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Abstract— This work aims at accurate estimation of the pose
of a close-range 3-D modeling device in real-time, at high-rate,
and solely from its own images. In doing so, we replace external
positioning systems that constrain the system in size, mobility,
accuracy, and cost. At close range, accurate pose tracking from
image features is hard because feature projections do not only
drift in the face of rotation but also in the face of translation.
Large, unknown feature drifts may impede real-time feature
tracking and subsequent pose estimation—especially with con-
current operation of other 3-D sensors on the same computer.
The problem is solved in Ref. [1] by the partial integration
of readings from a backing inertial measurement unit (IMU).
In this work we avoid using an IMU by improved feature
matching: full utilization of the current state estimation (in-
cluding structure) during feature matching enables decisive
modifications of the matching parameters for more efficient
tracking—we hereby follow the Active Matching paradigm.

I. INTRODUCTION
In Ref. [1] we presented the self-referenced DLR 3D-

Modeler, which is a 3-D modeling device for close-range
applications combining complementary sensors in a compact,
generic way. A single 3-D modeling device is however rarely
capable of creating complete 3-D models of a scene since the
geometrical information gathered from a single vantage point
is naturally limited. Multiple views (or multiple sensors)
are usually required to subsequently merge data to a single,
complete 3-D model. The prevalent approach is to move a
single sensor around the scene while concurrently measuring
its position and orientation (pose), thereby registering mul-
tiple views—possibly in real-time. A wide range of external
reference systems are commonly deployed for this purpose.
These traditional options are however extremely limiting
since they constrain the system in size, mobility, accuracy,
and cost. In the aforementioned publication we demonstrated
for the first time a hand-held 3-D modeling device for close-
range applications that localizes itself passively from its own
images in real-time and at high-rate.

The latter development required however support from
an inertial measuring unit (IMU), synchronized and rigidly
attached to the device, in order to still keep track of pose in
the case of highly dynamic motion (e.g. hand-held). This
is because, at close range, projections do not only drift
in the face of rotation but they also drift in the face of
translation—at far range translational effects are negligible.

* This work was performed during the first author’s research stay in Dr.
Andrew Davison’s group at Imperial College London. We are deeply grateful
to him as well as to his students Dr. Margarita Chli and Mr. Ankur Handa.

Moreover, in our particular application both effects are
potentially of similar size and may add up to drifts beyond
the capabilities of well-established tracking algorithms based
on feature matching.1 In Ref. [1] we bring forward a novel,
hybrid feature drift prediction method that combines transla-
tional motion propagation with the rotational readings of an
IMU. The method is easy to implement and allows for robust
tracking with very high motion bandwidth. In this sequel
work we aim at a tracking algorithm capable of handling
larger projection drifts at high-rate without the use of an
IMU, while concurrently digitizing the scene on the same
computer, in real-time.

A. Active Vision

An active vision system is defined by Aloimonos in Ref.
[2] as “a system able to manipulate its visual parameters in
a controlled manner in order to extract useful data about the
scene in space and time that would allow it to best perform
a set of tasks.” This is in contrast to general vision systems
that aim at “a complete and accurate representation of the
scene” [3] as active vision calls for partial perception—
subject to the task at hand. Note that this subordination
already suggests a top-down, feedback approach to vision.
The classic example for active vision systems is humans
and animals that evolved to active vision to narrow down
perception to significant parts of the scene, which clearly
yields an advantage in the face of limited resources.2 Further-
more the purposive (or animated) vision paradigm includes
the decision-taking process on how to manipulate the visual
parameters, e.g. “where to look next? ” [2], [4].

Active vision systems in robotics were predominantly
developed concerning view direction control (gaze control)
of cameras e.g. mounted on mobile robots [5]–[7]. These
were primarily motivated by navigational tasks like self-
localization or obstacle avoidance rather than by real-time
computational constraints. The variable visual parameters
comprise camera orientation and potentially the robot’s own
motion.

1 Image features are salient areas of the image that are assumed to corres-
pond to locally planar, textured patches in 3-D. Since they are measurable
projections of the state of the system, they can enable pose tracking.
Features are an effective tool for tracking if search regions are kept small.

2 Some persons with mental disorders (e.g. savant syndrome by Stephen
Wiltshire MBE) do feature the talent of virtually limitless visual memory,
but this is invariably in combination with cognitive deficits.



