
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Development of a marker-based visual
servo control interface for industrial

robots

Alexander Plopski

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Development of a marker-based visual servo
control interface for industrial robots

Entwicklung einer markerbasierten visuellen
Kontrollschnittstelle für industrielle Roboter

Author: Alexander Plopski
Supervisor: Prof. Dr.-Ing. Alois Knoll
Advisor: Dipl.-Inf. Thomas Müller
Date: Mai 15, 2010

Ich versichere, dass ich diese Bachelorarbeit selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 3. Mai 2010 Alexander Plopski

Acknowledgments

I’m grateful to Prof. Dr.-Ing. Alois Knoll and the Robotics and Embedded
Systems chair from the Department of Informatics of the Technical University
of Munich for the opportunity and location to make this bachelor thesis. I
would also like to thank Dipl.-Inf. Thomas Müller for his ongoing support
during my research. Without his advise and guidance these results could not
have been achieved.

vii

Abstract

The space mouse is a common controller for a 6DOF industrial robot. This
thesis reviews the applicability of a marker-based visual controller to perform
the task of a space mouse. A number of possible approaches for marker de-
tection and transformation calculations are introduced followed by the expla-
nation of the implementation and a review of the stability. The result of this
research is capable of replacing the space mouse to control a robot, but a num-
ber of critical problems are pointed out as well as possible future improvements
to counter these.

ix

x

Contents

Acknowledgements vii

Abstract ix

1. Introduction 1

2. Existing visual controllers 3
2.1. Nintendo Wii Remote . 3
2.2. Playstation Move . 4

3. Object recognition 5
3.1. Setup of an object recognition system 5
3.2. Objectbased attribute extraction . 6
3.3. Cognition based attribute extraction 12
3.4. Matching . 18

4. Mathematical calculations 21
4.1. Geometrical approach . 21
4.2. Analytical approach . 23

5. Implementation 27
5.1. Setup . 27
5.2. Markerdetection . 27
5.3. Calculation of the transformation 31
5.4. Results . 32

6. Conclusion 35

Appendix 39

A. Quickstart Guide 39

Bibliography 43

xi

1. Introduction

In the 21st century the production in the modern society is based all around
robots. They possess power by far surpassing the human and can complete
even the most difficult tasks with unrivaled precision and continue this task
close to eternity. Most of them are equipped with a number of sensors, for
example visual or torque. They can work in places unreachable or dangerous
for humans.

Yet the industrial robots are still not capable of completing every task with-
out being monitored or supervised by humans. Furthermore a number of tasks
require the cooperation between humans and robots. For such tasks there is a
need for means of cummunication between humans and robots.

But what would be the most efficient way to communicate?
One way that comes to mind instantly is an interface with which the human
can control the movements of the robot. This requires an interface, let us say
a console, for the supervisor to enter coordinates or directions he wishes the
robot to move to. These coordinates or joint positions can be memorized if
this task has tot be repeated a number of times. Still this approach is rather
inefficient and makes it impossible for the operator to cooperate with the robot.

A second approach can be the implementation of gesture detection to con-
trol the robot. But this approach is quite difficult as it requires a gesture for
every task. One such gesture could signify a ”follow me” order, commanding
the robot to track and follow a predefined point. The predefined point would
become a marker, a point of interest. Generally, almost any distinct object can
become a marker. In retail business the barcode is used as a marker to iden-
tify goods, in other applications an IR-emitter marks an object, to mention two
examples of possible markers.

In recent developments in the computer game industry two controllers have
been introduced to control games, namely the Wii Remote and the Playsta-
tion Move. Both can detect rotations and translations, thus it is possible to use
them to control a 6DOF robot. But the development of visual controllers, which
detect tranformations, does not end with these two controllers. Microsoft re-
cently introduced a visual game controller of its own which is expected to be
released this year. In the academic research a number of papers on visual con-
trol, such as [20, 25, 13], have been published. With the visual sensors becom-
ing more and more precise in combination with smaller size and lower costs

1

1. Introduction

this research resulted in the field of visual servoing. In general visual servoing
sums up all research about robot control based on data extracted from a visual
sensor. Currently, visual servoing is subdivided into three fields which result
from three different ways of detecting the tracked object: Image based visual
servoing (IBVS), Position based visual servoing (PBVS) and the dynamic ap-
proaches. While IBVS is mainly 2D-Servoing and PBVS is focused on the object
model and therefor a 3D-Servoing approach, the dynamic approaches try to
combine both 2D and 3D research.

One research project, which also operates in the field of visual servoing is
SFB 453 - ”High-Fidelity Telepresence and Teleaction” which aims to analyse
and further develop interaction between a human operator and the robotic tele-
operator. The goal is to allow the operator to feel present while operating in a
distant environment. The subproject ”Automated, Robot-Assisted handling of
Limp and Deformable Objects” particularily concentrates on recognition, track-
ing, modelling and prediction of deformable objects.

This thesis observes the applicability of a marker based controller to con-
trol a 6DOF industrial robot and introduces the interface required for such
a controller. As mentioned previously, there are almost endless possibilities
for markers, thus this thesis concentrates on a marker with a distinctive color
setup.

Chapter 2 will briefly introduce the existing controllers Wii Remote and Playsta-
tion Move as well as the respective approach to detect transformations. In
chapter 3 an overview of current approaches to detect and track an object will
be shown, and the mathematical background will be explained. Chapter 4 will
give an overview of the implementation and is followed by the final evaluation
and observations.

2

2. Existing visual controllers

As mentioned previously there is a number of other existing visual controllers.
This section introduces two controllers, that were developed in the game in-
dustry but can still be used to control a robot.

2.1. Nintendo Wii Remote

This controller has a built-in ADKL330 acceleration device to sense its move-
ment along the axis’s as well as the gravitat. Furthermore it has a PixArt optical
sensor to determine the direction the controller is pointing. To use the optical
sensor Nintendo makes use of a Sensor Bar. The controller and the bar are
shown in Figure 2.1.

The Sensor Bar is equipped with two sets of five LED’s each which emit in-
frared light and is of a fixed size of 20 cm. The controller perceives the light
from these LEDs as two bright dots. As the distance between the LEDs on
the Sensor Bar and the perceived distance are known the distance between the
controller and the Sensor Bar can be calculated by applying triangulation. Fur-
thermore the angle of the detected points is used to calculate the rotation along
the Z-axis. The data perceived from the acceleration sensor supports the calcu-
lation of all three rotations.

Figure 2.1.: Wii Remote and its Sensor Bar.[1, 2]

3

2. Existing visual controllers

Figure 2.2.: The Playstation Move controller.[3]

2.2. Playstation Move

The Playstation controller is shown in Figure 2.2. This controller equips a big
ball with light-emitting LEDs on the top. The color of the ball can be assigned
individually. To detect this light and thus determine the position Sony uses its
own camera, PlayStation Eye. This camera takes 60 frames per second to allow
rapid motion detection. Since the size of the original ball is known beforehand
the size of the detected ball infers the distance to the controller.

As one can expect, it is not possible to determine any angle using only visual
recognition. Therefore this controller equips a linear accelerometer and a three-
axis angular rate sensor to track rotations.

