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Abstract—We present a general framework for tracking
image regions in two views simultaneously based on sum-of-
squared differences (SSD) minimization. Our method allows
for motion models up to affine transformations. Contrary to
earlier approaches, we incorporate the well-known epipolar
constraints directly into the SSD optimization process. Since the
epipolar geometry can be computed from the image directly, no
prior calibration is necessary. Our algorithm has been tested
in different applications including camera localization, wide-
baseline stereo, object tracking and medical imaging. We show
experimental results on robustness and accuracy compared
to the known ground truth given by a conventional tracking
device.
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I. INTRODUCTION

The problem of tracking image patches in binocular stereo

videos arises in a variety of applications. Clearly, the use

of multiple cameras should improve tracking performance

as more information (i.e. two images) is available, and the

well-known epipolar constraints must be satisfied on the

image [1]. A well known approach to model moving image

patches in a stereo environment is to employ 3D coordinates.

However, modeling an image patch with 3D coordinates

leads to a number of non-linearities, at least for perspective

cameras [2]. Moreover, 3D tracking introduces the additional

potential inaccuracies due to the effect of calibration errors

on the 3D reconstruction. Waxman and Duncan [3] fuse

stereo and motion together using the differences in the

optical flow in a binocular setup. They describe an elegant

method to recover rigid body motions from two rectified

views, which is a special case of non-calibrated camera

setups.

In contrast to 3D approaches, patches on the image plane

can be modeled directly in 2D using epipolar constraints.

A simple special case is a rectified stereo setup where

corresponding image points lie on the same scan line. Ni and

Dellaert [4] exploit rectified geometry to set up a coupled

tracking process for a visual odometry application where

small image patches share the same y-coordinate. Similarly,

Stoyanov et al. [5] incorporate the scan line constraint to

improve robustness in surgical applications where tools often

occlude the field of view. Other groups also use epipolar

constraints to discard poorly tracked features: Yang and

Zhang [6] use this approach for their head pose tracker.

The same goes for Argyros and Lourakis’ [7] hand tracker

and Kanbara’s et al. [8] augmented reality system. Finally,

Ramey et al. [9] directly parameterize their surface tracker

and solve for disparity. That way, they can employ epipolar

constraints in the case of non-verged cameras.

Our work extends these results to general epipolar con-

straints without prior rectification up to the affine motion

model. Epipolar constraints couple the targets in both images

without explicit 3D reconstruction. Since the processing

stays in the image domain, no additional errors due to

calibration inaccuracies or non-linearities due to perspective

projection are introduced into the system.

II. STEREO REGION TRACKING APPROACH

Our method is derived from the well known SSD track-

ing [10] [11], as firstly described by Lucas and Kanade [12].

For a single view, motion parameters µ are obtained mini-

mizing the objective function O(µ) = ‖I(µ)− I0‖
2
, where

I(µ) is the warped image patch and I0 the template image.

In the case of stereo images, we make use of the redundant

information between left and right view. Integrating the

epipolar constraints into the objective function, we obtain

a stereo-coupled tracking algorithm. Denoting the two pa-

rameter vectors µl and µr with n entries for each view, we

can describe k constraints with the k by 2n constraint matrix

C. Then, the objective function is given by

min O (δµ) = ‖Mlδµl + Il(µl)− I0‖
2

+ ‖Mrδµr + Ir(µr)− I0‖
2

s.t. C

[

µl + δµl

µr + δµr

]

= 0. (1)

M denotes the Jacobian of the image with respect to

the parameter vector. Introducing the Lagrange multipli-

ers λ, we can solve for the objective function. With

∇O(δµl, δµr, λ) = 0, we obtain the linear system suitable



for iterative solution:




Ml
TMl 0

CT

0 Mr
TMr

C 0









δµl

δµr

λ





= −





Ml
T (Il(µl)− I0)

Mr
T (Ir(µr)− I0)

0



 (2)

A. Stereo Constraints for non-calibrated Views

In rectified stereo views, corresponding points in the left

and right image share the same y-coordinate. From this

section on, we assume the affine motion model. Let Al and

Ar be affine transformation matrices whose variable entries

mirror the parameter vectors µl and µr. For rectified stereo

views, we easily verify three linear constraints al21 = ar21,

al22 = ar22 and al23 = ar23. Translation and similarity

motion models are only special cases of the affine model

and therefore possess linear constraints analogously.