In the context of vision-based sequential localization and
mapping (visual SLAM) [8], Davison in Ref. [9] noted that
SLAM is an intrinsically passive problem separate from
camera motion. He however claimed that we still can benefit
of active, purposive vision for improved efficiency of visual
SLAM by extending the scope of the aforementioned visual
parameters to image processing itself—instead of consider-
ing it a detached, self-contained task. His method is coined
Active Matching (AM) and basically puts image processing
into the loop of SLAM in a statistically optimal way [9]–[11].
In this work we present a variation to AM tailored to our
3-D modeling application that aims at particularly efficient
tracking with very high motion bandwidth.

B. Related Work

Visual SLAM approaches face computational issues either
in the long run (e.g. due to map size) or on a frame by frame
basis (because of high number of features or rapid motion).
The latter case corresponds to our current problem. A few
recent (monocular) approaches address it:
• Active Matching achieves a lower computational bur-

den using feature projection priors dynamically to guide
a feature by feature matching search. In this work we
shall adapt this approach (described in Section III)
to our particular ego-motion estimation algorithm.

• Parallel Tracking and Mapping (PTAM) by Klein and
Murray in Refs. [12], [13] is similar to our approach
in many aspects. PTAM computationally decouples
mapping from tracking and relative pose estimation,
which enables lax mapping and exhaustive tracking
respectively. In addition, they achieve a remarkable level
of robustness towards rapid camera motion by the use
of FAST features [14] to identify potential matches and
by an extensive pyramidal representation of images.

• 1-Point RANSAC approaches e.g. Refs. [15], [16]
utilize single-point motion hypotheses to constrain ex-
pected projection regions of the rest of the features
iteratively, in the context of RANSAC. At first this is
carried out using constrained motion models; after that
assumptions are relaxed.

• Accelerated, descriptor-based approaches in Refs.
[17]–[19] employ through feature descriptors. These
allow for robust tracking and are usually intended to
offline operation. The authors manage to condition them
to the available information on the state (e.g. deciding
on the relevant scales) so that their use just becomes
possible in real-time. The use of accelerated hardware
computing will surely boost these approaches, which
are still computationally very expensive.

In the course of this work these approaches are being
individually addressed on their adequacy concerning scarcity
of resources by concurrent operation with 3-D modeling.

The remainder of this article is as follows: In Section II
we recapitulate the IMU-supported ego-motion algorithm
already presented in Ref. [1]. Next, Section III introduces the
AM paradigm, which serves our purpose to present our novel
development in Section IV as a best case scenario for AM.

Section V shows experimental results on the system perfor-
mance and Section VI summarizes the contribution.

II. EGO-MOTION ESTIMATION AT THE DLR
3D-MODELER

The DLR 3D-Modeler is a multi-purpose 3-D modeling
device that can be mounted on a robot or hand-held. Current
applications comprise 3-D modeling, tracking, visual servo-
ing, exploration, path planning, and object recognition e.g.
as the perception system of the humanoid robot Justin [20].
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Fig. 1. The DLR 3D-Modeler and its components.

In Ref. [1] we presented an algorithm for efficient and
accurate estimation of its motion from its own images.
The novel development made it possible to abandon using
inconvenient, expensive external positioning systems. It re-
alized the first hand-held 3-D modeling device for close-
range applications that localizes itself passively from its own
images in real-time and at high-rate. Robust operation in
the case of highly dynamic motion required support from a
synchronized, on-board IMU.
A. Overview

The algorithm tracks natural, distinctive visual features
(following the Shi-Tomasi criterion in Ref. [21]) while con-
currently modeling the scene using customary, on-board 3-D
sensors. Feature tracking is permanent on a monocular image
stream using an extended implementation of the Kanade-
Lucas-Tomasi (KLT) feature tracker [22]–[24]. During mo-
tion, incoming groups of new features are being initialized in
parallel, in 3-D, using the synchronized stereo camera. Close-
range initialization performs with sub-millimetric accuracy,
which is basis for the non-stochastic nature of the approach.
This in turn makes it possible to significantly cut down
computing expenses as required for concurrent operation of
other 3-D sensors. Rigid 3-D structure together with perma-
nent monocular tracking serve the relative pose estimation
algorithm, the robustified Visual-GPS [1], [24], [25], which
efficiently supplies accurate pose estimation.

Visual-GPS
Feature-based stereo vision

Monocular tracking
pose

Fig. 2. Ego-motion algorithm: Feature-based stereo vision and monocular
tracking serve the Visual-GPS that pays out with camera pose estimations.



