
A Python Experiment Suite

THOMAS RÜCKSTIEß

Technische Universität München, Germany

JÜRGEN SCHMIDHUBER

Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland

We introduce the Python Experiment Suite, an open source software tool written in Python,
that supports scientists, engineers and others to conduct automated generic software experiments

on a larger scale with numerous features: parameter ranges and combinations can be evaluated

automatically, where different experiment architectures (e.g. grid search) are available. The suite
also takes care of logging results into files, can handle experiment interruption and continuation,

for instance after process termination by power failure, supports execution on multiple cores and

contains a convenient Python interface to retrieve the stored results. Configuration files ease the
setup of complex experiments without modifying code, and various run-time options allow for a

variety of use cases.

General Terms: Scientific Software, Python

Additional Key Words and Phrases: Experiments, Automated Evaluation, Grid Search

1. INTRODUCTION

Scientists, engineers, students and many others often find themselves running ex-
periments or evaluations for their research and work. While the applications differ
from field to field, the common factors are usually the same: run numerous experi-
ments, repeat the same experiments many times, sometimes with slight variations,
try a range of parameters, log and retrieve the results. A lot of time is usually
spent on implementing and refining the experiments, but the actual experiment
setup is often neglected, which bears the danger of introducing errors to the results
and overwriting or losing results that have been very time-consuming to get in the
first place. And implementing a proper experiment setup costs time, which, in the
scientists’ eyes, is better spent elsewhere. Only rarely do researchers publish their
experiment framework as part of their scientific contributions, as e.g. [Beazley and
Lomdahl 1997].

Coming from the area of Machine Learning (see [Bishop 2006] for an overview),
our lab has been confronted with this problem in the past. As we develop new
algorithms, a large part of our work consists of running comparisons and evaluations
on new and existing methods, often with varying sets of parameters and many
repetitions to average over probabilistic outcomes. We therefore developed a tool
that takes care of the whole experiment setup, while being transparent and easy

Author’s address: Thomas Rückstieß, Technische Universität München, Boltzmannstr. 3, 85748
Garching, Germany — ruecksti@in.tum.de

The Python Papers 6(1):2 2011.

2 · T. Rückstieß and J. Schmidhuber

to use and extend. We chose Python as the programming language, because it
offers great packages, particularly suited for scientific computing [Oliphant 2007]:
numpy, scipy and matplotlib are some of them (see also [Langtangen 2008], in
particular Chapter 4, on Python for numeric experiments and [Ousterhout 1998]
for an overview on general scripting languages for scientific computation).

The Python Experiment Suite, as we call our tool, is completely flexible in what
experiments it should run. It is a wrapper around the experiments you want to
conduct, and takes care of result logging, multi-core execution, parameter range
evaluations and more. It has been developed over the last several years and has
now matured to a state, where it is useable and useful to others as well. We have not
seen any other tool specifically designed for this task, and hope that this software
will save you time that you can spend on your work and research instead.

In the following sections, we will give a detailed description of the software, explain
how to acquire and use the Experiment Suite, how to set up experiments, make use
of the configuration files and finally demonstrate the API to retrieve the results.

2. IMPLEMENTING A PYTHON EXPERIMENT SUITE

The Python Experiment Suite is developed in Python and requires Python 2.6 or
higher, because it makes use of the multiprocessing module, which was only added
in version 2.6. Another dependency is numpy [Oliphant 2007]. Other than that,
the suite is a stand-alone package. For instructions on how to download and install
the Experiment Suite package, please refer to the documentation, available on the
github website, where the project is hosted: http://github.com/rueckstiess/

expsuite/.

We start by giving a short overview of the definition of experiments in Section 2.1,
before listing a typical workflow for the Experiment Suite in Section 2.2. This is
also a checklist for the following sections. We then describe the two main functions
of the suite, reset() and iterate(), and how they are implemented. Furthermore,
the option of resuming interrupted experiments will be explained in Section 2.5.

2.1 Overview

The experiments created by the Python Experiment Suite have two levels of execu-
tion: the repetition level and the iteration level. This distinction is made because it
is often required to repeat the same experiment several times (repetition level), and
experiments are often of iterative nature themselves (e.g. an optimization problem
that optimizes parameters over a number of steps). Both repetitions and iterations
are controlled by two parameters, defined in the configuration file. The parameter
repetitions specifies, how often the same experiment should be repeated. For de-
terministic experiments, where the outcome is always the same for one parameter
set, its value is usually set to 1. The iterations parameter defines, for how many
steps one experiment runs internally. If the experiment can not be separated into
consecutive steps but finishes in one single iteration, the value should be set to 1.

