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Abstract—We compute the set of all possible behaviors of a fixed state space partition [2], [3], which generally cause
an autonomous Vvehicle using reachability analysis. A rea@ble  an exponential growth in required regions with respect to
set is the set of states a system can reach for a given set Ofthe number of state variables. To overcome this problem,

initial states, disturbances, and sensor noise values. Wersider ¢ K ¢ bstracti in the vicinity of
autonomous vehicles which plan trajectories for a certaindok- more recent work computes abstractions in the vicinity o

ahead horizon which are followed using feedback control. Whe ~ the reachable set [4]-[6]. Approaches which do not use
a perfectly followed trajectory might not violate specifiedsafety —abstraction are mostly based on optimization techniques

properties (e.g. lane departures or vehicle collisions), giolating  which are computationally expensive [7]. The method ap-
deviation from the planned trajectory might exist. Given the plied in this work is based on [5], which uses zonotopes as

mathematical model of the controlled vehicle and bounds on t tation f i ¢ - trastdo th
uncertainty, our approach detects any possible violation.In a set representation for nonfinear systems in contrasteto

addition, the approach provides results faster than the tine  Other referenced approaches. As a consequence, the ptopose
required to finish the planned maneuvers of the autonomous approach, which abstracts to linear systems, is efficiantes

vehicle. zonotopes show great performance for linear systems [8].
The literature on reachability analysis applied to au-
tonomous vehicles and car-like robots is rather limited- Un

One of the main motivations for the development ofike the current work, most previous work considers simple
(semi-)autonomous vehicles is to prevent accidents causégnamic models. A frequently used model is to bound the
by human error. Compared to humans, a computer-controll@gceleration in the-dimensional plane such that the set of
vehicle can predict its future behavior more precisely wheRositions are circles when the initial set is a circle [9D][1
a mathematical description of the vehicle and its maneuv&eachability analysis of slightly more complex models has
is provided. Based on these predictions, one can compuigen performed in coverage and pursuer problems using a
if the vehicle stays within lane boundaries and if static agon-holonomic Dubins vehicle [11], a tricycle model [12],
well as dynamic obstacles are avoided. However, in realitp vehicles in environments dominated by external driff {13
the exact behavior cannot be predicted due to uncertainties There is more work on verifying maneuvers for the related
the initial state, sensor measurements, and vehicle motlelsproblem of aircraft safety by computing reachable setsdase
commonly used technique to cope with those uncertainties@ Hamilton-Jacobi partial differential equations, seg. e.
to compute many simulations. The drawback is that the nurbl4], [15]. Unlike in the current work, the considered flight
ber of required simulation runs typically scales exporadiyti maneuvers are verified offline.
with the number of uncertain variables in order to achieve Besides reachability analysis, there is also work on veri-
a certain coverage of possible behaviors. This dilemma céigation of road traffic using theorem proving [16], which is
be overcome by computing reachable sets which enclose kgps adequate for online applications since user intemaédi
possible simulations of a system (full coverage). In thiskyo typically required.
an approach is presented to compute the reachable set of afnline verification of road traffic scenes using reachapilit
autonomous vehicle faster than the execution time of th@nalysis has been presented in an earlier work for vehicles
actual maneuver. tracking arc segments at constant velocity, yielding linea

There is a rich literature on reachability analysis ofystem dynamics [17]. This work is an extension in many
dynamical systems with continuous or hybrid (mixed diste€spects. First, the planned trajectory can be arbitrastead
crete/continuous) dynamics. Many of the recent advanc@$ being restricted by connected arc segments. Second, the
are summarized in [1] and the references therein. Sina€locity of the maneuvers varies over time instead of being
the vehicle model in this paper has nonlinear continuougnstant. Due to these two generalizations the differentia
dynamics, we focus on this class of systems: Most agduations describing the vehicle dynamics are no longer
proaches compute reachable sets of nonlinear systems ligar, but nonlinear, which makes reachability analysigm
abstracting to differential inclusions of simpler dynamic harder. Third, we consider measurement uncertaintieshwhic

