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Abstract— We compute the set of all possible behaviors of
an autonomous vehicle using reachability analysis. A reachable
set is the set of states a system can reach for a given set of
initial states, disturbances, and sensor noise values. We consider
autonomous vehicles which plan trajectories for a certain look-
ahead horizon which are followed using feedback control. While
a perfectly followed trajectory might not violate specifiedsafety
properties (e.g. lane departures or vehicle collisions), aviolating
deviation from the planned trajectory might exist. Given the
mathematical model of the controlled vehicle and bounds on
uncertainty, our approach detects any possible violation.In
addition, the approach provides results faster than the time
required to finish the planned maneuvers of the autonomous
vehicle.

I. I NTRODUCTION

One of the main motivations for the development of
(semi-)autonomous vehicles is to prevent accidents caused
by human error. Compared to humans, a computer-controlled
vehicle can predict its future behavior more precisely when
a mathematical description of the vehicle and its maneuver
is provided. Based on these predictions, one can compute
if the vehicle stays within lane boundaries and if static as
well as dynamic obstacles are avoided. However, in reality,
the exact behavior cannot be predicted due to uncertaintiesin
the initial state, sensor measurements, and vehicle models. A
commonly used technique to cope with those uncertainties is
to compute many simulations. The drawback is that the num-
ber of required simulation runs typically scales exponentially
with the number of uncertain variables in order to achieve
a certain coverage of possible behaviors. This dilemma can
be overcome by computing reachable sets which enclose all
possible simulations of a system (full coverage). In this work,
an approach is presented to compute the reachable set of an
autonomous vehicle faster than the execution time of the
actual maneuver.

There is a rich literature on reachability analysis of
dynamical systems with continuous or hybrid (mixed dis-
crete/continuous) dynamics. Many of the recent advances
are summarized in [1] and the references therein. Since
the vehicle model in this paper has nonlinear continuous
dynamics, we focus on this class of systems: Most ap-
proaches compute reachable sets of nonlinear systems by
abstracting to differential inclusions of simpler dynamics.
Earlier approaches simplify the dynamics within regions of
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a fixed state space partition [2], [3], which generally causes
an exponential growth in required regions with respect to
the number of state variables. To overcome this problem,
more recent work computes abstractions in the vicinity of
the reachable set [4]–[6]. Approaches which do not use
abstraction are mostly based on optimization techniques
which are computationally expensive [7]. The method ap-
plied in this work is based on [5], which uses zonotopes as
a set representation for nonlinear systems in contrast to the
other referenced approaches. As a consequence, the proposed
approach, which abstracts to linear systems, is efficient, since
zonotopes show great performance for linear systems [8].

The literature on reachability analysis applied to au-
tonomous vehicles and car-like robots is rather limited. Un-
like the current work, most previous work considers simple
dynamic models. A frequently used model is to bound the
acceleration in the2-dimensional plane such that the set of
positions are circles when the initial set is a circle [9], [10].
Reachability analysis of slightly more complex models has
been performed in coverage and pursuer problems using a
non-holonomic Dubins vehicle [11], a tricycle model [12],
or vehicles in environments dominated by external drift [13].

There is more work on verifying maneuvers for the related
problem of aircraft safety by computing reachable sets based
on Hamilton-Jacobi partial differential equations, see e.g.
[14], [15]. Unlike in the current work, the considered flight
maneuvers are verified offline.

Besides reachability analysis, there is also work on veri-
fication of road traffic using theorem proving [16], which is
less adequate for online applications since user interaction is
typically required.

Online verification of road traffic scenes using reachability
analysis has been presented in an earlier work for vehicles
tracking arc segments at constant velocity, yielding linear
system dynamics [17]. This work is an extension in many
respects. First, the planned trajectory can be arbitrary instead
of being restricted by connected arc segments. Second, the
velocity of the maneuvers varies over time instead of being
constant. Due to these two generalizations the differential
equations describing the vehicle dynamics are no longer
linear, but nonlinear, which makes reachability analysis much
harder. Third, we consider measurement uncertainties which
have not been considered in the previous work, and fourth,
we make suggestions for parallelizing the computations.