Note our accordance with the PTAM paradigm of reducing
degrees of freedom (DoF) in high-rate estimation in order to
achieve better performance [12]. PTAM reduced them from
6+3×N in general SLAM (N is the number of features)
to 6 in PTAM, which estimates the further DoF (mapping)
and absolute camera poses in a concurrent thread, at lower
rate, from selected keyframes. Mapping in our algorithm
also relies on keyframes, but substitutes bundle adjustment
by accurate, feature-based stereo vision. The latter is com-
putationally cheaper and it furthermore contributes absolute
scaling—a prerequisite in 3-D modeling.

B. Sequential Feature Tracking
Sequential feature tracking is a predictive feature search

method that exploits the absolute priors on their expected
image projections in order to know where to focus processing
resources in each image. These absolute priors depend on
the 3-D location of the feature points and on the predicted
motion of the camera. The latter motion is being estimated
from past measurements and then further predicted using a
motion model. 3-D structure, camera past motion estimations
as well as its motion model may however differ from reality
to some extent, which mirrors in the absolute priors on
the expected projections and translates into “gated” image
regions where each feature is expected to lie, refer to Fig. 3.
The main purpose of the feature tracker is then to seek
feature appearance matches within these bounded regions,
hereby delivering the image drifts of features—and in doing
so keeping track of correct data association as well.
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Fig. 3. KLT feature tracker with big search area due to large expected drifts.
Two levels of the pyramidal representation of the image are also shown.

Critically, at close range both translations and rotations
potentially cause image drifts of similar size (the rotational
component is dominant at far range). The drifts may add
up to long distances (e.g. search areas of 100×100 pixels)
that are beyond the real-time capabilities of the regular KLT
feature tracker, even in its pyramidal implementation [23].
The pyramidal implementation applies the original imple-
mentation’s gradient descent search also to coarser resolu-
tions (higher pyramidal levels) of the original image pair—
for conveniency, pyramidal levels differ in size at least by
powers of two (octave steps). Matching at lower-resolution
images helps in the predominant case where, at original
resolution, the search region is bigger than the ’basin of
attraction’ of the match function minimum—the latter de-
pends on the chosen size of the feature template (typically

between 7×7 and 11×11 pixels). The use of similar-sized
patches in lower-resolution images implies bigger, virtual
’basins of attraction’ at the original resolution, which aim
at the size of the original search region to be able to track
robustly with broader motion bandwidth. By sequentially
searching into lower pyramidal levels (higher-resolution
images), absolute convergence is in theory guaranteed, if
the matching precision at the higher level is higher than
the ’basin of attraction’ in the lower level search—for all
pyramid levels. The algorithm ideally ends up matching
correctly at the lowest level—and matching is finished.
Two significant limitations may apply:

1) The bigger the search range, the more pyramidal
levels have to be created. This can render tracking
computationally too expensive—especially with a high
number of features.

2) Features following the Shi-Tomasi criterion are good
features to track at the resolution where they were
selected in the first place. At lower resolutions this
does not necessarily hold anymore, as e.g. distinctive
small corners will attenuate and potentially disappear.

In fact, hand-held operation of the DLR 3D-Modeler can
be highly dynamic and its motion model will not be able
to narrow down feature search areas to admissible sizes, see
Fig. 3. Therefore, both limitations apply.

After consideration of several motion models, in Ref. [1]
we opted for the insertion of an IMU, rigidly attached to the
DLR 3D-Modeler, synchronized with respect to (w.r.t.) its
inner measurement cycle, and externally calibrated w.r.t. it (at
least in orientation). The higher data rate of the IMU makes it
possible to predict feature projections more accurately, which
then require much smaller search regions. We observed that
feature drifts owing to camera translation can be much
better predicted by a motion model than feature drifts owing
to camera rotation—even though both are potentially of
similar size. This allowed for a very simple and robust novel
implementation by predicting the translation of the camera
from a motion model, together with using rotational updates
from the IMU. These informed predictions allow for smaller
feature search regions that in turn facilitate rapid feature
matching with still very high motion bandwidth.

C. Outlook

In our quest for flexibility and reduced cost, the replace-
ment of an external positioning system by an IMU was
already a significant step. Still, being the only purpose of the
IMU to lead the search for features and not to directly
support pose estimation accuracy, in Ref. [1] we stated our
intention to implement a more efficient, information-driven
tracking step to comply with motion and computational con-
straints without the need for an IMU. A further advantage is
that exclusively image-based motion estimation implies inhe-
rent pose synchronization with all other image-based sensors.

