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Abstract—Extra-corporal Circulation Support Systems
(ECCS) are used in cardiac surgery on a daily basis. Surgeons
and perfusionists supervise patients’ vital signals such as heart
rate or blood pressure and ensure secure and errorless operation
of the ECCS. Latest developments clear the way to use an
ECCS for emergency circulatory resuscitation in non–clinical
environments, even when trained staff is sparse and when there
is no standard monitoring setup. There is urgent need for
computerized ECCS supervision.
In this work we highlight the requirements and specifications of
a supervising unit (SU) that monitors patient and machine status
during extra-corporal circulation. We describe a conceptual
framework architecture based on a 4–layer design, that
implements such a SU and furthermore introduce a template
matching algorithm based on cross-correlation and the Hilbert
transformation for real-time patient monitoring. We show how
the algorithm integrates into the framework and illustrate that
such autonomous supervising instances can help to increase
system safety and quality of care.

Index Terms—Patient monitoring, template matching, signal
processing

I. INTRODUCTION

In the last decades, heart-lung machines (HLM) became a
routinely used device in cardiac surgery. Due to technological
advances, they became smaller in size, lighter and more easy
to use. A particular HLM, the Lifebridge B2T, was designed
to be used in emergency situations and during transportation,
e.g. in an ambulance. The plug–and–play characteristics of
this device allow operation by trained staff, perfusionists and
non–perfusionists alike. Clinical results of this portable and
modular ECCS were recently presented [1]. Patients suffering
from cardiogenic shock benefit from an early application of
an ECCS, preventing multi–organ failure.
Even though the portability of this device opens up new possi-
blities, it implies some challenges. Trained personnel is sparse
in emergency situations and space in ambulances is limited.
There is no surgical team as in a regular operating theater,
there is no standard system setup. Monitoring devices are not
available, medical records of the patient are usually unknown
and a comprehensive anamnesis is unfeasible. An adequate and
secure operation of a HLM under such circumstances needs
supervision.
A promising approach to effectively operate the HLM in non–
clinical environments can be to automate the ECCS based on

online data from the patient. An autonomous HLM ideally pro-
vides optimal perfusion while minimizing the workload of a
human operator in stressful situations. Ongoing research deals
with an automatic pump speed regulation of the Lifebridge
HLM, considering its application in non-clinical environments.
A prototype fuzzy controller that regulates the pump speed of
the HLM was developed and preliminary results were already
published [2]–[4]. Based on the patient’s mean arterial pressure
(MAP) and the produced pump flow, the controller decreases
or increases the pump speed of the ECCS following a rulebase
designed by cardiac surgeons.
Automatic perfusion control has been addressed in quite a
few publications [5]–[7]. Also fuzzy control was applied
to several medical questions [8]–[10]. It seems especially
suited for automatic perfusion since it manages vague and
ambigious data and easily maps expert knowledge into a
technical system via simple IF–THEN rules. However, there
has been no approach presented yet, that autonomously ensures
patient and system safety during extra–corporal circulation.
An automated ECCS possibly reduces the workload of a
human operator, but it would still need human supervision,
especially when used in emergencies or during transportation.
Sensors might fail, cannulation tubings might get kinked,
vibrations during transportation can influence system perfor-
mance. These unpredictable, situational events heavily influ-
ence control behavior and thereby set the patient at imminent
risk. To manage such risks and still ensure a robust control
scheme elaborate algorithms for patient and system monitoring
are needed. Automatic detection of life-threatening events or
device-malfunction is indispensable in order to provide opti-
mal perfusion. Such algorithms and security features further
reduce the personnel’s workload. In this work we present a
framework for a SU that accounts for such problems. The
requirements and goals of this framework are highlighted and
we outline its architecture. Furthermore we present a template
matching algorithm that detects characteristic patterns in a
MAP signal and present preliminary results.



II. METHODS

A. A Framework for Physiological Signal Analysis, Patient
and Device Monitoring

In literature quite a few frameworks for medical data
analysis can be found. Most of them are designed for specific
applications and operate on databases of medical records.
These tools can be used to define and follow evidence–
based therapy guidelines and became well–known as Clinical
Decision Support Systems (CDSS). Chiarugi et al. [11] high-
light the advantage of such systems and integrate signal and
image processing methods to treat heart failure. Garg et al.
[12] give a systematic summary on the effects of CDSS on
patient and practitioner performance. Recently Apiletti et al.
[13] introduced a flexible framework for physiological signal
processing which also includes data mining methods to assess
a patient’s health status and to detect potential risks.
The requirements and specifications for such systems are
manifold and strongly depend on the application. The main
objectives are to increase system safety, patient safety and
thereby quality of care. In this work we introduce a concept
for supervising automated ECCS. The tasks of our SU are to
monitor patient and system status, to extract meaningful infor-
mation from given data streams, to deduce the overall patient
and system status as well as to notify an user on important
changes, events or possible danger. Furthermore the SU shall
influence the decision making of an ECCS controller. To cover
these various tasks we propose a conceptual framework, based
on a 4–layer architecture, depicted in Fig. 1.

