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Abstract—The development of increasingly complex robots
in recent years has been characterized by an extensive use of
physics-based simulations for controller design and optimization.
Today, a variety of open-source and commercial simulators exist
for this purpose for mobile and industrial robots. However,
existing simulation engines still lack support for the emerging
class of tendon-driven robots.

In this paper, an innovative simulation framework for the
simulation of tendon-driven robots is presented. It consists of
a generic physics simulator capable of utilizing CAD robot
models and a set of additional tools for simulation control, data
acquisition and system investigation. The framework software
architecture has been designed using component-based develop-
ment principles to facilitate the framework extension and cus-
tomization. Furthermore, for inter-component communication,
the operating-system and programming language independent
Common Object Request Broker Architecture (CORBA) [1] has
been used which simplifies the integration of the framework into
existing software environments.

I. INTRODUCTION

Due to their versatile application capabilities, computer

simulations have become an indispensable tool for engineers

and researchers during the last decades. Typical areas of

application are the modeling of natural phenomena [2], of

economic processes [3] and of products under development

for design optimization [4].

In robotics, as well, simulations have become an impor-

tant tool that is mainly used offline for controller design

and optimization as cheap and safe substitutes of the real

hardware [5]. Today, a huge variety of physics-based open-

source and commercial robot simulation platforms exist for

that purpose, such as OpenRAVE [6], Microsoft Robotics

Developer Studio [7], Gazebo [8] or Webots [9]. However,

these simulators are particularly designed for either mobile or

industrial robots and, despite their high flexibility in this area,

are difficult to adapt to the specific requirements of tendon-

driven robots. Hence, specialized simulation engines have

emerged that can cope with the simulation of the dynamics

of this class of robots. The most popular engine currently

available is OpenSim [13]. However, it has been developed

with focus on biomechanics which makes it again difficult to

adapt for simulating tendon-driven manipulators or humanoids.

Furthermore, OpenSim lacks the ability of importing common
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Fig. 1. Prototype of the anthropomimetic [10] robot ECCE-I [11] developed
within the EU-funded project ECCEROBOT [12]. The skeleton is hand-crafted
using polymorph—a caprolactone polymer—which can easily be molded. The
human muscles are imitated by elastic, tendon-driven actuators comprising a
DC motor and gearbox in series with a kite line and shock cord as tendon.

CAD data formats such as COLLADA [14] or VRML [15]—a

feature provided by most simulators developed for traditional

robotics. This, however, can make the model development

process a highly time-consuming and error-prone task as

the CAD model defined during robot engineering cannot

directly be re-used, requiring the simulation model to be re-

implemented for the simulation engine by hand. In addition,

there has been a recent trend in robotics of employing physics-

based simulations online as an internal model for control [16]

or functional imagination [17]. These applications, however,

impose very specific requirements on the simulation engine

such as a real-time interface for updating and querying model

parameters during simulation that are not supported by all

simulators available.

In this paper, a universal and customizable robot simu-

lation framework for tendon-driven robots is presented. It

has been developed within the EU-funded project Embodied

Cognition In A Compliantly Engineered Robot (ECCEROBOT)

[11, 12] and has been evaluated by simulating the challenging

dynamics of the highly complex, multi degree-of-freedom

anthropomimetic [10] robot torso developed in this project

[11, 18] (see Fig. 1). The software framework comprises a

physics-based simulator capable of importing and exporting

CAD models which is described in Section II as well as a set

of additional graphical-user-interface (GUI) tools for advanced

user-simulator interaction which are introduced in Section III.

The software architecture of the framework is presented in
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Fig. 2. CALIPER Framework Overview. The framework consists of the
robot simulation environment (ROSE) which is capable of importing and
exporting COLLADA [14] robot models and of a set of framework tools for
user-simulator interaction. Robot-specific components such as the COLLADA
model file, the Robot Controller, the Configuration File and the Robot Control
Tools have been implemented for the ECCEROBOT platform to evaluate the
provided ROSE interfaces but are not part of the framework (a demo video
presenting the integration of CALIPER for the ECCEROBOT project can be
found on [12]). The framework can easily be extended by custom software
components using programming language and platform-independent CORBA
[1] interfaces.

Section IV followed by conclusions and future work prospects

in Section V.

II. ROBOT SIMULATION ENVIRONMENT

The core of the presented framework is the robot simu-

lation environment (ROSE, see Fig. 2). It comprises (i) a

physics engine for computing the dynamics of the simulated

world, (ii) a graphics engine and a viewer for rendering

and displaying the simulated scene, (iii) an abstraction layer

for engine-independent interfacing with higher-layer software

components, (iv) a COLLADA importer and (v) exporter for

importing and exporting CAD robot models, respectively, as

well as (vi) simulation control tools for basic user-simulator

interaction. The ROSE receives inputs either from the user

through the GUI of the provided framework tools (see Sec-

tion III) or from the robot controller component. It can easily

be extended by attaching custom software components using

the provided CORBA interfaces (see Section IV).