Code listing 1 demonstrates in a simplified manner the interaction between the two

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 3

levels. Note that this code snippet is not from the actual Experiment Suite source
code but only illustrates how the repetition and iteration levels interact. The rep-
etition level corresponds to the outer loop of program execution. In the reset()

method the steps to set up the experiment are executed (e.g. loading the param-
eters and data). Once set up, an experiment can then run for a certain number
of iteration steps in the inner “iteration level”, where the iterate() method is
executed repeatedly (this is where the actual calculations happen).

Listing 1. Simplified execution loop of an experiment in the suite.
for r in range(repetitions):

reset()

for i in range(iterations):

iterate()

Thus, the main implementation work that needs to be done to use the Experiment
Suite goes in the two functions reset() and iterate(). What code exactly goes
into these methods depends entirely on the experiment you want to set up. Section
2.4 goes into more detail on this question and also contains a simple example.

Experiments can be parameterized with arbitrary parameters, which are read from
a configuration file. This gives you full flexibility over the experiments without the
need to change the code every time. You can define multiple experiments in a file,
which will be executed consecutively. In the config file you also specify how often
the experiments are repeated and where the results are stored. Section 3 explains
how the configuration files work and which options are available.

2.2 Typical Workflow

This list will give you a short overview of the tasks you need to do if you want to
use the Experiment Suite. They will be explained in detail in the following sections
and references back to this list are made throughout the paper.

(1) create a class which derives from the PyExperimentSuite class

(2) add the object creation and call to the start() method at the bottom of the
script

(3) implement the reset() and iterate() methods

(4) (optional step) implement the save state() and restore state() methods
and set the restore supported flag to True

(5) create or edit the experiments.cfg file and add all the experiments and their
parameters

(6) run the suite from the command line

(7) (optional step) after completion, open your Python console or create a Python
script and use the built-in interface to access your results and visualize or post-
process them

The Python Papers 6(1):2, 2011.

4 · T. Rückstieß and J. Schmidhuber

These phases are explained in the following sections. Most of them are required,
with the exception of step (4) and (7). Step (4) is only necessary if interrupted
experiments (e.g. by power failure or process termination) need to be resumed
exactly where they were aborted, on iteration level. Section 2.5 contains more
information about this step. Step number (7) refers to the included Python API to
access the results. Some useful methods are provided to ease access to interesting
aspects of your data. Of course, the log files can be accessed and parsed without
the API as well. More on the included API methods can be found in Section 4.

2.3 Getting Started

To start using the Python Experiment Suite for your experiments, it is recom-
mended (but not essential), that a new folder is created for each new experiment
setup. Create a new file in the folder and give it a suitable name, for example
suite.py. Import the PyExperimentSuite class and create a new class that in-
herits from PyExperimentSuite. Next, add the empty method declarations for the
two functions reset() and iterate() as shown in Listing 2. While reset() does
not need a return value, iterate() needs to return a dictionary. For now, this can
be the empty dictionary {}. We will fill out these empty methods further below.
Finally, add the three lines at the bottom of the script for creating the MySuite

object and starting it. If you’re done with this task, you have completed points 1
and 2 from the workflow list in Section 2.2.

Listing 2. MySuite class definition with empty methods for later implementation.
from expsuite import PyExperimentSuite

class MySuite(PyExperimentSuite):

def reset(self, params, rep):

pass

def iterate(self, params, rep, n):

ret = {}

return ret

if __name__ == ’__main__’:

mysuite = MySuite()

mysuite.start()

Running this script calls the object method start(), which parses the main con-
figuration file (which will be covered below) and executes the defined experiments.
If the executing computer has multiple cores available and if the run-time option
-n (or --numcores) is not set to 1, multiple processes are spawned via the Python
multiprocessing package to execute experiments in parallel. Otherwise, the experi-
ments are executed one by one.

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 5

In this case, however, an error message will appear on execution of the suite.py

script to notify you that the config file experiments.cfg could not be found. To
remedy this, create a file called experiments.cfg in the same folder and add a
default section with the parameters shown in Listing 3. These three parameters are
necessary in all your configuration files and the Experiment Suite will complain if
any of them are missing.