Earlier approaches simplify the dynamics within regions offave not been considered in the previous work, and fourth,
we make suggestions for parallelizing the computations.
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trajectory autonomous car sensors and name refers to the fact that the front and rear wheel pairs
planner (((((q ﬁi)))))) scene are each lumped into one wheel, since the roll dynamics is

interpretation . . 4

not considered [18, Chap. 2.6]. The bicycle model is aceurat

J for small longitudinal accelerations and a tire model which

4( safety verification )_ linearly relates lateral force and slip angle. Howeveedir
saturate at large slip angles, which is considered unsafe, s
that reference trajectories causing tire saturation dterred
as unsafe and are not further verified. For large longitddina
accelerations, the vertical force shifts between the feomt

measurements and initial states. One of the main applicatiol®ar axle, which is not yet considered. Although this effect
of this method is a safety verification module for autonomoul§ N0t dominant, we plan to consider it in future work.
vehicles which decides if a maneuver can be safely executed,
see Fig. 1. The maneuvers are mathematically described by
reference trajectories which are functions over time, diesc

ing the goal position on the road. Trajectory tracking is

performed by a feedback controller which will be described y )
later in more detail. @/{z;}
T Yy

The safety verification module requires information on the
road network, as well as on static and dynamic obstacles for
collision checks. The trajectory to be checked is provided
from a trajectory planner. We assume that the suggested . . . : :
trajectories already passed a collision check under the as—The_ d|ff1erent;]al eq[ﬁatlons f[)_f thef yehml(;a 'dygamw_:s are
sumption that the vehicle perfectly follows the trajectoryg'ven in (1), where the equations fdn and &5 describe

This reduces the number of trajectories that have to ﬁge yaw dynamics of the bic_ycle model, whetg anq Cr
checked by more costly reachable set computations. are the front and rear cornering stiffness. The headingeangl

Depending on the reference trajectory to be checked |s.obta|ned_by |nte.grat|on of the yaw ratg and th(_e
the verification is for finite or infinite time. The infinite velocity =4 by integration of the longitudinal acceleration

verification can be achieved by additionally planning &7’ see (1). Finally, the velocity and the d|r(_act|on of t_he
braking maneuver which brings the vehicle to a safe stog‘\nter (_)f massal ¥t @2) are used to geometrically obtain

— a condition in which the vehicle can stay forever withou @ position coordinates; and ze.

causing a crash. A stop is not considered safe if the vehicle

stops in an intersection, a railroad crossing, or otherfensag-c :(Crlr — Cyly _ 1)x + L(C §— (C+ )z )
locations. Note that the vehicle only executes the begmnin mai 5 may ! ! r

of the reference trajectory while it is continuously replad i, =z

Fig. 1. Concept of the safety verification.

Fig. 2. Bicycle model.

and verified such that the stops are not necessarily executed ) o\ T3
unless no safe alternative maneuver is to be found. T3 :I_z ((err —1yCf)x1 — (lfcf + ZTCT)I_4 + lfoé)
Ill. M ODEL OF THECONTROLLED VEHICLE Ty =ay

In order to compute the reachable set of the autonomous =4 cos(z1 + z2)
car, a mathematical model is required. We first derive thés =z4sin(zq + z2)
dynamics of the vehicle and secondly introduce a controller Q)
for trajectory tracking. The combination of both model .

. . . Tracking Controller
yields the overall system dynamics for the subsequently
described reachability analysis. Note that the preseetgtt  In this subsection, the controllers for the steering argle
nique also works for different vehicle models which doand the acceleration commaag are designed. It is assumed
not have to be controlled. However, uncontrolled vehiclethat the vehicle has internal controls which make it possi-
typically have a larger reachable set which might requirble to realize commanded steering angles and acceleration
splitting of reachable sets to properly handle linearerati cOmmands at high accuracy. Uncertainties due to unmod-

errors [5]. eled dynamics of internal controllers can be considered by
_ enlarging the set of uncertain inputs.
A. Vehicle Model The task of the tracking controller is to follow a reference