Provided that the fundamental matrix is known, stereo

constraints can also be set up for non-calibrated views. We

will show this procedure for the affine transformation—

translation and similarity transformation are special cases

of the affine transformation and again analogous.

We pick three points in the template image: The template

image center P1 = (0 0 1)T and two infinitesimal close

points P2 = (d 0 1)T and P3 = (0 d 1)T . Given the

fundamental matrix F and the affine transformations Al

and Ar, these three points will fulfill the following stereo

constraint:

((Al + δAl)P )
T
F (Ar + δAr)P = 0 (3)

F may be given as a result of any standard algorithm

described in [1]. Note that Al and Ar are the affine

transformations for the previous camera frame. Therefore,

the magnitude of the subsequent parameter updates δA

is usually small. Expanding the above equation, we can

therefore ignore higher order terms of δA and d. Thus, we

obtain three purely linear constraints

(δAlP )
T
F ArP + (AlP )

T
F δArP

= − (AlP )
T
FArP. (4)

Since the points P are chosen infinitesimally close to the

center of the template, the constraints are in fact a local

linearization of the epipolar geometry. Note that Al, Ar

are known from the previous iteration and F is a constant.

Thus, we can calculate a constraint matrix C connecting

the components of the parameter updates δAl and δAr as

needed for the iterative solution in (2).

B. Direct Solution of the Constrained Problem

Considering equation 2, we wonder about the high dimen-

sionality of the linear system. Since the constraints reduce

the dimensionality of possible solutions, we might rather

expect a 2n− k linear system.

For that, we introduce the transformed parameter vector

x ∈ R2n−k and the 2n by 2n − k transformation matrix

T . T should be chosen in such a way that all µ = Tx fulfill

the constraints. Using this parameter transformation we can

reformulate the objective function to

‖Mδµ+ I(µ)− I0‖
2
= ‖MTx+ I(µ)− I0‖

2
. (5)

That way, the constraints are always ensured by Cµ =
CTx = 0. Plus, the dimensionality of the solution of x

becomes 2n− k:
(

TTMTMT
)

x = −TTMT (I(µ)− I0) (6)

Solving the linear system, we obtain the linear approxima-

tion step

δµ = −T
(

TTMTMT
)

−1

TTMT (I(µ)− I0) . (7)

Obviously, Tx yields only allowed parameters.

As a more general solution, we define T to be the basis of the

null space of C. That way, we theoretically verify Cµ = 0
if and only if µ = Tx. Thus, we can always construct the

transformation matrix T from a given constraint matrix C

and vice versa, as C is a basis of the null space of TT . In the

special case of rectified views, T becomes a constant and

the direct solution is further simplified. This special case is

identical to the algorithm in [4] and very similar to that in

[13].

An intuitive explanation of our reduced parameter set is

the following: Due to the epipolar geometry, any transfor-

mation perpendicular to the epipolar lines has to occur in

both views. Translation, scaling and skew perpendicular to

the epipolar lines give 3 independent parameters. Similarly,

translation, scaling and skew parallel to the epipolar lines

result in 3 parameters for each view. Thus, we can model

the affine motions with 9 parameters in total.

C. Practical Implementation

In practical applications, neither rectification nor the fun-

damental matrix are perfectly accurate. For that reason, the

constraints given above do not hold perfectly. It is therefore

beneficial to set up soft constraints:

min O (δµ) = ‖Mlδµl + Il(µl)− I0‖
2

+ ‖Mrδµr + Ir(µr)− I0‖
2

+ λ ‖C (µ+ δµ)‖
2

(8)

where λ > 0 is a design parameter.

Analogously solving for ∇O(δµ) = 0 results in the linear

system

[[

Ml
TMl 0

0 Mr
TMr

]

+ λ2CTC

] [

δµl

δµr

]

= −

[

Ml
T (Il(µl)− I0)

Mr
T (Ir(µr)− I0)

]

− λ2CTC µ (9)
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Figure 1. Spatial deviation of tracked image patches. Left: Unconstrained
tracker. Right: Epipolar constraints enforced. Bold lines show the average.

In contrast to the hard constraints, the soft constraint

matrix C needs to be scaled (by λ) depending on how

precisely the conditions should be met. In our experiments,

we used scale factors at the order of λ = 10−1N , where N

is the number of pixels.