A. Physics Engine

Important for physics-based simulators and particularly

when used online for robot control are the accuracy and the

performance of the simulation. The two benchmarks depend on

various factors such as the numerical integration step-size or

the level of detail of the simulation model. The most profound

factor, however, is the selection of the physics engine since the

latter computes the dynamics of the simulated bodies, performs

collision detection and solves the constraint equations required

for joint simulation. Nowadays, the most commonly used

physics engines are [20]: (i) Open Dynamics Engine (ODE)

[21], (ii) Bullet Physics [22], (iii) Havok Physics [23] and

(iv) NVIDIA PhysX [24]. All these engines offer a sufficient

simulation accuracy for the simulation of tendon-driven robots

and a rich set of functionality (see Table I and [19]). PhysX,

however, provides the highest performance of the four by

exploiting the multi-parallel architectures of today’s graphic

processing units (GPUs). But, similar to Havok, its closed-

source license restricts the development of the custom engine

extensions that are required to simulate the particular dynam-

ics of tendon-driven actuators. ODE, on the other hand, is

open-source but lacks support for multithreading, hardware

acceleration and, most importantly, soft body dynamics—a

feature that is provided by the selected engine Bullet Physics.

However, soft body dynamics are particularly important for

an accurate simulation of tendon-driven actuators as they

enable the simulation of the dynamics emerging from the

collision of the tendon with the mechanical structure. For

the presented framework custom Bullet Physics extensions

have been implemented to simulate the dynamics of tendon-

driven acutators. Currently supported are (i) DC-motor based,

compliant tendon-driven actuators comprising linear-spring

dampers [18], (ii) passive, linear spring-damper based lig-

aments [18] and (iii) Hill muscles [25]. The actuator type

as well as the actuator model parameters can be conve-

niently configured through custom Collada extensions (see

Section II-E). Moreover, the flexible class hierarchy chosen

for the actuators makes it also possible to easily incorporate

tendon-driven actuators based on different actuation concepts,

such as pneumatic or hydraulic actuators and with altered

characteristics, e.g. non-linear springs.

B. Graphics Engine

The second core component of the ROSE is the graphics

engine which provides visual feedback to the user by rendering

the current state of the simulated scene. Here, even more

potential open-source and closed-source candidates exist, such

as the Unreal Engine [26] developed by Epic, the CryENGINE

[27] developed by the German company Crytek or OGRE [28],

a very popular open-source engine. However, for CALIPER

Coin3D [29], an OpenGL-based, open-source clone of the SGI

Open Inventor 3D graphics application programming interface

(API) is used. It is cross-platform compatible using Qt [30]

and comes already with a variety of pre-defined viewers for

basic user-interaction with the simulated scene.

C. Scene-Graph Abstraction Layer

The graphics and physics engine APIs are highly engine-

specific and might even change with new releases. Thus,



TABLE I
PHYSICS ENGINE COMPARISON (FOR A DETAILED COMPARISON INCLUDING PERFORMANCE MEASURES SEE [19])

PhysX Havok Physics Bullet Physics ODE

Developer NVIDIA Havok Community Community
Open-Source – – X X

Programming Language C++ C++ C++, Java C++
Operating System Windows / Linux Windows Windows / Linux / MacOS Windows / Linux / MacOS

GPU acceleration X – experimental –
Multithreading X X X –

Rigid/Soft Body Dynamics X/X X/X X/X X/–
Constraint Dynamics X X X X

Collision Detection X X X X

exchanging one of the engines or simply updating to a new

release might result in myriads of changes in the respective

software modules. The classical computer science approach

to tackle such problems is to introduce an abstraction layer

that hides the implementation specific details by providing a

generic interface for the higher-layer software components.

One example for such an abstraction layer for physics-based

simulators is the Physics Abstraction Layer (PAL) [31] which

provides a unified interface for a variety of physics engines

including ODE, Bullet Physics, Havok Physics and PhysX.

However, the PAL interfaces are limited to physical simula-

tion entities and do not provide graphic-engine abstractions.

Hence, a custom scene-graph abstraction layer (SGAL) has

been developed for CALIPER that decomposes the simulation

scene into physical and graphical models, bodies, shapes and

constraints, each of which is represented by an interface class

for standardized, engine-independent access (see Fig. 3). The

SGAL physical and graphical scene-graph data structures are

created dynamically at runtime by the Collada importer (see

Section II-E) and are used during simulation for physical-

to-graphical scene synchronization: at each simulation step

the physics engine recomputes the transformation matrices of

the simulated bodies. Subsequently, these updated matrices

need to be set within the graphics engine to visualize the

new positions and orientations to the user. This has been

accomplished by implementing an observer pattern [32] in

which the viewer registers to the simulator model and the latter

notifies the viewer of any updated transformation matrix by

calling an appropriate update method of the viewer-interface.

