, and so on. Note that in this thesis, it does not make a
difference if the indices are superscripts or subscripts, such that e.g. Φijk = Φk

ij . A matrix
with a single index such as Ai refers to the column or row of A. A tensor of third order
Φ with only a single index (e.g. Φk) refers to a matrix within the tensor, and to a vector
when two indices are used (e.g. Φij). The presented indexing of variables also applies to
sets of matrices and random variables.

In formulas, a dot is sometimes used to increase the readability when variables are multi-
plied (e.g. a · t). This should not be confused with the scalar product when two vectors
are multiplied, which is denoted as cT x (c, x ∈ Rn).

Abbreviations

EPH enclosing probabilistic hull

viii

Notations

LTI linear time invariant
LTV linear time variant
PCA principal component analysis
PDF probability density function
SUE single-use expression

Subscripts and Superscripts

�
0 initial value

�
end value at the end

�g guard set of a hybrid system
�

inter intersection crossing
�inv invariant of a hybrid system
�

max maximum value
�

road road following
�

start value at the start
�

TP traffic participant
�

vehicle vehicle following

Sets

Number Sets

N set of natural numbers
N+ set of positive natural numbers
Q+ set of positive rational numbers
R set of real valued numbers
R+ set of positive real valued numbers

Set of Intervals and Events

I set of real valued intervals
Ω set of elementary events

Discrete Sets

Y ⊂ N+ set of locations of an automaton
Rz ⊂ N+ discrete reachable set
T ⊂ N+ × N+ set of discrete transition of a hybrid automaton

ix

Notations

Sets in Euclidean space

B ⊂ R2 set of vehicle bodies
C ⊂ R2 set of vehicle centers
D ⊂ Rn linearly transformed input set
d ⊂ I deviation interval of traffic participants
H ⊂ Rn halfspace
HR ⊂ Rn reachable set of the homogeneous solution
I ⊂ In general multidimensional interval
L ⊂ Rn set of linearization errors
L̄ ⊂ Rn set of admissible linearization errors
P ⊂ Rn polytope
PR ⊂ Rn reachable set of the inhomogeneous solution

P̃ ⊂ Rn reachable set due to the constant input ũ
P ⊂ Ip multidimensional interval of parameters
R ⊂ Rn reachable set

R̃ ⊂ Rn reachable set defined as HR + P̃
R̄ ⊂ Rn admissible reachable set used for the linearization procedure
Re ⊂ Rn exact reachable set
Rerr ⊂ Rn reachable set due to linearization errors
R̄err ⊂ Rn admissible reachable set due to linearization errors
RH ⊂ Rn reachable set in halfspace representation
Rlin ⊂ Rn reachable set of the linearized system
S ⊂ Rn hyperplane
s ⊂ I position interval of traffic participants
U ⊂ Rm input set

Ũ ⊂ Rm translated input set
U ⊂ Im multidimensional interval of inputs
v ⊂ I velocity interval of traffic participants
X ⊂ Rn general set of continuous states
X unsafe ⊂ Rn set of unsafe states
X ⊂ In multidimensional interval of continuous states
Y ⊂ Rn set outside the gamma confidence set
Z ⊂ Rn zonotope

Z̃ ⊂ Rn reduced part of zonotope
Ž ⊂ Rn unreduced part of zonotope
Zencl ⊂ Rn enclosing zonotope
Zred ⊂ Rn reduced zonotope

Ẑ ⊂ Rn+m combined set of reachable states and inputs R× U
Ψ ⊂ Rn parallelotope

Sets of Matrices

A ⊂ Rn×n set of system matrices
A ⊂ In×n interval matrix of system matrices
AZ ⊂ In×n matrix zonotope of system matrices
B ⊂ Rn×m set of input matrices

x

Notations

B ⊂ In×m interval matrix of input matrices
BZ ⊂ In×m matrix zonotope of input matrices
C ⊂ In×n integral of exponential interval matrix eA·t

D ⊂ In×n symmetric part of interval exponential matrix eA·r

E ⊂ In×n interval matrix of Taylor series remainders
F ⊂ In×n interval matrix for errors of time interval solutions
F̃ ⊂ In×n same as F , but for solutions due to constant input ũ
L ⊂ In×n general interval matrix for linear transformations
LZ ⊂ Rn×n linear part of the zonotope matrix exponential

L̂Z ⊂ Rn×n preliminary linear part of the zonotope matrix exponential
N Z ⊂ Rn×n nonlinear part of zonotope matrix exponential
S ⊂ In×n symmetric interval matrix
W ⊂ In×n exact interval matrix of the second order Taylor expansion

Variables

0 ∈ Rn origin
0 ∈ Rn×n matrix of zeros
1 ∈ Rn×n matrix of ones
A ∈ Rn×n system matrix

Â ∈ Rn×n center/generator matrix of an uncertain system matrix

Ã ∈ Rn×n vertex matrix of an uncertain system matrix
Ǎ ∈ Rn×n sample matrix which is element of AZ

a ∈ R+ absolute acceleration of a traffic participant
ād ∈ R+ d-th absolute acceleration which is between 0 and amax

aT ∈ R tangential acceleration of a traffic participant
aN ∈ R normal acceleration of a traffic participant

â ∈ Rn2
vertex vector representing a vertex matrix of A

B ∈ Rn×m input matrix
C ∈ Rq×n C-matrix of polytopes
c ∈ Rn center of a zonotope
d ∈ Rq d-vector of polytopes
dlin ∈ Rn constant vector obtained after system linearization
e ∈ Rn unit vector
f ∈ Rn alternative variable for a generator of a zonotope
f ∈ Rn alternative variable for a generator of a Gaussian zonotopes
G ∈ Rn×e matrix of zonotope generators
G ∈ Rn×o matrix of Gaussian zonotope generators
g ∈ Rn generator of a zonotope
g ∈ Rn generator of a Gaussian zonotope
H ∈ Rn×(n−1) matrix of zonotope generators spanning a facet
h ∈ Rn h-vector to compute the n-dimensional cross product
I ∈ Rn×n identity matrix
J ∈ Rn×n×n second derivative of flow function

xi

Notations

K ∈ Rn×n matrix of the jump function h

k ∈ Rn vector of the jump function h

L ∈ Rn×n matrix for linear part of the zonotope matrix exponential
l ∈ R+ length (2-norm) of a generator

l̂ ∈ Rn line segment for the definition and construction of zonotopes
l̄ ∈ Rn bounding vector for the set of admissible linearization errors
l ∈ Rn bounding vector for the set of absolute linearization errors
N ∈ Rn×n center of the nonlinear part of the zonotope matrix exponential
P ∈ R2×n projection matrix for plotting of reachable sets
p ∈ [0, 1]d×c probability of discrete states and inputs
pe ∈ [0, 1]d×c exact probability of discrete states and inputs
p̂ ∈ [0, 1]d probability of discrete states
p̃ ∈ [0, 1]d·c combined probability vector of state and input
plc ∈ [0, 1] probability for a lane change
pmax ∈ [0, 1] maximum probability for computational time reduction
pcrash ∈ [0, 1] probability of the autonomous vehicle for a crash
ppath ∈ [0, 1]a path segment probability of a traffic participant
pdev ∈ [0, 1]b deviation segment probability of a traffic participant
ppos ∈ [0, 1]a×b position trapezoid probability of a traffic participant
pint ∈ [0, 1]a×b×a×b intersection probability of two position trapezoids
p̄ ∈ [0, 1] over-approximated probability of hitting an unsafe set
Q ∈ Rn×n matrix of eigenvectors
q ∈ [0, 1]d×c conditional probability of inputs
r ∈ R+ time increment for reachable set computations
s ∈ R path variable of a traffic participant
t ∈ R+ time
tcomp ∈ R+ computational time for an algorithm
tf ∈ R+ final time, time horizon
t̃ ∈ R+ estimated time
u ∈ Rm input vector
ũ ∈ Rm input vector that translates the input set U
u ∈ Rm alternative input vector
û ∈ Rm alternative input vector for Markov Chain abstraction
u∗ ∈ Rm linearization point of the input u
V ∈ Rn×r matrix of vertices
v ∈ Rn vertex of a polytope
v ∈ R velocity of a traffic participant
vsw ∈ R+ velocity when the acceleration model is switched
W ∈ Rn×n weighting matrix
w ∈ Rn diagonal vector of the weighting matrix W
x ∈ Rn state vector
xh ∈ Rn state vector of the homogeneous solution
xp ∈ Rn state vector of the inhomogeneous solution
x̃p ∈ Rn state vector due to the constant input ũ
x∗ ∈ Rn linearization point of the state x
Y ∈ Rn auxiliary matrix for an under-approximation of eAt

xii

Notations

y ∈ N+ discrete state of hybrid automaton
Z ∈ Rn auxiliary matrix for an under-approximation of eAt

z ∈ Rn+m combined state and input vector
z∗ ∈ Rn+m linearization point of the combined state and input vector z
d ∈ R deviation variable of a traffic participant
ǫ ∈ [0, 1] probability for driver inattentiveness
η ∈ [0, 1]d×c constraint values
η̃ ∈ [0, 1]d·c constraint vector
Γ ∈ [0, 1]c×c×d input transition values

Γ̃ ∈ [0, 1]d·c×d·c input transition matrix
Λ ∈ Rn×n generator matrix for computing enclosing parallelotopes
λ ∈ [0, 1]d×c priority values

λ̂ ∈ Rn vector of eigenvalues
µ ∈ [0, 1]c motivation vector
Φ ∈ [0, 1]d×d×c state transition values

Φ̃ ∈ [0, 1]d·c×d·c state transition matrix
Π ∈ Rn×n generator matrix for zonotope reduction
Ψ ∈ [0, 1]c×c intrinsic input transition matrix
ρ ∈ Rp parameter vector
ρ̂ ∈ Rn direction vector of a vector field
̺ ∈ R+ performance measure for the splitting of zonotopes
ˆ̺ ∈ Q+ order of a zonotope
σcl ∈ [0, 1] motivation for driving on current lane
σnl ∈ [0, 1] motivation for driving on neighboring lane
σconv ∈ [0, 1] convenience of following driver
τ ∈ R+ time increment of Markov chains
Θ ∈ [0, 1]d×d×c×c interaction values

Θ̃ ∈ [0, 1]d·c×d·c interaction matrix
θ ∈ Rn expansion vector for the admissible linearization error
υ ∈ R+ over-appr. measure for the order reduction of zonotopes
ξ ∈ Rn+m auxiliary variable to determine linearization errors

Random Variables

a Ω → R random acceleration of a traffic participant
N Ω → Rn random vector with normal (Gaussian) distribution
p Ω → Rp random parameter
t Ω → R+ random time
u Ω → Rn random input variable
W Ω → Rm Wiener process
X Ω → Rn random variable of the spectral density
x Ω → Rn random state variable
xh Ω → Rn random state variable of the homogeneous solution
xp Ω → Rn random state variable of the inhomogeneous solution

xiii

Notations

y Ω → N+ random variable of the discrete input
Z Ω → Rn Gaussian zonotope
z Ω → N+ random variable of the discrete state
ξ Ω → Rm white noise

Enclosing Hull Variables

H enclosing hull variable of the homogeneous solution
P enclosing hull variable of the inhomogeneous solution
R enclosing hull variable of the state

R̃ enclosing hull variable defined as H + P̃ .
X 0 enclosing hull variable of initial states
Z enclosing hull zonotope

Functions

erf() R → R error function
f() N+ × Rn × Rm × Rp → Rn flow function of a hybrid automaton
f̄() Rn → [0, 1] enclosing hull of a probability density function
g() N+ × N+ → 2R

n

guard function of a hybrid automaton
h() Rn → Rn jump function of a hybrid automaton
ind() Rn → {0, 1} indicator function
inv() N+ → 2R

n

invariant function of a hybrid automaton
rect() R → {0, 1} rectangular function
si() R → R sinc function

Operators

box() returns the enclosing axis-aligned box of a set
center() returns the center of a set
CH() returns the convex hull
conf() returns the confidence set of a G- or EH-zonotope
cov returns the covariance of a matrix
det() returns the determinant of a matrix
diag() returns the diagonal matrix given a vector
generatorConv() returns over-approximative generator representation
halfspaceConv() returns over-approximative halfspace representation
inputReset() performs reset of an input probability vector
intersectionTimes() returns over-appr. time interval for guard set intersection
max() returns the maximum value

xiv

Notations

min() returns the minimum value
norm() normalizes the column sum of matrices to 1
nX() returns the n-dimensional cross product
reach() returns over-approximative continuous reachable set
reduce() returns zonotope with reduced order
sign() returns the sign of a scalar
sup() returns the supremum
tr() returns the trace of a matrix
V() returns the volume of set
Var() returns the variance of a random variable

Others

Constants

const arbitrary constant value
g gravity constant

Quantities

a number of path segments
b number of deviation segments
c number of discrete inputs
d number of locations (=̂ discrete state values)
e number of generators of a zonotope
m number of continuous input variables
N crash number of Monte Carlo simulations resulting in a crash
Ns number of Monte Carlo simulations
n number of continuous state variables/ general number of dimensions
nsim number of simulation runs for the Markov chain abstraction
ñ number of intermediate time steps for the Markov chain abstraction
o number of generators of a Gaussian zonotope
p number of parameters
q number of halfspaces of a polytope
r number of vertices of a polytope
u alternative number of generators of a zonotope
u alternative number of generators of a Gaussian zonotope
ũ selected number of generators of a zonotope that are unreduced
η number of terms for the Taylor expansion
ϑ number of terms for the Taylor expansion up to numerical precision
κ number of matrices specifying a matrix zonotope or matrix polytope
κ selected number of generators for the zonotope reduction process
λ number of best combinations of generators for zonotope reduction
ζ number of best parallelotopes for zonotope conversion

xv

Abstract

This thesis is about the safety verification of dynamical systems using reachability analysis.
Novel solutions have been developed for three major problem classes: Classical reachability
analysis, stochastic reachability analysis, and their application to the safety assessment of
autonomous cars.

Classical reachability analysis aims to compute the exact or over-approximative set of states
that can be reached by a system for a given set of initial states, inputs, and parameters.
If the reachable set does not intersect any set of unsafe states, the safety of the system is
guaranteed – this cannot be achieved by simulation techniques since only single solutions
out of infinitely many can be checked. Specialized algorithms have been developed for
linear systems, nonlinear systems, and hybrid systems.

The concept of reachability analysis is extended to stochastic reachability analysis which
measures the probability of reaching an unsafe set. One pursued approach computes over-
approximative enclosures of stochastic reachable sets for linear systems. Another developed
approach generates a Markov chain which approximately reproduces arbitrary dynamics,
allowing the computation of the stochastic reachable set on the simplified dynamics.

Finally, stochastic reachable sets are applied to the safety assessment of autonomous cars.
Autonomous cars are driverless, i.e. they drive automated according to a planned trajec-
tory which is computed based on detected roads, obstacles, and traffic participants. The
safety assessment relies on a prediction of traffic scenes, where the stochastic reachable set
of each relevant traffic participant is computed by the developed abstraction by Markov
chains. This allows the crash probability of the autonomous car to be predicted for a
planned trajectory.

xvii

Zusammenfassung

Die vorliegende Dissertation behandelt die Sicherheitsverifikation von dynamischen Syste-
men mittels Erreichbarkeitsanalyse. Neuartige Lösungen wurden für drei wesentliche Pro-
blemklassen erarbeitet: klassische Erreichbarkeitsanalyse, stochastische Erreichbarkeits-
analyse und deren Anwendung auf die Sicherheitsbewertung von autonomen Autos.

Klassische Erreichbarkeitsanalyse zielt darauf ab, die exakte oder überapproximierte Menge
an Zuständen zu berechnen, die von einer gegebenen Menge an Anfangszuständen, Ein-
gangswerten und Parametern erreicht werden kann. Falls die Erreichbarkeitsmenge keine
Menge mit unsicheren Zuständen schneidet, ist die Sicherheit des Systems garantiert – dies
kann allerdings nicht mit simulativen Methoden bewerkstelligt werden, da man damit im-
mer nur einzelne Lösungen aus einer unendlichen Anzahl möglicher Lösungen überprüfen
kann. Spezialisierte Algorithmen wurden für lineare Systeme, nichtlineare Systeme und
hybride Systeme entwickelt.

Eine Erweiterung des Konzepts der Erreichbarkeitsanalyse stellt die stochastische Erreich-
barkeitsanalyse dar, die abschätzt mit welcher Wahrscheinlichkeit eine unsichere Menge
erreicht wird. Ein verfolgter Ansatz berechnet einen überapproximierten Einschluss von
stochastischen Erreichbarkeitsmengen für lineare Systeme. Ein anderer entwickelter An-
satz erzeugt eine Markov Kette, die eine beliebige Dynamik näherungsweise wiedergibt,
so dass die stochastische Erreichbarkeitsanalyse mit der vereinfachten Dynamik berechnet
werden kann.

Zuletzt werden stochastische Erreichbarkeitsmengen zur Sicherheitsbewertung von auto-
nomen Autos angewandt. Autonome Autos sind fahrerlos, d.h. sie fahren automatisiert
mit Hilfe einer geplanten Trajektorie, die basierend auf detektierten Straßen, Hindernis-
sen und Verkehrsteilnehmern berechnet wird. Die Sicherheitsbewertung beruht auf der
Prädiktion von Verkehrsszenen, wobei die stochastischen Erreichbarkeitsmengen anderer
relevanter Verkehrsteilnehmer mit der entwickelten Abstraktion durch Markov Ketten be-
rechnet werden. Damit kann die Unfallwahrscheinlichkeit des autonomen Fahrzeugs für
eine geplante Trajektorie prädiziert werden.

xviii

1. Introduction

One of the biggest boosts for innovation in engineering has been the ongoing improvement
of digital processor technology. Connections between physical systems and computing
elements are becoming more and more intense in many areas, such as transportation,
energy, healthcare, manufacturing, chemical processes, and consumer appliances, to name
only a few. Systems with strong interconnected physical and computing elements are
referred to as embedded systems, mechatronic systems, or cyber-physical systems. The
latter expression has recently become more popular when the interconnection between the
computational and physical elements is strong.

Besides an improvement in e.g. the efficiency or functionality, cyber-physical systems
provide a better reliability and safety compared to conventional solutions. Examples are
driving assistant systems in passenger cars or search and rescue robots. The drawback of
cyber-physical systems is that they are complex and thus difficult to analyze. This con-
tradicts the objective of improving the safety of such systems, since the correct operation
of these systems has to be ensured first. In order to cope with the growing complexity,
one has to design improved analysis tools to better understand the behavior of a system
or even verify its safety. In short, the demand for automatic verification tools that can
analyze complex systems is constantly increasing.

Powerful verification methods already exist to prove the safe operation of complex discrete
systems [41]. Starting from discrete automata, verification methods have been extended
to timed automata which contain clocks, where each clock represents a continuous variable
[7]. Verification methods have also been extended to hybrid automata which allow discrete
dynamics with general continuous dynamics to be combined. Verification methods that
have been developed in the hybrid systems community have also become popular tools
for the analysis of purely continuous dynamics. Additionally, a large variety of verifica-
tion techniques have been suggested for stochastic systems with continuous and hybrid
dynamics.

Methods that allow the verification of deterministic and stochastic systems with continuous
and hybrid dynamics are briefly surveyed below. Note that a more detailed survey is given
at the beginning of each chapter.

1.1. Safety Verification

Before a system can be verified, one has to specify the properties to be checked. There
exists a large number of safety properties for discrete systems, which can be extended to
hybrid systems [41]. However, for continuous and hybrid systems, most research activities
concentrate on the problem of proving that there exists no trajectory entering a set of

1

1. Introduction

forbidden or also called unsafe states. For instance, a set of unsafe states in a chemical
plant may contain all temperatures above the boiling point of a liquid. The verification task
would be to guarantee that it is impossible to reach the unsafe set containing temperatures
above the boiling point. The challenge of guaranteeing the avoidance of unsafe sets lies
in the infinitely many possible trajectories that a system can evolve with when the initial
state, the input, or the parameters may take values within a continuous set.

An obvious technique to test the correct behavior of a system, is by simulation. The big
advantage of a simulation is that it might produce a counter-example, i.e. a trajectory
that hits a set of unsafe states. In this case, one can show that a system is unsafe.
However, one cannot prove that the system is safe if no counter-example is produced, since
there exist infinitely many possible trajectories due to uncertain initial states, inputs, and
parameters. Thus, testing exemplary trajectories is not sufficient since the trajectory that
hits the unsafe set may have been missed; see Fig. 1.1. A possibility to increase the chance
of finding a counter-example is to strategically explore the state space. This has been done
using Rapidly-Exploring Random Trees (RRTs) as shown in [30, 61] and robust test case
generation in [90].

x1

x2

trajectory

unsafe set
initial set missed trajectory ?

Fig. 1.1.: Searching for counter-examples by simulation.

Simulation techniques can be used for the safety verification of hybrid systems, if it can
be guaranteed that sets of trajectories stay within certain regions around exemplary tra-
jectories [56, 57, 73, 94]. This allows to cover all possible behaviors by a finite number of
simulations as visualized in Fig. 1.2. A work that allows the safety of a hybrid system to
be proven using RRTs can be found in [24].

x1

x2

trajectory
unsafe set

initial set

over-approximative
reachable set

Fig. 1.2.: Verification using simulation.

A further possibility to verify that there exists no trajectory from a set of initial states to
a set of unsafe states is the use of barrier certificates [137, 138]. This approach is based on

2

1.1. Safety Verification

the idea of finding a barrier which cannot be crossed by a system trajectory. If this barrier
lies between the set of initial states and the set of unsafe states, it is proven that the system
is safe, as depicted in Fig. 1.3. A barrier certificate is defined as a function which is similar
to a Lyapunov function. Suppose there exists a barrier certificate which is negative in the
initial set and positive in the set of unsafe states. In addition, the derivative of the barrier
certificate is negative or zero along the system trajectories. Under these conditions, it is
not possible that a system trajectory crosses the zero level set of the barrier certificate such
that this level set serves as a barrier. The difficulty of this approach is finding a proper
barrier certificate for a given problem.

x1

x2

trajectory

unsafe set
initial set

barrier

Fig. 1.3.: Verification using barrier certificates.

In this thesis, the safety verification is conducted via reachability analysis. Loosely speak-
ing, reachability analysis determines the set of states that a system can possibly visit. A
more precise description of a reachable set is the union of all possible trajectories that a
system can evolve within finite or infinite time, when starting from a bounded set of initial
states, subject to a set of possible input and parameter values. An example of a reachable
set is presented in Fig. 1.4. If the reachable set does not intersect any set of unsafe states,
one can guarantee the safety of the system.

x1

x2

reachable set
unsafe set

initial set

Fig. 1.4.: Verification using reachable sets.

However, one can only compute the exact reachable set for special cases [7, 81, 107]. A
possibility to still prove the safety of a system is to over-approximate the set of reachable
states, as shown in Fig. 1.5. Clearly, if the over-approximated set of reachable states does
not intersect the set of unsafe states, the original system is safe, too. The downside is
that if the over-approximation intersects the unsafe set, one cannot decide if the system
is unsafe since the exact reachable set might not intersect the unsafe set. Thus, the goal

3

1. Introduction

is to minimize the over-approximation of reachable sets along with a moderate increase
in computational costs. If this goal is accomplished, there is much hope that reachability
analysis will become a tool that is frequently used by a huge variety of engineers – much the
same as today’s use of simulations. Besides over-approximative techniques, approximation
techniques which compute reachable sets converging to the exact solution when refining
the computation also exist; see e.g. [121, 163].

x1

x2

reachable set
unsafe set

initial set

over-approximated
reachable set

Fig. 1.5.: Verification using over-approximated reachable sets.

A different line of research, which is not based on state space exploration, is automated
theorem proving as presented in e.g. [8, 135]. Thereto, special logics are developed that
allow to specify correctness properties of hybrid systems which are verified using dedicated
logical calculus.

Below, the concept of safety verification is extended to the concept of stochastic verification.

1.2. Stochastic Safety Verification

Often, it is not sufficient to know that a system is not safe. Especially for stochastic
systems, it is important to know the probability that the system enters an unsafe state.
Further, the probability of an unsafe operation allows the search for control strategies that
minimize the risk of an accident or failure. Of course, this is not possible if the safety
verification always returns that the system is unsafe without any additional probabilis-
tic information. For instance, one has to use stochastic safety verification methods for
the safety analysis of automated road vehicles, since road traffic with human drivers is
inherently unsafe, as shown later.

The most prominent method for the safety analysis of stochastic systems is Monte Carlo
simulation [147]. The term Monte Carlo simulation or Monte Carlo method refers to
methods that are based on random sampling and numerical simulation. Monte Carlo
methods are especially popular for complex and highly coupled problems where other
probabilistic approaches fail. When applying Monte Carlo simulation in the context of
safety verification, initial states and input trajectories are randomly created according to
specified probability distributions and simulated as shown in Fig. 1.1. The number and
weight of the trajectories hitting unsafe sets determines the probability that the system is
unsafe.

Besides the simulative analysis of stochastic systems, the previously introduced concept
of barrier certificates can also be extended to stochastic systems using supermartingales

4

1.2. Stochastic Safety Verification

[139]. The special property of stochastic barrier certificates is that an upper bound for the
probability of entering an unsafe set can be computed. Most other approaches, such as
Monte Carlo simulation, can only approximate this probability.

The concept of reachability analysis can also be extended to a stochastic setting by ad-
ditionally computing the probability distribution within the reachable set as indicated in
Fig. 1.6. For some special classes, such as linear continuous systems with Gaussian white
noise, the probability distribution can be computed exactly. However, for most other sys-
tems, one has to approximate or over-approximate the probability of hitting an unsafe
set.

x1

x2

level set of the
exact distribution unsafe setinitial set

probability
density:

high

medium

low

Fig. 1.6.: Verification using stochastic reachable sets.

In this thesis, two approaches are presented for computing stochastic reachable sets. The
first concept over-approximates the probability of hitting a set of unsafe states for linear
continuous systems. This is achieved by computing a function enclosing the exact prob-
ability distribution of the system, i.e. the probability values of the exact distribution are
always equal or lower than the values of the enclosing function. Such a function is later
called enclosing hull and is indicated in Fig. 1.7 by pushing the level sets of the exact
distribution outwards.

x1

x2

level set of the
exact distribution

unsafe setinitial set

over-approximated
stochastic reachable set

probability
density:

high

medium

low

Fig. 1.7.: Verification using over-approximated stochastic reachable sets.

The other method presented in this thesis can be applied to general hybrid systems. The
basic idea of this approach is to abstract the original hybrid dynamics to a Markov chain,
which is a discrete stochastic system. The computation of the stochastic reachable set is
then performed by the Markov chain via matrix multiplications, which is much easier to
compute than the stochastic reachable set of the original dynamics. The abstraction to
Markov chains is accomplished by discretization of the continuous state space, resulting

5

1. Introduction

in state space regions which are defined as the discrete states of the Markov chain. The
drawback of this method is that the number of discrete states grows exponentially with
the number of continuous state variables. Thus, this method can only be applied to low
dimensional systems.

The concept of stochastic verification is applied to autonomous cars as described next.

1.3. Safety Assessment of Autonomous Cars

An important and representative application scenario for stochastic verification methods is
the safety assessment of autonomous road vehicles, i.e. vehicles that drive without a human
driver. One of the hopes for the development of autonomous vehicles is to drastically reduce
the number of accidents. Worldwide, the number of people killed in road traffic each year
is estimated at almost 1.2 million, while the number of injured is estimated at 50 million
[134, chap. 1]. The developed methods for the safety assessment of autonomous vehicles
aim at improving these statistics and may also contribute to the improvement of future
driving assistance systems.

Due to the inherently unsafe nature of road traffic, deterministic verification methods
are not applied. This is obvious as traffic participants have the possibility to crash into
another vehicle on purpose, which would classify a situation as unsafe. However, since most
traffic participants are cooperative, a pure deterministic analysis would be too conservative.
Additionally, it is important to modify the planned action of the autonomous vehicle based
on the current threat level, which can only be provided by stochastic methods.

A reasonable application of deterministic safety verification is given when all traffic partic-
ipants are automated and broadcast their planned trajectories to other traffic participants.
In such a scenario, each vehicle would know the planned trajectories of other vehicles and
could check deterministically if a crash is possible. This is illustrated by a simple example,
where two cars pass each other on a straight road as shown in Fig. 1.8. In Fig. 1.8(a),
the trajectory of the other vehicle is unknown, such that the physically possible set of the
centers of gravity of both vehicles has to be computed according to [149]. Because the
obtained sets intersect, this everyday situation has to be classified as unsafe. When the
planned trajectories of both vehicles are known, the situation can be classified as safe; see
Fig. 1.8(b). Thus, deterministic methods are only suitable in situations in which the plans
of other vehicles are known.

(a) Unknown behavior. (b) Known behavior.

Fig. 1.8.: Reachable sets of the centers of gravity of two passing cars.

In general, the surrounding traffic situation of autonomous vehicles is sensed by environ-
ment sensors, such as optical cameras, laser scanners, and infrared cameras. The measured

6

1.4. Outline of the Thesis

raw data allow to probabilistically estimate the initial states of the detected traffic par-
ticipants. Based on the uncertain initial states, the stochastic reachable set of each traffic
participant is computed for a predefined time horizon. The computations are based on the
previously mentioned Markov chain abstraction. The offline generated Markov chains are
applied to the online computation of the stochastic reachable sets. Ultimately, the crash
probability of the autonomous vehicle is approximated based on the stochastic reachable
sets of other traffic participants and the planned trajectory of the autonomous vehicle.
This is illustrated in Fig. 1.9, where the autonomous car has to pass another car before
turning left. In this situation, the autonomous car might cause a crash since the stochas-
tic reachable sets intersect – the risk would be minimized by reducing the velocity of the
autonomous vehicle.

stochastic reachable set

planned path other car

autonomous car

Fig. 1.9.: Safety assessment of a traffic scene using stochastic reachable sets.

The developed framework for the safety assessment of autonomous vehicles can in principle
be applied to other scenarios than road traffic, too. Examples are the safety analysis of
air traffic or mobile robots. For the autonomous robot ACE (Autonomous City Explorer),
the prediction of humans was computed by the Markov chain abstraction developed in this
work [195].

1.4. Outline of the Thesis

This thesis covers three major aspects of the verification of continuous and hybrid systems:
Reachability analysis, stochastic reachability analysis, and the application of stochastic
reachability analysis to autonomous vehicles.

In contrast to discrete systems, the set of reachable states in continuous spaces is not
countable, which requires a proper set representation to be found. One of the challenges
here, is the curse of dimensionality. For instance, the number of vertices required to
represent a cube in n dimensions is 2n, where a cube is one of the simplest geometries.
In order to efficiently represent continuous sets in high dimensional spaces, zonotopes are
used since they scale well with the dimension of the state space. In order to accelerate or
allow certain operations on zonotopes, their enclosure by simpler representations is also
presented. Different set representations, their transformation to other representations,
their over-approximation, and operations on them are discussed in detail in Chap. 2. The
results of this chapter are fundamental to reachability analysis in Chap. 3 and to enclosing
probabilistic hulls, which are introduced in Chap. 4.

7

1. Introduction

In Chap. 3, the efficient computation of over-approximations of reachable sets for different
classes of dynamic systems with uncertain inputs is presented. First, existing algorithms for
reachability analysis of linear systems are presented. The existing methods are extended to
linear systems with uncertain, but constant parameters. A further extension is introduced
in order to compute reachable sets for nonlinear systems. The procedure is based on
linearization so that algorithms for linear systems can be used as underlying algorithms.
The over-approximative computation is ensured by adding the set of possible linearization
errors as an additional uncertain input. The approach for linear and nonlinear continuous
systems scales well with the number of continuous state variables: Examples with up to 100
continuous state variables have been computed. Finally, the extension to hybrid systems
is presented, which considers the switching of the continuous dynamics and possible jumps
in the continuous states.

Stochastic reachability analysis is discussed in Chap. 4. Two approaches are presented.
One approach computes enclosing probabilistic hulls of linear systems. An enclosing prob-
abilistic hull is later defined as a function that encloses the exact probability distribution,
i.e. the values of the enclosing probabilistic hull are greater than the values of the exact
probability distribution. Thus, enclosing probabilistic hulls are no longer probability dis-
tributions since their integral is greater than one. This approach allows the probability
of hitting an unsafe set to be over-approximated and can be applied to high dimensional
linear systems. The other approach is based on the abstraction of continuous or hybrid
systems to Markov chains. This simplifies the computation of stochastic reachable sets
to matrix multiplications. The abstraction to Markov chains is based on a discretization
of the continuous state space, where each state space region is represented by a discrete
state. The probabilities of entering certain state space regions starting from certain state
space regions are stored as transition probabilities – these probabilities uniquely specify
the Markov chain. In contrast to the approach computing with enclosing hulls, the Markov
chain abstraction can also be applied to nonlinear and hybrid systems. The drawback is
that due to the discretization of the continuous state space, only systems with a few (up
to 3− 5) continuous state variables can be handled.

The Markov chain abstraction is applied to the safety analysis of autonomous vehicles
in Chap. 5. The stochastic reachable sets of each traffic participant are computed for
a specified time horizon. A major requirement is that the prediction is computationally
efficient, since it has to be executed during the operation of the autonomous vehicle. This
is ensured by the Markov chain abstraction, because most computations can be performed
offline when generating the Markov chain. The execution of the Markov chains is efficient
since only matrix multiplications are performed. One of the challenges in the prediction of
other traffic participants is the stochastic modeling of their driving behavior. The proposed
algorithms consider physical constraints and constraints due to the interactions with other
traffic participants. Another focus is on the efficient computation of crash probabilities
given the stochastic reachable sets. In order to increase the confidence in the results
obtained from Markov chains, the results have been compared in terms of accuracy and
computational efficiency to the ones obtained from Monte Carlo simulation. The safety
assessment of autonomous vehicles is concluded by a description of a driving experiment
conducted with the experimental vehicle MUCCI.

The thesis concludes with possible future research directions in the field of (stochastic)

8

1.4. Outline of the Thesis

reachability analysis and its application to autonomous vehicles in Chap. 6.

9

2. Set Representations and Set

Operations

One of the biggest challenges in reachability analysis is the curse of dimensionality. It is
crucial to use a representation of reachable sets that scales well with the dimension of the
state space. Since this thesis deals with the over-approximative computation of reachable
sets, it is possible to over-approximate complicated set representations by a simpler one
in order to save computational time. This can be done by either enclosing a set by a
different representation or by the same representation but with fewer parameters. Another
important property of the set representation to be chosen is that the most important
operations can be computed efficiently. Given two general sets V1,V2 ⊂ Rn, the most
important operations for reachability analysis are:

• Linear transformation: A · V1 = {A · s1|s1 ∈ V1}, A ∈ Rn×n.

• Minkowski sum1: V1 + V2 = {s1 + s2|s1 ∈ V1, s2 ∈ V2}.
• Convex hull: CH(V1,V2) = {α1 · s1 + α2 · s2|s1 ∈ V1, s2 ∈ V2, α1,2 ≥ 0, α1 + α2 = 1}.
• Intersection: V1 ∩ V2 = {s|s ∈ V1, s ∈ V2}.

In this thesis, zonotopes are used as a representation of reachable sets due to the efficient
computation of linear transformations and Minkowski sums. In general, it is not possible
to represent the convex hull of two zonotopes by a zonotope. However, there exists a simple
algorithm that over-approximates the convex hull by a zonotope. It is also not possible
to generally represent the intersection of two zonotopes by a zonotope. For this reason,
zonotopes have to be converted to a halfspace representation which allows the intersection
of two zonotopes to be represented by a polytope. Another auxiliary representation that
is used are multidimensional intervals.

This chapter is organized as follows: In Sec. 2.1, the representations of polytopes, zonotopes
and multidimensional intervals are introduced. Next, it is shown in Sec. 2.2 how to exactly
convert less general representations to more general ones. The contrary problem of over-
approximating more general representations by less general ones is addressed in Sec. 2.3.
The required operations on zonotopes (linear transformation, Minkowski sum, convex hull)
are presented in Sec. 2.4. In addition, several algorithms are presented in Sec. 2.5 that
allow the number of parameters for a zonotope to be reduced while causing only a small
over-approximation. Finally, interval arithmetics is briefly introduced in Sec. 2.6 which
allows multidimensional intervals to be computed with. Many results and aspects of this
chapter have been published by the author in [187, 191].

1In other works, the Minkowski sum is often denoted by ⊕.

10

2.1. Set Representations

2.1. Set Representations

The most general sets considered in this thesis are convex polytopes, for which two rep-
resentations exist: The halfspace representation (H-representation) and the vertex rep-
resentation (V-representation). The halfspace representation specifies a convex polytope
P by the intersection of q halfspaces H(i): P = H(1) ∩ H(i) ∩ . . . ∩ H(q). A halfspace is
either one of the two parts that is obtained by dividing the n-dimensional Euclidian space
with a hyperplane S, which is given by S := {x|c · x = d}, c ∈ R1×n, d ∈ R. The vector
c is the normal vector of the hyperplane and d the scalar product of any point on the
hyperplane with the normal vector. From this follows that the corresponding halfspace is
H := {x|c ·x ≤ d}. As the convex polytope P is the nonempty intersection of q halfspaces,
q inequalities have to be fulfilled simultaneously:

Definition 2.1 (H-Representation of a Polytope): For q halfspaces, a convex poly-
tope P is the set

P =
{
x ∈ Rn

∣∣C · x ≤ d, C ∈ Rq×n, d ∈ Rq×1
}
.

�

A polytope with vertex representation is defined as the convex hull of a finite set of points
in the n-dimensional Euclidian space. The points are also referred to as vertices and are
denoted by v(i) ∈ Rn. A convex hull of a finite set of r points is obtained from their linear
combination:

CH(v(1), . . . , v(r)) :=
{ r∑

i=1

αiv
(i)
∣∣v(i) ∈ Rn, αi ∈ R, αi ≥ 0,

r∑

i=1

αi = 1
}
.

Given the convex hull operator CH(), a convex and bounded polytope can be defined in
vertex representation as follows:

Definition 2.2 (V-Representation of a Polytope): For r vertices v(i) ∈ Rn, a convex
polytope P is the set P = CH(v(1), . . . , v(r)). �

The halfspace and the vertex representation are illustrated in Fig. 2.1. Algorithms that
convert from H- to V-representation and vice versa are presented in [91].

v(i)

CH(v(1), . . . , v(r))

(a) V − representation

S = {x|c · x = d}
H(i)

H(1) ∩H(2) . . . ∩H(q)

(b) H − representation

Fig. 2.1.: Possible representations of a polytope.

Next, zonotopes are introduced which are predominantly used for reachable set compu-
tations in this work. Since zonotopes are a special case of polytopes, they can also be
represented by the halfspace or the vertex representation. A further possibility for the

11

2. Set Representations and Set Operations

representation of zonotopes is the use of so-called generators (G-representation). After
introducing the center of a zonotope as c ∈ Rn and the e generators of a zonotope as
g(i) ∈ Rn, i = 1, . . . , e, the generator representation can be defined as (see e.g. [176]):

Definition 2.3 (G-Representation of a Zonotope): A zonotope is a set

Z =
{
x ∈ Rn

∣∣x = c+
e∑

i=1

βi · g(i), −1 ≤ βi ≤ 1
}

with c, g(1), . . . , g(e) ∈ Rn. �

The vector c is the center of the zonotope, to which the latter is centrally symmetric.
The definition can be interpreted as the Minkowski sum of a finite set of line segments
l̂i = [−1, 1] · g(i) which illustrates how a zonotope is built step-by-step. This is shown in
Fig. 2.2, where from left to right further two-dimensional generators are added. Another
definition is the linear map of an e-dimensional hypercube.

The order of a zonotope is defined as ˆ̺ = e
n
. If the order is less than one, the zonotope

represents a set of lower dimension than n (see Fig. 2.2(a)) and a zonotope of order
one is a parallelotope (see Fig. 2.2(b)). Zonotopes of order greater than one create sets
with an increasing number of facets and vertices (see Fig. 2.2(c)). In order to receive
a concise notation, the center and generators of a zonotope are written in short form as
Z = (c, g(1), . . . , g(e)).

0 0.5 1 1.5 2
0

0.5

1

1.5

2

c

l̂1

(a) c+ l̂1

−1 0 1 2 3
−1

0

1

2

3

c

l̂1 l̂2

(b) c+ l̂1 + l̂2

−2 0 2 4
−1

0

1

2

3

c

l̂1 l̂2

l̂3

(c) c+ l̂1 + l̂2 + l̂3

Fig. 2.2.: Construction of a zonotope.

Another type of sets that are frequently used in this thesis are multidimensional intervals I ,
which are also called interval-hulls or hyperrectangles in the literature. Multidimensional
intervals are a special case of zonotopes and, thus, they can be described in H-,V-, and
G-representation. A further possibility is the interval representation (I-representation):

Definition 2.4 (I-Representation of a Multidimensional Interval):
A multidimensional interval is a set:

I := [a, a], a ∈ Rn, a ∈ Rn, a ≤ a. �

Another useful definition is the set of real valued intervals: I = {[d, d] | d ∈ R, d ∈ R, d ≤
d}, such that I ∈ In. Next, it is shown how less general representations of continuous sets
can be converted to more general ones.

12

2.2. Exact Conversion of Set Representations

2.2. Exact Conversion of Set Representations

This subsection deals with the conversion of the H-,V-,G-, and I-representation. As the
representations are not equally rich, exact conversions of representations are only possible
in the following directions: I → G → H↔ V . Conversions that are not possible in an exact
way are performed in an over-approximative way in this thesis, i.e. the newly obtained set
representations enclose the previous ones.

The problem of finding a V-representation of a polytope given in H-representation is
well known as the vertex enumeration problem and the inverse problem of finding a V-
representation given the H-representation is known as the facet enumeration problem. Both
transformation directions are well-studied and there exist algorithms that are polynomial
with respect to time [91].

2.2.1. Conversion of Zonotopes

A much less studied problem is finding a V- or H-representation for a G-representation.
This problem is strongly related to the problem of computing the Minkowski sum of two
polytopes. This is because a G-representation can be represented as the Minkowski sum
of line segments and each line segment can be represented in V- or H-representation.
It is much easier to compute the Minkowski sum for a V-representation than for a H-
representation; see [170, chap. 8]. For the V-representation, there exists an algorithm with
polynomial time with respect to the input and output size [66]. An algorithm that directly
computes the H-representation without use of the Minkowski addition is proposed by the
author in [191]. This algorithm is linear in the number of facets and can be implemented in
a simple way, as shown below. However, the problem is that a zonotope with e generators
in dimension n might have up to 2

(
e

n−1

)
facets, which will become clear later.

The proposed algorithm makes use of the n-dimensional cross-product, which computes
the vector that is orthogonal to n − 1 linearly independent vectors. These vectors are
stored in the matrix H = [h(1), . . . , h(n−1)] ∈ Rn×(n−1). For convenience, the matrix H [i] ∈
R(n−1)×(n−1), which is the H matrix where the i-th row is removed, is introduced. The
cross product operator nX() can then be defined as (see e.g. [124]):

y = nX(H) :=
[
. . . , (−1)i+1 det(H [i]), . . .

]T
.

Further, the matrix of generators G = [g(1), . . . , g(n)] and G〈i〉 ∈ Rn×(n−1), which is defined
as the matrix G in which the i-th generator is removed, are introduced2.

For an intuitive understanding of the algorithm transforming the G-representation of a
zonotope into H-representation, the transformation is performed for the special case of a
parallelotope (zonotope of order 1) first.

Lemma 2.1 (Halfspace Conversion of Parallelotopes): The halfspace representa-
tion C · x ≤ d of a parallelotope Z = (c, g(1), . . . , g(n)) with n independent generators

2Here, the removal is denoted by 〈 〉 and not by [] because a column instead of a row is removed.

13

2. Set Representations and Set Operations

is

C =

[
C+

−C+

]
, d =

[
d+

d−

]

with:

C+
i = nX(G〈i〉)T/‖nX(G〈i〉)‖2,

d+i = C+
i · c+∆di, d−i = −C+

i · c+∆di, ∆di = |C+
i · g(i)|.

C+
i denotes the i-th row of C+ and di the i-th element of d. The computational complexity

of computing the H-representation for a given G is O(n5). �

Proof: The i-th separating hyperplane S(i) of a parallelotope can be reached from the
center c by translation of the generator g(i): c + g(i) ∈ S(i) (see Fig. 2.3). As there are
only n generators, the facet must be spanned by the matrix of remaining generators G〈i〉.
Thus, the normal vectors are computed as C+

i = nX(G〈i〉)T/‖nX(G〈i〉)‖2. It is sufficient to
compute n halfspaces denoted by a superscript ’+’, as the remaining n halfspaces denoted
by a superscript ’−’ differ only in sign due to the central symmetry of zonotopes.

The elements d+i are the scalar products of any point on the i-th halfspace with its normal
vector C+

i . A possible point on the i-th halfspace is c+ g(i). Thus, the values of d+i can be
computed as d+i = C+

i · c+∆di and d−i = −C+
i · c+∆di with ∆di = |C+

i · g(i)|.
The computational complexity is derived as follows. The computation of the determinants
is O((n − 1)3) = O(n3) when applying LU decomposition, and thus the computation of
the n-dimensional cross product is n · O(n3) = O(n4). As n non-parallel hyperplanes have
to be computed, the overall complexity is O(n5). �

c g(1)

g(2)

g(3)

C+
1

Fig. 2.3.: Generators and normal vector of a parallelotope.

The extension for the conversion of zonotopes from G- to H- representation is straightfor-
ward. For a general zonotope, the generator matrix is of dimension G ∈ Rn×e. Because
n − 1 generators have to be selected from e generators for each non-parallel facet, the
result are 2

(
e

n−1

)
facets if the generators in G are linearly independent, i.e. G has full

rank. The generators that span a facet are obtained by canceling e − n + 1 generators
from the G-matrix. This is denoted by G〈γ,...,η〉, where γ, . . . , η are the e − n + 1 indices
of the generators that are taken out of G. The extended computation for the halfspace
representation is:

14

2.2. Exact Conversion of Set Representations

Theorem 2.1 (Halfspace Conversion of Zonotopes): The halfspace representation
C · x ≤ d of a zonotope Z = (c, g(1), . . . , g(e)) with e independent generators is

C =

[
C+

−C+

]
, d =

[
d+

d−

]

with:

C+
i = nX(G〈γ,...,η〉)T/‖nX(G〈γ,...,η〉)‖2,

d+i = C+
i · c+∆di, d−i = −C+

i · c+∆di, ∆di =

e∑

υ=1

|C+
i · g(υ)|.

The index i varies from 1 to
(

e
n−1

)
and the indices γ, . . . , η are obtained by picking n − 1

out of e elements. The complexity of the computation with respect to the number e of
generators is O(

(
e

n−1

)
· e), which is linear in the number of facets. �

Proof: The computation of C+
i , d

+
i , d

−
i is analog to lemma 2.1. The difference for the

computation of ∆di is that e generators contribute to pushing the facets outwards.

The complexity result is obtained as follows: The computational complexity for computing
the normal vectors is O(

(
e

n−1

)
· n4) since the complexity for a single facet is O(n4) (see

lemma 2.1). The computational complexity for the computation of ∆d is O(
(

e
n−1

)
· e) as

e generators have to be considered for each element ∆di. The overall complexity with
respect to the number of generators is O(

(
e

n−1

)
· n4) +O(

(
e

n−1

)
· e) = O(

(
e

n−1

)
· e). �

It is noted that the author does not know any reference where a similar algorithm has been
proposed.

2.2.2. Conversion of Multidimensional Intervals

In the course of this thesis, it is useful to transform multidimensional intervals from
I- into G-representation. In contrast to the previous transformation from G- into
H-representation, the rewriting of multidimensional intervals into G-representation is
straightforward.

Proposition 2.1 (Generator Representation of Multidimensional Intervals):
The generator representation (c, g(1), . . . , g(n)) of a multidimensional interval I = [a, a] is

c =
1

2
(a+ a), g

(j)
i =

{
1
2
(ai − ai), if i = j

0, otherwise
,

where g
(j)
i is the i-th element of the j-th generator. Note that the matrix of generators G

is diagonal. �

Due to the obvious computation, the proof is skipped.

15

2. Set Representations and Set Operations

2.3. Over-Approximative Conversion of Set

Representations

As mentioned in the previous subsection, there is no G-representation for polytopes and
no I-representation for zonotopes in general. However, those conversions are necessary
in reachability analysis, requiring that those transformations are performed in an over-
approximative way. The simplest over-approximation is the enclosure of zonotopes by
multidimensional intervals:

Proposition 2.2 (Interval-Enclosure of Zonotopes):
A zonotope Z = (c, g(1), . . . , g(e)) is over-approximated by a multidimensional interval by:

I = box(Z) := [c−∆g, c+∆g], ∆g =

e∑

i=1

|g(i)|,

where the absolute value is taken elementwise and box() denotes the operator returning a
multidimensional interval. �

Proof: As multidimensional intervals are axis-aligned sets, one can compute an over-
approximation by considering each dimension separately. As each generator is multi-
plied by a factor βi ∈ [−1, 1], the possible interval of the j-th coordinate of a zonotope

Z = (c, g(1), . . . , g(e)) is: [cj − ∆gj, cj + ∆gj] and ∆gj =
∑e

i=1 |g
(i)
j |. This can be directly

extended to the n-dimensional case. �

Similarly, the box()-operator can be formulated for a polytope:

Proposition 2.3 (Interval-Enclosure of Polytopes):
A polytope P = CH(v(1), . . . , v(r)) with vertices v(1), . . . , v(r) is over-approximated by a
multidimensional interval as:

I = box(P) := [m,m], mj = min(v
(1)
j , . . . , v

(r)
j), mj = max(v

(1)
j , . . . , v

(r)
j). �

The proof is omitted, as it is obvious that the minimum and maximum values of the vertices
of each coordinate return the intervals of the corresponding coordinate.

The problem of finding a zonotope enclosing a general polytope is more complicated.
Even the problem of finding an optimal parallelotope enclosing a polytope is complicated
and unsolved. On that account, polytopes are enclosed by parallelotopes (zonotopes of
order one) in this work. There is much literature on finding enclosing parallelotopes of
polytopes (or sets of points) in two-dimensional and three-dimensional space [17, 133, 169].
In n dimensions, there is no known work which computes a parallelotope with minimum
volume. However, enclosing zonotopes which are optimal in the sum of the total length
of the generators are presented in [79]. In [158], enclosing parallelotopes in n dimensions
have been computed based on a principal component analysis (PCA) of the point set to
be enclosed. The problem of finding an enclosing parallelotope of a set of points can be
reformulated using a linear transformation and the box()-operator:

16

2.4. Operations on Zonotopes

Proposition 2.4 (Parallelotope-Enclosure of Polytopes): An over-approximating
parallelotope Ψ of a polytope P is obtained as:

Ψ = Λ · box(Λ−1P),

where Λ ∈ Rn×n is of full rank. �

Proof: First, the coordinates of P are transformed by the linear map Λ−1, where the new
coordinate axes are the column vectors within Λ. Note that this coordinate system is
not orthogonal in general. Within the transformed coordinate system, the zonotope is
over-approximated by a multidimensional interval (box(Λ−1 ·P)). As a final step, the mul-
tidimensional interval is transformed back to the original coordinate system, which returns
a parallelotope. The over-approximation is guaranteed by the fact that the parallelotope is
over-approximated in the transformed coordinate system by the box() operator, such that
it is also over-approximated after the transformation to the original coordinate system.
This is also illustrated in Fig. 2.4. �

The challenge is to find a linear transformation matrix Λ, which over-approximates the
polytopes in a good way. Note that the column vectors of Λ determine the direction of the
generators of the over-approximating parallelotope. The choice of the Λ matrix, and hence
the selection of generators for the over-approximating parallelotope, is addressed later in
Sec. 3.5.4 when dealing with reachable sets of hybrid systems.

0 5 10
0

5

10

x
1

x
2

0 2 4

0

1

2

3

4

5

x
1

x
2

0 5 10
0

5

10

x
1

x
2

Λ−1· Λ·

g(1)g(1)

g(2)g(2)

Λ−1g(1)

Λ
−
1
g
(2

)

PP Λ−1P

box(Λ−1P) Λ · box(Λ−1P)

Fig. 2.4.: Parallelotope-enclosure of a polytope where Λ = [g(1), g(2)].

2.4. Operations on Zonotopes

The three most basic operations on sets for the reachability algorithms to be presented are:
linear transformation, addition, and convex hull computation. In this work, reachable sets
are represented by zonotopes and, thus, the three mentioned set operations are introduced
for zonotopes only.

The linear map of a zonotope and the addition of two zonotopes are computationally
cheap, which makes zonotopes attractive for reachability analysis. For two given zonotopes

17

2. Set Representations and Set Operations

Z1 = (c(1), g(1), . . . , g(e)) and Z2 = (c(2), f (1), . . . , f (u)), the linear map and addition are
obtained as follows (see e.g. [100]):

L · Z1 = (Lc(1), Lg(1), . . . , Lg(e)), L ∈ Rn×n

Z1 + Z2 = (c(1) + c(2), g(1), . . . , g(e), f (1), . . . , f (u)).
(2.1)

Note that the Minkowski sum of two zonotopes is simply an addition of their centers and
a concatenation of their generators, which directly follows from their definition as the
Minkowski sum of generators.

Another important operation is the computation of the convex hull of two zonotopes Z1 and
Z2, which is defined as CH(Z1,Z2) := {α1 ·a(1)+α2·a(2)|a(1) ∈ Z1, a

(2) ∈ Z2, α1+α2 = 1}. In
general, the convex hull of two zonotopes Z1 and Z2 is not a zonotope anymore, such that
the tightest zonotope enclosing the convex hull has to be found: CH(Z1,Z2) ⊇ CH(Z1,Z2).
This problem is complex [79], such that a rougher over-approximation is used which is
proposed in [69] for two zonotopes of equal order and equal dimension:

CH(Z1,Z2) =
1

2
(c(1) + c(2), g(1) + f (1), . . . , g(e) + f e,

c(1) − c(2), g(1) − f (1), . . . , g(e) − f (e)).
(2.2)

The generalization for zonotopes of different order is straightforward. Without loss of
generality, the first zonotope Z̃1 has ẽ generators which is more than the u generators of
the second zonotope Z2. For this reason, the first zonotope is split up into a zonotope with
u and ẽ− u generators: Z̃1 = Z1,a +Z1,b. This allows the over-approximating convex hull
to be computed as: CH(Z̃1,Z2) = CH(Z1,a,Z2) + Z1,b.

2.5. Order Reduction of Zonotopes

The order reduction of zonotopes is a further operation on zonotopes which is discussed in
more detail. The order of a zonotope has been introduced as ˆ̺ = e

n
, where e is the number

of generators and n is the dimension of the Euclidean space. Order reduction techniques
are very important as they limit the computational complexity of operations on zonotopes.
Especially the conversion of zonotopes from G- to H-representation is computationally
expensive for zonotopes of high order, as shown in Theorem 2.1. In consistency to all
other operations, the order reduction is performed in an over-approximative way, such
that the reduced zonotope Zred has fewer generators and encloses the original zonotope
Zorig (Zred ⊇ Zorig).

In order to measure the performance of different order reduction techniques, an over-
approximation measure for the reduced zonotopes Zred is introduced first. Next, the
general procedure for the order reduction is introduced. It is based on the selection of
generators that are stretched in order to compensate for the generators that have been
discarded. The selection process is firstly discussed for the reduction to parallelotopes,
which are zonotopes of order ˆ̺ = 1. In a second step, the generator selection is extended
to the case when zonotopes are reduced to zonotopes of order greater than one. To assess

18

2.5. Order Reduction of Zonotopes

the quality of the over-approximations, randomly generated zonotopes are reduced and
assessed according to the introduced over-approximation measure. The general scheme for
the order reduction of zonotopes is as follows:

Proposition 2.5 (Order Reduction of a Zonotope): An over-approximating zono-
tope with reduced number of generators Zred is obtained by splitting the zonotope
Z = Ž + Z̃ into Ž, Z̃ and applying an order reduction scheme so that Z̃ is enclosed
by a parallelotope Ψ:

Zred = Ž +Ψ, Ψ = Π · box(Π−1Z̃),

where Π ∈ Rn×n is of full rank. �

The proof is omitted, as it has already been shown in Prop. 2.4 that Π ·box(Π−1Z̃) returns
an enclosing parallelotope Ψ and it is obvious that its addition with the unreduced part
Ž returns an over-approximation of Z. In order to decide how to best split Z and how to
select Π, a measure for the performance of the order reduction is proposed.

2.5.1. Over-Approximation Measure

The proposed over-approximation measure υ is based on the ratio of the volume of the
over-approximating set Vred compared to the original set Vorig: V(Vred)/V(Vorig) and V()
is the operator returning the volume of a set. The set V denotes a general set (polytope,
zonotope, etc.) as the over-approximation measure is defined such that it is applicable for
general sets. It should also be considered that each dimension represents a variable whose
values may differ in scale, such that they have to be normalized. For this reason, the
considered sets are weighted by some weighting matrix W = diag(w), w ∈ Rn, resulting
in the ratio V(W · Vred)/V(W · Vorig). Another aspect of the over-approximation measure
is that the measure should allow the results of over-approximations obtained in spaces of
different dimension n to be compared. For this reason, the n-th root (n=̂ dimension) of the
volume ratio is taken, so that the over-approximation measure is equivalent to the ratio of
the edge length of n-dimensional cubes containing the corresponding volumes. Combining
the mentioned aspects, the over-approximation measure is computed as:

Definition 2.5 (Over-approximation Measure of Reduced Sets): The over-
approximation for the reduction of a set Vorig to a set Vred is measured with a scaling
vector w according to the following formula:

υ =

(
V(W · Vred)

V(W · Vorig)

) 1
n

, W = diag(w), w ∈ Rn. �

In order to simplify the notation, it is assumed from now on that all sets V are represented
in a normalized space, where the original sets have been mapped to Vorig := W · Vorig

beforehand, such that the weighting matrix is now the identity matrix (W = I).

2.5.2. Generator Selection for Parallelotopes

The important question of how to select the generators in Π spanning the parallelotope
Ψ in Prop. 2.5 is addressed next. In this work, the generators in Π are selected out

19

2. Set Representations and Set Operations

of the e generators of the original zonotope Z – this has the advantage that the over-
approximating parallelotope Ψ touches facets of the original zonotope. The separation of
the original zonotope Z into Ž and Z̃ is discussed later.