II. V ERIFICATION CONCEPT

In this work, we present a technique to compute all
possible behaviors of an autonomous vehicle under uncertain
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Fig. 1. Concept of the safety verification.

measurements and initial states. One of the main applications
of this method is a safety verification module for autonomous
vehicles which decides if a maneuver can be safely executed,
see Fig. 1. The maneuvers are mathematically described by
reference trajectories which are functions over time, describ-
ing the goal position on the road. Trajectory tracking is
performed by a feedback controller which will be described
later in more detail.

The safety verification module requires information on the
road network, as well as on static and dynamic obstacles for
collision checks. The trajectory to be checked is provided
from a trajectory planner. We assume that the suggested
trajectories already passed a collision check under the as-
sumption that the vehicle perfectly follows the trajectory.
This reduces the number of trajectories that have to be
checked by more costly reachable set computations.

Depending on the reference trajectory to be checked,
the verification is for finite or infinite time. The infinite
verification can be achieved by additionally planning a
braking maneuver which brings the vehicle to a safe stop
– a condition in which the vehicle can stay forever without
causing a crash. A stop is not considered safe if the vehicle
stops in an intersection, a railroad crossing, or other unsafe
locations. Note that the vehicle only executes the beginning
of the reference trajectory while it is continuously replanned
and verified such that the stops are not necessarily executed
unless no safe alternative maneuver is to be found.

III. M ODEL OF THECONTROLLED VEHICLE

In order to compute the reachable set of the autonomous
car, a mathematical model is required. We first derive the
dynamics of the vehicle and secondly introduce a controller
for trajectory tracking. The combination of both models
yields the overall system dynamics for the subsequently
described reachability analysis. Note that the presented tech-
nique also works for different vehicle models which do
not have to be controlled. However, uncontrolled vehicles
typically have a larger reachable set which might require
splitting of reachable sets to properly handle linearization
errors [5].

A. Vehicle Model

The vehicle model is an extended bicycle model which
consists of6 states: the slip angle at the center of massx1 =
β, the heading anglex2 = Ψ, the yaw ratex3 = Ψ̇, the
velocity x4 = v, the x-positionx5 = sx, and the y-position
x6 = sy, see Fig. 2. The bicycle model is widely used for
control designs involving lateral vehicle dynamics and its

name refers to the fact that the front and rear wheel pairs
are each lumped into one wheel, since the roll dynamics is
not considered [18, Chap. 2.6]. The bicycle model is accurate
for small longitudinal accelerations and a tire model which
linearly relates lateral force and slip angle. However, tires
saturate at large slip angles, which is considered unsafe, so
that reference trajectories causing tire saturation are returned
as unsafe and are not further verified. For large longitudinal
accelerations, the vertical force shifts between the frontand
rear axle, which is not yet considered. Although this effect
is not dominant, we plan to consider it in future work.
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Fig. 2. Bicycle model.

The differential equations of the vehicle dynamics are
given in (1), where the equations forẋ1 and ẋ3 describe
the yaw dynamics of the bicycle model, whereCf andCr

are the front and rear cornering stiffness. The heading angle
x2 is obtained by integration of the yaw ratex3 and the
velocity x4 by integration of the longitudinal acceleration
ax, see (1). Finally, the velocity and the direction of the
center of mass (x1 + x2) are used to geometrically obtain
the position coordinatesx5 andx6.

ẋ1 =
(Crlr − Cf lf

mx2
4

− 1
)

x3 +
1

mx4

(

Cf δ − (Cf + Cr)x1

)

ẋ2 =x3

ẋ3 =
1

Iz

(

(lrCr − lfCf )x1 − (l2fCf + l2rCr)
x3

x4
+ lfCfδ

)

ẋ4 =ax

ẋ5 =x4 cos(x1 + x2)

ẋ6 =x4 sin(x1 + x2)
(1)

B. Tracking Controller

In this subsection, the controllers for the steering angleδ

and the acceleration commandax are designed. It is assumed
that the vehicle has internal controls which make it possi-
ble to realize commanded steering angles and acceleration
commands at high accuracy. Uncertainties due to unmod-
eled dynamics of internal controllers can be considered by
enlarging the set of uncertain inputs.