4

3. Object recognition

3.1. Setup of an object recognition system

The brute force approach is to detect an object in the data received from the sen-
sors by matching the model to every possible position. In a picture each pixel is
checked wether the model is located at it’s position. Of course, this approach is
by far inferior to the currently used approaches since it is not invariant to any
rotation nor to any zooming or changes in the environment, such as light. Fur-
thermore the runtime of such an algorithm would be very long and therefore
unacceptable.

To create a system which is capable of effectively recognizing objects the sys-
tem of information levels is used. Each level contains an amount of data with
a certain level of information. This data can be refined thus a higher level of
information is obtained. This is repeated again and again starting at the bot-
tom level with all the data gathered by available sensors, visual, torque and
so on, and ending in the highest level of information where the object can be
determined.

It generally takes five steps to determine an object. In the first step the data
provided by the sensors is recycled to reduce environmental noise and mini-
mize the erroneous sensor data.

In the second step model attributes in the data received are discovered and
extracted. Among others such attributes may be color, geometrical forms or
firmness. Next, these attributes are transferred into the attributes-space (or the
properties-space). That space contains only the extracted attributes.

Finally, after extracting all the necessary attributes into the attributes-space,
these attributes are compared to the models may they be it one or multiple. If
multiple models are used, these should be stored in a data-base beforehand.
This comparison is called matching.

After recognizing and matching the objects to the models their positions can
be output.

The explained setup of an object recognition system is not universal. If
the experiment deems it necessary a completely different setup can be used,
but most systems, as well as the setup in this paper, are similar to this ap-
proach. While modeling an object recognition system one must consider avail-
able knowledge. Are there multiple models? Are there changes in the environ-

5

3. Object recognition

Figure 3.1.: A strong horizontal edge and a weak vertical edge.[16]

ment which require attention? What sensors will be used as well as what sen-
sors are favorable? Of course further questions should be asked while creating
such a system. In the following chapters a number of algorithms for attribute
extraction (Step 2), which is divided in object based and cognition based, and
matching (Step 4), which is separated into model based and vision based, will
be introduced.

3.2. Objectbased attribute extraction

3.2.1. Canny edge detectcion

To detect an object in a picture detection of its edges, thus detecting and iden-
tifying its geometrical form, can be used. The edge detection algorithm intro-
duced in this section is the Canny edge detection.

For each point in the picture the function f(x,y) represents its gray value.
The differentiation of this function is g(x, y) = (fx, fy) which are the partial
differentiation of f(x,y) towards x and y. This gradient represents the degree
of the slope and its direction. Translating this into the picture, the gradient
displays the direction and strength of the edge at the point x,y. Two possible
edges are shown in Figure 3.2.1.

To calculate g(x,y) the Canny algorithm uses the Sobel method. Hereby the
convolutions 3.1 and 3.2 are used.

fx =

�
p(x− 1, y − 1) p(x, y − 1) p(x+ 1, y − 1)
p(x− 1, y) p(x, y) p(x+ 1, y)

p(x− 1, y + 1) p(x, y + 1) p(x+ 1, y + 1)

�
∗

�
1 0 −1
2 0 −2
1 0 −1

�
(3.1)

6

3.2. Objectbased attribute extraction

fy =

�
p(x− 1, y − 1) p(x, y − 1) p(x+ 1, y − 1)
p(x− 1, y) p(x, y) p(x+ 1, y)

p(x− 1, y + 1) p(x, y + 1) p(x+ 1, y + 1)

�
∗

�
1 2 1
0 0 0
−1 −2 −1

�
(3.2)

Now the strength of the edge |s(x, y)| =
È
f2x(x, y) + f2y (x, y) and the edge

direction d(x, y) = arctan fx
fy

can be calculated.
This detection is further improved by

• smoothing the image before applying the edge detection→ the interfer-
ences are reduced and the edge detecion gives a better result. The Gaus-
sian filter can be used here.

• edge reduction → In the explained gradient based detection the results
for image points next to an edge will often have a very high value. Edge
reduction can be used to improve the quality of the representation of the
detected edges.

• binarizing the detected edges → this removes theedges with the least
strength, thus only the edges of similar strength remain and the amount
of bogus edges is reduced.

These four steps, smoothing, edge detection, edge reduction and binariza-
tion compose the Canny algorithm.

3.2.2. Hough transformation

The Hough transformation is based on the edge detection which was explained
in respect to the Canny algorithm in the previous chapter. This transformation
looks for forms made by the edges to determine the figures of interest. These
forms can be as plain as a line, a square or a circle. The general Hough trans-
formation can even detect any abstract form of interest.

To find the forms of interest, the Hough transformation requires the x and y
coordinates of the detected edges. Further parameters can be the radius of the
circle (minimal, maximal) or other necessary parameters. Therefore the detec-
tion of lines requires 2 parameters, of circles 3 and of eclipses 5 parameters.

After the parameters have been fixed a search on all points in the space of
interest, all pixels of the detected edges, is performed.

The further approach shall be explained with help of the approach to detect
lines and the approach to detect circles.

To detect a line the general formula y=mx+n cannot be used, since m and
n could become unreasonably huge and are not fixed values. Therefore the
hessian normal form is applied. The distance between the line and the base (the

7

3. Object recognition

Figure 3.2.: A voting matrix.[16]

center of our space), d, and the angle between the x-axis and the perpendicular
of the line, α, and the coordinates of the pixel (i,j) are the parameters for the
equation (3.3).

d = i cos(α) + j sin(α). (3.3)

The matrix for the lines would be (d,α) and for each possible i,j and α. For
each result value of (d,α) in the matrix would increase. Since a point can be
a member of an infinite number of lines the resulting matrix would display a
sinus-curve for each point of interest. The detected maxima are the targeted
results. The created matrix is called a ”Voting-matrix”.

A result of such a search can be seen in Figure 3.2.2.
The process to determine circles is similar. The center of the circles is deter-

mined with the (3.4) thus a (i,j)-Matrix is created.

r2 = x2 + y2 (3.4)

This approach enables to detect a number of circles, for example of coins of
different size in a picture. Therefore the final matrix would be (x,y,r), of three
dimensions.

It should be evident that the dimension of the matrix increases in correspon-
dence to the number of parameters and leads to a great amount of calculations.
To counter this a number of improvements have been developed, such as The
Fast Hough Transformation.

8

3.2. Objectbased attribute extraction

3.2.3. Contour extraction

An algorithm to detect the contours of objects in a binarized image, an image
that consists of 1-Pixels, pixels with density 1, and 0-pixels, pixels with density
0, was proposed by S. Suzuki and K. Abe in [24]. This algorithm derives a se-
quence of coordinates or the chain codes from the border of an 1-component,
a set of 1-Pixels, and a connected 0 component, a set of 0-Pixels. Without los-
ing the case of generality it assumes that the 0-components describe the back-
ground or a hole. This algorithm does not explore a way to follow borders,
as there was a number of papers dealing with this area, such as [19]. Suzuki
and Abe provided the border following with a topological analysis capabil-
ity. For such a topological analysis the borders are divided into two types, the
outer borders and hole borders. Due to one-to-one correspondence of an outer
border and a 1-component, as well as a hole border and a 0-component the
topological structure of the picture can be determined. The topological analy-
sis is enabled through a unique mark on each detected border and a procedure
to determine the parent of the currently followed border.