Listing 3. Configuration file experiments.cfg with default section.
[DEFAULT]

repetitions = 1

iterations = 100

path = ’results’

After saving the configuration file, the script can be called with python suite.py

without any error messages. Since no experiments have been defined yet, the suite
will just return to the command line.

2.4 Implementing reset() and iterate()

The main implementation work necessary to use the Experiment Suite goes in two
methods: reset() and iterate().

Let’s start with the reset() method, which is called once for each experiment
repetition. Here, all the required objects need to be created and initialized and
necessary data needs to be loaded. Everything required during the experiment
should be assigned to object variables (accessed by the object reference self) be-
cause the iterate() method doesn’t have access to local variables.

As a running example throughout this paper, we want to verify a simple stochastic
law, namely that the sample mean of random numbers drawn from a normal dis-
tribution does converge to the actual mean of the distribution. We use the random

module of the numpy package and store the drawn numbers in a numpy array.

The reset() method needs to contain the code to initialize the array with the
correct size and to seed the random number generator. Listing 4 shows how this
is implemented in the reset() function. Note that the listing only shows a code
snippet for the reset() definition. The full code example can be found under
Listing 8.

Listing 4. Implementation of the reset() method for the random numbers example
def reset(self, params, rep):

initialize array

self.numbers = zeros(params[’iterations’])

seed random number generator

random.seed(params[’seed’])

The Python Papers 6(1):2, 2011.

6 · T. Rückstieß and J. Schmidhuber

The array is initialized with a size of the number of iterations and assigned to
an object variable self.numbers because we will need to access it later on in the
iterate() method.

All parameters defined in the configuration file can be accessed through the dictio-
nary params, which is passed into all the relevant method of the PyExperimentSuite
class. In this example we access the number of iterations from the params dictio-
nary and also make the random seed a parameter of the experiment, which needs to
be defined in the configuration file experiments.cfg. Listing 6 shows the updated
configuration file, already including two experiments called normalized and highstd.

The additional parameter rep that is passed to the reset() method contains the
current repetition number, between 0 and params[’repetitions’]-1.

Next we will look at the iterate() method. It will be called repeatedly during the
execution of one single repetition of one experiment. It can be seen as a single step
or cycle within the experiment. Most experiments have a natural separation into
repeated iterations already. If your experiment does not seem to be iterative, you
might have to introduce some separation into steps manually. If you feel like this
is not possible at all, you can also use a single iteration for the whole experiment,
setting the iterations parameter in the config file to 1.

Just as in the reset() method, the params dictionary is also passed to the iterate()
method. The second parameter passed to this method is rep, which indicates the
current repetition, starting from 0. iterate() has a third parameter, n, which
represents the current iteration index. The variable n starts from 0 and counts up
to params[’iterations’]-1.

While the reset() method did not return any values, the iterate() method is
expected to return a dictionary. The dictionary should contain the relevant infor-
mation that you want to store in the log files. This can be some measure of progress
of your experiment, an error, some identifying strings or the running index n.

To continue the Random Numbers example, we will now execute one step in the
iterate() function. We draw a normally distributed random number, parame-
terized by the two config file parameters mean and std, then calculate the sample
mean of all numbers drawn this far and calculate the offset to the real mean. We
want to log some results, namely the current iteration number n, the drawn random
number, the sample mean and the current offset. We therefore add all these values
to the return dictionary. The keys in the dictionary are strings, with which we will
later be able to retrieve the results. Use unique, descriptive labels for these keys.

Listing 5 demonstrates how to achieve this. Again, this is only the code snippet for
the iterate() method. The full code example can be found under Listing 8.

Listing 5. Example of iterate() method for the Random Numbers example.
def iterate(self, params, rep, n):

draw normally distributed random number

self.numbers[n] = random.normal(params[’mean’], params[’std’])

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 7

calculate sample mean and offset

samplemean = mean(self.numbers[:n])

offset = abs(params[’mean’]-samplemean)

return dictionary

ret = {’n’:n, ’number’:self.numbers[n],

’samplemean’:samplemean, ’offset’:offset}

return ret

Besides the three mandatory parameters repetitions, iterations and path, we
used three more parameters in the code example in Listings 4 and 5: seed for
the random number generator seed, and mean and std to parameterize the normal
distribution. These parameters have to be defined in the config file. We will make
seed a default parameter that we leave unchanged for now, and define two experi-
ments, called normalized and highstd each with their own section in square brackets
and with different values for the std parameter. We also increased the number of
iterations to 10000 for this example. Listing 6 shows the final configuration file for
this example.