The task of the tracking controller is to follow a reference
trajectory which is specified at discrete points in timetk =
k r, where k ∈ N is the time step andr ∈ R+ is the
step size. The values of the reference trajectory are constant
in between, i.e., during the time intervals[tk, tk+1]. For
compactness we introduce the time intervalτk := [tk, tk+1].
The reference trajectory consists of the desired values of the



x- and y-positionsx,d, sy,d in a global coordinate system,
from which the desired yaw angleΨd, yaw rate Ψ̇d and
velocity vd can be derived.

For the lateral and longitudinal control we use the position
deviationsǫx andǫy in the local coordinates of the reference
trajectory (see Fig. 3):

ǫx =cos(Ψd)(sx,d − sx) + sin(Ψd)(sy,d − sy),

ǫy =− sin(Ψd)(sx,d − sx) + cos(Ψd)(sy,d − sy).

For the lateral control we use the lateral deviationǫy, as
well as the deviations from the yaw angle and yaw rate, to
stabilizeǫy around zero:

δ = k1ǫy + k2(Ψd −Ψ) + k3(Ψ̇d − Ψ̇).

For the longitudinal control we use the longitudinal deviation
ǫx and the velocity deviationǫv(t) = vd(t)− v(t):

ax = k4ǫx + k5ǫv.
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y
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Fig. 3. Trajectory tracking: auxiliary variables.

It remains to introduce sensor noise in order to study
the controller performance in realistic conditions. We use
a positioning system that combines GPS data with iner-
tial measurements to accurately measure the positionssx,
sy, the yaw angleΨ, the yaw rateΨ̇, and the velocity
v. The corresponding sensor noise is denoted byux, uy,
uΨ, uΨ̇, anduv. After introducing the sensor noise vector
u = [ux, uy, uΨ, uΨ̇, uv]

T and the reference vectorw =
[sx,d, sy,d, Ψd, Ψ̇d, vd]

T , the final control equations are

δ =k1

(

cos(w3)(w2 − x6 − u2)− sin(w3)(w1 − x5 − u1)
)

+ k2(w3 − x2 − u3) + k3(w4 − x3 − u4),

ax =k4

(

cos(w3)(w1 − x5 − u1) + sin(w3)(w2 − x6 − u2)
)

+ k5(w5 − x4 − u5).

Inserting the above equationsδ = fδ(x,w, u) and ax =
fax

(x,w, u) into (1) results in the final differential equation
of the controlled vehiclėx = f(x,w, u) which is used for
reachability analysis.

IV. REACHABILITY ANALYSIS

This section summarizes the steps necessary to compute
the set of states the controlled vehicle with the dynamicsẋ =
f(x,w, u) can reach. Besides uncertain initial statesx(0) ∈
R(0), we will also allow uncertain sensor noise valuesu(t) ∈
U , where the only requirement foru(t) is that it is piecewise-
continuous so that a solutionx(t) is guaranteed. Thus, we
capture arbitrary noise frequencies ofu(t).

We denote the solution tȯx = f(x,w, u) for x(0) = x0,
t ∈ [0, tf ], and trajectoriesw(·), u(·) by χ(t, x0, w(·), u(·)).
Note thatw(·) refers to a trajectory, wherew(t) refers to the
value of the trajectory at timet. The exact reachable set for
a given reference trajectoryw∗(·) and a set of sensor noise
valuesU is

Re([0, tf ]) =
{

χ(t, x0, w(·), u(·))
∣
∣
∣x0 ∈ R(0), t ∈ [0, tf ],

w(t) = w∗(t), u(t) ∈ U
}

.

In general, the set of reachable states cannot be computed
exactly [19], so that one has to compute overapproximations
defined asR([0, tf ]) ⊇ Re([0, tf ]). In this work, the reach-
able set of the time interval[0, tf ] is obtained by computing
reachable sets of smaller time intervalsτk = [tk, tk+1],
where tk equals the times at which the reference vector
w(tk) is updated, see Sec. III-B. It would also be possible
to choose fractions ofτk as time intervals for the reachable
set computation. The final reachable set is represented by a
list of sets for all time intervals.