The vehicle model is an extended bicycle model whiclrajectory which is specified at discrete points in time=
consists of states: the slip angle at the center of magss=  kr, wherek € N is the time step and € R is the
8, the heading angle, = ¥, the yaw ratezs = ¥, the step size. The values of the reference trajectory are auinsta
velocity x4 = v, the x-positionz; = s,,, and the y-position in between, i.e., during the time intervals,tx4+1]. For
x¢ = sy, See Fig. 2. The bicycle model is widely used forcompactness we introduce the time intervat= [ty, tx41].
control designs involving lateral vehicle dynamics and it§he reference trajectory consists of the desired valueseof t



X- and y-positions, 4, sy.¢ in a global coordinate system, We denote the solution td = f(z,w,u) for z(0) = zo,
from which the desired yaw angl#,, yaw rate¥, and t € [0,t;], and trajectoriesu(-), u(-) by x(t, zo, w(-), u(-)).
velocity vy can be derived. Note thatw(-) refers to a trajectory, where(t) refers to the

For the lateral and longitudinal control we use the positionalue of the trajectory at time The exact reachable set for
deviationse, ande, in the local coordinates of the referencea given reference trajectory*(-) and a set of sensor noise
trajectory (see Fig. 3): valuesl/ is

€ =c08(Uy)(Sg,a — Sz) +sin(¥q)(sy.a — Sy)s RE([0,ty]) = {x(t, xo, w(-)m(-))‘xo € R(0),t € [0,ty],
€y = —sin(Vy)(Sg,a — Sz) + cos(Wq)(Sy,a — Sy)- w(t) = w* (), u(t) € Z/{}.

For the lateral control we use the lateral deviatign as
well as the deviations from the yaw angle and yaw rate, th general, the set of reachable states cannot be computed

stabilizee, around zero: exactly [19], so that one has to compute overapproximations
. . defined ask([0,ts]) 2 R°([0,¢s]). In this work, the reach-
d=kiey + ko(Uy— U) + k3(Tyq — 7). able set of the time intervad, ¢ ;] is obtained by computing
reachable sets of smaller time intervals = [t,tx+1],

For the longitudinal control we use the longitudinal deiziat

| e where t;, equals the times at which the reference vector
¢, and the velocity deviatiom, () = v4(t) — v(t):

w(ty) is updated, see Sec. IlI-B. It would also be possible

to choose fractions of,, as time intervals for the reachable

set computation. The final reachable set is represented by a

) list of sets for all time intervals.

61/"‘;\ T The overapproximations in this work are obtained by lin-

. o [s005] earizing the nonlinear dynamids= f(z,w, ) so that tech-

nigques for linear systems can be applied as proposed in an

N Y earlier work [5]. In order to guarantee an overapproxinetiv
Su.dy Sy.d)” result, the linearization error is considered as an aduitio

uncertain input, as presented in the next subsection.

ay = kg€ + ksey.

Fig. 3. Trajectory tracking: auxiliary variables. . . L
A. Conservative Linearization

It remains to introduce sensor noise in order to study For a concise notation of the linearization procedure, the
the controller performance in realistic conditions. We usétate vectorz and the input vectorn are combined in a
a positioning system that combines GPS data with inepew vectorz = [z”, u”]". The reference trajectory is not
tial measurements to accurately measure the positigns included, since it is certain, and thus a linearization with
s,, the yaw angle¥, the yaw rate¥, and the velocity respect to that vector is not required. Using a first-order
v. The corresponding sensor noise is denotedubyu,, Taylor expansion around the linearization pdirtt”, w*"]7,
uy, ug, andu,. After introducing the sensor noise vectorthe original differential equation of thé" coordinate is
u = [ug, uy, uy, ug, u,]’ and the reference vectar = enclosed by the differential inclusion
[$2,d, Sy,ds Vs W, vg)T, the final control equations are Vi e T

1) :kl(COS(wg)(UJQ — Xg — UQ) - sin(wg)(wl — T5 — ul)) 961 c f1(2*7 U}*) + M (Z _ Z*) @Ki(Tk)a

82 z=z*

+ ka(ws — x2 — u3) + k3(ws — x3 — u4), Ae—a Ba—an),

e :k4(cos(w3)(wl — 5 — ) + sin(ws) (wz — 26 — ug)) where® denotes a Minkowski additidrand £ is the set of

+ ks(ws — x4 — us). Lagrange remainders

Inserting the above equatiords = f5(z, w,u) and a, = o o O fi(€,w*) .
fa, (2, w,u) into (1) results in the final differential equation El(Tk)_{ =27 9. (F T A ERIm) X L{}
of the controlled vehiclei = f(z,w,u) which is used for The |agrange remainder covers all possible linearization
reachability analysis. errors when¢ may vary arbitrarily in the set of possible
values ofz andu given by the Cartesian produRt(rx) x U,
) ) ) see [20].