Listing 6. Configuration file for the random numbers example with 2 experiments
[DEFAULT]

repetitions = 1

iterations = 10000

path = ’results’

seed = None

[normalized]

mean = 0.0

std = 1.0

[highstd]

mean = 0.0

std = 5.0

By implementing the reset() and iterate() methods, you have completed point
3 from the workflow list in Section 2.2. We also created the configuration file
experiments.cfg, which completes point 5 from the workflow list.

2.5 Optional Resume Functionality

If you interrupt the suite while it is executing the experiments, by killing the process
or even by a power failure, the suite is left in a somewhat undefined state.

Without any further implementation work, all it can do is to abandon the already
executed iterations in the current repetition and start the repetition again. The

The Python Papers 6(1):2, 2011.

8 · T. Rückstieß and J. Schmidhuber

Suite does that automatically: it will delete the already logged iterations of the
current repetition (or repetitions, if you use multiple cores) and restart them from
iteration step 0, by calling the reset() method again. Already completed repeti-
tions are of course not affected and will remain in the log files.

Still, some experiments can be very time-consuming and even losing a few itera-
tion steps might be inacceptable. In this case, you need to set the class variable
restore supported to True and implement a few more lines of code, namely the
two methods save state() and restore state(). The save state() method is
called after each iteration step has completed, and its task is to save all relevant
information needed to continue from this iteration step. This can be done by mar-
shalling1 crucial objects to a persistant memory store (e.g. a file or database), or
otherwise saving the current state of the experiment.

If the variable restore supported is set to True, the suite checks upon start if there
are unfinished experiments on iteration level. It then calls the restore state()

method with the appropriate parameters, repetition and iteration index. The task
of the restore state() function is to load the correct data from files and restore
the class objects to that state.

Listing 7 shows, how these functions are implemented for the Random Numbers
example. Basically, all the information required to resume the experiment where
left off is the list of numbers drawn in previous iterations. In our example, the
save state() method thus needs to save the self.numbers array, and the restore state()

method needs to load it again.

If the script is executed now, and aborted or killed during runtime, the most data
you could lose is one single iteration (the one that was currently being calculated,
before the results could have been saved to disk). Listing 8 provides the full code
for the Random Numbers example.

Listing 7. Save and restore methods for the Random Numbers example.
restore_supported = True

def save_state(self, params, rep, n):

save array as binary file

save(os.path.join(params[’path’], params[’name’],

’array_%i.npy’%rep), self.numbers)

def restore_state(self, params, rep, n):

load array from file

self.numbers = load(os.path.join(params[’path’],

params[’name’], ’array_%i.npy’%rep))

1also called serializing in the Java community and pickling in the C and Python community.

pickle, and its faster C implementation cPickle are Python packages that can serialize objects and

save them to disk, and restore (unpickle) the files and create objects again. A full documentation of
the pickle and cPickle packages can be found at http://docs.python.org/library/pickle.html.

Other ways of saving data may be used as well, e.g. XML exports.

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 9

Listing 8. Complete code listing for Random Numbers example.
from expsuite import PyExperimentSuite

from numpy import *

import os

class MySuite(PyExperimentSuite):

restore_supported = True

def reset(self, params, rep):

initialize array

self.numbers = zeros(params[’iterations’])

seed random number generator

random.seed(params[’seed’])

def iterate(self, params, rep, n):

draw normally distributed random number

self.numbers[n] = random.normal(params[’mean’],

params[’std’])

calculate sample mean and offset

samplemean = mean(self.numbers[:n])

offset = abs(params[’mean’]-samplemean)

return dictionary

ret = {’n’:n, ’number’:self.numbers[n],

’samplemean’:samplemean, ’offset’:offset}

return ret

def save_state(self, params, rep, n):

save array as binary file

save(os.path.join(params[’path’], params[’name’],

’array_%i.npy’%rep), self.numbers)

def restore_state(self, params, rep, n):

load array from file

self.numbers = load(os.path.join(params[’path’],

params[’name’], ’array_%i.npy’%rep))

if __name__ == ’__main__’:

mysuite = MySuite()

mysuite.start()

The Python Papers 6(1):2, 2011.