In the next section we present the Active Matching (AM)
paradigm that precisely aims at more efficient tracking. In
Section IV we take it as a basis for our own implementation,
which turns out to be a best case scenario for AM.



III. THE ACTIVE MATCHING PARADIGM

The vast majority of computer vision applications that
include feature matching consider it as a separate task—
a self-contained, bottom-up operation applied regularly to
incoming images, i.e., a purely 2-D process between pairs
of images. The results are then fed forward to higher level
tasks like full structure and camera pose estimation.3 In this
way however feature matching waives its right both to access
and to modify more informative representations of the system
(and potentially of the state of the world, i.e., the state model)
during operation. The AM paradigm in Refs. [9]–[11] breaks
this habit of leaving aside feature matching from higher
level estimation tasks, see Fig. 4, aiming at higher tracking
performance in several aspects:
• Built-in global consensus. Instead of hypothesizing

on correct data association after a monolytic feature
matching process [29], AM can readily walk down
the sole correct hypothesis during feature matching by
alternation of single feature matching and subsequent
state update—for all features. In doing so, AM puts
image processing into the loop of the search for global
consensus by not processing areas of the image where
features are not really expected in the first place. Feature
matching will then be trapped in far less matching
ambiguities. In addition, in order to cope with residual
mismatches due to unavoidable image ambiguity, in
Refs. [10], [11] the authors make use of dynamic
Mixture of Gaussians (MoG) representations.

• Less computation through less image processing.
AM leads feature tracking to process far smaller areas
of the image. This is because of the paradigm shift
from matching between images to matching between
an image and the state, which is a far more informative
description of the system history.

• Less computation through guided search. A stochas-
tic representation of the system along with the use of
information theory makes it possible for AM to quantify
potential information gain. Some feature measurements
will be more informative than others; by taking their
measurements first, the overall, eventual computational
cost will be further reduced. Furthermore this allows for
anticipated termination of feature matching at a point of
diminishing returns.

• Estimation accuracy. Real-time algorithms are usually
tuned to perform at full system capacity at the expense
of e.g. a higher number of features being tracked,
or more accurate feature matching or pose estimation
results. Therefore, in real-time vision more efficient
algorithms generally imply more accurate estimations.

The aforementioned aspects allow for more effective fea-
ture matching, but this is not the whole story because they are
not for free as two important calculations must be repeatedly
performed: first, the system state must be invariably updated

3This methodology is presently being reinforced both by the development
of more robust feature descriptors [26]–[28] as well as by further increase
in availability of computing power.

after every single attempt of feature matching;4 second,
making guided search decisions on information-theoretic
grounds is associated with substantial computational costs.
It is appropriate to question whether the alleged information
gain really merits these extra calculations involved, finally
yielding an overall more efficient algorithm. In general, sen-
sibly including image processing into the loop of e.g. global
consensus will be more satisfactory than using RANSAC or
JCBB after blunt, uninformed blanket feature matching [11].
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State estim. : t-1

Match.
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Match.
feature
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Match.
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Fig. 4. Traditional methods (b) take absolute priors on feature projections
once, where image projections are most uncertain. Active Matching (a)
recursively updates (a representation of) the state after single feature
matching so that feature projection priors can be more accurately estimated
before a matching attempt starts (represented by the thickness of the arrows).

It is worth noting that the aforementioned aspects are
potential but not compulsory; it is readily possible to take
advantage of some aspects and not of the others. For instance,
since a high number of features skyrocket the cost of making
exact decisions on guided search, an alternative algorithm
called Fast Active Matching (FAM) was recently proposed in
Ref. [11]. FAM is cheaper than AM by making approximate,
non-optimal decisions. On the other hand, Refs. [30], [31]
precisely employ guided search for selective feature match-
ing but do not update the state after single feature matching.

A. Stochastic Active Matching

The original AM formulation in Refs. [9]–[11] features a
fully stochastic representation of both system state and mea-
surements using multi-variate Gaussian joint probability dis-
tributions. This is in line with traditional SLAM approaches
[8] and in addition it is convenient for full utilization of the
capabilities of the AM paradigm. In particular, their approach
involves an extended Kalman filter (EKF) with occasional
inverse-depth parametrization of 3-D features, a dynamic
MoG representation within each matching step, as well
as information-theoretic guidance of feature search based
on regularly updated mutual information scores between
features. Guided search aims at selecting the feature that
most efficiently reduces the search areas for all remaining
fellow features at the next single feature matching step, i.e.,
it is generally aimed at maximizing tracking efficiency.5

4 A more efficient representation of the system state, e.g., a joint distri-
bution on the expected feature projections may be used instead [10], [11].