The selected generators should maximize the over-approximation index υ of the resulting
parallelotope Ψ. A straightforward approach is an exhaustive search by computing the
over-approximation value υ for all possible combinations of n out of e generators:

Proposition 2.6 (Exhaustive Search for the Generator Matrix Π): The exhaus-
tive search for the best combination of n out of e generators for the over-approximation of
a zonotope Z̃ by a parallelotope Ψ (Prop. 2.5) has complexity O(

(
e
n

)
· e) with respect to

the number of generators e. Instead of searching for generators which minimize the over-
approximation measure υ, one can alternatively evaluate the over-approximation measure
υ∗ = V(Vred), which is computationally less expensive. �

Proof: The exhaustive search allows the generation of
(
e
n

)
different parallelotopes. The

complexity for the computation of the parallelotopes with respect to the number of gener-
ators according to Prop. 2.5 is O(e). Thus, the overall complexity of the exhaustive search
is O(

(
e
n

)
· e).

As all parallelotopes are over-approximations of the same zonotope, the volume V(Vorig)
and the dimension n are equal for all parallelotopes. Thus, the over-approximation index

υ∗ = V(Vred) is minimal if υ =
(
V(Vred)/V(Vorig)

) 1
n is minimal. �

Clearly, the exhaustive search is infeasible in higher dimensions and for zonotopes of high
order. For this reason, the number of possible combinations

(
e
n

)
for the exhaustive search

has to be reduced. Two approaches are discussed, where one approach reduces the number
of generators ẽ < e for the exhaustive search. The other approach passes only a subset of
reasonable combinations of n generators.

Heuristic 2.1 (Generator Selection for the Generator Matrix Π): A heuristic
which has proven effective for extracting ẽ promising generators g(i1), . . . , g(iẽ) is to select
the longest generators (2-norm), such that

‖g(i1)‖2 ≥ . . . ≥ ‖g(iẽ)‖2︸ ︷︷ ︸
candidates for Π

≥ ‖g(iẽ+1)‖2 ≥ . . . ≥ ‖g(ie)‖2. �

The complexity of this selection is O(j · log(j)) due to the sorting of the norms and one
can give the following statement:

Proposition 2.7 (Order Reduction Complexity for Fixed Zonotope Order): If
ẽ is chosen as ẽ = n + κ, the complexity with respect to κ is O(κn+1), i.e. polynomial in
κ for fixed n. �

Proof: The complexity of the exhaustive search is according to Prop. 2.6

O
((

n + κ

n

)
· (n+ κ)

)
= O

(
(n+ κ)!

n! κ!
· (n + κ)

)
= O ((n+ κ)n · (n + κ)) = O(κn+1).

�

20

2.5. Order Reduction of Zonotopes

Besides extracting the longest generators, clustering methods like k-means clusters have
also been investigated. The data points of the clusters have been defined as the end points
of the generators starting in the origin. Next, the vectors from the origin to the cluster
centers have been chosen as the reduced set of generators. However, this approach did not
perform better than the selection based on the length of the generators.

The other mentioned possibility to accelerate the generator selection is to compute the
over-approximation index υ∗ on a subset of possible combinations of generators. The sub-
set of combinations of generators is selected by an alternative over-approximation measure,
computed on all

(
e
n

)
combinations of generators. Thus, the complexity of this technique

is the same compared to the exhaustive search. However, the computational time is de-
creased, as the alternative over-approximation index is less costly than the computation
of υ∗. In this work, the following alternative measure is proposed:

Heuristic 2.2 (Selection of Candidates for the Generator Matrix Π):
Candidates for the generator matrix Π are selected by an exhaustive search using
the alternative measure

υ̃ =
∣∣det[g(i1), . . . , g(in)]

∣∣−1
,

where |det[g(i1), . . . , g(in)]| is the volume spanned by the n selected generators. The basic
idea is that generators which already span a large volume no longer have to be stretched
so much in order to enclose the original zonotope. �

It is remarked that the proposed order reduction techniques are not stable if the represen-
tation of the zonotope is changed. Consider a zonotope with the longest generator gmax.
After replacing this generator by 1

2
gmax and 1

2
gmax, the zonotope is unchanged (only its

representation is changed). However, it is likely that the generators 1
2
gmax will no longer

be selected, such that the over-approximation is changed. This problem will be the subject
of future research.

2.5.3. Generator Selection for Zonotopes

It remains to properly separate the original zonotope Z into Ž and Z̃ as presented in
Prop. 2.5. The reduction of Z̃ to a parallelotope Ψ has already been addressed. This
means that it is left to select the ũ generators for Ž by the following heuristic:

Heuristic 2.3 (Generator Selection for Unreduced Zonotope Ž): The generators
of the unreduced zonotope Ž in Prop. 2.5 are chosen as the longest ones (2-norm):

‖g(i1)‖2 ≥ . . . ≥ ‖g(iũ)‖2︸ ︷︷ ︸
for Ž

≥ ‖g(iũ+1)‖2 ≥ . . . ≥ ‖g(ie)‖2︸ ︷︷ ︸
for Z̃

The center of the original zonotope Z can be assigned to either Ž or Z̃. �

An alternative reduction method which is not based on reducing Z̃ to a parallelotope but
to a multidimensional interval has proven useful for marginal reductions of zonotopes, i.e.
the ratio of the new order ˆ̺new compared to the old order ˆ̺old is close to one. Thus,
these methods are a special case of Prop. 2.5 where Π = I. Heuristics based on this

21

2. Set Representations and Set Operations

special case have been proposed in [42, 69, 99, 100]. In [99, 100], zonotopes are modeled as
Minkowski additions of parallelotopes on which also the order reduction is based. However,
these methods are not applied in this work, since the more general modeling of Minkowski
additions of line segments is used. The work of [42] also separates the generators into Ž
and Z̃ by choosing the generators with the largest 2-norm for Ž. Another heuristic which
has shown better results for reachability problems than [42] is proposed in [69], where the
generators for Ž are selected by a combination of the 1- and the inf-norm:

Heuristic 2.4 (Generator Selection by 1- and Inf-norm): A heuristic for reducing
the order of zonotopes based on Prop. 2.5 with Π = I, separates the generators for Ž and
Z̃ as follows:

‖g(i1)‖1 − ‖g(i1)‖∞ ≥ . . . ≥ ‖g(iũ)‖1 − ‖g(iũ)‖∞︸ ︷︷ ︸
for Ž

≥

‖g(iũ+1)‖1 − ‖g(iũ+1)‖∞ ≥ . . . ≥ ‖g(ie)‖1 − ‖g(ie)‖∞︸ ︷︷ ︸
for Z̃

The chosen generators for Z̃ are close to vectors with only one nonzero component and
are therefore well approximated by an interval hull. �

It is next presented how to randomly generate zonotopes for the evaluation of the proposed
reduction methods.

2.5.4. Randomly Generated Zonotopes

For the evaluation of the over-approximating methods, zonotopes are generated by inde-
pendent randomized generators g(i). In a first step, randomized points are obtained which
are uniformly distributed on a unit hypersphere. This is achieved by computing x/‖x‖2,
where each element of x ∈ Rn is a Gaussian random variable; see [125]. Next, the generator
is defined as the vector from the origin to a point on the hypersphere, which is stretched
by the length of the generators l(i) = ‖g(i)‖2 and l(i) has a uniform distribution within
the interval 0 < l(i) ≤ lmax. The randomly generated zonotopes are used for the following
evaluations.

2.5.5. Numerical Evaluation

The numerical results from the evaluation of the direct conversion are firstly discussed
for the case when the zonotopes are reduced to parallelotopes. The method which best
performs for the reduction to parallelotopes is then used for the order reduction to zono-
topes of order greater than one. For the reduction to parallelotopes, three methods are
evaluated:

• Method A This method is equal to the exhaustive search.

• Method B The exhaustive search is performed on the ẽ = n+ κ longest generators
according to Heuristic 2.1, where n is the system dimension and κ is chosen to κ = 8.

22

2.5. Order Reduction of Zonotopes

• Method C Method C is based on Method B, which provides the ẽ = n+ κ longest
generators. Next, Heuristic 2.2 is applied to the remaining ẽ generators in order
to find the best λ = n + λ̃ combinations of generators, where λ̃ = 3. Finally, an
exhaustive search is performed on the remaining λ combinations.

The results of the evaluation are presented in Tab. 2.1. The over-approximation index υ as
well as the overall computational time tcomp are obtained from 100 randomized zonotopes
according to Sec. 2.5.4. The computations were performed on an AMD Athlon64 3700+
processor (single core) in Matlab. Due to the complexity of computing the volume of the
original zonotopes which is required in order to obtain υ, the evaluation for dimensions
greater than 8 is intractable. It can be seen that Method C allows efficient computation
while almost maintaining the performance of the exhaustive search, making this method
the choice for the order reduction to zonotope of order greater than one.

Tab. 2.1.: Results for the order reduction to parallelotopes.

Method mean of mean [min,max] variance
tcomp [s]: of υ: of υ: of υ:

dimension n = 2, zonotope order o = 2

A,B,C: 0.0033 1.0492 [1.0007, 1.1127] 0.0008

dimension n = 2, zonotope order o = 6

A: 0.0278 1.0839 [1.0421, 1.1154] 0.0003
B: 0.0190 1.0839 [1.0421, 1.1154] 0.0003
C: 0.0036 1.0874 [1.0427, 1.1670] 0.0004

dimension n = 4, zonotope order o = 2

A,B: 0.0297 1.1610 [1.0373, 1.2734] 0.0025
C: 0.0044 1.1610 [1.0373, 1.2734] 0.0025

dimension n = 4, zonotope order o = 6

A: 5.1344 1.2679 [1.2089, 1.3227] 0.0005
B: 0.2046 1.2807 [1.2137, 1.3447] 0.0008
C: 0.0111 1.2964 [1.2147, 1.3735] 0.0010

dimension n = 6, zonotope order o = 2

A,B: 0.3896 1.2631 [1.1067, 1.3618] 0.0032
C: 0.0185 1.2660 [1.1067, 1.4326] 0.0035

dimension n = 8, zonotope order o = 2

A,B: 5.1394 1.3670 [1.1992, 1.4995] 0.0036
C: 0.5738 1.3703 [1.1992, 1.5279] 0.0040

The numerical results for the order reduction of general zonotopes as proposed in Prop. 2.5
are obtained as follows: The parallelotope Ψ is obtained by method C and the unreduced
zonotope Ž is obtained as described in Heuristic 2.3 by selecting the longest generators.
This method is denoted by Di, where i indicates the number of generators in Ž. The
results obtained by the same set-up as for the reduction to parallelotopes are listed in
Tab. 2.2. It can be observed that the performance increases only a little with an increasing
number of unreduced generators. In addition, the computational times decrease since the
number of generators to be reduced decreases, too, which makes the computation of the
enclosing parallelotope Ψ more efficient.

23

2. Set Representations and Set Operations

Tab. 2.2.: Results for the order reduction to zonotopes of lower order.

Method mean of mean [min,max] variance
tcomp [s]: of υ: of υ: of υ:

dimension n = 2, zonotope order o = 6

D0: 0.0040 1.0908 [1.0424, 1.1504] 0.0005
D2: 0.0040 1.0833 [1.0306, 1.1733] 0.0006
D4: 0.0036 1.0628 [1.0173, 1.1147] 0.0005

dimension n = 4, zonotope order o = 2

D0: 0.0048 1.1570 [1.0551, 1.2960] 0.0025
D2: 0.0035 1.0981 [1.0031, 1.2343] 0.0026
D4: 0.0012 1.0000 [1.0000, 1.0000] 0.0000

dimension n = 4, zonotope order o = 6

D0: 0.0112 1.2930 [1.2147, 1.3767] 0.0011
D2: 0.0110 1.2872 [1.2068, 1.4200] 0.0016
D4: 0.0122 1.2685 [1.1807, 1.3584] 0.0014

dimension n = 6, zonotope order o = 2

D0: 0.0182 1.2718 [1.1322, 1.3969] 0.0035
D2: 0.0076 1.2219 [1.0747, 1.4309] 0.0044
D4: 0.0046 1.1163 [1.0100, 1.2833] 0.0036

dimension n = 8, zonotope order o = 2

D0: 1.0435 1.3679 [1.1643, 1.5373] 0.0045
D2: 0.0712 1.3220 [1.1568, 1.4942] 0.0049
D4: 0.0148 1.2208 [1.0750, 1.4446] 0.0047

Next, it is shown how to shorten the computational time for the conversion from G- to
H-representation of zonotopes by reducing the order of the zonotopes with the presented
methods.

2.5.6. Speeding up the Halfspace Conversion of Zonotopes

The order reduction techniques of zonotopes presented so far allow the conversion from G-
to H-representation to be sped up, since fewer generators have to be considered. A disad-
vantage of this approach is that the obtained H-representation is an over-approximation,
while the exact conversion is possible. However, the computational complexity does not
allow an exact conversion to be made in high dimensional spaces. Two different techniques
for the computation of an over-approximative H-representation of zonotopes are presented:
A direct and an indirect approach.

The direct approach obtains a H-representation as follows:

1. Reduce the order of the zonotope.

2. Apply the conversion from G- to H-representation as presented in Theorem 2.1.

The indirect approach uses a different scheme:

1. Compute the ζ over-approximations of zonotopes by parallelotopes with the lowest

24

2.5. Order Reduction of Zonotopes

over-approximation index υ.

2. Convert the parallelotopes from G- to H-representation; see Lemma 2.1.

3. Intersect the ζ best parallelotopes in H-representation in order to obtain the over-
approximating H-representation.

Both approaches are compared numerically with the same set of randomized zonotopes.
The direct method is denoted by HDi and is computed by the reduction methods Di,
where the indices indicate the number of unreduced generators. For the indirect method,
the over-approximating parallelotopes are obtained using Method C and the intersection
is performed by a standard software package for polytopes3. This method is denoted by
HIi, where the index refers to the number of intersected parallelotopes. The results of both
methods are listed in Tab. 2.3 and Tab. 2.4. Note that method HD2 is faster compared
to HD0 for 8 dimensions, because the computation of Ψ saves more time (due to fewer
combinations for Π) than the more complicated halfspace conversion adds.

Tab. 2.3.: Numerical results for the direct conversion to H-representation.

Method mean of mean [min,max] variance
tcomp [s]: of υ: of υ: of υ:

dimension n = 2, zonotope order o = 6

HD0: 0.0066 1.0905 [1.0466, 1.1399] 0.0005
HD2: 0.0087 1.0887 [1.0299, 1.2089] 0.0010
HD4: 0.0084 1.0631 [1.0153, 1.1318] 0.0006

dimension n = 4, zonotope order o = 2

HD0: 0.0108 1.1541 [1.0104, 1.2598] 0.0030
HD2: 0.0175 1.0987 [1.0147, 1.2590] 0.0030
HD4: 0.0702 1.0000 [1.0000, 1.0000] 0.0000

dimension n = 4, zonotope order o = 6

HD0: 0.0158 1.2979 [1.2021, 1.3970] 0.0010
HD2: 0.0261 1.2917 [1.2282, 1.4269] 0.0014
HD4: 0.0781 1.2579 [1.1863, 1.3643] 0.0013

dimension n = 6, zonotope order o = 2

HD0: 0.0213 1.2697 [1.0956, 1.4117] 0.0035
HD2: 0.0757 1.2181 [1.0653, 1.4488] 0.0047
HD4: 1.6047 1.1115 [1.0117, 1.2508] 0.0035

It can be observed that the indirect method clearly outperforms the direct method. The
computational times are lower while the accuracy is higher, making the indirect method
the preferred one. The difference in accuracy when choosing more or less intersecting
parallelotopes is exemplarily illustrated in Fig. 2.5 for a three-dimensional zonotope. The
left halfspace representation is obtained using method HI1(=̂ C) and the right one is
obtained using method HI4.

Finally, a short introduction to interval arithmetics is given.

3used tool: MPT-Toolbox [105]

25

2. Set Representations and Set Operations

Tab. 2.4.: Numerical results for the indirect conversion to H-representation.

Method mean of mean [min,max] variance
tcomp [s]: of υ: of υ: of υ:

dimension n = 2, zonotope order o = 6

HI1: 0.0068 1.0905 [1.0466, 1.1399] 0.0005
HI2: 0.0136 1.0498 [1.0052, 1.1306] 0.0007
HI4: 0.0273 1.0173 [1.0006, 1.0688] 0.0002

dimension n = 4, zonotope order o = 2

HI1: 0.0086 1.1541 [1.0104, 1.2598] 0.0030
HI2: 0.0184 1.0814 [1.0062, 1.1719] 0.0014
HI4: 0.0422 1.0300 [1.0008, 1.0729] 0.0002

dimension n = 4, zonotope order o = 6

HI1: 0.0158 1.2979 [1.2021, 1.3970] 0.0010
HI2: 0.0252 1.2056 [1.1306, 1.3010] 0.0018
HI4: 0.0479 1.1334 [1.0842, 1.2587] 0.0011

dimension n = 6, zonotope order o = 2

HI1: 0.0200 1.2697 [1.0956, 1.4117] 0.0035
HI2: 0.0319 1.1639 [1.0679, 1.2646] 0.0022
HI4: 0.0643 1.0941 [1.0115, 1.1943] 0.0011

Z

Zred

(a) Method HI1.

Z

Zred

(b) Method HI4.

Fig. 2.5.: Over-approximative halfspace representations.

2.6. Interval Arithmetics

Multidimensional intervals have already been introduced as a simple representation of sets
in Def. 2.4. Besides the simple representation, the advantage of multidimensional intervals
is that one can apply interval arithmetics – a technique which can be applied to most
standard operations and functions. For this reason, interval arithmetics is often used as
a last resort, when more accurate techniques for computing with sets fail or are too time

26

2.6. Interval Arithmetics

consuming. A drawback of interval arithmetics is that it might be very conservative,
resulting in unacceptable over-approximations.

An operation denoted by ◦ on two intervals a = [a, a] ∈ I and b = [b, b] ∈ I is generally
defined as

a ◦ b = {a ◦ b|a ∈ a, b ∈ b}.

In this work, the addition and multiplication of intervals is most frequently applied:

a + b =[a + b, a+ b],

a · b =[min(a b, a b, a b, a b),max(a b, a b, a b, a b)].
(2.3)

With the foregoing formulas, one can compute the range of a function such as c = a · b + a

where e.g. a = [−2,−1] and b = [−1, 1]. Applying interval arithmetics, the computation
of c can be performed in two ways:

c = a · b + a = [−4, 1], c = a · (b + 1) = [−4, 0].

Although interval arithmetics can guarantee that the exact solution is always included, only
the second computation gives the exact solution. Exact results can be guaranteed if each
variable occurs only once in interval computations such as in the second computation of c.
This is because for each evaluation of an interval operation, the values of the operands are
allowed to take any value within the specified interval regardless of previous occurrences.
As a consequence, different values of the same operand contribute to the minimum and
maximum values of the corresponding interval operations, although the same operand is not
allowed to have different values at the same time. In consistency to [97], expressions with
single use of variables are referred to as single-use expressions (SUE). The problem of over-
approximative results for non-single-use expressions is also referred to as the dependency
problem in literature [87].

Interval arithmetics will also be applied to interval matrices A = [A,A] ∈ In×n where
A ∈ R and A ∈ R are the left and right limit of the interval matrix.

The presented set representations and set operations are applied to reachability analysis
in the next chapter.

27

3. Reachability Analysis

The introduced set representations (polytope, zonotope, multidimensional interval) and
operations on them are used for reachability analysis in this chapter. An introduction to
reachability analysis and a review of related literature is presented below.

3.1. Introduction and State of the Art

Basically, reachability analysis determines the set of states that a system can reach, starting
from a set of initial states under the influence of a set of input trajectories and parameter
values. A more exact definition is the following:

Definition 3.1 (Reachable Set at a Point in Time): Given is a dynamical system
ẋ = f(x(t), u(t), ρ(t)), where t is the time, u is the input and ρ is the parameter vec-
tor. The set of possible initial states, the input, and the parameters are bounded by sets:
x(0) ∈ X 0 ⊂ Rn, u ∈ U ⊂ Rm and ρ ∈ P ⊂ Rp. The reachable set at a certain point in
time r is defined as the union of possible system states at t = r:

R(r) =
{
x(r) =

∫ r

0

f(x(t), u(t), ρ(t))dt
∣∣∣x(0) ∈ X 0, u([0, r]) ∈ U , ρ([0, r]) ∈ P

}
. �

Note that u([0, r]) is a short form of
⋃

t∈[0,r] u(t). The reachable set for a time interval is
defined as:

Definition 3.2 (Reachable Set of a Time Interval): The reachable set of a time in-
terval is the union of reachable sets at points in time within the interval t ∈ [0, r]:

R([0, r]) =
⋃

t∈[0,r]
R(t). �

The extension of the continuous reachable set definition to hybrid systems is given in
Sec. 3.5. As already mentioned in the introduction of this thesis, one of the main applica-
tions of reachability analysis is to check whether a system can reach a set of unsafe states;
see Fig. 1.4. A set of unsafe states might be a set of critical distance between two mobile
robots, or a set of dangerous concentration of certain chemicals in a reactor. Besides safety
verification, there are other possible applications for reachability analysis:

• Performance assessment of control strategies: It can be checked if the system trajec-
tories stay in a region around a reference trajectory, or reach a goal region around a
setpoint.

28

3.1. Introduction and State of the Art

• Scheduling: Reachability analysis can verify if the optimal schedule of a system (typ-
ically a production system) is ensured under all conditions, or if e.g. the supervisory
controller might run into a recovery mode.

• Controller synthesis: The safety verification capabilities of reachability analysis can
be used to find parameter sets of controllers that satisfy safety constraints.

• Deadlocks: Reachability analysis can determine whether a system might get stuck
in a certain region of the continuous state space or an operation mode of a hybrid
system.

• Set based observers: Instead of estimating the state of a system with stochastic
methods (e.g. Kalman filtering), one can develop set based observers which return
the set of possible states. Therefor, the set of successor states has to be computed
via reachability analysis.

The exact reachable set of a continuous or hybrid system can only be obtained for certain
system classes.

Exact Algorithms

Systems for which the exact reachable set can be computed are listed with the represen-
tative dynamics of the continuous state x ∈ Rn: Timed automata [7] (ẋ = 1), multirate
automata [6] (ẋ = k, k ∈ Rn), rectangular automata and linear hybrid automata [8, 81, 143]
(ẋ ∈ P, P ⊂ Rn, P is a polytope), and hybrid automata with linear continuous dynamics
with a special system matrix A [107] (ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m, u ∈ Rm).
Note that linear hybrid automata are differently defined than hybrid automata with linear
continuous dynamics.

The above system representations for exact reachable set computations can be used to
verify general hybrid systems with linear or nonlinear continuous dynamics. This can be
achieved by a conservative abstraction, i.e. all possible behaviors of the complex system
are represented by simpler dynamics. In [96] it has been shown how to abstract multi-
affine continuous dynamics to a finite state automata. The abstraction of hybrid dynamics
to timed automata has been studied in [55, 116, 155, 157] and by rectangular automata
in [142]. Abstractions for general hybrid automata to linear hybrid automata have been
developed in [64]. The abstraction of general nonlinear and hybrid dynamics to differential
inclusions (ẋ = [k, k]) without a strict partitioning into linear hybrid automata has been
presented in [83, 145, 146]. The partitioning which is not fixed in the state space is also
called on-the-fly partitioning below.

Software tools for the verification of timed automata are UPPAAL [19] and Kronos [28].
Exemplary tools for the reachability analysis of linear hybrid automata are HyTech [82]
and PHAVer [64], where the latter can also handle general hybrid systems and is more
sophisticated.

Over-Approximative Algorithms

Besides the already mentioned system classes, hybrid systems with linear continuous dy-
namics (ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m, u ∈ Rm) have been widely researched. In

29

3. Reachability Analysis

many works, the linear continuous dynamics is considered without being embedded into a
hybrid system, demonstrating the trend that reachability analysis becomes more popular
in other communities besides hybrid systems.

As previously stated, the exact reachable set of linear continuous systems can only be
computed in special cases [107]. Thus, the reachable set has to be computed in an over-
approximative way in order to verify if an unsafe set is possibly reached; see Fig. 1.5. An
important question thereby is how to properly represent the over-approximated sets. Note
that this problem does not arise for linear hybrid systems since they can be exactly rep-
resented by polyhedra1. Several geometric representations for linear continuous systems
have been investigated: Polytopes [39], griddy polyhedra [10], ellipsoids [102, 103], oriented
rectangular hulls [158], zonotopes [69], or support functions [70] which unify the other men-
tioned representations. For linear systems with uncertain input, zonotopes [69, 72, 100] and
support functions [70] have clearly outperformed existing methods, allowing the verifica-
tion of systems with more than 100 continuous state variables. In [72, 78], a wrapping-free
algorithm for linear systems is derived. The wrapping effect terms the problem that over-
approximations are propagated through the computations at later time steps, causing an
ongoing increase in the over-approximation. This means that the over-approximation in
[72, 78] is tight, even when the reachable set is computed for a long time horizon – a
property that is nearly as good as the possibility of exactly computing a reachable set.

Analogously to the computation with linear hybrid automata, the algorithms for linear
continuous systems can be applied to general nonlinear systems or hybrid systems. This
is achieved by conservative linearization, i.e. by considering the linearization error as an
additional uncertain input of the linearized system. Abstraction to linear systems and
multi-affine systems using a fixed partition has been investigated in [12, 13]. This method
is also called hybridization since one obtains a hybrid system where each linearization
region is subject to a different continuous dynamics. The disadvantage of the hybridization
method is the limited scalability. One reason for this is the exponential growth of state
space regions with the system dimension n. The other reason is the high computational
effort for transitions between state space regions, which can be dropped when using on-
the-fly partitioning with overlapping state-space regions. On-the-fly partitioning is applied
in this thesis and in [49, 80].

The explicit computation of over-approximated reachable sets has been performed for
polynomial nonlinear systems using Bézier control nets in [48] and the Bernstein expansion
in [51]. For general nonlinear systems, global optimization techniques [39] and face lifting
[50] have been applied.

Software packages that directly compute with general nonlinear dynamics include d/dt [14]
and CheckMate [38]. There are more tools, but due to the vast improvements of reachability
analysis for linear and nonlinear continuous systems, tools become quickly outdated while
the tools for linear hybrid automata are already pretty mature. Assessments of different
software tools for the verification of hybrid systems can be found in [114, 115, 152].

The works on reachability analysis of linear and nonlinear continuous systems can be
extended to hybrid systems when additionally considering the switching in the continuous

1Polyhedra are sets defined by halfspaces. In contrast to polytopes, polyhedra are not necessarily bounded
[170].

30

3.2. Linear Continuous Systems

dynamics. This switching is determined by so-called guard sets, i.e. a transition to a
different discrete state is enabled when entering a guard set. The additional consideration
of guard sets modeled or over-approximated by polytopes is straightforward for works that
represent reachable sets by polytopes; see e.g. [10, 39, 47]. For other representations, such
as zonotopes, one deals with the problem that the intersection with a guard set no longer
results in the representation of the reachable sets. Over-approximations of intersections
with guard sets have been obtained for ellipsoids [27] and zonotopes [71].

In order to accelerate the verification of hybrid systems with reachability computations,
general refinement strategies have been developed [40, 156]. An overview of recent progress
in reachability analysis for different kinds of dynamic systems is given in [11].

Reachability analysis is also applied in order to obtain the set of successor states of set-
based observers. Analogously to the computation of reachable sets, different represen-
tations have been used to bound the set of possible states of observers: polytopes [9],
ellipsoids [22, 101, 148], multidimensional intervals [144], and zonotopes [5, 43].

Contributions

In this chapter, approaches to computing reachable sets represented by zonotopes are de-
scribed for several system classes. First, existing methods for the computation of reachable
sets for linear systems are presented in Sec. 3.2 – the specialty of this section is that the
reachable set can be computed without the wrapping effect according to [72]. Next, this
concept is extended to linear systems with uncertain parameters in Sec. 3.3. Note that
most previous work focuses on linear systems with known parameters such as in [72]. Two
different representations of uncertain parameters in the system matrix of the linear system
are considered: interval matrices and matrix zonotopes. In Sec. 3.4, the reachability anal-
ysis for linear systems is extended to nonlinear systems. For this, the nonlinear dynamic
is abstracted to a linear one using on-the-fly partitioning of the state space. This allows a
conservative computation of the set of linearization errors to be obtained, which is added
as an additional uncertain input. The last extension in Sec. 3.5 describes how to compute
the reachable set when the dynamics can switch as specified by a hybrid automaton. The
chapter closes with a short summary.

The part on linear systems with uncertain parameters specified by an interval matrix
is based on work published in [180], but revised due to incorrect parts. The work on
reachability analysis of nonlinear systems is published in [184] and on hybrid systems in
[187, 191].

3.2. Linear Continuous Systems

This section deals with the computation of reachable sets of linear time invariant (LTI)
systems with uncertain inputs – a system class which has been widely investigated. The
reason for the recapitulation of methods developed for this system class is that these
methods are the basis for the newly developed methods. The material of this section is
closely related to [47, 69, 72, 78], and differs only in some details and the way the material
is presented. In subsequent sections, novel extensions for linear systems with uncertain

31

3. Reachability Analysis

parameters and nonlinear systems are presented.

The considered linear continuous system can be written in the form

ẋ = Ax+ u(t), x(0) ∈ X 0 ⊂ Rn, u(t) ∈ U ⊂ Rn (3.1)

Note that this system class includes linear systems of the form ẋ = Ax + B u(t) with
B ∈ Rn×m and u(t) ∈ D ⊂ Rm when choosing U = {B u|u ∈ D}.
One important property of linear systems is that the superposition principle can be ap-
plied. This allows the separation of the solution x(t) = xh(t) + xp(t) into a homogeneous
solution xh(t) and an inhomogeneous solution xp(t). The homogeneous solution considers
the solution with respect to the initial state when there is no input (x(0) = x0, u = 0) and
the inhomogeneous solution accounts for the input into the system when the initial state is
the origin (x(0) = 0, u 6= 0). The reachable set of the homogeneous and the inhomogeneous
solution are denoted by HR(t) and PR(t), respectively. The reachable set is then obtained
as R(t) = {xh(t) + xp(t)|xh(t) ∈ HR(t), xp(t) ∈ PR(t)} which is the Minkowski addition
of the reachable set of the homogeneous and the inhomogeneous solution.

3.2.1. Reachable Sets of Systems without Input

First, the reachable set of the homogeneous solution is presented, obtained by concatenat-
ing reachable sets of small time intervals.

Basic Procedure

The basic steps that are undertaken in order to compute the reachable set of the first time
interval are in common with other approaches, such as e.g. [39, 69, 158]. The reachable
set of a time interval t ∈ [0, r], (r ∈ R+) is obtained by

1. computation of the reachable set HR(t) for t = r based on the initial set X 0,

2. generation of the convex hull of X 0 and HR(r),

3. enlargement of the convex hull to ensure enclosure of all trajectories of the time
interval t ∈ [0, r].

The enlargement is necessary because of the curvature of trajectories. The mentioned
steps are illustrated in Fig. 3.1. The reachable set of the first time interval is later used to
compute the sets for further time intervals.

Time Point Solution

The homogeneous solution of a linear time invariant system is well known to be xh(r) =
eAr x(0). After substitution of the initial value by the set of initial values, one obtains

HR(r) = eAr X 0.

For further time points t = k · r, k ∈ N+, the reachable set is obtained as HR((k + 1)r)=

32

3.2. Linear Continuous Systems

X 0

HR(r)

convex
hull of
X 0, HR(r)

HR([0, r])

➀ ➁ ➂

enlargement

Fig. 3.1.: Computation of the reachable set for a time interval.

eAr HR(kr), where the linear map is computed as presented in (2.1). For other represen-
tations, such as ellipsoids and polytopes, the computation of the linear maps can be found
in [102] and [39], respectively.

There exist many different techniques for the computation of the matrix exponential eAr

[122]. One of them is the computation by its Taylor series. Since the Taylor series can only
be computed with a finite number of terms, the neglected terms are over-approximated by
the remainder E(t):

eAt =I + At+
1

2!
(At)2 +

1

3!
(At)3 + . . .

⊂
η∑

i=0

1

i!
(At)i + E(t),

(3.2)

where

E(t) = [−1, 1]
(‖A‖∞t)η+1

(η + 1)!

1

1− ǫ
, ǫ =

‖A‖∞t

η + 2

!
< 1 (3.3)

and 1 is a matrix of ones so that [−1, 1] is an interval matrix whose elements vary between
−1 and 1. The computation of the remainder E is taken from [110]. Note that for the
computation of E , it is required to choose η so that ǫ < 1 as 1

1−ǫ
is obtained from the

geometric series 1 + ǫ+ ǫ2 + . . . in [110].

Time Interval Solution

Given the solution x(r) = eArx(0), the following approximation for the homogeneous
solution at intermediate points in time is suggested:

xh(t) ≈ x(0) +
t

r
(eArx(0)− x(0)), t ∈ [0, r].

The enclosure of all solutions starting in X 0 is achieved when adding the uncertainty

33

3. Reachability Analysis

F x(0), where F is an interval matrix (F ∈ In×n):

xh(t) ∈ x(0) +
t

r
(eArx(0)− x(0)) + F x(0), t ∈ [0, r]. (3.4)

The computation of the uncertainty is derived in the following proposition.

Proposition 3.1 (Correction matrix F): The interval matrix F which determines the
enlargement F x(0) in (3.4) can be computed as:

F =

η∑

i=2

[(i
−i
i−1 − i

−1
i−1)ri, 0]

Ai

i!
+ E(r).

E(r) is the matrix exponential remainder and η the number of Taylor terms according to
(3.3). The computations are performed using interval arithmetics. �

Proof: After replacing x(t) by eAtx(0) in (3.4), and division by x(0), one obtains

eAt − I − t

r
(eAr − I)

!∈ F , t ∈ [0, r].

The substitution of eAt and eAr by its finite Taylor series according to (3.2) yields

η∑

i=2

(ti − t · ri−1)
1

i!
Ai + E(t)− t

r
E(r)

!∈ F , t ∈ [0, r].

Note that the linear terms cancel out so that the remaining expression contains only terms
of quadratic or higher order. The interval of ti − t · ri−1 for t ∈ [0, r] is obtained exactly
by computing the minimum and maximum of ti− t · ri−1 for which only one extreme value

exists: d
dt
(ti − t · ri−1)

!
= 0 → tmin = i−

1
i−1 r. This means that the maximum values are

to be found at the borders of t ∈ [0, r], which are both 0 for t = 0 and t = r. From this
follows that the exact interval can be computed as

[(i
−i
i−1 − i

−1
i−1)ri, 0] = {ti − t · ri−1|t ∈ [0, r]}.

It remains to compute bounds of the interval matrix exponential remainder E for t ∈ [0, r].

The remainder can be written as E(t) = [−1, 1]·φ(t) after introducing φ(t) = (‖A‖∞t)η+1

(η+1)!
1

1−ǫ
;

see (3.3). As φ(t) is strictly increasing, it follows that φ(t) ∈ [0, 1] ·φ(r) for t ∈ [0, r]. From
this follows that φ(t)− t

r
φ(r) ∈ [0, 1]φ(r)− [0, 1]φ(r) ⊆ [−1, 1]φ(r). Thus,

E(t)− t

r
E(r) = [−1, 1]

(
φ(t)− t

r
φ(r)

)
⊂ [−1, 1][−1, 1]φ(r) = E(r). �

When the initial state x(0) is substituted by the set of initial states X 0, (3.4) can be
generalized to

HR([0, r]) = CH(X 0, eArX 0) + FX 0.

34

3.2. Linear Continuous Systems

The use of the convex hull computation follows directly the definition CH(X 0,HR(r)) :={
x(0) + α(xh(r) − x(0))|x(0) ∈ X 0, xh(r) ∈ HR(r), α ∈ [0, 1]

}
. Because of the rep-

resentation by zonotopes, the convex hull cannot be exactly obtained so that the over-
approximation suggested in (2.2) is applied.

Since the multiplication with eAr yields the set of successor states after a time increment
of r, the next time intervals are obtained by

HR([kr, (k + 1)r]) = eArHR([(k − 1)r, kr]).

Finally, the algorithm for the computation of reachable sets of linear time invariant systems
can be formulated in Alg. 1. Note that for notation reasons, the reachable set at time
intervals is indicated by an index only (HR

k =̂HR([kr, (k + 1)r])).

Algorithm 1 Compute HR([0, tf])

Input: Initial set X 0, matrix exponential eAr, correction matrix F , time horizon tf
Output: HR([0, tf])

HR
0 = CH(X 0, eArX 0) + FX 0

for k = 1 . . . tf/r − 1 do
HR

k = eArHR
k−1

end for
HR([0, tf]) =

⋃tf /r

k=1 HR
k−1

Next, uncertain inputs are additionally considered in the reachable set computation.

3.2.2. Reachable Sets of Systems with Input

The inhomogeneous solution xp(r) of a linear time invariant system with system matrix A
and uncertain input u(t) ∈ U is well known to be:

xp(r) = eAr

∫ r

0

e−Atu(t) dt =

∫ r

0

eA(r−t)u(t) dt. (3.5)

Considering that the possible inputs can be taken from a set U , the inhomogeneous solution
is bounded by the following set: xp(r) ∈

∫ r

0
eA(r−t)U dt. For the case that the input is

constant within t ∈ [0, r], the following solution can be obtained:

xp(r) ∈
∫ r

0

eA(r−t)U dt
u=const
=

∫ r

0

eA(r−t) dtU = A−1(eAr − I)U . (3.6)

However, a constant input within one time step is not the case in general, such that for
varying u(t) an over-approximation has to be computed:

Theorem 3.1 (Over-approximation of the Reachable Set due to Inputs): The

35

3. Reachability Analysis

over-approximated reachable set due to inputs u(t) ∈ U can be computed as

PR(r) =
η∑

i=0

(
Ai ri+1

(i+ 1)!
U
)
+ E(r) · r · U , (3.7)

where η is the number of Taylor terms used for the over-approximation of PR(r) and E(r)
is the remainder of the Taylor expansion; see (3.3). �

The proof can be found in Appendix A.1. The same result has been derived in [78] using
support functions. In order to obtain an algorithmic solution for further points in time or
time intervals, the following proposition is presented.

Proposition 3.2 (Separation of the Input solution): The reachable set PR(kr+∆t)
due to the input u(t) can be computed as

PR(kr +∆t) = eArPR((k − 1)r +∆t) + PR(r)

which implies
PR([kr, (k + 1)r]) = eArPR([(k − 1)r, kr]) + PR(r)

when ∆t can take values within [0, r]. �

Proof: The input solution in (3.5) due to the input u(t) ∈ U can be reformulated to

PR(kr +∆t) =

∫ kr+∆t

0

eA(kr+∆t−τ)U dτ

=

∫ (k−1)r+∆t

0

eA(kr+∆t−τ)U dτ +

∫ kr+∆t

(k−1)r+∆t

eA(kr+∆t−τ)U dτ

= eAr

∫ (k−1)r+∆t

0

eA((k−1)r+∆t−τ)U dτ +

∫ r

0

eA(r−τ)U dτ

= eArPR((k − 1)r +∆t) +PR(r).

�

Corollary 3.1 (Alternative Separation of the Input solution): The reachable set
PR(r +∆t) can be computed as PR(r +∆t) = eArPR(∆t) + PR(r). �

The proof is omitted since the above corollary is obtained after substituting ∆t by ∆t −
(k − 1)r in Prop. 3.2.

Based on Prop. 3.2 and the homogeneous solution, the algorithm for the reachable set can
be formulated as

HR([kr, (k + 1)r]) = eArHR([(k − 1)r, kr]),

PR([kr, (k + 1)r]) = eArPR([(k − 1)r, kr]) + PR(r),

R([kr, (k + 1)r]) = HR([kr, (k + 1)r]) + PR([kr, (k + 1)r]).

which is equivalent to

R([kr, (k + 1)r]) = eArR([(k − 1)r, kr]) + PR(r). (3.8)

36

3.2. Linear Continuous Systems

Since zonotopes are used to represent HR and PR, the addition and multiplication
is performed as presented in (2.1). Due to the addition of zonotopes, the order of
R([kr, (k + 1)r]) is increasing with each time step k. One possibility to cope with this
problem is to reduce the order of the zonotope as presented in Sec. 2.5. However, the
reduction causes an over-approximation such that this error is propagated through the
computations at later time steps, which is also referred to as the wrapping effect.

In [72] it has been shown that the reachable set of linear time invariant systems can be
computed without the wrapping effect. This is achieved by a clever reordering of the
computations in (3.8). Besides the reordering, the box()-operator is used in order to
prevent the growing order of the zonotopes representing the reachable sets. The wrapping-
free algorithm is presented in Alg. 2. Note that indices represent time intervals for better
readability, e.g. Rk = R([kr, (k + 1)r]). If PR(r) would be exact, one could give the
following statement: The over-approximations due to the box()-operator are tight in the
sense of [102], i.e. the exact reachable set has at least a common point with each of the
faces of the over-approximated reachable set. It is further remarked that the wrapping
effect cannot be avoided when computing with more complicated system classes, such as
linear time varying systems or nonlinear systems.

Algorithm 2 Compute R([0, tf])

Input: Initial set X 0, matrix exponential eAr, input set U , correction matrix F , time
horizon tf

Output: R([0, tf])

HR
0 = CH(X 0, eArX 0) + FX 0

V0 =
∑η

i=0

(
Ai ri+1

(i+1)!
U
)
+ E(r) · r · U

PR
0 = box(V0)

R0 = HR
0 + PR

0

for k = 1 . . . (tf/r − 1) do
HR

k = eAr HR
k−1

Vk = eAr Vk−1

PR
k = PR

k−1 + box(Vk)
Rk = HR

k + PR
k

end for
R([0, tf]) =

⋃tf /r
k=1 Rk−1

In Alg. 2 it is assumed that PR([0, r]) = PR(r) since V0 is computed according to Theo-
rem 3.1. However, this is only possible when the origin is contained in the set of inputs U
as shown next. The other case when the origin is not contained is presented later.

Origin is Contained in Input Set

The reason for separating the computation in two cases, depending on whether the origin
is contained in the input set, is justified by the following proposition.

Proposition 3.3 (Enclosure of the Inhomogeneous Solution): If the origin is con-
tained in the input set (0 ∈ U), the reachable set of the inhomogeneous solution PR(r)

37

3. Reachability Analysis

encloses the reachable set of a previous point in time, i.e. PR(r) ⊆ PR(r + ∆t) and
0 < ∆t. �

Proof: If U contains the origin, the reachable set PR(t) and thus eArPR(∆t) contain the
origin, too, which follows directly from (3.7). If a general set B ⊂ Rn contains the origin
(0 ∈ B), it follows that A ⊆ A + B, A ⊂ Rn. Since eArPR(∆t) contains the origin, it

follows that PR(r +∆t)
Corollary 3.1

= eArPR(∆t) + PR(r) ⊇ PR(r). �

From this follows that PR([0, r]) = PR(r). Next, the case is considered when the origin is
not contained in the input set.

Origin is not Contained in Input Set

If the origin is not contained in the input set (0 /∈ U), the input set is split into a constant
vector ũ and a set Ũ in which the origin is contained (0 ∈ Ũ). The reachable set for a time
interval due to Ũ is computed as previously shown and the reachable set of the constant
input ũ is obtained similarly to the time interval solution of the homogeneous solution.

Analogously to the homogeneous solution, the solution due to the constant input ũ is
approximated as

x̃p(t) ≈ t

r
A−1(eAr − I) ũ, t ∈ [0, r]

and enlarged, such that

x̃p(t) ∈ t

r
x̃p(r) + F̃ ũ =

t

r
A−1(eAr − I) ũ+ F̃ ũ, F̃ = A−1F , t ∈ [0, r]. (3.9)

The foregoing result F̃ = A−1F can be shown analogously to the proof of Prop. 3.1:

F̃ ⊆ A−1(eAt − I)− t

r
A−1(eAr − I) = A−1

[
eAt − I − t

r
(eAr − I)

]

︸ ︷︷ ︸
∈F

, t ∈ [0, r].

In the case that the inverse of A does not exist, one can multiply A−1 with the terms in
F so that A−1 cancels out. Because of the similar structure of the homogeneous solution
in (3.4) and the inhomogeneous solution caused by the input ũ in (3.9), both solutions are
unified in the following:

xh(t) + x̃p(t) ∈ x(0) + t
r

[
eArx(0)− x(0)

]
+F x(0)+

0 + t
r
[x̃p(r)− 0] +A−1F ũ, t ∈ [0, r]

(3.10)

→ R̃ := HR(t) + P̃(t) = CH(X 0, eArX 0 + P̃(r)) + FX 0 + A−1F ũ

This result is used to extend Alg. 2 to Alg. 3. In order to keep the previous computation
scheme, the inhomogeneous solution P̃ is subtracted in the computation of R̃0 and added
to R0. This ensures that the homogeneous reachable set at points in time kr is eAkrR(0).
In order to increase accuracy, the inhomogeneous solution P̃ is excluded from the box()-
operator.

38

3.2. Linear Continuous Systems

It is also remarked that Alg. 2 is a special case of Alg. 3 for ũ = 0. Since the computations
within the loop are the same as for Alg. 2, the more general algorithm does not suffer from
the wrapping effect either.

Algorithm 3 Compute R([0, tf])

Input: Initial set X 0, matrix exponential eAr, input set U , correction matrix F , time
horizon tf

Output: R([0, tf])

P̃(r) = A−1(eAr − I)ũ
R̃0 = CH(X 0, eArX 0 + P̃(r))− P̃(r) + FX 0 + A−1 F ũ

V0 =
∑η

i=0

(
Ai ri+1

(i+1)!
U
)
+ E(r) · r · U

PR
0 = P̃(r) + box(V0 − P̃(r))

R0 = R̃0 + PR
0 + P̃(r)

for k = 1 . . . tf/r − 1 do
R̃k = eAr R̃k−1

Vk = eAr Vk−1

PR
k = PR

k−1 + box(Vk)

Rk = R̃k + PR
k

end for
R([0, tf]) =

⋃tf /r
k=1 Rk−1

3.2.3. Numerical Examples

The proposed algorithms 1-3 are applied to numerical examples that have been proposed
in [69], but with different input sets U . The first example is given as

ẋ =

[
−1 −4
4 −1

]
x+

[
1
1

]
u(t), x(0) ∈

[
[0.9, 1.1]
[0.9, 1.1]

]
, u(t) ∈ [−0.1, 0.1].

The reachable sets have been computed for a time horizon of tf = 5 and a time step size of
r = 0.04, which results in 125 iterations. The reachable set of the homogeneous solution is
computed according to Alg. 1 and the result is shown in Fig. 3.2(a) together with randomly
generated trajectories. The overall reachable set in Fig. 3.2(b) is computed according to
Alg. 2, since the origin is enclosed in the input set.

The differential equation of the second numerical example is

ẋ =




−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2



x+ u(t), x(0) ∈




[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]



, u(t) ∈




[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]



.

(3.11)

39

3. Reachability Analysis

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2 initial set

(a) No input.

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2 initial set

(b) With input.

Fig. 3.2.: Reachable sets of the two-dimensional example.

For the second example, the time horizon and the time step size have been chosen equally
to the previous example to tf = 5 and r = 0.04. The reachable set is computed according
to Alg. 3 since the origin is not enclosed, and visualized in Fig. 3.3 for selected projections.
The two-dimensional projections are obtained by multiplying the computed zonotopes with
projection matrices P ∈ R2×n.

In order to show the scalability of the algorithm, the computation times for randomly
generated examples of higher order are listed in Tab. 3.1. All reachable sets have been
computed with 125 iterations. The computations were performed with Matlab on a single
core desktop PC with an AMD Athlon64 3700+ processor. Note that the computation
times for dimensions 5, 10, and 20 differ only marginally due to the overhead time caused
by function calls.

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

x
2

x
3

initial set

(a) Projection onto x2, x3.

0 0.5 1

−0.5

0

0.5

1

x
4

x
5

initial set

(b) Projection onto x4, x5.

Fig. 3.3.: Reachable sets of the five-dimensional example.

40

3.3. Linear Continuous Systems with Uncertain Parameters

Tab. 3.1.: Computational times.

Dimension n 5 10 20 50 100
CPU-time [s] 0.08 0.11 0.17 0.41 2.05

3.3. Linear Continuous Systems with Uncertain

Parameters

The previously presented approach for linear time invariant (LTI) systems is extended to
the case where the system matrix contains uncertain parameters which are constant over
time.

There have been early attempts to bound the solution of initial-value problems of linear
systems with uncertain parameters in [130–132]. This paper series showed reachability
results for a single independent parameter θ ∈ I resulting in a system matrix A = G1 +
θ · G2, G1, G2 ∈ Rn×n at certain points in time without input. In this thesis, the more
general case in which all elements of A can be uncertain is considered. Additionally,
reachability is not limited to the case of discrete time, and time varying inputs are allowed.
In [145, 146] uncertain parameters are allowed, too, but the reachable sets are represented
more conservatively by multidimensional intervals.

In this thesis, two different forms in which parameter uncertainties may occur in the system
matrix are investigated. The first one allows the system matrix to be uncertain within an
interval matrix and the second one within a matrix zonotope. Both representations of
parameter uncertainties are introduced later in more detail.

In general, the basic procedure for computing the reachable set is not changed compared
to the previous one for LTI systems. The considered system class is precisely defined by
the differential equation

ẋ = A(ρ) x+ u(t), x(0) ∈ X 0 ⊂ Rn, u(t) ∈ U ⊂ Rn, ρ ∈ Ip, (3.12)

where ρ ∈ Ip is a constant parameter vector whose elements can take values within inter-
vals, and p is the number of parameters. The elements of the parameter vector are denoted
by ρ(i) and may vary pairwise independently within the specified intervals. The set of possi-
ble system matrices for a certain set of parameter vectors is defined as A = {A(ρ)|ρ ∈ Ip},
which allows the homogeneous and inhomogeneous solution to be over-approximated. The
homogeneous solution of (3.12) at time t = r, starting from the initial state x(0), is well
known to be calculated by x(r) = eArx(0). Thus, the reachable set of the homogeneous
solution can be obtained as

HR(r) = eArX 0 = {eArx(0)|A ∈ A, x(0) ∈ X 0}. (3.13)

The problem of computing the exponential for a set of matrices and the multiplication of
the resulting set with a zonotope is discussed later. The inhomogeneous solution xp(r)

41

3. Reachability Analysis

is computed as previously shown in (3.5) by xp(r) =
∫ r

0
eA(r−t)u(t) dt so that one can

over-approximate the inhomogeneous solution using the set of inputs U :

xp(r) ∈
∫ r

0

eA(r−t)u(t) dt ⊆
∫ r

0

eA(r−t) U dt =

∫ r

0

eAµ U dµ = PR(r), with µ = r − t.

(3.14)
The computation of the homogeneous and inhomogeneous reachable sets according to
(3.13) and (3.14) are presented for the case that A is bounded by interval matrices first,
and for matrix zonotopes afterwards.

3.3.1. System Matrix Bounded by Interval Matrices

The first considered class of uncertain system matrices A are interval matrices. This class
is denoted by A and is a specialized form of general uncertain matrices A. The left and
right limit of an interval matrix A is denoted by A and A such that A = [A,A]. Each
element of A can be changed independently within the specified intervals. A possibility to
specify an interval matrix by the parameter vector ρ ∈ [ρ, ρ] is to associate a parameter

ρ(i) to each element of the system matrix Alm, where i = 1, . . . , n2. The index of the
parameters is in parentheses in order to avoid confusion with the power of a variable.

Reachable Sets of Systems without Input

For the reachable set of the homogeneous solution, (3.13) has to be evaluated. Two prob-
lems arise. First, the matrix exponential of an interval matrix eAr = {eAr|A ∈ A , r ∈ R+}
has to be computed. Second, the result has to be multiplied with the zonotope X 0.

Interval Matrix Exponential The first problem of computing an interval matrix expo-
nential is tackled by its Taylor series; see (3.2):

eAt ⊂
η∑

i=0

1

i!
(At)i + E(t), (3.15)

In order to obtain the exponential matrix according to the Taylor series, one has to compute
the power of interval matrices and the addition of interval matrices. The interval matrix
addition and the power of interval matrices can be computed straightforwardly by interval
arithmetics using the addition and multiplication rule in (2.3). However, the important
question is if the computation of the interval matrix exponential can be formulated as a
single use expression as discussed in Sec. 2.6.

Unfortunately this is not possible as the power of an interval matrix already cannot be
formulated as a single use expression in general. This has been recently investigated in
[97], where also the multiplication of different interval matrices has been considered. The
simplest case of computing C = M ·N , whereM ∈ I l×m and N ∈ Im×l, is done elementwise
so that Cij =

∑m
k=1MikNkj, which results in single use expressions (SUEs). Thus, the

result is exact when applying interval arithmetics. The square of a matrix C = M 2 can be

42

3.3. Linear Continuous Systems with Uncertain Parameters

formulated as a single use expression, too:

∀i 6= j :Cij = Mij (Mii +Mjj) +
∑

k:k 6=i,k 6=j

Mik Mkj

∀i :Cii = M 2
ii +

∑

k:k 6=i

MikMki

(3.16)

In contrast to these two examples, the multiplication of three interval matrices (M ·N ·Q)
and the cube of a matrix (N 3) cannot be written as a single use expression. It is noteworthy
that the exact computation of these two problems is NP-hard; see [97]. It is also remarked
that matrix multiplication is not associative when using interval arithmetics: (M ·M)M 6=
M (M ·M).

From this follows that the exact computation of the exponential of an interval matrix (up
to the remainder E(t)) is also NP-hard. In order to obtain a feasible but still tight over-
approximation of the interval matrix exponential, the idea of computing the square of a
matrix exactly is further developed.

Lemma 3.1 (Exact Computation of At+ 1

2
A2t2): The expression W (t) = At+ 1

2
A2t2

can be exactly computed by the following procedure using interval arithmetics:

∀i 6= j : Wij =Aij(t +
1

2
(Aii + Ajj)t

2) +
1

2

∑

k:k 6=i,k 6=j

AikAkjt
2

∀i : Wii =
[
κ(Aii, t),max

(
{Aiit+

1

2
A2

iit
2, Aiit+

1

2
A

2

iit
2}
)]

+
1

2

∑

k:k 6=i

AikAkit
2

κ(Aii, t) =

{
min

(
{Aiit+

1
2
A2

iit
2, Aiit+

1
2
A

2

iit
2}
)
,−1

t
/∈ Aii

−1
2
, −1

t
∈ Aii

(3.17)

�

Proof: As one can reformulate the computation of the non-diagonal elements Wij to a
single-use expression (SUE) as presented in (3.17), the computation of Wij with interval
arithmetics is exact. The computation of the diagonal elements Wii cannot be reformulated
to a SUE. However, one can split Wii into a part with and without a single variable
occurrence:

Wii = Aiit+
1

2
A2
iit

2

︸ ︷︷ ︸
non−SUE

+
1

2

∑

k:k 6=i

AikAkit
2

︸ ︷︷ ︸
SUE

.

It remains to obtain the exact interval of γ(Aii) := Aiit +
1
2
A2
iit

2 by computing the
minimum and maximum. The function γ(Aii) has only one minimum at Aii = −1/t
and is monotone elsewhere, so that the maximum has to be at the borders: γmax =

max({Aiit +
1
2
A2

iit
2, Aiit +

1
2
A

2

iit
2}). Where the global minimum (amin = −1/t) is an ele-

ment of Aii, one obtains: γmin = −1/2. In the other case, the minimum is computed as

γmin = min({Aiit+
1
2
A2

iit
2, Aiit +

1
2
A

2

iit
2}). �

The exact computation of the second order Taylor expansion of the interval matrix expo-
nential eAt allows the following over-approximation of eAt to be formulated.

43

3. Reachability Analysis

Theorem 3.2 (Over-approximation of eAt): The over-approximation of the interval
matrix exponential with a η-th order Taylor expansion, denoted by eAt[η], where A ∈ In×n

and t ∈ R+ is obtained by

eAt[η] = I +W (t) +

η∑

i=3

1

i!
(At)i + E(t),

E(t) = [−1, 1]
(‖A‖∞t)η+1

(η + 1)!

1

1− ǫ
, ǫ =

‖A‖∞t

η + 2

!
< 1

where ‖A‖∞ := max(‖A‖∞|A ∈ A) = ‖A∗‖∞ and A∗
ml = max(|Aml|, |Aml|). �

Proof: The interval matrix exponential is computed by a finite Taylor expansion; see (3.15).
The computation up to second order (I + W) is exact as I is not an interval matrix
and the exactness of W = At + 1

2
A2t2 has been shown in Lemma 3.1. The remaining

sums of the Taylor expansion up to order η are computed by interval arithmetics, which
results in over-approximations. As the Taylor expansion is finite, it is necessary to give
an overapproximation for the remainder E , which is computed as shown in (3.3); see also
[110]. It is left to show that ‖A‖∞ = ‖A∗‖∞, which becomes obvious by looking at the
definition of the matrix infinity norm: ‖A‖∞ = max1≤i≤n

∑n
j=1 |Aij|. �

The quality of the over-approximation is illustrated by a simple example.

Example 3.1 (Over-Approximation of the Interval Matrix Exponential): Given
is the following interval matrix A :

A = [A,A] =

[
[−1.1,−0.9] [−4.1,−3.9]
[3.9, 4.1] [−1.1,−0.9]

]
, t = 0.04

The result of eAt[4] (η = 4) can be compared to the exemplary and exact results of eAt and

eAt:

eAt[4] =

[
[0.94396, 0.95309] [−0.15765,−0.14852]
[0.14852, 0.15765] [0.94396, 0.95309]

]
,

eAt =

[
0.94474 −0.15627
0.14865 0.94474

]
, eAt =

[
0.95233 −0.14984
0.15753 0.95233

]

�

Interval Matrix Multiplication with Zonotopes The previously computed over-
approximation of the interval matrix exponential has to be multiplied by the initial set to
compute the reachable set of the homogeneous solution: HR(r) = eArX 0.

The multiplication of a matrix with a zonotope has already been presented in (2.1). In order
to formulate an extension to interval matrices, the following two lemmas are introduced
first.

Lemma 3.2 (Symmetric Interval Matrix Multiplication with Matrices): The
interval matrix obtained after the multiplication of a regular matrix M with a symmetric

44

3.3. Linear Continuous Systems with Uncertain Parameters

interval matrix S = [−S, S] (both with proper dimension) can be exactly computed by

MS = [−|M |S, |M |S], SM = [−S|M |, S|M |]. (3.18)

The absolute value is applied elementwise. �

Proof: Without loss of generality, the multiplication MS is proven for the multiplication
of m ∈ R1×n and s = [−s, s] ∈ In×1. The maximum value of ms is obtained by selecting
si = sign(mi)si, ∀i = 1..n so that max(ms) =

∑n
i=1 |mi|si. Analogously, the minimum is

obtained by choosing si = −sign(mi)si so that min(ms) = −∑n
i=1 |mi|si. �

Remark 3.1 (Tight Interval Enclosure): It is noted that the resulting interval matrix
of Lemma 3.2 is exact; however, the resulting set is not necessarily an interval matrix. E.g.
when S = [−1, 1] and M = g ∈ Rn, the exact result of l̂ = [−1, 1]g is a line from −g
to g, while the result of Lemma 3.2 is a multidimensional interval which exactly encloses
the line l̂. The reason for the exact enclosure is that each element of l̂ is computed by a
SUE: l̂i = [−1, 1]gi. Thereby, the interval [−1, 1] is assumed to be independent for each
component of l̂i, although it is not. �

The foregoing lemma is extended to the case when a zonotope is multiplied by an interval
matrix.