10 · T. Rückstieß and J. Schmidhuber

3. PARAMETER CONFIGURATION AND RUNTIME OPTIONS

This Section will give more details about the configuration file which is workflow
step 5 from Section 2.2, and available options on run-time for workflow step 6.

3.1 The Configuration File

The configuration file (experiments.cfg in the same folder by default) is sepa-
rated in different sections that start with a section header in square brackets, like
[sectionname]. Following the section header are entries of the form name=value,
each on a single line. Leading whitespace is removed from values. Lines beginning
with # or ; are ignored and can be used as comments. The configuration script is
parsed by the Python module ConfigParser2 and follows its syntax.

A special section with header [DEFAULT] can be provided. Any other section will
inherit all key-value pairs from this section, unless it defines another value for an
existing key, in which case the new value will be chosen instead.

Acceptable values include any type that can be evaluated to a Python int, float,
string, or object. In fact, PyExperimentSuite will try to evaluate the given value
using the Python function eval(), and if no errors occur, interpret it as its Python
pendant. This means that everything that can be evaluated to an integer will be
treated as one, the same is true for floats. More complex values, like sin(2.) or
0.5*pi are also valid expressions.

Everything that cannot be evaluated without raising an exception will be inter-
preted as a string. This means that string values with and without quotation
marks are possible. As an example, the two parameter definitions name=peter and
name="peter" will both evaluate to a dictionary entry in the params dictionary
with key name and a string value peter. To avoid confusion with strings equal
to Python function names, however, it is recommended to add quotation marks
around strings.

Lists and iterable objects play a special role as explained in Section 3.2 below
and will, by default, not be passed to the parameters as their Python equivalents.
Listing 9 demonstrates some valid key-value pairs.

Listing 9. Examples for valid key-value pairs for the configuration file.
[DEFAULT]

path = ./results/

repetitions = 1

iterations = 100

seed = None

[experiment1]

2http://docs.python.org/library/configparser.html

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 11

mean = 0.1

std = [0.5, 1.0, 1.5]

[experiment2]

experiment = ’grid’

mean = arange(0.0, 1.0, 0.2)

std = [0.5, 1.0, 2.0]

[experiment3]

experiment = ’list’

mean = arange(0.0, 1.0, 0.2)

std = [0.5, 1.0, 2.0]

[experiment4]

experiment = ’single’

mean = arange(0.0, 1.0, 0.2)

std = [0.5, 1.0, 2.0]

3.2 Evaluating Parameter Ranges

If your value evaluates to a Python object that is iterable (e.g. lists, numpy arrays,
generator objects, etc.) the Suite will not assign the object to the parameter by
default. Instead, it assumes that you want to try a range of values in separate
experiments. This is very handy if you need to find the optimal value for certain
parameters, because you can just define the range and let the Experiment Suite
do all the testing. Per default, the elements of iterable objects are passed to the
parameter individually in separate sub-experiments, while all other non-iterable
parameters are kept constant. If you need to assign a list or iterable object to a
parameter and do not want the Suite to create several paramter range experiments
in this way, check out the experiment type ’single’ in Section 3.3 below.

3.3 Parameter Range Combinations

For more than one parameter that evaluates to an iterable object, two choices are
available: try every single combination of all parameter choices or run successive
experiments with the parameters of the same list indices. The different experiment
types can be set by the configuration parameter experiment. Figure 1 explains
the difference graphically.

The first choice is called a grid experiment, and is also set as the default. The
Experiment Suite will create sub-experiments for every single combination of all
parameters.

Experiment 2 in Listing 9 defines two iterable parameters, mean and std. Numpy’s
arange() evaluates to a list with the values 0.0, 0.2, 0.4, 0.6 and 0.8 for mean, and
std takes on the values of 0.5, 1.0 and 2.0. In total, the Suite will run 5 · 3 = 15
experiments. Note the additional parameter experiment, which is set to the value

The Python Papers 6(1):2, 2011.

12 · T. Rückstieß and J. Schmidhuber

’grid’. In this case, the experiment parameter could have been omitted, since
the grid experiment is the default.

The second option for running an experiment with parameter range combinations
is a list experiment, and the experiment parameter is set to the value ’list’.
Here, each experiment will contain values from both lists at the same indices. The
number of sub-experiments created by this process is the length of the shortest list.
In case of experiment 3 in Listing 9, the Suite will create 3 experiments with the
following parameters:

mean = 0.0, std = 0.5

mean = 0.2, std = 1.0

mean = 0.4, std = 2.0

The list for mean would contain more values, but since there are not corresponding
values in the std list, the other experiments are discarded.