The overapproximations in this work are obtained by lin-
earizing the nonlinear dynamicsẋ = f(x,w, u) so that tech-
niques for linear systems can be applied as proposed in an
earlier work [5]. In order to guarantee an overapproximative
result, the linearization error is considered as an additional
uncertain input, as presented in the next subsection.

A. Conservative Linearization

For a concise notation of the linearization procedure, the
state vectorx and the input vectoru are combined in a
new vectorz = [xT , uT ]T . The reference trajectory is not
included, since it is certain, and thus a linearization with
respect to that vector is not required. Using a first-order
Taylor expansion around the linearization point[z∗T , w∗T ]T ,
the original differential equation of theith coordinate is
enclosed by the differential inclusion

∀t ∈ τk :

ẋi ∈ fi(z
∗, w∗) +

∂fi(z, w
∗)

∂z

∣
∣
∣
z=z∗

(z − z∗)
︸ ︷︷ ︸

=[A(x−x∗)+B(u−u∗)]i

⊕Li(τk),

where⊕ denotes a Minkowski addition1 andL is the set of
Lagrange remainders

Li(τk)=
{1

2
(z − z∗)T

∂2fi(ξ, w
∗)

∂z2
(z − z∗)

∣
∣
∣ξ ∈ R(τk)× U

}

The Lagrange remainder covers all possible linearization
errors whenξ may vary arbitrarily in the set of possible
values ofx andu given by the Cartesian productR(τk)×U ,
see [20].

The linearization point is updated for each time intervalτk.
A good linearization point isz∗(τk) = center(R(τk)× U)
(see [5]), wherecenter() returns the volumetric center of a
set. Since the reachable setsR(τk) are not known in advance,
the vectorx∗(τk) of z∗ is chosen as the state valuesx(tk)

1Given are sets in Euclidean spaceA, B: A⊕B = {a+b|a ∈ A, b ∈ B}



of a nominal trajectory obtained by a simulation starting in
the center ofR(0) under the inputu(t) = center(U).

Given the linearization points for each time interval, the
conservative linearization is obtained as follows:

1) Define a set of allowed linearization errorsL(τk)
which should be a superset of the exact set of lin-
earization errors.

2) Compute the reachable setR(τk) of the linearized
systemẋ ∈ f(z∗, w∗)+A(x−x∗)+B(u−u∗)⊕L(τk)
as shown in the next subsection.

3) Compute the linearization errorsL(τk) based onR(τk)
according to [5].

4) Check if L(τk) ⊆ L(τk), otherwise abort and return
unsafe.

5) Compute the refined setR(τk) as in step 2 usingL
instead ofL.

6) Repeat this procedure for further time intervals.

Alternatively, step 4 can be replaced by a procedure for
L(τk) * L(τk) which splits the reachable set so thatL(τk)
becomes smaller and the computation can be continued, see
[5]. The procedure for computing reachable sets of linear
systems is described in the next subsection.

B. Reachable Set Computation of Linear Systems

The reachable set computation for linear systems takes
advantage of the superposition principle, allowing one to
separately obtain the reachable set due to the initial state
solution and the input solution, denoted byRh and Ri,
respectively. The step-by-step computation is illustrated in
Fig. 4:

1) Compute the exact set of initial state solutions as
Rh(tk+1) = eArR(tk).

2) Compute the convex hullRh
CH
(τk) of R(tk) and

Rh(tk+1) which encloses all trajectories fort ∈ τk =
[tk, tk+1] under the assumption that trajectories within
the time interval are straight lines.

3) Enlarge the convex hull by the set product2 F(tk) ⊗
R(tk) to consider the curvature of trajectories, and
by Ri(τk) to consider uncertain inputs. A detailed
description for computingF andRi can be found in
[21], whereF is an interval matrix. Thus, the reachable
set is obtained asR(τk) = Rh

CH
(τk) ⊕ (F(tk) ⊗

R(tk))⊕Ri(τk).

Besides the time interval solutionR(τk), the setR(tk+1) =
Rh(tk+1) ⊕ Ri(tk+1) has to be computed, since the algo-
rithm starts with the set at fixed timestk, see step 1.

