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Abstract

While there is an enormous amount of mu-
sic data available, the field of music analy-
sis almost exclusively uses manually designed
features. In this work we learn features from
music data in a completely unsupervised way
and evaluate them on a musical genre classifi-
cation task. We achieve results very close to
state-of-the-art performance which relies on
highly hand-tuned feature extractors.

1. Introduction

We consider the problem of content-based music sim-
ilarity estimation (MSE). A typical MSE system has
two parts for modeling music (see (Seyerlehner et al.,
2010) for more details): (a) extracting features from
the audio data, and (b) aggregating these features into
a global description for every music piece. While in (b)
sometimes simple machine learning algorithms are ap-
plied, (a) usually is exclusively hand-designed (a few
notable exceptions are (Lee et al., 2009; Hoffman et al.,
2009; Hamel & Eck, 2010)). In our work, we substitute
these hand-designed feature extractors with a mean-
covariance Restricted Boltzmann Machine (mcRBM,
(Ranzato & Hinton, 2010)), an unsupervised learning
algorithm that shows excellent performance for various
image and speech modelling tasks (Ranzato & Hinton,
2010; Dahl et al., 2010).

2. The mean-covariance RBM

An mcRBM is a generative model that defines a prob-
ability distribution over its input variables v and two
groups of binary hidden units: mean units hm and
precision units hc. Without the precision units, the
mcRBM would be a Gaussian-Bernoulli RBM guided
by the following energy function:

Em(v,hm) =
1

2
(v − b)T (v − b)− cThm − vTWhm

Here W denotes the matrix of visible/hidden connec-
tion weights and b/c the visible/hidden bias1. With
only the precision units this model is a particular type
of factored third-order Boltzmann machine (Ranzato
et al., 2010). The energy function of this cRBM can
be written as:

Ec(v,hc) = −dThc − (vTR)2Phc

R is the visible-factor weight matrix, P the factor-
hidden pooling matrix, and d the hidden bias vector.
If we add the two energy functions, we obtain the en-
ergy function of the mcRBM: Emc = Em + Ec. The
resulting conditional distribution for the visible units
is

P (v|hm,hc) ∝ N (ΣWhm,Σ)

with Σ = (R(diag(−PThc))R
T )−1. The conditional

distribution for the mean units is the same as in a
standard RBM,

P (hm|v) = σ(b + WTv),

1We are closely following (Dahl et al., 2010), Section 3.
For a detailed account of mcRBMs, see (Ranzato & Hinton,
2010).
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Table 1. k-NN classification accuracies of various methods
on the two datasets for k = 20.

Method 1517-Artists Homburg

Random baseline 4.7 22.6
MVG-MFCC 25.6 48.8
CMB 41.1 61.2

Our work 35.0 55.3

while for the precision units it is

P (hc|v) = σ(d + ((vTR)2P)T ).

So once an mcRBM has been trained, inferring the
latent representation for a given data vector is com-
putationally cheap enough to use the model for large-
scale feature extraction. See (Ranzato et al., 2010) and
(Ranzato & Hinton, 2010) for details on the training
procedure.

3. Experiments

Ground truth data for evaluating music similarity
measures is hard to obtain. However, music genre clas-
sification has been shown to be a good proxy for music
similarity estimation, allowing comparison of different
methods (Pohle, 2010).

3.1. Datasets

We use two different genre classification datasets,
1517-Artists (Seyerlehner et al., 2010) and Homburg
(Homburg et al., 2005). Artist information is avail-
able for both datasets, so we can use an artist filter
to eliminate any artist or album effect. 1517-Artists
encompasses 3,180 tracks by 1,517 different artists, dis-
tributed almost uniformly over 19 genres. The Hom-
burg dataset contains 1,886 songs by 1,463 different
artists. The short song excerpts (10 seconds long) are
unequally distributed over 9 genres, the largest class
contains 26.7%, the smallest class 2.5% of all songs.

3.2. Preprocessing

For all our experiments we preprocessed the acous-
tic signal similar to (Dahl et al., 2010): The signal is
divided into frames of 64 ms length, with successive
frames having an overlap of 32 ms. Each frame is rep-
resented by the 40-log magnitudes of a mel filter bank.
39 Consecutive frames form a block that is whitened
with PCA and truncated to the 310 most important
principal components, retaining 99% of the total vari-
ance.

3.3. Training Details

On these blocks, we train an mcRBM with 2,500 fac-
tors, 625 covariance hidden units and 512 mean hidden
units. P is initialized to a topography over the fil-
ter outputs of matrix R, enforcing similarity between
neighbouring filters. Similar results are obtained with
2d and 1d topographies; below, we only report results
for a 2d topography. P is not updated for the first 11
epochs to let the filters converge first, and then masked
to retain the topography, only allowing changes to the
weights of already nonzero factor/hidden connections.
All other parameters for learning the model are those
that can be found in the example configuration of the
code accompanying (Ranzato & Hinton, 2010).

3.4. Feature aggregation

Given the trained mcRBM, we infer latent representa-
tions for all blocks of a music piece. A global descriptor
for a piece is built by adding up all its block representa-
tions and normalizing this vector such that it sums to
1. Distances between different music pieces are deter-
mined via the L1 norm. Following (Seyerlehner et al.,
2010), we also apply a distance space normalization to
the distance matrix.

3.5. Results

We performed the genre classification experiments
with a k Nearest Neighbour (k-NN) classifier, with k
ranging from 1 to 20. In Table 1 we compare pre-
viously published results for both datasets with our
work. MVG-MFCC (Mandel & Ellis, 2005) represents
songs as a multivariate Gaussian of MFCCs, a short-
term spectral feature borrowed from speech process-
ing. CMB (Seyerlehner et al., 2010) constructs a rep-
resentation for a song through a weighted combination
of more than ten hand-crafted feature extractors. On
the two datasets, CMB represents the current state of
the art for MSE. Additionally, we visualize some typ-
ical examples of the learned filters in Figure 1. The
filters seem to capture different musical concepts, such
as note onsets. See the caption for more details.

4. Conclusion

We used a recently proposed unsupervised learning al-
gorithm to find useful features of music data. By lever-
aging a large amount of unlabeled data our learned
features achieve results nearly as good as state-of-art
algorithms, which are hand-crafted and finely tuned
to music data. In order to improve our results, we are
currently investigating hierarchical deep architectures,
mainly with a focus on better modeling of rhythms.
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(a) (b)

Figure 1. Exemplary filters of an mcRBM trained on mu-
sic excerpts. Each block represents 1,248 ms of a spec-
trogram. Time increases from left to right, mel-frequency
from bottom to top, bright and dark indicate positive and
negative values, respectively. On the left side (a) we see
filters learned by the covariance part of the mcRBM. In
reading order, we show two examples each for recurring
themes: note onsets, fixed-length notes, repetitive percus-
sion, chords, note transitions, and mixed tones. On the
right side (b) we show filters learned by the mean part of
the mcRBM. These filters only develop as onset detectors
or mixed tones.
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