Lemma 3.3 (Symmetric Interval Matrix Multiplication with Zonotopes): The
linear map of a zonotope Z specified by a symmetric interval matrix S = [−S, S] is
over-approximated by a hyperrectangle with center 0:

SZ =
{
x ∈ Rn

∣∣∣x = [−S, S]c +
e∑

i=1

β(i)[−S, S]g(i), −1 ≤ β(i) ≤ 1
}

= (0, f (1), . . . , f (n))

f
(i)
j =

{
Sj(|c|+

∑e
k=1 |g|(k)), for i = j

0, for i 6= j

and the subscript j of f
(i)
j denotes the j-th element of f (i) and Sj denotes the j-th row of

S. �

Proof: The multiplication is performed analogous to the regular matrix multiplication in
(2.1) with the difference that the enclosing multidimensional intervals of [−S, S]c and
[−S, S]g(i) are computed according to Lemma 3.2:

[−S, S]c +

e∑

i=1

[−1, 1][−S, S]︸ ︷︷ ︸
=[−S,S]

g(i) = [−S(|c|+
e∑

i=1

|g(i)|), S(|c|+
e∑

i=1

|g(i)|)].

The obtained multidimensional intervals are transformed to zonotope notation according
to Prop. 2.1 resulting in the generators f (i). �

Remark 3.2 (Over-approximation of Lemma 3.3): The computations [−S, S]c and
[−1, 1][−S, S]g(i) of the foregoing proof result in a tight enclosure by multidimensional

45

3. Reachability Analysis

intervals as they are computed by SUEs; see Remark 3.1. The over-approximation is
demonstrated by the example

S = diag([−1, 1], [−1, 1]) and Z =

[
1
1

]
+ [−1, 1]

[
1
1

]
+ [−1, 1]

[
1
−1

]

which is visualized in Fig. 3.4. �

After comparing Prop. 2.2 with Lemma 3.3, one can see that the same over-approximation
is obtained by S box(Z). The multiplication of a general interval matrix with a zonotope is
performed by separating the interval matrix into a regular matrix and a symmetric interval
matrix:

Theorem 3.3 (Interval Matrix Multiplication with Zonotopes): The multiplica-
tion of an interval matrix L = L + S where S = [−S, S] with a zonotope Z =
(c, g(1), . . . , g(e)) is over-approximated by:

LZ = (Lc, Lg(1), . . . , Lg(e), f (1), . . . , f (n))

f
(i)
j =

{
Sj(|c|+

∑e
k=1 |g|(k)), for i = j

0, for i 6= j

�

Proof: The interval matrix multiplication with L is split up into a matrix multiplication
with L and a symmetric interval matrix multiplication with [−S, S]: LZ ⊆ LZ+[−S, S]Z.
Applying Lemma 3.3 and the Minkowski addition rule in (2.1) yields the final result. �

Again, it is remarked that the result of Theorem 3.3 is an over-approximation. One source
of the over-approximation is Lemma 3.3 when computing [−S, S]Z and the second source
is the split of L since already the split of a regular matrix (C +D)Z ⊆ C Z +DZ with
C,D ∈ Rn×n causes an over-approximation.

The over-approximation is demonstrated for a zonotope with a single generator g:

L = diag([0.5, 1], [0.5, 1]) and Z =

[
0
0

]
+ [−1, 1]

[
1
0.5

]
.

The exact set and the over-approximated zonotope are visualized in Fig. 3.5.

With the result of Theorem 3.2 and Theorem 3.3, the homogeneous solution for a time
point r can be computed: HR(r) = eArX 0. The reachable set for the time interval [0, r] is
computed analogously to LTI systems (see Sec. 3.2.1): HR([0, r]) = CH(X 0, eArX 0)+F X 0.
It remains to consider the reachable set due to the uncertain input, which is done next.

Reachable Sets of Systems with Input

The reachable set originating from the set of inputs is computed analogously to Theo-
rem 3.1, except that the system matrix is now an interval matrix A :

PR(r) =
η∑

i=0

(
A i ri+1

(i+ 1)!
U
)
+ E(r) · r · U .

46

3.3. Linear Continuous Systems with Uncertain Parameters

−2 0 2

−2

0

2

x
1

x
2

original
zonotope

exact set

over-appr.

Fig. 3.4.: Over-approximation
caused by Lemma 3.3.

−1 0 1

−0.5

0

0.5

x
1

x
2

original
zonotope

exact set

over-appr.

Fig. 3.5.: Over-approximation
caused by Theorem 3.3.

It is remarked that A2 can be computed exactly, while the higher powers suffer from the
dependency effect of interval arithmetics. The computation of the input solution differs
from the one presented in [180], which is only valid if the input is constant within the time
intervals [kr, (k + 1)r].

In analogy to linear systems without uncertain parameters, the case when the input set
U does not contain the origin has to be considered by the additional correction term
A−1 F ũ = F̃ ũ. However, this scheme poses the problem that the computation of the
inverse of the system matrix by interval arithmetics introduces additional uncertainties
while the exact computation of the inverse interval matrix is NP-hard [44]. This problem
can be circumvented by computing F̃ from its Taylor expansion. Another advantage of the
Taylor expansion is that it can also be applied to regular system matrices whose inverse
does not exist.

Proposition 3.4 (Input Correction Matrix F̃): The interval matrix F̃ which deter-
mines the enlargement F̃ ũ in (3.9) can be computed as:

F̃ ⊆
[

η∑

i=2

[(i
−i
i−1 − i

−1
i−1)ri, 0]

A i−1

i!

]
+

E(r)

‖A‖∞
, t ∈ [0, r].

where E(r) is the matrix exponential remainder and η the number of Taylor terms according
to (3.3). The computations are performed using interval arithmetics. �

The proof is omitted since Prop. 3.4 follows directly when inserting the computation of
F from Prop. 3.1 into F̃ = A−1F and substituting A by A and considering that A−1E =
E/‖A‖∞ since E is computed using the infinity norm. Next, the algorithmic realization of
the presented extension is discussed.

Algorithmic Realization

In principle, the reachable sets of linear systems with or without uncertain parameters are
computed the same way. Besides the basic computation routine in (3.8), called Method B

47

3. Reachability Analysis

below, the alternative Method A is also thinkable:

Meth. A: eA kr = eA r eA (k−1)r

HR([kr, (k + 1)r]) = eA krHR([0, r])
PR([kr, (k + 1)r]) = eA krPR(r) + . . .+ eA rPR(r) + PR(r)

Meth. B: HR([kr, (k + 1)r]) = eArHR([(k − 1)r, kr])
PR([kr, (k + 1)r]) = eArPR([(k − 1)r, kr]) + PR(r).

(3.19)

Method A computes the interval matrices eA kr first and multiplies them with the sets
HR([0, r]) and PR(r) in the end. In contrast to this technique, Method B computes
intermediate reachable sets HR([(k − 1)r, kr]) and PR([(k − 1)r, kr]).

For linear systems without uncertain parameters, both techniques compute the same re-
sults. The situation is completely different for linear systems with uncertain parameters,
where both methods suffer under the wrapping effect. In this case, Method B produces
significantly better results, as shown below.

The computation of the homogeneous reachable set HR([(k − 1)r, kr]) is examined first.
Applying Method A, the homogeneous reachable set of the second time interval is com-
puted as HR([r, 2r]) = eArHR([0, r]) = M HR([0, r])+D box(HR([0, r])) according to The-
orem 3.3, where eAr is split into the regular matrix M and the symmetric interval matrix
D. Further, the previously mentioned equality of DHR([0, r]) and D box(HR([0, r])) when
applying Lemma 3.3 is used. This scheme yields for the third time interval

HR([2r, 3r]) = eAr
2HR([0, r]) = (M + C)2HR([0, r])

= M2HR([0, r]) + (MC + CM + C 2)box(HR([0, r])).

Note that MC , CM and C 2 are symmetric interval matrices which follows directly from
Lemma 3.2. The result of this procedure for different time steps is summarized as follows:

Method A. HR = Z + I

Time step k Zonotope Z Multidimensional Interval I
1 M HR([0, r]) D box(HR([0, r]))
2 M2HR([0, r]) (MC + CM + C 2)box(HR([0, r]))
...

...
...

k Mk HR([0, r]) ((M + D)k −Mk)box(HR([0, r]))

It can be observed that for a stable exponential matrix M (|λ̂i(M)| < 1, λ̂i: eigenval-
ues) the zonotopial part Z of HR converges to the origin, such that the reachable set
is over-approximated by a multidimensional interval in the limit, which causes a large
over-approximation.

The alternative Method B does not require the reachable set to be over-approximated as

48

3.3. Linear Continuous Systems with Uncertain Parameters

much by multidimensional intervals:

Method B. HR = Z + I

Time step k Zonotope Z Multidimensional Interval I
1 Z(1) = M HR([0, r]) I (1) = D box(HR([0, r]))
2 Z(2) = M2 HR([0, r]) I (2) = C box(M HR([0, r]))

+M D box(HR([0, r])) +C 2 box(HR([0, r]))
...

...
...

k
∑k

i=1M
i I (k − i)

∑k
i=1 C

i box(Z(k − i))

The same conclusion can be drawn for the reachable set PR of the input solution so that
Method B is applied in the following computations. Combining HR and PR of Method B
to R = HR + PR yields

R([kr, (k + 1)r]) = eArR([(k − 1)r, kr]) + PR(r).

This result and the remaining steps to compute the reachable set are formulated in Alg. 4.
The reduction operation reduce() in Alg. 4 is applied since the zonotope order is constantly
increasing due to the multiplication with = eAr and the addition of PR

0 . The reduction is
performed according to Heuristic 2.4. The interval matrix C(r) :=

∫ r

0
eA t is computed as

C(r) =
∑η

i=0
1

(i+1)!
A iri+1 + E(r)r (=̂A−1(eAr − I)) for which the terms up to second order

can be exactly computed in analogy to Lemma 3.1.

Algorithm 4 Compute R([0, tf])

Input: Initial set X 0, interval matrix exponential eAr, C(r) :=
∫ r

0
eA t dt, input set U ,

correction matrices F , F̃ , time horizon tf
Output: R([0, tf])

P̃(r) = C(r)ũ
R̃0 = CH(X 0, eArX 0 + P̃(r))− P̃(r) + FX 0 + F̃ ũ

PR
0 =

∑η
i=0

(
Ai ri+1

(i+1)!
U
)
+ E(r) · r · U

R0 = R̃0 + PR
0

for k = 1 . . . tf/r − 1 do
Rk = eArRk−1 + PR

0

Rk = reduce(Rk)
end for
R([0, tf]) =

⋃tf /r

k=1 Rk−1

In contrast to the algorithms for linear systems without parameter uncertainties, this
algorithm is not free of the wrapping effect. The over-approximations of each time step
occur due to

• the over-approximative computation of eAr;

• the over-approximative multiplication of interval matrices with zonotopes
(eAr R([(k − 1)r, kr]));

49

3. Reachability Analysis

• the order reduction of zonotopes by reduce().

Finally, some numerical results for linear systems specified by interval matrices are pre-
sented.

Numerical Examples

The proposed Alg. 4 is tested with the same numerical examples as for linear systems
in Sec. 3.2.3, except that uncertainties are added to the system matrix and the input
uncertainties are changed. The two-dimensional example including uncertain values of the
system matrix is given as

ẋ = Ax+

[
1
1

]
u(t),

A ∈
[
[−1.05,−0.95] [−4.05,−3.95]
[3.95, 4.05] [−1.05,−0.95]

]
, x(0) ∈

[
[0.9, 1.1]
[0.9, 1.1]

]
, u(t) ∈ [−0.1, 0.1].

(3.20)

The reachable set is computed according to Alg. 4. In analogy to the previous examples,
a time horizon of tf = 5 and a time step size of r = 0.04 has been used, which results in
125 iterations. The order of the zonotopes has been restricted to ˆ̺ = 10.

Because Alg. 4 is not free of the wrapping effect, it is demonstrated in Fig. 3.6(a) how
much the reachable set over-approximates when there are no parameter uncertainties2.
The situation where there are uncertain parameters, but no uncertain inputs, is shown
in Fig. 3.6(b). The reachable set for both, uncertain parameters and inputs can be seen
in Fig. 3.7(a). To demonstrate how dominant the effect on the maximum order of the
zonotopes is, the reachable set was computed with zonotopes of order ˆ̺ = 20 in Fig. 3.7(b).
Beyond this order, the result did not improve considerably for this example.

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

(a) No uncertain parameters.

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

(b) No input.

Fig. 3.6.: Reachable sets of the two-dimensional example.

2The values of the system matrix are chosen as the centers of the intervals

50

3.3. Linear Continuous Systems with Uncertain Parameters

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

(a) Zonotope order: 10.

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

(b) Zonotope order: 20.

Fig. 3.7.: Reachable sets of the two-dimensional example – different zonotope order.

The previously used five-dimensional example with changed input uncertainty and uncer-
tainties in the system matrix is ẋ = Ax+ u(t), where

A ∈




[−1.05,−0.95] [−4.05,−3.95] 0 0 0
[3.95, 4.05] [−1.05,−0.95] 0 0 0

0 0 [−3.2,−2.8] [0.8, 1.2] 0
0 0 [−1.2,−0.8] [−3.2,−2.8] 0
0 0 0 0 [−2.2,−1.8]



,

x(0) ∈




[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]



, u(t) ∈




[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]



.

The five-dimensional example is also computed with a time horizon of tf = 5, a time step
size of r = 0.04 and a zonotope order of ˆ̺ = 10. The result is displayed in Fig. 3.8 for two
different projections on two dimensions.

The scalability of Alg. 4 is demonstrated by listing the computation times for randomly
generated examples of higher dimension in Tab. 3.2. All reachable sets were computed with
125 iterations. The computations were performed with Matlab on a single core desktop PC
with an AMD Athlon64 3700+ processor. Note that the computation times for dimensions
5, 10, and 20 differ only marginally due to the overhead time caused by function calls.

Tab. 3.2.: Computational times.

Dimension n 5 10 20 50 100
CPU-time [s] 0.14 0.20 0.35 1.72 7.96

51

3. Reachability Analysis

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

x
2

x
3

initial set

(a) Projection onto x2, x3.

0 0.5 1

−0.5

0

0.5

1

x
4

x
5

initial set

(b) Projection onto x4, x5.

Fig. 3.8.: Reachable sets of the five-dimensional example.

3.3.2. System Matrix Bounded by Matrix Zonotopes

The second considered class of uncertain system matrices A are matrix zonotopes. This
class is denoted by AZ and is a specialized form of general uncertain matrices A. Unlike
the previously presented interval matrices, which are best specified by their left and right
limit, matrix zonotopes are composed of real-valued matrices Â(i). Together with the value
of the parameter vector ρ̂, the matrices Â(i) determine the value of the system matrix A(ρ̂):

A(ρ̂) =
κ∑

i=1

ρ̂i Â
(i), ρ̂i ∈ [ρ̂

i
, ρ̂i], Â

(i) ∈ Rn×n. (3.21)

Here, the normalized version of (3.21) is used, which is

A(ρ) = Â(0) +

κ∑

i=1

ρiÂ
(i), ρi ∈ [−1, 1]. (3.22)

The formulas to obtain the normalized matrices Â(i) from the unnormalized ones are

Â(0) = 0.5
κ∑

i=1

(ρ̂i + ρ̂
i
)Â(i), Â(i) = 0.5(p̂

(i) − p̂(i))Â(i).

The structure for the uncertain matrix A(ρ) in (3.22) has also been used in a work on
stability of uncertain linear systems [37]. There, the possible set of matrices A is called a
matrix hypercube, whereas in this work the term matrix zonotope is preferred. The reason
for the use of the latter notation is the similarity to the specification of zonotopes in
Def. 2.3, which is also reflected by a superscripted Z in the notation of a matrix zonotope
AZ .

Due to the analogy to zonotopes, the matrix Â(0) is called the center matrix and the

52

3.3. Linear Continuous Systems with Uncertain Parameters

matrices Â(i), i = 1 . . . κ are called generator matrices. The extension of the proposed
method to the case when the parameters are additionally restricted to

∑
ρi = 1, yielding

a matrix polytope, is presented later in Sec. 3.3.3.

The proposed structure of the uncertainty in (3.22) is a generalization of the previously
introduced interval matrices, which can be brought into the form for matrix zonotopes by
e.g. introducing n2 (n=̂dimension) matrices Â(i) containing only a single non-zero entry:

Example 3.2 (Convert an Interval Matrix to a Matrix Zonotope):

A = Â(0) +
κ∑

i=1

ρiÂ
(i) =

[
[−1.1,−0.9] [−4.1,−3.9]
[3.9, 4.1] [−1.1,−0.9]

]

Â(0) =

[
−1 −4
4 −1

]
, Â(1) =

[
0.1 0
0 0

]
, Â(2) =

[
0 0.1
0 0

]
, Â(3) =

[
0 0
0.1 0

]
, Â(4) =

[
0 0
0 0.1

]
.

�

The opposite problem of finding a tight enclosure of a matrix zonotope by an interval
matrix is addressed in the next example.

Example 3.3 (Over-approximate a Matrix Zonotope by an Interval Matrix):

AZ = Â(0) + ρ1Â
(1) ⊂

[
[−1.1,−0.9] [−4.1,−3.9]
[3.9, 4.1] [−1.1,−0.9]

]

Â(0) =

[
−1 −4
4 −1

]
, Â(1) =

[
0.1 0.1
0.1 0.1

]
.

�

The computation of reachable sets when the system matrix is uncertain within a matrix
zonotope is presented next.

Reachable Sets of Systems without Input

Analogously to the problem of computing the reachable set of the homogeneous solution
HR(r) = eArX 0 when A is an interval matrix, a solution has to be found when A is a
matrix zonotope. For interval matrices, this task has been split into two subproblems:
First, the matrix exponential of the interval matrix is computed, and second, the result
is multiplied with a zonotope. In contrast to this, these two steps are interleaved in the
approach for matrix zonotopes.

As for the interval matrix approach, the multiplication of the matrix exponential eA
Z

with
a zonotope Z is based on the Taylor series of the matrix exponential. For this, the Taylor
expansion is split into a part L̂Z which is linear in the parameter vector ρ and a part N Z

which is nonlinear in the parameter vector:

eA
Z tZ =

(
I +AZt +

1

2!
(AZt)2 +

1

3!
(AZt)3 + . . .+ E(t)

)
Z

⊆
(
I +AZt

)

︸ ︷︷ ︸
L̂Z

Z +
(1

2!
(AZt)2 +

1

3!
(AZt)3 + . . .+ E(t)

)

︸ ︷︷ ︸
NZ

Z.
(3.23)

53

3. Reachability Analysis

The first part L̂Z Z is computed such that it produces the tightest convex hull of the exact
result. The second part N Z Z is computed by over-approximating AZ with an interval
matrix A ⊇ AZ so that interval arithmetics can be applied. The interval matrix A is
simply obtained by applying interval arithmetics to (3.22): A = Â(0) +

∑κ
i=1[−1, 1] · Â(i).

Although this procedure causes an over-approximation, the lost accuracy is acceptable as
the intervals of the higher order terms are small, compared to the uncertain values in the
linear part L̂Z when using typical values for the time increment r. Next, the computation
of N Z is rewritten to

N Z(t) = (At)2
η∑

i=2

1

i!
(At)i−2 + E(t),

where η ≥ 2 is the number of considered Taylor terms. The reason for factoring out (At)2 is
that the square of an interval matrix can be computed exactly as mentioned in Sec. 3.3.1 or
[97], resulting in a tighter over-approximation. The remainder E(t) is computed as shown
in Theorem 3.2.

In a further step, the interval matrix N Z is split into a real valued matrix N ∈ Rn×n and
a symmetric interval matrix S (S = [−S, S]) such that N Z = N + S . The real valued part
N is added to L̂Z , such that (3.23) changes to

eA
Z tZ =

(
I +N(t) +AZt

)

︸ ︷︷ ︸
LZ(t)

Z + S(t)Z, (3.24)

where LZ(t) is a matrix zonotope with center matrix L(0)(t) = I + N(t) + Â(0)t and
generator matrices L(i)(t) = Â(i)t. The multiplication of the symmetric interval matrix S

with the zonotope Z is computed as proposed in Lemma 3.3, the multiplication LZ Z is
presented next.

Proposition 3.5 (Matrix Zonotope Map): The set resulting from the product of
a matrix zonotope LZ = {L(0) +

∑κ
i=1 ρi L

(i)|ρi ∈ [−1, 1]} and a zonotope Z =
(c, g(1), . . . , g(e)) is over-approximated by a zonotope:

LZ Z =
{
L(0) Z +

κ∑

i=1

ρi L
(i) Z

∣∣ρi ∈ [−1, 1]
}

= (L(0)c, L(0)g(1), . . . , L(0)g(e),

L(1)c, L(1)g(1), . . . , L(1)g(e), . . . ,

L(κ)c, L(κ)g(1), . . . , L(κ)g(e)).

�

Proof: The result follows directly from the addition and multiplication rule of zonotopes;
see (2.1). The result is not exact because of the separate multiplication of the zonotope Z
with the generator matrices L(i). This causes an over-approximation since distributivity
does not hold for the following expression: (C +D)Z ⊆ CZ +DZ, where C,D ∈ Rn×n.
This is easily understood since the result of CZ + DZ has twice as many generators as
the result of (C + D)Z. Only in special cases, e.g. when C,D are positive scalars, the
expressions (C +D)Z and CZ +DZ yield equal zonotopes since the resulting generators
of CZ and DZ are aligned. �

54

3.3. Linear Continuous Systems with Uncertain Parameters

In order to get an idea of the conservativeness of the computationHR(r) = eA
Z tZ in (3.24),

an under-approximation of HR(r) is computed and compared to the over-approximation.
Given a set of sampled matrices Ǎ(i) ∈ AZ , the under-approximation is obtained from⋃

i e
Ǎ(i)tZ. The under- and over-approximations are computed for the introductory exam-

ples (3.2) and (3.3) with a time step of r = 0.04 and are shown in Fig. 3.9(a) and 3.9(b). It
can be seen that the over-approximation encloses the under-approximation quite tightly.

0.78 0.8 0.82

1.08

1.09

1.1

1.11

1.12

x
1

x
2

over-
approx.

eA
Z tZ

under-
approx.⋃
eǍ

(i)tZ

center
solution
eÂ

(0)tZ

(a) Independent parameters from Exam-
ple 3.2.

0.78 0.8 0.82

1.08

1.09

1.1

1.11

1.12

x
1

X
2

over-
approx.

eA
Z tZ

under-
approx.⋃
eǍ

(i)tZ

center
solution
eÂ

(0)tZ

(b) Dependent parameters from Exam-
ple 3.3.

Fig. 3.9.: Over- and under-approximated mapping of a zonotope by an uncertain matrix ex-
ponential.

The reachable set of the homogeneous solution for a time interval [0, r] is computed analo-
gously to the linear system with interval matrices as HR([0, r]) = CH(X 0, eA

ZrX 0) + FX 0.
It remains to consider the reachable set due to the uncertain input, which is done next.

Reachable Sets of Systems with Input

The reachable set originating from the set of inputs is computed similar to Theorem 3.1.
The following proposition describes the necessary adaptations for linear systems with ma-
trix zonotopes:

Proposition 3.6 (Reachable Set of the Input Solution): The reachable set due to
the uncertain input is computed as

PR(r) = r U +AZ r2

2!
U +

η∑

i=2

(
A iri+1

(i+ 1)!
U
)
+ E(r) · r · U . �

The proof is omitted since the proposition follows directly from Theorem 3.1. The minor
modification is that the matrix zonotope AZ is over-approximated by its enclosing interval
matrix A for powers greater than two. It is remarked that according to Theorem 3.1, it

55

3. Reachability Analysis

is not allowed to factorize the computation, e.g. to compute with (r +AZ r2

2!
)U instead of

r U +AZ r2

2!
U .

For input sets U where the origin is not contained, the input correction matrix F̃ has
to be computed as proposed in Prop. 3.4. In order to apply this proposition, the matrix
zonotope AZ is over-approximated by its enclosing interval matrix.

Algorithmic Realization

The algorithmic realization of computing reachable sets of linear systems specified by
matrix zonotopes is identical to Alg. 4. The only differences are the modified computa-
tions of R([kr, (k + 1)r]) = eA

ZrR([(k − 1)r, kr]) and of the inhomogeneous solution sets
P̃(r),PR(r).

Clearly, the resulting reachable sets are more accurate when the system matrix is speci-
fied by a few parameters. However, the computational costs are higher, which is mainly
caused by the matrix zonotope multiplication of zonotopes; see Prop. 3.5. Not only does
the computation of this formula itself cause higher computational costs, but the resulting
zonotopes also have a greater order than from an interval matrix multiplication; see Theo-
rem 3.3. From this follows that the reduction operations in reduce() are more demanding.
The tradeoff between accuracy and computational costs is also discussed for the following
numerical examples.

Numerical Examples

In analogy to the previous sections, the two- and five-dimensional examples are used to
demonstrate the proposed computational techniques. In contrast to the previous numerical
examples, not only are the results demonstrated, but also compared to the results obtained
from the interval matrix approach in Sec. 3.3.1.

The two-dimensional example is specified by a matrix zonotope and is given as

ẋ = Ax, A ∈
[
−1 −4
4 −1

]
+ [−1, 1]

[
0.15 0.15
0.15 0.15

]
, x(0) ∈

[
[0.9, 1.1]
[0.9, 1.1]

]
. (3.25)

In contrast to the numerical example of linear systems specified by interval matrices in
(3.20), the enclosing interval matrix of this example has larger uncertainties while the
input uncertainties are not considered in this example. This allows the different results of
both algorithms to be better emphasized. The reachable set of this example is computed
according to Alg. 4 using the new methods for the computation with matrix zonotopes.
As in previous examples, a time horizon of tf = 5 and a time step size of r = 0.04 has
been used, resulting in 125 iterations.

The reachable set R([0, tf]) for a zonotope order of ˆ̺ = 10 and ˆ̺ = 20 is shown in
Fig. 3.10(a) and Fig. 3.10(b). Beyond the order of ˆ̺ = 20, the result did not improve
considerably. The reachable set R̃([0, tf]) of the corresponding interval matrices (using the
methods of Sec. 3.3.1) is shown as a gray set in the background.

56

3.3. Linear Continuous Systems with Uncertain Parameters

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

R([0, tf])

R̃([0, tf])

(a) Zonotope order: 10.

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x
2

initial set

R([0, tf])

R̃([0, tf])

(b) Zonotope order: 20.

Fig. 3.10.: Reachable sets of the two-dimensional example – different zonotope order.

The five-dimensional example is given as ẋ = Ax+ u(t), where

A ∈




−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2



+ [−1, 1]




0.1 0.1 0 0 0
0.1 0.1 0 0 0
0 0 0.1 0.1 0
0 0 0.1 0.1 0
0 0 0 0 0.1



,

x(0) ∈




[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]



, u(t) ∈




[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]



.

For this example, the same time horizon tf = 5, time step size r = 0.04, and zonotope
order ˆ̺ = 10 than for previous five-dimensional examples is used. The resulting reachable
set is displayed in Fig. 3.11 for two different projections on two dimensions. Again, the
reachable set R̃([0, tf]), obtained from the methods used for interval matrices, is shown in
the background for comparison.

The scalability of the computations is shown by listing the computation times for randomly
generated examples of higher dimension in Tab. 3.3. Besides the dimension n, the number
of generator matrices κ of the matrix zonotope AZ has been varied. All reachable sets are
computed with 125 iterations. The computations were performed with Matlab on a single
core desktop PC with an AMD Athlon64 3700+ processor. Note that the computation
times for dimensions 5, 10, and 20 differ only marginally due to the overhead time caused
by function calls.

Remark 3.3 (Interval Matrix vs. Matrix Zonotope): It remains to discuss when it
is advantageous to use the computational methods for interval matrices in Sec. 3.3.1 and
when it is better to use the methods developed for zonotope matrices in Sec. 3.3.2. In
the event that all parameters of an uncertain matrix A vary independently, the uncertain

57

3. Reachability Analysis

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

x
2

x
3

initial set

R([0, tf])

R̃([0, tf])

(a) Projection onto x2, x3.

0 0.5 1

−0.5

0

0.5

1

x
4

x
5

initial set

R([0, tf])

R̃([0, tf])

(b) Projection onto x4, x5.

Fig. 3.11.: Reachable sets of the five-dimensional example.

Tab. 3.3.: Computational times.

Dimension n 5 10 20 50 100

Number of generator matrices κ = 1
CPU-time [s] 0.09 0.15 0.36 2.58 12.74
Number of generator matrices κ = 2
CPU-time [s] 0.09 0.18 0.44 3.66 16.97
Number of generator matrices κ = 4
CPU-time [s] 0.11 0.26 0.73 5.99 25.95

model should definitely be modeled as an interval matrix and the methods from Sec. 3.3.1
should be applied. Firstly, the computation is more efficient, as can be observed from the
comparison of computation times in Tab. 3.2 and Tab. 3.3. Secondly, this computational
technique is more accurate when all elements of A vary independently. One reason for the
better accuracy is that the first two Taylor terms of eAt are exact according to Lemma 3.1,
which is not the case when applying (3.24). Another reason is that the multiplication
of an interval matrix with a zonotope results in a zonotope of lower order compared to
a multiplication with a matrix zonotope. Consequently, a smaller over-approximation is
created when order reduction is applied.

If the uncertainties of the uncertain system matrix A depend on a few parameters ρi, the
problem should be formulated by matrix zonotopes and the methods for matrix zonotopes
in Sec. 3.3.2 should be applied. This is because the results are more accurate, as can be
observed by the numerical examples, while the computational times are not significantly
higher for a small number of generator matrices κ (compare Tab. 3.2 and Tab. 3.3). �

58

3.3. Linear Continuous Systems with Uncertain Parameters

3.3.3. System Matrix Bounded by Matrix Polytopes

The final class of uncertain system matrices to be presented are matrix polytopes. This
class of uncertain matrices is more general than the representation of sets of matrices by
matrix zonotopes or interval matrices, as shown later. In analogy to the V-representation
of polytopes (see Def. 2.2), a matrix polytope is defined as

A =
{ κ∑

i=1

ρiÃ
(i)
∣∣∣Ã(i) ∈ Rn×n, ρi ∈ R, ρi ≥ 0,

κ∑

i=1

ρi = 1
}
. (3.26)

This definition is identical to the one of matrix zonotopes in (3.21), except that the sum
of parameters

∑κ
i=1 ρi has to be one. In analogy to the V-representation of polytopes in

Def. 2.2, the matrices Ã(i) are referred to as matrix vertices. For this class of uncertain
system matrices, no new computational methods are presented. In order to solve this
problem class, the matrix polytopes are over-approximated by interval matrices or matrix
zonotopes such that the reachability problem can be solved with the methods introduced
previously.

In order to use methods for the over-approximation of polytopes in the Euclidean space, the
matrix polytopes are mapped to polytopes in the Euclidean space. There, the polytopes are
over-approximated by zonotopes or multidimensional intervals. The enclosing zonotopes
or multidimensional intervals are then transformed into the space of the matrices so that
one receives over-approximating matrix zonotopes or interval matrices. Thus, it is required
that the mapping f(X) = Y from the matrix space X to the Euclidean space Y is bijective,
i.e. for every y ∈ Y , there is exactly one x ∈ X such that f(x) = y.

This can be achieved by storing the elements of the matrix vertices Ã(i) in a vector â(i) ∈ Rn2

of dimension n2 which can be interpreted as a vertex in the n2-dimensional Euclidian space.
This can be done by e.g. concatenating the column vectors of Ã(i) = [a

(i)
1 , . . . , a

(i)
n], resulting

in the column vector â(i) = [a
(i)
1

T
, . . . , a

(i)
n

T
]T . The same idea has been used to generate

random matrices in [160]. By doing so, one can write

f(A) = P =
{ κ∑

i=1

ρiâ
(i)
∣∣∣â(i) ∈ Rn2

, ρi ∈ R, ρi ≥ 0,

κ∑

i=1

ρi = 1
}
,

which is a polytope. Next, the polytope P is over-approximated by a multidimensional
interval I in order to obtain an interval matrix A or by a zonotope Z in order to ob-
tain a matrix zonotope AZ . The over-approximation by a multidimensional interval I is
performed according to Prop. 2.3 and the enclosure by a zonotope Z of order one (paral-
lelotope) is performed according to Prop. 2.4. The enclosure by zonotopes of higher order
is the subject of future work. In order to apply the parallelotope enclosure suggested in
Prop. 2.4, the linear map by Λ has to be determined. This is done by principal component
analysis (PCA) as presented in [158].

The over-approximating interval matrix A and the over-approximating matrix zonotope
AZ are then obtained by reversing the rewriting from matrices to vectors, such that A and
AZ contain the values from I and Z, respectively.

59

3. Reachability Analysis

Numerical Examples

In order to demonstrate the proposed technique, the following matrix polytope

A =
{ 3∑

i=1

ρiÂ
(i)
∣∣∣Ã(i) ∈ R2×2, ρi ∈ R, ρi ≥ 0,

3∑

i=1

ρi = 1
}
,

Â(1) =

[
−1.1 −4.1
4 −1

]
, Â(2) =

[
−1 −4
4.1 −1.1

]
, Â(3) =

[
−1 −3.9
3.9 −1.1

]
.

is over-approximated by an interval matrix and a matrix zonotope. The interval matrix is

A =

[
[−1.1,−1] [−4.1,−3.9]
[3.9, 4.1] [−1.1,−1]

]

which can be easily checked by searching the minimum and maximum values of all matrix
vertices. The computation of the over-approximating matrix zonotope is more challeng-
ing. After applying the principal component analysis as proposed in [158], the resulting
enclosing matrix zonotope is

AZ =
{[−1.02 4.01

−3.99 −1.08

]
+

2∑

i=1

ρiÂ
(i)
∣∣∣ρi ∈ [−1, 1]

}
,

Â(1) = 0.01

[
−4.4 6.3
−9.7 4.4

]
, Â(2) = 0.01

[
−3.4 −7.2
−1.6 3.4

]
.

Projections of possible values of the elements of AZ for pairs of matrix elements are illus-
trated in Fig. 3.12.

−1.1 −1.05 −1 −0.95
3.85

3.9

3.95

4

4.05

4.1

4.15

A
11

A
2

1

original
set

over-
approx.

(a) Projection on elements A11, A21.

−4.1 −4 −3.9

−1.15

−1.1

−1.05

−1

A
12

A
2

2

original
set

over-
approx.

(b) Projection on elements A12, A22.

Fig. 3.12.: Over-approximation of a matrix polytope by a matrix zonotope.

60

3.4. Nonlinear Continuous Systems with Uncertain Parameters

3.4. Nonlinear Continuous Systems with Uncertain

Parameters

So far, reachable sets of linear continuous systems have been investigated. Although a fairly
large group of dynamic systems can be described by linear continuous systems, the exten-
sion to nonlinear continuous systems is an important step for the analysis of more complex
systems. The analysis of nonlinear systems is much more complicated since many valuable
properties are no longer valid. One of them is the superposition principle, which allows
the homogeneous and the inhomogeneous solution to be obtained separately. Another one
is that reachable sets of LTI systems can be computed by a linear map. This allows the
property to be employed that geometric representations such as ellipsoids, zonotopes, and
polytopes are invariant under linear transformations, i.e. they are again mapped to el-
lipsoids, zonotopes and polytopes, respectively. Because of these reasons, the reachability
analysis of nonlinear systems is based on linearization in this thesis. Since the linearization
causes additional errors, the linearization errors are determined in an over-approximative
way and added as an additional uncertain input so that an over-approximative computation
is ensured.

In this section, general nonlinear continuous systems with uncertain parameters and Lips-
chitz continuity are considered. In analogy to the previous linear systems, the initial state
x(0) can take values from a set X 0 ⊂ Rn. The dynamics depends on a set of uncertain, but
constant model parameters ρi. The parameters are bounded by intervals (ρi ∈ I), such
that the parameter vector ρ stays within a multidimensional interval P ∈ Ip, where p is
the number of parameters. The input u takes values from a set U ⊂ Rm. The evolution of
the state x is defined by the following differential equation:

ẋ = f(x(t), u(t), ρ), (3.27)

x(0) ∈ X 0 ⊂ Rn, ρ ∈ P ⊂ Ip, u(t) ∈ U ⊂ Rm,

where u(t) and f() are assumed to be globally Lipschitz continuous so that the Taylor
expansion for the state and the input can always be computed, which is required for the
linearization. Thus, the system has no finite escape time. It is further remarked that the
system can be instable as long as it is globally Lipschitz.

In linear systems, inputs are additive while the parameters are associated with the sys-
tem matrix. For nonlinear systems, this distinction is not so clear. In this thesis, the
classification is made after the linearization is performed: Parameters are the variables
associated with the obtained system matrix and inputs are additive. However, it is also
possible to interpret a parameter as a non-additive input. An overview of the conservative
linearization procedure is presented below.

3.4.1. Overview of Reachable Set Computations

A brief visualization of the overall concept for computing the reachable set R([0, tf]) is
shown in Fig. 3.13. As in the previous approaches, the reachable set is iteratively computed

61

3. Reachability Analysis

➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = X 0, time step: k = 1

Linearize system

Compute reachable set Rlin(kr),
Rlin([(k − 1)r, kr]) without linearization error

Obtain set of admissible linearization errors L̄

Compute set of linearization errors L
based on Rlin([(k − 1)r, kr]) and L̄

L ⊆ L̄ ?
Split R((k − 1)r) into two sets and
repeat reachable set computation

Calculate reachable set Rerr due to linearization error L →
R(kr) = Rlin(kr) +Rerr and

R([(k − 1)r, kr]) = Rlin((k − 1)r, kr]) +Rerr

Cancellation of redundant reachable sets

Next initial set: R(kr), time step: k := k + 1

Yes

No

Fig. 3.13.: Computation of reachable sets – overview.

for smaller time intervals t ∈ [(k − 1)r, kr] where k ∈ N+, such that R([0, tf]) is obtained
by their union: R([0, tf]) =

⋃
k=1...tf/r

R([(k − 1)r, kr]). The procedure for computing the
reachable sets of the consecutive time intervals is as follows:

➀ The nonlinear system ẋ = f(x, u, ρ) is linearized to a system of the form ẋ =
f lin(x, u, ρ) = A(ρ)∆x + B(ρ)∆u + dlin(ρ). The system and input matrix A(ρ)
and B(ρ), as well as the vector dlin(ρ), are of proper dimension, all depend-
ing on the parameter vector ρ. The set of linearization errors L ensures that
f(x, u, ρ) ∈ f lin(x, u, ρ) + L , which allows the reachable set to be computed in an
over-approximative way.

➁ Due to the superposition principle of linear systems, the reachable set Rlin(kr) and
Rlin([(k−1)r, kr]) of f lin(x, u, ρ) are computed without consideration of the lineariza-
tion errors (L = 0). Later, the reachable set Rerr caused by the set of linearization
errors L is added to Rlin.

➂ The expansion of the reachable set due to the linearization error is restricted by a

62

3.4. Nonlinear Continuous Systems with Uncertain Parameters

set R̄err in which Rerr has to be enclosed. This set allows the set L̄ of admissible
linearization errors obtained from the linearized system dynamics f lin(x, u, ρ) to be
computed.

➃ The admissible reachable set R̄([(k − 1)r, kr]) := Rlin([(k − 1)r, kr]) + R̄err defines
the set for which the over-approximative linearization error has to be found. The
computation of the linearization error is based on interval arithmetics so that it is
bounded by a multidimensional interval L ∈ In.

➄ Where L * L̄ , the linearization error is not admissible, requiring the initial reachable
set R((k − 1)r) to be split into two reachable sets. This implies performing the
reachable set computations for both of the newly obtained sets once more. Hence,
the number of reachable set representations for this time interval has increased by
one.

➅ If L ⊆ L̄, the linearization error is accepted and the reachable set is obtained by
superposition of the reachable set without linearization error and the one due to
the linearization error: R(kr) = Rlin(kr) +Rerr and R([(k − 1)r, kr]) = Rlin([(k −
1)r, kr]) +Rerr.

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets
that are already covered by previously computed reachable sets. This decreases the
number of reachable sets that have to be considered in the next time interval. The
initial set for the next time step is R(kr).

Besides the splitting of the reachable set in the state space, it is also possible to split the
input and parameter set in an analogous way. However, splitting of the reachable set is
more effective since the split of the input or parameter set results in largely overlapping
reachable sets.

3.4.2. Linearization

The local linearization of the nonlinear system (3.27) is performed by a Taylor series. In
order to introduce a concise notation, the state and input vector are combined to a new
vector

z =

[
x
u

]
.

This allows a Taylor series of the nonlinear system dynamics (3.27) with a parameter vector
ρ ∈ P to be formulated:

ẋi = fi(z, ρ) = fi(z
∗, ρ)+

∂fi(z, ρ)

∂z

∣∣∣
z=z∗

(z − z∗)

+
1

2
(z − z∗)T

∂2fi(z, ρ)

∂z2
)
∣∣∣
z=z∗

(z − z∗) + . . .

The infinite Taylor series can be over-approximated by a first order Taylor series and its
Lagrange remainder:

63

3. Reachability Analysis

ẋi ∈ fi(z
∗, ρ) +

∂fi(z, ρ)

∂z

∣∣∣
z=z∗

(z − z∗)
︸ ︷︷ ︸

1st order Taylor series

+
1

2
(z − z∗)T

∂2fi(ξ, ρ)

∂z2
(z − z∗)

︸ ︷︷ ︸
Lagrange remainderLi

. (3.28)

Let z, z∗ be fixed, then the Lagrange remainder L can take any value that results from
ξ ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}; see [23]. The computation of the set L resulting from the
set of possible values of z is presented in the following subsection. In order to obtain the
standard notation of the linearized system, the z vector is separated into the state vector
x and the input vector u.

ẋ ∈ f(z∗, ρ) +
∂f(z, ρ)

∂z

∣∣∣
z=z∗

(z − z∗) + L

= f(x∗, u∗, ρ) +
∂f(x, u, ρ)

∂x

∣∣∣
x=x∗,u=u∗

(x− x∗)
︸ ︷︷ ︸

A∆x

+
∂f(x, u, ρ)

∂u

∣∣∣
x=x∗,u=u∗

(u− u∗)
︸ ︷︷ ︸

B∆u

+L
(3.29)

with ∆x = x− x∗, ∆u = u− u∗. Where there are no uncertain parameters ρ, one obtains
matrices A ∈ Rn×n and B ∈ Rn×m, whose elements are real numbers. If the system contains
uncertain parameters, one has the choice to over-approximate the uncertain system and
input matrix by interval matrices or matrix zonotopes. Once the uncertain input matrix
B = {B(ρ)|ρ ∈ Ip} has been found, it is multiplied by the set of inputs to obtain the overall
set of possible inputs. Where B is represented by an interval matrix, the multiplication
is performed according to Theorem 3.3 and according to Prop. 3.5 if B is modeled as a
zonotope matrix. Examples of both representation forms are given below.

Example 3.4 (Linearization of a Nonlinear Dynamic System):

ẋ1 = ρ1x1 + ρ2(x1 + 1)3x2 + ρ1 cos(x1)u, ẋ2 = ρ1x
2
2u,

ρ1 ∈ [0, 1], ρ2 ∈ [−1, 2], u ∈ U = [1, 2] = (1.5, 0.5), x∗
1 = 0, x∗

2 = 1, u∗ = 2.

Note that (1.5, 0.5) is the zonotope notation of the interval [1, 2]. The system matrix and
input matrix are after linearization around x∗, u∗:

A =

[
ρ1 + 3ρ2 ρ2

0 4ρ1

]
, B =

[
ρ1
ρ1

]
.

The over-approximation by interval matrices or matrix zonotopes yields:

Interval matrix: Matrix zonotope (ρ∗1, ρ
∗
2 ∈ [−1, 1]):

A =

[
[−3, 7] [−1, 2]

0 [0, 4]

]
AZ =

[
2 0.5

0 2

]
+ ρ∗1

[
0.5 0

0 2

]
+ ρ∗2

[
4.5 1.5

0 0

]

U∗ = BU =

[
[0, 1]

[0, 1]

]
(1.5, 0.5) U∗ = BZU =

([
0.5

0.5

]
+ ρ∗1

[
0.5

0.5

])
(1.5, 0.5)

Theorem 3.3
=

([
0.75

0.75

]
,

[
0.25

0.25

]
,

[
1

0

]
,

[
0

1

])
Prop. 3.5

=

([
0.75

0.75

]
,

[
0.25

0.25

]
,

[
0.75

0.75

]
,

[
0.25

0.25

])

�

64

3.4. Nonlinear Continuous Systems with Uncertain Parameters

The reachable set Rlin of the linearized system is obtained as described in Sec. 3.2 or
Sec. 3.3 depending on the existence of uncertain parameters. Next, the computation of
the set of linearization errors is presented.

3.4.3. Computation of the Set of Linearization Errors

As described in the overview of the linearization approach (see Fig. 3.13), the linearization
error L is obtained by an evaluation of the Lagrange remainder. After defining

Ji(ξ, ρ) :=
∂2fi(ξ, ρ)

∂z2
,

where i refers to the i-th coordinate of f , one can write the Lagrange remainder in (3.28)
as

Li =
1

2
(z − z∗)TJi(ξ, ρ)(z − z∗),

ξ(z, z∗) ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}.
(3.30)

In order to determine the set Li for the time interval t ∈ [0, r], one has to consider the
possible values of z within this time interval. The values of z are within Ẑ([0, r]), which is
the Cartesian product Ẑ([0, r]) := R([0, r])× U of possible states restricted to x([0, r]) ∈
R([0, r]) and inputs restricted to u ∈ U . As R([0, r]) is not known when the linearization
error is computed, it is over-approximated by Rlin([0, r]) + R̄err, where R̄err is the largest
allowed set caused by the set of linearization errors L . The specification of R̄err is discussed
in the next subsection. In order to determine the linearization error set Li for z ∈ Ẑ([0, r])
in an efficient way, the following over-approximation is computed:

Proposition 3.7 (Over-approximation of the Set of Linearization Errors): The
absolute values of the Lagrange remainder can be over-approximated for z ∈ Ẑ where Ẑ
is a zonotope Ẑ = (c, g(1), . . . , g(e)). The over-approximation is obtained by the following
computations:

|Li| ⊆ [0, li]

with li =
1

2
γTmax(|Ji(ξ(z, z

∗), ρ)|)γ, z ∈ Ẑ, ρ ∈ P

and γ = |c− z∗|+
e∑

i=1

|g(i)|,

where c is the center and g(i) are the generators of the zonotope Z. The max()-operator
and the absolute values are applied elementwise. �

Proof: The following over-approximations apply for the absolute value of Li.

65

3. Reachability Analysis

|Li| =
{1
2
|(z − z∗)T Ji(ξ(z, z

∗), ρ) (z − z∗)|
∣∣∣z ∈ Ẑ, ρ ∈ P

}

⊆ 1

2

[
0, maxz∈Ẑ,ρ∈P

(
|(z − z∗)T Ji(ξ(z, z

∗), ρ) (z − z∗)|
)]

⊆ 1

2

[
0, maxz∈Ẑ,ρ∈P

(
|z − z∗|T |Ji(ξ(z, z

∗), ρ)| |z − z∗|
)]

⊆ 1

2

[
0, maxz∈Ẑ(|z − z∗|)T maxz∈Ẑ,ρ∈P(|Ji(ξ(z, z

∗), ρ)|) maxz∈Ẑ(|z − z∗|)
]

The expression maxz∈Ẑ(|z− z∗|) can be further rewritten since z ∈ Ẑ is within a zonotope
with center c and generators g(i):

maxz∈Ẑ(|z − z∗|) = maxβi∈[−1,1](|c− z∗ +
p∑

i=1

βig
(i)|) ≤ |c− z∗|+

e∑

i=1

|g(i)| = γ

such that the expression of Prop. 3.7 is obtained. �

The expression maxz∈Ẑ,ρ∈P(|Ji(ξ(z, z
∗), ρ|) in Prop. 3.7 is computed via interval arithmetics

[87]. To do so, the values of z have to be over-approximated by an interval vector as shown
in Prop. 2.2: z ∈ box(Ẑ). From this follows that ξ(z, z∗) ∈ {z∗ +α(z − z∗)|α ∈ [0, 1]} also
becomes an interval vector and the parameter values ρ are already specified as intervals.
Note that it is also possible to directly apply interval arithmetics to (3.30) without the
intermediate computations in Prop. 3.7. So far, it has not been investigated in which cases
the direct application of interval arithmetics is beneficial.

As a byproduct of Prop. 3.7, the linearization point z∗ that minimizes the set of Lagrange
remainders is easily found.

Corollary 3.2 (Optimal Linearization Point): The bounding vector l of the absolute
value of the Lagrange remainder is minimized by choosing z∗ = c as the linearization point,
where c is the center of the reachable set Ẑ. �

Proof: The value of γ is minimized by z∗ = c, which can be directly checked from its
computation in Prop. 3.7. By choosing z∗ = c, it follows that the set {ξ(z, z∗ = c)|z ∈ Ẑ} =
Ẑ is independent of z∗, such that max(|Ji(ξ(z, z

∗), ρ)|) is not affected by the linearization
point z∗. From this follows that z∗ = c minimizes l . �

After choosing z∗ = c, it remains to solve the problem that the center c of Ẑ([0, r]) is not
known, since Ẑ([0, r]) is computed after the linearization. As a solution, c is approximated
based on the center ĉ of Ẑ(0):

z∗ = ĉ +
r

2
f(ĉ, center(ρ)) ≈ c

The operator center() returns the center of an interval vector. Next, the restriction of the
linearization error is addressed.

66

3.4. Nonlinear Continuous Systems with Uncertain Parameters

3.4.4. Restriction of the Linearization Error

It is obvious that the Lagrange remainder strongly depends on the size of the reachable set.
The larger the reachable set becomes, the more the set of linearization errors is expanding,
which again enlarges the reachable set. This self-energizing process is limited in this thesis
by restricting the linearization error Rerr to a multidimensional interval R̄err. The rate of
growth of the admissible expansion of R̄err is set by the expansion vector θ ∈ Rn, which
has to be specified by the user.

R̄err(r) := [−θ · r, θ · r]. (3.31)

Assuming that the linearization error is constant for a time interval [kr, (k + 1)r] and
that the system matrix has no uncertainties, the following relation between the admissible
reachable set and the admissible linearization error L̄ = [−l̄ , l̄] exists according to (3.6):

R̄err(r) = [−θ · r, θ · r] = A−1(eAr − I)[−l̄ , l̄]

After left multiplication with (eAr − I)−1A, the vector bounding the admissible errors l̄ is
obtained as

l̄ =
∣∣(eAr − I)−1A

∣∣θ · r.

Where the system matrix is an uncertain matrix, a representative of the uncertain matrix
is chosen, e.g. the center matrix. Thus, the computation with uncertain matrices does
not allow an exact computation of l̄ ; however, the choice of the expansion vector θ by the
user is already more or less arbitrary. When the constraint L ⊆ L̄ is not fulfilled, which is
equivalent to l ≤ l̄ , the reachable set is split as explained next.

Splitting of Reachable Sets

In contrast to polytopes, which can be split into two polytopes by a separating hyperplane,
zonotopes can only be split this way in special cases. However, a possibility to split a
zonotope by splitting the j-th generator can be presented:

Proposition 3.8 (Splitting of Zonotopes): A zonotope Z = (c, g(1), . . . , g(e)) is split
into two zonotopes Z1 and Z2 such that Z1 ∪ Z2 = Z and Z1 ∩ Z2 = Z∗, where

Z1 = (c− 1
2
g(j), g(1), . . . , g(j−1), 1

2
g(j), g(j+1), . . . , g(e))

Z2 = (c+ 1
2
g(j), g(1), . . . , g(j−1), 1

2
g(j), g(j+1), . . . , g(e))

Z∗ = (c, g(1), . . . , g(j−1), g(j+1), . . . , g(e))
�

Proof: First, a zonotope (0, g(j)) that only consists of the j-th generator is considered.
This generator can be split into two generators:

(0, g(j)) =

(
−1

2
g(j),

1

2
g(j)
)
∪
(
1

2
g(j),

1

2
g(j)
)

67

3. Reachability Analysis

Adding Z∗ to both sides of the above statement and using A+(B∪C) = (A+B)∪(A+C),
where A,B,C are sets in the Euclidean space, yields

Z∗ + (0, g(j)) = Z∗ +

(
(−1

2
g(j),

1

2
g(j)) ∪ (

1

2
g(j),

1

2
g(j))

)

=

(
Z∗ + (−1

2
g(j),

1

2
g(j))

)
∪
(
Z∗ + (

1

2
g(j),

1

2
g(j))

)
.

The addition of zonotopes is performed by adding the centers and concatenating the gen-
erators as shown in (2.1), such that Z = Z∗ + (0, g(j)), Z1 = Z∗ + (−1

2
g(j), 1

2
g(j)) and

Z2 = Z∗ + (1
2
g(j), 1

2
g(j)), resulting in Z = Z1 ∪ Z2.

Furthermore, it can be derived from (−1
2
g(j), 1

2
g(j)) ∩ (1

2
g(j), 1

2
g(j)) = {0} that

Z1 ∩ Z2 =

(
Z∗ + (−1

2
g(j),

1

2
g(j))

)
∩
(
Z∗ + (

1

2
g(j),

1

2
g(j))

)
= Z∗. �

The greater the order of a zonotope Z is, the larger the overlapping zonotope Z∗ is and,
consequently, the less effective a split is. For this reason, zonotopes should be reduced
to a certain order with, e.g., the methods presented in Sec. 2.5. The order reduction of
zonotopes is performed in an over-approximated way such that for the reduced zonotope
Zred holds: Zred ⊇ Z. The advantages and disadvantages of the order reduction are
illustrated for a zonotope Z in a two-dimensional example with 4 generators according to
Fig. 3.14(a). The split zonotopes of the original zonotope Z are denoted by Z1, Z2 and the
ones of the reduced zonotope Zred are denoted by Zred

1 , Zred
2 . The sets of the unreduced

zonotope can be found in Fig. 3.14(b) and in Fig. 3.14(c) for the reduced zonotope. The
advantage of the split of the unreduced zonotope is that the split zonotopes cover a smaller
region: Z1 ∪ Z2 = Z ⊆ Zred = Zred

1 ∪ Zred
2 . However, Z1 and Z2 overlap more than Zred

1

and Zred
2 : Z1 ∩ Z2 = Z∗ ⊇ Zred∗ = Zred

1 ∩ Zred
2 . In order to obtain an optimal result, one

has to find a compromise between the overlapping and the over-approximation of reachable
sets.

−2 0 2
−2

−1

0

1

2

x
1

x
2

Z

Zred

g(j)

g
(j)
red

(a) Z, Zred

−2 0 2
−2

−1

0

1

2

x
1

x
2

Z1

Z2 1
2g

(j)

(b) Z1, Z2

−2 0 2
−2

−1

0

1

2

x
1

x
2

Zred
1

Zred
2 1

2g
(j)
red

(c) Zred
1 , Zred

2

Fig. 3.14.: Split of a zonotope and the corresponding reduced zonotope.

It remains to find the j-th generator that splits the reachable set R(kr) into R1,j(kr) and
R2,j(kr) in an optimal way. For this purpose, a performance measure for a split is defined
based on the Lagrange remainder computed fromR1,j([kr, (k+1)r]) andR2,j([kr, (k+1)r]).

68

3.4. Nonlinear Continuous Systems with Uncertain Parameters

Since the choice of the generator has a big influence on further computations, each generator
is checked.

Heuristic 3.1 (Generator Selection for Splitting of Reachable Sets): The split-
ting of the zonotopial reachable set R(kr) is decided by a performance measure ̺j :

̺j = max(l1,j/l̄) · max(l2,j/l̄).

The divisions l1,j/l̄ and l2,j/l̄ are applied elementwise and max() returns the maximum
value of the resulting vectors. The component j with the lowest value in the performance
vector ̺ corresponds to the generator that has to be split. �

The linearization error limit is fulfilled if the lowest performance measure is less than 1
since this implies that l1,j ≤ l̄ and l2,j ≤ l̄ , which in turn implies that L1,j ⊆ L̄ and
L2,j ⊆ L̄. Where the lowest performance value is greater than 1, the obtained split sets
have to be split again recursively.

Cancellation of Redundant Reachable Sets

The problem of splitting reachable sets is that the computational effort grows linearly
with the number of splits. This effect can be reduced by canceling reachable sets that have
already been reached.

In order to identify those sets, the set difference operation is used. As the set difference of
two zonotopes is not a zonotope anymore, the zonotopes are converted to H-polytopes in
an over-approximated way as presented in Sec. 2.5.6. The over-approximation is performed
for the reachable sets of the past ζ time steps, where ζ can be freely chosen. If a polytope
of the current time interval is empty after the set difference with the polytopes of the past
ζ time steps, this reachable segment is canceled.

After the cancellation, the remaining polytopes are transformed back to zonotopes as pre-
sented in Prop. 2.4. Since the cancellation of reachable sets leads to an over-approximation,
and in addition is computationally expensive, the described procedure is only applied every
δ ∈ N+ time steps, where δ is set by the user.

3.4.5. Numerical Examples

The approach for the computation of reachable sets of nonlinear systems is demonstrated
by two examples. The first example is a Van-der-Pol oscillator, which is a standard
example of nonlinear systems that have a limit cycle. The differential equations together
with two different initial sets are

ẋ1 = x2,

ẋ2 = (1− x2
1)x2 − x1.

x(0)small ∈
[
[1.25, 1.55]
[2.25, 2.35]

]
, x(0)large ∈

[
[0.8, 2]

[2.25, 2.35]

]
.

The reachable set for this example is computed with a time increment of r = 0.02. The
expansion vector is set to θ = [0.05, 0.05]T and the cancellation of reachable sets is per-
formed every δ = 100 time steps. The reachable set for the small initial set is visualized

69

3. Reachability Analysis

in Fig. 3.15(a) and the one for the large initial set is shown in Fig. 3.16(a). The num-
ber of reachable sets that have to be computed in parallel for each time step is plotted
in Fig. 3.15(b) and Fig. 3.16(b) for the small and large initial set, respectively. In both
plots, it can be observed that redundant reachable sets are canceled after 4 and 6 time
units. It can be further observed that for the large initial set, which is 4 times larger in
the x1-direction, also about 4 times as many sets have to be computed, resulting in com-
putational times which differ by the same factor. The computational time for the small
initial set is 18.91 s and the one for the larger initial set is 97.19 s. The computations were
performed on a single core desktop PC with an AMD Athlon64 3700+ processor in Matlab.
A byproduct of this example is that it can be shown that the Van-der-Pol oscillator has a
stable limit cycle, since the reachable set enters the initial set after one cycle.