The Minkowski addition ofRh(tk+1) and Ri(tk+1) in-
creases the representation order of the reachable set, which
requires reduction methods causing the so-called wrapping-
effect due to the propagation of overapproximations through
successive time steps. In this work, reachable sets are repre-
sented by zonotopes, for which efficient reduction techniques
exist [22], [23].

2Given are sets in Euclidean spaceA, B: A⊗B = {ab|a ∈ A, b ∈ B}
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Fig. 4. Computation of the reachable set for a time interval.

V. SET OF OCCUPIED POSITIONS

The ultimate goal of the reachability analysis is to check
if the vehicle stays on the road and if a crash is possible,
which requires knowing the occupancy of the vehicle body
on the road. The relevant variables from the reachability
computation to determine the occupancy on the road are
the x- and y-position (sx, sy) and the orientationΨ. We
denote the projections of the reachable set onto the position
coordinates asRs (2-dimensional) and onto the orientation
asRΨ (1-dimensional).

We model the vehicle body as a rectangle with width
bw and lengthbl. For each time intervalτk, the rectangle
is oriented according to the center of possible orientations
Ψc = center(RΨ). The deviation around this center∆Ψ =
maxΨ∗∈RΨ

(|Ψ∗ − Ψc|) ≥ 0 is considered by enlarging the
vehicle body as illustrated in Fig. 5, where

∆bl,Ψ = |(1− cos(∆Ψ))bl − sin(∆Ψ)bw|,

∆bw,Ψ = |(1− cos(∆Ψ))bw − sin(∆Ψ)bl|.

The uncertain position of the center of mass is also
considered by enlarging the body size, while the center of
the vehicle body is shifted tocenter(Rs). The enlargement
due to uncertain positions can be obtained by rotating the set
of positions by−Ψc and computing an enclosing interval for
each dimension. The box enclosure operationbox() can be
efficiently done for zonotopes, which are used for reachable
set computations.

(
[−∆bl,s,∆bl,s]
[−∆bw,s,∆bw,s]

)

= box(T (Rs − center(Rs)),

T =

(
cos(−Ψc) − sin(−Ψc)
sin(−Ψc) cos(−Ψc)

)

.

bl

bw ∆Ψ

∆bw,Ψ

∆bl,Ψ
(a) Uncertain orientation.

∆bw,s

∆bl,s

Ψc

Rs

(b) Uncertain center of mass.

Fig. 5. Enlargement of the vehicle occupation due to uncertain orientation
and position.

Once the set of possible occupation is obtained, one has
to check if collisions with other vehicles or road boundaries
exist. In this work, the occupation at time intervals is



overapproximated by axis-aligned boxes, and only if axis-
aligned boxes intersect is the more elaborate collision check
of oriented boxes computed [17]. Another method is to
inscribe the occupied sets by several circles [24].

VI. N UMERICAL EXAMPLE

In this section we illustrate the usefulness of the reachable
set computations for the online verification of traffic scenes.
Note that the reachability results can also be used to eval-
uate the performance of controllers under sensor noise and
uncertain initial states.

The considered scenario presents an evasive maneuver of
the autonomous car caused by a pedestrian who steps into
the road without respecting oncoming traffic. In addition, the
autonomous car has to avoid a collision with an oncoming
car while respecting the road limits. The first part of the
maneuver is a combined braking and steering maneuver with
lateral acceleration of±0.8g and longitudinal acceleration
of −0.2g, whereg is the gravity constant. This part of the
maneuver is almost at the limit of maximum possible tire
force, whereas the second part induces smaller acceleration
values, since it is only required to steer back into the original
lane before hitting oncoming traffic.

The vehicle, sensor, and control parameters of the numer-
ical example are listed in Tab. I. The vehicle parameters are
taken from a 1986 Pontiac 6000 STE sedan [25] and the
standard deviationsσ of the sensor noise forux, uy, and
uΨ are taken from the Applanix POS LV platform, whose
specifications can be found online. The standard deviation for
the other noise sources are reasonably chosen. The interval
of possible sensor noises is chosen as the4σ interval, which
corresponds to a probability of0.99994 that the sensor
noise is in the interval when it is assumed to be Gaussian.
The set of initial states for the considered maneuver is
R(0) = [−0.02, 0.02] rad ×[−0.05, 0.05] rad ×[−0.3, 0.1]
rad/s ×[14.8, 15.2] m/s ×[−0.2, 0.2] m ×[−0.5,−0.1] m.
The body size of the autonomous car isbl = 4.5 m, bw = 1.8
m and the time step for updating the reference trajectory is
r = 0.01 s, which is also the step size of the reachable set
computation.