5 This is a very sensible approach but is not unique. For instance, another
option is minimizing the search area exclusively of the next, most probably
picked feature. A further option is to minimize the eventual search areas of
all remaining features taking all potential updates into account. The approach
also differs from active vision approaches that aim at the minimization of
predicted uncertainty in self-localization or eventual obstacle avoidance [7].



IV. ACTIVE MATCHING WITH KNOWN STRUCTURE:
A BEST CASE SCENARIO

When using AM to guide a feature by feature matching
search, we are essentially modifying visual parameters for
better perception of an active vision system—cf. Section I-A.
Here the parameters include purposive decisions on which
feature to seek for, as well as further parameters required
for the search (e.g. search regions). This is a closed-loop
problem where the current decision is conditioned to the task
at hand (minimizing future search regions), which in turn
depends on the results of past decisions.

AM recursively generates updated search regions subject
to the accumulated information on the system’s state (i.e.,
robot motion, 3-D scene, and perhaps the tracking quality of
individual features). For efficiency reasons, the original AM
formulation in Refs. [9]–[11] makes use of the 2-D projection
of the current 3-D state estimate instead: the joint distribution
on feature projections. It includes absolute priors on feature
projection locations as well as relative priors on the corre-
lations between these locations.6 After every measurement
they use the correlations to update absolute priors on further
feature projections, i.e., future search regions, see Fig. 4.

On a feature by feature decision-taking basis, the com-
manded feature matching process is expected to maximize
information gain so that the updated information on the
system’s state will minimize future search areas. In SLAM,
inferring on the system’s state in the light of a single feature
drift is however hard, because both, 3-D scene and camera
motion, are uncertain and indistinguishable to some extent.
Less information can be gathered and eventual projection
predictions will remain uncertain. Quite the contrary in our
case of accurate 3-D scene knowledge (Section II-A) where
immediate inference of camera motion from a few feature
drifts is possible. Furthermore, all remaining feature drifts
will only depend precisely on that newly estimated motion.
For this reason we assert that non-stochastic AM with known
structure is a best case scenario for AM where eventual
search regions can be reduced outright. This is basically the
same message as in Ref. [10]; the authors observe especially
good performance of AM where “priors on absolute feature
locations will be weak but priors on relative locations may
still be strong.”

Other authors have performed motion prediction from
single feature tracking in the context of SLAM. In Ref. [16]
Civera et al. update expected projections of features from a
single bearing result using the state transition equations of
an EKF; this is however under-determined and, as explained
above, is in the presence of uncertain structure, which yields
large search regions. The authors circumvent the problem
by not performing all calculations but data association in
the context of random, iterative sampling instead. On the
opposite side, Scaramuzza et al. in Ref. [15] fully estimate
motion from a sole correspondence but they employ a very

6 In doing so, [9]–[11] are the first to use the full stochastic representation
of feature projections during feature search. It includes the correlations that
reflect the stiffness of the structure estimation as well as the common motion.
This is a similar problem to neglecting covariances in regular SLAM [32].

restrictive motion model. Further, in Ref. [13] Klein and
Murray introduce an efficient, inter-frame rotation estimator
to aid tracking, using whole low-resolution images. It is on
the assumption that the camera either senses at far range or
only rotates—otherwise it fails in close-range translations.

Our approach is as follows: We aim at rapid, full (6-D)
camera motion preliminary estimation using a minimal set of
features thanks to our 3-D knowledge of scene features. This
estimation will be used to update priors on feature locations
yet to be measured. Now very small residuals will allow for
extensive feature tracking and final accurate pose estimation
(e.g. via Visual-GPS) in a highly efficient way—cf. Fig. 2.

The minimal set of known features for unconstrained
motion prediction (6 DoF) comprises 3 perspective projection
correspondences of non-collinear 3-D points—this was first
described by Grunert in 1841 [33]. One of our principal
findings in Ref. [1] was that, at close range, translational and
rotational effects in projection drifts are potentially of similar
size, but translational effects can be accurately predicted
using a constant camera velocity model. From this we now
propose reducing the required number of correspondences
for full motion estimation from 3 to 2 (1.5 actually) by
predicting camera translation from the motion model, so that
only rotation remains to be estimated (3 DoF). We expect
that potential translation prediction errors will not corrupt
this preliminary rotation estimation. Our intention is that the
projection estimations of the N−2 remaining features will fall
within their respective ’basins of attraction’ of regular KLT
feature matching, e.g. 5 pixel radius. This directly rules out
using expensive pyramidal representations for N−2 feature
matching processes. Note the potential significance of such
an achievement: By using AM, feature projection estimation
errors are being reduced, for every remaining N−2 features,
from potentially more than 50 to less than 5 pixels after
two sole feature matching results, see Fig. 5. These last
unavoidable residuals are consequences of the approximation
concerning translation propagation.