This section summarizes the steps necessary to computerhe jinearization point is updated for each time intetyal
the set of states the controlled vehicle with the dynamies A good linearization point is*(73,) = center(R(ry) x U)
f(z,w,u) can reach. Besides uncertain initial stat€8) €  (see [5]), wherezenter() returns the volumetric center of a
R(0), we will also allow uncertain sensor noise valu&s) € set. Since the reachable s&ér;,) are not known in advance,

U, where the only requirement fai() is that it is piecewise- the vectorz*(r;,) of 2* is chosen as the state value&;,)
continuous so that a solutian(t) is guaranteed. Thus, we

capture arbitrary noise frequencies«f). 1Given are sets in Euclidean spadeB: A®B = {a+bla € A,b € B}

IV. REACHABILITY ANALYSIS



of a nominal trajectory obtained by a simulation starting in )

the center ofR(0) under the inputu(t) = center(i). @Rh(tk—o—l)

Given the linearization points for each time interval, the convex hull

conservative linearization is obtained as follows: gf 7%%%) )
. . . i _ and R tei1
1) Define a set of allowed linearization errof¥ry) R(tx)
O O

which should be a superset of the exact set of lin-
earization errors. .

2) Compute the reachable s&(7;) of the linearized
systemi € f(z* w*)+A(I—I*)+B(U—U*)@Z(Tk) Fig. 4. Computation of the reachable set for a time interval.
as shown in the next subsection. .

3) Compute the linearization errof4 ;) based oriR (73;)
according to [5]. . - o

4) Check if £(r,) € L(7:), otherwise abort and return The ultimate goal of the reachability analysis is to check

enlargement

O

V. SET OF OCCUPIED POSITIONS

unsaf e. if the vehicle stays on the road and if a crash is possible,
5) Compute the refined s&(r;) as in step 2 usingz  Which requires knowing the occupancy of the vehicle body
instead ofZ. on the road. The relevant variables from the reachability
6) Repeat this procedure for further time intervals. computation to determine the occupancy on the road are

the x- and y-position «;, s,) and the orientationV. We

r Alternaznvely, Sﬁiﬁli ??; tgg :zgﬁ]cfgebge? spor(;cesrure fOdenote the projections of the reachable set onto the positio
(7i) & L(7i;) whi Pl ) coordinates a&k; (2-dimensional) and onto the orientation

becomes smaller and the computation can be continued, S&€r., (1-dimensional).

[5]. The _procedu_re fo_r computing reachgble sets of linear We model the vehicle body as a rectangle with width

systems is described in the next subsection. b, and lengthd;. For each time intervaty, the rectangle

is oriented according to the center of possible orientation

¥, = center(Ry). The deviation around this cent&l =
The reachable set computation for linear systems tak&xw-cr, (|¥* — ¥¢[) > 0 is considered by enlarging the

advantage of the superposition principle, allowing one t¥ehicle body as illustrated in Fig. 5, where

se:oarately gbtﬁin the reaﬁhable Zet due(zj t%/'ghe i(rjlitial state Abyy = |(1 = cos(AT))b, — sin(AD)b,|,

solution and the input solution, denote and R*, ' ‘ ;

respectively. The step-by-step computation is illusttaite Abw,w = |(1 = cos(AT))by, = sin(AT)b.

B. Reachable Set Computation of Linear Systems

Fig. 4: The uncertain position of the center of mass is also
1) Compute the exact set of initial state solutions a onsidered by enlarging the body size, while the center of
R (tsn) = eATR(t5) the vehicle body is shifted teenter(R;). The enlargement

2) Compute the convex hulRl(m;) of R(t) and due to uncertain positions can be obtained by rotating the se

R (1) which encloses all trajectories fore 7, — of positions by— ¥, and computing an enclosing interval for

[t tes1] Under the assumption that trajectories withireach dimension. The box enclosure operatior() can be

the time interval are straight lines efficiently done for zonotopes, which are used for reachable
3) Enlarge the convex hull by the set produd(t;) ® set computations.