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

x
1

x
2

initial set

R([0, tf])

simulations

(a) Reachable set.

0 5
0

2

4

6

8

10

12

14

time t

N
um

be
r

of
 c

om
pu

te
d

se
ts

 p
er

 ti
m

e
st

ep

(b) Number of computed sets
per time step.

Fig. 3.15.: Van-der-Pol oscillator: Small initial set

As a second example, a water tank system with uncertain inputs and parameters as illus-
trated in Fig. 3.17 is considered. The states xi are the water levels of each tank and u is
the water flow into the system. The inflow is controlled by measuring the water level of
the last tank. This example is chosen as it can be easily formulated for different numbers
of states by adding additional water tanks. The differential equation for the water level of
the first tank is given by Torricelli’s law:

ẋ1 =
1

a1
(u+ v − k1

√
2gx1),

where a1 and k1 are tank specific parameters, g is the gravity constant, u is the inflow and
v is a disturbance. The inflow u is chosen as u = 0.1 + κ(4− xn) and xn is the water level

70

3.4. Nonlinear Continuous Systems with Uncertain Parameters

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

x
1

x
2

initial set

R([0, tf])

simulations

(a) Reachable set.

0 5
0

5

10

15

20

25

30

35

40

45

50

time t

N
um

be
r

of
 c

om
pu

te
d

se
ts

 p
er

 ti
m

e
st

ep

(b) Number of computed sets
per time step.

Fig. 3.16.: Van-der-Pol oscillator: Large initial set

x1

x2

x3

u

Fig. 3.17.: Water tank system.

of the last tank. The differential equation for the i-th tank is

ẋi =
1

ai
(ki−1

√
2gxi−1 − ki

√
2gxi).

For simplicity, all ai are set to ai = 1. The reachable set for t ∈ [0, 400] with v ∈
[−0.005, 0.005] is computed for a time step of r = 4 and an expansion vector of θi = 0.001
for all coordinates i. The reachable set was computed for cases when the parameters are
certain (ki = 0.015) and for cases when they are uncertain (ki ∈ [0.0148, 0.015]). Where the
parameters are certain, the reachable set is denoted by R([0, tf]), and R̂([0, tf]) when the
parameters are uncertain. The reachable set for 6 tanks is shown in Fig. 3.18 for different
two-dimensional projections together with exemplary trajectories starting from the initial

71

3. Reachability Analysis

set3. Computational times for different system dimensions using the same parameters and
settings than for the 6-tank system are presented in Tab. 3.4. It is noted that no splits
had to be performed for any water tank example. All computations were performed using
Matlab on a desktop computer with an AMD Athlon64 3700+ processor (single core). It
can be observed from Tab. 3.4 that the computation time moderately increases with the
system dimension due to the efficient computation of reachable sets using zonotopes.

1 2 3 4
1

1.5

2

2.5

3

3.5

4

4.5

x
1

x
2

initial set

R([0, tf])

R̂([0, tf])

(a) Projection onto x1, x2.

1 2 3 4

2

3

4

5

6

x
1

x
6

initial set

R([0, tf])

R̂([0, tf])

(b) Projection onto x1, x6.

2 3 4
1.5

2

2.5

3

3.5

x
3

x
4

initial set

R([0, tf])

R̂([0, tf])

(c) Projection onto x3, x4.

2 4 6 8 10

2

3

4

5

6

x
5

x
6

initial set

R([0, tf])

R̂([0, tf])

(d) Projection onto x5, x6.

Fig. 3.18.: Reachable sets of the tank system.

3.5. Hybrid Systems

In many complex control systems, underlying processes are often controlled by continu-
ous controllers while discrete or also called supervisory controllers are used for high level

3The exemplary trajectories are only computed for constant v values, although the values may be time
varying.

72

3.5. Hybrid Systems

Tab. 3.4.: Computational times.

Dimension n 5 10 20 50 100

No uncertain parameters
CPU-time [s] 1.19 1.73 3.11 11.59 35.78
With uncertain parameters
CPU-time [s] 6.83 12.92 28.94 119.58 523.56

control. The combination of the discrete control with the continuous dynamics of the
underlying process forms a hybrid system. Typical examples of hybrid systems include
chemical plants and driving assistance systems. For instance, the temperature of a liquid
in a chemical plant is controlled by a continuous controller if the temperature is below a
certain threshold. If the threshold of the exothermic reaction is exceeded, an emergency
program is started, adding another liquid which slows down the exothermic reaction. An-
other example is a hybrid controller for adaptive cruise control (ACC) in passenger cars.
In order to automatically keep a safe distance and speed, the controller has the modes
vehicle following and speed control. The mode vehicle following keeps a safe distance to
a vehicle driving ahead and is active when the distance to the leading vehicle is below a
certain threshold. Otherwise, the mode speed control is active and keeps the desired speed.

In between mode switching, e.g. from vehicle following to speed control, the hybrid system
behaves like a continuous system. For this reason, the approaches developed in the pre-
vious sections for continuous systems are also applied to hybrid systems. The necessary
extensions for hybrid systems are concerned with the switching of the continuous dynam-
ics. This includes the problem of determining which part of the continuous reachable set
enters regions that enable the switching of the continuous dynamics.

However, before extending the algorithms for reachable set computations, the formal defi-
nition of hybrid dynamics by hybrid automata is addressed.

3.5.1. Hybrid Automaton

In this thesis, hybrid systems are modeled by hybrid automata. Clearly, besides a contin-
uous state x, there also exists a discrete state y for hybrid systems. The continuous initial
state may take values within continuous sets while only a single initial discrete state is as-
sumed without loss of generality4. The switching of the continuous dynamics is triggered
by so-called guard sets. Jumps in the continuous state are considered after the discrete
state has changed. One of the most intuitive examples where jumps in the continuous state
can occur is the bouncing ball example, where the velocity of the ball is instantaneously
changed when hitting the ground.

The formal definition of the hybrid automaton is similarly defined as in [158]. The main
difference is the consideration of uncertain parameters and the restrictions on jumps and

4In the case of several initial discrete states, the reachability analysis can be performed for each discrete
state separately

73

3. Reachability Analysis

guard sets:

Definition 3.3 (Hybrid Automaton): A hybrid automaton HA = (Y, y0,X ,
X 0,U , P , inv, T, g, h, f), as it is considered in this thesis, consists of:

• the finite set of locations Y = {y1, . . . , yξ} with an initial location y0 ∈ Y .

• the continuous state space X ⊆ Rn and the set of initial continuous states X 0 such
that X 0 ⊆ inv(y0).

• the continuous input space U ⊆ Rm.

• the parameter space P ⊆ Ip.

• the mapping5 inv: Y → 2X , which assigns an invariant inv(y) ⊆ X to each location
y.

• the set of discrete transitions T ⊆ Y × Y . A transition from yi ∈ Y to yj ∈ Y is
denoted by (yi, yj).

• the guard function g : T → 2X , which associates a guard set g((yi, yj)) for each
transition from yi to yj, where g((yi, yj)) ∩ inv(yi) 6= ∅.

• the jump function h : T × X → X , which returns the next continuous state when a
transition is taken.

• the flow function f : Y ×X × U × P → R(n), which defines a continuous vector field
for the time derivative of x: ẋ = f(y, x, u, ρ).

The invariants inv(y) and the guard sets g((yi, yj)) are modeled by polytopes. The jump
function is restricted to a linear map

x′ = K(yi,yj) x+ k(yi,yj), (3.32)

where x′ denotes the state after the transition is taken and K(yi,yj) ∈ Rn×n, k(yi,yj) ∈ Rn

are specific for a transition (yi, yj). The input sets Uy are modeled by zonotopes and are
also dependent on the location y. Note that in order to use the results from reachability
analysis of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous.
The set of parameters Py can also be chosen differently for each location y. �

The evolution of the hybrid automaton is described informally as follows. Starting from
an initial location y(0) = y0 and an initial state x(0) ∈ X 0, the continuous state evolves
according to the flow function that is assigned to each location y. If the continuous state
is within a guard set, the corresponding transition can be taken and has to be taken if the
state would leave the invariant inv(y). When the transition from the previous location yi
to the next location yj is taken, the system state is updated according to the jump function
and the continuous evolution within the next invariant.

The definition for the continuous reachable set in Def. 3.1 has to be enhanced for hybrid
automata:

Definition 3.4 (Exact Continuous and Discrete Reachable Set): The continuous
reachable set Re and the discrete reachable set Rz of a HA for a given initial location

52X is the powerset of X .

74

3.5. Hybrid Systems

y0 and a set of initial states X 0 at time t = r are:

Re(r) =
{
x(r)

∣∣ (y(t), x(t)) is a solution of HA ∀t ∈ [0, r], y(0) = y0, x(0) ∈ X 0
}
,

Rz(r) =
{
y(r)

∣∣ (y(t), x(t)) is a solution of HA ∀t ∈ [0, r], y(0) = y0, x(0) ∈ X 0
}
,

where y(t) and x(t) denotes the discrete and continuous state at time t. �

Because the reachability of discrete states is simply a question of determining if the contin-
uous reachable set hits certain guard sets, the focus below is on the continuous reachable
sets. Clearly, as for the continuous systems, the reachable set Re of the hybrid system
has to be over-approximated by R(r) ⊇ Re(r) in order to verify the safety of the sys-
tem. The over-approximated reachable set for a time interval is defined as in Def. 3.2 as
R([0, r]) =

⋃
t∈[0,r]R(t). An illustration of a reachable set of a hybrid automaton is given

in Fig. 3.19. Next, an overview of the procedure for computing reachable sets of hybrid
systems is presented.

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location y1 location y2

Fig. 3.19.: Illustration of the reachable set of a hybrid automaton.

3.5.2. Overview of Reachable Set Computations

An overview of how the reachability analysis of continuous systems can be extended to
hybrid systems is presented in Fig. 3.20. It can be seen that the computation of the
continuous reachable set within one location is completely encapsulated in the approach,
such that one can refer to its computation in Sec. 3.2 – 3.4. One of the main extensions for
hybrid systems is the consideration of guard sets and invariants. The extended approach
is explained in more detail below:

➀ As a first step, the continuous reachable set is computed based on the set of continu-
ous initial states X 0 within the initial location y0 as described previously in Sec. 3.2
- 3.4.
In addition to the computation of the reachable sets R([(k − 1)r, kr]) of time subin-
tervals, it has to be checked that the reachable set has not left the invariant, i.e. if
R([(k − 1)r, kr]) ∩ inv(yi) 6= ∅. The time when the invariant is left is denoted by
tendinv .

75

3. Reachability Analysis

→

➀

➁

➂

➃

➄

➅

Initial location y0, initial set R(0) = X 0, time step k = 1

Compute reachable set R([tstartinv , tendinv]) until invariant is left:
R(tendinv) ∩ inv(yi) 6= ∅, R(tendinv + r) ∩ inv(yi) = ∅

Obtain intersections with guard sets:
Rj = R([tj,startg , tj,endg]) ∩ g((yi, yj)); t

j,start
g , tj,endg : possible

first and last time point of intersecting g((yi, yj))

t < tf ?

Determine reached discrete states

Compute reachable states after jumps:
R′

j = K(yi,yj) Rj + k(yi,yj)

Store reached locations yj, continuous sets after jumps R′
j ,

and minimum times tj,startg for each transition (yi, yj) in a list

Select first element of list; location and continuous
reachable set in list are the new initial states

List empty ?

Yes

Yes

No

No

End

Fig. 3.20.: Computation of reachable sets - overview.

➁ Once the reachable set has left the invariant, one has to check which guard sets have
been hit and intersect the reachable set with them. As the reachable set is repre-
sented by zonotopes and the guard sets by polytopes, it is necessary to transform
both types of sets into a halfspace representation in order to perform the intersec-
tion with standard software packages6. After the intersection with the guard set, a
zonotope has to be found which encloses the intersection such that one can continue
the computation of reachable sets with zonotopes.

➂ The next location after the hit of a guard set is determined by the transition (yi, yj)
associated with the guard set.

➃ Besides the new location, the initial continuous reachable set of the new location
has to be computed by the jump function: R′

j = K(yi,yj)Rj + k(yi,yj) and Rj is the

6Used Matlab tool: MPT-Toolbox [105]

76

3.5. Hybrid Systems

intersection of the reachable set with the guard set. The resulting set is again a
zonotope as the mapping is restricted to linear functions (see (2.1)).

➄ The reachable set within one location can hit several guard sets. However, one can
only continue the computation for one location, such that the possible next locations
yj, the reachable sets after jumps Rj , and the minimum time tj,startg for enabling
transitions, have to be stored in a list.

➅ The computation of reachable sets is continued with the first data structure of the
list, containing the new initial location y0 = yj, the new set of initial states X 0 = Rj

and the initial time t0 = tj,startg . If the list is empty, the computations are terminated.

The most challenging part of the presented procedure is the intersection of the reachable
set with guard sets and the enclosure of this intersection by a zonotope. This aspect is
detailed in the following subsection.

3.5.3. Intersections of Zonotopes with Polytopes

Before reachable sets are intersected with guard sets, the subintervals t ∈ [(k − 1)r, kr] in
which an intersection might take place have to be efficiently estimated. This is done by
over-approximating the guard sets and the reachable sets by multidimensional intervals; see
Fig. 3.21, using Prop. 2.3 for guard sets and Prop. 2.2 for reachable sets. The intersection
check of multidimensional intervals is computationally inexpensive as it is simply checked
whether the intervals for each dimension intersect. Only if there is an intersection for each
dimension, the multidimensional intervals intersect. The resulting over-approximative time
span of intersection is denoted by [t̃j,startg , t̃j,endg], where the index j refers to the new location
yj after the transition of the guard set is taken.

x
1

x
2

−1 0 1

0

0.5

1

1.5
guard set

reachable
set R([0, t∗])

initial set

(a) Reachable sets.

x
1

x
2

−1 0 1

0

0.5

1

1.5

Compute

guard set

enclosing
multidim. intervals

(b) Enclosure by multidimensional inter-
vals.

Fig. 3.21.: Over-approximation of the reachable set by multidimensional intervals.

For the obtained over-approximative time span [t̃j,startg , t̃j,endg], the representation of reach-
able sets is changed from G- to H-representation. This allows the intersection with the

77

3. Reachability Analysis

guard set7 to be computed by standard software packages8, which is illustrated in Fig. 3.22.
As the direct conversion of reachable sets from G- to H-representation is computationally
demanding (see Theorem 2.1), over-approximative methods presented in Sec. 2.5.6 are
applied.

The intersection of the H-representations allows the time interval of intersection
[tj,startg , tj,endg] to be narrowed, as some reachable sets only intersected when over-
approximated by multidimensional intervals. The same principle is applied to determining
the time tendinv when the reachable set leaves the invariant. First, multidimensional inter-
vals are used to over-approximate the reachable sets and the invariant. This allows the
conservative estimation t̃endinv to be obtained, which is refined to tendinv ≤ t̃endinv by checking
intersections after conversion to H-representation backwards in time.

x
1

x
2

−1 0 1
0

0.5

1

1.5
guard set

over-approx.
H-representation

(a) H-representation.

x
1

x
2

−1 0 1
0

0.5

1

1.5
guard set

intersection

(b) Intersection.

Fig. 3.22.: Over-approximative H-representation of the reachable set and its intersection with
the guard set.

After the intersection of the reachable set with the guard set, the reachable set is repre-
sented by polytopes. In order to continue the computation of reachable sets with zono-
topes, the obtained polytopes are enclosed by a zonotope as shown in Fig. 3.23, which is
discussed later in detail. In Fig. 3.23, the enclosing zonotope is also plotted together with
the reachable set, which allows the exactness of the enclosure to be assessed.

In order to formulate the overall procedure for the computation of reachable sets within one
location, the following operators are introduced: The operator reach() returns continuous
reachable sets as presented in Sec. 3.2 – 3.4. Further, the operator intersectionTimes()
over-approximates the time interval of guard intersection, and the operators for the conver-
sion to H- and G-representation are denoted by halfspaceConv() and generatorConv(),
respectively. The superscript H of the reachable sets RH indicates that the reachable set
has a halfspace representation. The algorithm for computing reachable sets within one
location is formulated in Alg. 5.

Note that there are two options for computing R([kr, (k + 1)r]) = reach(. . .): one is to

7The guard set may be represented by a V- or a H-polytope. Where the guard set is given by a V-polytope,
there exist standard algorithms for changing the representation to H-polytopes.

8Used Matlab tool: MPT-Toolbox [105]

78

3.5. Hybrid Systems

x
1

x
2

−1 0 1

0

0.5

1

1.5

jumps

over-approx.
zonotope R′

j

vertices of over-appr.
reachable set

(a) V-representation.

x
1

x
2

−1 0 1

0

0.5

1

1.5

hed

over-approx.
zonotope R′

j

reachable
set R([0, t∗])

(b) Over-approximating zonotope.

Fig. 3.23.: Over-approximative V-representation of the reachable set and its enclosure by a
zonotope.

compute the reachable set of the next time interval based on R([(k − 1)r, kr]). This has
the disadvantage that the obtained reachable set may contain trajectories that leave and
re-enter the invariant without changing the continuous dynamics, which causes an over-
approximation. The other option is to compute the reachable set of the next time interval
based on RH([(k − 1)r, kr]). In this case, no trajectories are contained that may re-enter
the invariant, however there is another over-approximation due to the halfspace conversion
(RH([(k − 1)r, kr]) ⊇ R([(k − 1)r, kr])).

Algorithm 5 Compute R′
j within a location yi

Input: Invariant inv, guard set g((yi, yj)), arguments for continuous reachable sets (see
Sec. 3.2 - 3.4)

Output: RH [0, tendinv], Rj

R([0, r]) = reach(arguments for continuous reachable sets)
RH([0, r]) = halfspaceConv

(
R([0, r])

)
∩ inv

k := 1
while RH([(k − 1)r, kr]) 6= ∅ or t < tf do
R([kr, (k + 1)r]) = reach(arguments for continuous reachable sets)
RH([kr, (k + 1)r]) = halfspaceConv

(
R([kr, (k + 1)r])

)
∩ inv

k := k + 1
end while
tendinv = (k − 1)r

RH([0, tendinv]) =
⋃tend

inv /r
k=1 RH([(k − 1)r, kr])

[tj,startg , tj,endg] = intersectionTimes
(
RH([0, tendinv]), g((yi, yj))

)

Rj = generatorConv
(
RH([tj,startg , tj,endg]) ∩ g((yi, yj))

)

79

3. Reachability Analysis

3.5.4. Enclosure of Polytopes by a Zonotope

This subsection deals with the challenge of finding a suitable over-approximating zonotope
for several polytopes P1, . . . ,Pµ. This is done according to Prop. 2.4, where a polytope is
enclosed by a parallelotope: Zencl = Λ box(Λ−1P). The enclosure is restricted to parallelo-
topes (=̂ zonotope of order 1) since the enclosure by a general zonotope is too complicated.
In Prop. 2.4 only a single polytope P is enclosed. However, since the computation is based
on the vertices of the polytope, one can extend the approach to the enclosure of many
polytopes by computing with the union of vertices of all polytopes.

It remains to find a good solution for the linear transformation by Λ−1. The column vectors
of Λ determine the direction of the generators of the enclosing parallelotope. The problem
can be reformulated to finding a zonotope tightly enclosing points in Rn. Much previous
work solved the problem of finding tightly enclosing oriented boxes in three-dimensional
space; see e.g. [17]. For n dimensions, enclosures of points have been investigated in [158].

Two different techniques for finding the matrix Λ are suggested: One which takes the
direction of the flow vector f(y, x, u, ρ) of the hybrid automaton into account and the
one in [158], which is purely based on the distribution of the vertices of the polytopes Pi.
First, the approach considering the flow vector is presented, where the flow vector after the
transition is taken, is considered. The other possibility of choosing the flow vector before
the transition is taken is discussed later. The direction ρ̂ of the flow vector is uncertain
within the reachable set, the input set and the parameter set. As a good estimate, the
flow vector is computed at the centers of the input, the parameter set, and the enclosing
box of the polytopes Pi:

ρ̂ =
f(yi, x

∗, u∗, ρ∗)

‖f(yi, x∗, u∗, ρ∗)‖2
,

x∗ = center (box(P1, . . . ,Pµ)) , u
∗ = center(Uyi), ρ

∗ = center(Pyi),

where box() is defined as in Prop. 2.3 and center() returns the volumetric center of a set.
By choosing ρ̂ as one of the column vectors of Λ, the enclosing zonotope is oriented in the
direction of the flow vector. The remaining column vectors are chosen as n−1 unit vectors
e(j) of the coordinate system, where e

(j)
i = 1 if j = i and e

(j)
i = 0 otherwise. The replaced

unit vector e(j) is the one that is best aligned with ρ̂, such that:

Λ = [. . . , e(j−1), ρ̂, e(j+1), . . .], |(e(j))T ρ̂| ≥ |(e(m))
T
ρ̂|, ∀m = 1 . . . n.

The procedure for the enclosure of the polytopes is illustrated for a simple two-dimensional
example, where fbefore = [1,−1]T and fafter = [−1,−1]T are the constant flow vectors
before and after the transition without a jump. The reachable sets are illustrated in
Fig. 3.24.

Another method, which does not consider the flow direction, has been proposed in [158].
This method is based on applying a principal component analysis (PCA) on the set of the
vertices of all polytopes P1, . . . ,Pµ. If one interprets the vertices as measured data points,
PCA generates a new orthogonal coordinate system such that the greatest variance of the
data is in the direction of the first coordinate, the second greatest variance in the direction
of the second coordinate, and so on. The principal component analysis is performed as

80

3.5. Hybrid Systems

x
1

x
2

−5 0 5 10
−15

−10

−5

0

5

states

guard set

reachable
set

f
before

(a) Reachable set.

x
1

x
2

−5 0 5 10
−15

−10

−5

0

5

hable

over-appr.
halfspace
representation

f
before

(b) Over-approximating halfspace repre-
sentation.

x
1

x
2

−5 0 5 10
−15

−10

−5

0

5

Zencl

P1, . . . ,Pµ

ρ̂ = f
after

(c) Intersection with guard set.

x
1

x
2

−10 0 10
−15

−10

−5

0

reachable
set

ρ̂ = f
after

(d) Reachable set of the next location.

Fig. 3.24.: Enclosure of the reachable set by a single zonotope.

shown below.

First, the mean value vm of all vertices v(1), . . . , v(r) is determined: vm = 1
r

∑r
i=1 v

(i). The
vertices are then translated by the mean value vm such that v̄(i) = v(i)−vm and stored in a
matrix: V̄ =

[
v̄(1), . . . , v̄(r)

]
. Next, the covariance matrix of the set of vertices is computed:

cov(V̄) =
1

r − 1
V̄ V̄T = U ΣV T ,

where U ∈ Rn×n and V ∈ Rn×n are unitary matrices that can be obtained from a singular
value decomposition. The transformation matrix is Λ = U = V since cov(V̄) is symmet-
ric. An example of the enclosure of intersected reachable sets by this method is given in
Fig. 3.25.

In the next subsection, it is outlined how the alternative approaches can be integrated into
an overall approach.

81

3. Reachability Analysis

x
1

x
2

−2 0 2 4 6 8
−10

−5

0

jumps

guard set

reachable
sets
P1, . . . ,Pµ

Zencl

(a) Intersected reachable set.

x
1

x
2

−2 0 2 4 6 8
−10

−5

0

R
cations

guard set

vertices v(i)Zencl

(b) Vertices of intersected reachable set.

Fig. 3.25.: Enclosure of the reachable set by principal component analysis (PCA).

3.5.5. Computing with Several Enclosing Zonotopes

In order to combine the advantages of different approaches for the enclosure of points,
one can compute several alternative enclosures Zencl

1 , . . ., Zencl
ω . From this follows that

starting from these enclosures, many reachable sets have to be computed in parallel within
the active location. The parallel computation of reachable sets has already been applied to
the reachability analysis of nonlinear continuous systems in Sec. 3.4. However, in this case,
the reachable set is not split, but all reachable sets over-approximate the exact reachable
set. From this follows that an unsafe set is only reached if all reachable sets (of a common
time interval) intersect the unsafe set.

The slightly modified procedure for the computation of the intersection with guard sets
is explained for the case where only two enclosing zonotopes Zencl

1 , Zencl
2 are used (which

can be extended in a straightforward way to more enclosing zonotopes). One difference to
the non-parallel computation is that the guard set is only reached if it is intersected with
both reachable sets R1([(k − 1)r, kr]), R2([(k − 1)r, kr]) . The polytopes obtained from
the intersection with a guard set are denoted by P1([t

j,start
g,1 , tj,endg,1]) and P2([t

j,start
g,2 , tj,endg,2]).

Because of the parallel computation, the combined entry and exit time of the guard set are
tj,startg = max(tj,startg,1 , tj,startg,2) and tj,endg = min(tj,endg,1 , tj,endg,2). Further, the combined polytopes
within a guard set are: P([(k−1)r, kr]) = P1[(k−1)r, kr]∩P2[(k−1)r, kr]. After obtaining
the polytopes P([(k − 1)r, kr]), the enclosure of the reachable sets is performed as shown
in the previous subsection.

The tighter enclosure of the reachable set when using two enclosing zonotopes is demon-
strated for the previous example shown in Fig. 3.24. The additional zonotope is ob-
tained by the same method, but the flow vector of the previous instead of the next
location is used. Both enclosing zonotopes, as well as the intersected reachable sets
R1([(k − 1)r, kr]) ∩R2([(k − 1)r, kr]), are illustrated in Fig. 3.26.

82

3.5. Hybrid Systems

x
1

x
2

−5 0 5 10

−10

−5

0

tinuous

Zencl
2

Zencl
1

ρ̂1

ρ̂2

(a) Intersection with guard set.

x
1

x
2

−5 0 5 10

−10

−5

0

first

reachable
set

ρ̂1

(b) Reachable set of the next location.

Fig. 3.26.: Enclosure of the reachable set by two zonotopes.

3.5.6. Numerical Example

The presented techniques are applied to a benchmark example proposed in [62]. It considers
a room heating scenario, where in each room there is one or no heater. In contrast to the
proposed benchmark example, it is not considered that heaters can be moved from one
room into another. Extensions of the proposed example are that the input is modeled
uncertain and that the switching is not deterministic. The example considered in this
work consists of 6 rooms with heaters in the rooms 1 and 6; see Fig. 3.27. The heaters are
switched on if the temperature drops below T low+∆T and switched off if the temperature
exceeds T high−∆T with T low = 22℃, T high = 24℃ and ∆T = [0, 0.05]℃. The temperature
dynamics in room i is

ẋi = c · hi + bi(u− xi) +
∑

i 6=j

aij(xj − xi)

with constants aij , bi and c. The rate of heat exchange aij between two adjacent rooms is
1. The transfer rate bi from inside the building to the outside is 0.16 for rooms at corners
and 0.08 for other rooms. The outside temperature u is in the interval of [0, 0.05], and the
heating power is c = 15 for both heaters. The variable hi is 1 if a heater is switched on in
room i and 0 otherwise. The reachable sets are computed for the time interval t ∈ [0, 1].

The over-approximation of the zonotopes to a halfspace representation has been performed
using method HI1 in Sec. 2.5.6. It is recalled that method HI1 is based on the order reduc-
tion method C for which the following settings have been used: κ = 5 for the preselection of
generators by length and λ̃ = 3 for preselected combinations of generators. The enclosure
of the polytopes within the guard sets has been performed by two zonotopes as explained
in Sec. 3.5.5, where the flow vector of the location before and after the transition is taken,
has been used. The time increment has been set to r = 0.01 and the computation time
was 16.8 seconds on a desktop computer with an AMD Athlon64 3700+ processor (single
core) for an implementation in Matlab.

In order to assess the halfspace conversion of this example, the zonotopes converted to

83

3. Reachability Analysis

halfspace representation have been recorded. As the uncertain input is small compared to
the uncertainty arising from the switching of the system dynamics, the recorded zonotopes
have only a few dominant generators, so that the halfspace conversion can be performed
with high accuracy. The distribution of the generator length is shown in the histogram in
Fig. 3.28. In Tab. 3.5, the mean values of the relative over-approximation index (υ/υC)
for different methods are presented, where υC is the over-approximation index of method
C. The reason for the relative over-approximation index is that the absolute value cannot
be computed – this requires the computation of the volume of the zonotopes of dimension
6 and order 10, which is intractable.

jumps

1 2 3

4 5 6

heater

Fig. 3.27.: Room layout.

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

p
ro
b
a
b
il
it
y
p

p = 0.9

‖l̂‖2

Fig. 3.28.: Histogram of generator length
‖l̂‖2.

Tab. 3.5.: Results for the conversion to halfspace representation using zonotopes from the
room heating example.

method B method HI1 method HD2 method HI2
mean of (κ = 3) (κ = 8, λ̃ = 3) (κ = 8, λ̃ = 3) (κ = 8, λ̃ = 3)

Θ/ΘC : 1.0001 1.0000 1.0581 0.9836
tcomp [s]: 0.0528 0.0979 0.2262 0.1191

The reachable sets are shown for selected projections in Fig. 3.29. Exemplary trajectories
within the reachable set are plotted in gray and were computed for randomized initial states
and inputs. In comparison with the trajectories, the reachable sets seem to be computed
for a longer time horizon. This is because the point in time when a transition is enabled by
a guard g((yi, yj)) is uncertain within [tj,startg , tj,endg], as discussed in Sec. 3.5.3, so that the
time uncertainty increases with each discrete transition. A possible verification scenario
would be to analyze whether a certain combination of room temperatures is enabled (or
avoided) by the switching controller.

3.6. Summary

In this chapter, reachable sets were computed for continuous and hybrid systems. All
presented approaches use zonotopes as a set representation, compute with uncertain inputs,
and are based on the computation of reachable sets for linear time invariant (LTI) systems.

84

3.6. Summary

22 23 24
21

21.5

22

22.5

23

23.5

24

x
1

x
2

<

initial
set X 0

reachable set

simulations

(a) Projection of x1, x2.

22 23 24
22

22.5

23

23.5

24

x
1

x
6

X 0

(b) Projection of x1, x6.

21 22 23
20.5

21

21.5

22

22.5

x
3

x
4

hable
k

X 0

(c) Projection of x3, x4.

21 22 23
22

22.5

23

23.5

24

x
5

x
6

X 0

(d) Projection of x5, x6.

Fig. 3.29.: Reachable sets of the room heating scenario.

Due to the importance of LTI systems, known methods have been recapitulated. It is
noteworthy that reachable sets of LTI systems can be computed without the wrapping-
effect when applying the algorithm presented in [72].

Known approaches for LTI systems have been extended to linear systems with constant,
but uncertain parameters. Two different representations of uncertain parameters in the
system matrix of the linear system have been investigated: interval matrices and matrix
zonotopes. In addition, it has been shown how to abstract the more general case of matrix
polytopes to interval matrices or matrix zonotopes. A possible future direction is the
investigation of linear systems where the parameters are time varying.

The computation of reachable sets with zonotopes has been extended to nonlinear systems

85

3. Reachability Analysis

by conservative linearization, i.e. the linearization error is added as an additional uncertain
input. There are two reasons that motivate the linearization of the system dynamics: The
superposition principle is applicable and sets of future points in time can be obtained by
linear transformation so that zonotopes are mapped to zonotopes. The set of linearization
errors is obtained via interval arithmetics, which allows the determination of the errors for
arbitrary nonlinear systems that are Lipschitz continuous. A future issue is to avoid the
required over-approximation of zonotopes before a split. This could possibly be resolved by
not splitting zonotopes, but computing with families of zonotopes such that the sets A and
B enclose a zonotope A∪B ⊇ Z and further define the split zonotopes by Z1 = A∩Z and
Z2 = B ∩ Z. The numerical results for continuous systems have shown that systems with
up to 100 continuous state variables can be handled. This is not achievable for nonlinear
systems when the reachable set has to be split numerous times.

The approaches for continuous systems have been extended to hybrid systems by addi-
tionally considering the intersection with guard sets. Thereby, the difficulty is that the
intersection of guard sets with zonotopes does not yield a zonotope in general, even if
the guard set would be represented by a zonotope. For this reason, zonotopes are over-
approximated by a halfspace representation so that the intersection with guard sets can
be obtained. The resulting intersections have to be over-approximated by a zonotope to
continue the computation with zonotopes. In order to minimize the over-approximation by
the enclosure of a single zonotope, the computation with several zonotopes in parallel has
been pointed out. The results for the conversions to halfspace representation are already
quite promising. There is more potential for the over-approximation of polytopes by a
single zonotope. Due to this complicated task, the enclosure has been restricted to paral-
lelotopes (zonotopes of order 1). This problem can be reformulated to enclosing a set of
points in Rn by a parallelotope so that the volume of the parallelotope is minimized. Even
for hyperrectangles (a special case of parallelotopes), this problem is unsolved in literature
to the best knowledge of the author.

86

4. Stochastic Reachability Analysis

The previously introduced approaches for reachability analysis of continuous and hybrid
systems are extended to approaches for stochastic systems. Stochastic reachability analysis
not only answers the question of whether the system is safe or not, but also returns
the probability for the safe operation of the system. This is especially important for
applications that are inherently unsafe, such as road traffic, which will be investigated
later.

4.1. Introduction and State of the Art

Continuous stochastic systems can be described by stochastic differential equations, where
the derivative of random variables is computed in part by a deterministic drift term and
a stochastic diffusion term [67, 128]. Discrete stochastic systems can be described by
stochastic automata, where the transitions from one discrete state to the other is given
by a probability which is possibly depending on a finite set of discrete inputs [36]. One
of the best known examples of a stochastic automaton is the Markov chain, which will be
introduced in more detail later in this chapter.

Combining continuous and discrete stochastic systems to stochastic hybrid systems results
in a vast variety of possible definitions. This is because one can introduce stochastic
dynamics in many parts of a standard hybrid automaton (see Def. 3.3): In transitions,
guard functions, jump functions, or flow functions. Depending on which parts of the
hybrid automaton are kept deterministic, many definitions are possible:

• Piecewise deterministic processes are stochastic hybrid systems with deterministic
continuous evolution [53].

• Switching diffusion processes are stochastic hybrid systems with spontaneous transi-
tions, but there exist no forced transitions and reset functions [68].

• Stochastic hybrid systems in the sense of [85] do not model spontaneous transitions.

• Generalized stochastic hybrid systems introduced in [33] is the most general class
which models stochastic continuous evolution, forced transitions, continuous resets,
and spontaneous transitions.

In terms of safety verification for stochastic dynamic systems, guaranteed results for large-
scale systems have only been obtained for purely discrete stochastic systems [95] which
extend the classical model checking approach [16, 41].

For large-scale hybrid systems, the only possible method for safety verification is Monte
Carlo simulation [147]. The disadvantage of Monte Carlo simulation is that it cannot give
guarantees or upper bounds for the probability that an unsafe set is hit. The advantage

87

4. Stochastic Reachability Analysis

of Monte Carlo simulation is that the variance of the result depends on the number of
simulations and not on the size of the continuous state space. This explains the applicability
to large-scale stochastic hybrid systems. More details on the convergence results of Monte
Carlo simulation can be found later in Sec. 5.7. It can also be shown that the probability
of safety converges to the exact result when the number of simulations goes to infinity
[147].

Another possibility to compute the stochastic reachable set of a hybrid system is to abstract
its dynamics to a Markov chain. Different methods for the abstraction to Markov chains
have been proposed. Based on the finite difference method [104], Markov chain abstractions
have been obtained in [98, 140, 141]. The generation of Markov chains via Monte Carlo
simulation or classical reachability analysis has been performed in [111, 150].

Stochastic reachability analysis has been reformulated to a stochastic optimal control prob-
lem in [1–3]. The optical control problem is solved via dynamic programming, and practical
solutions are realized via a discretization of time and the continuous state space. From
this follows that this approach as well as the approaches abstracting to Markov chains
suffer from the curse of dimensionality because the state space has to be discretized, which
results in an explosion of the number of discrete states.

Theoretical contributions for the reachability problem of stochastic hybrid systems make
use of Dirichlet forms [34] and Bayesian statistical inference [35]. As already mentioned in
the introduction of this thesis, upper bounds on the probability of reaching an unsafe set
can be obtained via barrier certificates [139].

Contributions

In this thesis, two different approaches for the reachability analysis of stochastic systems
are investigated. First, a novel method for linear systems with uncertain input u ∈ U
and Gaussian white noise input ξ is presented. This approach is an extension of Sec. 3.2,
since Gaussian white noise is additionally considered. Thus, a stochastic input ξ is mixed
with an uncertain input u for which no stochastic information is given. A specialty of
the proposed approach is that an upper bound for being in an unsafe set can be guaran-
teed. To the best knowledge of the author, upper bounds have only been computed by
barrier certificates so far [139]. Note that barrier certificates compute an upper bound
for reaching an unsafe set while the presented approach computes an upper bound for
being in an unsafe set – this difference is explained in detail later. A further property is
that the approach inherits the computational efficiency of the approach for linear systems
presented in Sec. 3.2 so that it can be applied to systems with more than 100 continuous
state variables. One of the reasons for the efficiency is that the approach does not require
any discretization of the continuous state space. The guarantee of a probability bound is
achieved by enclosing possible probability density functions by so-called enclosing proba-
bilistic hulls. This approach is presented in detail in Sec. 4.2 and is based on the work
previously published in [189].

The second approach abstracts continuous or hybrid systems to Markov chains as it has
been done in [111, 150], but with certain extensions: The reachability analysis used for the
abstraction is more elaborate, and the abstraction is computed for adjacent time intervals
instead of points in time which allows one to consider all times instead of sampled times.

88

4.1. Introduction and State of the Art

Two abstraction techniques are addressed: Abstraction via Monte Carlo simulation and
via reachability analysis. Advantages as well as disadvantages are highlighted. This ap-
proach is presented in Sec. 4.3 and is later used for the safety assessment of autonomous
cars in Chap. 5. Since the Markov chains have to be updated during the operation of
the autonomous car, the Markov chain updates have to be efficient. In order to adjust
the Markov chain to the application, the state space discretization has to be chosen inde-
pendently of the time discretization. This is not possible for the finite difference method.
There, the transition probabilities from one cell to a neighboring cell are chosen such that
the solution converges weakly to the exact solution of the original stochastic differential
equation. Since only neighboring cells are considered, the state space and time discretiza-
tion are coupled [98, 140, 141], which makes this approach unsuitable for the time critical
autonomous car application. The drawback of the Markov chain abstraction is that it can
only be applied to hybrid systems with a few (up to 3 − 5) continuous state variables.
Markov chain abstraction using reachability analysis has been presented by the author in
works on safety assessment of autonomous cars [179, 181–183, 185, 186, 188, 190].

In summary, the Markov chain abstraction is applicable to a general class of stochastic
hybrid systems, but can only be applied to problems with up to 3 − 5 continuous state
variables due to the discretization. This is in contrast to the enclosing probabilistic hull
approach, which is only applicable for linear continuous systems but allows results for
large instances of this class to be computed. Further, the enclosing probabilistic hull
approach can guarantee results, while the probabilities of the Markov chain abstraction
are approximated.

Definitions of Stochastic Reachable Sets

In the works on stochastic reachability referenced so far [1–3, 34, 35, 98, 139–141], stochastic
reachability analysis is defined based on the event that the state of the system reaches an
unsafe set.

P
(
reachtf

)
= P

(
{ω ∈ Ω|∃t ∈ [0, tf] : x(t, ω) ∈ X unsafe}

)
,

P
(
reach∞

)
= P

(
{ω ∈ Ω|∃t ≥ 0 : x(t, ω) ∈ X unsafe}

)
,

(4.1)

where ω is an elementary event and Ω is the set of elementary events.

The probability for the finite time horizon P (reachtf) is computed straightforward when
applying Monte Carlo simulation with importance sampling: P (reachtf) = NXunsafe/Ns,
where NXunsafe is the number of simulations that reach X unsafe and Ns is the total number
of simulations. However, this definition does not generalize to the definition of a reachable
set in Def. 3.1. For this reason, a stochastic reachable set of a continuous system for a
point in time is used as a synonym for the probability density function (PDF) of the state.

Definition 4.1 (Stochastic Reachable Set of a Point in Time): Given is a random
process x(t) of a system. The stochastic reachable set at a certain point in time r is defined
as the probability density function fx(x, t = r) of the random state vector x at t = r. �

The stochastic reachable set for a time interval t ∈ [0, r] is based on the definition for a
point in time.

89

4. Stochastic Reachability Analysis

Definition 4.2 (Stochastic Reachable Set of a Time Interval): The stochastic
reachable set of a time interval [0, r] is defined as

fx(x, [0, r]) =

∫ r

0

fx(x, t) · ft(t)dt, ft(t) =

{
1/r for t ∈ [0, r],

0 otherwise,

where t is a random variable which is uniformly distributed within the time interval. �

For hybrid system, the reachable set has to be complemented by the probability that the
discrete state is in a certain location, as has been done for the classical reachable sets in
Def. 3.4. The above definitions allow the following conversion.

Proposition 4.1 (Reachable Set of a Stochastic Reachable Set): The reachable
set of a stochastic reachable set is the set for which the probability values of the stochastic
reachable set are non-zero:

R(t) = {x|fx(x, t) > 0}. �

The probability that a state is in the set of unsafe states X unsafe is computed as

P (x ∈ X unsafe, t ∈ [0, r]) =

∫

Xunsafe

fx(x, [0, r]) dx. (4.2)

This is different to the computation in (4.1), where one is interested in the probability that
a state has entered the unsafe state during a certain time interval. The results of (4.1)
and (4.2) are identical if the sets of unsafe states are absorbing; i.e. once a trajectory has
entered a set of unsafe states, it cannot leave this set anymore. A set of unsafe states X unsafe

can be made absorbing by modeling it as an invariant of a hybrid automaton without any
transitions to other locations. This can be achieved e.g. by setting the dynamics to ẋ = 0
within the unsafe set.

The definition of an over-approximative stochastic reachable set, which is also called
enclosing probabilistic hull, is introduced next. It allows the computation of the over-
approximated probability that the state is in an unsafe set. This concept is demonstrated
for linear continuous systems.

4.2. Enclosing Hulls of Probability Density Functions for

Linear Systems

Instead of computing the probability density function (PDF) of stochastic systems, the
attempt to compute the enclosing hull of probability density functions is pursued in this
section. A set of possible probability density functions occurs when the input of a system
is uncertain, but no probabilistic distribution of this input is known. One can think of an
enclosing probabilistic hull as an envelope for possible probability density functions. This
allows the concept of over-approximation to be applied to stochastic reachable sets (which
have been defined as probability density functions in Def. 4.1). In a first attempt, the
concept of enclosing probabilistic hulls has been developed for linear stochastic systems

90

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

with two different inputs. One input u(t) can take values within a set U as it has been
defined for the systems in Sec. 3.2-3.5. Note that no information about the probability of
a given trajectory u(t) is known. The other input ξ(t) is a Gaussian white noise signal.
The system under consideration is

ẋ = Ax(t) + u(t) + Cξ(t), (4.3)

x(0) : Ω → Rn, u(t) ∈ U ⊂ Rn, ξ : Ω → Rm,

where A ∈ Rn×n, C ∈ Rn×m and x, ξ are random vectors which are functions from the set of
elementary events Ω to real valued vectors. The given linear stochastic differential equation
is also known as the multivariate Ornstein-Uhlenbeck process [67]. The combination of both
inputs u(t) and Cξ(t) can be seen as white Gaussian noise whose mean is unknown within
the set U . In order to handle this kind of system, the concept of enclosing probabilistic
hulls is introduced.

Definition 4.3 (Enclosing Probabilistic Hull): The enclosing probabilistic hull of all
possible probability density functions fx(x, t = r) for inputs u ∈ U is denoted by f̄x(x, t =
r) and is exemplary defined for (4.3) as

f̄x(x, t = r) = sup
{
fx(x, t = r)

∣∣x(t) is a solution of (4.3), u(t) ∈ U , fx(x, t = 0) = f 0
}
.
�

The enclosing probabilistic hull for a time interval is defined as f̄x(x, [0, r]) =
sup{f̄x(x, t)|t ∈ [0, r]} and can be seen as an over-approximative stochastic reachable
set. The enclosing probabilistic hull allows the computation of an upper bound p̄ of the
probability that the state is in an unsafe set X unsafe for the time interval [t, t]:

p̄([t, t]) :=

∫

Xunsafe

f̄x(x, [t, t]) dx.

The solution of the Ornstein-Uhlenbeck process is recalled in the following subsection as
its solution is not as well known as the one for deterministic linear systems.

4.2.1. Solution of the Ornstein-Uhlenbeck Process

In order to derive the solution of the Ornstein-Uhlenbeck process, the Gaussian white noise
ξ in (4.3) is written as the derivative of the Wiener process W: ξ = dW

dt
, dW = N(0, I ·dt)

where I is the identity matrix and N(µ,Σ) denotes a random vector of Gaussian or so-
called normal distribution with expected value µ and covariance matrix Σ. In analogy to
deterministic linear systems, the solution of (4.3) is

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)u(τ)dτ

︸ ︷︷ ︸
xd(t)

+

∫ t

0

eA(t−τ)CdW

︸ ︷︷ ︸
xs(t)

.
(4.4)

Note that in this case the input trajectory u(t) is given and not uncertain in a set U . Due to
the superposition principle of linear systems, the above solution is computed separately for

91

4. Stochastic Reachability Analysis

xd(t) and xs(t). Assuming that the initial state has a Gaussian distribution, the solution
xd(t) is also Gaussian as the linear map eAtx(0) preserves the Gaussian distribution and
u(t) is deterministic. Thus, the solution of xd(t) is xd(t) = N(µd(t),Σd(t)) with

µd(t) = eAtµ(0) +

∫ t

0

eA(t−τ)u(τ)dτ

Σd(t) = eAtΣ(0)eAtT

using
α +DN(µ,Σ) = N(α +Dµ,DΣDT), α ∈ R, D ∈ Rn×n (4.5)

for the solution of Σd(t). The random variable xs(t) also has a Gaussian distribution which
follows directly from xs(t) =

∫ t

0
eA(t−τ)CdW (dW = N(0, I · dt)), the multiplication rule

in (4.5), the addition rule

N(µ1,Σ1) +N(µ2,Σ2) = N(µ1 + µ2,Σ1 + Σ2) (4.6)

and the fact that the integral of xs(t) can be written as an infinite sum using the Riemann
integral. Thus, the probability distribution of xs(t) can be fully characterized by its mean
value and covariance:

xs(t) = N(0,Σs(t))

Σs(t) = E(xs(t)xs(t)
T)−E(xs(t))E(xs(t))

T

︸ ︷︷ ︸
=0

,

where Σs(t) can be obtained as shown in [67, p. 87] by

Σs(t) =

∫ t

0

eA(t−τ)CCT eA
T (t−τ)dτ.

The integral can be explicitly evaluated if AAT = ATA; see [67, p. 109]. On that account,
the system equation (4.3) is diagonalized by defining x∗ = Q−1x, where Q is the matrix of
eigenvectors of A such that A∗ = Q−1AQ = diag(λ), C∗ = Q−1C, and λ is the vector of
eigenvalues. Hence, the solution of Σ∗

s(t) [67, p. 109] is:

[Σ∗
s(t)]ij =

(C∗C∗T)ij
λi + λj

(1− e(−λi−λj)t), Σs(t) = QΣ∗
s(t)Q

T . (4.7)

The result of x(t) is the basis for the representation of enclosing probabilistic hulls of the
Ornstein-Uhlenbeck process.

4.2.2. Representation of Enclosing Probabilistic Hulls

The Gaussian distribution of x(t) for a given input trajectory u(t) motivates the use of
multivariate Gaussian distributions with uncertain mean as a representation for enclosing
probabilistic hulls. The uncertain mean originates from the set of possible inputs U . The
representation of enclosing probabilistic hulls is introduced step-by-step. First, the repre-
sentation of sets with zonotopes is recalled. Next, it is shown that random variables with

92

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

Gaussian distribution can be represented by probabilistic zonotopes. Finally, probabilistic
zonotopes with uncertain mean are defined which serve as the representation for enclosing
probabilistic hulls.

Zonotopes Z have been defined in Def. 2.3 and are recalled for better readability:

Z =
{
x ∈ Rn

∣∣x = c+
e∑

i=1

βi · g(i), −1 ≤ βi ≤ 1
}

where c, g(1), . . . , ge ∈ Rn, c is referred to as the center and g(i) are referred to as the
generators of Z. Zonotopes are centrally symmetric; the order of a zonotope is ˆ̺ = e

n
,

and zonotopes are denoted by Z = (c, g(1), . . . , g(e)). A zonotope can also be seen as the
Minkowski sum of a finite set of line segments l̂i = [−1, 1] · g(i); see Fig. 2.2.

By replacing the intervals βi ∈ [−1, 1] with pairwise independent Gaussian distributed
random variables Ni(0, 1), one can define the following probabilistic zonotope with certain
mean:

Definition 4.4 (G-Zonotope): A Gaussian zonotope (G-zonotope) with certain mean
is defined as a random variable Z:

Z = c+
o∑

i=1

Ni(0, 1) · g (i)

where g (1), . . . , g (o) are the generators which are represented by a different font in order
to distinguish them from generators of regular zonotopes. G-zonotopes are denoted by
Z = (c, g (1), . . . , g (o)). �

For further derivations, it is advantageous to show that G-zonotopes with certain mean
have a multivariate Gaussian probability density function. This result also shows that the
restriction to zero mean Gaussian distributions with variance 1 in Def. 4.4 is no loss of
generality.

Proposition 4.2 (Gaussian Distribution of G-Zonotopes): The probability density
function of a G-zonotope with certain mean and of order greater or equal 1 (o ≥ n) can
be formulated as a multivariate Gaussian distribution with

fZ(x) = (2π)−
o
2 det(Σ)−

1
2 exp(−0.5(x− c)TΣ−1(x− c)),

Σ = GGT

where Σ is the covariance matrix, c is the center and G =
[
g (1) . . . g (o)

]
is the matrix of

probabilistic generators. �

Proof: Due to the independence of the random variables Ni of the generators, the joint
distribution is computed as the product of the PDFs of each random variable:

fN(y1, . . . , yo) :=

o∏

l=1

fNl
(yl) =

o∏

l=1

(
√
2π)−1 exp(−0.5yl

2)

!
= (2π)−

o
2 det(Σ)−

1
2 exp(−0.5yTΣ−1y)

(4.8)

93

4. Stochastic Reachability Analysis

from which follows that Σ = I has to be the identity matrix. Next, the random variables
Ni of the generators are mapped to the random vector Z of the zonotope: Z = c + G ·N
where N =

[
N1 . . . No

]T
, such that µ∗ = c and Σ∗ = G · I · GT = G · GT ; see (4.5). �

Conversely, one can show that a multivariate Gaussian distribution can always be repre-
sented by n generators:

Proposition 4.3 (Probabilistic Generators of a Gaussian Distribution): A pos-
sible G-zonotope Z with n probabilistic generators representing a zero-mean multivariate
Gaussian distribution is:

Z =
n∑

i=1

Ni(0, 1)
√
λiq̂

(i)

where λi are the eigenvalues and q̂(i) are the eigenvectors of the covariance matrix Σ of the
multivariate Gaussian distribution fN. �

Proof: Σ is diagonalized using the eigenvector matrix Q̂ and the vector of eigenvalues λ:

Σ = Q̂ diag(λ) Q̂T = Q̂ diag(λ)0.5(diag(λ)0.5 Q̂)T

and Q̂T = Q̂−1 as Q̂ is orthogonal. Since the converse of Prop. 4.2 is satisfied, one can see
that G = Q̂ diag(λ)0.5 = [

√
λ1q̂

(1), . . . ,
√
λnq̂

(n)] is the new generator matrix. �

In order to represent enclosing probabilistic hulls f̄x, the multivariate Gaussian distribution
is extended by an uncertain mean:

Definition 4.5 (EH-Zonotope): An enclosing hull zonotope (EH-zonotope) denoted by
Z is defined as a G-zonotope Z where the center is uncertain and can have any value
within a zonotope Z. The combination of the random vector Z with the set Z is indicated
by the ⊞ operator:

Z := Z ⊞ Z, Z = (c, g(1), . . . , g(e)),Z = (0, g (1), . . . , g (o)).

G-zonotopes with uncertain mean are also denoted by the mixed list of generators of the
zonotope and the G-zonotope: Z = (c, g(1), . . . , g(e), g (1). . . . , g (o)). If o ≥ n, the proba-
bilistic generators can be represented by the covariance matrix Σ according to Prop. 4.2:
Z = (c, g(1), . . . , g(e),Σ). �

As Z = Z ⊞ Z is not a random vector, there exists no probability density function, but
only an enclosing probabilistic hull which is similarly defined as in Def. 4.3:

f̄Z = sup
{
fZ∗

∣∣Z∗ = Z+ a, a ∈ Z
}
,

where Z, Z, Z are defined as in Def. 4.5. Combinations of sets with random vectors have
also been investigated in [20, 21]. From now on, variables such as Z representing enclosing
probabilistic hulls are denoted by enclosing hull variables. In Fig. 4.1 it is shown how an
enclosing probabilistic hull (EPH) determined by two non-probabilistic and two proba-
bilistic generators is built step-by-step from left to right. Operations on EH-zonotopes are
introduced next.

94

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

−4
−2

0
2

4

−4
−2

0
2

4
0

0.1

0.2

x
1

x
2

f x

states

(a) PDF of (0, g (1)).

−4
−2

0
2

4

−4
−2

0
2

4
0

0.05

0.1

x
1

x
2

f x

Determine

(b) PDF of (0, g (1), g (2)).

−5
0

5

−5

0

5
0

0.05

0.1

x
1

x
2

f x

(c) EPH of
(0, g(1), g(2), g (1), g (2)).

Fig. 4.1.: Construction of a G-zonotope with uncertain mean.

4.2.3. Operations on Probabilistic Zonotopes

One of the main motivations to represent the uncertain mean of the Gaussian distributions
by zonotopes is that they are closed under Minkowski addition and linear transformation,
as shown in (2.1). The same rules can be applied to G-zonotopes since the definition of
G-zonotopes in Def. 4.4 has the same structure as for zonotopes. After introducing two
G-zonotopes Z1 = (0, g1, . . . , g (o)), Z2 = (0, f (1), . . . , f (u)), it follows that

LZ1 = (0, Lg (1), . . . , Lg (o)), L ∈ Rn×n

Z1 + Z2 = (0, g (1), . . . , g (o), f (1), . . . , f (u)).

Since G-zonotopes can always be represented by n generators, one can reduce the number
of generators after the addition of Z1 and Z2 as shown in Prop. 4.3. However, a much
simpler approach is to directly compute with the covariance matrices. With the equal-
ity of the generator and covariance representation (0,Σ) = (0, g1, . . . , g (o)), the preferred
computations for Z1 = (0,Σ1) and Z2 = (0,Σ2) are according to (4.5) and (4.6):

LZ1 = (0, LΣ1L
T), Z1 + Z2 = (0,Σ1 + Σ2).

Combining the results of zonotopes with the ones of G-zonotopes yields the addition
and multiplication rule for the EH-zonotopes Z1 = (c(1), g1, . . . , g(e),Σ1) and Z2 =
(c(2), f (1), . . . , f (u),Σ2):

LZ1 = (Lc(1), Lg(1), . . . , Lg(e), LΣ1L
T), L ∈ Rn×n

Z1 + Z2 = (c(1) + c(2), g(1), . . . , g(e), f (1), . . . , f (u),Σ1 + Σ2).

A further operator that is important for the computation with G-zonotopes is the con-
fidence set operator. This operator computes a zonotope in which the values of a G-
zonotope lie with a certain probability. It is later used to concentrate on the states within
a confidence set while neglecting the states outside this set. This is important for some
computations since the Gaussian distribution is nonzero everywhere.

95

4. Stochastic Reachability Analysis

Proposition 4.4 (Confidence Set Operator): The confidence set operator
conf(Z, m) transforms a zero-mean G-zonotope Z = (0, g1, . . . , g (n)) with n proba-
bilistic generators to a zonotope Z whose generators are obtained by stretching the
probabilistic generators by the factor m:

conf(Z, m) = (0, g(1), . . . , g(n)), g(i) = m · g (i), m ∈ R+ . (4.9)

The choice of n generators is no loss of generality since a G-zonotope can always be
represented by n generators; see Prop. 4.3. The obtained set encloses realizations of Z by
a probability of erf(m√

2
)n where erf() is the error function and n is the dimension of the

state space. �

Proof: The probability that a realization of a one-dimensional random variable x with
normalized Gaussian distribution is in an interval [−m,m] is well known to be P [−m <
x < m] = erf(m√

2
). The interval [−m,m] is referred to as a confidence interval from now

on. Having n instead of one generator, the event that a value lies in the set spanned by
all [−m,m] confidence intervals is erf(m√

2
)n. �

The definition of a confidence set operator is simply extended for an EH-zonotope by
conf(Z , m) := Z + conf(Z, m) and Z = Z ⊞ Z. A special confidence set is the γ-
confidence set (m = γ). Computations for states outside the γ-confidence set in Y =
Rn\conf(Z , γ) are not regarded for enclosing probabilistic hull computations. Instead
of computing with probability distributions, only the probability that a state is in Y is
preserved:

∫
Y fZdx = 1−erf(γ√

2
)n. This procedure simplifies the computations of enclosing

probabilistic hulls, as shown later. The presented operations are applied to computations
of enclosing probabilistic hulls in the following subsection.

4.2.4. Enclosing Probabilistic Hulls of Systems without Input

First, the reachable set of the homogeneous solution is presented as has been done for
deterministic dynamic systems in Sec. 3.2. This is possible since the superposition principle
can also be applied to stochastic linear systems; see Sec. 4.2.1. The reachable set of the
inhomogeneous solution due to the input u(t) + Cξ(t) is added later. The main steps for
the computation of enclosing probabilistic hulls are adapted from the reachability analysis
of deterministic systems in Chap. 3.

Basic Procedure

The basic steps for computing the enclosing probabilistic hull of the homogeneous solution
for a time interval t ∈ [0, r] are:

1. Computation of the enclosing hull variable H (r) of the homogeneous solution for
t = r.

2. Computation of the set ∆HR, which encloses all homogeneous solutions starting from
the gamma confidence set conf(X 0, γ) of the initial enclosing hull variable.

96

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

3. Selection of the point in time t∗ from [0, r] for which the enclosing probabilistic hull
has the highest values. Enlargement of the enclosing probabilistic hull f̄H (t∗) by the
addition of the set ∆HR to f̄H ([0, r]), which ensures the enclosure of all probability
density functions for t ∈ [0, r].

