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Abstract—The design of fault-tolerant automation systems is
a complex task. These systems must not only satisfy real-time
requirements but they must also deliver the specified functionality
in the presence of both software and hardware faults. To achieve
fault-tolerance, systems have to use redundancy. This redundancy
is usually achieved by replicating hardware units and executing
the application within a distributed system.

Model-based design tools promise to reduce the complexity
of the design process by raising the abstraction level. However,
most of the existing tools focus only on functional aspects. Code
realizing extra-functional requirements such as fault-tolerance
mechanisms, communication, and scheduling is not targeted.
However, this type of code makes up the majority of the code
of a fault-tolerant real-time system. This paper presents FTOS,
a model-based development tool for the design of fault-tolerant
automation systems that focuses on code generation of extra-
functional requirements and therefore complements existing
tools.

I. INTRODUCTION

During the last years, the software share in automation sys-
tems has significantly increased. The safety of these systems
was then only dependent on the mechanical and electrical
system components. However, due to the rise of software in
this area, nowadays it has also become a safety critical system
component. However, software systems in general tend to be
more complex then mechanical or electrical systems, because
they do not obey to physical laws and therefore anything can
happen in software and to software. This progression lead to a
huge increase in system complexity that has to be dealt with at
system design and system reengineering, which is even more
frequent in automation engineering than system engineering.
Model-driven development might help to handle this com-
plexity by abstracting from the actual implementation layer
to model and metamodel layers. From these layers, huge
parts of the system can automatically be generated. Model-
driven development originated in software development [22]
but it can very easily be extended to systems development and
therefore be also used in automation engineering, due to the
abstract way of modeling that it provides.
This paper presents FTOS [5], a model-driven development
tool that generates software architectures for fault-tolerant
automation systems by taking not only functional system
aspects into account in its automatic generation process, but

also extra-functional system aspects like faults and failures.
Section II will reveal the characteristics of the automation
domain. The requirements on a model-driven development tool
for safety-critical real-time systems in discussed in Section III.
Section IV presents FTOS in detail and shows how FTOS can
handle the specific requirements of the automation domain.
Finally, section V will discuss our future work to further
increase the value of the tool.

II. AUTOMATION

Automation engineering is a unique engineering discipline
because it unites a broad range of scientific subjects and
various system views. In the publicly founded research project
“Software Platform Embedded Systems 2020” (SPES20201),
we analyzed this domain and created a list of its demands on
model-driven software development [26].
Automation engineering combines computer science, mechani-
cal engineering, electrical engineering and process technology,
which leads regularly to misconceptions and information loss,
because each of these disciplines has its own basic principles
and assumptions. An electrical engineer will, for example, see
a control cabinet as a set of connected control units with fixed
physical borders, whereas a computer scientist will think of it
as an abstract distributed system whose physical dimension is
of no interest.
Another important challenge in the automation domain is the
large variety of considered systems: a single programmable
logic controller (PLC) is as well an automation system as a
whole rolling mill. Automation engineers have to deal with
this huge hierarchy of complexity from simple, small systems
up to very complex systems of systems, but obviously the
development processes at these different layers of abstraction
differ tremendously.
Model-driven software development may be of great value
for dealing with these domain specific challenges, however
solutions have to be found for a set of specific problems
that were identified during SPES2020. On the one hand, there
are project organizational challenges that have to be solved.
Currently, model-driven software development is very strongly

1http://spes2020.informatik.tu-muenchen.de/



tied to agile development methodologies, because not only
the final product evolves over time, but also the tools [27].
Moreover, the versioning of models is still under research and
the use of text-based tools like Subversion [23] cannot meet
this requirement, because the semantics of two models may
be equivalent even if their syntax differs. Moreover, current
modeling techniques like XMI [2] allow references to other
files by the line, which can lead to problems that cannot be
handled by text-based versioning tools.
Apart from the organizational flaws, model-driven software
development lacks some technical features on the other hand.
One of the major missing features is the possibility to han-
dle extra-functional system features like timing and fault-
tolerance. Automation systems are prime examples for cyber-
physical systems, as they interact with the physical world, in
which these extra-functional aspects play a very important
role. The importance of time is very obvious, but fault-
tolerance is also becoming more and more important with
the increasing need to certify automation systems to safety
standards like IEC 61508 [1].
The second major technical challenge for model-driven soft-
ware development of automation systems is closely connected
to the large variety of systems and disciplines, which constitute
the automation engineering domain: model-driven software
development has to be able to handle different views on a
modeled system, for example software, hardware and mechan-
ical views. This handling has to go beyond just “showing”
the system, but there have also to be mechanism to trace the
impact of modifications in one view to the other views.
This paper deals with the technical challenges identified in
this section. Based on these general requirements one can
derive six requirements to tools for model-driven software
development, as identified in section III.