In order to improve computational performance, we also

made use of factorizing the Jacobian M into a constant

matrix M0 and a time-varying matrix Σ, as described by

[10].

III. EXPERIMENTS AND APPLICATIONS

The algorithm presented was implemented in Matlab

and C++. The latter uses the Intel Integrated Performance

Primitives (IPP) libraries, OpenCV 1.0 as well as CISST

Stereo Vision. With the C++ version, we could show that

integrating epipolar constraints in the tracking algorithm

does not slow down performance. The bottleneck of the

tracking process is warping and interpolation.

A. Binocular Tracking for Localization

For many applications, image features need to be tracked

accurately in order to obtain camera motion. In the first

experiment, we set up a stereo rig of two Point Grey High

Definition cameras. Different planar images were moved in

front of the cameras. The image set contained both blurry

and well-textured standard test images. The motion of the

images was captured by an NDI Optotrak motion capture

system. Using the explicit AX = XB solution by Park

and Martin [14] and the optimization method by Strobl and

Hirzinger [15], we calibrated the moving image plane up

to spatial deviation of 0.8 mm and an angular error of 0.6
degrees. Thus, we compared the visual tracking results to a

known ground truth given by the motion capture system.

Figure 1 shows the accuracy of our proposed tracking

algorithm (on the right) in comparison to regular uncon-

strained tracking (left). The difference in accuracy can
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Figure 2. Spatial deviation of tracked image patches in a wide baseline
setup. Left: Unconstrained tracker. Right: Epipolar constraints enforced.

be explained as follows: The regular tracking algorithm

gives adequate results on pixel level in each camera image.

However, it does not directly estimate disparity. In contrast

to that, our stereo tracking algorithm directly solves for dis-

parity. Thus, the integration of epipolar constraints allows a

far better estimation of disparity and therefore z-coordinates.

That way, the overall spatial deviation in our algorithm is

superior to the regular approach.

B. Stereo Tracking in Wide Baseline Camera Setups

In the second experiment, we set up a verged stereo

system with a wide baseline of 749.2 mm. A planar image

was moved in the common field of view. We could register

the poses of the image plane up to a residual RMS error

of 1.16 mm. Then, we ran the tracking algorithms on a

number of image patches on the moving plane. In the case

of the conventional tracking algorithm, almost all image

patches were lost within a short sequence (see Figure 2). In-

tegrating epipolar constraints leads to a substantially higher

robustness. This result can be explained by the significantly

different perspectives. The image patch shows much greater

distortion in one view than in the other. Coupling both views

therefore allows for higher robustness.

C. Tracking of Biomedical Surfaces

In a third experiment, we used binocular video data

from a minimally-invasive prostatectomy. Since the surgery

was conducted with a da Vinci tele-manipulation system

(Intuitive Surgical, Sunnyvale, CA), a stereo endoscopic

view was readily available. Biomedical surfaces usually

pose certain difficulties on the tracking process: First, the

surface is constantly moving, deforming and poorly textured.

Second, illumination leads to specularities in the endoscopic

view. Third, occlusions by surgical tools are frequent.

In this experiment, ground truth is not known. How-

ever, we could compare the convergence of random image

patches. Rectangular image regions were randomly picked

and visually tracked for a number of frames. Regions with
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Figure 3. Random patches being tracked up to deviation of 1 pixel (lower
lines) and 5 pixels (upper lines) in two video sequences. Dotted lines:
Unconstrained tracker. Solid lines: Epipolar constraints enforced.

high residuals were automatically discarded, ambigious re-

gions were manually classified. After that, the percentage of

inliers up to a certain deviation was calculated. As shown in

Figure 3, our algorithm has slightly higher robustness. This

result can be explained by the high number of specularities

in the endoscopic view. Since specularities appear differently

in the respective cameras, a stereo tracking process can

handle them more easily. Poor image conditions in one view

can partly be compensated for by the other.

IV. CONCLUSION

This paper has proposed a stereo tracking approach based

on epipolar constraints. We have used epipolar geometry to

directly couple affine region tracking in both image views.

In contrast to conventional 3D tracking, we work directly in

the image space and avoid the need for 3D reconstruction.

Our method achieves robust registration of region features

in stereo views, even for wide-baseline setups. We have

shown high accuracy compared to the ground truth given

by a conventional tracking device.
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