The mentioned steps are illustrated in Fig. 4.2.

2 3 4

−4

−2

0

2

4

6

x
1

4

6

x
2

x
1

x
1

x
2 x

2

f

f̄H (0)

f̄H (r)

conf(X 0, γ)

simulations

∆HR

f̄H ([0, r])

➀ ➁ ➂

Fig. 4.2.: Computation of the enclosing probabilistic hull for a time interval.

Time Point Solution

The enclosing hull variable of the homogeneous solution H (r) follows directly from the
solution of the Ornstein-Uhlenbeck process (4.4):

H (r) = eAr
X

0,

where X 0 is the initial enclosing hull variable. The computation of the enclosing proba-
bilistic hull for a time interval is a more complicated issue. This is because an enclosing
probabilistic hull has to be found for Gaussian probability density functions which are
non-zero everywhere. Note that the computation of the enclosing probabilistic hull for the
time interval [0, r] differs from the previously published work in [189].

Time Interval Solution

As already mentioned, the enclosing probabilistic hull is computed in two steps. First,
the trajectories of the homogeneous solution starting from the gamma confidence set
conf(X 0, γ) are bounded by a set ∆HR. This set is not defined as the union of tra-
jectories but the union of trajectories translated such that they start in the origin:

∆HR(t) = {xh(t)− x(0)|t ∈ [0, r], x(0) ∈ conf(X 0, γ)}. (4.10)

This is also illustrated in the middle figure of Fig. 4.2. The gamma confidence set has to be
applied in order to bound the values xh(t)−x(0) since x(0) can possibly take values within

97

4. Stochastic Reachability Analysis

Rn due to the Gaussian distribution of the initial set. According to (3.4), the trajectory
for a time interval can be over-approximated by

xh(t) ∈ x(0) +
t

r
(eArx(0)− x(0)) + F x(0), t ∈ [0, r].

Inserting the over-approximation of xh(t) in (4.10) results in

∆HR([0, r]) ⊆
{ t

r
(eArx(0)− x(0)) + F x(0)

∣∣∣t ∈ [0, r], x(0) ∈ conf(X 0, γ)
}

⊆
{ t

r
(eArx(0)− x(0))

∣∣∣t ∈ [0, r], x(0) ∈ conf(X 0, γ)
}

+
{
F x(0)

∣∣∣x(0) ∈ conf(X 0, γ)
}

= CH(0, (eAr − I)conf(X 0, γ)) + F conf(X 0, γ).

(4.11)

The above formula allows the bounding of the trajectories {xh(t)|t ∈ [0, r]} by
x(0) + ∆HR([0, r]) with a probability of erf(γ√

2
)n since the enclosure holds only if

x(0) ∈ conf(X 0, γ); see Prop. 4.4. An alternative computation of {xh(t)|t ∈ [0, r]}
is x(r) + (−∆HR([0, r])), where the set ∆HR([0, r]) is multiplied by −1 and added by
Minkowski sum to x(r). This is possible since the homogeneous solution is reversible.

In the second step, it is determined what the highest value of the Gaussian distribution is
within the considered time interval. This is done by observing the evolution of the PDF
value of a state when following a trajectory of the homogeneous solution. For this problem,
the homogeneous solution without uncertain mean xh(t) is considered:

Proposition 4.5 (PDF-value Evolution of a State): The PDF value of the random
state x(t) is changed after the linear transformation with eAt from its initial value by a
factor e−tr(A)t, where tr() is the trace of a matrix, such that

fxh(x′, t) = e−tr(A)tfxh(x, 0), x′ = eAtx. �

Proof: Given is an infinitesimal element around the initial state x(0) which is axis-aligned
with the generators of the Gaussian distribution; see Fig. 4.3. The volume of the infinites-
imal element, which is a parallelotope, can be computed by the determinant of the vectors
of which it is spanned: V = det(ds · g (1), . . . , ds · g (n)) = dsndet(G), where G is the matrix
of probabilistic generators. The volume of the infinitesimal element after the mapping with
eAt is V ′ = dsndet(eAtG) = dsndet(eAt)det(G).

The ratio of the value of the probability density function before and after the mapping is
determined by the ratio of the volumes of the infinitesimal elements; see e.g. [153, p. 145]:

fxh(x′, t)

fxh(x, 0)
=

V

V ′ =
1

det(eAt)

Furthermore, it is well known that det(eAt) = etr(At) such that det(eAt)−1 = e−tr(A)t. �

98

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

g (2)

g (1)

eArg (2)

eArg (1)

x(0)

x(r)

s2

s1
s3

s4

x(t)

∆HR + x(0)

s1 = ds‖g (1)‖2
s2 = ds‖g (2)‖2
s3 = ds‖eArg (1)‖2
s4 = ds‖eArg (2)‖2

Fig. 4.3.: Mapping of an infinitesimal area around a state.

This result shows that the PDF values have a maximum for t = 0 or t = r if t ∈ [0, r] since
e−tr(A)t is monotone. The same result is obtained when adding the uncertain mean so that
the enclosing probabilistic hull values are either maximal for t = 0 or t = r. The idea for
the computation of an enclosing probabilistic hull is: Pick the enclosing probabilistic hull
of the point in time where its values have a maximum. Then, assume this maximal value
for the whole time interval t ∈ [0, r]. This is done by adding the uncertain set ∆HR([0, r])
with appropriate sign to X 0 or H (r):

H ([0, r]) =

{
X 0 +∆HR, if tr(A) > 0

H (r) + (−∆HR), otherwise.

∆HR = CH(0, (eAr − I)conf(X 0, γ)) + F conf(X 0, γ).

(4.12)

Note that the proposed enclosing hull variable is only valid by a probability of P (x(0) ∈
conf(X 0, γ)) = erf(γ√

2
)n; see Prop. 4.4. The remaining probability is added to the

probability that the system intersects the unsafe set X unsafe, as shown later. The over-
approximation introduced above cannot be quantified analytically. However, for a numer-
ical example, the probability of hitting an unsafe set is later compared to the solution for
points in time in Fig. 4.10. Numerical examples of the computation of f̄H ([0, r]) can be
found in Fig. 4.4 for the one- and two-dimensional case.

For further time intervals [kr, (k+1)r], k ∈ N+, the enclosing hull variable is computed as

H ([kr, (k + 1)r]) = eAr
H ([(k − 1)r, kr]).

Next, the uncertain input is additionally considered.

99

4. Stochastic Reachability Analysis

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

x

f x

f̄H ([0, r])

fxh(r)

fx(0)

(a) One-dimensional example.

Compute

f̄H ([0, r])

fxh(r)

fx(0)

(b) Two-dimensional example.

Fig. 4.4.: Enclosure of two Gaussian distributions.

4.2.5. Enclosing Probabilistic Hulls of Systems with Input

Due to the linearity of the Ornstein-Uhlenbeck process, the enclosing hull variable of the
input v = u+ Cξ can be computed as in Prop. 3.2 to

P([kr, (k + 1)r]) = eAr
P([(k − 1)r, kr]) + P(r) (4.13)

which follows directly after substituting U by U ⊞ Cξ. The solution of P(r) is computed
as

P(r) = PR(r)⊞ xp(r),

where PR(r) is the reachable set due to the uncertain set U as presented in Sec. 3.2.2 and
xp(r) = (0,Σs(r)) is the solution due to Gaussian white noise as shown in (4.7).

It remains to compute the enclosing probabilistic hull for the first time interval in order
to apply the recursive computation in (4.13). The enclosing hull variable P([0, r]) is
over-approximated by its γ-confidence set. Without loss of generality, one can assume
that the set of possible inputs u ∈ U contains the origin. In the event that the origin
is not contained, a new set of uncertain inputs Ũ = U − ũ is defined such that 0 ∈ Ũ
and the effect of the constant input ũ is computed separately as presented in Sec. 3.2.2.
Since besides 0 ∈ Ũ the inhomogeneous solution due to the Gaussian white noise ξ(t)
has zero-mean, the origin is an element of the γ-confidence set conf(P(t), γ), ∀t. From
this follows that the reachable set conf(P(t), γ) is growing from the origin, which has
been shown for deterministic linear systems in Prop. 3.3. Hence, the input solution can be
over-approximated by

conf(P([0, r]), γ) = conf(P(r), γ) = PR(r)⊞ conf(xp(r), γ). (4.14)

The constant input ũ is considered similarly as for deterministic linear systems in (3.10):

100

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

∆xh(t) + x̃p(t) ⊆ 0 + t
r

[
eArx(0)− x(0)

]
+F x(0)+

0 + t
r
[x̃p(r)− 0] +A−1F ũ, t ∈ [0, r]

From this follows that

∆HR :=∆HR(t) + P̃(t)

=CH(0, (eAr − I)X 0 + P̃(r)) + FX 0 + A−1F ũ, X 0 = conf(X 0, γ).

Using the obtained results, Alg. 3 for reachable sets of deterministic linear systems is
extended to the computation of enclosing hull variables in Alg. 6. In order to compute
with the input U instead of Ũ as in Alg. 3, the inhomogeneous solution P̃ is subtracted in
the computation of ∆HR. Note that for notation reasons, the enclosing hull variables at
time intervals are indicated by an index only (Rk=̂R([kr, (k + 1)r])).

Algorithm 6 Compute R([0, tf])

Input: Initial enclosing hull variable X
0, matrix exponential eAr, noise matrix C, input

set U , correction matrix F , time horizon tf
Output: R([0, tf])

P̃(r) → Alg. 3
∆HR = CH(0, (eAr − I)X 0 + P̃(r))− P̃(r) + FX 0 + A−1F ũ, X 0 = conf(X 0, γ)

R̃0 =

{
X 0 +∆HR, if tr(A) > 0

H (r) + (−∆HR), otherwise.

PR
0 → Alg. 3

xp
0
∗
= (0,Σs(r))

xp
0 = conf(xp

0
∗, γ)

R0 = R̃0 + (PR
0 ⊞ xp

0)
for k = 1 . . . tf/r − 1 do

R̃k = eAr R̃k−1

PR
k → Alg. 3

xp
k = eAr xp

k−1 + xp
0
∗

Rk = R̃k + (PR
k ⊞ xp

k)
end for
f̄R([0, tf]) = sup(f̄R([0, r]), . . . , f̄R([tf − r, tf])

The proposed algorithm differs from the algorithm proposed in [189] in three major points:
Alg. 6 does not suffer from the wrapping-effect, the possibility that the input U does not
contain the origin is considered, and the computation of the enclosing hull variable R̃0 has
been changed. In the next subsection, a method is presented on how to over-approximate
the probability that the state is in an unsafe set when the enclosing probabilistic hulls are
given.

101

4. Stochastic Reachability Analysis

4.2.6. Probability of Entering an Unsafe Set

The enclosing probabilistic hulls allow the probability to be computed that the system
state is in an unsafe set within a certain time interval. The over-approximated probability
p̄([kr, (k + 1)r]) of hitting an unsafe set X unsafe is computed in general as

p̄([kr, (k + 1)r]) =

∫

Xunsafe

f̄R(x, [kr, (k + 1)r]) dx.

In order to be able to efficiently over-approximate the above integral, the enclosing prob-
abilistic hulls are over-approximated by polytopes; see Fig. 4.6. In addition, the sets of
unsafe states X unsafe are over-approximated by polytopes, too. Note that the enclosing
polytopes of the unsafe sets have dimension n whereas the dimension is n + 1 for the
polytopes over-approximating the enclosing probabilistic hulls1.

The polytopes over-approximating the enclosing probabilistic hulls R are constructed
by computing the maximum values for a given sequence of confidence sets Q1 =
conf(R, γ)\conf(R, m1), Q2 = conf(R, m1)\conf(R, m2), . . . and γ > m1 > m2 > . . . >
0; see Fig. 4.5. The maximum values hmax

1 , hmax
2 , . . . of the enclosing probabilistic hulls

within the corresponding sets Q1, Q2, . . . are determined as follows:

Proposition 4.6 (Maximum Probability Value within Confidence Sets):
The maximum probability value of an EH-zonotope Z within a confidence set
Qi = conf(Z , mi−1)\conf(Z , mi) (γ > m1 > m2 > . . . > 0) is

hmax
i := max{f̄Z (x)|x ∈ Qi} = (2π)−

n
2 det(Σ)−

1
2 exp(−0.5(mi)

2). �

Proof: The maximum probability value of an EH-zonotope Z = Z⊞Z can be reformulated
to the problem of finding the maximum probability value of a G-zonotope:

max({f̄Z (x)|x ∈ Qi}) = max({fZ(x)|x ∈ Rn\conf(Z, mi)})

The PDF-value of Z is computed as presented in (4.8):

fZ(x) = (2π)−
n
2 det(Σ)−

1
2 exp(−0.5xTΣ−1x) = (2π)−

n
2 det(Σ)−

1
2 exp(−0.5yTy), �

where y = Gx, Σ = GGT , and GT = G−1. The latter equality holds because the set of
generators G is obtained from Prop. 4.3 without loss of generality. The value of fZ(y) is
maximal under the condition that x ∈ Rn\conf(Z, mi) for y∗

j = mi and y∗
i = 0 where

i 6= j. Thus, max({f̄Z (x)|x ∈ Qi}) = fZ(y
∗) = (2π)−

n
2 det(Σ)−

1
2 exp(−0.5(mi)

2).

The values hmax
1 , hmax

2 , . . . are also illustrated for an enclosing probabilistic hull of a two-
dimensional state space in Fig. 4.6.

102

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

−5 0 5

−5

0

5

x
1

x
2

states after

conf(R, γ)

Q1 = conf(R, γ)\conf(R,m1)

conf(R, 0)=̂R

conf(R,m1)

Fig. 4.5.: Confidence sets of R.

enclosing
probabilistic hull

enclosing polytopes

unsafe set X unsafehmax
1

hmax
2

hmax
3

Fig. 4.6.: Over-approximation of an EH-zonotope by piecewise uniform distributions.

The enclosure by polytopes allows an over-approximated probability for being in the unsafe
set X unsafe to be computed.

Proposition 4.7 (Over-approximation of the Probability that x ∈ X unsafe): The
probability p̄ that a state x is within an unsafe set X unsafe is computed as

p̄ = 1− erf(
γ√
2
)2n +

∑

i

hmax
i · V(Qi ∩ X unsafe),

where V() is an operator returning the volume of a geometric object and Qi are the confi-
dence sets introduced in Prop. 4.6. �

1One additional dimension is needed for the probability values of the enclosing probabilistic hulls.

103

4. Stochastic Reachability Analysis

Proof: The expression 1−erf(γ√
2
)2n accounts for the probability that an unsafe set may be

reached due to neglecting the probability values outside the γ-confidence set; see Prop. 4.4.
In contrast to Prop. 4.4, the value erf(. . .)n is squared because the γ-confidence set has
been used for the homogeneous and the inhomogeneous solution in Alg. 6.

The other term accounts for the intersection of the enclosing polytopes with the unsafe set
as shown in Fig. 4.6. �

Because of the over-approximated computations, it is possible that p̄ > 1 which is then
limited to p̄ = 1 since a probability cannot be greater than 1. The probabilities for
specific time intervals p̄([kr, (k + 1)r]) are obtained according to Prop. 4.7. It is obvious
that the average probability within a larger time interval t ∈ [kr, (k + h)r] (h ∈ N+) is
1

h−k

∑k+h
k=k p̄([kr, (k + 1)r]). Before the probabilities p̄([kr, (k + 1)r]) are computed for a

numerical example, the following extension is presented.

4.2.7. Extension to non-Gaussian Initial and Input Distribution

The presented approach can be extended to non-Gaussian initial states and non-Gaussian
white noise. This is possible by enclosing hull variables X 0, P(r) which enclose the
non-Gaussian probability density functions of the initial state and the input solution; see
Fig. 4.7(a).

Additionally, if the initial state and input distribution are non-zero in a bounded set, one
can possibly guarantee the safety of the system. For this, the set of non-zero values N
has to lie within the γ-confidence sets of the EH-zonotopes representing the initial state
and the input solution, which is exemplarily illustrated in Fig. 4.7(b). In this case, the
probability that a state is outside the γ-confidence set is 0 for all times. From this follows
that p̄ in Prop. 4.7 changes to p̄ =

∑
i h

max
i · V(Qi ∩ X unsafe) which is possibly 0.

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

x

f x

enclosing
probabilistic
hull

non-
Gaussian
distribution

(a) Distribution with unbounded non-zero values.

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

x

f x

Compute

enclosing
probabilistic
hull

non-
Gaussian
distribution

γ-confi-
dence set

N

(b) Distribution with bounded non-zero
values.

Fig. 4.7.: Non-Gaussian distributions.

104

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

4.2.8. Numerical Examples

For the illustration of the presented techniques, the exemplary deterministic linear systems
in Sec. 3.2.3 are enhanced with Gaussian white noise. The first example is two-dimensional:

ẋ =

[
−1 −4
4 −1

]
x(t) + u(t) +

[
0.7 0
0 0.7

]
ξ(t), u(t) ∈

[
[−0.1, 0.1]
[−0.1, 0.1]

]
.

Several simulations of the specified system are illustrated in Fig. 4.8(a). Note that
these simulations differ from the ones in [189] since an error in the simulation of lin-
ear stochastic systems has been corrected. The corresponding enclosing probabilistic
hulls are computed for 250 time steps with a time increment of r = 0.01 such that
the time horizon is tf = 2.5. The values of the overall enclosing probabilistic hull
f̄R([0, tf]) = sup(f̄R([0, r]), . . . , f̄R([tf − r, tf]) are visualized in Fig. 4.8(b), where the
color bar on top of the plot relates the probability values to the gray values of the plot.

−5 0 5
−4

−2

0

2

4

6

x
1

x
2

computation

conf(X 0, 3)

(a) Simulation results.

conf(X 0, 3)

(b) Enclosing probabilistic hull
f̄x(x, [0, tf]).

Fig. 4.8.: Simulation and enclosing probabilistic hulls of the two-dimensional system.

The second example is of dimension 5, and with a system matrix as specified in (3.11):

ẋ =




−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2



x(t) + u(t) + 0.4 · I · ξ(t), u(t) ∈




[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]



.

105

4. Stochastic Reachability Analysis

The enclosing probabilistic hulls of two-dimensional projections (R ′ = PR, P ∈ R2×n)
for a sampling time of r = 0.04 are presented in Fig. 4.9 together with the unsafe set
x2 < −1.5. Note that the input probability distribution can be arbitrary as long as it is
enclosed by the Gaussian distribution and the uncertain mean U .

−2 0 2 4

0

1

2

3

x
2

x
3

conf(X 0, 3)

u
n
sa
fe

se
t
X

u
n
sa

fe

(a) Simulation results: projection onto
x2, x3.

conf(X 0, 3)

u
n
sa
fe

se
t
X

u
n
sa

fe

(b) Enclosing probabilistic hull
f̄x(x, [0, tf]): projection onto x2, x3.

0 1 2 3
−1

0

1

2

3

x
4

x
5

errors

conf(X 0, 3)

(c) Simulation results: projection onto
x4, x5.

Obtain

conf(X 0, 3)

(d) Enclosing probabilistic hull
f̄x(x, [0, tf]): projection onto x4, x5.

Fig. 4.9.: Enclosing probabilistic hulls of the five-dimensional system.

The over-approximated probability that the state is in an unsafe set is shown in Fig. 4.10
for different time increments and over-approximations:

106

4.2. Enclosing Hulls of Probability Density Functions for Linear Systems

• p̄([kr, (k+1)r]) computes the over-approximated probability of the state being in an
unsafe set within time intervals. The over-approximation is caused by the enclosure
of the homogeneous solution (see (4.12)) and the inhomogeneous solution (see (4.14))
for time intervals .

• p̄(kr)∗ is the time point solution for which the over-approximated time interval solu-
tion of the homogeneous solution in (4.14) is not applied while the over-approximation
in (4.14) is kept.

• p̄(kr) computes the probability of hitting the set of unsafe states at points in time
without applying (4.14) and (4.14).

The different over-approximations reveal the quantity of the over-approximation caused
by the enclosure of the homogeneous and the inhomogeneous solution for time intervals.

Additionally, EH-zonotopes R([kr, (k + 1)r]) for 500 time intervals and larger systems
with randomly generated matrices A and C were computed. The computation times are
presented in Tab. 4.1 and were obtained by a desktop computer with an AMD Athlon64
3700+ processor (single core) in Matlab. Note that enclosing probabilistic hulls can be
computed for systems of dimension 100 in reasonable time.

0 1 2
0

0.1

0.2

0.3

0.4

time t

p

p̄([kr, (k + 1)r])

p̄(kr)

p̄(kr)∗

(a) Time increment r = 0.04.

0 1 2
0

0.05

0.1

0.15

0.2

0.25

time t

p

p̄([kr, (k + 1)r])

p̄(kr)

p̄(kr)∗

(b) Time increment r = 0.02.

Fig. 4.10.: Over-approximated probability that the state enters the unsafe set: Time interval
and time point solution.

Tab. 4.1.: Computational times.

Dimension n 5 10 20 50 100
CPU-time [s] 0.34 0.39 0.55 2.89 13.5

Next, Markov chain abstraction is presented as an alternative method for stochastic reach-
ability analysis.

107

4. Stochastic Reachability Analysis

4.3. Markov Chain Abstraction

The main idea of the Markov chain abstraction is to compute the probability distribution
by a Markov chain instead of making use of the original system dynamics. The Markov
chain has to be generated such that it approximates the behavior of the original system
with appropriate accuracy. The abstraction can be applied to both, continuous and hybrid
systems. Since Markov chains are stochastic systems with a discrete state space, the
continuous state space Rn of the original system has to be discretized for the abstraction.
The discretization is performed by partitioning the continuous space into cells. This implies
that the number of states of the Markov chain grows exponentially with the dimension of
the continuous state space. Thus, the presented abstraction is only applicable to low
dimensional systems of typically up to 3− 5 continuous state variables.

Although the abstraction to Markov chains is possible for hybrid systems, the remainder
of this section focuses on purely continuous systems for simplicity. All steps undertaken
for the abstraction remain the same for hybrid systems – the only difference is that the
combined continuous and discrete state space has to be mapped to the discrete state space
of the Markov chain instead of only mapping the continuous state space. For example, for
a hybrid system with l discrete states (locations), each of the invariant sets (continuous
state space region of a discrete state) is discretized into m discrete states, which results in
l ·m discrete states of the Markov chain. Where the invariants of the hybrid system do not
intersect, there exists a unique mapping from the continuous to the discrete state of the
hybrid system. In this case it is sufficient to map the continuous state space of the hybrid
system to the discrete one of the Markov chain.

The nonlinear continuous system considered for the abstraction to Markov chains is similar
to the one in (3.27) for reachability analysis. The initial state x(0) can take values from a
set X 0 ⊂ Rn, the dynamic depends on a set of parameters P ⊆ Ip (I is the set of possible
intervals), and the input u can take values from a bounded set U ⊂ Rm. In addition to the
nonlinear system in (3.27), this definition has an additional input û(t), which is typically
a noise term and cannot be changed after the system has been abstracted to a Markov
chain. The other input u remains an input after the abstraction and can be changed in
between the updates of the Markov chain. The evolution of the state x is given by the
following differential equation:

ẋ = f(x(t), u(t), û(t), ρ), (4.15)

x(0) ∈ X 0 ⊂ Rn, ρ ∈ P ⊆ Ip, u(t) ∈ U ⊂ Rm, û(t) ∈ Rm.

It is remarked that some vectors such as the state x or the input ûmight be random vectors.
However, since these vectors might also be deterministic (depending on the considered
system), they are not written with bold letters as is done for random vectors. Next, the
definition of Markov chains is presented, which is adapted from [36]:

Definition 4.6 (Discrete Time Markov Chain): A discrete time Markov chain
MC = (Y, p̂0,Φ) consists of

• The countable set of locations Y ⊂ N+.

• The initial probability p̂0i = P (z(0) = i), with random state z : Ω → Y , where Ω is

108

4.3. Markov Chain Abstraction

the set of elementary events and P () is an operator determining the probability of
an event.

• the transition matrix Φij = P (z(k + 1) = i|z(k) = j) so that p̂(k + 1) = Φp̂(k). �

Clearly, the Markov chain fulfills the Markov property, i.e. the probability distribution of
the future time step p̂(k + 1) depends only on the probability distribution of the current
time step p̂(k). If a process does not fulfill this property, one can always augment the
discrete state space by states of previous time steps, allowing the construction of a Markov
chain with the new state z∗(k)T =

[
z(k)T , z(k − 1)T , z(k − 2)T , . . .

]
. An example of a

Markov chain is visualized in Fig. 4.11 by a graph whose nodes represent the states 1, 2, 3
and whose labeled arrows represent the transition probabilities Φij from state j to i.

after

1

2 3

0.6

0.4

1

0.9

0.1

Φ =



0.6 0.9 1
0 0.1 0
0.4 0 0




Fig. 4.11.: Exemplary Markov chain with 3 states.

The relation of the discrete time step k and the continuous time is established by intro-
ducing the time increment τ ∈ R+ after which the Markov chain is updated according to
the transition matrix Φ. Thus, the continuous time at time step k is tk = k · τ .
The generation of a Markov chain from a continuous dynamics in (4.15) can be divided
into two steps. First, the state space of the original continuous system is discretized into
cells representing the discrete states. Second, the transition probabilities from one cell to
another cell, which are stored in the transition matrix of the Markov chain, have to be
determined. These steps are detailed below.

4.3.1. Discretization of the State and Input Space

In order to obtain a finite number of discrete states, a subset of the continuous state and
input space is discretized. Note that only the input space of the input u(t) is discretized
while the input û(t) is unaffected by discretization. From now on, the discretized state
space is denoted by X ⊂ Rn and the discretized input space is denoted by U ⊂ Rm. In this
work, each coordinate of X and U is partitioned into equidistant intervals such that each cell
is a hyperrectangle of equal size, as shown in Fig. 4.12 for the two-dimensional case. Thus,
each cell Xi with cell index i can be described by an n-dimensional interval: Xi =]xi, xi],
xi, xi ∈ Rn. Analogously, the input cell Uα with cell index α is an m-dimensional interval:

109

4. Stochastic Reachability Analysis

X1 X2 X3 X4 · · ·
· · ·

...

x1

x2

Fig. 4.12.: Discretization of the state space.

Uα =]uα, uα], uα, uα ∈ Rm. In order to easily distinguish between state indices and input
indices, state indices are subscripted Latin letters and input indices are superscripted Greek
letters. The set without indices refer to the union of the cells such that X =

⋃d
i=1 Xi and

U =
⋃c

α=1 U
α, where d and c are the numbers of discrete states and inputs, respectively.

Other works use a more flexible discretization; see e.g. [112, 150, 157].

The state and input indices have values from 1 onwards. The region outside the discretized
state space Rn\X is referred to as the outside cell. This outside cell has the index 0 and is
of importance when computing the transition probabilities of the Markov chain.

After the discretization, the event that the continuous state x is in a cell Xi (x ∈ Xi) is
equivalent to the event that the value of the discrete state is z = i. Besides the discrete
state z, the discrete input y is defined and u ∈ Uα is represented by y = α. The parameter
space is not discretized in this work, but it could be done analogously to the state and
input space.

4.3.2. Transition Probabilities

Based on the discretization of the state space, the transition probabilities Φij = P (z(k +
1) = i|z(k) = j) of the Markov chain have to be computed from the continuous dynamics of
the original system in (4.15). Where the input is also discretized, the transition probability
has to be obtained for a given input y(k) = α so that Φα

ij = P (z(k+1) = i,y(k) = α|z(k) =
j,y(k) = α) is computed. In this thesis, the transition probabilities are computed by
reachability analysis and simulations, where the latter is presented first.

Transition Probabilities Using Monte Carlo Simulation

The method of computing transition probabilities from a cell Xj using simulations is de-
scribed. First, a finite set of initial states is randomly generated from the cell Xj . For each
initial state, an input value u([0, τ]) is randomly generated from the input cell Uα which
is constant within [0, τ]. In addition, an input trajectory û(t) and a parameter vector ρ
are computed according to their probability distribution and the specified input dynamics.
Each initial state is then simulated under the inputs u([0, τ]), û(t) and parameter vector
ρ according to the system dynamics (4.15) for a time interval [0, τ]. This procedure is
visualized in Fig. 4.13(a). Simulations generated from random sampling are also called
Monte Carlo simulations. Alternatively, the initial states as well as the input values can
be generated by a predefined grid on the initial cell Xj and the input cell Uα.

In contrast to the probability distributions of the input û(t) and the parameter vector
ρ, the probability distribution within all state and input cells is strictly uniform. This
assumption allows the reconstruction of a piecewise constant probability distribution of

110

4.3. Markov Chain Abstraction

the continuous state x from the discrete distribution of the Markov chain.

The number of simulations starting from the initial cell Xj under input u ∈ Uα is denoted
by nsim

j
,α and the number of those simulations located in cell Xi at time τ is denoted

by nsim
i,j

,α. Transition probabilities are computed by the relative number of trajectories
reaching a goal cell with index i when starting in the initial cell with index j:

Φα
ij(τ) =

nsim
i,j

,α

nsim
j

,α
. (4.16)

The probability that another state is reached within a time interval [0, τ] is approximated
by computing the transition probabilities for a finite set of equidistant intermediate points
in time t̃0, t̃1, . . . , t̃ñ ∈ [0, τ], where ñ is the number of intermediate points in time. The
transition probability for the time interval is obtained by the arithmetic mean of the
intermediate transition probabilities.

Φα
ij([0, τ]) =

1

ñ

ñ∑

k=1

Φα
ij(t̃k).

One disadvantage when computing the transition probabilities from Monte Carlo simula-
tion is that the resulting model is not complete, i.e. there might exist a non-zero probability
from cell j to cell i when the abstraction is exact in the sense of the transition probabilities.
However, due to the finite number of Monte Carlo simulations, a feasible simulation run
from cell j to i might be missed. Thus, the transition probability is computed to 0 even
though it is non-zero.

The computation of the transition probability from a cell j is exemplarily shown in
Fig. 4.13. Generated trajectories are shown in Fig. 4.13(a) and the corresponding stochas-
tic reachable set when starting in cell j with probability 1 is illustrated in Fig. 4.13(b). A
transition to a cell is the more likely, the darker the color of the cell is.

This approach is applicable to all continuous and hybrid systems that can be numerically
simulated, which is the case for continuous dynamics fulfilling the Lipschitz continuity. For
hybrid systems, it is possible that their behavior is non-deterministic, e.g. when transitions
are enabled but not enforced. In such a case one has to properly assign probabilities
to possible executions as is done for stochastic hybrid systems, such that the numerical
simulation is clearly defined in a stochastic sense (see e.g. [33]).

Finally, it is again remarked that the abstraction can be applied to deterministic and
stochastic systems. In either case, the result is a discrete stochastic system. The stochas-
ticity is introduced for originally deterministic systems because of the uncertain location
of the continuous state within a cell. Next, the abstraction via reachability analysis is
presented.

Transition Probabilities Using Reachability Analysis

Another option for computing transition probabilities is the use of reachability analysis.
In order to apply reachability analysis as presented in Chap. 3, the inputs and parameters
in (4.15) have to be bounded (ρ ∈ P ⊂ Ip, (u(t) + û(t)) ∈ U ⊂ Rm); see (3.27). This is

111

4. Stochastic Reachability Analysis

−1 0 1
−2

−1.5

−1

−0.5

0

x
1

x
2

uous

initial set

simulated
trajectories

cells

(a) Simulated trajectories for a time inter-
val.

−1 0 1
−2

−1.5

−1

−0.5

0

x
1

x
2

elemen

cells

reachable cell

initial cell

(b) Reachable cells for a time interval.

Fig. 4.13.: Simulated trajectories of the original system and the corresponding stochastic
reachable set of the abstracting Markov chain.

not required when using Monte Carlo simulation because samples can be generated from
unbounded probability distributions.

In order to obtain the transition probabilities from a cell Xj, the reachable set starting from
this cell under the set of possible inputs Uα is computed. The reachable set is denoted by
Rα

j (τ), where the indices refer to the cells of the input and the initial state. The fraction
of the reachable set intersecting with other cells determines the transition probability.
After introducing the volume operator V() returning the volume of a set, the transition
probabilities are obtained as

Φα
ij(τ) =

V(Rα
j (τ) ∩ Xi)

V(Rα
j (τ))

. (4.17)

The above formula assumes that the states are uniformly distributed within Rα
j (τ). Simi-

larly to the case when computing transition probabilities from simulations, the transition
probabilities of the time interval [0, τ] are computed as the arithmetic mean from transition
probabilities of intermediate steps. In contrast to the simulative approach, the intermedi-
ate reachable sets are computed from adjacent time intervals [0, r], [r, 2r], . . . [τ − r, τ] (τ
is a multiple of r) instead of points in time. This follows naturally from the computation
of reachable sets using subintervals [kr, (k + 1)r]; see Chap. 3. The transition probability
for a subinterval is computed by substituting Rα

j (τ) in (4.17) by Rα
j ([kr, (k+1)r]). These

transition probabilities are finally averaged to the ones of the complete time interval:

Φα
ij([0, τ]) =

r

τ

τ/r−1∑

k=0

Φα
ij([kr, (k + 1)r]). (4.18)

Note that this transition matrix differs from the one obtained when first computing
Rα

j ([0, τ]) =
⋃τ/r−1

k=0 Rα
j ([kr, (k + 1)r] and then substituting Rα

j (τ) by Rα
j ([0, τ]) in (4.17).

112

4.3. Markov Chain Abstraction

The reason is that the reachable sets Rα
j ([kr, (k + 1)r]) are overlapping, which shows that

the probability distribution of the states is not homogeneous. When k → ∞, the computa-
tion in (4.18) returns the exact result under the assumption that the states are uniformly
distributed for each point in time t within Rα

j (t), whereas the computation error of the
transition probabilities when using Rα

j ([0, τ]) remains for k → ∞.

The abstraction using reachability analysis is visualized in Fig. 4.14. In Fig. 4.14(a), the
reachable set Rα

j ([0, τ]) computed for the transitions from cell Xj is shown. The corre-
sponding stochastic reachable set when starting from the same cell with probability 1 is
illustrated in Fig. 4.14(b). A transition to a cell is the more likely, the darker the color of
the cell is.

−1 0 1
−2

−1.5

−1

−0.5

0

x
1

x
2

time step

initial set

reachable set
Rα

j ([0, τ])

cells

(a) Reachable set for a time interval.

−1 0 1
−2

−1.5

−1

−0.5

0

x
1

x
2

cation

cells

reachable cell

initial cell

(b) Reachable cells for a time interval.

Fig. 4.14.: Reachable set of the original system and the corresponding stochastic reachable
set of the abstracting Markov chain.

The accuracy of the transition probabilities depends on the validity of the assumption that
the state is uniformly distributed within the reachable sets. One source of violation is the
over-approximation of the reachable sets so that the probability density value is 0 close
to the borders of the reachable set. Another source is the consideration of system inputs.
The effect of the input on the probability distribution of the state strongly depends on the
system dynamics, the time step size τ , and the quantity of the input uncertainty. This
effect is demonstrated for a simple scenario for which an analytical solution exists.

Example 4.1 (Exact Probability Distribution of an Integrator): Given is the
simple system ẋ = a · u (a ∈ R, x,u : Ω → R), where x is the random state variable, u
is the random input variable, and a is a constant parameter. The input u is constant for
the time interval [0, τ]. The exact solution at time τ is

x(τ) = x(0) + a · u · τ = x(0) + ∆x.

At t = 0 the random state x and the input u are uniformly distributed within the set of

113

4. Stochastic Reachability Analysis

initial states X 0 and the set of inputs U :

fx(x, t = 0) =

{
1

V(X 0)
, if x ∈ X 0

0 , otherwise
, fu(u) =

{
1

V(U)
, if u ∈ U

0 , otherwise
.

Thus, the probability distribution of the change of the state ∆x is also uniform, where
f∆x(x) = 1/V(a · U · τ) if x ∈ a · U · τ and 0 otherwise. Further, x and u are statistically
independent, so that the distribution of the state at time τ can be computed analytically
using convolution (see [153]):

fx(x, t = τ) =

∫ ∞

−∞
fx(χ, t = 0)f∆x(x− χ) dχ. �

The resemblance with a uniform distribution depends on the uncertainty of the input and
the time step size τ , as can be seen in Fig. 4.15 for different combinations of time steps τ
and input sets U .

0 2 4
0

0.1

0.2

x

f x
➃

(a) τ = 1, U = [0, 4].

0 2 4
0

0.5

x

f x

(b) τ = 1, U = [1.9, 2.1].

−1 0 1
0

0.5

x

f x

(c) τ = 0.1, U = [0, 4].

−1 0 1
0

0.5

x
f x

(d) τ = 0.1, U =
[1.9, 2.1].

Fig. 4.15.: Probability distribution of the state fx after convolution.

These mentioned effects can be more or less accepted. However, there are cases in which
one has to advise against the use of reachability analysis. One of these cases is when there
exists a noisy and dominant input û(t) which has a probability distribution that is strongly
non-uniform. It is also not advisable to abstract hybrid systems by reachability analysis,
since the probability distribution is far from being uniform when the continuous dynamics
is switched as shown in Fig. 4.16 for a two-dimensional example.

Hence, due to the more or less violated assumption of uniform probability distributions
within reachable sets, the abstraction with Monte-Carlo simulation is more exact. This
disadvantage is compensated by the property that the Markov chain obtained from reach-
ability analysis is complete. This means that for each transition of an exactly generated
Markov chain, there exists a corresponding transition of the Markov chain generated by
reachability analysis. Thus, the reachable cells (cells with non-zero probability) over-
approximate the reachable set of the original system.

Since the transition probabilities obtained from reachability analysis are generally not as
accurate as the ones obtained from Monte Carlo simulation, one can combine Monte Carlo
simulation with reachability analysis, as pointed out next.

114

4.3. Markov Chain Abstraction

20 40 60 80

5

10

15

x
1

x
2

lo

initial set

reachable set

randomized
trajectories

guard set

Fig. 4.16.: Change of the density of trajectories after a discrete transition. The dynamics
changes to ẋ1 = v (v = const ∈ R), ẋ2 = 0.

Combination of Monte Carlo Simulation and Reachability Analysis

A possible way of combining Monte Carlo simulation and reachability analysis is to use
the transition probabilities Φα

ij([0, τ]) from Monte Carlo simulation, since they are more
accurate. Next, transitions with zero probability of the Monte Carlo approach are replaced
by a probability of ǫ when a non-zero probability is computed by the reachable set approach.
The value of ǫ should be chosen small, e.g. 1/nsim

j
,α and nsim

j
,α is the number of simulations;

see (4.16). After inserting Nj probabilities with value ǫ into the j-th column, the transition
probabilities of this column have to be normalized such that the sum is 1. The computation
of a combined transition matrix Φ̃α([0, τ]) is illustrated for the j-th column denoted by

Φ̃α
j ([0, τ]) in the following example.

Φα
j ([0, τ]) =




...
0
...
0.4
0.6



, Φ̃α

j ([0, τ]) =
1

1 +Nj · ǫ




...
0
ǫ
0.4
0.6



.

This method can be applied to continuous and hybrid systems (deterministic and stochas-
tic) with bounded parameter and input values (ρ ∈ P ⊂ Ip, (u(t) + û(t)) ∈ U ⊂ Rm).
In contrast to the pure use of reachability analysis for hybrid systems, the combination
with Monte Carlo simulation makes sense since the inaccurate transition probabilities are
corrected. The advantages and disadvantages of the proposed methods for the abstraction
of continuous/hybrid systems to Markov chains is summarized next.

Discussion

One of the advantages of the Monte Carlo approach is that the transition probabilities
can be computed arbitrarily exact when the number of simulations tends to infinity. This
is not the case for the reachability approach, since the assumption that the probability

115

4. Stochastic Reachability Analysis

distribution is uniform is generally violated. Further, Monte Carlo simulation allows the
use of arbitrary noise models such as Gaussian white noise as additional inputs, which
is not possible for reachability analysis when the inputs are unbounded. If the noise
was bounded, only the worst case effect could be considered, which causes inaccurate
transition probabilities. On the other hand, only the reachability approach allows complete
abstractions to be computed.

Both approaches can be combined as previously shown, which results in complete abstrac-
tions with accurate transition probabilities. Note that this combination is not possible if
unbounded disturbances are considered. For hybrid systems, reasonable results are only
obtained when using Monte Carlo simulation or its combination with reachability analysis.

The combination of simulation with advanced reachability analysis is an extension to pre-
vious work on abstraction to Markov chains; see e.g. [111, 113, 150]. Especially uncertain
inputs are not considered in many works. The additional abstraction for time intervals is
a novelty for which no other work is known to the best knowledge of the author.

4.3.3. Stochastic Reachable Sets from Markov Chains

The obtained transition probabilities from Monte Carlo simulation or reachability analysis
make it possible to compute the probability distribution of the discrete states. A single
Markov chain is updated according to p̂(k+1) = Φp̂(k); see Def. 4.6. However, in this work,
Markov chains were computed for different input cells Uα and for points in time t = τ as
well as time intervals t ∈ [0, τ]. Hence, the update of the Markov chain probabilities p̂(k)
has to be extended. First, the case is considered when the input for each time interval
[tk, tk+1] is known. Note that the input û(t) does not have to be considered anymore since
its effect is already incorporated in the state transition probabilities of the Markov chain.

Deterministic Input

In order to introduce the extensions for the update of the Markov chain step-by-step,
known inputs u(t) are considered first. In addition, it is required that the input stays
within the input cells Uα for a time interval [tk, tk+1], but may change the cell for the next
time interval.

The first extension compared to the update of a single Markov chain is that not only
the probability distribution at points in time, but also at time intervals is considered.
The update for points in time tk = k · τ is done as for a regular Markov chain resulting
in the probability vectors p̂(tk). The probability vector of time intervals is computed
from the probability vector at the beginning of the time interval p̂(tk) to p̂([tk, tk+1]) =
Φα([0, τ]) p̂(tk). This is because the transition probabilities for a time interval Φα([0, τ])
were computed from the initial cell at the beginning of the time interval [0, τ]. Thus, the
solution at points in time is an auxiliary result for the time interval computation. After
introducing the state transition matrix Φα containing all values of Φα

ij when the input value
α is fixed, the updates can be formulated as

p̂(tk+1) = Φα(τ) p̂(tk),

p̂([tk, tk+1]) = Φα([0, τ]) p̂(tk),
(4.19)

116

4.3. Markov Chain Abstraction

where α is chosen according to the actual discrete input. It is remarked that by the iterative
multiplication of the probability distribution with the transition matrices, a further error
is introduced: The probability distribution within one cell is treated as if it is replaced by
a uniform distribution in the next time step. This error can be decreased by refining the
discretization while increasing computational costs.

As a next extension, it is no longer assumed that the input u(t) is exactly known.

Stochastic Input

Often, not only the state of a system, but also its input is uncertain. In order to update the
Markov chain subject to uncertain inputs, the conditional probability qαi := P (y = α|z = i)
of the input for a given state z = i is introduced. Further, p̂i =

∑
α p

α
i is the total

probability of the state, where
∑

α denotes the sum over all possible values of α. The joint
probability of the state and input is

pαi := P (z = i,y = α) = P (y = α|z = i) · P (z = i) = qαi · p̂i. (4.20)

Due to the uncertainty of the inputs, the Markov chains have to be updated for each
possible value of α. After introducing the vector pα containing all possible values of pαj for
a fixed value of α, the joint probability vector pα is updated to

pα(tk+1) = Φα(τ) pα(tk),

pα([tk, tk+1]) = Φα([0, τ]) pα(tk).
(4.21)

The above formula updates the state distribution according to the state transition matri-
ces. However, the conditional input probabilities qαi remain unchanged, since Φα(τ) and
Φα([0, τ]) only describe the mapping of the state probabilities. Hence, for changing input
probabilities, the conditional input probabilities are updated instantaneously at times tk
so that qαi

′(tk) =
∑

β Γ
αβ
i (tk)q

β
i (tk). The values of Γαβ

i (tk) depend on the state i and for a
fixed state, Γi(tk) is a time varying transition matrix for inputs. It is remarked that instead
of updating the conditional probabilities qαi , one can also update the joint probabilities pαi
because the state probability p̂i does not change instantaneously:

qαi (tk)
′ =
∑

β

Γαβ
i (tk) · qβi (tk)

·p̂i(tk) and (4.20)−→ pαi (tk)
′ =
∑

β

Γαβ
i (tk) · pβi (tk). (4.22)

In order to simplify the notation and elegantly combine the state transition values Φα
ij with

the input transition values Γαβ
i , the joint probabilities pαi are combined to a new probability

vector
p̃T =

[
p11 p21 . . . pc1 p12 p22 . . . pc2 p13 . . . pcd

]
. (4.23)

The values d and c refer to the number of discrete states and inputs, respectively. The con-
struction of the new probability vector p̃ requires the state transition and input transition

117

4. Stochastic Reachability Analysis

values to be rearranged, too.

Φ̃ =




Φ1
11 0 0 . . . 0 Φ1

12 0 0 . . . 0 Φ1
13 0 0 . . . 0

0 Φ2
11 0 . . . 0 0 Φ2

12 0 . . . 0 0 Φ2
13 0 . . . 0

...
...

0 0 0 . . . Φc
d1 0 0 0 . . . Φc

d2 0 0 0 . . . Φc
dd


 ,

Γ̃ =




Γ11
1 Γ12

1 . . . Γ1c
1 0 . . . 0 0 . . . 0

Γ21
1 Γ22

1 . . . Γ2c
1 0 . . . 0 0 . . . 0

...
...

...
0 0 . . . 0 0 . . . 0 Γc1

d . . . Γcc
d


 =




Γ1 0 0
0 Γ2 0 . . . 0
...

. . .
...

0 0 Γd


 ,

(4.24)

and 0 is a matrix of zeros. The rewriting allows the state update in (4.21) to be formulated
as p̃(tk+1) = Φ̃(τ)p̃(tk) (for points in time) and the input update in (4.22) as p̃(tk)

′ =
Γ̃(tk)p̃(tk). Combining both results yields the overall update equations

p̃(tk+1) = Γ̃(tk) Φ̃(τ) p̃(tk),

p̃([tk, tk+1]) = Φ̃([0, τ]) p̃(tk).
(4.25)

The reason why Γ̃(tk) Φ̃(τ) is not combined to a new matrix is that Γ̃(tk) is possibly time
varying and thus has to be multiplied with the state transition matrices for each time
step anyway. Note that the multiplication with Γ̃(tk) is not required for the time interval
solution since it is based on the time point solution.

Once the abstraction of the original system has been performed, it is only left to perform
the matrix multiplications in (4.25) for the computation of the probability distribution.
It is remarked that the matrices have dimension d · c × d · c, which might become large.
However, the obtained matrices are very sparse (only a few non-zero entries), such that the
multiplication can be accelerated by using sparse matrix multiplication algorithms [175].
Thus, the abstraction of the original system to the Markov chain is the computationally
most expensive part. For this reason, the Markov chain abstraction is especially useful
when one has to predict the safety of a system during its operation. In this scenario, one
can compute the abstraction offline without constraints on the computational time. During
the online operation of the system, the probability distribution can be computed efficiently
using matrix multiplications in (4.25). The advantage that expensive computations can be
performed beforehand will be of use when applying this approach to the safety analysis of
road traffic scenes.

4.3.4. Numerical Examples

The abstraction to a Markov chain is exemplarily performed for the same two-dimensional
system that has been used throughout this thesis in Chap. 3 and 4. The five-dimensional
example that has been used in previous examples cannot be abstracted since the number
of discrete states would exceed computationally manageable dimensions. For better read-
ability, the two-dimensional example is displayed again, where the interval of the uncertain

118

4.3. Markov Chain Abstraction

input varies from previous examples:

ẋ =

[
−1 −4
4 −1

]
x+

[
1
1

]
u(t), u(t) ∈ [−1, 1]

For the abstraction to a Markov chain, the state space region X to be discretized is chosen
as [−2, 2] for both dimensions and each of them is partitioned into 30 segments resulting in
900 discrete states. The input is discretized into 5 equidistant intervals from −1 to 1. For
the Markov chain abstraction, the Monte Carlo simulation approach and the reachable set
approach have been used and combined as described in Sec. 4.3.2. The ǫ value for combining
both approaches has been selected to ǫ = 1/500 for points in time and ǫ = 1/50000 for time
intervals where 500 and 50000 are the number of simulations for the simulative abstraction
of the Markov chain. The time step size for the abstracted Markov chain in τ = 0.5.
Examples of the computation of transition probabilities for the initial cell X70 and the
input cell U1 can be found in Fig. 4.13 and 4.14 using the Monte Carlo approach and the
reachable set approach, respectively.

The input transition matrix is not dependent on the discrete state and is given as

Γ =




0.7 0.2 0.1 0 0
0.2 0.5 0.2 0.1 0
0.1 0.2 0.4 0.2 0.1
0 0.1 0.2 0.5 0.2
0 0 0.1 0.2 0.7



.

The initial probability distribution of the inputs is chosen independently of the state distri-
bution and is set to

[
0 0.2 0.6 0.2 0

]
. The initial set is chosen such that it is uniformly

distributed in the interval x1 ∈ [0.9, 1.1] and x2 ∈ [0.9, 1.1], which is then mapped to the
distribution of the state space cells.

The average probability distribution for different time intervals is computed as

p̃avg =
1

nend − nstart

nend∑

k=nstart

p̃(tk+1),

where nstart, nend ∈ N+ and nend > nstart. For the visualization, the maximum probability
values of state space cells are also of interest. This distribution is computed as

p̃max = max(p̃(tnstart), . . . , p̃(tnend
)).

Note that p̃ contains the combined probabilities of the state and the input. In order to
display the state probability only, the total probabilities of the state have to be computed.
Rewriting the combined probabilities p̃ to pαi by reverse use of (4.23), the total probability
of the state is obtained as p̂i =

∑
α p

α
i . The average state probability p̂avgi and maximum

state probability p̂max
i are visualized in Fig. 4.17 for different time intervals.

The computational time is 0.06 s for 10 time intervals resulting in a prediction horizon
of t ∈ [0, 5]. The computations were performed on an AMD Athlon64 3700+ processor
(single core) in Matlab.

119

4. Stochastic Reachability Analysis

x
1

x
2

−1 0 1

−1

−0.5

0

0.5

1

1.5
initial set X 0

(a) Average state probabilities p̂avgi for
t ∈ [0, 1].

x
1

x
2

−1 0 1

−1

−0.5

0

0.5

1

1.5

R

initial set X 0

(b) Average state probabilities p̂avgi for
t ∈ [1, 5].

x
1

x
2

−1 0 1

−1

−0.5

0

0.5

1

1.5
initial set X 0

(c) Average state probabilities p̂avgi for
t ∈ [0, 5].

x
1

x
2

−1 0 1

−1

−0.5

0

0.5

1

1.5
initial set X 0

(d) Maximum state probabilities p̂max
i for

t ∈ [0, 5].

Fig. 4.17.: Average and maximum probability distribution for different time intervals.

4.4. Summary

The concept of reachability analysis has been extended to stochastic reachability analysis
in this chapter. The definition of stochastic reachability analysis introduced in this thesis
differs from the established concept of determining the probability that the state reaches
an unsafe set. According to the definition used in this thesis, the stochastic reachable set
of a point in time is used as a synonym for the probability density function of the state. An
extension to time intervals is obtained by averaging the probability density function over
all points in time of the considered time interval. This definition is a natural extension
of reachable sets since a reachable set is the set for which the stochastic reachable set has
non-zero probability values. The probability that the state is in an unsafe set is obtained
by integrating the stochastic reachable set within the unsafe set. If one is interested in the
probability that the state has reached an unsafe set, instead of being in an unsafe set, one
has to ensure that the unsafe set is absorbing, i.e. the state cannot leave the unsafe set

120

4.4. Summary

once it has entered it. This can be done by specifying an absorbing dynamics within the
unsafe set such that the unsafe set can be interpreted as an invariant of a hybrid system
with no transitions to other locations.

One of the biggest challenges in stochastic reachability analysis is the design of scalable
algorithms. The curse of dimensionality is an even bigger issue for stochastic reachability
than for classical reachability analysis since most algorithms rely on a discretization of the
state space causing exponential complexity with respect to the number of continuous state
variables. Another issue is that only barrier certificates can compute upper bounds on the
probability of reaching unsafe states.

These problems have been tackled for linear systems with enclosing probabilistic hulls.
The input of the linear system is modeled as Gaussian white noise with uncertain mean
which allows non-Gaussian white noise to be modeled in an over-approximative way. Due
to the use of enclosing probabilistic hulls, which enclose all possible probability density
functions, the probability of being in an unsafe set can be over-approximated. Note that
this probability differs from computing the probability of reaching an unsafe set. As
discussed above, both results are identical when ensuring that the unsafe set is absorbing.
Algorithms for this case using enclosing probabilistic hulls are part of future work. An
advantage of the presented approach is that it can be applied to large systems with more
than 100 continuous state variables.

The second considered approach deals with the abstraction of continuous or hybrid sys-
tems to Markov chains. This concept can be applied to a large class of systems, but only
small-scale problems can be handled due to the required discretization of the continuous
state space. Two different methods for the abstraction process have been presented: Ab-
straction by Monte Carlo simulation and by reachability analysis. Monte Carlo simulation
is accurate, but the resulting Markov chain is not complete, i.e. does not cover all possible
behaviors of the original system. On the other hand, abstraction by reachability analysis
is less accurate, but the resulting Markov chain is complete. The combination of both
methods yields good results since accuracy and completeness can be unified.

An unfavorable property of the Markov chain abstraction is that input probabilities can
only be changed by the update rate of the Markov chain. If frequent changes of the input
probability are necessary, the time step size of the Markov chain has to be shortened. An
interesting property of the presented Markov chain abstraction techniques is that most of
the computation time is spent on the abstraction so that they can be used for the online
safety assessment of time critical applications. Markov chains can run especially efficiently
on dedicated hardware such as DSPs, since only multiplication of sparse matrices have to
be computed.

121

5. Safety Assessment of Autonomous

Cars

In this chapter, the generic methods on stochastic reachability analysis are applied to the
safety assessment of autonomous vehicles. Ultimately, the presented safety verification
module should assess various alternatively planned driving actions of autonomous cars
according to their safety.

5.1. Introduction and State of the Art

First, some challenges of autonomous driving, i.e. driving without a human driver, are
presented.

Autonomous Driving

A prerequisite of autonomous driving is the equipment of vehicles with sensors for the
detection of their environment. More importantly, relevant information such as the position
and velocity of other traffic participants has to be correctly extracted from the raw data
streams of the sensors. This has to work properly in different weather conditions and
even when unknown or unexpected objects are present. Besides the enormous challenge of
detecting objects such as other vehicles or lane markings, it is also desirable to estimate
the intentions of other traffic participants in order to derive the optimal behavior for the
autonomous vehicle.

Human drivers are very good at recognizing other traffic participants, estimating their
intention, and planning almost optimal driving actions. Besides these capabilities, humans
can focus on the relevant information, handle unexpected situations, and automatically
learn from previously unknown situations. It is obvious that researchers aim to partly
implement those cognitive capabilities into an autonomously driving car. This has been
tried in many research projects, including the collaborative research center Cognitive Au-
tomobiles [154], in which this work has been carried out.

One of the main objectives of the research on autonomous vehicles is the vision of accident-
free driving by exclusion of human errors. Worldwide, the number of people killed in road
traffic each year is estimated at almost 1.2 million, while the number of injured is estimated
at 50 million [134, chap. 1]. However, autonomous cars will not be market-ready soon,
such that mature driving capabilities of autonomous prototype vehicles will be incorporated
into intelligent driver assistant systems of market-ready vehicles. It is e.g. desirable that a
driver assistant system fully controls a vehicle when a crash is almost inevitable. Predicting

122

5.1. Introduction and State of the Art

the probability of a crash is subject of the safety assessment developed for autonomous
cars in this thesis.

Safety Assessment in Road Traffic

In order to assess the safety of a planned maneuver, the predicted motion of other traffic
participants is vital for the identification of future threats. For this reason, the prediction
of other traffic participants is one of the main objectives in this chapter. In contrast
to this approach, non-predictive methods are based on the recording and evaluation of
traffic situations that have resulted in dangerous situations; see e.g. [4]. However, such
an approach is only suitable for driver warnings. Planned trajectories of autonomous cars
cannot be evaluated with non-predictive methods since the consequences when following
these trajectories have to be predicted.

Behavior prediction has been mainly limited to human drivers within the ego vehicle (i.e.
the vehicle for which the safety assessment is performed). This is motivated by research on
driver assistant systems which tries to warn drivers when dangerous situations are ignored.
The majority of works on this topic use learning mechanisms (e.g. neural networks, autore-
gressive exogenous models [151, 174]), or filter techniques (e.g. Kalman filters [109, 136]).
Another line of research is to detect traffic participants on selected road sections and pre-
dict their behavior for anomaly detection. Such automatic surveillance system has been
realized with learning techniques such as clustering methods [86] or hidden Markov mod-
els [123]. The disadvantage of a prediction at fixed locations is that the predictions are
specialized to this particular road segment and probably not generalizable to other traffic
situations.

For the prediction of arbitrary traffic situations, simulations of traffic participants have
been used [18, 84]. Due to the efficiency of single simulations, these approaches are al-
ready widely implemented in cars, e.g. to initiate an emergency braking maneuver based
on measures like time to collision or predicted minimum distance. Simulations of traf-
fic participants are also computed in microscopic traffic simulations [119, 162]. However,
single simulations do not consider uncertainties in the measurements and actions of other
traffic participants, which may lead to unsatisfactory collision predictions [108]. A more so-
phisticated threat assessment considers multiple simulations of other vehicles, considering
different initial states and changes in their inputs (steering angle and acceleration). These
so-called Monte-Carlo methods have been studied in [15, 31, 32, 52, 59, 60] for the risk
analysis of road traffic and in [25, 26, 168] for the related topic of air traffic safety. A frame-
work for the reduction of possible future scenarios of traffic situations, using motivations
for the actions of drivers, is introduced in [46].

Another method to compute possible behaviors of traffic participants is reachability anal-
ysis as presented in Chap. 3. Safe motion of two vehicles is guaranteed if their reachable
sets of positions do not intersect. In traffic scenarios, the reachable positions of a vehicle
define the unsafe set of another vehicle, and vice versa. Reachable sets for vehicles and
mobile robots have been investigated in [149, 165]. It has been shown that planned paths
of autonomous vehicles are too often evaluated as unsafe by this method. This is because
the reachable sets of other vehicles rapidly cover all positions the autonomous vehicle could
possibly move to, which is demonstrated in Fig. 1.8(a).