TABLE I

VEHICLE PARAMETERS.

vehicle parameters
m Iz Cf = Cr lf lr
1573 kg 2873 kg m2 8e4 N/rad 1.1 m 1.58 m

sensor noise intervals, ρ = [−1, 1]
ux uy uΨ u

Ψ̇
uv

0.08ρ m 0.08ρ m 0.2π
180

ρ rad 0.2π
180

ρ rad/s 0.08ρ m/s
control parameters

k1 k2 k3 k4 k5
1 10 2 1 10

The reachable sets for different projections are shown in
Fig. 6. It can be seen that random simulations are enclosed
by the reachable set. The simulations indicate that the
overapproximation of the position deviation (sx, sy) as well
as the other coordinates is small. In Fig. 7, the occupancy

of the autonomous car and the oncoming car are shown. For
the oncoming car it is assumed that the maximum speed is
20% higher than the speed limit of15 m/s, the acceleration
interval is [−0.7, 0.7] g, and the vehicle does not drive
backwards. The initial longitudinal position and velocityare
[110, 120] m and [13, 15] m/s. It is assumed that the other
vehicle only uses its own lane, but possibly occupies the full
width of the lane. Due to braking, the vehicle may stop at
108 m (see stopping line in Fig. 7). It can be concluded that
the autonomous car stays within the road width limits from
−1.75 m to 5.25 m (lane width3.5 m) and avoids a crash
with the oncoming vehicle.
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Fig. 6. Reachable set for the evasive maneuver. The white setshows the
set of initial states, black lines show random simulation results.

All computations have been performed on an Intel i7
Processor with1.6 GHz and6 GB memory in MATLAB. The
reachable set computation can be separated into4 processes:
The first one, called process A, linearizes the system dynam-
ics along the nominal trajectory described in Sec. IV-A. This
process also performs parallel computation ofeA(τk)r, F(tk),
andRi(τk) (only for the assumed linearization errors), which
took 1.56 s using4 cores. The reachable set computations
which cannot be parallelized are computed by process B in
2.24 s. A significant time reduction for process B could be
achieved by replacing interval arithmetic for computing the
linearization errorsL by evaluating corner cases due to the
monotonicity properties of the specific Lagrange remainder
herein (see [26]). The computation for transforming the
reachable set to the occupancy of the vehicle (process C) took
0.46 s and the collision check took0.25 s (process D). For
the reachable set computation of each time interval, process
A (pre-processing), and processes C, D (post-processing) are
faster than process B, so that all processes can be run in
parallel and process B determines the overall computation
time of 2.24 s. Considering that the maneuver took5 s,
the current implementation is about2 times faster than
the execution time of the maneuver. By implementing the
algorithm in C++ on a real vehicle, it is expected that the
efficiency will be significantly improved. This improvement
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Fig. 7. Occupancy set for the evasive maneuver. The gray regions show the occupancies of the autonomous and the other car,the black line shows the
path the autonomous car should follow. The occupancy at selected times is indicated by black boxes.

is especially required in unexpected situation changes such
as the pedestrian stepping into the road in the discussed
example, for which a verification should be done faster than
the reaction time of a human driver (≈ 0.3 s).

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented an algorithm that can predict all
possible behaviors of an autonomous car given a dynamic
model, a set of initial states, and bounds on sensor noise. The
set of all possible trajectories of a vehicle makes it possible to
detect crashes in traffic scenes. It has been demonstrated that
the approach can be computed faster than the execution time
of the maneuver, and further improvements can be expected
by implementing the algorithms in C++. Other future work
involves considering uncertain vehicle parameters, such as
the tire-road friction coefficient, or the weight distribution
due to loading the trunk or longitudinal accelerations.
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