With this scheme it was possible to significantly decrease

the amount of data that has to be transmitted between the

simulator model and the viewer at each simulation step. This in

turn increases the simulation performance when scenes with a

large number of bodies are simulated and reduces the network

load when the simulator is distributed on a computer cluster—

which is possible due to the component-based software design

relying on the CORBA-based middleware OpenRTM [33] (see

Section IV).

D. Simulation Control Tools

Basic simulation control tools have been developed for the

ROSE using the Qt toolkit. These tools provide controls for
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Fig. 3. Scene-Graph Abstraction Layer (SGAL). In the developed abstraction
layer the physical and graphical simulation scenes are represented by identical
scene-graphs, both consisting of models, bodies, shapes, and constraints.
These scene-graph data structures are created dynamically by importing the
COLLADA scene file into the physics and graphics engine, respectively.
The abstraction layer is used for engine-independent interfacing with higher
software layers and efficient physical-to-graphical scene synchronization.

starting, stepping and stopping the simulation as well as for

loading a simulation scene and modifying general simulation-

specific parameters such as the maximum frames-per-second

or the numerical integration step-size of the physics engine

(see Fig. 5b).

E. Collada Importer

A variety of file formats for describing the geometry of

the robot model or the kinematic chain currently exist, such

as VRML [15] or URDF (provided by ROS [34]). However,

for the presented framework it has been decided to use

Collaborative Design Activity (COLLADA) [35], an open-

standard XML schema for digital assets developed by Sony

Computer Entertainment Inc. (SCEI) and maintained by the

Khronos Group [14]. It is supported by the open-source CAD

tool Blender which provides a model development tool-chain

based exclusively on open-source tools and it can easily be



extended to include custom data that can be validated against

a custom Document Type Definition (DTD).

For the presented framework a COLLADA importer module

has been developed to convert the static COLLADA-XML

specification of the simulation model into a dynamic model

within the SGAL. For model-file parsing the open-source

COLLADA parser Collada-DOM [36] was used and custom

extensions were implemented to make it possible to define

and parametrize the tendon-driven actuator and linear spring-

damper extensions implemented for the physics engine (see

[18] and Section II-A). Bullet Physics provides maximum

numerical stability for physical units being in the range of

[0.05,10.0]. Hence, a world scaling feature was added to the

importer using the COLLADA <meter> tag that makes it

possible to conveniently scale the entire model to fit this range.

F. Collada Exporter

Despite the advantages of directly using CAD data for

the simulation model, the derivation of an accurate model of

the highly complex robots developed nowadays is becoming

increasingly difficult. Hence, manual or automatic tuning of

model parameters (e.g. using machine learning techniques) is

employed to capture the complex dynamics of todays systems

[37]. To make these model revisions persistent, a physics and

graphics engine-independent COLLADA exporter module has

been developed using the interfaces provided by the SGAL.

Similar to the importer, the exporter uses the Collada-DOM

library for writing the XML structures of the COLLADA file.

III. FRAMEWORK TOOLS

Based on the CORBA interfaces provided by the ROSE (see

also Section IV) a set of generic GUI tools has been developed.

A. System Tools

Increasing system complexities require advanced manage-

ment tools to identify and debug possible errors or to investi-

gate the current state of the system. Therefore, a distributed,

CORBA-based logging service has been developed for the

framework using the open-source library Log4cpp [38]. Each

log entry comprises a time stamp, a priority (e.g. Debug or

Info), a category identifying the sender and a detailed log

message. A unique log-file name is created automatically for

each simulation session and a viewer has been developed for

browsing and filtering the log (see Fig. 5e).

B. Data Acquisition Tools

Important for model performance analysis is the possibility

to investigate dynamic parameters such as forces or joint

angles during simulation. Typically, such parameters are either

exported manually or automatically using file streams or

similar output techniques. This approach, however, requires

external tools for filtering and visualization as well as frequent

re-compilation and restarting of the simulation environment

which is highly time-consuming and requires detailed knowl-

edge of the simulator internals. To compensate for these draw-

backs, CALIPER provides a flexible data acquisition system
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Fig. 4. CALIPER Component Architecture. The framework is designed using
component-based development principles [41]. Each framework functionality
is encapsulated in an individual software component with standardized,
platform and programming-language independent producer and consumer
CORBA interfaces. Hence, the framework can easily be extended or tailored
depending on user-requirements without altering existing components. At the
system level, the individual components can be grouped into view, model and
controller components in accordance with the Model-View-Controller (MVC)
[32] software design pattern. Additionally, every component is designed using
the MVC pattern by separating the component into a data class, individual
controller classes for each provided interface and an optional view class.