III. REQUIREMENTS ON THE TOOL

This section identifies and discusses the main requirements
on tools used for the model-based development of fault-
tolerant real-time systems. As already stated in the introduction
of this chapter, various tools are available for the develop-
ment of embedded systems. Several of them are discussed
in [5]. However, these tools focus mostly on the applica-
tion functionality. Code realizing extra-functional aspects in
a fault-tolerant, non-monolithic real-time system has to be
implemented manually. This code is necessary to realize fault-
tolerance mechanisms, communication within the distributed
system, I/O operations, scheduling, and process management.
The main reason, why the generation of such code is not
covered by existing tools, is the platform dependency of these
mechanisms. The realization depends on the used operating
system and hardware and cannot be implemented using plat-
form independent programming languages like ANSI-C. Due
to the great heterogeneity of used hardware and operating
systems [24], [19], it is not possible to implement a code
generator that supports a priori all possible combinations. This
leads to the first requirement:

Requirement 1: The code generator must be expandable
(even for the application developer) to support additional
platforms and arbitrary programming languages.

Providing simple means to expand the code generation is
the first step to get a useful generation tool for fault-tolerant
real-time systems. However, an easy expansion of the code
generation alone is not sufficient, since the initial modeling
language can not cover all possible mechanisms that one might
want to realize utilizing the development tool. For instance, the
tool supports the most important fault-tolerance mechanisms
such as active and passive replication or rollback recovery.
However, there are of course many other mechanisms that
might be suitable as well. To support a new mechanism, the
modeling language must be expanded to allow the specification
of the required information. The same is true for the automatic
generation of I/O operations. If in different projects the same
device is used repeatedly, it might be reasonable to add
generation functionality to the code generator to support this
device. In case the class of the device is not supported in the
current version, one might need to add a new device class
with certain parameters in the modeling language. Therefore,
the second requirement that must be satisfied by the tool is:

Requirement 2: The modeling language must be easily ex-
pandable.

It is important that expansions of the modeling language or
the code generator must not affect the existing parts of the code
generator. By allowing the expansion of meta-model and code
generation functionality, the code generator can be adjusted to
the requirements of the company or developer group using the
tool. Such groups comprise typically different stakeholders,
such as real-time system experts, hardware experts, safety
manager and domain experts. This fact can be exploited similar
to the approach in component-based approaches [28], [4].
The responsibility for different aspects of the code generation
functionality can be assigned to dedicated experts. To support
this approach, the third requirement must be satisfied:

Requirement 3: The code generation functionality must be
separated into modules to allow an independent implementa-
tion of solutions for different aspects.

In addition, the multitude of different experts causes prob-
lems. Having different backgrounds and using different ap-
proaches, the interaction and communication between differ-
ent experts plays an important role. Models are a natural
connection factor. To ease the communication process, the
used models must be simple, intuitive, and unambiguous. This
requirement is even more strengthened by the fact that the
models are used for extensive code generation. Many modeling
languages such as UML [21] lack the precision and rigor
needed for extensive code generation [17]. This leads to the
next requirement:

Requirement 4: The specification/modeling language must
have explicit and unambiguous (execution) semantics.
Since this requirement is very extensive, this issue is discussed
separately in [5]. Explicit and unambiguous models reduce the
probability of design errors. However, the tool must support
means to prove the correctness of the system. These proofs
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must be integrated in two dimensions: model validation and
code verification. For the first issue, extensive tests must be
employed:

Requirement 5: Tests have to be integrated in the tool to
check the validity of the model.
In addition, there must be high assurance in the generated
code. In fault-tolerant system, especially the correct implemen-
tation of components taking into account the fault hypothesis
is important. The same functionality might be implemented
in different ways, if other assumptions on faults are used.
Therefore, it is necessary to verify the generated code:

Requirement 6: The tool should include formal methods to
ensure a high assurance in the generated code.

IV. FTOS

This chapter presents a holistic overview of the approach
and gives an introduction into basic concepts of FTOS. FTOS
is used to model the system and to generate the code related
to extra-functional aspects. The phases of a standard devel-
opment process that are supported by FTOS are depicted in
Figure 1. The designer is supported during system design by
providing a specification language. FTOS validates the models
and generates a tailored run-time system that provides the
functionality for fault-tolerance mechanisms, communication
within the distributed system, scheduling, and I/O operations.
The components realizing the application functionality have
to be implemented by the developer. A number of tools are
available that can support the developer in this task.