General declarations

Without loss of generality let the uppermost row, the lowermost row, the left-
most column and the rightmost column, which compose the frame of the pic-
ture, be filled with a 0-component. Such a 0-component that contains the frame
is called the background. Furthermore a pixel located in row i and column j
will be denoted as (i,j) and F = {ij} denotes the density ij at a pixel (i,j).

For further explanations the following definitions will be used:

Definition 1. A 1-pixel (i, j) ∈ S1 having a 0-pixel (p, q) ∈ S2 in its neighbor-
hood is called a border point between the 1-component S1 and the 0-component
S2.

Definition 2. For two given connected components S1 and S2, if there exists a
pixel belonging in S2 for any 4-path from a pixel in S1 we say that S2 surrounds
S1. If S2 surrounds S1 and there exists a border point between them then S2
surrounds S1 directly.

Definition 3. An outer border is defined as the set of the border points be-
tween an arbitrary 1-component and the 0-component which surrounds it di-
rectly. The border of an 0-component that is surrounded by an 1-component is
called a hole border. The hole border as well as the outer border are referred to
by ”border”. Furthermore both ”borders” consist of 1-pixels.

9

3. Object recognition

As these definitions state for an arbitrary 1-component its outer border is unique.
For a 0-component its hole border is unique as well.

Definition 4. The parent border of an outer border between a 1-component
S1 and a 0-cmponent S2 which surrounds S1 directly is defined as:

1. the hole border between S2 and the 1-component which surrounds S2
directly if S2 is a hole;

2. the frame of the picture if S2 is the background.

The parent border of a hole border between a hole S3 and the 1-component S4
which surrounds S3 directly is defined as the outer border between S4 and the
0-component which surrounds S4 directly.

Definition 5. For two given borders B0 and Bn we say that Bn surrounds B0

if there exists a sequence of borders B0, B1, . . . , Bn such that Bk is the parent
border of Bk−1 for all k(1 ≤ k ≤ n).

The definitions 2 to 5 lead to the following isomophoric mapping

• a 1-component↔ its outer border;

• a hole↔ its hole border between the hole and the 1-component surround-
ing it directly;

• the background↔ the frame.

Suzuki and Abe presented two algorithms in their research. The first one
marked all borders and retrieved their topological structure, while the second
algorithm retrieved only the outermost outer borders.

First algorithm

This algorithm scans the picture for a pixel (i,j) which satisfies the conditions
for a hole or an outer border. For an outer border the previously scanned pixel
must be a 0-pixel, while the currently scanned pixel is a 1-pixel. For a hole
border the point next to be scanned must be a 0-pixel while the value of the
current pixel is ≥ 1. If a pixel satisfies both conditions it is seen as the starting
point of an outer border. The newly found border is assigned a serial number,
which is denoted by NBD.

To determine the parent of the currently discovered border the serial number
of the most recently encountered border, LNBD, is saved. This border is either

10

3.2. Objectbased attribute extraction

the parent of the newly discovered border or has a common parent with it.
If the newly discovered border and the most recently encountered border are
of the same type, both are hole borders or outer borders, then they share a
common parent. In the other case the previously encountered border is the
parent of the discovered border. When a new border is discovered a border
following algorithm, like [19, 28] or a modification of the Canny-algorithm, is
applied and each member of this border is marked with the serial number NBD
according to following rules:

1. If the current following border is between the 1-component which con-
tains the pixel (p,q) and the 0-component which contains the pixel (p,q+1),
change the value of the pixel (p,q) to -NBD.

2. Otherwise, set the value of the pixel (p,q) to NBD unless (p,q) is on an
already followed border.

The conditions listed above prohibit the pixel (p,q) to become a starting point
for a new border if it was already assigned to a border previously. After mark-
ing all members of a border the algorithm continues the search for a new border
until all pixels were scanned.

Second algorithm

The second algorithm is a slight modification of the explained algorithm to
detect only the outermost borders. The index of the border LNBD must always
be less or equal to 0 and is reset to zero at the start of each new row of the
picture. Furthermore the values of ”NBD” and ”-NBD” are substituted with
”2” and ”-2” respectively.

It is easy to see that only the outer borders are detected. Assuming that a row
is scanned starting at (i,1) and the pixel (i,j) is a border point where the pixel (i,j-
1) is a 0-pixel two possibilities exist where (i,j) is the starting point of an outer
border . In the first case all pixels (i,1),(i,2),...,(i,j-1) are 0-pixel. If this is not the
case then a border point (i,h) which was encountered most recently must exist.
If (i,h) belongs to an outer border where (i,h+1) belongs to the background then
(i,j) belongs to a new outer border.

To check this, the index of LNBD is important. Since its index is either 0, 2 or
-2 the cases of LNBD=0 and LNBD=-2 satisfy these requirements.

3.2.4. Snakes

The last object based approach mentioned here are the snakes, also known as
deformable contours, active contours or minimum energy contours. As these

11

3. Object recognition

Figure 3.3.: An initial contour left and the resulting contour right.[16]

names suggest snakes are used to determine the contours of an object begin-
ning from an initial contour under use of a so-called energy function. Such a
result is shown in Figure 3.3. As it was mentioned before the snake algorithm
requires an initial contour to run. If this contour is determined inefficiently,
thus allowing further objects or lines between the initialization and the target,
this approach may deem useless.

In general the snake algorithm calculates the gradient of the contrast to de-
tect an edge along the contour. By ”pulling” the contour towards the highest
contrast a local extreme, a point where the highest contrast is detected, can
be reached. At this point the Hildreth-Marr edge, the final destination, is lo-
cated. Further explanations on snakes and multiple approaches can be found
in [14, 11, 27].

3.3. Cognition based attribute extraction

In the previous chapter all approaches concentrated on extracting geometrical
shapes to determine the object. But this approach may have a number of dis-
advantages, because valuable visual information like the color or reflection are
not taken into account. Furthermore a model is required beforehand, which
may prove to be a hard task. The approaches presented in this chapter will fo-
cus on determining objects based solely on visual attributes. The object is seen
as a whole which results in avoiding problems such as segmentation errors,
loss of information due to limited geometrical attributes and of course we do
not need to prepare a model.

3.3.1. Colorsystems

Since the cognition based attribute extraction concentrates on recognition of
color parameters and attributes of the object, there is a number of different
color systems that can be used here.

12

3.3. Cognition based attribute extraction

Figure 3.4.: The CIE XYZ System.[4]

The RGB system is the main color system, as perceived by the humans, cam-
eras as well as used in displays and televisions. This system sees the color
perception as a combination of red, green and blue. There is a number of di-
versities for this color space, such as the sRGB and the ECI-RGB systems.

Printers use the CMYK system. This system adds cyan, magenta, yellow and
the key color black to create the endresult. This system is not fixed, just like
the RGB system, it depends on the medium it is used by. Subsystems are for
example the ISOcoated and ISOuncoated.

There is a number of further color systems which are specifications of the
RGB system and prove benefitial for different purposes. Two such spaces will
be introduced at this point.

The first space is the CIE XYZ color space, shown in Figure 3.4, which was
set up by the Commission Internationale de l’Eclairage in 1931. In the 1920s
W. David Wright and Hohn Guild independently conducted a series of exper-
iments on the human sight which were the foundation for the CIE XYZ color
space. The transformation from RGB is displayed in (3.5).