The dramatic reduction of image processing involved
is the biggest appeal for using AM: Only 2 features have to
be extensively searched for (the second one less extensively,
see Section IV-B) and the remaining features are easy prey
for e.g. the regular KLT tracker. A second major appeal
exists: Guided feature search based on information theory is,
together with state update, main overhead in potential AM-
related calculations [11]. Sensible guidance of feature search
is indeed advantageous in SLAM because some 3-D features
locations are more correlated than others [34]. In our case of
full 3-D map knowledge however, all feature locations are
equally (totally) correlated in SE(3), and fair preliminary
motion estimation can be achieved by any feature pair
used. Third, we expect small residuals within their ’basins
of attraction’ for the remaining N −2 features. Therefore,
most features are clear of data association issues since
feature matching itself guarantees correct data association. It
is only the first two active features that account for this issue.
These points consolidate our view of non-stochastic AM
with known structure as a best case scenario for AM.



A. The KLT Feature Tracker with Larger Search Regions

The KLT feature tracker is able to cope with larger feature
search regions by using pyramidal representations of image
patches, refer to [23], [24] and Section II-B. This however
poses difficulties both in computational cost and in successful
feature matching at higher pyramidal levels.

Apart from improvements in image-processing operators
and the use of AM itself, we performed two significant mod-
ifications to the tracker to further combat these limitations:

1) The height of the pyramidal representation of images is
limited, for two reasons: first, the generation of images
of different resolution in the context of the KLT feature
tracker is expensive due to associated filtering and gra-
dient computations; second, feature tracking at lower
resolutions is prone to errors because features were
selected at the original resolution in the first place.
We opt for subsampling the original patch only once.

2) At the subsampled level we perform exhaustive tem-
plate search instead of gradient descent search. Other-
wise matching would get stuck in local minima be-
cause the search region at that resolution is still bigger
than the template size. We use similar-sized templates
to the ones at original resolution, which correspond to
areas four times bigger at original resolution. Sequen-
tial, exhaustive template search using bigger templates
at lower resolutions is very robust to ambiguities.

We employ this KLT implementation for extensive track-
ing of a minimal set of two active features, cf. Section IV-B.

Along with big search areas and data association issues,
motion blur is a third drawback of rapid camera motion.
It precludes accurate, point-wise feature tracking. In Refs.
[12], [13] Klein and Murray meet with this problem. They
ameliorate the damage using pyramidal representations of
images, edge features, and even by exploiting its effects on
images (directional image flow). In such cases tracking is
coarsely warranted but accurate pose estimation is not. In
this work we put stress on avoiding motion blur in the first
place because highly-dynamic 3-D modeling requires accu-
rate pose estimation all the time. Motion blur is minimized by
using shorter shutter times (in our case a few milliseconds);
adequate imaging can be facilitated by using wide aperture,
valuable cameras, as well as proper scene illumination.

B. Preliminary Pose Estimation from Two Feature Matches

In this section we present an algorithm for rotation
estimation from two sequentially tracked features. This
initial estimation CR̂ptr, together with translational prop-
agation following a constant velocity motion model, will
provide highly tight priors on all other feature projections.
These will eventually allow for rapid, robust feature tracking
and accurate camera pose estimation in the exact same
manner as in Ref. [1].

The algorithm is detailed in Alg. 1 and Fig. 5. The choice
of the active features p and q is quite immaterial—provided
they were sequentially tracked during the last frames It−1

and It, and their templates at lower resolution are distinctive.

We choose the two most distant valid features in the image
in order to avoid noise in the estimation of roll rotation CR̂r.
The pan+tilt rotation CR̂pt is estimated (̂ ) from the first
active feature p. Together with CR̂r they form CR̂ptr.