This chapter is intended to provide an overview of FTOS
and to identify the development steps. It starts by identifying
the requirements that have to be satisfied by FTOS to achieve
the intended goals. Based on these requirements, the basic
concepts of FTOS are discussed and the different development
steps are presented. At the end of the chapter, two applica-
tions are presented that are used to illustrate the introduced
concepts.

A. Template-Based Code Generation and Development Steps

This section enumerates the concepts used to satisfy the
requirements stated in the previous section. Furthermore, the
resulting tool is presented and the different components are
explained.

The main requirement is an easy expandability of the
code generator with respect to generation functionality and
modeling language. The first requirement can be solved by
leveraging template-based code generation [25], [11], as it
was pointed out in the context of the predecessor of FTOS
called Zerberus [9]. The concept of a template-based code
generation is depicted in Figure 2. Instead of having one
monolithic code generation kernel that encapsulates all the
code generation functionality, template-based code generators
consist of a code generation core and templates encapsulating
the generation functionality. A template can realize a certain
aspect of the fault-tolerant real-time system or can be used
to combine further templates to finally form a complete run-
time system. Thus, the input of the code generator consists not
only of the model, but also of a set of templates. The task of
the code generator is to analyze the model, select a suitable
set of templates and to adapt these templates to application
requirements.

The advantages of this approach are obvious: new templates
can be added easily. These templates can realize new aspects of
the system, e.g. support new hardware or a new fault-tolerance
mechanism, but can also be used to generate code in a different
target language. It is even possible to generate natural language
to provide necessary documentation. Another advantage of this
approach is that the complexity of the code generator can be
reduced significantly. This is in particular very important when
using the code generator for safety-critical system develop-
ment. Very often, code generators are by far more complex
than the generated programs. Thus, the certification of a code
generator becomes usually too expensive. In addition, any
changes of the code generator to expand the code generation
functionality lead to the necessity of a new certification of
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the whole code generator. In contrast, template-based code
generation solves this problem. The complexity of the code
generation core can be reduced to a minimum. Furthermore,
the addition of new templates only leads to a new evaluation
of the affected templates, while other templates can be used
without a repeated certification.

In addition, the concept of templates fulfills inherently the
request for modularity. System engineers can define a generic
software architecture and specify the interfaces between the
different components. Experts can use their expertise to realize
templates solving specific aspects of the complete system.
Safety engineers can identify the important components of the
system and add appropriate mechanisms to guarantee safety
and reliability.

However, the concept of templates does not address the
expandability concerning the modeling language. A solution
is the use of a meta-code generation framework. Several of
these frameworks are available such as openArchitectureWare
[14], AndroMDA2 or MetaEdit3. These code generators allow
the definition of modeling languages in the form of user-
defined meta-models. The concept of these frameworks is
depicted in Figure 3. Based on a meta-modeling language,
the developer of the code generator can define a meta-model.
In the example of the figure, a meta-model for finite state
machines is described. The meta-modeling language is typ-
ically based on the class diagram notation and allows the
definition of classes, references, attributes, and data types.
Based on the meta-model, the application developer can define
a concrete model. The support of object oriented concepts such
as inheritance [15] and polymorphism [12] is a key factor to
simplify the expansion of the modeling language / meta-model.
By introducing new sub classes e.g. for a specific device class,
the modeling language can be expanded straightforward. In
addition, the concept of polymorphism allows this expansion
by specifying a code generation function for that specific sub
class. Other code generation functions can be left unchanged.

2http://www.andromda.org/
3http://www.metacase.com/

Instead of augmenting the code generator Zerberus to sup-
port meta-modeling, FTOS is based on openArchitectureWare4

(oAW) [29]. The meta-models used in FTOS are described in
detail in [5].

The final two requirements are satisfied by incorporating
model validation rules and formal verification. The validation
rules are directly included in the code generation process.
The verification is more complex. Since FTOS does not focus
on a specific target language like Whalen et al. [30], it is
not possible to formalize the translation between modeling
and target language. Furthermore, the verification must also
be suited to support the expandability of the code generator.
This dilemma is solved by specifying the formal behavior
of a template. Based on this formal description, the formal
model of the developed system can be generated in parallel to
the original code generation process. Important properties can
be verified by integrating formal verification tools. A detailed
description of this approach can be found in [5].