13

3. Object recognition

Figure 3.5.: The HSI System.[5]

�
X
Y
Z

�
=

1

0.17697

�
0.49 0.31 0.2

0.17697 0.81240 0.1063
0 0.01 0.99

��
R
G
B

�
(3.5)

The final space introduced is the HSI space which is shown in 3.5. HSI is
an abbreviation of hue, saturation and intensity. This color space was devel-
oped in the 1970s for computer graphics applications. It is a cylindrical ge-
ometry where the hue is displayed in 360° around the intensitiy axis and is a
set of pure colors. The distance to the center is the saturation. Any change
in saturation or intensity does not change the identified color. The reason to
use HSI is that modern monitors and televisions can reproduce a wide vari-
ety of colors witht he RGB system, but these combinations are inintuitive and
the proportions in which R, G and B are used to change saturation or intensity
change in such a drastic way, that an easier and less arbitrary way to identify or
change colors was necessary. Thus in the mid 1970s PARC and NYIT devised
the Hue-Saturation-Value model, which was formally described in [23]. At the
same time the HSL system, from which the HSI system was later derived, was
devised in [15]. Shortly after first graphic terminals which used these color
systems were introduced.

In the HSI color system

• Hue is the `̀ attribute of a visual sensation according to which an area
appears to be similar to one of the perceived colors: red, yellow, green,
and blue, or to a combination of two of them´́

• Saturation is the `̀ colorfulness of a stimulus relative to its own bright-
ness´́

14

3.3. Cognition based attribute extraction

• Intensity is the total amount of light passing through a particular area.

The calculation from RGB into the HSI system is as follows:
If a color is a combination of R,G and B then let

M = max(R,G,B)

m = min(R,G,B)

C = M −m
(3.6)

and

H = 60◦·

8>>><>>>:
undefined, if C = 0
G−B
C mod6, if M = R

B−R
C + 2, if M = G

R−G
C + 4, if M = B.

(3.7)

Intensity and saturation are defined as

I =
R+G+B

3

S =

(
0, if C = 0

1− m
I , otherwise

.
(3.8)

Other color systems exist, such as the Hue-Saturation-Lightness System (HSL)
or the CIE L*a*b*-color system.

3.3.2. Histogramms

The principle of histogramms is to detect similarities between two pictures to
detect objects. Since the histogramms can be quite big and not all colors are
of interes,t K-means can be used to group colors thus reducing the size of the
histogramm. As a sideeffect such a clustered histogramm is more robust to
changes in light. Before histogramm intersection can be used, a number of his-
togramms of the object have to be prepared beforehand. These should be based
on different angles thus allowing determination of an object even in the case of
a rotation. Approximately six histogramms are enough to create a stable base.

These histogramms are based on
∀i ∈ [0, xmax], j ∈ [0, ymax] : M(i, j) = (r, g, b)t ⇒ HM (r, g, b) = HM (r, g, b) + 1.

The comparison of the model histogramm, HM , and the picture, HI compares
the grade of coocurrence with equation 3.9

15

3. Object recognition

V (HI , HM) =

Pn1
i=1

Pn2
j=1

Pn3
k=1min(HI(i, j, k), HM (i, j, k))Pn1

i=1

Pn2
j=1

Pn3
k=1HM (i, j, k)

(3.9)

The positive effect of this approach is that V (HI , HM) changes only very little if
the target is partially hidden and due to the beforehand prepared histogramms
the object can be located even if it was rotated, thus a rotation invariant result
is obtained.

Still the drawbacks must not be overlooked. First of all this approach is vul-
nerable to change in illumination. A change in illumination will often lead to
a change in the detected colors thus changing the attribute to detect. Further-
more this approach is not suitable to single-colored or plain-colored objects.
Histogramms have a hard time detecting these objects since the histogramm is
not specific, especially if the color of the object is detected in the background
as well. This can lead to false detection. Last but not least the form of the ob-
ject is disregarded. Objects of different sizes and forms may lead to similar or
equivalent histogramms which is an undesireable result.

To counter these drawbacks an enhanced approach was developed: the Color
Coocurrence Histogramms.

3.3.3. Color Cooccurence Histogramms

The Color Cooccurence Histogramms were introduced in [6] and aim to counter
the problems mentioned beforehand by taking into account one geometric prop-
erty. The pixel distance of the object is saved into the histogram. Therefore the
Color Cooccurence Histogramm saves the combination of pixels with the same
color and the same distance.

In Figure 3.6 pixel p1 = (R1, G1, B1) and p2 = (R2, G2, B2) which would be
saved in the Histogramm with the distance (∆x,∆y) are shown. This can be
saved as CH(p1, p2,∆x,∆y). Of course if (∆x,∆y) = (0, 0), so c1 = c2, then the
CH is equal to the normal histogramm. Furthermore the colors in the CCH are
clustered for the same reasons as in the normal histogramm, namely to reduce
the size, calculations required and make it more robust towards illumination.
In order to ignore rotations this approach keeps track of the magnitude d =È

(∆x)2 + (∆y)2 but not of the direction of ∆x or ∆y. The quantization of
colors and distance is represented as CH(i,j,k), where i and j are two colors and
k is the distance range.

To detect the object, a rectangular window is run through the picture and cre-
ates a CH for each position. A histogram similar to that of the model is looked
for. As a remark, the search window and the model window from which the
CH is computed do not have to be of the same size. In fact the search win-

16

3.3. Cognition based attribute extraction

Figure 3.6.: Distance of two points.[6]

Figure 3.7.: The images taken
of Woody.[6]

Figure 3.8.: The found Woody is
marked.[6]

dow can be chosen as big as deemed reasonable. The histogramm intersection
method can be used to compare the histogramms. If the result exceeds a preset
threshold T the object has been discovered.

A search of the doll Woody, from the movie Toy Story, made with 12 his-
togramms, 8 colors and 12 distances can be seen in Figure 3.3.3.

The CCH is invariant to rotations, partial overlapping and is rather robust to
changes in size but it requires a huge amount of calculations, as the search has
to be done for each model histogramm prepared beforehand. Similar to nor-
mal histogramm detection the CCH encounters problems of detecting simple-
colored objects, especially if the color is included in the background, is still a

17

3. Object recognition

Figure 3.9.: An object is scanned beforehand.[18]

big problem. The CCH counters the problem of objects with different forms but
same histogramms by adding one further property, still there exist a number of
objects which would result in a similar CH.

3.4. Matching

Each method to detect an object has its own matching methods since they all
extract different attributes, like edges for the canny detection and hugh trans-
formation or colors for the histogramms. Two approaches can be differentiated:
the model based matching and the vision based matching. For both approaches
we can use the direct approach or train a neuronal network.

3.4.1. Vision based matching

In the vision based matching methods the extracted attributes result in a mul-
tidimensional vector. As preparation for this approach a number of testresults
for the objects we wish to detect must be prepared. Each testresult will lead to
a vector in the multidimensinal space and as a whole they create a scatterplot.
Of course the scatterplot is different for each object.

To make these scatterplots as accurate as possible the testdata should be
made depending on different degrees of freedom. In Figure 3.9 a space which
depends on illumination and orientation of the object is created.

The attributes extracted from the picture result as well in a vector in the same
space. The scatterplot closest to this vector determines the object detected. In

18

3.4. Matching

Figure 3.10.: Four different objects create four different Eigenspaces.[18]

Figure 3.10 a number of possible scatterplots which were created by using the
Eigenspace method, described in [18], are shown.