Experiments are not limited to two lists but can have arbitrary numbers of iterable
objects. Just keep in mind that in the grid case, the number of experiments is the
product of all list lengths, and in the list case, it is the length of the shortest list.

If you don’t want to create multiple experiments but use the assigned iterable object
as value, use ’single’ as the experiment value.

parameter 1

parameter 1

parameter 2

pa
ra

m
et

er
 2

Fig. 1. Two different types of experiments with parameter range combinations. The white squares
represent discrete values of a parameter range, which is shown as an arrow. The black circles
are experiments with a certain parameter combination. On the left side, a grid experiment is

evaluated. On the right side, a list experiment is shown.

3.4 Run-Time Options

When calling your suite.py script from the command line, several options are avail-
able. In this section, we will describe some of them and explain their usage. For a

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 13

full list of options, refer to the documentation. After reading this chapter, you are
able to complete workflow step 6 of Section 2.2.

A useful run-time option is the -h or --help flag. Calling the script with that
option will present a list of all the available command line options. Running the
Python script with this flag will not execute any experiments but return to the
prompt immediately.

The -n <number> or --numcores=<number> option lets you restrict PyExperi-
mentSuite to a certain number of cores. If you specify this option, the Suite will at
most use the number of cores given. If this option is not present, it will use all the
available cores it can find on the local machine.

If you don’t want to execute all experiments defined in the config file but only one or
a few selected ones, you can use the -e <experiment> or --experiment=<experiment>
option. Specify each experiment you want to run explicitly with a separate -e op-
tion. If this option is not present, all defined experiments will be executed. Note
that this option is unrelated to the experiment type (grid, list, single) which is set
in the configuration file.

The browse option -b or --browse does not execute the script (no experiments
are started or continued) but returns a list of current experiments and additional
information. The lower-case version of this option tells you each experiment’s name,
start and end time, the number of repetitions and iterations, and the progress of
the experiment in percent. The upper-case version -B or --Browse is more verbose
and additionally tells you all the parameters for each experiment. Similar to the
browse option, the progress option -p shows a list of experiments and a progress
bar of their completion.

4. RESULT RETRIEVAL

This section explains what you can do after your experiments have finished. It will
explain where the log files are stored, what you will find in the log files, and how
you can easily retrieve any relevant information within Python, without writing
your own log file parser.

4.1 Log Files

The log files that the Experiment Suite creates contain the key-value pairs that the
iterate() function (ref. Section 2.4) returned as dictionary. Each line of a log file
corresponds to one single iteration. They key-value pairs are stored in this format:

key1:value1 key2:value2 key3:value3 ...

For each repetition, a separate log file is created, and each log file is named #.log

where # is the repetition number, starting with 0. The logfile is located depending
on the defined path and experiment, for example at at ./results/experiment1/0.log.

As the order of Python dictionary entries is unspecified, so is the order of the key-

The Python Papers 6(1):2, 2011.

14 · T. Rückstieß and J. Schmidhuber

value pairs in the log file3. The log file of our ongoing Random Numbers example
could look like this (note the n key at the end of the line rather than the beginning,
as defined in the iterate() method):

samplemean:-1.3254 number:0.5941 offset:1.3254 n:1

samplemean:-0.3656 number:2.6571 offset:0.3656 n:2

samplemean:0.6419 number:-1.4690 offset:0.6419 n:3

samplemean:0.1141 number:0.4120 offset:0.1141 n:4

...

If your experiment contained any parameter range evaluations with lists or other
iterable objects (see Section 3.2 and 3.3), PyExperimentSuite will have created
sub-directories under ./path/name/ with unique names based on the evaluated
parameter combination. Within the sub-directories, the log files are stored as de-
scribed before.

The log files can be used to post-process your results, or plot or otherwise display
them. The Experiment Suite ships with a build-in parser already, that is accessible
via a Python interface. The next section explains, how to retrieve your stored
results.

4.2 Python Interface

The Python Experiment Suite comes with several functions that can be used to re-
trieve data after the experiments have run. This section describes the final workflow
step 7 from the list in Section 2.2.

The names of all functions intended to use for data retrieval start with the prefix
get . Some of them are described in this section, for a full list please refer to the
Experiment Suite documentation.