The complete tool chain is depicted in Figure 4. Based
on meta-models realizing the domain specific language, the
developer team can specify the concrete system models. FTOS
uses four meta-models to describe the different aspects of
fault-tolerant systems. The modeling tool incorporated within
oAW allows the specification of the models using graphical
notations. Therefore, syntactical errors are excluded by design.
Nevertheless, it is necessary to check the semantic correct-
ness of the models. This model validation is realized in the
next step. The validated models are then combined to one
model. In addition to the mere combination, supplementary
information is computed in this step to simplify the code
generation. Some validation rules test the interaction between
different models. These rules are checked after the model
transformation. Finally, the validated, expanded, and combined
model is used for code generation. The code generator selects
appropriate templates to solve application aspects and adopts
these templates to application requirements. The result is a
tailored run-time system including mechanisms for scheduling,
inter-process communication, fault-tolerance mechanisms, and
synchronization. Furthermore, user implemented code that re-
alizes the functionality for the application, such as a controller
function, is embedded into the generated code. In parallel to
this code generation, a formal model of the system is generated
that can be used for formal verification. The individual steps
are explained in more detail in the following section.

B. Code Generation Process

1) Modeling: The modeling activities in oAW are based on
the Eclipse Modeling Framework (EMF) [10]. This modeling
framework is used both for the definition of the meta-models
and for the definition of the concrete models. The previous
section already indicated that it is useful to split up the models
into sub-models to describe the different aspects separately.
This technique increases the simplicity of the models and

4http://www.openarchitectureware.org/
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the separation of concerns. A detailed description of the used
meta-models and their relation can be found in [5].

2) Validation: Semantic design errors have to be detected
in early design phases. Therefore, several tests are formulated
to check the validity of the specified models. The specification
of these tests is supported in oAW by offering the validation
language CHECK, an equivalent to the object constraint
language (OCL) [20] available for UML. Tests in CHECK
are specified as formulas in First-Order Logic. One example
for a test is depicted in Figure 5. This test checks whether
each communication point (port) is read by at least one
software component (actor). Other examples are tests to check
the reachability of all application modes or to ensure the
absence of constructs in the model that could introduce non-
determinism.

3) Model-To-Model Transformation: The next step after the
model validation is the combination of the different models.
The resulting model is used for the code generation. To
simplify the code generation, further information, which is
already implicitly contained in the models, can be computed
and added explicitly. One classical example is the handling of
references: if the model contains an unidirectional reference,
it might be useful to also add a reverse reference. This
approach decreases on the one hand the error-proneness of
the initial model, since directed references are in contrast
to bidirectional references much easier to maintain for the
developer. On the other hand, the code generator benefits
from the bidirectional references. Model-to-Model (M2M)-

Transformation is supported in oAW by offering the functional
programming language EXTEND. In Figure 5, the result of
the M2M transformation is depicted for a communication
point. The M2M transformation computes the number of
software components using the communication point and the
number of relevant electronic control units. Further examples
for the M2M transformation are discussed during the presen-
tation of the used models in [5].

4) Code Generation: The code generation is based on
templates, as described before. Templates represent the actual
code generation ability and can be added easily. A template
can be used to solve a certain aspect or to combine the
results of different templates to form a run-time system. Most
templates are platform dependent in the sense that they offer a
solution only for a certain combination of hardware, operating
system, and programming language. Therefore, also the correct
selection of adequate templates is necessary.

oAW uses for the implementation of templates the XPand

language. This language is very simplistic. It offers the state-
ments DEFINE to declare a new code generation function and
EXPAND to call other generation functions during the code
generation. An important feature of oAW is the support of
polymorphism to guarantee an easy expansion of the code
generation ability. To specify the control flow of the code
generation, the commands FOR/FOREACH and IF/ELSE can
be used. The FOREACH statement is used to generate code
for each object of a certain type that is declared within the
model. Finally, the commands FILE and ENDFILE allow the



management of the generated files.

The code generation technique itself is simple: the adap-
tation of the templates to the model is performed using
a technique similar to preprocessor macros. Text sequences
between the different XPand commands are directly copied to
the generated files and variables allow the access to objects and
their attributes. A description of the code generation technique
can be found in [8]. Figure 5 shows one example for a template
that is used to generate code for the declared communication
points.