If the location and orientation on of the object are the desired results, the
calculated vector must be matched not just to the scatterplot but to the closest
vector.

3.4.2. Model based matching

For the model based maching no previously prepared images are available.
Instead a model or rather a set of attributes and their relations are prepared.
These may be colors, distances, forms or other distinct attributes. To compare
these models with the extracted data, the model is projected as genuine as pos-
sible in the image. On the other hand the extracted attributes can be used to
create a model from these. This approach is more difficult and makes use of the
graph theory where the model is compared to a semantic network. The use of
the A*-algorithm and the Hungarian algorithm to match a model are described
in [22].

19

3. Object recognition

20

4. Mathematical calculations

4.1. Geometrical approach

The controller shown in Figure 4.1 has a point invariant to rotation and trans-
lation, namely the center of the controller O. Since the picture taken by the
camera projects the world onto a 2D-plane, it is possible to calculate the rota-
tion angle around the Z-axis as well as translations in the X and Y directions.
The translations are calculated as the distance between the original location of
O and its new location O’. For the rotation around the Z-axis a triangle ∆OAA′,
where A’ is the translation of new location A’ of A, is used. Of course, to make
these calculations independent to translations in X and Y directions, A’ is trans-
lated by the previously calculated values into the original space. This process is
shown in Figure 4.2. Furthermore Figure 4.2 displays the calculations to detect
the rotation around Z.

AA′
2

= OA
2

+OA′
2 − 2OA′OA cosα (4.1)

Applying the well known equation (4.1) results in the rotation around the Z
axis.

Detection of translation in Z direction as well as the detection of rotations
around the X- and Y-axis depends solely on proportions of the distances as
well as on detected areas, if available. If the controller is rotated around one of
these axes the proportions of the distance between the center and the respective
markers will change thus rotations can be deducted from these relations. If the
areas of the markers are available as well, then the proportion of their sizes is a
factor for rotation as well.

W.l.o.g. assume that the axis of OA is detected as the longer axis of the con-
troller. Since a rotation around X- or Y-axis reduces the distance between the
respective markers the longer axis has undergone no or a rotation of a smaller
degree. By comparing this axis to its original a relative translation in the Z
direction is detected.

This approach is mainly theoretical and in a number of imaginable cases
the results are unsatisfying. Furthermore no calculations are possible if the
controller has less than four markers or if one marker was not detected.

21

4. Mathematical calculations

Figure 4.1.: A controller with its coordinate system.

Figure 4.2.: Rotation around the Z-axis.

22

4.2. Analytical approach

4.2. Analytical approach

The analytical approach is by far superior to the explained geometrical ap-
proach as it is more robust in its calculations. This approach was explained
in [7, 12].

4.2.1. General explanations

After initializing the starting positions a transformation will lead to an error
e(t). The mathematical approach aims to minimize the error e(t). This error is
generally defined by

e(t) = s(m(t), a)− s∗. (4.2)

The parameters in (4.2) are defined as following. The vector m(t) is a set of
measurements from the current frame while a is a set of parameters with prior
knowledge (e.g. 3D-model or camera intrinsic parameters). These are com-
bined to calculate a vector of k visual features which we represent as s(m(t),a).
The desired set of features is represented as s*, which is the identified position
of the controller at initialization.

Next a velocity controller to minimize e(t) must be designed. The relation
between the time differentiation of s and the camera velocity is necessary. The
camera velocity is denoted as vc = (Vc, ωc) where Vc is the linear velocity and
ωc is the angular velocity of the camera frame. The relationship between ṡ and
vc is given by

ṡ = Lsvc. (4.3)

In this equation Ls is the interaction matrix related to s and Ls ∈ <kx6. Ap-
plying (4.3) on the equation (3.1) leads to the relationship between the camaera
velocity and the time variation of the error. The result is shown in (4.4).

ė = Levc (4.4)

In this equation Le equals Ls but is denoted different to represent it’s re-
lataion to ė. The velocity vc is the input to the robot. Since the goal is to min-
imize the error e a multitude of minimization approaches, such as the lambda
approach where ė = −λe, can be used. With this assumption it is evident that

vc = L−1e e. (4.5)

L−1e is the inverse of Le if Le ∈ <6x6. vc can be calculated with equation 4.5
only if detLe 6= 0. Since Le is unknown a way to estimate this matrix must be
determined.

23

4. Mathematical calculations

The interaction Matrix can be used to estimate Le.

4.2.2. The Interaction Matrix

The coordinates of a point in the 3D-world can be described as P=(X,Y,Z). This
point p is projected by the camera on a 2D-plane with the coordinates p=(x,y).
This transformation is described by

x =
X

Z
=
u− cu
fα

y =
Y

Z
=
v − cv
f

(4.6)

where m=(u,v) are the coordinates of p expressed in pixel units and a =
(cu, cv, f, α) is the set of the camera intrinsic parameters. cu and cv denote the
coordinates of the principal point, in general the center of the image. f is the
focal length and α is the ratio of pixel dimensions. The attribute s(m) is the
position of the object in the picture thus ∀si ∈ s(m) : si = pi = (xi, yi). In the
next step the time derivatie of the equation (4.6), that is

ẋ =
Ẋ

Z
− XŻ

Z2
=
Ẋ − x ∗ Ż

Z

ẏ =
Ẏ

Z
− Y Ż

Z2
=
Ẏ − yŻ
Z

.

(4.7)

must be calculated. The relationship to the velocity vc is described by

Ẋ = −Yc − ωcxX ⇔

8><>:
Ẋ = −Yx − ωyZ + ωzY

Ẏ = −Yy − ωzX + ωxZ

Ż = −Yz − ωxY + ωyX.

(4.8)

Injecting (4.8) in (4.7) and grouping the terms results in

ẋ = −Yx
Z

+
xYz
Z

+ xyωx − (1 + x2)ωy + yωz

ẏ = −Yy
Z

+
yYz
Z

+ (1 + y2)ωx − xyωy − xωz.

(4.9)

This equation can be rewritten as the matrix multiplication

ṗ = Lpvc (4.10)

where

Lp =

�−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z 1 + y2 −xy −x

�
. (4.11)

24

4.2. Analytical approach

The matrix Lp is necessary to approximate the matrix Le in (3.4). It should
be noted that a vector v = (p1, p2, p3) of three points in the detected frame is
necessary, thus at least three points must be detected. This is a requirement to
control a 6DOF robot. Stacking the equations for the respective points leads to

Lv =

�
Lp1

Lp2

Lp3

�
(4.12)

From here on different approximations can be used to calculate Le. The first
approach is to estimate Le = Lx, the current position of each point. For this
approach the Z value of each point must be known, or estimated for each cal-
culation. The second approach is to choose Le = Le∗ . This Le is calculated
for the desired position, that means e = e∗ = 0. For this approach the value
of Le is fixed for all calculations, thus an estimation is not necessary. Recently
the approach to use the approximation of Le = 1/2 ∗ (Lx +Le∗) was proposed.
Once more the estimation of the value of Z for each calculation is required if
this approach is chosen as it uses Lx. Approaches to estimate the depth Z are
described in [8].

25

4. Mathematical calculations

26

5. Implementation

5.1. Setup

This thesis was implemented in C++ and uses the OpenCV 1.0 distribution.
OpenCV offers a variety of functions and classes for realtime image processing
as well as objectdetection. This made OpenCV a natural choice to handle the
controller detection.