R(ty) to consider the curvature of trajectories, and [—Abs, Aby ] \

by R'(r) to consider uncertain inputs. A detailed [—Aby,s, Aby 5] = box(T'(R, — center(R,)),

description for computing? and R* can be found in cos(—0,) —sin(—W,)

[21], whereF is an interval matrix. Thus, the reachable - (sjn(_\pc) cos(—T,) )

set is obtained aR(r) = Ri(m) & (F(tx) ®

R(tk)) &) Rl(Tk).

Besides the time interval solutidR (), the setR (tx+1) = Abuw,v I Lk Rs -
R"(tr+1) ® Ri(tx+1) has to be computed, since the algo- b, \ \ XAbls
rithm starts with the set at fixed timeg, see step 1. b A\If \I/}
The Minkowski addition ofR"(¢;,1) and R (tx11) in- l : L
creases the representation order of the reachable seth whic Ab g e *m
requires reduction methods causing the so-called wrapping (a) Uncertain orientation. (b) Uncertain center of mass.

effect due to the propagation of overapproximations thmugF, 5 En ¢ of the vehicl on due o unzeddentati
successive time steps. In this work, reachable sets are—repg:?o'I pbsitigrﬁrgemen o1 fhe venicle ocetipation due fo unerrentation

sented by zonotopes, for which efficient reduction techesqu
exist [22], [23]. Once the set of possible occupation is obtained, one has
to check if collisions with other vehicles or road boundarie
2Given are sets in Euclidean spage B: A® B = {abla € A,bc B}  exist. In this work, the occupation at time intervals is



overapproximated by axis-aligned boxes, and only if axissf the autonomous car and the oncoming car are shown. For
aligned boxes intersect is the more elaborate collisiortkchethe oncoming car it is assumed that the maximum speed is
of oriented boxes computed [17]. Another method is t@0% higher than the speed limit db m/s, the acceleration
inscribe the occupied sets by several circles [24]. interval is [—0.7,0.7] g, and the vehicle does not drive
backwards. The initial longitudinal position and velocétse
[110,120] m and[13,15] m/s. It is assumed that the other
In this section we illustrate the usefulness of the rea@ablehicle only uses its own lane, but possibly occupies the ful
set computations for the online verification of traffic sc®ne width of the lane. Due to braking, the vehicle may stop at
Note that the reachability results can also be used to evalgg m (see stopping line in Fig. 7). It can be concluded that
uate the performance of controllers under sensor noise atié autonomous car stays within the road width limits from
uncertain initial states. —1.75 m to 5.25 m (lane width3.5 m) and avoids a crash
The considered scenario presents an evasive maneuveigh the oncoming vehicle.
the autonomous car caused by a pedestrian who steps into
the road without respecting oncoming traffic. In additidrg t
autonomous car has to avoid a collision with an oncoming
car while respecting the road limits. The first part of the? 02
maneuver is a combined braking and steering maneuver wi 0
lateral acceleration oft0.8g and longitudinal acceleration

VI. NUMERICAL EXAMPLE

0.4

-0.2

of —0.2g, whereg is the gravity constant. This part of the o 5 o e
maneuver is almost at the limit of maximum possible tire 1 =8 25 =W

force, whereas the second part induces smaller acceleratio (&) Projection ontary, . (b) Projection ontars, z4.
values, since it is only required to steer back into the agagi 3

lane before hitting oncoming traffic.