1) Data Acquisition Layer: The bottom layer deals with
data acquisition issues. It manages data recordings from sen-
sors and retrieval from databases as well as basic preprocessing
methods such as filtering or handling of missing values. In
the specific case of the Lifebridge HLM and accompanying
experiments, multiple data streams are recorded. These include
crucial patient data such as blood pressure, blood flow, ECG
and SPO2 values as well as machine parameters like the pump
speed, produced flow and in- and outlet pressures. A detailed
description of the used sensors and data recording management
can be found in [4]. Simple reasoning clarifies the importance
of this layer: the quality of the recorded signals (e.g. Signal-to-
Noise Ratio (SNR)) strongly effects the results of downstream
analysis methods and performance of any follow-up layer.

2) Data Analysis Layer: The second layer encompasses
signal processing methods for data analysis. The objective
of this layer is to extract parameters relevant in the decision
making from the given data streams. Standard features include
the calculation of minimum, maximum and mean values of a
signal. Especially in medical data analysis distance to given
threshold values (alarm thresholds), long and short–term trend
analysis is of interest (see [13]). Also pattern detection meth-
ods such as QRS detection for ECG signals or the algorithm
described below belong to this layer.

3) Data Abstraction Layer: The data abstraction layer
shifts extracted features onto a semantic level. Using data
mining methods signal features and detected patterns are
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Fig. 1. Layout of supervising unit illustrating the required informational
levels from sensoring to user interaction.

translated into relevant and exploitable information. This layer
accounts for unimodal as well as multi–modal data mining. In
most of the current literature, analysis and decision making
is done in a unimodal manner, i.e. data is acquired and
features are extracted without considering possible correla-
tions in between separate channels. However, using possibly
redundant information from several data channels can help to
detect sensor failures and other risks. For example the heart
rate can be extracted from both ECG signals and a pulse
oximeter. Strong deviation of the two values would indicate
some sensoring problem. Generally, the data abstraction layer
extracts meta–information from the data streams. It scans for
technical abnormalities (e.g. sensor failure), clinical risks (e.g.
cardiac fibrillation) and user interventions, i.e. a SU should be
aware if the user directly interacts with the system, e.g. manual
control of the ECCS.

4) Interface Layer: The top layer of our SU interfaces with
the user and the controller’s decision making. As described
before, a fuzzy controller is able to regulate the HLM’s
pump speed based on simple rules. Considering information
about the overall system status and the patient’s constitution
improves adequate control. Inappropriate decisions caused by
sensoring problems, situational events or user interventions can
be reduced when integrating information from a SU. Linking
meta–information between the SU and the fuzzy controller
can for example be realized via extra input parameters that
assess system and patient status in an index–like manner.
An extended rulebase can then account for the additional
knowledge. E.g. a simple rule can be not to change pump speed
if only transient pressure changes were observed but the long–
term signal trend stays constant. Apart from interfacing with
the controller the SU should notify and warn an operator about
imminent and life–threatening risks and events in a consistent
way. This includes event logging for a post–operational anal-
ysis as well as intelligent information management to alarm
the user in an ergonomic way, e.g. via a display.

5) Summary: A 4–layer architecture expresses an intuitive
way for SU development. The object–oriented character of the
framework allows implementation in high–level languages and
clearly separates different tasks of the SU. This eases main-
tenance and allows later extensions. So far, we implemented
the framework in C++ with focus on the data acquisition and
analysis layer. We integrated standard analysis techniques as
well as trend analysis as described in [13].



B. Template Matching for Patient Monitoring Systems

Apart from standard signal extraction methods, our frame-
work allows to integrate more advanced algorithms as well.
In this section we present a template matching algorithm for
patient monitoring and use it to detect blood pressure curves
recorded by a MAP sensor. The presented algorithm can be
helpful to detect sensor failure and noise as well as general
changes in the signal (increase, decrease, heart beat variations).
Our matching is based on the normalized cross–correlation
between a given template and a signal. Usually blood pres-
sure peaks and the associated characteristic waveform occur
roughly periodically in the signal. This results in a cosine–like
cross-correlation coefficient when the template is continuously
shifted over the signal. The template and the search signal
are alternately in–phase and in counter–phase. However, we
are only interested in the local maxima of the correlation
coefficient, since they (and their connecting line) tell us the
overall development of our matching. We exploit properties
of the Hilbert transformation to calculate the upper envelope
function of the correlation coefficient. This approach goes
without separate calculation of local maxima and expensive
interpolation methods.