The robot used for the tests was a ”Mitsubishi V6-S”, a 6DOF robot, and the
controller was filmed by a ”lightvision marlin” camera. The setup is shown in
Figure ??. As for the framework for the interface the FlexRF framework [17]
was used. This framework was developed to offer access to a flexible environ-
ment for real-time robot control. It consists of a number of blocks which can be
added as needed to create an operating system. A moderatly complex system
is shown in Figure 5.2.

As one can see the goal of this thesis was to develop a generic interface be-
tween the camera and the robot. Since the whole communication between the
processing unit and the robot is handled by FlexRF this thesis concentrates on
marker detection and the calculation of the transformations.

5.2. Markerdetection

To create a stable basis for calculations four markers were installed on the con-
troller. The necessary number to calculate the transformations is three markers,
but for the matter of stability a higher number is recommended. An analysis
why four markers are necessery can be found in 5.4.2.

The markers were set at the four edges of the controller as seen in Figure 5.3.
Their position was fixed for test purposes but general detection at initialization
is supported as well.

A combination of cognition based detection and edgedetection was used to
detect these markers. The Hough transformation is of no use for the used con-
troller as it detects changes in size up to a specified degree, but rotations which
distort the image of the object make it impossible to detect the markers. A
possible approach is to use canny detection to determine the borders of the
markers and thus determine the markers. This approach is equal to border

27

5. Implementation

Figure 5.1.: The setup of the experiment.

Figure 5.2.: A moderately complex sample application composed from the
building blocks.[17]

28

5.2. Markerdetection

Figure 5.3.: The controller.

detection and following thus the contour detection function implemented in
OpenCV can be used for this task as well. Before the contours can be detected,
an environment which makes the results invariant to light must be created.

The standard cognition based algorithms, such as histogramms, fail on their
own since a number of backgrounds can create histogramms similar to the de-
sired result. This is a major backdraw of this technique. Furthermore it may
prove quite time consuming to detect the desired object in its actual size with
all possible transformations.

The first approach taken here was to use color normalization. After trying
out the normalization method (5.1), which is recognized to give satisfactory
results for normalization, as well as the CCN-normalization, which was pro-
posed in [10], the results were by far unsatisfactory or the improvement in
detection compared to the method actually used was only minimal. These ob-
servations tempt to agree with the results shown in [26, 21]. While both al-
gorithms had good results when used on pretaken videos, tests with live feed
could not support their utilization. One must note that both algorithms fail to
adapt to an increase or decline in illumination sources.

r

r + g + b
;

g

r + g + b
;

b

r + g + b
(5.1)

Thus the picture was first transformed into the HSI space which allowed to
skip the task of normalization as the results were satisfactory in regards of sta-
bility to changes in direction and intensity of the illumination. After changing
the color system with cvConvertImage() the image contains only the color data
of the original. In OpenCV the original 360◦ were mapped onto a value range
of 0-180 to fit the 8-bit image. To ensure a robust detection, a setup which is

29

5. Implementation

rare in possible surroundings was chosen. Each marker consists of two dif-
ferent colors, an outer and an inner color. The OpenCV function cvInRange()
allows to filter the data of the raw image data for a certain range, the range for
green would be 30 to 60 which equals an angle of 60◦ to 120◦. No other color
in the markers is filtered into this interval. These new frames contain all the
data needed, but it may still be eronerous as there may have been errors in the
visualization and filtering. First the image is smoothed with cvSmooth(), then
cvDilate() is applied twice thus increasing the size of the detected areas. This
way cases where a marker is not detected, because a part of it was not recog-
nized, are reduced. Finally the threshold function cvThreshold() creates a binary
image. The threshold was set to 230.

After reducing the image to a binary image, the algorithm explained in 3.2.3
can be used to extract the contours of the inner and outer colors. In OpenCV
the function cvFindContours() uses this algorithm and extracts a list of contours,
where a point of a contour is saved in a sequence and contains the information
about the next point. The markers used for the controller are squares and any
transformation applies in the same way to each marker respectively as well as
to the inner and outer colors. Therefore the proportions of sizes do not change
when a bounding box enclosing these respective colors is created. Rectangles
of minimal size were used as the bounding boxes for the detected contours.
These rectangles are created by cvMinAreaRect2(), which returns the center of
the minimal rectangular bounding box, its angle, width and height. Further-
more a filter is applied to prevent that the calculation speed in the next step
is reduced due to too many boxes of minimal size. The remaining boxes are
saved in a list and used to calculate the marker positions.

To detect the location of the marker, the program checks which extracted
inner and outer colors match the attributes of the markers. First of all the in-
ner and outer colors are known for the markers. Furthermore the centers of
the bounding boxes must be close to each other and size proportions must be
within certain boundaries. If at least one of these requirements is not fullfilled,
these boxes do not overlap, or overlap insufficiently.

After the search is completed all four markerpositions should be identified.
If one marker was not identified then one rotation will be foregone during the
calculations, in the case that two or more markers were not detected no calcu-
lations are done and the algorithms continues with the next frame.

Issues why the markers may have been overseen will be addressed in 5.4.1.

30

5.3. Calculation of the transformation

5.3. Calculation of the transformation

This project was designed to enable robot control without a calibrated camera,
nor a model of the controller.

The approach of image based visual serving can be used for the calculations,
assuming that the camera is an eye-in-hand camera. As was described in 4.2,
three points are required for the calculations. Since four points are available,
namely the centers of the four markers, vc can be calculated a number of times
for each possible selection. This number can increase if the center of the fig-
ure is added, but it was omitted as the center depends on the detection of the
markers.

During the implementation errors while using OpenCV funtions for matrices
operations were observed, thus each step was encoded.

The approach Le = Le∗ was used for the calculations. To calculate this value
the camera intrinsic parameter f and the value of Z, for the initial position, must
be assumed. Both values are reducing the result by a factor. After some try and
error f was settled as 72 and Z as 2.

The error, e, is the difference of the x and y coordinates of each point and
its original position. With a settled Le and e the equation (4.5) to calculate vc
can be used. To invert Le adjoint matrix calculations were used. After all ma-
trices have been calculated the median of the results are calculated to reduce
errors as much as possible. Further approaches tried were the majority rule
and the median of the maximum. The results were similar to identical there-
fore the normalization was used. To ensure the proper relation of the detected
transformations the rotations and the translations are normalized.

As one can assume the results can be used as direct input to move the robot,
but different results for the same type of movement were perceived in differ-
ent experiments. The calculations detected when the rotations changed, but
the values retrieved changed sometimes as well. Therefore a further test was
necessary. This test checks the size relation of the detected markers. Since the
actual size of the markers is identical the 3D projection rules, which state that
an object of the same size will be projected on a smaller area, the further it
is from the camera, can be used. Therefore the rotations will be done in the
direction of the bigger marker.

To ensure stability of the calculations the values of the rotations are for-
warded only when the respective markers were identified. Issues of calculation
behavior are discussed in 5.4.2.

31

5. Implementation

5.4. Results

5.4.1. Stability of marker detection

The goal of this project was to create a controller which was stable to rotations
of small degrees, any translation on the same plane, as well as translations
towards and away from the camera up to a certain degree.