5) Verification: Formal verification is in particular of great
importance for fault-tolerant systems to verify the correct
implementation of mechanisms with respect to the fault hy-
pothesis. Two components realizing the same functionality
may be implemented in different ways, if the fault assumptions
differ. However, the fault assumption of the system that should
be developed does not necessarily match the fault assumption
used for the implementation of the available templates. It is
therefore necessary to assure the interoperability of different
components for a specific application context. The main idea
to solve this issue is to use a formal description of the
components behavior. As presented in [5], the meta-model
provides means to describe the behavior of components in
the presence of faults. Because the formal description must
be specified by template developers that have typically no
expertise in formal verification, it is necessary to limit the
required knowledge. This goal is achieved by using BoogiePL
[13] for the specification. BoogiePL is actually an intermediate
language for program analysis and program verification and re-
sembles imperative programming languages. Developers have
to learn very few concepts in order to be able to implement
a formal specification. Based on this specification, the code
generation tool generates a formal model of the complete
system. This formal model can be used to verify certain
properties of the system by using a SMT (Satisfiability Modulo
Theories) solver. More details on this approach are given in
[5].

6) Code Generation Result: Usually, the generated files
contain source code for an arbitrary programming language.
But since oAW is not restricted to one specific output lan-
guage, it is also possible to generate documents in natural
language. This can be useful, if documents for certification
issues or user-manuals are required. Currently, FTOS provides
templates for the generation of executable run-time systems
for two different platforms. These systems include code for
the timely-correct execution of the application, for process
management and scheduling, as well as communication (inter-
process, interprocessor) functionality. In addition, the selected
fault-tolerance mechanisms are realized by the run-time sys-
tem. The actual code realizing the application functionality,
like control functions, is not covered by the tool and has to be
implemented by the developer. An overview of the generated
code can be found in [5]. A concrete example for the whole
process is depicted in Figure 5.

C. Standard Compliant Fault Modeling

As presented before, FTOS consists of different meta-
models for modeling different system aspects. One of them
will be presented in more detail in this section.
In industry-driven environments like automation engineering,
academic safety analysis techniques like model-checking are
most of the time not feasible because they are usually very
expensive. In this environment, safety is established by proving
compliance with a generally accepted safety standard, like IEC
61508 [1]. These standards do not require the absence of any
risk in a system but they only require that the risk should be
as low as reasonably possible. This leaves the decision, which
concrete safety measures should be applied, to the system
developers.
FTOS also supports this paradigm by giving developers the
possibility to model system faults that comply to the system
faults specified by IEC 61508. During the code generation
process, the set of modeled faults is automatically evaluated
and techniques are chosen that are able to detect the occurrence
of all modeled faults. When one of these techniques discovers
a fault at runtime it is able to change the system’s fault
configuration, which triggers the fault handling mechanisms
of FTOS.

V. CONCLUSION AND OUTLOOK

This paper presented FTOS, a model-driven development
tool for fault-tolerant real-time systems, which meets the gen-
eral requirements of the automation domain towards model-
based software development. The tool can be easily expanded
both at the front end (modeling language) and back end
(code generation facility) to cope with the heterogeneity of
automation systems. Formal methods can be included to prove
the correctness of the code.

However, some aspects are still left for improvement. One
of these aspects is the extension of FTOS by a modeling
paradigm for safety requirements. Currently only static and
generic safety requirements can be used, which might be two
conservative. Typically, safety requirements are highly appli-
cation dependent properties of system states that differentiate
safe ones from unsafe ones. For example, some systems might
tolerate transient errors up to a specific time span, whereas
other systems might be turn unsafe even when very short tran-
sient errors occur. The modeling of these safety requirements
would introduce more information into the generation process,
which can be exploited to create a system that meets as many
requirements as a traditionally developed system.

Apart from safety requirements, software design faults are
also a problem that has to be dealt with in model-driven
software development. Software design faults in general have
been under research since the 1960ies [3], so probably no final
solution to them exists. Model-driven software development
reduces the probability that developers introduce such errors,
but there are still possibilities for them. Therefore we will
focus on the automatic generation of measures against the
propagation of software design faults at runtime.
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A final improvement that we want to address in the future,
will be the definition of a mathematical foundation for safety
and fault tolerance that fits well with the safety approaches
that are domiciled in industry and academia. Mathematical
foundations for safety are quite common in academia [18]
but their main problem is that they are hardly applicable by
industry for various reasons. Therefore we will be looking for
a mathematical description that can be mapped to academic
safety approaches like model checking but that can also be
mapped to the industrial safety environment, which is mainly
driven by the need of standard compliance.
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