Algorithm 1 Pose est. and correction from a minimal set.
Require: Last tracked features and last camera transl. Ctt−1.

repeat
Pick first active feature p

Apply transl. propagation: p̂t
tra =proj

(
C p̃t−1−Ctt−1

)
Exhaustive template match around p̂t

tra {wide search}
until reliable match p̃t {normally 1×}
Estimate minimal rotation (2 DoF): CR̂

t−1, t

pt {Eq. (1)}
..............................................................................................
repeat

Pick second active feature q

Apply transl. propagation: C q̂t
tra =C q̃t−1−Ctt−1

Apply minimal rotation: q̂t
tra+pt =proj

(
CR̂

t−1, t

pt · C q̂t
tra
)

Exhaust. templ. match around q̂t
tra+pt {narrow search}

until reliable match q̃t {normally 1×}
Estimate remaining rotation (1 DoF): CR̂

t−1, t

r {Eq. (2)}
..............................................................................................
Pick random validation set e.g. 1..5v

Apply translation propagation: 1..5
C v̂t

tra =1..5
C ṽt−1−Ctt−1

Apply rotation: 1..5v̂t
tra+ptr =proj

(
CR̂

t−1, t

pt ·CR̂
t−1, t

r · 1..5
C v̂t

tra
)

Valid. by regular KLT tracker on 1..5v̂t
tra+ptr {else restart}

..............................................................................................
Apply transl. propagation to i

C f̂
t

tra=
i

C f̃
t−1
−Ctt−1, ∀ if ∈It

Apply rotation: if̂
t

tra+ptr =proj
(
CR̂

t−1, t

pt ·CR̂
t−1, t

r · i
C f̂

t

tra
)

return updated feat. projections if̂
t

tra+ptr for regular KLT.

From the discrepancy between the propagated estimation
p̂t

tra and the exhaustive first matching result p̃t, the minimal
camera rotation potentially responsible for it (2 DoF) reads:

CR̂
t−1, t

pt

{
axis: C p̂t

tra× C p̃t

angle: ± arccos
(

C p̂t
tra · C p̃t

) (1)

where Cpt = Cpt/
|Cpt| and Cpt is the 3-D location of a

feature p in the camera reference frame SC at time t. C p̃t

is the direction in SC of the 2-D, actually tracked feature p̃t.

From the second match q̃t the only remaining DoF can
be estimated: roll rotation CR̂

t−1, t

r around the axis C p̃t that
relates the planes containing the estimated projection C q̂t

tra+pt
and the actual one C q̃t:

CR̂
t−1, t

r

{
axis: C p̃t

angle:± arccos
((

C p̃t×C q̂t
tra+pt

)
·
(
C p̃t×C q̃t

)) (2)

that jointly with the pan+tilt rotation in Eq. (1) yields

CR̂
t−1, t

ptr = CR̂
t−1, t

pt · CR̂
t−1, t

r ,

which is good estimate of the camera rotation between t−1
and t. Together with the last camera translation Ctt−1 it
can be used to recompute prior beliefs on further feature
projections. Note that the pan+tilt rotation CR̂pt obtained
from feature p was also used to better track feature q.
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Fig. 5. Top: Pictorial schematic on the 2-D estimations involved. Two active
features p and q as well as the resulting estimation steps on a further feature
v are detailed. The latter is tracked using the regular KLT feature tracker.
Bottom: Time evolution of state estimation w.r.t. the image processing steps.

After successful tracking of features p and q we opt for
tracking a random subset of five of the remaining features
in order to validate the rotation hypothesis in case of mis-
matches or inaccurate translational motion propagation. The
validation features are rapidly tracked using the standard,
gradient descent KLT tracker at the original resolution only.
Here correct matching demands projection accuracies of half
of the template size (e.g. 11×11, thus 5 pixels). Valid hy-
potheses bring about rapid, extensive matching of all remain-
ing features if (typically 20 to 50), as in the validation step.

Two types of errors may appear when searching for active
features: First, indistinctive matching templates at lower
resolution, or corrupted projections (e.g. occlusions). The
frequency of these errors is minimized thanks to sequential
matching. They are best detected during matching itself—are
signalized and will not be further used as active features.
Second, image ambiguity may cause incorrect data associ-
ation (false positives) even though exhaustive search and
sequential matching minimize the risk. Consistency checks
w.r.t. the state history support correct data association [29],
[31]—this is our validation step. Both types of errors are
however rare in regular operation. Since hypothesis genera-
tion (tracking of p and q) is expensive, we opt for rigorous
preemption: one sole hypothesis will be generated unless the
aforementioned errors appear. In exceptional cases of mul-
tiple errors at the same image, the computational overhead
may exceed the time budget for matching (e.g. 20 ms). These
occasional peaks can be filtered out by making use of an
image buffer, e.g., of the last two images. This implies a la-
tency of e.g. 80 ms, which is admissible in most applications.
Furthermore, occasional tracking losses are still possible
e.g. in untextured scenes or unfinished stereo initialization.
We implemented a SURF-based relocalization stage to reg-
ister back to former KLT features [27]. In this case absolute
pose estimation is not provided, for several seconds.