To control the stability of the detection three videos were taken at different
times of a day as well as on different days. Each video was taken with the same
camera settings and contained all motions that should be detected. Further-
more the videos contained phases where the controller was moved at different
speed. Each second 30 frames were taken by the camera. To have a reasonable
sample size videos of approximately 30 seconds each were taken and the num-
ber of frames where the markers were not detected at all or eroneously was
checked. Furthermore the resulted calculations for each visible translation and
rotation were checked to detect inconsistency.

When the controller was moved at high speed one marker was lost some-
times. Still, the moment the motion slowed down or was stopped altogether
the marker was detected immediately. Furthermore one or more markers were
lost when the controller was moved too far away.

The first video was taken at around 10 a.m. and was 616 frames long. Out of
60 frames with errors one marker was missed in 25 of these and two markers
were missed in 35 frames. Analyzing these frames showed that these frames
were either at a big angle, in rapid motion or very big distance to the camera.

The afternoon video, at 1 p.m., contained 574 frames. Out of these a single
marker was not detected in 17 frames and at least two markers were missing
in 20 further frames.

In the last video, at 6 p.m., two markers were not detected in 23 frames and
one marker in 22 frames. Furthermore three frames had an erroneous detec-
tion. All in all 750 frames were used for this test.

In all videos a number of frames with a visible error in the detected size was
observed. Still, these differences were in single frames and of small propor-
tions, thus they would have no impact on the longterm rotations.

All in all between 90% and 95% of the frames were detected correctly. If
only errors with two markers missing are taken into account then a detection
rate of ≈ 96% is reached. Furthermore, in cases where the controller was in
a position relatively close to the starting position (which is best at about one
meter distance to the camera) and in slowmotion the detection rate reaches
close to 100%, as was observed during testsessions, while taking videos and is
most reasonable to control the robot.

A backdraw of the approach used is that the detection ranges for the colors

32

5.4. Results

must be set anew for a new environment. Furthermore if the difference of
light and shadow is too great, for example afternoon and night, the detection
fails. The final backdraw is that a number of colors in the background may
greatly disturb the detection like strong illumination, which is reflected by the
controller, or colors similar or identical with the outer color of the markers.
A way to solve this is to have the markers consist of 3 colors, the outer color
is consistant for all markers and is similar to a filter to block the background
colors. Tests on this approach showed promising results.

5.4.2. Stability of the calculations

If the markers of the controller are denoted as in Figure 5.4.2 and the calcula-
tions are applied to it, then four triangular positions to calculate ve are avail-
able, namely ABC, ABD, ACD, CBD. For each of these positions the matrix Le∗

is a fixed value. Thus the velocity ve depends directly on the error e.

ve =

0BBBBBBB@

Yx
Yy
Yz
ωx

ωy

ωz

1CCCCCCCA =

0BBBBBBB@

∆x1
∆y1
∆x2
∆y2
∆x3
∆y3

1CCCCCCCA =

�
∆P1

∆P2

∆P3

�
. (5.2)

33

5. Implementation

As shown in (5.2), if only one set of three markers without any permutation
of the order is used, a number of rotations as well as translations cannot be
detected. The detection of these would result from the transformation of the
position after a number of iterations. As it was shown in [12] it would take
approximately 30 cycles of calculation to get a sufficient result. But since the
approach taken in this thesis does not transform the picture, thus the position
may remain the same all the time and the calculations must be correct at each
cycle.

For this reason four triangles are calculated, where each point takes the po-
sition of P1, P2 and P3 once. If only three markers were detected, calcula-
tions for three triagles are done. W.l.o.g let A, B, C be detected. In this case
∆ABC,∆BCA,∆CAB are used. As shown in (??) there is a linear relation
between ve and e. Running a test on the results from the calculations by the al-
gorithm has shown the same result. Furthermore, the translations are detected
in all calculations, but the rotations around the x and y axis are superficial only
within two calculations while the rotation around the z axis results from all
four calculations.

As stated in [[9]] the calculations are correct if the transformation does not
approach singularity positions. Still, even though all rotations and translations
can be detected the proportions of the calculated movement in each direction
and around each axis are not consistent. As such a translation in Z-direction
is detected but its magnitude is by far inferior to translations in X- and Y-
directions. Among the rotations the rotation around the Z-axis is dominant.

34

6. Conclusion

In this thesis it was shown that a visual controller can rival existing controllers
which rely on vision and further built-in sensors to detect motion. The current
approach detects all markers within an acceptable margin of error and is ca-
pale of detecting the translations, rotations and any combinition of these with
satisfying accurancy. Any motion performed with a space mouse, a commonly
used robot controller, can be achieved with the discussed controller as well.
The marker detection is quite sensible to position changes thus ongoing correc-
tion of submovements is necessary. Still the method of marking the controller
edges has a number of flaws, such as weakness to similar color in the back-
ground, weakness to great rotation angles as well to large distance and rapid
motion. In the future a test with light balls instead of color markers, as they
are used in the Sony Controller, may counter these problems. Furthermore a
counter measure for a missing marker may be a combination with a model
based approach. This approach would require a model of the marker thus im-
pusing further restrictions on the controller. An adaptive, built-in model which
is created based solely on the initial position of the controller would be of great
interest for further research. Another approach to detect the marker may be
to limit the search area by applying an adaptive filter which detects the back-
ground thus limiting the search for the markers and improve the stability of the
detection even further. This approach would enable the application of snakes
to remove any eroneous detection of the marker borders as the number of er-
roneous marker colors would decrease enough not to cause a slow down thus
realtime controlling would still be possible.

The current algorithm enables the user to control a robot directly or from a
remote location with a camera filming the robot and the user and transfering
the commands to the robot in a different location. A second possible applica-
tion area may be cooperation between the operator and the teleoperator. The
controller was designed by using calculations which assume that the camera is
an eye-in-hand camera thus controlling the robot with a camera fixed onto the
robot gripper is imaginable as well. This can be achieved by no or only small
changes in the code.

35

6. Conclusion

36

Appendix

37

A. Quickstart Guide

As it was mentioned the parameters for color detection must be defined anew
when the robot is used in a new environment. The function testValues(IplImage*
src) supports the setup of a new configuration. The user is presented with an
OpenCV window which contains two trackbars and displays the binary output
of the image after applying the color-range threshold, smoothing, dilating and
applying the final threshold. The window is shown in Figure A.1. The values of
the color-range threshold are set by the trackbars. Normally the upper trackbar
contains the lower threshold while the lower trackbar determines the upper
threshold. In this case the output is the binary image in the range of [lower
threshold, upper threshold].

If the upper trackbar receives a higher value than the lower trackbar the pro-
gramm assumes that the user tries to determine the range for red. In this case
the displayed image is the combination of the range [lower threshold, 180] and
[0, upper threshold].

After the desired values for color detection as well as the robot axises and the
movement threshold values have been set in the configuration file the interface
can calculate the resulting transformations. The boolean doSetTarget is set by
the programm during each cycle and should be checked after the calculation.
This variable is set to true if the controller was discovered, otherwise it is false.
This way further control of the robot is possible, for example if the operator
uses the built-in FlexRF-interface to set the desired position.

The function to calculate the movements is newPosition(IplImage* src, core::data::Target
current). This function will return the new position, as a target, which can be
forwarded to the robot. While the programm is executed the initial position of
the controller is displayed in the processed window of the FlexRFframework as
red squares, while the online recognition is displayed as green squares. This
enables the user to discover any erroneous detection. The running interface is
shown in A.2.