The first retrieval function you might use is get exps(). This function goes through
all existing subdirectories and locates your experiments. It returns the full paths
of all existing experiments (finished or not) under the current directory as a list.
The function has an optional parameter path that specifies the directory of where
to start with the search. All other data retrieval functions, require an experiment
identifier exp in their function call, which is the path and name of the experiment,
e.g. ./results/experiment1. The above function returns this path, so you can
use it for the functions that follow below.

The most atomic data retrieval task is to access a single value of a single iteration.

>>> mysuite.get_value(exp, rep, tags, which)

3Python 2.7 introduced ordered dictionaries that remember the order of inserted keys. Future

versions of the Python Experiment Suite might use these ordered dictionaries. To keep the required

Python version as low as possible, we decided to use normal dictionaries here and stick with version
2.6. As the data retrieval API imports the config files back into Python dictionaries, this is not a

big issue here.

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 15

You could, for example, want to find the value of offset after 25 iterations in the
first repetition of experiment experiment1. The function get value() does exactly
that. It takes four parameters: exp is the directory of the experiment you would
like to access, rep specifies the repetition number. tags can be a string or a list of
strings. If it is a string, it needs to contain the key which you would like to access.
This is the key you added to the dictionary in method iterate(). If you want to
access several keys at once, pass a list of strings to the function, and if you want to
retrieve all keys, simply pass the string ’all’. Finally, you need to specify, which
value(s) you would like to access. The choices are the strings ’last’, ’min’, ’max’
or an integer. ’last’ will return the value from the very last iteration. ’min’ and
and ’max’ return the minimal or maximal value over all iterations. If you pass an
integer to the which argument, you will get the value at this specific iteration. For
the afore-mentioned example, the call would be

>>> mysuite.get_value(’./results/experiment1’, 0, ’offset’, 25)

If you requested only one key, the return value will be a scalar. If you requested
several or all keys, you will get a dictionary with key-value pairs as a result.

Retrieving a single value from a sub-experiment created by parameter ranges works
the same, except the experiment location is a bit longer. Use the full experiment
path ./path/name/sub-exp to retrieve single values.

There is, however, another function that is made to work with parameter ranges,
and it is particular useful with grid experiments. If you have tested a grid of several
parameters, and you would like to retrieve values along one particular parameter
axis and fixing the other ranges, the function get values fix params() might be
of use to you.

>>> mysuite.get_values_fix_params(exp, rep, tags, which, **kwargs)

It uses the same syntax as get value() but has an additional **kwargs argument,
which means you can pass an arbitrary number of additional keyword-value pairs
in the function. The keywords expected here are the keys you would like to keep
fixed to a certain value. Basically, for each keyword you add, you slice the (possibly
multi-dimensional) grid along one axis and only consider experiments that lie on
that axis. Refer to the left side of Figure 1 again for visual support.

Let’s have a look at experiment 2 from Listing 9, which defined two parameter
ranges in a grid fashion:

mean = arange(0.0, 1.0, 0.2)

std = [0.5, 1.0, 2.0]

This definition will create 15 experiments (because mean evaluates to [0.0, 0.2,

0.4, 0.6, 0.8]). If this was part of our Random Numbers example, and we were
looking for the smallest offset under the condition that mean was 0.2, this is how
we would call the function:

The Python Papers 6(1):2, 2011.

16 · T. Rückstieß and J. Schmidhuber

>>> values, params = mysuite.get_values_fix_params(

’./results/experiment2’, 0, ’offset’, ’min’, mean=0.2)

As you can see in the function call, this function actually returns a tuple of two
different things: the actual values, and the experiment parameters. Both return
values are lists of equal lengths. The first one contains results in the form that
you would expect from get value(): either scalars or dictionaries of key-value
pairs. the second return value contains equally many dictionaries: each dictionary
consists of all the parameters of the experiments that matched the criteria given
by **kwargs.

You can add as few or many conditions to the function as you like, not just one.
Each condition limits the returned experiments and values further. If you call the
function without any conditions, it will go over all sub-experiments. As an example,
if you evaluated several different parameter ranges in a grid and just want to find
the overall lowest offset, call this function without any **kwargs arguments.

Another common task with the Experiment Suite is to retrieve a whole history
over all iterations of a certain key, for example if you want to plot how the error
of an optimization problem slowly decreased with each iteration. The function
get history() can help you with this.