The sizes of the search areas for the two active features
are empirically based on worst case experiments at 25 Hz.
They amount to circles of 50 and 25 pixels radii respectively.
The second search area is smaller because CR̂pt is known.7

7 A strap considering both, roll orientation uncertainty and translational
propagation error, could allow tighter search for the second active feature.

Typical matching times on a notebook equipped with an
Intel R© Core

TM
2 Duo P8700 processor are: for active feature

#1 3.2 ms (50 p. radius) or 2.3 ms (40 p.); for active feature
#2 1.3 ms (25 p. radius) or 1.0 ms (20 p.); standard matching
of 5 validation features takes 0.6 ms; the remaining features
require 1.7 ms (15 features) or 2.7 ms (20). Relative pose es-
timation using V-GPS takes between 1.5 and 2.3 ms. Thus all
calculations typically take 10 ms on one thread—acquisition
rate is 25 Hz. A second thread is occasionally prompted for
stereo initialization. Therefore, a vast amount of resources is
left for I/O, visualization, and most importantly for operation
of the other 3-D sensors.

It is worth noting that the approach scales well with increa-
sing frame rate since it facilitates tracking through smaller
active search areas—at constant target motion bandwidth.

V. EXPERIMENTAL VALIDATION

The current contribution addresses feature matching ac-
celeration and its robustness to rapid camera motion. Older
publications in Refs. [1], [24] already provided experimental
validation of the vision-based ego-motion estimation algo-
rithm and detailed its high estimation accuracy. These aspects
remain unchanged here.

The robustness of the approach is demonstrated using
the same challenging sequence as in Ref. [1], now without
using synchronized inertial data. Fig. 6 displays a typical
frame that shows both active features, the validation set,
as well as remaining features. The authors suggest that the
reader retrieves the processed video stream from the Inter-
net at www.robotic.dlr.de/Klaus.Strobl/icra2011.
Robust feature tracking holds during the entire sequence.

Active feature #1
Active feature #2

Validation
features

expected
found

(radius 40 p.)
(rad. 20 p.)

Fig. 6. Detail of a frame including two active features, three validation
features, and a number of current and past regular features.

The accompanying video demonstrates real-time operation
of the approach, concurrently with scanning and meshing of
a scene. All calculations (includ. visualization) are performed
on a single, Intel R© Core

TM
2 Duo P8700 processor notebook.

VI. CONCLUSIONS

Recently in Ref. [1] we presented the self-referenced
DLR 3D-Modeler. It was the first hand-held 3-D mode-
ling device for close-range applications that localizes itself
passively from its own images in real-time, at high-rate.
Since pose estimation here relies on accurate feature track-
ing, challenged feature tracking by rapid camera motion
naturally compromises accurate pose estimation in real-time.



In Ref. [1] we introduced a novel approach to facilitate
feature tracking in the particularly challenging case of rapid
camera motion at close range, together with concurrent 3-D
modeling. It includes information from an inertial measu-
rement unit (IMU), synchronized and rigidly attached to the
DLR 3D-Modeler.

In this work we achieve robust and efficient feature track-
ing in rapid, close-range motion without the use of inertial
data. This is an important contribution, both in order to avoid
calibration and synchronization issues of the IMU, as well as
to further reduce hardware requirements for 3-D modeling.
We believe it is precisely through flexible, passive, lighter,
smaller, and more affordable sensors that machine perception
will eventually enable the breakthrough of service robotics.

The current novel approach for tracking casts the regular
KLT feature tracker into the Active Matching paradigm by
fully using and updating full state estimations during the
feature tracking process itself. In particular, a minimal set of
features provides preliminary motion estimation that in turn
enables fastest operation of the KLT feature tracker on all
remaining fellow features. Separate treatment of feature drifts
owing to camera translation and rotation makes it possible
to use a minimal set of only two features.

Future work will focus on more efficient stereo initial-
ization and image processing in general. In addition, a mo-
nocular implementation is being considered for constrained
scenes, or scenarios where absolute scaling is not required.
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