In the case that the user wishes to reset the initial position, the function rese-
tInitial() can be used.

39

A. Quickstart Guide

Figure A.1.: The window for color-range detection.

Figure A.2.: The interface and its desktop.

40

List of Figures

2.1. Wii Remote and its Sensor Bar.[1, 2] 3
2.2. The Playstation Move controller.[3] 4

3.1. A strong horizontal edge and a weak vertical edge.[16] 6
3.2. A voting matrix.[16] . 8
3.3. An initial contour left and the resulting contour right.[16] 12
3.4. The CIE XYZ System.[4] . 13
3.5. The HSI System.[5] . 14
3.6. Distance of two points.[6] . 17
3.7. The images taken of Woody.[6] . 17
3.8. The found Woody is marked.[6] . 17
3.9. An object is scanned beforehand.[18] 18
3.10. Four different objects create four different Eigenspaces.[18] 19

4.1. A controller with its coordinate system. 22
4.2. Rotation around the Z-axis. 22

5.1. The setup of the experiment. 28
5.2. A moderately complex sample application composed from the

building blocks.[17] . 28
5.3. The controller. 29

A.1. The window for color-range detection. 40
A.2. The interface and its desktop. 40

41

Bibliography

[1] http://en.wikipedia.org/wiki/File:Wii_Remote_Image.
jpg.

[2] http://en.wikipedia.org/wiki/File:Nintendo_Wii_
Sensor_Bar.jpg.

[3] http://en.wikipedia.org/wiki/File:PlayStation_Move_
Final_Design.png.

[4] http://bin.sulinet.hu/inform/szinkoordinata/cie_xyz.
png.

[5] http://www.lohninger.com/helpcsuite/img/hsi_color_
system.png.

[6] Peng Chang and J. Krumm. Object recognition with color cooccurrence
histograms. In Computer Vision and Pattern Recognition, 1999. IEEE Com-
puter Society Conference on., volume 2, page 504 Vol. 2, 1999.

[7] F. Chaumette and S. Hutchinson. Visual servo control. i. basic approaches.
Robotics Automation Magazine, IEEE, 13(4):82 –90, dec. 2006.

[8] F. Chaumette and S. Hutchinson. Visual servo control. ii. advanced ap-
proaches [tutorial]. Robotics Automation Magazine, IEEE, 14(1):109 –118,
march 2007.

[9] François Chaumette. Potential problems of stability and convergence in
image-based and position-based visual servoing, 1998.

[10] Graham D. Finlayson, Bernt Schiele, and James L. Crowley. Comprehen-
sive colour image normalization, 1998.

[11] Zhiqiang Hou and Chongzhao Han. Force field analysis snake: an
improved parametric active contour model. Pattern Recognition Letters,
26(5):513 – 526, 2005.

[12] Seth Hutchinson, Greg Hager, and Peter Corke. A tutorial on visual servo
control. IEEE Transactions on Robotics and Automation, 12:651–670, 1996.

43

http://en.wikipedia.org/wiki/File:Wii_Remote_Image.jpg
http://en.wikipedia.org/wiki/File:Wii_Remote_Image.jpg
http://en.wikipedia.org/wiki/File:Nintendo_Wii_Sensor_Bar.jpg
http://en.wikipedia.org/wiki/File:Nintendo_Wii_Sensor_Bar.jpg
http://en.wikipedia.org/wiki/File:PlayStation_Move_Final_Design.png
http://en.wikipedia.org/wiki/File:PlayStation_Move_Final_Design.png
http://bin.sulinet.hu/inform/szinkoordinata/cie_xyz.png
http://bin.sulinet.hu/inform/szinkoordinata/cie_xyz.png
http://www.lohninger.com/helpcsuite/img/hsi_color_system.png
http://www.lohninger.com/helpcsuite/img/hsi_color_system.png

Bibliography

[13] M. Jagersand, O. Fuentes, and R. Nelson. Experimental evaluation of
uncalibrated visual servoing for precision manipulation. In Robotics and
Automation, 1997. Proceedings., 1997 IEEE International Conference on, vol-
ume 4, pages 2874 –2880 vol.4, apr 1997.

[14] Lilian Ji and Hong Yan. Attractable snakes based on the greedy algorithm
for contour extraction. Pattern Recognition, 35(4):791 – 806, 2002.

[15] George H. Joblove and Donald Greenberg. Color spaces for computer
graphics. SIGGRAPH Comput. Graph., 12(3):20–25, 1978.

[16] Christian Große Lordemann and Martin Lambers. Objekterkennung in
bilddaten. Technical report, Westfälische Wilhelms-Universität Münster,
2004.

[17] T. Müller and A. Knoll. A generic approach to realtime robot control and
parallel processing for industrial scenarios. In IEEE International Confer-
ence on Industrial Technology, 2010.

[18] S.K. Nayar, H. Murase, and S.A. Nene. Parametric Appearance Represen-
tation. In Early Visual Learning, pages 131–160. 1996.

[19] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Academic
Press, Inc., Orlando, FL, USA, 1982.

[20] José Santos-Victor. Vision-based remote control of cellular robots. Robotics
and Autonomous Systems, 23(4):221 – 234, 1998. Intelligent Robotics Sys-
tems - SIRS’97.

[21] Gerald Schaefer. How useful are colour invariants for image retrieval.
In Proc Second Int’l Conf. Computer Vision and Graphics. Kluwer Academic
Publishers, 2004.

[22] Simone Schäfer. Modellbasiertes matching (a*, ungarischer algorithmus).
Technical report, Institut für Computervisualistik, Universität Koblenz-
Landau, 2006.

[23] Alvy Ray Smith. Color gamut transform pairs. SIGGRAPH Comput.
Graph., 12(3):12–19, 1978.

[24] Satoshi Suzuki and KeiichiA be. Topological structural analysis of digi-
tized binary images by border following. Computer Vision, Graphics, and
Image Processing, 30(1):32 – 46, 1985.

44

Bibliography

[25] Gordon Wells, Christophe Venaille, and Carme Torras. Vision-based robot
positioning using neural networks. Image and Vision Computing, 14(10):715
– 732, 1996.

[26] Dietrich Paulus Wolfram Hans, Benjamin Kopp. Farbmetrische objek-
terkennung. Technical report, Universität Koblenz-Landau, 2009.

[27] Chenyang Xu and Jerry L. Prince. Generalized gradient vector flow exter-
nal forces for active contours. Signal Processing, 71(2):131 – 139, 1998.

[28] Shigeki Yokoi, Jun ichiro Toriwaki, and Teruo Fukumura. An analysis
of topological properties of digitized binary pictures using local features.
Computer Graphics and Image Processing, 4(1):63 – 73, 1975.

45

	Acknowledgements
	Abstract
	Introduction
	Existing visual controllers
	Nintendo Wii Remote
	Playstation Move

	Object recognition
	Setup of an object recognition system
	Objectbased attribute extraction
	Cognition based attribute extraction
	Matching

	Mathematical calculations
	Geometrical approach
	Analytical approach

	Implementation
	Setup
	Markerdetection
	Calculation of the transformation
	Results

	Conclusion
	Appendix
	Quickstart Guide
	Bibliography