123

5. Safety Assessment of Autonomous Cars

A combination of reachability analysis and stochastic reachability analysis has been inves-
tigated in [77]. The reachable sets of traffic participants are used to find out which vehicles
might have a crash. Next, the stochastic reachable sets are only computed for those traffic
participants that might crash in order to save computational time. Note that the reachable
sets in [77] are not over-approximative and that the algorithm for the computation is rather
fuzzy. The stochastic reachable sets are described by Gaussian distributions, which are ob-
tained by several linearized models. The concept of detecting relevant traffic participants
by reachability analysis can be analogously applied to the concept in this work.

Contributions

In this chapter, stochastic reachable sets of traffic participants are computed as previously
shown in Chap. 4. The stochastic information allows not only to check if a planned path
of the ego vehicle may result in a crash, but also with which probability. Consequently,
possible driving strategies of autonomous cars can be evaluated according to their safety.
Traffic participants are predicted by Markov chains as presented in Sec. 4.3. There are three
properties which are in favor of the Markov chain approach: The approach can handle the
hybrid dynamics of traffic participants, the number of continuous state variables (position
and velocity) is low, and Markov chains are computationally inexpensive when they are
not too large.

The contributions in more detail are: A basic concept for the safety assessment of au-
tonomous cars in Sec. 5.2. A mathematical model of traffic participants in Sec. 5.3 and
their abstraction to Markov chains in Sec. 5.4. Further, a stochastic generation of driving
commands, which is addressed in Sec. 5.5 for certain driving capabilities: road following,
vehicle following, intersection crossing, and lane changing. It is also discussed how driving
capabilities are unified and how to handle capabilities which are not implemented, such as
parking. The driving command generation and the Markov chains allow the position distri-
bution of other traffic participants to be predicted. How to compute the crash probability
for the autonomous vehicle, given the position probabilities of other traffic participants, is
presented in Sec. 5.6. In order to evaluate the Markov chain approach, it is tested against
Monte Carlo simulation in Sec. 5.7. The introduced Markov chain approach is also tested
in the autonomous vehicle MUCCI on a test ground, which is documented in Sec. 5.8.
Finally, the chapter is summarized in Sec. 5.9.

5.2. Basic Concept

Clearly, autonomous driving requires a control loop containing a perception and a planner
module; see Fig. 5.1. The perception module detects traffic situations and extracts relevant
information, such as the road geometry as well as static and dynamic obstacles. In order to
fulfill the driving task, the planner module computes trajectories that the autonomous car
is tracking with the use of low-level controllers [173]. A major constraint for the trajectory
planner is that the generated trajectories have to be safe, i.e. static and dynamic obstacles
must not be hit. The task of circumventing static obstacles can be ensured by checking
whether the static obstacle intersects with the vehicle body of the autonomous car when

124

5.2. Basic Concept

initial

autonomous car

environment
sensors

trajectory
planner

safety verification

Fig. 5.1.: Conception of the safety assessment.

following the planned path. For dynamic obstacles, the safety assessment is much more
intricate as their future actions are unknown. For this reason, sets of possible behaviors of
other traffic participants are considered, which are checked with the planned path of the
autonomous car in a dedicated safety verification module (see Fig. 5.1). Paths that fulfill
the safety requirements are executed or are conservatively replanned otherwise, e.g. by
braking the car.

The safety verification module which is described in this work requires the description of
a traffic situation containing the following information gathered by the perception and
planner modules:

• the planned trajectory of the autonomous car,

• the geometric description of relevant road sections,

• the position and geometry of static obstacles,

• as well as the position, velocity, and classification of dynamic obstacles.

Static obstacles are a special case of dynamic obstacles with zero velocity, and for that
reason the discussion is continued for dynamic obstacles only. The classifier of the au-
tonomous vehicle groups the dynamic obstacles (=̂ traffic participants) into cars, trucks,
motorbikes, bicycles, and pedestrians. As the measurement of positions and velocities of
other traffic participants is uncertain, the presented approach allows the measured data to
be specified by a probability distribution. However, it is required that all relevant traffic
participants are detected. Given the information of the perception module, the future
stochastic reachable set of all traffic participants is computed, from which the probability
distribution of the position can be extracted. The positions with non-zero probability value
belong to the set of reachable positions, which serves as a time varying unsafe set for the
autonomous car1.

If the reachable positions of other traffic participants do not intersect with the ones of the
autonomous car for a prediction horizon tf , safety can be guaranteed within the specified
horizon. Where a crash is possible, the probability of the crash is computed from the
probability distribution within the reachable set. This is illustrated in Fig. 5.2, where

1The ego car and the autonomous car refer to the same car in this thesis. However, it is possible that
other vehicles are autonomous vehicles, too.

125

5. Safety Assessment of Autonomous Cars

stochastic reachable sets are shown for the time intervals τ1 = [0, t1], τ2 = [t1, t2] (dark
color indicates high probability density). Within the time interval τ1, a crash between
both cars is impossible since their stochastic reachable sets do not intersect, while for the
second time interval τ2, the crash probability is non-zero. It is obvious that all necessary
computations have to be faster than real time to allow an online application. In order to
update the crash probability prediction after a time interval ∆t based on new sensor values,
its computation has to be faster than real time by a factor of tf/∆t. This is illustrated in
Fig. 5.3 for the reachable set of a single variable x(t).

The mathematical model of other traffic participants used for the computation of their
stochastic reachable sets is introduced next.

τ1

τ2

planned path
other car

ego car

stochastic reachable set

Fig. 5.2.: Stochastic reachable sets of traf-
fic participants.

time t

x(t) update number i
new sensor
values

1

2

3

time horizon tftime horizon tf

∆t

stochastic reachable set

Fig. 5.3.: Repetitive computation of reach-
able sets.

5.3. Modeling of Traffic Participants

The presented safety assessment focuses on autonomous cars driving on a road network, i.e.
the motion of traffic participants is constrained along designated lanes. On that account,
the prediction of traffic participants is performed in two steps. Firstly, the lanes most
likely followed by traffic participants are determined by high-level behaviors. Secondly, the
dynamics of traffic participants along the corresponding paths on the lanes is considered.
The same concept is applied in [77].

Possible paths of traffic participants are modeled by the finite set of high-level behaviors
{left turn, right turn, go straight}, and {left lane change, right lane change} on a multi-lane
road. Further high-level behaviors such as parking or overtaking can be included in the
modeling scheme later. In the continuation of this work, it is planned to automatically
derive such high-level behaviors by observation and clustering of traffic scenes. It is noted
that the high-level behavior does not have to be exactly known, since one can also compute
with probabilities of high-level behaviors.

In unstructured environments, such as parking spaces or pedestrian zones, the motion of
vehicles/people cannot be described along paths. For these kinds of scenarios, the approach
presented in [195] is suggested, which uses the same mathematical principles as presented
later, but applies them to unstructured environments. The prediction in unstructured en-
vironments also serves as a fallback solution when the observed high-level behavior cannot

126

5.3. Modeling of Traffic Participants

be categorized in one of the given or additionally learned high-level behaviors.

Note that the introduced model is only used for other traffic participants. The ego car does
not have to be modeled since its future behavior is already determined by its trajectory
planner.

5.3.1. Lateral Dynamics

The deviation along the paths of traffic participants is modeled by a piecewise constant
probability distribution f(δ), where δ is the lateral deviation from a path. Possible paths
of a road network section, as well as the deviation probability distribution f(δ), are shown
in Fig. 5.4. The deviation probability can be adjusted to different classes of traffic partici-
pants: Bicycle riders are more likely to be found close to the curb, whereas cars and trucks
are more likely to be driving in the center of a lane. A statistical analysis of lateral displace-
ment of vehicles on a road can be found in [54]. The deviation probabilities are normalized
to the width of the lanes so that typical distributions can be applied independently of the
lane width.

In this thesis, the deviation probability is held constant over time and the more complex
case of dynamically changing lateral distribution is the subject of future work. Another
assumption is that the deviation probability is computed independently of the probability
distribution along the path. This is a reasonable assumption since the task of following the
desired path is more or less independent of the task of keeping the speed or the distance
to other vehicles. Additionally, this assumption drastically simplifies the computation of
probabilistic reachable sets of other traffic participants, because the lateral and longitudinal
probability distribution can be computed separately in low dimensional spaces. Thus, given
the lateral probability distribution f(δ) and the longitudinal probability distribution f(s),
the overall probability distribution is computed as f(s, δ) = f(s) · f(δ); see Fig. 5.4. The
combined probability distribution is described in a curved, path-aligned coordinate system
as also used in e.g. [60]. It is emphasized that the lateral and the longitudinal distribution
f(δ) and f(s) refer to the position s and the deviation δ of the volumetric center of the
vehicles. However, for visualization reasons, all figures in this work show the density of
the vehicle body, which takes the vehicle size into account; see Fig. 5.5.

The longitudinal probability distribution is obtained from a dynamical model which is
explained in the next subsection.

5.3.2. Longitudinal Dynamics

For the longitudinal dynamics model, the position of a vehicle along a path s, the velocity
v, and the absolute acceleration a have to be introduced. The acceleration command u is
normalized and varies from [−1, 1], where −1 represents full braking and 1 represents full
acceleration. Further, the function ρ(s) is introduced which maps the path coordinate s
to the radius of curvature. The radius of the path determines the tangential acceleration
aT for a given velocity v and thus limits the normal acceleration aN , since the absolute
value of the combined accelerations has to be less than the maximum absolute acceleration
amax. In addition, the acceleration dynamics changes at the switching velocity vsw. The

127

5. Safety Assessment of Autonomous Cars

set X
path 1

path 2

∆s

path
segment

vehicle

s

f(s)

δ

f(δ)

f(s, δ)

ρ(s)

Df

Fig. 5.4.: Position distribution f(s, δ) = f(s) · f(δ) along a path-aligned coordinate system,
which is composed of the longitudinal and lateral distribution. Df is a deviation
segment and ρ(s) is the radius of curvature along a path.

−4

00

0

4

2020 4040

vehicle center distr. vehicle body distr.

vehicle size

Fig. 5.5.: Probability distribution of the vehicle center and the vehicle body. The coordinate
axes refer to positions in [m].

differential equations for the longitudinal dynamics are chosen as proposed in [60]:

ṡ = v, v̇ =





amax u, 0 < v ≤ vsw ∨ u ≤ 0

amax vsw

v
u, v > vsw ∧ u > 0

0, v ≤ 0

(5.1)

subject to the constraint

|a| ≤ amax, where |a| =
√
a2N + a2T , aN = v2/ρ(s), aT = v̇. (5.2)

Backwards driving on a lane is not considered; see (5.1) (v̇ = 0, v ≤ 0). The constraint in
(5.2) models that the tire friction of a vehicle only allows a limited absolute acceleration
amax (Kamm’s circle). The constants amax and vsw can be chosen according to the specific
properties of the different classes of traffic participants. The values used in this thesis
when not stated differently are listed in Tab. 5.1.

The differential equations in (5.1) are chosen exemplarily and can be easily exchanged
against a different set of equations. For example, in previous publications [182, 183, 185,

128

5.3. Modeling of Traffic Participants

Tab. 5.1.: Vehicle parameters.

Car Truck Motorbike Bicycle

amax [m/s2] 7 7 7 7
vsw [m/s] 7.3 4 8 1

186, 188, 190], the vehicle model for the case u > 0 is v̇ = (amax − c2 v
2) u, where c2

is a constant. This model considers aerodynamic drag, but does not consider that the
acceleration force decreases with velocity since ma ≤ Pmax/v, where m is the mass and
Pmax is the maximum acceleration power. Another possibility is to enhance the model
according to Eidehall in (5.1) with aerodynamic drag so that the model for v > vsw ∧ u > 0
is v̇ =

(
amax vsw

v
− c1 v

2
)
u, where vsw and c1 are constants. The different models are

compared in Fig. 5.6 to a highly realistic vehicle model of the Audi Q7, which serves as the
platform for the experimental vehicleMUCCI which is presented later. Note that the peaks
in acceleration occur due to the torque converter of the automatic gear box in the Audi
Q7. The model proposed by Eidehall and the one enhanced with aerodynamic drag match
the realistic vehicle model best. However, since the model of Eidehall is accurate enough
and simpler than the enhanced version, the model proposed in (5.1) is used throughout
this thesis.

0 20 40
0

2

4

6

8

v [m/s]

a
[m

/s
2] Audi Q7

v̇ = a
max

·

v
sw

v
· u

v̇ =
(

a
max

·

v
sw

v
− c1 · v

2
)

· u

v̇ =
(

a
max

− c2 · v
2
)

· u

error

Fig. 5.6.: Maximum acceleration a of the Audi Q7 plotted over its velocity v; used parameters
for the compared models: amax = 7 [m/s2], vsw = 7.3 [m/s], c1 = 2.8e − 4 [m],
c2 = 1.9e− 3 [m].

5.3.3. Violation of Traffic Regulations

The safety assessment approach presented in this thesis initially assumes that the traffic
participants respect the traffic rules, e.g. they do not violate speed limits2 or they do not
drive in the wrong lanes (driving against oncoming traffic).

2In order to account for sporty drivers, the speed limit can be set higher than the official speed limit.
The consideration of speed limits is presented in detail in Sec. 5.5.2.

129

5. Safety Assessment of Autonomous Cars

The assumption that drivers stay in allowed lanes is considered by only allowing non-zero
deviation probabilities within the span of the allowed lanes. Note that the determination
of allowed lanes is not trivial since, for example, a vehicle may use a lane that is usually
used by oncoming traffic if an obstacle has to be circumvented.

There are two strategies for considering violations of traffic regulations. One possibility is
to assume that a non-conform driver is a reckless driver, e.g. the speed limit assumption,
the assumption that this driver stays in allowed lanes, etc., is not considered anymore in
the prediction. Another possibility is to only disable the speed limit regulation if only the
speed limit is violated or only disable the allowed lanes assumption if this assumption is
violated, etc. A satisfying answer for choosing the correct strategy is yet to be found.

The computation of the longitudinal probability distribution of traffic participants with
Markov chains is presented next.

5.4. Abstraction of Traffic Participants to Markov Chains

The dynamic model of traffic participants (5.1) introduced in the previous section is hybrid
with nonlinear continuous dynamics. Since this model is nonlinear, the enclosing hull
method of Sec. 4.2 for the computation of stochastic reachable sets cannot be applied.
However, due to the low dimensionality of the vehicle model, the Markov chain abstraction
of Sec. 4.3 can be applied. The advantage of this approach is that the computationally
intensive abstraction is computed offline. During the operation of the autonomous vehicle,
the stochastic reachable sets of the Markov chains can be computed efficiently. It is again
noted that the abstraction to Markov chains is only applied to other traffic participants,
while the behavior of the ego vehicle is known from the trajectory planner.

In Sec. 4.3 on Markov chain abstraction, two methods were presented: Abstraction by
Monte Carlo simulation and abstraction by reachability analysis. Monte Carlo simulation
yields more accurate transition probabilities while reachability analysis yields a complete
abstraction. It has also been shown that both methods can be combined so that both
positive properties are unified. However, for the dynamics of traffic participants as specified
in (5.1), there is no need for a complete abstraction. This is because the reachable position
can be efficiently computed by two simulations, as shown in the next subsection. Thus, the
probability that a crash may occur can be answered by the reachable positions, while the
probability of a crash is answered by the stochastic reachable set. If there is contradicting
information, i.e. a reachable set intersects, but the corresponding stochastic reachable
set does not (due to an incomplete Markov chain abstraction), a low crash probability is
assumed.

5.4.1. Reachable Set of Traffic Participants

This subsection presents an efficient computation of reachable sets for traffic participants
as previously defined in Sec. 5.3. Writing the dynamics of a traffic participant as ẋ =
fTP (x(t), u(t)), where x ∈ R2 is the state and u ∈ [−1, 1] is a Lipschitz continuous input,

130

5.4. Abstraction of Traffic Participants to Markov Chains

the exact reachable set Re(r) at time t = r is defined as

Re(r) =
{
x(r) = x(0) +

∫ r

0

fTP (x(τ), u(τ)) dτ
∣∣x(0) ∈ X 0, u(τ) ∈ [−1, 1]

}
.

In general, the exact reachable set of a system cannot be computed [106]. However, one
can always compute an over-approximation as presented in Chap. 3. An example of the
over-approximated reachable set of a traffic participant according to (5.1) for u = 1 and
t ∈ [0, 2] s is shown in Fig. 5.7 for two different initial sets. Additionally, sample trajectories
starting from the initial set are shown, where the states at times k ·∆t∗, k = 0 . . . 4,∆t∗ =
0.5 s are marked by a circle. If one is only interested in the reachable interval of the
position and the velocity of a vehicle driving along a straight path, the following special
case can be formulated:

Proposition 5.1 (Reachable Two-Dimensional Interval of the Vehicle State):
Given is a vehicle driving along a straight path with dynamics subject to (5.1) and the
initial condition x(0) ∈ X 0 = s(0) × v(0) where s(0) = [s(0), s(0)] and v(0) = [v(0), v(0)]
are the position and velocity intervals. The reachable, two-dimensional interval
X (t) = [x(t), x(t)] of position and velocity is given by

x(t) = x(0) +

∫ t

0

fTP (x(τ), u(τ)) dτ, u(τ) = −1

x(t) = x(0) +

∫ t

0

fTP (x(τ), u(τ)) dτ, u(τ) = 1.

�

The proof is omitted as it is obvious that the maximum position and velocity is obtained
when the vehicle starts with the maximum initial position and velocity under full acceler-
ation. The analogous argumentation holds for the lowest position and velocity. Note that
this argumentation is only applicable if there exists an initial state that jointly contains
the maximum initial position and velocity. This is always the case when the initial set is
a two-dimensional interval, which is in contrast to the example of Fig. 5.7(a), for which
Prop. 5.1 is not applicable. In this example, the maximum reachable position at different
times is reached from trajectories starting from different initial states. However, if one is
only interested in the reachable position – and the initial set is a two-dimensional interval,
as shown in the example of Fig. 5.7(b), the result of Prop. 5.1 results in the exact reachable
interval of the position coordinate.

If the path is curved, one has to consider the tire friction constraint in (5.2). For a given
curvature profile ρ(s), the minimum and maximum admissible input u(s) and u(s) can be
obtained as presented e.g. in [167]. By exchanging u(τ) = −1 with u(τ) = u(s(τ)) and
u(τ) = 1 with u(τ) = u(s(τ)) in Prop. 5.1, one can compute the reachable positions for
a curved road. Speed limits on a road can be considered by cutting off the previously
computed speed profile v(s) at vmax by assigning u(s) = 0 if v(s) > vmax. Note that for
a given input u (which is constant for a time step of the simulation), the position and
velocity can be computed analytically:

Proposition 5.2 (Analytical Solution of the Longitudinal Dynamics): The ana-
lytical solution of the longitudinal dynamics of traffic participants in (5.1) for u > 0

131

5. Safety Assessment of Autonomous Cars

20 40 60
8

10

12

14

16

18

20

22

x
1

x
2

list

initial set X 0

R([0, tf])

trajectories x(t)

x(t∗)

x(t∗ +∆t∗)

(a) Initial values within a zonotope.

20 40 60
8

10

12

14

16

18

20

22

x
1

x
2

times

initial set X 0

R([0, tf])

trajectories x(t)

x(t∗)

x(t∗ +∆t∗)

(b) Initial values within a two-dimensional in-
terval.

Fig. 5.7.: Reachable sets of a vehicle for different initial sets. The vehicle model according to
(5.1) with amax = 7 [m/s2], vsw = 7.3 [m/s] is applied.

and v > vsw is

s(t) = s(0) +
(v(0)2 + 2vsw u t)

3
2 − v(0)3

3vsw u
,

v(t) =
√

v(0)2 + 2vsw u t.

The correctness can be easily verified by inserting the solution into (5.1). The analytical
solution of the cases 0 < v < vsw ∨ u < 0 and v ≤ 0 is trivial. �

In order to obtain the two-dimensional reachable positions on the road and not only the
reachable positions along a path from the previous computation, it is generally assumed
that the vehicle can laterally cover the whole lane if not stated differently. Another simple
solution of reachable positions exists for vehicles with bounded absolute acceleration amax

on a two-dimensional plane [149].

The previously presented deterministic computations are supported by the Markov chains
abstracting the original dynamics. Their generation is summarized in the following.

5.4.2. Offline Computations

Since the Markov chain does not have to be complete, its transition probabilities are
computed by Monte Carlo simulation as shown in Sec. 4.3.2. In order to represent the
movement of other traffic participants for the whole prediction horizon, the discretization
region X = s×v has to be properly chosen for the Markov chain abstraction. The maximum
necessary region is as follows: The velocity interval ranges from standstill to the maximum
considered speed v = [0, vmax∗] and the position interval is [0, vmax∗ · tf + sdetect], where tf

132

5.4. Abstraction of Traffic Participants to Markov Chains

is the fixed or maximal prediction horizon and sdetect the distance from which other traffic
participants can be detected. However, due to efficiency reasons, smaller discretization
regions X can be reasonable, too.

Based on the discretization, the transition matrices of the state are computed for points
in time and time intervals as presented in Sec. 4.3.2. Besides different transition matrices
for points in time and time intervals, transition matrices are also diversified by different
choices of parameters in (5.1) which are listed in Tab. 5.1. The various transition matrices
for different types of traffic participants are stored and loaded during the online procedure,
which is addressed next.

5.4.3. Online Computations

During the online operation, a Markov chain for each detected traffic participant is in-
stantiated whose state transition probability matrices Φ̃(τ), Φ̃([0, τ]) are loaded from a
database and τ is the time increment of Markov chains, see Sec. 4.3.2. For example, in a
traffic scene with 2 cars and 1 bicycle, 2 Markov chains for the cars and 1 Markov chain
for the bicycle are instantiated. The initial probability distributions p̃(0) are generated
according to the measurement uncertainties. Then, the Markov chain of each traffic par-
ticipant is updated for the prediction horizon tf according to (4.25) which is recapitulated
for better readability:

p̃(tk+1) = Γ̃(tk) Φ̃(τ) p̃(tk),

p̃([tk, tk+1]) = Φ̃([0, τ]) p̃(tk),

where Γ̃(tk) are the time varying input transition matrices which are generated from be-
havior models to be introduced in the next section. The times tk are a short notation for
tk = k · τ .
Since the probabilities do not have to be computed in an over-approximative fashion as
previously explained, one can cancel small probabilities and normalize the probability
vector afterwards such that its sum is one. This procedure has the advantage that the
computational time is reduced because the transition matrix and the probability vector are
stored as a sparse matrix/vector which neglects zero entries. Special algorithms for sparse
matrix multiplications allow a drastic increase in the efficiency of matrix multiplications,
which are the faster the more zero entries exist (see e.g. [175]).

Heuristic 5.1 (Cancelation of Small Probabilities): Probabilities in p̃ which have a
value of less than p are replaced by zeros so that one obtains p̃∗, which is normalized to
the new probability vector p̃l = p̃∗l /

∑
l p̃

∗
l . The value of p should be chosen in relation to

the number of combined input and state cells d · c such that

p =
̟

d · c (5.3)

and ̟ can be freely chosen. �

133

5. Safety Assessment of Autonomous Cars

5.5. Behavior Modeling

The dynamics of traffic participants has been modeled based on physical considerations in
(5.1) and abstracted by Markov chains as described in the previous section. The Markov
chains allow the computation of the probability distributions of other traffic participants
when their sequence of input transition probabilities Γ̃(tk) is known, where the input values
refer to the acceleration command. This sequence is also referred to as the behavior of
traffic participants from now on. Besides the acceleration command, high-level decision
probabilities such as the probability of taking a left turn or the probability of changing
lane is also taken into account for the prediction of traffic participants. This is done by
weighting possible paths of traffic participants according to high-level decision probabilities.
In general, these probabilities are provided by other prediction algorithms, which often
work with alternative methods such as Bayesian networks or neural networks. However,
the computation of the high-level probability for changing lane is later addressed using the
methods at hand. Besides this exception, only the generation of input transition matrices
Γ̃(tk) is discussed below, because the high-level decision probabilities are provided by other
software modules within the prototype vehicle [164].

Clearly, the input transition matrices Γ̃(tk) cannot be derived the same way as the state
transition matrices Φ̃(τ) and Φ̃([0, τ]), because the acceleration commands of other drivers
cannot be described by differential equations. There are two main approaches for creating
the input transition probability matrices Γ̃(tk). One possibility is to generate the transition
probabilities based on heuristics. The other possibility is to learn the behavior of traffic
participants based on traffic observations. In most works, those traffic observations are
realized with static cameras (fixed position) and computer vision for the recognition of
traffic participants in the camera image. Another possibility is to observe the traffic from
a camera installed in a moving vehicle. Both configurations allow the recording of the
trajectories of other traffic participants for the learning algorithms.

These trajectories can be clustered, resulting in motion primitives such as left turn, lane
change, or parking [86]. A similar work focuses more on the probability distribution of
trajectories within a cluster [88]. Those motion primitives could complement the paths of
the traffic participants which are automatically generated from the road geometry and the
finite set of decisions {left turn, right turn, go straight}, and {left lane change, right lane
change} as introduced in Sec. 5.3. The advantage of this automatic clustering is that it
covers more typical behaviors, so that one does not have to use the prediction algorithms
for unstructured environments as a fallback solution so often.

The other objective for the recording of trajectories is to learn the behavior of traffic
participants when following certain motion primitives. Alternatively, one can also learn
behaviors directly from their two-dimensional movements on the road without grouping
them into motion primitives. However, it is believed that the two-step approach of firstly
learning motion patterns and secondly learning the dynamics along these motion patterns
is more promising. In literature, various models are investigated in order to learn the
behavior of traffic participants: Hidden Markov Models [123, 159], growing Hidden Markov
Models [166], and switched ARX models [151].

Due to the lack of recorded trajectories of other traffic participants in various real world
traffic situations, learning algorithms have not been applied, and heuristics are used in-

134

5.5. Behavior Modeling

stead. The recording of the required trajectories by the prototype vehicles of the Cognitive
Automobiles research project is part of future work, though. Unavailable trajectories of
other traffic participants are also the reason why the applied heuristics have not yet been
compared with real traffic data. The heuristic approach presented afterwards adapts the
input probabilities (acceleration commands) based on the geometry of the road and the
interaction with other traffic participants in lane following, intersection crossing, and lane
changing situations. First, general properties of the input dynamics are introduced.

5.5.1. General Computation

The input transition values Γαβ
i (tk) are generated below, where the index i refers to the

state and α, β are the final and initial value of the transition, respectively. For better
readability, the update of the conditional input probabilities qβi (tk) according to the input
transition values Γαβ

i (tk) is recalled from (4.22):

qαi (tk)
′ =
∑

β

Γαβ
i (tk) · qβi (tk).

The input transition probabilities Γαβ
i are composed of two components. One component

is a transition matrix Ψ which models the intrinsic behavior of the traffic participant
when there are no priorities for certain input values. Priorities arise when e.g. a traffic
participant is forced to brake due to a curve or a slower vehicle. Those priorities are
modeled by a priority variable λ, which is the second component. The intrinsic transition
matrix Ψ is introduced first and later combined with the priority λ.

The effect of the intrinsic transition matrix Ψ is discussed under the assumption that
there are no priorities, such that Γαβ

i (tk) = Ψαβ. Note that due to the intrinsic nature,
Ψαβ is independent of the time step tk and the state value i. In order to generate a proper
transition matrix Ψ, the normalization operator norm() is introduced first:

Ψαβ = norm(Ψ̂αβ) :=
Ψ̂αβ

∑
α Ψ̂

αβ
.

The column sums of the resulting transition matrix Ψ are 1 in order to ensure that the
multiplication with a probability vector results in a probability vector whose sum is 1. The
transition probabilities of Ψ are set according to the heuristics that the bigger the change
of the input3, the more unlikely this change is. A transition matrix that considers this
aspect is

Ψαβ(γ) = norm
(
Ψ̂αβ(γ)

)
, Ψ̂αβ(γ) =

1

(α− β)2 + γ
.

The parameter γ allows the gradual interpolation of the extreme cases limγ→0Ψ(γ) = I and
limγ→∞ Ψ(γ) = 1

c
1, where 1 is a matrix of ones and c is the number of inputs. Informally

speaking, a low value of γ models drivers that rarely change their acceleration command,
whereas a high value models drivers that often change their acceleration command. The
higher the value of γ, the faster the initial input distribution converges to the steady state

3As the discrete inputs are numbered in increasing order according to the acceleration intervals, the
difference between the input numbers is a measure of the change of the acceleration interval.

135

5. Safety Assessment of Autonomous Cars

distribution, which is uniform over all inputs. This is illustrated in Fig. 5.8 for 3 inputs.
High input numbers represent high positive acceleration, such that the first input y = 1
represents full braking and the last input y = 3 full acceleration. The initial probabilities
are set to P (y = 1) = 0, P (y = 2) = 0.8, P (y = 3) = 0.2 and the probabilities converge
to 1

3
as no prioritization is specified.

0 5 10
0

0.2

0.4

0.6

0.8

time step

p
ro

b
a

b
ili

ty

0 5 10
0

0.2

0.4

0.6

0.8

time step

p
ro

b
a

b
ili

ty

0 5 10
0

0.2

0.4

0.6

0.8

time step
p

ro
b

a
b

ili
ty

γ = 0.01 : γ = 0.2 : γ = 10 :

P (y = 1)

P (y = 2)

P (y = 3)

Fig. 5.8.: Input evolution for γ = 0.01, 0.2, 10.

Complementing the intrinsic transition matrix Ψ with the priority values of λ results in
the input transition values Γαβ

i .

Γαβ
i = norm(Γ̂αβ

i),

Γ̂αβ
i = λα

i ·Ψαβ , ∀i :
∑

α

λα
i = 1, 0 ≤ λα

i ≤ 1, (5.4)

where the state dependence of Γαβ
i is solely modeled by the priority values λα

i , while
the input dynamics matrix Ψαβ is independent of the state. The above formula has the
following special cases and properties:

• λα
i = 0: Regardless of the intrinsic transition matrix Ψ, the input α of state i is

prohibited (qαi = 0).

• λα
i = 1

c
, ∀i, α (c is the number of inputs): No input is prioritized, such that Γαβ

i =
Ψαβ .

• Ψ = I (I is the identity matrix): Γαβ
i = Iαβ, regardless of λ, such that the input

probability is unchanged.

• Ψ = 1
c
1 (1 is a matrix of ones): The multiplication

∑
β Γ

αβ
i · qβi results in λα

i .
Thus, a certain input probability distribution qαi

′ = λα
i is enforced, regardless of the

probability distribution of the previous time step.

Unfortunately, a formalism that generates values Γαβ
i with the above-listed properties and

additionally ensures the steady state solution qαi (t∞) = λα
i has not been found. This

solution would have the advantage that in the long run, drivers would always change their
measured acceleration distribution to the one enforced by the priority values. The problem
of creating a transition matrix which results in a certain steady state solution has been
addressed in [117, 118]. However, there exist only solutions for so-called class C matrices
and Γ does not belong to this class. Nevertheless, the steady state solution has values that

136

5.5. Behavior Modeling

are at least similar to the priority values of λ and approximate the priority values better
for higher γ values, so that for γ → ∞: qαi (t∞) = λα

i . In a previous work of the author
[186], the intrinsic transition matrix Ψ is not introduced, so that the input probability is
qαi

′ = λα
i , which is equivalent to γ → ∞.

It remains to compute the priority values λα
i (tk) for different traffic situations. One aim

is to alter λ so that constraints given by other traffic participants or the road geometry
are met. The other considered effect for the priority values is that traffic participants have
preferences for certain input values which are stored in the state independent motivation
values µα (∀i : µα

i = µα). The motivation values are equivalent to the priority values in
the absence of constraints (λα

i = µα
i).

In order to consider constraints, the event C of constraint satisfaction is introduced. Due
to the uncertain modeling of traffic participants, constraint satisfaction is not guaranteed,
such that the conditional probability of constraint satisfaction is introduced as ηαi :=
P (C|z = i,y = α), where z and y is the random state and input of the Markov chain,
respectively. Since constraints have to be met, the probability values ηαi serve as an upper
bound of the motivation values µα

i so that the priority values become

λα
i =

{
µα
i , if µ

α
i ≤ ηαi

ηαi , otherwise. → µα−1
i := µα−1

i + µα
i − ηαi

In other words, µα
i is cut off at ηαi and the cut-off probability is added to the next lower

acceleration interval: µα−1
i := µα−1

i + µα
i − ηαi , which is also visualized in Fig. 5.9. The re-

distribution to lower acceleration intervals implies that a constraint is satisfied by lowering
the acceleration. However, there are also situations such as overtaking maneuvers in which
higher acceleration allows constraints to be satisfied. The integration of those maneuvers
is the subject of future work.

−1 0 1
0

0.5

1

input u

p
ro

b
a

b
ili

ty µα
i

ηαi

λα
i

µα
i − ηαi

Fig. 5.9.: Combining a motivation distribution µ with a constraint distribution η.

The computation of constraint values for the capabilities road following, vehicle following,
intersection crossing and lane changing is addressed in the next subsections.

5.5.2. Road Following

In this subsection, the computation of the constraint values ηroad
α
i with respect to accelera-

tion limits and speed limits along curved paths is presented. For this, the possible velocity
interval [v(s), v(s)] resulting from the minimum and maximum possible acceleration in
(5.2) is introduced. An additional labeling with brackets indicates the maximum absolute

137

5. Safety Assessment of Autonomous Cars

s [m]

v
 [

m
/s

]

0 50 100 150
0

5

10

15 v(s)[1g]

v(s)[0.2g]

v(s)[0.2g]

v(s)[1g]

speed limit

x(0) x(τ)

cell

Fig. 5.10.: Velocity profiles for two straights connected by a 90◦ curve (15.5 m radius) and a
speed limit of vmax = 16.7 m/s =̂60 km/h.

acceleration, e.g. v(s)[0.5g] is the fastest possible velocity profile for amax = 0.5g and g is
the gravitational constant. Exemplary velocity profiles with a speed limit (possibly greater
than the official speed limit to account for sporty drivers) are shown in Fig. 5.10.

The maximum acceleration constraint is violated when the velocity is outside the velocity
profile bounds. However, this constraint may also be violated within the velocity bounds,
when e.g. strongly accelerating within a curve while staying below v(s). Nevertheless,
the event of constraint satisfaction C is defined such that it is true when the velocity is
within the velocity profile bounds (v(s) ≤ v ≤ v(s)). This simplification is necessary for
an efficient implementation and yields reasonable results within this framework, as shown
later.

The compliance with the acceleration and the maximum velocity constraint for a state
z = i and an input y = α is approximately checked by a single simulation run4:

1. Simulate the vehicle for the time τ , starting from x(0) = center(Xi) under the effect
of u = center(Uα). The operator center() returns the volumetric center of a set.
Remember that Xi is the set of continuous states represented by the discrete state
z = i and Uα is the set of continuous inputs represented by the discrete input y = α.

2. Check whether the velocity is within the minimum and maximum velocity profile
after one time increment τ (see also Fig. 5.10):

v(s(τ))[ād] ≤ v(τ) ≤ v(s(τ))[ād]. (5.5)

The constraint values are then obtained from the simulation results as

P (C|z = i,y = α, a < ād) =

{
1, if (5.5) holds

0, otherwise
.

Next, the probability distribution for applied accelerations P (a < ād) among all drivers is

4The lack of an over-approximative computation is appropriate since the reachable positions are computed
separately in Prop. 5.1.

138

5.5. Behavior Modeling

Tab. 5.2.: Discretization of the state
and input space.

position interval s [0, 200] m
velocity interval v [0, 20] m/s
input interval U [−1, 1]
position segments 40
velocity segments 10
input segments 6
time increment τ 0.5 s

Tab. 5.3.: Behavior parameters.

γ 0.2
µ

[
0.01 0.04 0.1 0.4 0.4 0.05

]

qi(0)
[
0 0 0 1 0 0

]
(∀i)

vmax 16 m/s

Tab. 5.4.: Initial state: Set with uniform distri-
bution.

s(0) ∈ [2, 8] m
v(0) ∈ [12, 14] m/s

introduced, where 0 < ād ≤ amax and amax is the physically possible acceleration. The index
d refers to a value within a finite set of selected absolute accelerations, e.g. {ā1, ā2, . . . , ā6}.
Drivers that prefer a more comfortable ride have high probabilities for low values of ād and
the other way round for sporty drivers. The constraint values over all accelerations ād are

ηαi = P (C|z = i,y = α) =
∑

d

P (C|z = i,y = α, a < ād)P (a < ād).

It is remarked that the probability of maximum applied acceleration P (a < ād) is not
obtained online by observation of other drivers, but set according to an average distribution
of all drivers. The effect of the constraint values ηαi on road following is demonstrated for
a vehicle that drives on a straight road and a curved road with the same initial states.

Example 5.1 (Straight versus Curved Road): The stochastic reachable sets of a ve-
hicle is computed with identical initial states when following a straight and a curved road.
The Markov chain for the vehicle is obtained from a discretization specified in Tab. 5.2.
The parameters determining the behavior of the vehicle are shown in Tab. 5.3 and the
initial state of the vehicle is listed in Tab. 5.4.

The probability distributions on the straight and curved road can be seen in Fig. 5.11(a)
for t ∈ [7.5, 8] s. The average velocity of the vehicle on different road segments in shown in
Fig. 5.11(b), in which the color bar maps the gray tone to the average velocity. This figure
nicely illustrates that the vehicle considers the speed limit of 16 m/s while decelerating in
front of a curve and accelerating after it. The distributions of the longitudinal position, the
velocity, and the input for the time interval t ∈ [7.5, 8] s are plotted in Fig. 5.12. There,
it can be observed that due to the curve, the vehicle on the straight road has traveled
further.

The computational time on an AMD Athlon64 3700+ processor (single core) in Matlab was
0.05 s for each scenario with a prediction horizon tf = 10 s and cancelation of probabilities
below pmax = 10/(d · c) = 4.2e− 3 (see Heuristic 5.1). �

The effect on the constraint values when following another vehicle is shown next.

139

5. Safety Assessment of Autonomous Cars

−10 0 10
0

50

100

150

200

−60 −40 −20 0
0

10

20

30

40

50

60

70

80

90

:

(a) Probability distribution for t ∈ [7.5, 8] s. The
coordinate axes refer to positions in [m].

−10 0 10
0

50

100

150

200

5 10 15

tj,end

−60 −40 −20 0
0

10

20

30

40

50

60

70

80

90

5 10 15

=

(b) Average velocity indicated by the color bar
in [m/s] for t ∈ [0, 10] s. The coordinate axes refer
to positions in [m].

Fig. 5.11.: Probability distribution and average velocity on a straight and curved road.

5.5.3. Vehicle Following

Constraints not only arise from curved paths to be followed and speed limits to be re-
spected, but also from other traffic participants. In this subsection, traffic participants
following other traffic participants on the same lane are considered. The more complex
cases of interaction at intersections and during lane changes are considered later.

Analogously to road following, the constraint values for vehicle following are computed
based on simulations and heuristics. In order to distinguish the variables of the following
vehicle from the ones of the leading vehicle, the variables of the following vehicle are
denoted by a raised F (e.g. zF), and the variables for the leading vehicle by a raised L
(e.g. zL). The constraint for the following vehicle is that its behavior should not cause

0 100 200
0

0.05

0.1

0.15

0.2

s [m]

pr
ob

ab
ili

ty

(a) Position histogram.

0 10 20
0

0.2

0.4

0.6

v [m/s]

pr
ob

ab
ili

ty

set

(b) Velocity histogram.

−1 0 1
0

0.2

0.4

0.6

u

p
ro

b
a

b
ili

ty

straight

curved

(c) Input histogram.

Fig. 5.12.: Histograms of position, velocity and input for t ∈ [7.5, 8] s.

140

5.5. Behavior Modeling

a crash. This is approximately checked by a single simulation5, similarly as for the road
following scenario:

1. Simulate both vehicles for the time interval [0, ν · τ], with constant ν ∈ N+, starting
from xF (0) = center(Xi), x

L(0) = center(Xj) under the effect of u
F = center(Uα),

uL = center(Uβ).

2. Simulate a sudden and full brake beginning at t = ν · τ of the leading vehicle, to
which the following vehicle reacts with a full brake, too. This behavior is simulated
until the following vehicle has stopped at t = tS.

3. Check if the following vehicle has crashed into the leading vehicle for t ∈ [0, tS].

The outcome of the simulation determines the conditional probability for satisfying the
constraint of crashing with a probability of less than ǫ which is motivated by driver inat-
tentiveness.

P (C|zF = i, zL = j,yF = α,yL = β,∆t = ν · τ) =
{
1, no crash simulated

ǫ, otherwise,

where ∆t is the discrete random variable for the time interval with constant acceleration.
Long time intervals model the behavior of foresighted drivers who adjust their acceleration
early to changes of other drivers, while short time intervals represent sporty drivers. The
probabilities P (∆t = ν·τ) for time intervals in which the acceleration interval is unchanged,
allows the computation of

P (C| zF = i, zL = j,yF = α,yL = β︸ ︷︷ ︸
D

) =
∑

ν

P (C|D,∆t = ν · τ) · P (∆t = ν · τ).

Note that the probability P (∆t = ν · τ) is not obtained online by observation of other
drivers, but set according to an average distribution of all drivers. The conditional prob-
abilities P (C|D) are computed offline and stored according to the state and input indices
in Θαβ

ij which allows the constraint values to be obtained for the vehicle following:

Proposition 5.3 (Constraint Vector for Vehicle Following): Under the assump-
tion that P (zF = i,yF = α) and P (zL = j,yL = β) are independent, one obtains

ηαi =
∑

j,β

Θαβ
ij p

L
j

β
. �

Proof: After defining the events Ã = (zF = i,yF = α) and B̃β
j = (zL = j,yL = β), one

can write:

P (C, Ã) =
∑

j,β

P (C|Ã, B̃β
j)P (Ã, B̃β

j)

independence
=

∑

j,β

P (C|Ã, B̃β
j)P (Ã)P (B̃β

j)

5The lack of an over-approximative computation is appropriate since the reachable positions are computed
separately in Prop. 5.1.

141

5. Safety Assessment of Autonomous Cars

→ ηαi =P (C|Ã) = P (C, Ã)

P (Ã)
=
∑

j,β

P (C|Ã, B̃β
j)︸ ︷︷ ︸

Θαβ
ij

P (B̃β
j)︸ ︷︷ ︸

pLj
β

.
�

It is obvious that the independence assumption only approximates the joint probability
P (Ã, B̃β

j) ≈ P (Ã)P (B̃β
j). Another issue is that the constraint value of the following vehicle

for a single state i and input α is computed based on the complete probability distribution
of the leading vehicle. The summation over all states j and inputs β of the leading vehicle
in Prop. 5.3 leads to an averaging effect. The error caused by the averaging effect and the
independence assumption are later evaluated in Sec. 5.7.6 when the Monte Carlo approach
is compared to the Markov-chain approach.

In traffic situations with more than two vehicles on a lane, the simplification is made that
each vehicle only reacts to the next vehicle driving in front and not to other vehicles.

The notation in Prop. 5.3 can be further simplified when using the probability vector p̃ as
introduced in (4.23) containing all values pβj . This rewriting can be analogously applied to
the constraint values of η:

p̃T =
[
p11 p21 . . . pc1 p12 p22 . . . pc2 p13 . . . pcd

]

η̃T =
[
η11 η21 . . . ηc1 η12 η22 . . . ηc2 η13 . . . ηcd

]
.

After writing the interaction values Θαβ
ij into the interaction matrix

Θ̃ =




Θ11
11 Θ12

11 . . . Θ1c
11 Θ11

12 Θ12
12 . . . Θ1c

12 Θ11
13 . . . Θ1c

1d

Θ21
11 Θ22

11 . . . Θ2c
11 Θ21

12 Θ22
12 . . . Θ2c

12 Θ21
13 . . . Θ2c

1d
...

...
Θc1

d1 Θc2
d1 . . . Θcc

d1 Θc1
d2 Θc2

d2 . . . Θcc
d2 Θc1

d3 . . . Θcc
dd


 ,

one can rewrite the computation of the constraint vector η̃ as η̃ = Θ̃ p̃L.

Note that the above equation is the only equation that has to be computed online in
order to obtain η̃, since Θ̃ is computed offline. When more than one constraint vector is
active, e.g. the constraint vector for road following and vehicle following, the combined
constraint vector is obtained by choosing the minimum constraint values elementwise (η̃ =
min(η̃road, η̃vehicle)) so that the constraints are simultaneously fulfilled in a probabilistic
sense. The effect of the constraint vector is shown in the next example in which three cars
drive in the same lane.

Example 5.2 (Vehicle Following): The interaction between vehicles driving in a lane
is exemplarily shown for 3 cars driving one after the other. The cars are denoted by
the capital letters A, B, and C, where A is the first and C the last vehicle in driving
direction. Analogously to the previous example on road following, the Markov chain used
for the vehicles B and C is obtained from the discretization in Tab. 5.2. Vehicle A is not
computed based on a Markov chain, but predicted with a constant velocity of 3 m/s so that
the faster vehicles B and C are forced to brake. The parameters determining the behavior
of the vehicles B and C are as for the previous example in Tab. 5.3 and the initial state
distributions of the vehicles A− C are specified in Tab. 5.5.

142

5.5. Behavior Modeling

The probability distributions for consecutive time intervals are plotted in Fig. 5.13. For
visualization reasons, the position distributions are plotted in separate plots, although
the vehicles drive in the same lane. Dark regions indicate high probability, while bright
regions represent areas of low probability. In order to improve the visualization, the colors
are separately normalized for each vehicle. The average velocity of the vehicles along the
lane is shown in Fig. 5.14. The distributions of the position, velocity, and acceleration
command for different vehicles and time intervals is shown in Fig. 5.15-5.17.

The computational time on an AMD Athlon64 3700+ processor (single core) in Matlab
was 0.21 s when canceling probabilities below pmax = 10/(d·c) = 4.2e−3 (see Heuristic 5.1)
for a prediction horizon of tf = 8 s. �

−5 0 5
0

20

40

60

80

100

120

140

160

180

car A
−5 0 5

car B
−5 0 5

car C

Y

(a) t ∈ [0, 2] s.

−5 0 5
0

20

40

60

80

100

120

140

160

180

car A
−5 0 5

car B
−5 0 5

car C

(b) t ∈ [2, 4] s.

−5 0 5
0

20

40

60

80

100

120

140

160

180

car A
−5 0 5

car B
−5 0 5

car C

(c) t ∈ [4, 6] s.

−5 0 5
0

20

40

60

80

100

120

140

160

180

car A
−5 0 5

car B
−5 0 5

car C

(d) t ∈ [6, 8] s.

Fig. 5.13.: Position distribution for different time intervals. The coordinate axes refer to
positions in [m].

−5 0 5
0

50

100

150

car A
−5 0 5

car B
−5 0 5

car C

0

5

10

15

Fig. 5.14.: Average velocity indicated by the color
bar in [m/s] for t ∈ [0, 8] s. The coor-
dinate axes refer to positions in [m].

Tab. 5.5.: Initial state: Set with uni-
form distribution.

vehicle A sA(0) ∈ [117, 123] m
vA(0) ∈ [2, 4] m/s

vehicle B sB(0) ∈ [72, 84] m
vB(0) ∈ [10, 12] m/s

vehicle C sC(0) ∈ [5, 17] m
vC(0) ∈ [13, 15] m/s

143

5. Safety Assessment of Autonomous Cars

0 100 200
0

0.2

0.4

0.6

s [m]

pr
ob

ab
ili

ty

(a) t ∈ [2, 2.5] s.

0 100 200
0

0.2

0.4

0.6

s [m]

pr
ob

ab
ili

ty
(b) t ∈ [4.5, 5] s.

0 100 200
0

0.2

0.4

0.6

s [m]

p
ro

b
a

b
ili

ty

car A

car B

car C

(c) t ∈ [7, 7.5] s.

Fig. 5.15.: Position histograms for different time intervals.

0 10 20
0

0.5

1

v [m/s]

pr
ob

ab
ili

ty

k =

(a) t ∈ [2, 2.5] s.

0 10 20
0

0.5

1

v [m/s]

pr
ob

ab
ili

ty

R

(b) t ∈ [4.5, 5] s.

0 10 20
0

0.5

1

v [m/s]

p
ro

b
a

b
ili

ty

car A

car B

car C

lo

(c) t ∈ [7, 7.5] s.

Fig. 5.16.: Velocity histograms for different time intervals.

−1 0 1
0

0.5

1

u

pr
ob

ab
ili

ty

(a) t ∈ [2, 2.5] s.

−1 0 1
0

0.5

1

u

pr
ob

ab
ili

ty

k −

(b) t ∈ [4.5, 5] s.

−1 0 1
0

0.5

1

u

p
ro

b
a

b
ili

ty

car A

car B

car C

([(k

(c) t ∈ [7, 7.5] s.

Fig. 5.17.: Input histograms for different time intervals.

The concept of vehicle following can be extended to scenarios at intersections with a few
additional computations.

5.5.4. Intersection Crossing

The interaction results for two vehicles driving on a lane are extended to intersection
scenarios. The behavior is differently computed for vehicles that have right of way and
those that have not. The constraint vector of traffic participants having right of way are
computed as previously described for road following and vehicle following, resulting in the
combined constraint vector η̃ = min(η̃road, η̃vehicle). The constraint vector for vehicles that

144

5.5. Behavior Modeling

do not have right of way are computed in two phases (modes): approaching and crossing.
First, the interaction at intersections is discussed for a simple example with two vehicles R
(right of way) and N (no right of way) as depicted in Fig. 5.18, and extended later. Note
that for each vehicle only one path through the intersection is considered for simplicity.
This means no loss of generality, as further combinations of driving paths are computed
the same way.

In approaching mode, a virtual vehicle V with zero velocity is put in front of the approach-
ing vehicle where the path with right of way is crossing; see Fig. 5.18. This point is also
referred to as the crossing position scross,N of vehicle N . The approaching vehicle N in-
teracts with the virtual vehicle as previously described in Sec. 5.5.3 so that approaching a
crossing is emulated by approaching a standing vehicle. As soon as the approaching vehicle
N has entered the transition region to crossing mode (see Fig. 5.18), the mode crossing
may become active. The length of the crossing region can be set by default to e.g. 10 m
or be adapted to the intersection geometry if such information is available. Within the
crossing region, the virtual vehicle V is replaced by a probabilistic virtual vehicle pV which
has zero velocity, too, but its presence is modeled by the probability pcross(tk) of crossing
traffic. For each time interval [tk, tk+1], the transition to crossing mode is activated for the
fraction 1− pcross(tk) of vehicle states within the crossing region. After the transition, the
input probability distribution is reset in order to remove the deceleration behavior of the
approaching phase.

The probability of crossing traffic pcross is defined as the probability that a vehicle is crossing
within the time span ξ · τ , where ξ ∈ N+ is a parameter that can be freely chosen. The
crossing probability of one vehicle is computed as pcross(tk) = p̂(tk−tξ)−p̂(tk), where p̂ is the
sum of position probabilities in front of the crossing. In the case of several crossing vehicles
1, . . . , n, the crossing probability is approximated by pcross = min(pcross,1 + . . .+ pcross,n, 1)
since the probability of crossing traffic cannot exceed 1.

It remains to extend the crossing procedure to the case when a vehicle simultaneously
approaches a crossing and follows another vehicle. Analogously to the case when the
vehicles are simultaneously constrained by the road and a vehicle driving ahead, it is
sufficient to consider the constraint vector that is most restrictive. After introducing the
constraint vector η̃inter for interaction with the virtual vehicle V , the overall constraint
vector is computed as η̃ = min(η̃road, η̃vehicle, η̃inter).

The concept for intersection crossing is demonstrated by the following numerical example.

Example 5.3 (Intersection Crossing): In this example, it is assumed that each vehicle
moves straight over the crossing. Additional possibilities of going left or right are neglected
for simplicity, but can be computed analogously. The cars involved in this scenario are
denoted by capital letters, where A, B have right of way and C, D do not have right of
way; see Fig. 5.19. As for the previous examples, the Markov chains used for the vehicles
are obtained according to the discretization in Tab. 5.2 and the parameters determining
the behavior of the vehicles are in Tab. 5.3. The uniform distributions of initial states are
specified in Tab. 5.6.

The probability distributions for selected time intervals are plotted in Fig. 5.19. Dark
regions indicate high probability, while bright regions represent areas of low probability.
In order to improve the visualization, the colors are separately normalized for each vehicle.

145

5. Safety Assessment of Autonomous Cars

No

NN V

R R

pV

transition region to
crossing modepath of vehicle N

path of vehicle R

pcross

approaching mode crossing mode

Fig. 5.18.: Intersection scenario: Approaching and crossing mode.

The average velocity of the vehicles along the lane is shown in Fig. 5.20. One can see that
the vehicles without right of way are forced to brake. The crossing probability determined
by the probability distributions of crossing vehicles A and B is plotted in Fig. 5.21.

The computational time on an AMD Athlon64 3700+ processor (single core) in Matlab
was 1.68 s when canceling probabilities below pmax = 10/(d·c) = 4.2e−3 (see Heuristic 5.1)
for a prediction horizon of tf = 11 s. �

A

B

C

D

(a) t ∈ [0, 0.5] s. (b) t ∈ [3.5, 4] s. (c) t ∈ [7, 7.5] s. (d) t ∈ [10.5, 11] s.

Fig. 5.19.: Position distribution for different time intervals. The coordinate axes refer to
positions in [m].

146

5.5. Behavior Modeling

−40 −20 0 20 40
20

40

60

80

100

120

140

160

180

0 5 10 15

(a) vehicle A.

−40 −20 0 20 40
20

40

60

80

100

120

140

160

180

0 5 10 15

(b) vehicle B.

−40 −20 0 20 40
20

40

60

80

100

120

140

160

180

0 5 10 15

j,star

(c) vehicle C.

−40 −20 0 20 40
20

40

60

80

100

120

140

160

180

0 5 10 15

(d) vehicle D.

Fig. 5.20.: Average velocity indicated by the color bar in [m/s] for t ∈ [0, 11] s. The coordinate
axes refer to positions in [m].

time t [s]

cr
os

si
ng

 p
ro

ba
bi

lit
y

2 4 6 8 10 12
0

0.5

1

is left:

Fig. 5.21.: Probability pcross of the
virtual vehicle.

Tab. 5.6.: Initial state: Set with uni-
form distribution.

vehicle A sA(0) ∈ [40, 52] m
vA(0) ∈ [10, 12] m/s

vehicle B sB(0) ∈ [5, 17] m
vB(0) ∈ [10, 12] m/s

vehicle C sC(0) ∈ [25, 37] m
vC(0) ∈ [6, 8] m/s

vehicle D sD(0) ∈ [5, 17] m
vD(0) ∈ [8, 10] m/s

5.5.5. Lane Changing

Similar to the intersection crossing behavior, the lane change behavior requires a discrete
decision. At intersections, the probability for crossing has to be modeled, and on a multi-
lane road, the probability for a lane change has to be modeled. The lane change probability
could be forwarded by an external algorithm. In the area of lane change recognition, most
work focuses on lane change assistance for human drivers within the ego vehicle; see e.g.
[120]. These systems warn the driver if a lane change is predicted and if the lane change
is dangerous, where the latter problem is addressed in e.g. [89, 93]. Further, it has been
shown that lane change prediction increases the acceptance of automatic cruise control
(ACC) systems [65].

147

5. Safety Assessment of Autonomous Cars

Lane change prediction of surrounding vehicles [45] is not so much investigated. Factors
contributing to a lane change are discussed in [29]. Besides the prediction of the lane
change decision, possible lane change trajectories using HMMs are generated in [126, 127].

In this work, another possibility to estimate the probability of a lane change maneuver is
presented. This approach only uses data that has been computed from the Markov chain
updates. In order to obtain an algorithm for traffic prediction under possible lane changes
which can be computed online, some simplifications have to be made.

Simplifications and Restrictions

The consideration of lane changes adds a significant amount of complexity to the computa-
tion of stochastic reachable sets, as will be shown later. For this reason, certain restrictions
for lane changes are proposed such that their consideration preserves the online capability
of this approach. In order to discuss the restrictions, a scenario with 3 lanes is set up
in Fig. 5.22. Note that vehicle A is the autonomous vehicle, while vehicles B − F are
surrounding traffic participants. The restrictions are as follows:

1. Lane changes are only considered for vehicles starting within a certain region around
the autonomous vehicle: sA(0) − η ≤ s ≤ sA(0) + η, where sA(0) is the position of
the autonomous vehicle at t = 0. Thus, lane changes are only considered for vehicles
D and E in Fig. 5.22.

2. A vehicle does a lane change only once within the prediction horizon, i.e. changing
two lanes or changing the lane and returning to the original lane is not considered.

3. There is no interaction between vehicles that may change to the same lane. Thus,
the probability that vehicle D changes to the middle lane is computed independently
of the probability that vehicle E changes to the middle lane.

From the second and third restriction follows that, in principle, the lane changes on a
road with n lanes can be broken down to lane changes on several virtual roads with two
lanes. For this reason, only two lanes with traffic participants A − D are considered for
lane changes from now on. It is remarked that it has not been checked if the assumptions
comply with real traffic, which is part of future work. However, the first assumption is
reasonable as human drivers also limit their prediction for possible lane changes to the
vicinity of their own vehicle. The second assumption is justified as a single lane change
takes about 6 seconds, which is similar to the prediction horizon tf for lane change scenarios
[129]. The last assumption does not strongly influence the overall result as the event that
two vehicles change to the same lane within the prediction horizon tf is rare. In the next
subsection, the computation of the lane change probability is discussed.

Lane Change Probability Approximation

The following considerations are made for the situation in Fig. 5.22, but for two lanes with
vehicles A−D, whereof vehicle D performs the lane change. This is no loss of generality
as lane change maneuvers can be broken down to this case using the previously discussed
assumptions. The probability of a lane change is heuristically obtained from three factors:

148

5.5. Behavior Modeling

A B

CD

E F

ssAsA − η sA + ηsE

la
n
e
ch
a
n
g
e

en
a
b
li
n
g
re
g
io
n

Fig. 5.22.: Considered actions for a three-lane scenario.

1. the motivation σcl for driving on the current lane,

2. the motivation σnl for driving on the neighboring lane,

3. the convenience σconv of the new following vehicle after the lane change is performed.

The motivation values σcl and σnl are obtained from the constraint values ηαi of vehicle D
following vehicle C or B, respectively. Similarly, the convenience value σconv is computed
from the constraint values of vehicle A when following vehicle D after the lane change. As
an intermediate step, the probabilities eα of meeting the constraint event C for a given
acceleration input are computed:

eα := P (C|y = α) =
∑

i

P (C|z = i,y = α)P (z = i) =
∑

i

ηαi p̂i,

where independency of P (z = i) and P (y = α) is assumed as in Prop. 5.3. Next, the
distributions eC,α, eB,α and eA,α for interaction with the vehicles A, B, and C are weighted
by values stored in a vector w for the vehicles in front and a different vector w for the new
following vehicle:

σcl =
∑

α

wαeC,α, σnl =
∑

α

wαeB,α, σconv =
∑

α

wαeA,α.