The vehicle, sensor, and control parameters of the numer- initial
ical example are listed in Tab. I. The vehicle parameters are ¢ T set /
taken from a 1986 Pontiac 6000 STE sedan [25] and the © /

standard deviations of the sensor noise fot,, u,, and -1 ‘ \ \ \ \ \ \ ‘ ‘
¢ =10 0 10 20 30 40 50 60 70 80

>
)

uy are taken from the Applanix POS LV platform, whose T5 = Sz
specifications can be found online. The standard deviation f (c) Projection ontars, z6 (‘road coordinates®).

the Oth_er noise sourc_es a_re reasonably C_hosen' The_ Interr‘-’@! 6. Reachable set for the evasive maneuver. The whitshssts the

of possible sensor noises is chosen asdthénterval, which  set of initial states, black lines show random simulatiosuts.
corresponds to a probability 0§.99994 that the sensor

noise is in the interval when it is assumed to be Gaussian. All computations have been performed on an Intel i7
The set of initial states for the considered maneuver iBrocessor with.6 GHz andé GB memory in MATLAB. The
R(0) = [-0.02,0.02] rad x[-0.05,0.05] rad x[—0.3,0.1]  reachable set computation can be separatedtipimcesses:
rad/s x[14.8,15.2] m/s x[-0.2,0.2] m x[-0.5,—0.1] m.  The first one, called process A, linearizes the system dynam-
The body size of the autonomous cabjis= 4.5 m, b, = 1.8 ics along the nominal trajectory described in Sec. IV-A.SThi
m and the time step for updating the reference trajectory srocess also performs parallel computatioa&f )", F(t;),

r = 0.01 s, which is also the step size of the reachable seindR’(r;) (only for the assumed linearization errors), which
computation. took 1.56 s using4 cores. The reachable set computations
which cannot be parallelized are computed by process B in
2.24 s. A significant time reduction for process B could be
achieved by replacing interval arithmetic for computing th
vehicle parameters linearization errorsC by evaluating corner cases due to the

TABLE |
VEHICLE PARAMETERS

m I, Cr=Cr ly Ir monotonicity properties of the specific Lagrange remainder
1573 kg 2873 kg m? _ 86.4tN/ra|d L1 m_ 1.58 m herein (see [26]). The computation for transforming the
™ Uy S nmsi\lpn S p; =L 1] w reachable set to the occupancy of the vehicle (process €) too
0.08pm 0.08p m 227 ) rad ‘féTgp rad/s 0.08p m/s 0.46 s and the collision check took25 s (process D). For
control parameters the reachable set computation of each time interval, psoces
'fl '1“(2) ';3 ’f‘* ’fg A (pre-processing), and processes C, D (post-processiag) a

faster than process B, so that all processes can be run in

parallel and process B determines the overall computation
The reachable sets for different projections are shown itme of 2.24 s. Considering that the maneuver to6ks,

Fig. 6. It can be seen that random simulations are enclos#te current implementation is aboat times faster than

by the reachable set. The simulations indicate that thtle execution time of the maneuver. By implementing the

overapproximation of the position deviatios,(s,) as well algorithm in C++ on a real vehicle, it is expected that the

as the other coordinates is small. In Fig. 7, the occupanegfficiency will be significantly improved. This improvement



— pedestrian t=5s t=4s t=3s t=2s t=1s t=0s
E v v v v ¥
§ | oo
e
g A = reference trajectory stopping line
oy O + . A
s t=0s t=1s  t=2s ts53s t=45 t=5s | | |
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X-position [m]
Fig. 7. Occupancy set for the evasive maneuver. The grapneghow the occupancies of the autonomous and the othetheas|ack line shows the

path the autonomous car should follow. The occupancy atteeld¢imes is indicated by black boxes.

is especially required in unexpected situation changeh suqg]
as the pedestrian stepping into the road in the discussed
example, for which a verification should be done faster than

the reaction time of a human drivex (0.3 s). [10]

VIlI. CONCLUSIONS ANDFUTURE WORK [11]

We have presented an algorithm that can predict all
possible behaviors of an autonomous car given a dynaniié!
model, a set of initial states, and bounds on sensor noige. Th
set of all possible trajectories of a vehicle makes it pdesi
detect crashes in traffic scenes. It has been demonstratied {43!
the approach can be computed faster than the execution time
of the maneuver, and further improvements can be expectgd]
by implementing the algorithms in C++. Other future work
involves considering uncertain vehicle parameters, sich g
the tire-road friction coefficient, or the weight distriban
due to loading the trunk or longitudinal accelerations.
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