1) Normalized Cross–Correlation: The cross–correlation
is well–known for template matching, predominantly in the
image processing domain. Generally spoken it measures the
similarity between two signals x of size N and y of size
M with N < M , expressed in the correlation coefficient.
For 1D template matching, the search pattern is continuously
shifted over a given signal and the correlation coefficient
is calcuated for every time instance over the whole area
spanned by the template. Given the time-discrete template
x[i] with i = 1 . . . N , we calculate the normalized cross–
correlation coefficient with signal y[k] for every sample point
k = 1 . . . M −N :

rxy[k] =
∑N

i=1(x[i]− x̄)(y[i + k]− ȳ)√∑N
i=1(x[i]− x̄)2

√∑N
i=1(y[i + k]− ȳ)2

. (1)

The denominator in equation 1 normalizes the correlation
coefficient rxy[k] such that −1 ≤ rxy[k] ≤ 1. Large values of
rxy[k] indicate a good matching between the source signal
and the template. Large negative values also indicate high
correlation, but of the inverse of one of the time series, i.e.
the signal and the template are inversely phased.

2) The Hilbert Transformation: Patterns in a physiologi-
cal source signal, such as pressure or ECG curves are ap-
proximately periodic. Calculation of the normalized cross–
correlation of such signals with a predefined pattern results in
an amplitude and phase modulated cosine–like signal. These
properties can be exploited to effectively calculate the upper
envelope of rxy[k]. Amplitude and phase modulated signals
can generally be regarded as bandpass signals. In communi-
cations, the Hilbert transformation is often used to transfer a
lowpass signal into a bandpass signal and vice versa, which is
needed for signal modulation and demodulation. Given a real
bandpass signal xBP (t), the so-called analytic signal x+

BP (t)
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Fig. 2. From top to bottom the template x[k], the search signal y[k], their
cross–correlation coefficient rxy [k] and its envelope function renv [k] are
shown during drug administration. Both the search signal and the template
were taken from an animal experiment.

reads
x+

BP (t) = xBP (t) + jx̂BP (t) (2)

with the Hilbert transform x̂BP (t). The analytic signal has
no spectral components for frequencies smaller than zero. It
can be shown, that the absolute value of the complex signal
x+

BP (t) yields the envelope of the bandpass signal [14]. We
use this knowledge to retrieve the envelope of rxy[k]:

renv[k] =
∥∥r+

xy[k]
∥∥ = ‖rxy[k] + jr̂xy[k]‖ . (3)

3) Experimental Setup and Results: The presented algo-
rithm was integrated into the SU framework. During animal
experiments with the Lifebridge HLM using ordinary pigs,
multiple sensor data were recorded. These data can be an-
alyzed and processed online or after the experiment, using
the data records. To test our algorithm we used data from
such an experiment. We randomly picked a template for a
characteristic MAP curve that included 4 heart beats and that
appear during a steady state extra–corporal circulation (see
Fig. 2, 1st plot). As search signals, different patterns from
the same experiment were chosen. They included ranges with
no sensor data or noise, sharp and slow deviations from a
steady state and sensor movement. Illustratively Fig. 2 shows
an increasing MAP curve (y[k]) that was recorded during drug
administration. Arterenol, a vasoconstrictor that increases the
MAP, was administered. The plots below show the correlation
coefficient rxy[k] as well as its envelope function renv[k].
Starting from a steady state with a confidence level of about
70%, a drastic decrease in the matching result can be observed
as soon as the pressure starts to increase, leading to a confi-
dence level of 10% approximately.



Similar results (data not shown) were obtained in other test
cases. An obvious drawback of this method, that is well-known
for correlation–based template matching, concerns scaling
issues. Since the blood pressure waveforms are not strictly
periodic, the template never exactly matches any test signal.
Considering y[k] in Fig. 2 again, the matching confidence is
only around 70% in the beginning, though this section of the
signal is declared as a steady state. The matching confidence
could be increased, if dynamic templates were used. If coupled
with a heart beat detector, the template could be adjusted to an
adequate time scale. This will be covered in future work. For
now, we can state that the algorithm as presented here is fast,
easy to implement and generally applicable to detect patterns
in physiological data streams.

III. CONCLUSION

We presented a framework for an ECCS supervising unit,
that allows the integration of different signal processing al-
gorithms. The presented architecture consists of 4 layers that
comprise different informational levels of monitored data. The
SU monitors patient and system data and extracts relevant
information from the data channels. In the data fusion layer
this information is shifted onto a semantic level and can be
used to influence automated perfusion control by interfering
with a controller’s decision making unit. Furthermore the SU
warns an operator against imminent and life–threatening risks.
Beyond that we introduced a template matching algorithm
and illustrated its feasibility with detection of characteristic
blood pressure curves. Our algorithm couples a correlation–
based template matching with an effective strategy to calculate
the upper envelope function of the correlation coefficient,
which yields the overall matching result. Calculations of local
maxima and spline – or other interpolation techniques are not
needed. In preliminary experiments promising results were
found. In future work, dynamic template matching will be
covered. Template scaling, e.g. based on the current heart rate,
would increase the matching confidence.
Generally, standard signal extraction methods and algorithms
as described in this work help to detect deviations from a pre-
defined state. They could be used to account for unpredictable
situational events during extra–corporal circulation in non–
clinical environments such a tube kinking or vibrations. By
supervision, detection and classification of such events patient
safety and quality of care can be increased.
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