For the motivation values σcl, σnl, the weights are chosen such that high positive accel-
eration has high weights, because the possibility of acceleration motivates driving in a
particular lane. For the convenience value σconv, the weights are chosen such that braking
has low values, since it is inconvenient for the new following vehicle to be forced to brake
while all positive acceleration inputs have similar weights. Finally, the probability for a
lane change plc is heuristically computed as

plc =
2

π
arctan

(
b
σnl

σcl

σconv

∑
w

)
.

The heuristic is chosen such that a motivation ratio σnl

σcl in favor of the neighboring lane
as well as a high convenience value σconv motivates a lane change. The arctan function
allows the modeling of the saturation (R+ → [0, 0.5π]), but can also be replaced by a
similar function. The summation

∑
w is the maximum possible value for σconv, which

normalizes the convenience value. This is not necessary for σnl, σcl as one is only interested
in their ratio. Where there is no vehicle B or C, the corresponding σ values are set to∑

w or
∑

w. The parameter b is a tuning parameter that has to be found from traffic

149

5. Safety Assessment of Autonomous Cars

observations. Besides the probability of a lane change, the lane change maneuver itself has
to be considered, which is presented next.

Longitudinal and Lateral Probability Distributions

The probability for a lane change obtained from the previous scenario with vehicles A−D
strongly influences the future probability distribution. In order to refer to the cases when
vehicle D drives on the left or right lane, the notation Dl and Dr is used, respectively. The
longitudinal probabilities for the left and right lane are computed similarly as in previous
scenarios. The extension is that the probability for a lane change decreases the probability
of driving in one lane while it increases the probability in the other lane. Additionally, the
input probability distribution after the lane change has to be changed to the distribution
of the new lane by the input reset operator, which is defined as inputReset(∆pαi (tk)) :=
λDr,α
i (tk)

∑
α∆pαi (tk) when changing to the right lane and ∆pαi (tk) are the probability

values that are added to the right lane. The enhanced probability update of (4.25) when
changing from left to right is

∆p̃(tk) = plc(tk)p̃
Dl(tk),

p̃Dl(tk+1) = Γ̃Dl(tk) Φ̃(τ) p̃
Dl(tk)−∆p̃(tk),

p̃Dr(tk+1) = Γ̃Dr(tk) Φ̃(τ) p̃
Dr(tk) + inputReset(∆p̃(tk)),

while the updates for time intervals are identical to (4.25).

Besides the longitudinal probability distribution, the lateral distribution has to be changed
as well. For this, the lane change is divided into phases with time span τ = tk+1− tk. After
each time step, the probabilities are shifted to the next phase until the lane change has
been completed. This is illustrated in Fig. 5.25, where tlc is the time passed since the lane
change was initiated and the gray areas indicate the phases of driving in the initial and
final lane. The probabilities of the lane change phases are denoted by p̂lcl and the index
refers to the l-th phase. In order to account for the uncertainty in the lateral position
during a lane change, a deviation probability fl(δ) is defined for each phase. The final
deviation probability, which is spanned over the initial and neighboring lane, is computed
as f(δ) =

∑
l p̂

lc
l · fl(δ). The lane change probabilities and stochastic reachable sets for a

lane change scenario are computed in the following example.

Example 5.4 (Lane Changing): The considered traffic situation is depicted in Fig. 5.23
with vehicles A−D, where vehicle A is the autonomous vehicle and a lane change is only
considered for vehicle D. The traffic situation can easily be extended to three lanes as
previously discussed. In order to motivate a lane change for vehicle D, the initial speed of
vehicle C is chosen lower than for the vehicles A and B in the adjacent lane.

The parameters and settings are identical to the ones found in Tab. 5.2 and 5.3, except
that the values of the conditional input probability qi(0) differ from vehicle to vehicle. The
initial state distributions are presented in Tab. 5.7 and the weighting vectors for the lane
change probability are w =

[
0 1 2 3 4 4

]
, w =

[
0 0 0 1 1 1

]
and b = 0.11.

The probability distributions on the road are displayed in Fig. 5.23 for 5 selected time
intervals. Dark regions indicate high probability, while bright regions represent areas of

150

5.5. Behavior Modeling

Tab. 5.7.: Initial state: Set with uniform distribution.

vehicle A vehicle B vehicle C vehicle D

sA(0) ∈ [7, 13] m sB(0) ∈ [72, 84] m sC(0) ∈ [72, 84] m sD(0) ∈ [30, 40] m
vA(0) ∈ [14, 16] m/s vB(0) ∈ [14, 16] m/s vC(0) ∈ [4, 8] m/s vD(0) ∈ [14, 16] m/s

low probability. In order to improve the visualization, the colors are separately normalized
for each vehicle. The average velocities are displayed in Fig. 5.24. Further, the normalized
motivation values σcl, σnl, convenience value σconv, and lane change probability plc are
plotted in Fig. 5.26 and the probability distribution p̂lcl of the lane change phases at t = 4 s
is plotted in Fig. 5.25.

The computational time on an AMD Athlon64 3700+ processor (single core) in Matlab
was 0.43 s when canceling probabilities below pmax = 10/(d · c) = 4.2e− 3 for a prediction
horizon tf = 5 s.

linearization

A

B
C

D

(a) t ∈ [0, 0.5] s.

admissible

(b) t ∈ [1, 1.5] s.

Obtain

(c) t ∈ [2, 2.5] s. (d) t ∈ [3, 3.5] s. (e) t ∈ [4, 4.5] s.

Fig. 5.23.: Position distribution for different time intervals. The coordinate axes refer to
positions in [m].

5.5.6. Known Behavior

Finally, the case is considered when the future behavior of other traffic participants is
known. The planned trajectory x̂(t) of other vehicles is available when e.g. autonomous
vehicles broadcast their planned trajectories to other autonomous vehicles. The planned

151

5. Safety Assessment of Autonomous Cars

−5 0 5
0

50

100

150

200

car A
−5 0 5

car B
−5 0 5

car C
−5 0 5

car D 0.10.150.2
0.1

0.12

0.14

0.16

0.18

0.2

0

5

10

15

empty

Fig. 5.24.: Average velocity indicated by the color
bar in [m/s] for t ∈ [0, 5] s. The coor-
dinate axes refer to positions in [m].

0 2 4
0

0.1

0.2

0.3 on the initial lane

on the neigh-
boring lane

tlc

p̂
lc

Fig. 5.25.: Probability of lane change
phases at t = 4 s.

1 2 3 4 5
0

0.5

1

time t [s]

pr
ob

ab
ili

ty

σcl/
∑

w

σnl/
∑

w

σconv/
∑

w

plc

Fig. 5.26.: Motivation values.

trajectory of the ego vehicle is always known since the trajectory planner and the safety
verification module are connected (see Fig. 5.1).

In practice, the planned trajectory cannot be perfectly realized, which is modeled by a
bounded uncertainty Λ so that x(t) ∈ x̂(t) + Λ, where the set Λ is translated by x̂(t). The
connection to the probabilistic description of vehicles is established by first projecting the
planned trajectory x̂(t) and the bounded uncertainty Λ onto the position and the velocity
coordinate; see Fig. 5.27(a). It is assumed that the probability is uniformly distributed
within Λ so that the probability of a state space cell is determined by the fraction of
the volume in a cell. This is exemplarily presented for the uncertainty in Fig. 5.27(a),
whose corresponding probability distribution within the discretized state space is shown
in 5.27(b). The same procedure is performed for the input space.

In this section, the behavior of vehicles for road following, vehicle following, intersection
crossing, and lane changing has been modeled. It remains to compute the probability of a
crash of the ego vehicle with other vehicles. This is based on the probability distributions
of all vehicles in the traffic scene, which is discussed next.

152

5.6. Crash Probability

0 50 100
2

4

6

8

10

12

14

16

s [m]

v
 [

m
/s

]

and

projected trajectory

over-approximative box
of x̂([10τ, 11τ]) + Λ

(a) Projected trajectory.

0 50 100
2

4

6

8

10

12

14

16

s [m]

v
 [

m
/s

]

cations

probability distribution
p([10τ, 11τ])

(b) Discrete probability distribution.

Fig. 5.27.: Mapping of known behavior to discrete probabilities.

5.6. Crash Probability

In this section, the crash probability of the ego vehicle with all other vehicles in the traffic
scene is estimated. The other question of guaranteeing whether a crash may occur or not,
can be answered by checking if the reachable positions of the ego vehicle intersect with the
ones of all other vehicles, which are computed as presented in Sec. 5.4.1. In the case of a
conflict, i.e. the estimated crash probability is zero, but an intersection of reachable sets
has been detected, a low crash probability is assumed.

Before the approach for the computation of the crash probability is presented, some as-
sumptions are made which allow the crash probability as it is understood in this work to
be defined. The purpose of the safety assessment of autonomous vehicles is to obtain a
measure for the threat at different points in time when the planned trajectory is executed
as planned. This plan should be strictly followed by the autonomous car, which implies
that the errors made when following the planned trajectory are independent of the future
behavior of other traffic participants. Note that the compliance to the current plan dur-
ing the safety assessment is no contradiction to the continuous updates of the trajectory
planner; see Fig. 5.1.

Another aspect is that the crash probability is computed independently of previous crash
probabilities in this work. This has the advantage that for each point in time, a situation
can be judged independently of previous occurrences. This is not the case, when comput-
ing the physical probability that a crash will happen. Consider a scenario in which two
situations are equally dangerous at two different points in time. However, the probability
that the vehicle crashes in the first situation is much greater than in the second situa-
tion, because a crash can only occur in the second situation, if the vehicle survived the
first situation and crashes in the second situation. For this reason, it is assumed that the
autonomous vehicle has not crashed until the investigated point in time or time interval.
One can also say that the physically motivated crash probability is the total probability
of a crash, while the definition used in this work is the conditional probability of a crash

153

5. Safety Assessment of Autonomous Cars

under the condition that no crash has happened yet. Clearly, if the probability of a crash
is low for all points in time, both definitions yield similar results.

The definition is detailed for a situation with only one other traffic participant. For a better
distinction of variables from the other vehicle with the ones of the ego car, all variables
referring to the ego car are indexed by a hat (�̂) from now on.

Definition 5.1 (Conditional Crash Probability): Given are the vectors ξ̂, ξ ∈ Rη

which uniquely define the position and orientation of the ego vehicle and another vehi-
cle, respectively. The probability distributions at time tk are denoted by f(ξ, tk) and
f̂(ξ̂, tk). For both distributions, it is assumed that the ego vehicle has not yet crashed.
The indicator function ind(ξ, ξ̂) is 1 if the bodies of the ego vehicle and the other vehicle
intersect and 0 otherwise. Under the previously discussed assumptions that the probability
distributions f(ξ) and f̂(ξ̂) are independent, and the ego vehicle has not crashed until the
investigated point in time tk, the conditional crash probability pcrash(tk) is defined as

pcrash(tk) =

∫

Rη

∫

Rη

f(ξ, tk) · f̂(ξ̂, tk) · ind(ξ, ξ̂) dξ̂ dξ. �

In this work, ξ and ξ̂ are two-dimensional position vectors of the vehicle centers. The
orientation is indirectly specified since the vehicles are always oriented according to the
tangential vector of their path.

This definition is extended to several traffic participants by computing the partial crash
probabilities with other traffic participants. The final conditional crash probability is
obtained by summing over all partial probabilities. Note that the above definition can only
be applied to the ego vehicle and not to other traffic participants, since their probability
distributions are no longer independent.

5.6.1. Computational Realization

For the implementation of the above definition, the probability distribution f(ξ, tk) of
traffic participants has to be formalized. Since the path and the deviation along the
path are segmented, and the probability distribution is uniform within one segment, one
obtains a piecewise constant probability distribution in R2 for f(ξ, tk). In order to obtain
regions of constant probability distribution with simple geometry, waypoints on the paths
of other traffic participants are extracted every path segment distance. These waypoints
are connected to a simplified path consisting of connected straight lines. The straight
lines are also referred to as the simplified path segments sg, where g is the path index.
The deviation is also subdivided into segments dh, where h is the deviation index. The
segmentation of the path and the deviation can be observed in Fig. 5.28 and 5.4.

The region that is spanned when the path coordinate s is within sg and the deviation
coordinate δ is within dh is denoted by Cgh. The regions Cgh are trapezoids and the union
of all trapezoids results in a path-aligned occupancy grid. A further region that is of
interest, is the region that is occupied by the body of a vehicle when the center of the
body is within Cgh. This set is denoted by Bgh and its orientation equals the direction of
the path segment g, as illustrated in Fig. 5.28.

154

5.6. Crash Probability

−5 0 5 10 15 20 25 30 35 40 45
−4

−2

0

2

4

6

ξ
1
 [m]

ξ 2
 [

m
]

(

path waypoint

CghBghdeviation
segments

path segments

Fig. 5.28.: Exemplary path with occupancy regions.

In order to compute the crash probability, the probability pposgh that the center c of a traffic
participant is located in Cgh has to be computed first. Introducing the probability for a
deviation segment pdevh = P (δ ∈ dh) and the one for a path segment ppathg = P (s ∈ sg), the
probability that (s ∈ se ∧ δ ∈ df) ↔ c ∈ Cgh is pposgh = ppathg · pdevh due to the independency
assumption in Sec. 5.3. The deviation probabilities are fixed over time or time varying
when considering a lane change maneuver.

In contrast to the deviation probabilities, the path segment probabilities have to be ex-
tracted from the joint probabilities of state and input pαi originating from the Markov chain
computations. This is done by first summing over all inputs p̂i =

∑
α p

α
i . Each state space

cell i represents a position and velocity interval se and vm, such that Xi = se × vm, where
only the probability of the path segments se is of interest: ppathe =

∑
m P (s ∈ se, v ∈ vm)

and P (s ∈ se, v ∈ vm) ↔ P (x ∈ Xi) = p̂i.

Besides the probability that the center of a vehicle is in a certain trapezoid Cgh, it is
necessary to know the probability that two vehicle bodies intersect when the center of one
of the bodies is in Cgh and that of the other one is in Ĉef . This probability is denoted by

pintghef and is computed by uniformly gridding the uncertain sets Cgh and Ĉef as shown in
Fig. 5.29. The grid points are possible centers of vehicle bodies and by counting the relative
number of cases for which the bodies intersect, the probability pintghef is obtained. Instead
of gridding the set of vehicle centers, one can also conservatively assume that pintghef = 1

if the sets of possible vehicle bodies Bgh and B̂ef intersect, and pintghef = 0 otherwise. This
computation has been used in [188] and generates overestimated crash probabilities. From
now on, the computation of the crash probability according to the overestimated value of
pintghef is referred to as the conservative computation and the one according to the estimated
value of pintghef is referred to as the relaxed computation.

The probabilities pposgh that centers are in certain regions Cgh and the probability pintghef that

two vehicle bodies intersect when their centers lie in Cgh and Ĉef , allow the conditional
crash probability according to Def. 5.1 to be computed by

pcrash =
∑

g,h,e,f

pintghef · p̂posgh · pposef . (5.6)

The sum is taken over all possible combinations of g, h, e, f . This results in a huge num-
ber of possible combinations so that the following computational techniques are used to
accelerate the computation.

155

5. Safety Assessment of Autonomous Cars

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

distance [m]

d
is

ta
n

ce
 [

m
]

states

vehicle body

Ĉef Cgh

current vehicle center

tested
vehicle centers

Fig. 5.29.: Estimating the intersection probability of vehicle bodies given the sets of vehicle
centers.

5.6.2. Efficient Computation

In order to accelerate the computation of (5.6), pairs of vehicle body regions (Bgh, B̂ef)
have to be found that intersect. Then, only a subset of combinations of indices g, h, e, f
has to be considered in (5.6). In order to efficiently find intersecting pairs (Bgh, B̂ef), two
steps are suggested:

1. First, it is checked if the vehicle bodies
⋃

f Bef of a certain path segment e can
possibly intersect the vehicle bodies belonging to a path segment g of the ego car.
For this, it is checked if the circles enclosing the set of vehicle bodies intersect, where
circles are chosen since checking for their intersection is computationally cheap; see
Fig. 5.30.

2. Next, the set of vehicle bodies Bgh, B̂ef belonging to pairs of path segments passing
the first test are again checked for intersection by the same procedure using enclosing
circles.

Besides reducing the number of index combinations, the crash probability computation in
(5.6) can be further accelerated by precomputing the probabilities pintghef . Internally, the
precomputed intersection probabilities pint are stored by relative orientation and translation
of uncertain centers C. There are different look-up tables for pintghef depending on checking
intersection of the autonomous vehicle with a bicycle/bike, a car, or a truck.

5.6.3. Discussion

The computation of the crash probability based on the probability distribution of traffic
participants within consecutive time intervals has the advantage, that no point of time is
missed. For example, it prevents the tunneling effect which occurs when two vehicles cross
each other at high velocity. In this case, the stochastic reachable sets of points in time
might not intersect, while the stochastic reachable sets of time intervals intersect. The
disadvantage of the computation with time intervals is that the uncertainty is greater than
for points in time. This can lead to wrong crash probabilities as the following example
shows.

156

5.6. Crash Probability

initial

Ĉef

Ĉef

Cgh

Cgh

B̂ef Bgh

⋃
f Cef

⋃
f Bef

deviation
segments

p
a
th

seg
m
en
ts

look-up
table

intersection
probability

pintghef

vehicle
size

vehicle
size

➀ ➁

➂

Fig. 5.30.: Crash probability obtained from stochastic reachable sets.

Example 5.5 (Crash Probability Evaluated for a Time Interval): Given are two
vehicles driving one after the other with equal and constant velocity. The distance be-
tween the vehicles (bumper to bumper) is chosen as 10 m and the velocity is chosen as
30 m/s. For a time interval of t ∈ [0, 0.5] s, the front bumper of the following vehicle and
the rear bumper of the leading vehicle travel the distances as depicted in Fig. 5.31. Clearly,
the crash probability is zero since both vehicles travel with equal velocity. However, since
the corresponding bumpers of the following and leading vehicle are in the region between
10 m and 15 m with a probability of 1/3 in the time interval t ∈ [0, 0.5] s, the crash
probability is computed as 1/9 when using the independency assumption.

linearization

0 m 10 m

15 m 25 m

2/3

2/3

1/3

1/3

Fig. 5.31.: Crash probability example.

This error can be tackled by an extension, where in contrast to the previous approach, not
only the position and orientation of the vehicles is considered, but the velocity is included,
too. This is possible when using an enhanced look-up table in which the probabilities
for a crash within the time interval t ∈ [0, τ] are stored based on the relative position,
orientation, and the velocity intervals of both vehicles at t = 0. The disadvantage of
the required look-up table is that it is very large and that reduction techniques such as

157

5. Safety Assessment of Autonomous Cars

the exclusion of pairs of occupancy regions cannot be applied anymore. These two aspects
easily make the extended approach about 100 times slower. However, this extension results
in more accurate crash probabilities (see [194]). But after comparing the additional effort
with the achieved improvement, this extension in not used here. The used approach is
demonstrated for an overtaking scenario in the next example.

Example 5.6 (Crash Probability for an Overtaking Scenario): The crash proba-
bility of different time intervals according to the crash probability computation in (5.6)
is computed for an overtaking scenario. In this scenario, the autonomous car A plans to
overtake a bicycle B while another car C is approaching. The other car C enters the con-
sidered lane from a T-intersection and thus has the option of turning left or right. Since
there is no probabilistic information on the turning behavior available, both options are
considered with probability 1 such that the crash probabilities with the car are not com-
puted too small. The parameters and settings are identical to the ones found in Tab. 5.2
and 5.3.

The probability distributions on the road are displayed in Fig. 5.32 for 5 selected time
intervals. Dark regions indicate high probability, while bright regions represent areas of
low probability. In order to improve the visualization, the colors are separately normalized
for each vehicle. Since bicycle riders tend to ride close to the side of a lane, the lateral
probability distribution is chosen differently to the one of cars. The crash probabilities of
the autonomous car at different time intervals with different traffic participants is shown
in Fig. 5.33. This plot shows the independent crash probabilities computed according to
(5.6). The computational time on an AMD Athlon64 3700+ processor (single core) in
Matlab was 0.26 s for the probability distributions and 0.49 s for the computation of the
crash probabilities, resulting in 0.75 s for a prediction horizon of tf = 9 s. A probability
reduction with pmax = 3/(d · c) = 1.25e− 3 was used.

More investigations on the accuracy of the crash probability computations are discussed
in the next section on Monte Carlo simulation.

5.7. Comparison to Monte Carlo Simulation

In the previous sections of this chapter, a framework for the safety assessment of traffic
situations using Markov chains was presented. In order to check these results and get
an idea of the efficiency of the Markov chain approach, it is compared to Monte Carlo
simulations in this section. The term Monte Carlo simulation or Monte Carlo method
refers to methods that are based on random sampling and numerical simulation. Monte
Carlo methods are especially popular for complex and highly coupled problems where other
probabilistic approaches fail. One of the biggest applications of Monte Carlo simulation is
risk analysis, such as the risk analysis of road traffic considered in this thesis. As already
mentioned in the introduction of this chapter, Monte Carlo simulation has been applied
to the risk analysis of road traffic [15, 31, 32, 52, 59, 60] and air traffic [25, 26, 168]. The
results presented below have mainly been obtained from the supervised bachelor thesis of
Alexander Mergel [194].

158

5.7. Comparison to Monte Carlo Simulation

A

B

C

planned
trajectory

(a) t ∈ [0, 0.5] s.

+

(b) t ∈ [2, 2.5] s.

∩

(c) t ∈ [4, 4.5] s. (d) t ∈ [6, 6.5] s. (e) t ∈ [8, 8.5] s.

Fig. 5.32.: Position distribution for different time intervals in the overtaking scenario. The
coordinate axes refer to positions in [m].

0 2 4 6 8
0

2

4

6

8
x 10

−3

time t [s]

cr
as

h
pr

ob
ab

ili
ty

car (right turn)
car (left turn)
bicycle
total

error

Fig. 5.33.: Crash probability of the overtaking scenario.

5.7.1. Basic Approach

There exists a huge variety of Monte Carlo methods and thus one cannot give a strict
guidance on how to apply them in general. However, most methods exhibit the following
scheme.

1. Define a domain of possible inputs and initial states.

2. Generate inputs and initial states randomly from the previously specified domains.

3. Perform a deterministic computation starting at the initial states subject to the
randomly generated inputs.

159

5. Safety Assessment of Autonomous Cars

4. Aggregate the results of the individual computations into the final result.

For the dynamic model of traffic participants (5.1), the domain of initial states is the
set of initial positions and velocities, and the domain of inputs is the normalized range
[−1, 1] of acceleration commands. The initial states are randomly distributed according to
the initial distribution. The input distribution is more complicated since it evolves over
time so that the spectral density plays a major role in the outcome of the Monte Carlo
simulation, which is discussed later in detail. The aggregation of the results differs from
the two purposes pursued in this work.

One purpose is to compute the probability distribution of traffic participants for future
points in time. When using importance sampling, i.e. the samples are created according
to their probability distribution so that they have equal weight, the relative number of
simulations ending up in certain state space cells determine the probability of reaching
these state space regions. This procedure is exactly the same as for the determination of
transition probabilities of Markov chains using Monte Carlo simulation; see Sec. 4.3.2. The
other purpose is to compute the probability that the autonomous vehicle is crashing in a
certain traffic scenario. The ratio of counted collisions N crash to the number of simulations
Ns determines the crash probability pcrash = N crash/Ns when using importance sampling.
An alternative way of computing the crash probability is to determine the probability
distributions of all traffic participants using Monte Carlo simulation first. In a second
step, the crash probability is determined as for the Markov chain approach in Sec. 5.6.
However, this procedure is not advantageous, as shown later.

An intrinsic property of Monte Carlo simulation is that the result of the computations is
not deterministic, i.e. the result differs from execution to execution. Obviously, this is
because the samples for the deterministic simulation are randomly generated. Thus, the
probability distributions are possibly far from the exact solution. The good news, however,
is that the mean error scales with 1√

Ns
where Ns is the number of simulations. This result

can be derived from Monte Carlo integration, which is briefly introduced in Appendix B.
This is completely different when computing with Markov chains, where equal results are
obtained for identical initial conditions since no random sampling is applied.

5.7.2. Random Number Generation

One of the most important tasks in Monte Carlo simulation is the generation of random
numbers. This is a vast topic itself, dealing e.g. with the problem of how to generate
random numbers from computers which are deterministic machines. For this reason, these
random numbers are also called pseudo-random numbers and their degree of randomness
is checked via certain tests; see e.g. [171]. Here, it is assumed that random numbers
can be produced with sufficient quality from a uniform distribution in the interval [0, 1].
It remains to map these random numbers such that they are distributed according to a
specified distribution.

In the Markov chain approach, the probability distributions are discrete. Each discrete
probability represents the probability that a state or an input belongs to a certain cell
of the discretized state or input space. In order to obtain a probability distribution in
the continuous space, it is assumed that the probability distribution is uniform within a

160

5.7. Comparison to Monte Carlo Simulation

cell. This assumption has also been made for the generation of transition probabilities of
Markov chains; see Sec. 4.3. Thus, the initial and input distribution is piecewise constant;
see e.g. Fig. 5.34(a).

In order to compare the results of the Markov chain approach with the ones of the Monte
Carlo simulation, random numbers according to the piecewise constant distributions have
to be generated. The simplest approach for this task is the inverse transform method. This
method is based on the inverse of the cumulative distribution, which always exists since
only piecewise constant distributions are considered.

The method is illustratively described in Fig. 5.34 for a probability density function of the
acceleration command u. First, the cumulative distribution of the input F (u) is computed
by integration of the probability density function f(u). Next, the inverse of the cumulative
distribution F−1(r) is computed, where r is the new argument. When generating uniformly
distributed values of r within [0, 1], the random values of F−1(r) are distributed according
to the probability density function f(u). Note that r refers to possible values of the random
variable r. The proof is straightforward:

P (u ≤ u) = P (F−1(r) ≤ u) = P (r ≤ F (u)) = F (u).

The inverse transform method is used when generating the initial probability distribution
of the state as well as for the random inputs. For the random inputs, one has to additionally
consider correlations between time steps, which is discussed next.

−1 0 1
0

0.5

1

1.5

u

f(
u

)

k

(a) Probability density func-
tion.

−1 0 1
0

0.5

1

u

F
(u

)

initial set:

(b) Cumulative density func-
tion.

0 0.5 1
−1

0

1

r

F
-1

(r
)

(c) Inverse cumulative density
function.

Fig. 5.34.: Inverse transform method for the generation of random samples.

5.7.3. Input Generation

In the Markov chain approach, not only the states, but also the inputs are generated by a
Markov chain. More precisely, the conditional input distribution qαi = P (y = α|z = i) is
updated according to qαi ([tk, tk+1]) =

∑
β Γ

αβ
i (tk)q

β
i ([tk−1, tk]), where qβi ([tk−1, tk]) ∈ {0, 1}

when using Monte Carlo simulation; see (4.22). Input samples for the Monte Carlo simu-
lation are generated from the discrete probabilities qαi ([tk, tk+1]) as previously described in
Sec. 5.7.2.

Another option to create random inputs is proposed by Broadhurst and Eidehall in works
on Monte Carlo simulation of road traffic scenes [32, 52, 59, 60]. In these approaches, a

161

5. Safety Assessment of Autonomous Cars

random trajectory is created first, and afterwards its likeliness is evaluated. The values
of the input trajectories are created by an IID6 process, but are no longer IID after a
weight is assigned by the likeliness function. Before presenting the likeliness function (or
also called goal function), some notations are introduced and recapitulated. The deviation
from the lane center is denoted by δ, the velocity by v, the normal acceleration by aN ,
the steering wheel angle by φ, the maximum velocity by vmax, and the number of input
values by Nu = tf/τ (tf is the time horizon and τ the time increment). The goal function
is chosen in [32] to

g(u([0, tf])) = −
Nu∑

k=1

(
λ1δ(tk)

2 + λ2(v(tk)− vmax)2 + λ3aN (tk)
2 + λ4φ(tk)

2
)
, (5.7)

where λ1–λ4 are tuning parameters which punish the following: Large deviations from the
lane center, velocity deviations from the allowed velocity, large accelerations, and steering
wheel angles. The punishment of accelerations and steering angles ensures a comfortable
ride for the passengers. The probability distribution of the input trajectories f(u([0, tf]))
is assumed to be

f(u([0, tf])) = cn exp(kg · g(u([0, tf]))) (5.8)

according to [32], where the previously introduced goal function is in the exponent. The
value kg is another tuning parameter and cn is the normalization constant. The related
publications [52, 59, 60] use almost the same model, but with different parameter values and
the tangential acceleration aT instead of the steering angle φ. It is remarked that the tuning
parameters are set according to simulations and not learned from driving experiments in
real traffic.

Since the input values are generated independently of previous values, consecutive input
values are not strongly correlated despite the weighting. In contrast to this, the input
values generated by a Markov chain are correlated by the input transition values in Γ.
This is checked by the autocorrelation, i.e. the correlation of the signal against a time-
shifted version of itself:

S(t, τ) := E[u(t)u(τ)] =

∫ ∞

−∞

∫ ∞

−∞
utuτf(utuτ) dut duτ , (5.9)

where E[] is the expectation, f() is the probability density function, and ut is a realization
of the random variable u(t). The computation of the above integrals is approximated using
Monte Carlo integration as shown in (B.1).

The autocorrelation values for the input trajectories generated from the Markov chain
approach and the approach proposed by Broadhurst and Eidehall are plotted in Fig. 5.35.
The input trajectories for the autocorrelation computation are uniformly sampled and
generated with parameters listed in Tab. 5.8. Note that the parameters λ1 and λ4 are
set to 0 since it is assumed that the vehicles drive perfectly on their path. There is
almost no correlation between the inputs of different time steps in the approach proposed
by Broadhurst and Eidehall; see Fig. 5.35(a). This is in contrast to the Markov chain
approach, where the input signals are much more correlated, as shown in Fig. 5.35(b).

6IID: independent and identically distributed.

162

5.7. Comparison to Monte Carlo Simulation

Tab. 5.8.: Parameters for input trajectory generation.

General Broadhurst/Eidehall Markov chain

Ns 1e5 kg 100 µ [0.01, 0.04, 0.25, 0.25, 0.4, 0.05]
Nu 10 λ1 0 qα(0) [0, 0, 0.5, 0.5, 0, 0]
v(0) 15± 1 m/s λ2 0.05/Nu/(1 + v(0)2) γ 0.2
vmax 100/3.6 m/s λ3 0.05/Nu/a

max2

τ 0.5 s λ4 0

2 4 6 8 10
2

4
6

8
10

0

0.2

0.4

tτ

S
(t

,τ
)

(a) Approach by Broadhurst, Eidehall.

2 4 6 8 10
2

4
6

8
10

0

0.1

0.2

tτ

S
(t

,τ
)

(b) Markov chain approach.

Fig. 5.35.: Autocorrelation of input trajectories.

Besides the autocorrelation, the spectral density of input signals generated by the Markov
chain approach and the approach used in [32, 52, 59, 60] are compared for a deeper analysis.
The spectral density describes how the energy of a signal is distributed over its frequency,
where the energy of a signal x(t) is defined as

∫∞
−∞ |x(t)|2 dt in signal processing. The

spectral density is defined as |X(f)|2, where X(f) is the Fourier transform of x(t). For
the analysis of several instances of a stochastic signal, one is interested in the expectation
of the random spectral density E[|X(f)|2].

Proposition 5.4 (Average Spectral Density): The average of the spectral density
E[|U(f)|2] for input signals u(t), which are piecewise constant for time τ , is computed
as

Φ(f) = E[|U(f)|2] = τ 2si2(πfτ)
Nu∑

k=1

Nu∑

l=1

E[utkutl]e
−j2πfτ(k−l). �

The expectation E[utkutl] is obtained from the autocorrelation (5.9) and si() is the sinc
function which is defined as si(x) = sin(x)/x. A proof of the proposition can be found in
Appendix A.2. The expectations of spectral densities Φ(f) are visualized in Fig. 5.36 and
were computed based on the parameters in Tab. 5.8. It can be seen that the lower frequen-
cies are more dominant in the Markov chain approach, while the frequency distribution of
the approach by Broadhurst and Eidehall is close to an IID process with uniform distribu-
tion. Thus, the Markov chain approach better imitates the behavior of traffic participants

163

5. Safety Assessment of Autonomous Cars

who are generally changing their acceleration with low frequency.

The two approaches described for modeling the acceleration command of a vehicle have
not been verified with measured data from real traffic. However, the possibility to correlate
input data and the stronger dominance of input signals with low frequency are arguments
in favor of input trajectories generated by Markov chains. For this reason, only input
trajectories generated from Markov chains are used here. The comparison of probability
distributions obtained from the Markov chain and the Monte Carlo simulation approach
are presented next.

−5 0 5
0

0.2

0.4

0.6

0.8

1

f

Φ
(f

)

Markov chain approach

Broadhurst/Eidehall approach

uniform IID process

Fig. 5.36.: Average spectral density of input trajectories generated from different approaches.

5.7.4. Comparison of Probability Distributions

In this subsection, the input trajectories generated from Markov chains are used to compare
the performance of the Markov chain approach with the Monte Carlo approach. The
computed probability distributions are compared by the error or distance

d =
∑

i

|pi − pei | · V(Xi),

where pe is the exact probability distribution. The multiplication with the volume of the
cells is required in order to compare results of different discretization. The probability
distributions are compared for a braking maneuver and a maneuver where the acceleration
is uncertain. In these two scenarios, three different Markov chain discretizations are used
as listed in Tab. 5.9. The transition probabilities of the Markov chains are generated
using Monte Carlo simulation7. Further, the non-zero probability reduction as suggested
in Sec. 5.4.3 has been applied to the Markov chain approach with pmax = 3/(d · c), where d
and c is the number of discrete states and inputs, respectively. The Monte Carlo approach
used in both scenarios is performed with 104 simulations.

The braking maneuver is chosen because the probability distribution of v̇ = amax u
(u ∈ [u, u]) (see (5.1)) has an exact solution, which is described in Example 4.1. In
the braking scenario, only the velocities of the Markov chain and Monte Carlo approach

7104 samples are generated for each cell.

164

5.7. Comparison to Monte Carlo Simulation

are compared. The time horizon is chosen as tf = 5 s and the time increment is τ = 0.5 s.
The acceleration command is uniform in [−1/3, 0] and the initial speed is uniformly dis-
tributed within v(0) = [17, 19] m/s. The exact solution, the Monte Carlo solution, and
the solution of the Markov chains are compared: Markov chain A (coarse discretization)
is compared in Fig. 5.37 and Markov chain B (fine discretization) in Fig. 5.38. In order
to compare different discretizations, the bins of the Monte Carlo approach counting the
number of samples are adjusted to the cells of the corresponding Markov chains. The
computational times are shown in Tab. 5.10 and were obtained from an AMD Athlon64
3700+ processor (single core) using a Matlab implementation. The Monte Carlo simula-
tion has been obtained using a Runge-Kutta solver for ordinary differential equations and
the analytic solution presented in Prop. 5.2. One can see that the analytical solution is
about 15 times faster than the Runge-Kutta solver.

Tab. 5.9.: State space discretizations for a position interval of [0, 400]m and a velocity interval
of [0, 60] m/s.

position position velocity velocity
discretization segments resolution segments resolution

A 80 5 m 30 2 m/s
B 80 5 m 120 0.5 m/s
C 320 1.25 m 120 0.5 m/s

Tab. 5.10.: Computational times of the braking scenario.

Monte Carlo Monte Carlo Markov chain A Markov chain B
(simulated) (analytical)

3.67 s 0.252 s 0.016 s 0.042 s

0 10 20
0

0.2

0.4

0.6

Exact

pr
ob

ab
ili

ty

v [m/s]

d=0.000

linearization

0 10 20
0

0.2

0.4

0.6

Monte Carlo

pr
ob

ab
ili

ty

v [m/s]

d=0.017

set

0 10 20
0

0.2

0.4

0.6

Markov Chain A

pr
ob

ab
ili

ty

v [m/s]

d=1.259

Fig. 5.37.: Braking scenario: Velocity distributions for a coarse discretization (t = 5 s).

In the second example, the input is generated from the input transition matrix Γ as de-
scribed in Sec. 5.5.1 when following a straight road with speed limit. The parameters
required to determine Γ and further parameters are listed in Tab. 5.11. The uniform ini-
tial position interval is [2, 8] m and the initial velocity interval is [15, 17] m/s. The resulting
position and velocity distribution for a coarse discretization can be found in Fig. 5.39 and

165

5. Safety Assessment of Autonomous Cars

0 10 20
0

0.1

0.2
Exact

pr
ob

ab
ili

ty

v [m/s]

d=0.000

List

0 10 20
0

0.1

0.2
Monte Carlo

pr
ob

ab
ili

ty

v [m/s]

d=0.017

0 10 20
0

0.1

0.2
Markov Chain B

pr
ob

ab
ili

ty

v [m/s]

d=0.031

Fig. 5.38.: Braking scenario: Velocity distributions for a fine discretization (t = 5 s).

for a fine discretization in Fig. 5.40. Note that the Markov chain model B has a coarse
discretization of the position and a fine one of the velocity so that the position result is
shown in Fig. 5.39 and the velocity result in Fig. 5.40. Since there is no exact solution
for this scenario, an almost exact solution was computed with Monte Carlo simulation
using 5 · 105 samples. The computational times can be found in Tab. 5.12, which are again
obtained from an AMD Athlon64 3700+ processor (single core) using a Matlab implemen-
tation. The Monte Carlo simulation has been obtained using the Runge-Kutta solver and
the analytic solution as presented in Prop. 5.2. It can be observed that the Markov chain
solution is faster than the analytically obtained Monte Carlo solution and that the dis-
cretization of the Markov chain C is fine enough to produce results that are more accurate
than the Monte Carlo approach with 104 simulations.

Tab. 5.11.: Behavior parameters.

γ 0.2
µ

[
0.01 0.04 0.25 0.25 0.4 0.05

]

qi(t = 0)
[
0 0 0.5 0.5 0 0

]
(∀i)

vmax 100/3.6 m/s

Tab. 5.12.: Computational times of the road following scenario.

Monte Carlo Monte Carlo Markov chain A Markov chain B Markov chain C
(simulated) (analytical)

3.44 s 0.578 s 0.030 s 0.110 s 0.417 s

Finally, it was analyzed if the quality of the probability distributions depends on the
initial condition. As the vehicle model (5.1) is invariant under translations in position, it
is only necessary to vary the initial velocity. The influence on the initial velocity on the
distances dpos, dvel of the position and velocity is shown in Fig. 5.41. The Monte Carlo
simulations are performed with 104 samples and the Markov chain approach was computed
with the C model. In contrast to the previous computations, the speed limit of 100/3.6 m/s
has been removed so that initial velocities above this speed can be investigated. It can
be seen that the dependence on the initial velocity and thus on the initial state can be

166

5.7. Comparison to Monte Carlo Simulation

0 100
0

0.1

0.2
Exact

pr
ob

ab
ili

ty

s [m]

d=0.000

empty

0 100
0

0.1

0.2
Monte Carlo

pr
ob

ab
ili

ty

s [m]

d=0.106

0 100
0

0.1

0.2
Markov Chain A

pr
ob

ab
ili

ty

s [m]

d=1.048

0 100
0

0.1

0.2
Markov Chain B

pr
ob

ab
ili

ty

s [m]

d=0.598

0 20
0

0.1

0.2

Exact

pr
ob

ab
ili

ty

v [m/s]

d=0.000

tf

0 20
0

0.1

0.2

Monte Carlo
pr

ob
ab

ili
ty

v [m/s]

d=0.019

0 20
0

0.1

0.2

Markov Chain A

pr
ob

ab
ili

ty

v [m/s]

d=0.348

Fig. 5.39.: Road following scenario: Position and velocity distribution for a coarse discretiza-
tion (t = 5 s).

neglected, meaning that the results in Fig. 5.39 and Fig. 5.40 are representative. In the
next subsection, the crash probabilities obtained from the Monte Carlo simulation are
compared to the ones obtained from the Markov chain approach.

5.7.5. Comparison of Crash Probabilities

One big advantage of Monte Carlo simulation is that the crash probability can be easily
computed. When using importance sampling, it is obtained from the number of trajec-
tories leading to a crash N crash divided by the overall number of simulated trajectories:
pcrash = N crash/Ns. Note that trajectories causing a crash are not removed from the com-
putation in order to obtain crash probabilities in compliance with Def. 5.1. The traffic
participants are modeled by rectangles with a certain length and width. In order to effi-
ciently determine if a crash occurs, the separating axis theorem is applied which allows the
detection of intersections of rectangles with low computational costs [76]. The description
of the implementation can be found in [194] and an extension considering the velocity of
objects is presented in [58].

In the Markov chain approach, one has to compute the probability distribution of the
traffic participants as an intermediate step and then compute the probability distribution
as described in Sec. 5.6.

The crash probabilities are investigated for a scenario where the autonomous car drives be-
hind another car. The autonomous car starts from the position 0 m with constant velocity
20 m/s and has a uniform position uncertainty of ±3 m. The vehicle driving in front has an
uniform position in the interval of [20, 25] m and the initial velocity is within [15, 17] m/s.
The other parameters are listed in Tab. 5.11. The crash probability of Markov chains is
compared to the exact solution with a coarse and a fine discretization using model A and
C (see Tab. 5.9). The (almost) exact solution is obtained from a Monte Carlo simulation
with 105 samples. Besides two different Markov chain models, the two computational tech-

167

5. Safety Assessment of Autonomous Cars

0 100
0

0.02

0.04

Exact

pr
ob

ab
ili

ty

s [m]

d=0.000

0 100
0

0.02

0.04

Monte Carlo

pr
ob

ab
ili

ty
s [m]

d=0.062

0 100
0

0.02

0.04

Markov Chain C

pr
ob

ab
ili

ty

s [m]

d=0.036

0 20
0

0.02

0.04

0.06
Exact

pr
ob

ab
ili

ty

v [m/s]

d=0.000

0 20
0

0.02

0.04

0.06
Monte Carlo

pr
ob

ab
ili

ty

v [m/s]

d=0.025

0 20
0

0.02

0.04

0.06
Markov Chain B

pr
ob

ab
ili

ty
v [m/s]

d=0.016

0 20
0

0.02

0.04

0.06
Markov Chain C

pr
ob

ab
ili

ty

v [m/s]

d=0.013

Fig. 5.40.: Road following scenario: Position and velocity distribution for a fine discretization
(t = 5 s).

10 20 30
0

0.05

0.1

0.15

0.2

d
p

o
s

Initial velocity v(0) [m/s]

Monte Carlo

Markov chain

es

(a) Distance d of the position distribution.

10 20 30
0

0.01

0.02

0.03

0.04

0.05

d
v

e
l

Initial velocity v(0) [m/s]

Monte Carlo

Markov chain

(b) Distance d of the velocity distribution.

Fig. 5.41.: Distance d to the exact solution for different initial velocities.

niques for calculating the crash probability are compared: The conservative computation
(con) with the relaxed computation (rel); see Sec. 5.6.1. In addition, the crash probabil-
ity is computed based on the probability distribution at points in time (TP) and of time
intervals (TI). This results in 4 different variations: TPcon, TIcon, TPrel, and TIrel. The
crash probabilities pcrash for different time steps using the 4 different computing methods
are shown in Fig. 5.42. It can be observed that the relaxed computation produces much
better results than the conservative computation for the coarse model A. In the case of
the fine model C, the conservative and relaxed computation produce similar results; how-
ever, in terms of the time interval solution the relaxed computation is slightly better. It is
again remarked that only the time interval solution ensures that no dangerous situation is
missed.

Besides different Markov chain models, Monte Carlo solutions were tested, too. Fig. 5.42(c)
shows that the result is very accurate, even when only 103 or 102 samples are used. For

168

5.7. Comparison to Monte Carlo Simulation

this reason, it can be clearly stated that the Monte Carlo simulation performs better
than the Markov chain approach when the crash probability has to be computed. This
is reconfirmed by the computational times in Tab. 5.13, where the Monte Carlo approach
is more efficient. The computational times for the Markov chain approach are separated
into the part for computing the probability distribution and the part that intersects the
probability distributions to obtain the crash probability. The computations were performed
on an AMD Athlon64 3700+ processor (single core) using a Matlab implementation.

Tab. 5.13.: Computational times of the crash scenario.

Markov chain
A (TP) A (TI) C (TP) C (TI)

Prob. dist. 0.175 s 0.175 s 0.525 s 0.525 s
Intersection 0.042 s 0.107 s 0.169 s 0.394 s
Total 0.217 s 0.282 s 0.694 s 0.919 s

Monte Carlo simulation
1e2 (sim.) 1e3 (sim.) 1e2 (analy.) 1e3 (analy.)

Total 0.190 s 0.549 s 0.069 s 0.321 s

5.7.6. Examination of Interacting Vehicles

The interaction of two vehicles driving in the same lane has been addressed for the Markov
chain approach in Sec. 5.5.3. The formalism to compute the constraint vector η of the
following vehicle is described in Prop. 5.3, which is presented again for better readability:

ηαi =
∑

j,β

Θαβ
ij p

L
j

β
. (5.10)

In this formula, the constraint value ηαi for a single state i and input α of the following
vehicle is based on all states j and inputs β of the leading vehicle with probability distri-

bution pLj
β
, causing an averaging effect. Another problem is that the above formula only

holds if the joint probability P (zF = i,yF = α) of the following vehicle is independent of
the one of the leading vehicle P (zL = j,yL = β); see Prop. 5.3.

In the Monte Carlo approach, the independence assumption is not required. After intro-
ducing the events A = (zF = i,yF = α) and Bβ

j = (zL = j,yL = β) from Prop. 5.3, the
modified computation of the constraint vector is

ηαi = P (C|A) = P (C,A)

P (A)
=

∑
j,β P (C|A,Bβ

j)P (A,Bβ
j)

P (A)
=

∑
j,β Θ

αβ
ij p

F,L
ij

αβ

pFi
α , (5.11)

where pF,Lij

αβ
= P (zF = i,yF = α, zL = j,yL = β). In the Monte Carlo approach, this

probability is 1 for the cell indices the samples are located in, whereas the remaining values
are 0. Thus, the Monte Carlo approach does not suffer from the independence assumption.

169

5. Safety Assessment of Autonomous Cars

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

ili
ty

exact solution

Markov chain (TIcon)

Markov chain (TPcon)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

ili
ty

exact solution

Markov chain (TIrel)

Markov chain (TPrel)

(a) Markov chain comparison (discretization A).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

ili
ty

exact solution

Markov chain (TIcon)

Markov chain (TPcon)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

ili
ty

exact solution

Markov chain (TIrel)

Markov chain (TPrel)

(b) Markov chain comparison (discretization C).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

ili
ty

exact solution

Monte Carlo: 1e3 samples

Monte Carlo: 1e2 samples

linearization

(c) Monte Carlo comparison.

Fig. 5.42.: Crash probabilities for different points in time.

It is also not suffering from the averaging effect since (5.11) is evaluated separately for
each sample. The computation in (5.11) is not possible for the Markov chain approach

since the probability pF,Lij

αβ
is not available. It would be available if the state space of the

170

5.7. Comparison to Monte Carlo Simulation

Markov chain approach would be extended such that there are two dimensions (position
and velocity) for one vehicle and the same two dimensions for the second vehicle. However,
the number of dimensions would increase by 2, which results in an explosion in the number
of discrete states due to the exponential growth of discrete states.

The consequences of the averaging effect and the independence assumption are investigated
by emulating the behavior of the Markov chain approach by a Monte Carlo implementa-
tion. This is done by computing the constraint vector as described in (5.10), where the

probability pLj
β
is 1 for the cell indices the sample is located in and 0 otherwise. This

result is compared to the exact result obtained from Monte Carlo simulation of (5.11), the
result obtained from computing without interaction, and the result obtained when remov-
ing crashed samples in the Monte Carlo approach. The removal approach is performed by
computing without any interaction and then removing pairs of crashing vehicles.

All results were obtained for a scenario with a leading and a following vehicle on a straight
road. The parameters for the simulation are shown in Tab. 5.11, except that the speed
limit is chosen to vmax = 16 m/s. For the Markov chain computations, the discretization
presented in Tab. 5.2 is used. The initial position and velocity of the following vehicle is
uniformly distributed within sF (0) ∈ [2, 8] and vF (0) ∈ [10, 12] m/s. The initial intervals
of the leading vehicle are sL(0) ∈ [12, 18] and vL(0) ∈ [10, 12] m/s. The samples of
the different Monte Carlo simulations can be seen in Fig. 5.43, where the diagonal line8

indicates when the following vehicle has crashed into the leading vehicle so that all samples
above the diagonal line are collision-free. The figures show 103 samples at time t = 5 s.
It can be observed that the emulated Markov chains contain a lot of crashed vehicles.
This is mainly caused by the averaging effect and the independence assumption. A further
emulation which investigates the error due to the independence assumption while fixing the
averaging effect can be found in [194]. There are also some accidents in the exact solution
because the stored values in Θαβ

ij are approximately computed so that not all trajectories
starting in the corresponding cells are guaranteed to be collision-free; see Sec. 5.5.3. Clearly,
in the sample removal approach, no accidents occur. The disadvantage of the sample
removal method is that only accidents within the time horizon are canceled while a certain
constellation of vehicles states might inevitably lead to a collision in the future.

The resulting marginal probability distributions of each vehicle are shown in Fig. 5.44
obtained with 104 samples after t = 5 s. Indeed, the Monte Carlo emulation resembles
the probability distribution of the Markov chain approach. The plots also show that the
intersection of probability distributions of the position does not necessarily imply that
vehicles are crashing since e.g. the sample removal approach is collision-free. Thus, the
approach for computing the collision probability out of the probability distribution of traffic
participants as shown in Sec. 5.6 cannot be applied to two arbitrary traffic participants.
However, it can be used to obtain the collision probability of the autonomous car with
another vehicle, because their probability distributions are independent; see Def. 5.1.

The Monte Carlo simulations allowed a deeper insight into the advantages and disadvan-
tages of the Markov chain approach which are discussed below.

8The diagonal line is shifted by the vehicle length of 5 m.

171

5. Safety Assessment of Autonomous Cars

0 50 100
0

50

100

No Interaction
sB

 [m
]

sA [m]

empty

0 50 100
0

50

100

Emulation

sB
 [m

]

sA [m]
0 50 100

0

50

100

Exact

sB
 [m

]

sA [m]
0 50 100

0

50

100

Sample Removal

sB
 [m

]

sA [m]

Fig. 5.43.: Joint position distribution of samples after t = 5 s.

0 50 100
0

0.1

0.2
No Interaction

pr
ob

ab
ili

ty

s [m]

j,end:

0 50 100
0

0.1

0.2
Emulation

pr
ob

ab
ili

ty

s [m]

((

0 50 100
0

0.1

0.2
Exact

pr
ob

ab
ili

ty

s [m]

R

0 50 100
0

0.1

0.2
Markov Chain

pr
ob

ab
ili

ty

s [m]
0 50 100

0

0.1

0.2
Sample Removal

pr
ob

ab
ili

ty

s [m]

Fig. 5.44.: Marginal position distributions after t = 5 s.

5.7.7. Discussion

The Markov chain approach and the Monte Carlo approach have some inherent differences
concerning their error sources. The main error in the Markov chain approach is introduced
due to the discretization of the state and input space. The error in the transition probabil-
ities can be made arbitrarily small since they are computed beforehand. Thus, the Markov
chain approach has only systematic errors from the discretization but no stochastic errors
since no random sampling is applied.

In the Monte Carlo approach, there are no systematic errors (no bias) because each sim-
ulation is correctly solved with the original dynamical system equations. However, the
Monte Carlo simulation suffers under stochastic errors due to the sampling of the initial
conditions and input sequences. Due to the stochastic errors, the resulting distributions
and crash probabilities differ from execution to execution although the initial conditions
and inputs are unchanged. This implies that the obtained results might be far off the exact
solution – however, the likeliness of an extremely bad result is small and the mean error
converges with 1√

Ns
, where Ns is the number of samples.

For a simple scenario, where a vehicle drives along a road, the resulting probability distri-
butions of the Markov chain approach are slightly more accurate and faster than for the
Monte Carlo simulation if an analytical solution exists. When no analytical solution ex-
ists, the Markov chain approach is at least about 10 times faster. Because there are many

172

5.8. Driving Experiment

matrix multiplications in the Markov chain approach, it can be significantly accelerated by
using dedicated hardware such as DSPs (digital signal processors). However, when com-
puting crash probabilities, the Monte Carlo approach clearly returns better results since it
does not suffer from the discretization of the state space.

Another disadvantage of the Markov chain approach is that it is difficult to find an al-
gorithm which accurately computes the probability distributions for interacting vehicles –
a good solution is still to be found. For instance, one could investigate if it makes sense
to remove probabilities in the Markov chain approach as it is done in the Monte Carlo
approach when removing crashed samples. The errors in the current implementation could
be explained by an emulation using Monte Carlo simulation, which shows that the Monte
Carlo approach is more flexible. This might be of interest in unstructured environments
or when there is no single plausible path for a traffic participant. In such cases, one could
mix Monte Carlo related approaches with the Markov chain approach.

This is illustrated in Fig. 5.45, showing another vehicle which approaches a standing vehicle.
This vehicle might wait behind the standing vehicle or pass by. There are three plausible
paths in Fig. 5.45 and the partition of each path originating from the path and deviation
segments is visualized. Path 1 represents the option that the vehicle waits and there are
two alternatives paths 2 and 3 for passing the standing vehicle. When one is interested
in the probability distribution of other vehicles to e.g. plan a safe trajectory, the more
accurate and efficient Markov chain approach should be applied along these paths. If one
is only interested in the probability of a crash, Monte Carlo simulation should be applied
along the paths. However, Monte Carlo simulation should not be directly applied in 2-
D scenarios since many samples end up at road borders or other obstacles, making this
approach not very efficient. This is demonstrated for example in [194] and addressed in
many publications, e.g. [15, 31, 32, 52, 59, 60].

0 10 20 30 40 50 60 70 80
−5

0

5

10

approaching vehicle standing vehicle

path 1 path 2 path 3

Fig. 5.45.: Evasion of a standing car with alternative paths.

5.8. Driving Experiment

In previous sections, the safety assessment framework for autonomous cars was demon-
strated by numerical examples. In this section, the safety assessment is conducted based
on real measurements from a driving experiment with the experimental vehicle MUCCI
(Munich’s Cognitive Car Innovation) [192, 198]. This vehicle has been converted from a
standard Audi Q7 model to an autonomous vehicle within the research project Cognitive

173

5. Safety Assessment of Autonomous Cars

Automobiles [154].

5.8.1. Experimental Vehicle MUCCI

The experimental vehicle MUCCI is equipped with several sensors in order to properly
perceive the environment. The sensors used for the driving experiment described in this
work are:

• Inertial measurement unit (IMU): This device measures the translational and rota-
tory acceleration of the vehicle. The rotatory accelerations are used to adjust the
active camera platform such that it is aligned with the horizon, despite the roll and
pitch of the vehicle.

• Active camera platform: The cameras are used to detect lane markings on the road
which allows a representation of the road geometry to be built without any informa-
tion from a navigation system with road network information. The shape of the lane
markings is modeled by clothoids – a representation that has also been investigated
for modeling possible paths of other traffic participants [197].

• Light detection and ranging (LIDAR): Other objects in the traffic scene are detected
by this device, which measures the reflections of transmitted laser beams. After
some preprocessing, the enclosing circle radius, the relative position, and the relative
velocities of other traffic participants are obtained [161].

This equipment is also used in other vehicles of the Cognitive Automobiles project such
as for MuCAR-3, developed by the University of the Bundeswehr München, and for a
modified VW Passat developed by the Karlsruhe Institute of Technology. The VW Passat
participated in the 2007 Darpa Urban Challenge [92]. Besides similar sensor technologies,
all vehicles share a common computer hardware and software framework [172]. The soft-
ware is organized around the real time database KogMo-RTDB [74, 75]. This centralized
architecture has shown great benefits, since data produced by one software module is often
used by several other modules. For example, the pose and velocity of other traffic par-
ticipants is used by the vision software, the trajectory planner, and the safety assessment
module.

Data is written into and read from the real time database by a C or C++ interface.
The results of the safety assessment algorithms previously presented in Sec. 5.4-5.7 were
implemented in Matlab. In order to use the algorithms within the software framework of
the autonomous car, the code has been rewritten using the C++ language. Analogously
to the Matlab implementation, the fact that the transition matrices of the Markov chains
are sparse and that most values of the probability vector are 0 has been taken advantage
of.

5.8.2. Scenario

The algorithms developed for the safety assessment of the autonomous vehicle have been
tested with sensor information recorded at the University of the Bundeswehr München
in Neubiberg, Germany. An aerial image of the test location, on which the driven road

174

5.8. Driving Experiment

section is highlighted, can be found in Fig. 5.46. The test scenario was driven with two
autonomous cars and a human-driven car as depicted in Fig. 5.46.

At the beginning of the scenario, the human-driven car is the leading vehicle, followed by
MuCAR-3, which in turn is followed by MUCCI (see location ➀ and ➁). At position ➂,
the autonomous vehicle MuCAR-3 decides to overtake the human-driven car. During the
overtaking maneuver, the autonomous car MUCCI closes the gap to the human-driven
car (location ➃). The scenario is finished as soon as MuCAR-3 has successfully ended its
overtaking maneuver at location ➄.

The safety assessment has been performed for MUCCI, but could in principle be ported to
MuCAR-3 due to the common hardware and software framework. However, the porting
would still require several modifications because the software modules reading and writing
to the common real time database differ from vehicle to vehicle. Screenshots of the video
image of MUCCI and the graphical user interface (GUI) of the safety assessment software
are shown in Fig. 5.47 at different locations marked in Fig. 5.46. The GUI is not directly
connected to the safety verification algorithms, but gathers the displayed information from
the real time database. Data that is written from the safety verification module to the real
time database include the predicted probability distributions of other traffic participants,
the computation time for the prediction, and the crash probabilities over time.

The computation time was about 0.1 s when one vehicle was detected and about 0.15 s
when two vehicles were detected using the computer hardware described in [75]. The
prediction horizon was fixed to 5 s such that the prediction was about 30-50 times faster
than real time.

The main purpose of this test drive was to demonstrate the interaction with other software
modules connected through the real time database. Another aspect was to show the
real time capabilities of the used algorithms. However, due to the not yet fully achieved
capability of driving in real traffic, the compliance of the predictions with real traffic
behavior could not be tested. This shortcoming and possible future work for handling
more complicated scenarios is discussed next.

→

➀ ➁

➂➃➄
start

human driver
MuCAR-3

MUCCI

Fig. 5.46.: Test drive scenario.