>>> mysuite.get_history(exp, rep, tags)

This function expects the location of your experiment, the index of the repetition
you would like to access, and the keys you want to retrieve, either a single string,
a list of strings, or the string ’all’. It then returns a list of all values of that key,
or a dictionary of lists with the corresponding keys.

In case you want to plot the history with the separate module matplotlib, you could
call:

>>> plt.plot(mysuite.get_history(’./results/experiment1’, 0,

’offset’), ’-o’, label=’mean offset’)

Just as with the get value() method described above, histories can also be re-
turned from parameter range experiments. the function get histories fix params()

retrieves several histories over a set of parameter range experiments with additional
constraints.

There is another useful history-retrieving function, which is most useful if you
executed many repetitions of the same experiment. One reason to do this, is because
your experiment might be of stochastic nature and you want to average over all
these repetitions.

>>> mysuite.get_histories_over_repetitions(exp, tags, aggregate)

This function requires the location of your experiment, the key(s) you are interested
in (again as single string, list of strings or the string ’all’), and an aggregation
function. Typical aggregation functions could be sum, mean, max, etc. The function
will not return the history of one single repetition, but use all repetitions and map

The Python Papers 6(1):2, 2011.

A Python Experiment Suite · 17

the values of each repetition to the aggregation function. Let’s say the aggregation
function is called aggr() and the value at repetition r and iteration i is defined as
vri . Repetitions range from 0 to R and iterations range from 0 to I. The result is
then a new list that contains values with same iteration indices, to which aggr()

has been applied:

[aggr(v00 , v
1
0 , . . . , v

R
0), aggr(v01 , v

1
1 , . . . , v

R
1), . . . , aggr(v0I , v

1
I , . . . , v

R
I)]

One common use of this function is to average histories over all repetitions with
the aggregation function mean (imported from numpy):

>>> mysuite.get_histories_over_repetitions(

’./results/experiment1’, ’offset’, mean)

5. LIMITATIONS

One of the obvious drawbacks of the Python Experiment Suite is its limitation
to one single computer. While it makes use of Python’s multiprocessing package
and can spread repetitions and experiments over multiple cores, there is currently
no way to extend this to several machines. An extension for cluster computing is
planned and will be considered for a future version.

Currently, it is not trivial to use the Python Experiment Suite for non-pythonic
experiments. While it is possible to call shell scripts from within Python to start
experiments, the feedback for log files is not obvious. System packages like Python’s
os and sys might be of help, or the Popen3 and Popen4 classes, which can access
the standard output and error streams of the programs.

Another limitation is that experiment types like grid, list, single can not be com-
bined to run even more complex setups. This limitation was deliberately chosen to
simplify the configuration process of experiments. A more flexible approach would
necessarily come with a more complex experiment definition, which most users have
no need for.

Finally, the current experiment types are static, but machine learning provides
methods of flexible experiment design, like active learning [Cohn et al. 1994; Mi-
lano et al. 2001]. In those experiments the result of one experiment defines the
parameters of the next experiment. Support for dynamic experiment types are
subject of ongoing development.

6. CONCLUSION

We introduced the Python Experiment Suite, a tool that facilitates experiment
design and execution with many features. It offers an easy, convenient way to run
scientific experiments in Python, while taking care of result logging, multi-core
execution and parameter range evaluations. While the tool still has its limitations,
we hope that a large group of people will find it useful and save time that they can
spend in their work or research instead.

The Python Papers 6(1):2, 2011.

18 · T. Rückstieß and J. Schmidhuber

REFERENCES

Beazley, D. and Lomdahl, P. 1997. Building flexible large-scale scientific computing applica-

tions with scripting languages. In 8th SIAM Conference on Parallel Processing for Scientific

Computing, March. 14–17.

Bishop, C. 2006. Pattern recognition and machine learning. Springer.

Cohn, D., Atlas, L., and Ladner, R. 1994. Improving generalization with active learning.

Machine Learning 15, 2, 201–221.

Langtangen, H. 2008. Python scripting for computational science. Springer Verlag.

Milano, M., Schmidhuber, J., and Koumoutsakos, P. 2001. Active learning with adaptive
grids. Artificial Neural Networks—ICANN 2001 , 436–442.

Oliphant, T. 2007. Python for scientific computing. Computing in Science & Engineering,

10–20.

Ousterhout, J. 1998. Scripting: Higher-level programming for the 21st century. IEEE com-

puter 31, 3, 23–30.

The Python Papers 6(1):2, 2011.