(DAS) for online parameter investigation. The DAS employs

a producer-consumer pattern in which all existing simulation

parameters are registered to the producer using Boost Functors

[39] and unique string-identifiers. Subsequently, these identi-

fiers can be used by the consumer to query the current value

of the parameter. At the moment only scalar parameters are

supported but complex data-types such as vectors or matrices

will be added in the future. To visualize the queried model

parameters a plotting widget has been developed using the

open-source, Qt-based plotting library Qwt [40] (see Fig. 5d).

The widget supports the scatter and line plotting of scalar

parameters over time and provides tools for plot configuration,

plot export, data export and printing.

IV. SOFTWARE ARCHITECTURE

Limited reusability, verifiability, extendability and main-

tainability are recurring problems of many existing software

systems. One approach to tackle these problems is to make

use of component-based software engineering (CBSE) [41].

In CBSE the overall system is divided into independent,

replaceable components that encapsulate specific functional-

ities and provide standardized interfaces for inter-component

communication.



One robotic middleware that supports such a CBSE ap-

proach and that is used for the presented framework is Open-

RTM [33]. OpenRTM introduces state-driven robot-technology

components (RTCs) and uses CORBA for inter-RTC com-

munication. The advantage of CORBA is that it provides

Remote Procedure Calls (RPCs) which offer a platform and

programming-language independent way of executing a proce-

dure in another address space and also enable advanced error

handling using exceptions. Furthermore, CORBA makes it

possible to distribute individual components of the framework

on a computer cluster for performance scaling.

For the current framework the following RTCs were de-

veloped (see Fig. 4): (i) a CALIPER Model component that

contains the physical model of the simulator and that provides

interfaces for simulation control, physics-scene management,

motor control and data acquisition; (ii) a Main Window com-

ponent serving as a container for the remaining graphical-

user-interface components; (iii) a Scene Renderer component

comprising the graphical model and the Coin3D Viewer for

scene rendering which provides a graphical scene manage-

ment interface for transformation matrix update and a control

interface for invoking rendering commands; (iv) a Graph

Plotter that visualizes model as well as controller parameters

using the data acquisition interface and (v) a Log Viewer

for displaying the log messages received through the logging

interface consumed by all other framework components.

At the system level, these components can be grouped into

view, model and controller components—in accordance with

the Model-View-Controller (MVC) software design pattern

[32] (see Fig. 4). Since its first introduction in 1979 [42], this

pattern has become highly popular in software development.

One reason for this is that each MVC component can be

developed and tested separately which in turn accelerates the

development of secure and easy-to-maintain software. Hence,

the MVC pattern has not only been deployed at the system

level but also at the RTC level by dividing each RTC into a data

model class, various interface classes as controllers and a GUI

class as viewer for components comprising a user-interface.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presents a novel robot simulation framework for

tendon-driven robots that is capable of importing and exporting

CAD robot models using COLLADA, an XML-based, open-

standard exchange format for digital assets. Custom physics

engine extensions are included in the framework that make it

possible to simulate DC-motor based, compliant tendon-driven

actuators as well as passive linear spring-damper ligaments and

Hill muscles. All extensions can be conveniently parameter-

ized using custom COLLADA extensions. The exclusive usage

of open-source 3rd-party libraries for the framework provide

possible users with an unprecedented freedom in adjusting the

simulation environment to the requirements of a specific robot

or application. Moreover, the component-based and service-

oriented framework design hopefully provides the founda-

tion for a steadily-growing, community-based development

of framework extensions such as sensor or actuator libraries.

Another key-feature of CALIPER is the provision of real-time

interfaces for robot control and static as well as dynamic

model parameter access. These interfaces and the provided

graphical user interface tools make it possible to efficiently

investigate the model dynamics in real-time. The framework

has been already successfully employed for simulating the

dynamics of an anthropomimetic robot arm [18] as well

as a software-in-the-loop (SIL) tool for automated model

calibration based on Evolution Strategies and for controller

development (unpublished data). A video demonstrating the

CALIPER integration for the ECCEROBOT project can be found

online [12].

B. Future Works

For future CALIPER versions the comprehensive feature list

will be extended further. Functionalities that will be imple-

mented include the extension of the data acquisition interface

to support complex data types and the implementation of scene

manipulation tools to create and modify simulation entities

through a graphical user interface. Moreover, the framework

will be extensively validated to further improve the stability

and usability of the application. CALIPER is currently in

preparation for publication under an open-source license.
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