175

5. Safety Assessment of Autonomous Cars

probability distribution MuCAR-3

probability distribution MUCCI

initial position MuCAR-3

initial position MUCCI

detected
road

computation
time

time interval

crash probability

(a) Location ➀.

(b) Location ➁.

reachable

(c) Location ➂.

(d) Location ➃. (e) Location ➄.

Fig. 5.47.: Screenshots of the test drive scenario.

5.9. Summary

A framework for the safety assessment of autonomous vehicles with respect to the planned
driving actions has been developed. Thereby, the whole chain – consisting of modeling
(vehicle model, stochastic behavior model), computational realization (Markov chain ab-
straction, crash probability computation), comparison to alternative approaches (Monte
Carlo simulation), and testing (test drive of a prototype vehicle) – has been processed.

In the modeling section, the concept has been introduced that each traffic participant has
one or several paths to be followed. Due to the concept of defining possible paths for each

176

5.9. Summary

vehicle, the motion along a path can be described by the position and the velocity only.
The deviation probability distribution along the paths is modeled time invariant, except
for lane change maneuvers. A dynamic adaption of the deviation probability distribution is
subject to future work. The probability distribution of the path coordinate is obtained from
an abstraction of traffic participants to Markov chains. Since the longitudinal dynamics of
traffic participants consists of position and velocity only, the abstraction to Markov chains
is computationally feasible.

A model considering arbitrary motions on a two-dimensional plane would be too high-
dimensional for a practical Markov chain abstraction. However, Monte Carlo simulations
also suffer from computational complexity in fully two-dimensional scenarios. When a
single path does not sufficiently describe a situation, multiple paths could compensate
for the shortcomings of the path concept; see Fig. 5.45. Alternative paths, which are not
generated from the center of possible lanes could be obtained by Monte Carlo simulation or
optimization techniques with alternative cost functions, realizing different types of drivers
(e.g. safe or sporty drivers). The advantage of multiple paths with deviation probability
is that many fewer paths have to be considered than in a pure Monte Carlo simulation of
a two-dimensional scenario.

A particularity of the Markov chain abstraction for the longitudinal vehicle dynamics is
that the abstraction does not have to be complete. The completeness can be achieved by
additional simulations of the vehicle dynamics which result in lower and upper bounds of
positions and velocities. Since the Markov chain computations can be incomplete, small
probabilities for certain state and input values are canceled, followed by a normalization of
the remaining probability values. This procedure allows fewer probabilities to be stored and
further reduces the computational burden due to the sparse representations of probability
values.

The stochastic acceleration values of other traffic participants have been modeled by an-
other Markov chain. The transition probabilities of the acceleration values are based on
simulations and heuristics. A learning approach which directly incorporates recorded traf-
fic data would be a reasonable alternative, which becomes realizable when the detection
of traffic participants and their tracking is more reliable in the future. For the heuristic
approach, different stochastic models for typical patterns such as road following, vehicle
following, intersection crossing, and lane changing have been suggested. Other behav-
iors that do not fall into these categories are handled by the unstructured environment
approach used for a mobile robot in human-populated areas [195].

The computed probability distributions of the Markov chains are the basis for the compu-
tation of the crash probability. In this work, the probability of a crash is computed under
the assumption that the autonomous vehicle has not crashed until the investigated point
in time (conditional crash probability). This has the advantage that the crash probabil-
ity of a particular time interval can be assessed independently from previous occurrences.
Computational techniques for the efficient computation of the conditional crash probability
have been presented.

The obtained probability distributions and crash probabilities have been compared to a
Monte Carlo implementation. This comparison not only reveals implementation errors, but
also allows the strengths and weaknesses of the Markov chain abstraction to be assessed.
One of the main advantages of the Markov chain abstraction is the better efficiency in

177

5. Safety Assessment of Autonomous Cars

computing probability distributions, especially when no analytical solution is available for
the vehicle model. The main disadvantages of the Markov chain approach compared to the
Monte Carlo simulation are that it computes worse crash probabilities and is less flexible.
The worse flexibility is especially evident when the interaction between traffic participants
is considered.

It is finally remarked that the probability distribution of other vehicles could not only
be used to estimate the threat of a planned trajectory, but might also be used by the
trajectory planner for a goal-oriented adaption of existing trajectories to safer trajectories.

178

6. Conclusion and Future Directions

6.1. Conclusion

New solutions for problems in classical reachability analysis, stochastic reachability anal-
ysis, and for the safety assessment of autonomous vehicles have been presented.

Reachability Analysis

In classical and stochastic reachability analysis, the major problem is not finding algorithms
that are able to solve reachability problems, but to find algorithms that scale well with the
dimension of the continuous state space. For this reason, reachable sets are represented by
zonotopes in this work. Zonotopes have outperformed previous set representations for the
reachability analysis of linear time invariant (LTI) systems with uncertain input. How-
ever, the use of zonotopes for more complex systems, such as linear systems with uncertain
parameters, nonlinear systems, and hybrid systems, is rather scarce. The presented ap-
proaches for these new frontiers of reachability analysis with zonotopes are all based on the
computational techniques for LTI systems. This has the advantages that on a lower level,
the superposition principle can be applied and that zonotopes are mapped to zonotopes
from one time interval to the other. The scalability of the presented approaches decreases
in general in the following order: Linear systems with uncertain parameters, nonlinear sys-
tems, hybrid systems. The algorithm for linear systems with uncertain parameters can be
applied to systems with 100 or more continuous state variables without any difficulty. The
only problem is that due to the wrapping effect, the reachable set might grow to infinity
even though the system is stable. In the case of nonlinear systems, the applicability of
the proposed algorithm strongly depends on the degree of nonlinearity. For mild systems,
up to 100 continuous state variables are also possible. However, when much splitting of
the reachable set is involved, only small systems can be handled. Similar considerations
apply to hybrid systems. When few switchings of the continuous dynamics have to be
considered, quite large problems can be handled. However, in the case of many switchings,
the reachable set suffers from inappropriate over-approximations. If a system has few con-
tinuous state variables and many guard sets, the use of polytopes is preferable since the
intersection of polytopes with polytopial guard sets yields polytopes so that no additional
over-approximation has to be accepted.

Stochastic Reachability Analysis

Stochastic reachability algorithms suffer even more from the curse of dimensionality since
most approaches rely on the discretization of the continuous state space. In order to

179

6. Conclusion and Future Directions

address this problem, the system class has been limited to linear systems for one of the
proposed approaches. For linear systems with Gaussian white noise, an analytical solution
exists for the computation of probability distributions. This solution has been extended
to Gaussian white noise whose mean is uncertain within a zonotope. Since no probability
distribution is known for this uncertainty, the enclosing hull of all possible probability
distributions is computed – for points in time and time intervals. The approach is scalable
and can be used for systems with 100 or more continuous state variables. In addition, the
algorithm does not suffer from the wrapping effect. It is again remarked that in this thesis,
stochastic reachable sets are used as a synonym for probability distributions of the state,
which differs from the definition in most other works. The duality of both definitions when
the set of unsafe states is absorbing has been addressed. The second presented approach
is the Markov chain abstraction, which allows stochastic reachable sets to be computed
for general systems, but with only a few continuous state variables, because this approach
uses state space discretization. The specialty of the proposed Markov chain abstraction
is that the time increment can be set independently of the cell geometry, allowing tune
the update rate and the discretization resolution to be independently tuned for an efficient
update of the Markov chain. This is especially useful when the Markov chain has to be
executed online for a time critical safety analysis, while the abstraction can be computed
offline.

Safety Assessment of Autonomous Cars

These online capabilities are of use for the safety assessment of autonomous cars so that
Markov chains are applied to this problem. In order to update the safety assessment with
high frequency for long prediction horizons, the prediction of traffic participants has to be
several times faster than real time. With the assumption that other traffic participants
follow paths up to a certain accuracy, only the position and velocity have to be discretized,
resulting into Markov chains with an appropriate number of discrete states. Besides the
Markov chain which models the physical behavior of a vehicle when an acceleration com-
mand is given, a stochastic driver model has to be created which generates appropriate
probability distributions for the acceleration command. The presented driver models found
in other works on safety assessment have low correlations between the generated inputs
and offer an unfavorable spectral density. This is different for the proposed Markov chain
approach of input values, and has the advantage of being consistent with the Markov chain
model of the physical behavior. A specialty of the safety assessment of autonomous ve-
hicles is that the set of unsafe states is represented by the position occupation of other
traffic participants, which is time varying and stochastic. Efficient computational tech-
niques have been presented to compute the intersection probability with such time varying
and stochastic sets, resulting in the crash probability of the considered time interval. The
presented Markov chain approach has been compared to Monte Carlo simulation and has
been implemented in an autonomous prototype vehicle. In terms of computing the prob-
ability distributions, the Markov chain approach showed better results, while the Monte
Carlo simulation is superior when computing crash probabilities. In the following section,
future directions of all considered research areas are discussed.

180

6.2. Future Directions

6.2. Future Directions

Future directions are separately discussed for classical reachability analysis, stochastic
reachability analysis, and safety assessment of autonomous cars.

Reachability Analysis

For linear systems, there already exist reachability algorithms which show good perfor-
mance. However, an algorithm for linear systems which only requires a start button to
be pushed is not yet available. For this open goal, it is necessary to automatically adapt
important parameters such as the time step size. Another promising aspect is to develop
an algorithm for linear systems with uncertain parameters when the parameters are time
varying.

There are also many promising directions for nonlinear systems when using the conservative
linearization approach as suggested in this work. A problem of this approach is that the
splitting of zonotopes is inefficient or leads to unsatisfactory over-approximations. This
problem can be alleviated by not splitting zonotopes Z, but computing with families of
zonotopes such that the sets A and B enclose a zonotope A ∪ B ⊇ Z and further define
the split zonotopes by Z1 = A ∩ Z and Z2 = B ∩ Z. Another area of future work is
to efficiently unify zonotopes to zonotopes after many splits so that one can compute
with fewer zonotopes in certain state space regions. One of the major sources for the
over-approximation is the conservative computation of the set of linearization errors using
interval arithmetics. This could be improved by advanced interval arithmetics, which takes
advantage of monotonicity in Lagrange remainders as shown in [145], or by Taylor models
for Lagrange remainders as suggested in [23].

There is also much potential for the proposed algorithms for hybrid systems, e.g. by
improving the conversion of reachable sets from generator representation to halfspace rep-
resentation and vice versa. One could develop improved order reduction techniques of
zonotopes for a more efficient conversion to halfspace conversion. From this development,
the reachability algorithms for linear time varying and nonlinear systems would also ben-
efit. For the conversion to generator representation, one could try optimization methods
which optimally adapt the shape of enclosing parallelotopes or zonotopes. The technique
for the enclosure could also be changed from enclosing H-polytopes instead of V-polytopes,
because H-polytopes have a more compact representation. The computational demand for
hybrid systems could be decreased by using decomposition methods so that it is sufficient
to verify smaller subsystems [63]. It is also promising to parallelize algorithms so that they
are more attractive for multi-core computer architectures.

Stochastic Reachability Analysis

Two approaches for stochastic reachability analysis have been investigated. One of them
is the Markov chain approach, for which there is not much potential for improvement since
it is naturally limited by the discretization of the state space, allowing only problems with
a few continuous state variables to be solved.

181

6. Conclusion and Future Directions

There is much more potential for the enclosing hull approach, which over-approximates
the probability distribution of stochastic systems. It has been shown that this approach
scales well for linear systems. However, there is much potential for finding tighter enclosing
hulls of linear systems. Besides an improved accuracy, one could think of extending this
concept to nonlinear and hybrid systems. The extension to nonlinear systems could be
accomplished by conservative linearization, analogously to the concept used for classical
reachability analysis of nonlinear systems. A possible representation of enclosing hulls
for this problem class could be mixed Gaussian distributions whose centers are uncer-
tain within sets. An extension to hybrid systems is an even bigger challenge due to the
intersection with guard sets, resulting in probability distributions which might even be
inappropriately over-approximated by a combination of mixed Gaussian distributions with
sets.

Safety Assessment of Autonomous Cars

In terms of the safety assessment of autonomous cars, there are a number of ideas that
have not yet been realized. First of all, there are concepts from other publications that
are not integrated into the current framework. One concept is the selection of relevant
traffic participants by first checking if their reachable sets intersect [77], which can be
easily realized using Prop. 5.1. The other concept is to integrate visibility considerations
which provide a probability that a traffic participant reacts to another traffic participant
in front, to the left/right, or behind [60]. In this work, traffic participants only react to
vehicles driving in front, for which the inattentiveness probability ǫ has been introduced.

A further aspect is the generation of possible paths of traffic participants. Up to now,
the paths have been generated according to the center line of drivable lanes. However,
this approach is not suitable if, for example, a lane is blocked. In this case one has to
generate possible paths to circumvent the obstacle, as shown in Fig. 5.45. These paths could
be obtained by Monte Carlo simulation or optimization techniques with alternative cost
functions, realizing different types of drivers (e.g. safe or sporty drivers). The advantage of
multiple paths with deviation probability is that many fewer paths have to be considered
than in a pure Monte Carlo simulation of a two-dimensional scenario.

The behavior of traffic participants circumventing obstacles could also be learned from
traffic observations. In addition, one could learn patterns for parking, lane changing, and
so on. From this follows that after the correct identification of a motion pattern, the
prediction can use this pattern instead of more general assumptions for driving behavior.
Besides the learning of motion patterns, one could also learn the typical (possibly time
varying) deviation probability when a certain pattern is followed. Another aspect, which
may be better learned than modeled, is the interaction between traffic participants, for
example when following another vehicle or changing lane. Even for the simple case of
vehicle following, a satisfying interaction model for Markov chain computations is still to
be found.

Another issue is the automatic adaption of the time horizon. A good guideline would be a
time horizon which covers the duration of the planned maneuver followed by a maneuver
which can bring the vehicle to a safe state. The second maneuver is not executed but
added in order to ensure the possibility of reaching a safe state, such as standstill in an

182

6.2. Future Directions

allowed road section. The probability of reaching a safe state after a maneuver is planned
is also addressed in [177].

Additionally, one could incorporate the velocity and the relative angle of traffic participants
into the crash probability computation so that the severeness of a crash is also considered
for the safety assessment.

Finally, the problem of verifying the safety of an autonomous car in coordinated maneuvers
can be further addressed. In a scenario, where other plans are known, the uncertain move-
ment along the planned trajectories is small enough such that non-probabilistic methods
can be applied [178].

183

A. Proofs

A.1. Over-approximation of the Reachable Set due to

Inputs

The reachable set due to inputs PR can be approximated by assuming constant inputs
within smaller time intervals [ti−1, ti], where 0 = t0 < t1 < . . . < tl−1 < tl = r.

PR(r) ≈
∫ t1

t0

eA(t1−t) dtU +

∫ t2

t1

eA(t2−t) dtU + . . .+

∫ tl

tl−1

eA(tl−t) dtU . (A.1)

In order to obtain not only an approximation, but an over-approximation, the solution for
a time interval [ti−1, ti] is rewritten as a finite Taylor series (see (3.2)):

∫ ti

ti−1

eA(ti−t) dtU

⊂
{[

It +A
2!
t2 + . . .+ Aη

(η+1)!
tη+1

]∣∣∣
ti

ti−1

+
∫ ti
ti−1

E(t) dt
}
U

=
{[

I(ti − ti−1) +A
2!
(t2i − t2i−1) + . . .+ Aη

(η+1)!
(tη+1

i − tη+1
i−1)

]
+
∫ ti
ti−1

E(t) dt
}
U

⊆ I(ti − ti−1)U +A
2!
(t2i − t2i−1)U + . . .+ Aη

(η+1)!
(tη+1

i − tη+1
i−1)U +

∫ ti
ti−1

E(t) dt · U .
(A.2)

Note that the multiplication of the input set U with the Taylor terms causes an over-
approximation since C · U +D · U ⊇ (C +D) · U , where C,D ∈ Rn×n. This can be easily
checked for C = 1, D = −1 yielding the set {0} for the exact solution and the Minkowski
addition of C and −D otherwise.

It remains to replace the integral of E(t) which is computed in (3.3) as E(t) = [−1, 1] ·φ(t),
where [−1, 1] is a matrix whose elements are intervals [−1, 1] and φ(t) = (‖A‖∞t)η+1

(η+1)!
1

1−ǫ
.

Since φ(t) ∈ R+ is monotone in t, it follows that one can over-approximate the integral by∫ r

0
φ(τ)dτ ⊂ φ(r) · r so that one obtains the over-approximation

∫ ti

ti−1

E(τ)dτ ⊂ [−1, 1][φ(t) · t]
∣∣ti
ti−1

= [−1, 1](φ(ti)ti − φ(ti−1)ti−1).

184

A.1. Over-approximation of the Reachable Set due to Inputs

After introducing D(η) = Aη

(η+1)!
· U , one can rewrite (A.2) as

∫ ti

ti−1

eA(ti−t) dtU =D(0)(ti − ti−1) +D(1)(t2i − t2i−1) + . . .+D(η)(tη+1
i − tη+1

i−1)

+ [−1, 1] · U · (φ(ti)ti − φ(ti−1)ti−1).

(A.3)

Inserting (A.3) into (A.1) yields

PR(r) ≈
(D(0)(t1 − t0) +D(1)(t21 − t20) + . . . +D(η)(tη+1

1 − tη+1
0)

+ (D(0)(t2 − t1) +D(1)(t22 − t21) + . . . +D(η)(tη+1
2 − tη+1

1)
+ . . .

+ (D(0)(tl − tl−1)︸ ︷︷ ︸
∑

+D(1)(t2l − t2l−1)︸ ︷︷ ︸
∑

+ . . . +D(η)(tη+1
l − tη+1

l−1)︸ ︷︷ ︸
∑

+ [−1, 1] · U · (φ(t1)t1 − φ(t0)t0)
+ [−1, 1] · U · (φ(t2)t2 − φ(t1)t1)
+ . . .
+ [−1, 1] ·U · (φ(tl)tl − φ(tl−1)tl−1)︸ ︷︷ ︸

∑

(A.4)

The summation symbols indicate that the terms written in one column are summed up.
Since the expressions (tmi − tmi−1) are positive scalars, the following statement can be used
for the summation: For any two positive scalars a, b ∈ R+ and the convex set V, one can
state that

{a · s+ b · s|s ∈ V} = a · V + b · V = (a + b) · V. (A.5)

From this follows that

D(m−1)(tm1 − tm0) +D(m−1)(tm2 − tm1) + . . .+D(m−1)(tml − tml−1) = D(m−1)(tml − tm0︸ ︷︷ ︸
rm

),

U(φ(t1)t1 − φ(t0)t0) + . . .+ U(φ(tl)tl − φ(tl−1)tl−1) = U(φ(tl)tl − φ(t0)t0︸ ︷︷ ︸
φ(r)r

),

(A.6)

because all the times except tml and tm0 cancel out. It is remarked that this result is
independent of the number of intermediate time intervals l. Inserting (A.6) into (A.4)
yields

PR(r) ≈ D(0)r +D(1)r2 +D(2)r3 + . . .+ E(r) · r · U .

As stated before, this result is independent of the number of intermediate time steps l, such
that one can choose l → ∞, meaning that the above result is no longer an approximation:

PR(r) = D(0)r +D(1)r2 +D(2)r3 + . . .+ E(r) · r · U =

η∑

i=0

(
Ai · ri+1

(i+ 1)!
· U
)
+ E(r) · r · U .

185

A. Proofs

A.2. Spectral Density of Stochastic Piecewise Constant

Signals

Given is a signal u(t) which is constant within consecutive time intervals [tk, tk+1], where
tk+1 − tk = τ . This can also be written as

u(t) =
Nu∑

k=1

u(tk)rect

(
t− (k − 0.5)τ

τ

)
, rect(t) =

{
1, for − 0.5 < t < 0.5

0, otherwise
.

Next, its Fourier transform is calculated in order to obtain the spectral density. Us-
ing the properties F {rect(t)} = jsi(πf), F {x(t/a)} = |a|X(af), and F {x(t + τ)} =
X(f)e−j2πfτ , the following relations between the time and frequency domain can be for-
mulated.

rect(t) d tjsi(πf)

rect

(
t

τ

)
d tjτsi(πfτ)

rect

(
t− (k − 0.5)τ

τ

)
d tjτsi(πfτ)e−j2πf(k−0.5)τ .

For the whole input signal, the Fourier transform is therefore

U(f) = jτsi(πfτ)ejπfτ
Nu∑

k=1

u(tk)e
−j2πfkτ .

The average spectral density function can then be calculated to

Φu(f) = E[|U(f)|2] = τ 2si2(πfτ)

Nu∑

k=1

Nu∑

l=1

E[utku
∗
tl
]e−j2πfτ(k−l).

186

B. Monte Carlo Integration

The objective of Monte Carlo integration is to approximate the integral of a high dimen-
sional function, which is one of the most common applications of Monte Carlo simula-
tion. According to the mean value theorem for integrals, there exists a value c such that∫ b

a
f(x) dx = f(c)(b − a). When subdividing the interval [a, b] into Ns equidistant subin-

tervals of length h = (b− a)/Ns, the integral can be approximated with ci = a + (i− 1
2
)h

by
∫ b

a

f(x) dx ≈ h
Ns∑

i=1

f(ci) = f̂ · (b− a), where f̂ =
1

Ns

Ns∑

i=1

f(ci).

When using this technique for integrals in several dimensions, the number of partitions
grows exponentially since Nn

s regions are necessary if each dimension has Ns partitions.
For this reason, the values ci at which the function is evaluated are randomized in the Monte
Carlo integration. The result of a randomized sampling of ci can be further improved when
introducing a weight function w(x) so that there are more samples at interesting points:

∫ b

a

f(x) dx =

∫ b

a

f(x)

w(x)
w(x) dx, where

∫ b

a

w(x) dx = 1 is normalized and w(x) > 0.

A change of variable from x to y(x) =
∫ x

a
w(x̃)dx̃ such that dy

dx
= w(x), y(x = a) = 0,

y(x = b) = 1 yields

∫ b

a

f(x) dx =

∫ b

a

f(x)

w(x)
w(x) dx =

∫ 1

0

f(x(y))

w(x(y))
dy ≈ 1

Ns

Ns∑

i=1

f(x(yi))

w(x(yi))
, (B.1)

where yi are the randomized values. In the multidimensional case, only the integration
region has to be changed to

∫
X
f(x) dx ≈ 1

Ns

∑Ns

i=1
f(x(yi))
w(x(yi))

. For a uniform sampling, the

weighting function is chosen as w(x) = 1
V(X)

and V() is the volume operator.

The variance of the Monte Carlo integral in (B.1) can be computed to

Var

(
1

Ns

Ns∑

i=1

f(x(yi))

w(x(yi))

)
=

1

N2
s

Var

(
Ns∑

i=1

f(x(yi))

w(x(yi))

)
=

1

N2
s

Ns∑

i=1

Var

(
f(x(yi))

w(x(yi))

)
.

using Var(ax) = a2Var(x) and Var(x+y) = Var(x)+Var(y) when the random variables x
and y are uncorrelated. Since the random variables yi are identically generated, it follows

187

B. Monte Carlo Integration

that Var
(

f(x(yi))
w(x(yi))

)
= Var

(
f(x(y))
w(x(y))

)
∀i which further simplifies the variance computation.

1

N2
s

Ns∑

i=1

Var

(
f(x(yi))

w(x(yi))

)
=

1

N2
s

Ns Var

(
f(x(y))

w(x(y))

)
=

1

Ns

Var

(
f(x(y))

w(x(y))

)
. (B.2)

Thus, the variance of the result reduces by 1
Ns
. Since the Monte Carlo approach has no

systematic error, the result has no so-called bias and the variance equals the mean squared
error, meaning that the mean error reduces with 1√

Ns
.

When predicting the future behavior of traffic participants, one is not interested in com-
puting an integral, but one is interested in the probability that a state is in a certain cell
of the discretized state space (pi = P (x ∈ Xi)). After introducing the indicator function

indi(x) =

{
1, if x ∈ Xi

0, otherwise

the probability pi can be computed as

pi = P (x ∈ Xi) =

∫

X

indi(x)f(x) dx
(B.1)≈ 1

Ns

Ns∑

i=1

indi(x)
f(x(yi))

w(x(yi))
, (B.3)

where X ⊇ Xi. When one would like to compute the crash probability, the indicator
function has to be exchanged to a function that is 1 if a crash has been obtained and 0
otherwise. There exists a nice result for the probability distribution pi of traffic participants
when using importance sampling.

Example B.1 (Mean Squared Error for Importance Sampling): When using im-
portance sampling (f(x(yi)) = w(x(yi))), the variance in (B.2) simplifies to 1

Ns
. Thus,

when computing pi = P (x ∈ Xi) =
∫
X
indi(x)f(x) dx with importance sampling, the vari-

ance becomes

Var(pi)
(B.3),(B.2)

=
1

Ns

Var(indi(x)) =
1

Ns

(
E[ind2i (x)]− E[indi(x)]

2
)
.

Since the indicator function is either 1 or 0, the square of the indicator function can
be removed. Further, the expectation of the indicator function E[indi(x)] equals the
probability that the state is in that cell pi = P (x ∈ Xi). Thus, the variance of pi simplifies
to

Var(pi) =
1

Ns
pi
(
1− pi

)
.

With the upper bound pi
(
1 − pi

)
≤ 1

4
because 0 ≤ pi ≤ 1, one finally obtains the simple

bound

Var(pi) ≤
1

4Ns
. �

188

Bibliography

[1] A. Abate. Probabilistic Reachability for Stochastic Hybrid Systems: Theory, Compu-
tations, and Applications. PhD thesis, University of California, Berkeley, 2007.

[2] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry. Computational ap-
proaches to reachability analysis of stochastic hybrid systems. In Hybrid Systems:
Computation and Control, LNCS 4416, pages 4–17. Springer, 2007.

[3] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica, 44:2724–
2734, 2008.

[4] M. Abdel-Aty and A. Pande. ATMS implementation system for identifying traffic
conditions leading to potential crashes. IEEE Transactions on Intelligent Trans-
portation Systems, 7(1):78–91, 2006.

[5] T. Alamo, J. M. Bravo, and E. F. Camacho. Guaranteed state estimation by zono-
topes. In Proc. of the 42nd IEEE Conference on Decision and Control, pages 5831–
5836, 2003.

[6] R. Alur, C. Coucoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicolin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[8] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering, 22:181–201, 1996.

[9] F. Anstett, G. Millérioux, and G. Bloch. Polytopic observer design for LPV systems
based on minimal convex polytope finding. Algorithms & Computational Technology,
3:23–43, 2009.

[10] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis of
piecewise-linear dynamical systems. In Hybrid Systems: Computation and Control,
LNCS 1790, pages 20–31. Springer, 2000.

[11] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler. Recent
progress in continuous and hybrid reachability analysis. In Proc. of the 2006 IEEE
Conference on Computer Aided Control Systems Design, pages 1582–1587, 2006.

[12] E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlinear systems using
conservative approximation. In Hybrid Systems: Control and Computation, pages
20–35, 2003.

189

Bibliography

[13] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of non-
linear systems. Acta Informatica, 43:451–476, 2007.

[14] E. Asarin, T. Dang, and O. Maler. d/dt: A verification tool for hybrid systems. In
Proc. of the Conference on Decision and Control, pages 2893–2898, 2001.

[15] K. Aso and T. Kindo. Stochastic decision-making method for autonomous driving
system that minimizes collision probability. In Proc. of the FISITA World Automo-
tive Congress, 2008.

[16] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[17] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38:91–109,
1999.

[18] A. Barth and U. Franke. Where will the oncoming vehicle be the next second? In
Proc. of the IEEE Intelligent Vehicles Symposium, pages 1068–1073, 2008.

[19] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Y. Wang, and C. Weise. New
generation of UPPAAL. In Proc. of the International Workshop on Software Tools
for Technology Transfer, 1998.

[20] D. Berleant. Automatically verified reasoning with both intervals and probability
density functions. Interval Computations, 2:48–70, 1993.

[21] D. Berleant and C. Goodman-Strauss. Bounding the results of arithmetic operations
on random variables of unknown dependency using intervals. Reliable Computing,
4:147–165, 1998.

[22] D. P. Bertsekas and I. B. Rhodes. Recursive state estimation for a set-membership
description of uncertainty. IEEE Transactions on Automatic Control, 16:117–128,
1971.

[23] M. Berz and G. Hoffstätter. Computation and application of Taylor polynomials
with interval remainder bounds. Reliable Computing, 4:83–97, 1998.

[24] A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of
continuous and hybrid systems. In Hybrid Systems: Computation and Control, LNCS
2993, pages 142–156. Springer, 2004.

[25] H. A. P. Blom, G. J. Bakker, and J. Krystul. Probabilistic reachability analysis
for large scale stochastic hybrid systems. In Proc. of the 46th IEEE Conference on
Decision and Control, pages 3182–3189, 2007.

[26] H. A. P. Blom, J. Krystul, and G. J. Bakker. Free Flight Collision Risk Estimation
by Sequential Monte Carlo Simulation, chapter 10, pages 247–279. Taylor & Francis
CRC Press, 2006.

[27] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In Hybrid Systems: Computation and
Control, LNCS 1790, pages 73–88. Springer, 2000.

190

[28] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, LNCS 1486, pages 298–302. Springer, 1998.

[29] M. Brackstone, M. McDonald, and J. Wu. Lane changing on the motorway: Factors
affecting its occurrence, and their implications. In Proc. of the 9th International
Conference on Road Transport Information and Control, pages 160–164, 1998.

[30] M. S. Branicky, M. M. Curtiss, J. A. Levine, and S. B. Morgan. RRTs for nonlinear,
discrete, and hybrid planning and control. In Proc. of the 42nd IEEE Conference on
Decision and Control, pages 657–663, 2003.

[31] A. E. Broadhurst, S. Baker, and T. Kanade. A prediction and planning framework
for road safety analysis, obstacle avoidance and driver information. In Proc. of the
11th World Congress on Intelligent Transportation Systems, October 2004.

[32] A. E. Broadhurst, S. Baker, and T. Kanade. Monte Carlo road safety reasoning. In
Proc. of the IEEE Intelligent Vehicles Symposium, pages 319–324, 2005.

[33] M. Bujorianu and J. Lygeros. Toward a general theory of stochastic hybrid systems.
In H. Blom and J. Lygeros, editors, Stochastic Hybrid Systems: Theory and Safety
Critical Applications, number 337 in LNCIS, pages 3–30. Springer, 2006.

[34] M. L. Bujorianu. Extended stochastic hybrid systems and their reachability problem.
In Hybrid Systems: Computation and Control, pages 234–249, 2004.

[35] M. L. Bujorianu. A statistical inference method for the stochastic reachability analy-
sis. In Proc. of the 44th IEEE Conference on Decision and Control, pages 8088–8093,
2005.

[36] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer,
2009.

[37] G. Chesi. Establishing stability and instability of matrix hypercubes. System &
Control Letters, 54:381–388, 2005.

[38] A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In Hybrid systems: Computation and
Control, LNCS 1569, pages 76–90. Springer, 1999.

[39] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verifi-
cation. In IEEE Transactions on Automatic Control, volume 48, pages 64–75, 2003.

[40] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Verifi-
cation of Hybrid Systems based on Counterexample-Guided Abstraction Refinement,
pages 192–207. LNCS 2619. Springer, 2003.

[41] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[42] C. Combastel. A state bounding observer based on zonotopes. In Proc. of the
European Control Conference, 2003.

191

Bibliography

[43] C. Combastel. A state bounding observer for uncertain non-linear continuous-time
systems based on zonotopes. In Proc. of the 44th IEEE Conference on Decision and
Control, and the European Control Conference, pages 7228–7234, 2005.

[44] G. E. Coxson. Computing exact bounds on elements of an inverse interval matrix is
NP-hard. Reliable Computing, 5:137–142, 1999.

[45] I. Dagli, M. Brost, and G. Breuel. Action recognition and prediction for driver assis-
tance systems using dynamic belief networks. In Agent Technologies, Infrastructures,
Tools, and Applications for E-Services, LNCS 2592, pages 179–194. Springer, 2003.

[46] I. Dagli and D. Reichardt. Motivation-based approach to behavior prediction. In
Proc. of the Intelligent Vehicles Symposium, pages 227–233, 2002.

[47] T. Dang. Vérification et synthèse des systèmes hybrides. PhD thesis, Institut Na-
tional Polytechnique de Grenoble, 2000.

[48] T. Dang. Approximate reachability computation for polynomial systems. In Hybrid
Systems: Computation and Control, pages 138–152, 2006.

[49] T. Dang, C. Le Guernic, and O. Maler. Computing reachable states for nonlinear
biological models. In Computational Methods in Systems Biology, LNCS 5688, pages
126–141. Springer, 2009.

[50] T. Dang and O. Maler. Reachability analysis via face lifting. In Hybrid Systems:
Computation and Control, pages 96–109, 1998.

[51] T. Dang and D. Salinas. Image computation for polynomial dynamical systems
using the Bernstein expansion. In Computer Aided Verification, LNCS 5643, pages
219–232. Springer, 2009.

[52] S. Danielsson, L. Petersson, and A. Eidehall. Monte Carlo based threat assessment:
Analysis and improvements. In Proc. of the IEEE Intelligent Vehicles Symposium,
pages 233–238, 2007.

[53] M. H. A. Davis. Piecewise-deterministic Markov processes: A general class of non-
diffusion stochastic models. Journal of the Royal Statistical Society, 46:353–388,
1984.

[54] P. P. Dey, S. Chandra, and S. Gangopadhaya. Lateral distribution of mixed traffic
on two-lane roads. Journal of Transportation Engineering, 132:597–600, 2006.

[55] A. D’Innocenzo, A. A. Julius, G. J. Pappas, M. D. Di Benedetto, and S. Di Gennaro.
Verification of temporal properties on hybrid automata by simulation relations. In
Proc. of the 46th IEEE Conference on Decision and Control, pages 4039–4044, 2007.

[56] A. Donzé. Trajectory-Based Verification and Controller Synthesis for Continuous
and Hybrid Systems. PhD thesis, University Joseph Fourier, 2007.

[57] A. Donzé and O. Maler. Systematic simulations using sensitivity analysis. In Hybrid
Systems: Computation and Control, LNCS 4416, pages 174–189. Springer, 2007.

192

[58] D. Eberly. Dynamic collision detection using oriented bounding boxes. Technical
report, Geometric Tools, Inc., 2002.

[59] A. Eidehall and L. Petersson. Threat assessment for general road scenes using Monte
Carlo sampling. In Proc. of the Intelligent Transportation Systems Conference, pages
1173–1178, 2006.

[60] A. Eidehall and L. Petersson. Statistical threat assessment for general road scenes
using Monte Carlo sampling. IEEE Transactions on Intelligent Transportation Sys-
tems, 9:137–147, 2008.

[61] J. M. Esposito. Randomized test case generation for hybrid systems: Metric selection.
In Proc. of the 36th Southeastern Symposium of System Theory, pages 236–240, 2004.

[62] A. Fehnker and F. Ivanvcić. Benchmarks for hybrid systems verification. In Hybrid
Systems: Computation and Control, LNCS 2993, pages 326–341. Springer, 2004.

[63] G. Frehse. Compositional Verification of Hybrid Systems using Simulation Relations.
PhD thesis, Radboud Universiteit Nijmegen, 2005.

[64] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. Inter-
national Journal on Software Tools for Technology Transfer, 10:263–279, 2008.

[65] J. Freyer, B. Deml, M. Maurer, and B. Färber. ACC with enhanced situation aware-
ness to reduce behavior adaptations in lane change situations. In Proc. of the IEEE
Intelligent Vehicles Symposium, pages 999–1004, 2007.

[66] K. Fukuda. From the zonotope construction to the Minkowski addition of convex
polytopes. Journal of Symbolic Computation, 38(4):1261–1272, October 2004.

[67] C. W. Gardiner. Handbook of Stochastic Methods: For Physics, Chemistry and the
Natural Sciences. Springer, 1983.

[68] M. K. Ghosh, A. Arapostathis, and S. I. Marcus. Ergodic control of switching
diffusions. SIAM Journal on Control Optimization, 35:1952–1988, 1997.

[69] A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid
Systems: Computation and Control, LNCS 3414, pages 291–305. Springer, 2005.

[70] A. Girard and C. Le Guernic. Efficient reachability analysis for linear systems using
support functions. In Proc. of the 17th IFAC World Congress, pages 8966–8971,
2008.

[71] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In Proc. of Hybrid Systems: Computation and Control, LNCS
4981, pages 215–228. Springer, 2008.

[72] A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets
of linear time-invariant systems with inputs. In Hybrid Systems: Computation and
Control, LNCS 3927, pages 257–271. Springer, 2006.

193

Bibliography

[73] A. Girard and G. J. Pappas. Verification using simulation. In Hybrid Systems:
Computation and Control, LNCS 3927, pages 272–286. Springer, 2006.

[74] M. Goebl. Eine realzeitfähige Architektur zur Integration kognitiver Funktionen. PhD
thesis, TU München, 2009.

[75] M. Goebl and G. Färber. A real-time-capable hard- and software architecture for
joint image and knowledge processing in cognitive automobiles. In Proc. of the IEEE
Intelligent Vehicles Symposium, pages 734–740, 2007.

[76] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical structure for
rapid interference detection. Computer Graphics, 30:171–180, 1996.

[77] D. H. Greene, J. J. Liu, J. E. Reich, Y. Hirokawa, T. Mikami, H. Ito, and A. Shina-
gawa. A computationally-efficient collision early warning system for vehicles, pedes-
trian and bicyclists. In Proc. of the 15th World Congress on Intelligent Transporta-
tion Systems, 2008.

[78] C. Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous
Dynamics. PhD thesis, Univerité Joseph Fourier, 2009.

[79] L. J. Guibas, A. Nguyen, and L. Zhang. Zonotopes as bounding volumes. In Proc.
of the Symposium on Discrete Algorithms, pages 803–812, 2005.

[80] Z. Han and B. H. Krogh. Reachability analysis of nonlinear systems using trajectory
piecewise linearized models. In Proc. of the American Control Conference, pages
1505–1510, 2006.

[81] T. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? Journal of Computer and System Sciences, 57:94–124, 1998.

[82] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[83] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HyTech:
Hybrid systems analysis using interval numerical methods. In Hybrid Systems: Com-
putation and Control, LNCS 1790, pages 130–144. Springer, 2000.

[84] J. Hillenbrand, A. M. Spieker, and K. Kroschel. A multilevel collision mitigation
approach - its situation assessment, decision making, and performance tradeoffs.
IEEE Transactions on Intelligent Transportation Systems, 7:528–540, 2006.

[85] J. Hu, J. Lygeros, and S. Sastry. Towards a theory of stochastic hybrid systems. In
Hybrid Systems: Computation and Control, LNCS 1790, pages 160–173. Springer,
2000.

[86] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learning
statistical motion patterns. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28:1450–1464, 2006.

[87] L. Jaulin, M. Kieffer, and O. Didrit. Applied Interval Analysis. Springer, 2006.

194

[88] N. Johnson and D. Hogg. Learning the distribution of object trajectories for event
recognition. Image and Vision Computing, 14:583–592, 1996.

[89] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou. Collision avoidance analysis for
lane changing and merging. IEEE Transactions on Vehicular Technology, 49:2295–
2308, 2000.

[90] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas. Robust test
generation and coverage for hybrid systems. In Hybrid Systems: Computation and
Control, LNCS 4416, pages 329–342. Springer, 2007.

[91] V. Kaibel and M. E. Pfetsch. Algebra, Geometry and Software Systems, chapter
Some Algorithmic Problems in Polytope Theory, pages 23–47. Springer, 2003.

[92] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder,
M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese, and C. Stiller. Team
AnnieWAY’s autonomous system for the DARPA Urban Challenge 2007. Journal of
Field Robotics, 25:615 – 639, 2008.

[93] A. Kanaris, E. B. Kosmatopoulos, and P. A. Ioannou. Strategies and spacing re-
quirements for lane changing and merging in automated highway systems. IEEE
Transactions on Vehicular Technology, 50:1568–1581, 2001.

[94] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg. On systematic simulation
of open continuous systems. In Hybrid Systems: Computation and Control, LNCS
2623, pages 283–297. Springer, 2003.

[95] J.-P. Katoen. Perspectives in probabilistic verification. In Proc. of the 2nd IEEE
International Symposium on Theoretical Aspects of Software Engineering, pages 3–
10, 2008.

[96] M. Kloetzer and C. Belta. Reachability analysis of multi-affine systems. In Hybrid
Systems: Computation and Control, LNCS 3927, pages 348–362. Springer, 2006.

[97] O. Kosheleva, V. Kreinovich, G. Mayer, and H. T. Nguyen. Computing the cube of an
interval matrix is NP-hard. In Proc. of the ACM symposium on Applied computing,
pages 1449–1453, 2005.

[98] X. Koutsoukos and D. Riley. Computational methods for reachability analysis of
stochastic hybrid systems. In Hybrid Systems: Computation and Control, LNCS
3927, pages 377–391. Springer, 2006.

[99] W. Kühn. Mathematical Visualization, chapter Zonotope Dynamics in Numerical
Quality Control, pages 125–134. Springer, 1998.

[100] W. Kühn. Rigorously computed orbits of dynamical systems without the wrapping
effect. Computing, 61:47–67, 1998.

[101] A. Kurzhanski and I. Valyi. Ellipsoidal Calculus for Estimation and Control.
Birkhäuser Boston, 1996.

195

Bibliography

[102] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis.
In Hybrid Systems: Computation and Control, LNCS 1790, pages 202–214. Springer,
2000.

[103] A. B. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachability analysis
of discrete-time linear systems. IEEE Transactions on Automatic Control, 52:26–38,
2007.

[104] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control Problems
in Continuous Time. Springer, 2000.

[105] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004.

[106] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid systems.
In Hybrid Systems: Computation and Control, LNCS 1569, pages 137–151. Springer,
1999.

[107] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for
families of linear vector fields. Symbolic Computation, 32:231–253, 2001.

[108] K. Lee and H. Peng. Evaluation of automotive forward collision warning and collision
avoidance algorithms. Vehicle System Dynamics, 43(10):735–751, 2005.

[109] C.-F. Lin, A. G. Ulsoy, and D. J. LeBlanc. Vehicle dynamics and external distur-
bance estimation for vehicle path prediction. IEEE Transactions on Control Systems
Technology, 8:508–518, 2000.

[110] M. L. Liou. A novel method of evaluating transient response. In Proceedings of the
IEEE, volume 54, pages 20–23, 1966.

[111] J. Lunze and B. Nixdorf. Representation of hybrid systems by means of stochastic
automata. Mathematical and Computer Modeling of Dynamical Systems, 7:383–422,
2001.

[112] J. Lunze, B. Nixdorf, and J. Schröder. Deterministic discrete-event representations
of linear continuous-variable systems. Automatica, 35:395–406, 1999.

[113] J. Lunze and J. Schröder. Computation of complete abstractions of quantised sys-
tems. In Proc. of the European Control Conference, pages 3137–3142, 2001.

[114] I. B. Makhlouf and S. Kowalewski. An evaluation of two recent reachability analysis
tools for hybrid systems. In Proc. of the 2nd IFAC Conference on Analysis and
Design of Hybrid Systems, pages 377–382, 2006.

[115] I. B. Makhlouf, S. Kowalewski, M. Guillermo, C. Grunewald, and D. Abel. Safety
assessment of networked vehicle platoon controllers – practical experiences with avail-
able tools. In Proc. of the 3rd IFAC Conference on Analysis and Design of Hybrid
Systems, pages 292–297, 2009.

[116] O. Maler and G. Batt. Approximating continuous systems by timed automata. In
Formal Methods in Systems Biology, LNCS 5054, pages 77–89. Springer, 2008.

196

[117] M. B. Mamoun and N. Pekergin. Closed-form stochastic bounds on the stationary
distribution of Markov chains. Probability in the Engineering and Informational
Sciences, 16:403–426, 2002.

[118] M. B. Mamoun and N. Pekergin. Computing closed-form stochastic bounds on tran-
sient distributions of Markov chains. In Proc. of the Symposium on Applications and
the Internet Workshops, pages 260– 263, 2005.

[119] J. Maroto, E. Delso, J. Félez, and J. M. Cabanellas. Real-time traffic simulation
with a microscopic model. IEEE Transactions on Intelligent Transportation Systems,
7(4):513–527, 2006.

[120] J. C. McCall, D. P. Wipf, M. M. Trivedi, and B. D. Rao. Lane change intent
analysis using robust operators and sparse bayesian learning. IEEE Transactions on
Intelligent Transportation Systems, 8:431–440, 2007.

[121] I. Mitchell, A. M. Bayen, and C. J. Tomlin. Validating a Hamilton–Jacobi approxima-
tion to hybrid system reachable sets. In Hybrid Systems: Computation and Control,
pages 418–432, 2001.

[122] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[123] B. T. Morris and M. M. Trivedi. Learning, modeling, and classification of vehicle
track patterns from live video. IEEE Transactions on Intelligent Transportation
Systems, 9:425–437, 2008.

[124] D. Mortari. The n-dimensional cross product and its application to the matrix
eigenanalysis. In Proc. of the AIAA/AAS Astrodynamics Conference, 1996.

[125] M. E. Muller. A note on a method for generating points uniformly on n-dimensional
spheres. Communications of the ACM, 2:19–20, 1959.

[126] Y. Nishiwaki, C. Miyajima, H. Kitaoka, and K. Takeda. Stochastic modeling of vehi-
cle trajectory during lane-changing. In Proc. of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 1377–1380, 2009.

[127] Y. Nishiwaki, C. Miyajima, N. Kitaoka, R. Terashima, T. Wakita, and K. Takeda.
Generating lane-change trajectories of individual drivers. In Proc. of the IEEE In-
ternational Conference on Vehicular Electronics and Safety, pages 271–275, 2008.

[128] B. Oksendal. Stochastic Differential Equations. Springer, 2003.

[129] E. C. B. Olsen, S. E. Lee, W. W. Wierwille, and M. J. Goodman. Analysis of
distribution, frequency, and duration of naturalistic lane changes. In Proc. of the
46th Annual Meeting of the Human Factors and Ergonomics Society, pages 1789–
1793, 2002.

[130] E. P. Oppenheimer and A. N. Michel. Application of interval analysis techniques
to linear systems: Part I - fundamental results. IEEE Transactions on Circuits and
Systems, Volume 35:1129 – 1138, 1988.

197

Bibliography

[131] E. P. Oppenheimer and A. N. Michel. Application of interval analysis techniques to
linear systems: Part II - the interval matrix exponential function. IEEE Transactions
on Circuits and Systems, 35:1230 – 1242, 1988.

[132] E. P. Oppenheimer and A. N. Michel. Application of interval analysis techniques to
linear systems: Part III - initial value problems. IEEE Transactions on Circuits and
Systems, 35:1243 – 1256, 1988.

[133] J. O’Rourke. Finding minimal enclosing boxes. International Journal of Computer
and Information Sciences, 14:183–199, 1985.

[134] M. Peden, R. Scurfield, D. Sleet, D. Mohanand A. A. Hyder, E. Jarawan, and
C. Mathers. World Report on Road Traffic Injury Prevention. World Health Or-
ganization, 2004.

[135] A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning, 41:143–189, 2008.

[136] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone. Sensor fusion
for predicting vehicles’ path for collision avoidance systems. IEEE Transactions on
Intelligent Transportation Systems, 8(3):549–562, 2007.

[137] S. Prajna. Barrier certificates for nonlinear model validation. Automatica, 42:117–
126, 2006.

[138] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In Hybrid Systems: Computation and Control, LNCS 2993, pages 477–
492. Springer, 2004.

[139] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework for worst-case and stochas-
tic safety verification using barrier certificates. IEEE Transactions on Automatic
Control, 52:1415–1428, 2007.

[140] M. Prandini and J. Hu. Stochastic hybrid systems, chapter Stochastic reachability:
Theoretical foundations and numerical approximation., pages 107–138. Taylor &
Francis Group/CRC Press, 2006.

[141] M. Prandini and J. Hu. Stochastic hybrid systems: theory and safety critical appli-
cations, chapter A stochastic approximation method for reachability computations,
pages 107–139. Springer, 2006.

[142] J. Preußig, O. Stursberg, and S. Kowalewski. Reachability analysis of a class of
switched continuous systems by integrating rectangular approximation and rectan-
gular analysis. In Hybrid Systems: Computation and Control, LNCS 1569, pages
209–222. Springer, 1999.

[143] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differen-
tial inclusions. In Proc. of the 6th International Conference on Computer Aided
Verification, LNCS 818, pages 95–104. Springer, 1994.

198

[144] T. Raissi, N. Ramdani, and Y. Candau. Set membership state and parameter estima-
tion for systems described by nonlinear differential equations. Automatica, 40:1771–
1777, 2004.

[145] N. Ramdani, N. Meslem, and Y. Candau. Reachability analysis of uncertain nonlinear
systems using guaranteed set integration. In Proc. of the 17th IFAC World Congress,
pages 8972–8977, 2008.

[146] N. Ramdani, N. Meslem, and Y. Candau. Reachability of uncertain nonlinear systems
using a nonlinear hybridization. In Hybrid Systems: Computation and Control, LNCS
4981, pages 415–428. Springer, 2008.

[147] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. Wiley,
2008.

[148] F. M. Schlaepfer and F. C. Schweppe. Continuous-time state estimation under distur-
bances bounded by convex sets. IEEE Transactions on Automatic Control, 17:197–
205, 1972.

[149] C. Schmidt, F. Oechsle, and W. Branz. Research on trajectory planning in emergency
situations with multiple objects. In Proc. of the IEEE Intelligent Transportation
Systems Conference, pages 988–992, 2006.

[150] J. Schröder. Modelling, State Observation and Diagnosis of Quantised Systems.
Springer, 2003.

[151] S. Sekizawa, S. Inagaki, T. Suzuki, S. Hayakawa, N. Tsuchida, T. Tsuda, and H. Fu-
jinami. Modeling and recognition of driving behavior based on stochastic switched
ARX model. IEEE Transactions on Intelligent Transportation Systems, 8:593–606,
2007.

[152] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In Proc. of
the 40th IEEE Conference on Decision and Control, pages 2867–2874, 2001.

[153] H. Stark and J. W. Woods. Probability, Random Processes, and Estimation Theory
for Engineers. Prentice Hall, 1994.

[154] C. Stiller, G. Färber, and S. Kammel. Cooperative cognitive automobiles. In Proc.
of the IEEE Intelligent Vehicles Symposium, pages 215–220, 2007.

[155] O. Stursberg, S. Engell, and S. Kowalewski. Timed approximations of hybrid pro-
cesses for controller verification. In Proc. of the 14th IFAC World Congress, pages
73–78, 1999.

[156] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh. Specification-guided analysis
of hybrid systems using a hierarchy of validation methods. In Proc. of the 1st IFAC
Conference on Analysis and Design of Hybrid Systems, pages 289–295, 2003.

[157] O. Stursberg, S. Kowalewski, and S. Engell. On the generation of timed discrete
approximations for continuous systems. Mathematical and Computer Models of Dy-
namical Systems, 6:51–70, 2000.

199

Bibliography

[158] O. Stursberg and B. H. Krogh. Efficient representation and computation of reachable
sets for hybrid systems. In Hybrid Systems: Computation and Control, LNCS 2623,
pages 482–497. Springer, 2003.

[159] W. Takano, A. Matsushita, K. Iwao, and Y. Nakamura. Recognition of human
driving behaviors based on stochastic symbolization of time series signal. In Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
167–172, 2008.

[160] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for Analysis and
Control of Uncertain Systems. Springer, 2004.

[161] M. Thuy and F. Puente León. Non-linear, shape independent object tracking based
on 2D lidar data. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 532–
537, 2009.

[162] T. Toledo. Integrated Driving Behavior Modeling. PhD thesis, Massachusetts Insti-
tute of Technology, 2003.

[163] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational techniques for the
verification and control of hybrid systems. In Proceedings of the IEEE, volume 91,
pages 986–1001, 2003.

[164] S. Vacek, T. Gindele, J. M. Zöllner, and R. Dillmann. Using case-based reasoning for
autonomous vehicle guidance. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4271–4276, 2007.

[165] J. van den Berg. Path Planning in Dynamic Environments. PhD thesis, Utrecht
University, 2007.

[166] D. Vasquez, T. Fraichard, and C. Laugier. Incremental learning of statistical motion
patterns with growing hidden markov models. IEEE Transactions on Intelligent
Transportation Systems, 10:403–416, 2009.

[167] E. Velenis and P. Tsiotras. Optimal velocity profile generation for given acceleration
limits: theoretical analysis. In Proc. of the American Control Conference, pages 1478
– 1483, 2005.

[168] A. L. Visintini, W. Glover, J. Lygeros, and J. Maciejowski. Monte Carlo optimiza-
tion for conflict resolution in air traffic control. IEEE Transactions on Intelligent
Transportation Systems, 7:470–482, 2006.

[169] F. Vivien and N. Wicker. Minimal enclosing parallelepiped in 3D. Computational
Geometry: Theory and Applications, 29:177–190, 2004.

[170] C. Weibel. Minkowski Sums of Polytopes: Combinatorics and Computation. PhD
thesis, École Polytechnique Fédérale de Lausanne, 2007.

[171] S. Weinzierl. Introduction to Monte Carlo methods. Technical report, NIKHEF
Theory Group Kruislaan 409, 1098 SJ Amsterdam, The Netherlands, 2000.

200

[172] M. Werling, M. Goebl, O. Pink, and C. Stiller. A hardware and software framework
for cognitive automobiles. In Proc. of the IEEE Intelligent Vehicles Symposium,
pages 1080–1085, 2008.

[173] M. Werling and L. Gröll. Low-level controllers realizing high-level decisions in an
autonomous vehicle. In Proc. of the IEEE Intelligent Vehicles Symposium, pages
1113–1118, 2008.

[174] Y. U. Yim and S.-Y. Oh. Modeling of vehicle dynamics from real vehicle measure-
ments using a neural network with two-stage hybrid learning for accurate long-term
prediction. IEEE Transactions on Vehicular Technology, 53:1076–1084, 2004.

[175] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1:2–13, 2005.

[176] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer,
1995.

Own Publications and Supervised Student Projects

[177] D. Althoff, M. Althoff, D. Wollherr, and M. Buss. Probabilistic collision state checker
for crowded environments. In Proc. of the IEEE International Conference on Robotics
and Automation, pages 1492–1498, 2010.

[178] M. Althoff, D. Althoff, D. Wollherr, and M. Buss. Safety verification of autonomous
vehicles for coordinated evasive maneuvers. In Proc. of the IEEE Intelligent Vehicles
Symposium, 2010.

[179] M. Althoff, O. Stursberg, and M. Buss. Online verification of cognitive car decisions.
In Proc. of the IEEE Intelligent Vehicles Symposium, pages 728–733, 2007.

[180] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of linear systems with
uncertain parameters and inputs. In Proc. of the 46th IEEE Conference on Decision
and Control, pages 726–732, 2007.

[181] M. Althoff, O. Stursberg, and M. Buss. Safety assessment of autonomous cars using
verification techniques. In Proc. of the American Control Conference, pages 4154–
4159, 2007.

[182] M. Althoff, O. Stursberg, and M. Buss. Erreichbarkeitsanalyse von Verkehrsteil-
nehmern zur Verbesserung von Fahrerassistenzsystemen. In Proc. of 3. Tagung Ak-
tive Sicherheit durch Fahrerassistenz, 2008.

[183] M. Althoff, O. Stursberg, and M. Buss. Online-Analyse von Fahrstrategien kognitiver
autonomer Fahrzeuge. In Proc. of Automatisierungssysteme, Assistenzsysteme und
eingebettete Systeme für Transportmittel (AAET), pages 314–330, 2008.

[184] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In Proc. of the 47th IEEE
Conference on Decision and Control, pages 4042–4048, 2008.

201

Bibliography

[185] M. Althoff, O. Stursberg, and M. Buss. Sicherheitsbewertung von Fahrstrategien
kognitiver Automobile. at - Automatisierungstechnik, 56:653–661, 2008.

[186] M. Althoff, O. Stursberg, and M. Buss. Stochastic reachable sets of interacting traffic
participants. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1086–1092,
2008.

[187] M. Althoff, O. Stursberg, and M. Buss. Verification of uncertain embedded systems
by computing reachable sets based on zonotopes. In Proc. of the 17th IFAC World
Congress, pages 5125–5130, 2008.

[188] M. Althoff, O. Stursberg, and M. Buss. Model-based probabilistic collision detection
in autonomous driving. IEEE Transactions on Intelligent Transportation Systems,
10:299 – 310, 2009.

[189] M. Althoff, O. Stursberg, and M. Buss. Safety assessment for stochastic linear sys-
tems using enclosing hulls of probability density functions. In Proc. of the European
Control Conference, pages 625–630, 2009.

[190] M. Althoff, O. Stursberg, and M. Buss. Safety assessment of driving behavior in
multi-lane traffic for autonomous vehicles. In Proc. of the IEEE Intelligent Vehicles
Symposium, pages 893–900, 2009.

[191] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid sys-
tems using a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid
Systems, 4:233–249, 2010.

[192] M. Goebl, M. Althoff, M. Buss, G. Färber, F. Hecker, B. Heißing, S. Kraus, R. Nagel,
F. Puente León, F. Rattei, M. Russ, M. Schweitzer, M. Thuy, C. Wang, and H.-J.
Wünsche. Design and capabilities of the Munich cognitive automobile. In Proc. of
the IEEE Intelligent Vehicles Symposium, pages 1101–1107, 2008.

[193] S. Kraus, M. Althoff, B. Heißing, and M. Buss. Cognition and emotion in autonomous
cars. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 635–640, 2009.

[194] A. Mergel. Comparison of stochastic reachability analysis and Monte Carlo simu-
lation for the safety assessment of road scenes. Bachelor thesis, 2009. Technische
Universität München.

[195] F. Rohrmüller, M. Althoff, D. Wollherr, and M. Buss. Probabilistic mapping of
dynamic obstacles using Markov chains for replanning in dynamic environments. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2504–2510, 2008.

[196] B. Sari. Computation of probabilistic reachable sets for interacting traffic partici-
pants. Bachelor thesis, 2008. Technische Universität München.

[197] I. Shevchenko. Wegpunktbasierte Trajektorienplanung kognitiver Fahrzeuge. Mas-
ter’s thesis, TU München, 2007.

202

[198] M. Thuy, M. Goebl, F. Rattei, M. Althoff, F. Obermeier, S. Hawe, R. Nagel, S. Kraus,
C. Wang, F. Hecker, M. Russ, M. Schweitzer, F. Puente León, G. Färber, M. Buss,
K. Diepold, J. Eberspächer, B. Heißing, and H.-J. Wünsche. Kognitive Automo-
bile: Neue Konzepte und Ideen des Sonderforschungsbereiches/TR-28. In Proc. of
3. Tagung Aktive Sicherheit durch Fahrerassistenz, 2008.

203

