
Embedded Platform for Automation of Medical Devices

A. Mendoza Garcia1, M. Rodriguez Huizar2, B. Baumgartner 1, U.Schreiber 3, A. Knoll 1

1Technische Universität München, Munich, Germany
2Hochschule Mannheim, Mannheim, Germany

3German Heart Center, Munich, Germany

Abstract

Embedded systems are becoming of great interest in the
medical field. With the reduction of size and increase in
processing power, small devices capable of capturing pa-
tient data and making control decisions may help in pro-
viding patients with better treatments. This paper de-
scribes an embedded platform that may be used for the
automation of medical devices. A description is given of
the hardware and software of this platform. The system
may be easily adapted to specific applications with the use
of XML based configuration files. At the end a case study of
the automation of a heart-lung machine is presented with
some preliminary results.

1. Introduction

The use of embedded systems in the medical field is
becoming of great interest since it allows the creation of
small portable devices that help in the treatment of pa-
tients. With the increase of processing power in such de-
vices it is possible to integrate control mechanisms capa-
ble of adjusting parameters and take decisions depending
on what is sensed from the patient. With the increasing
need of medical control systems, the characteristics may
be similar for several applications, by using a general pur-
pose reconfigurable platform the time of development may
be greatly reduced. This device must be robust and fully
reliable, capable of working for extended periods of time
without failure.

To enable the system to be easily reconfigurable indi-
vidual components were designed to be used as building
blocks for the complete system. For a specific application,
the components required are assembled with configuration
files without the need of compilation, eliminating the risk
of introducing bugs in the system. Each component can
be individually tested for errors reducing the time used for
verification.

The time and costs required for the development of
an embedded system is significant due to all the compo-
nents involved, prototyping and testing required. To over-

come this, a commercially available embedded platform
was considered as a main module of the embedded sys-
tem. An additional processing unit was included serving
as a supervisor of the main module.

On the software layer a Linux open source operating
system was used for the main module, providing an ab-
straction of the hardware with already available features
such as file read/write support, network, serial transmis-
sion, among others. Only a reduced number of drivers are
needed which take care of specific hardware components.
This allows the system to be portable between different
hardware platforms and may be easily upgraded.

As a control mechanism fuzzy logic was considered
since it provides a straight forward way of using rules pro-
vided by specialists dictating how the system should re-
spond to the given inputs. A case-study is shown how the
platform is configured to control the speed of a centrifu-
gal pump of a heart-lung machine. This is done depend-
ing on the current mean arterial pressure (MAP) and extra-
corporal flow rate (EFR) of the patient.

2. System Description

A medical device requires real-time patient data to be
able to take decisions. Vital signals are obtained through
various sensors. The sensors signal are then acquired from
different interfaces such as analog to digital converters, se-
rial ports, ethernet among others.

The system should be capable of visualizing the differ-
ent signals to verify correct acquisition and provide user
interfaces for sensor calibration and system configuration
and control. Logging information is also crucial for future
analysis of system behavior and patient reactions. Remote
access to the system is possible with the use of an ethernet
connection.

Reliability is of great importance. The system must be
capable of detecting any failure from the sensors, the hard-
ware components or software. An independent supervisor
unit was included, in charge of monitoring the main system
and give an alarm in case of failure. Low power consump-
tion was considered to allow the system to be portable and



Figure 1. Embedded Platform

battery powered.
The system is intended to be easily configurable for

different applications. A control mechanism is provided
where different rules may be programmed to determine the
behaviour of the system.

3. Hardware Layer

We used an already built embedded system which com-
plied with the system requirements. Several options where
found as evaluation boards [1–3] however they did not ful-
fill all of the requirements. From Technologic Systems [4]
an embedded system was found covering all of the previ-
ous requirements. This consists of a TS-7300 board with
an 200Mhz ARM920T processor, 2 ethernet ports, 2 USB,
2 UARTs, 2 SD cards, among with a PC/104 Bus for ad-
ditional daughter boards. The TS-ADC16 board was con-
nected to the PC/104 bus, with 16 ADC channels with 16-
bit resolution and four 12-bit DAC channels.

4. Software Layer

The TS-7300 board comes with a pre-configured open
source Linux debian based distribution with Kernel ver-
sion 2.4.26. Having this operating system provides func-
tionality such as ethernet configuration, ssh remote access,
sd read/write access. Figure 2 shows the different compo-
nents of the software layer.

4.1. Main System

Embedded Qt version 4.7 [5] was used to provide a user
interface. The source code may be downloaded and con-
figured to be compiled for a specific platform. A gcc cros-
compiler provided by Technologic Systems was used to
compile the Qt source code.

Using Qt brought the advantage of using the same code
to run on the embedded platform and on a normal x86 PC;
the only change is the compiler and some of the hardware

Figure 2. Software Layer

specific drivers. This reduced the development process
greatly since most of the tests and debugging was done
on a fast computer and after the program functionality was
completed this could be tested in the embedded platform.

4.1.1. Medical Device Control Program

Considering the requirement of configurability a pro-
gram called medical device control (MDC) was created.
The AutoMedic library designed in our group[6] was used
as part of the MDC program. A BaseObject abstract class
was defined as a fundamental component. This BaseOb-
ject is composed of OutputPorts containing a name and a
value, and a ConnectPort used as inputs to the BaseOb-
ject. The ConnectPort contains a name and a pointer to the
OutPort from where the value is obtained as input. All the
classes that derive from this object must implement a cal-
culate() method which contains the operations required to
generate the output signals. These objects may be used as
construction blocks for the control module.

Table 1 lists the different objects that may be used for
specific applications.

Input/Output Parameters
Signal Intputs: ADC,ECG,SpO2,Network
Operators: Derivative,Sum,Gain
Saturation,Filter,Reference Model,Delay
Control: Basic Controller,Adaptive Controller
Outputs: DAC,Scope,Network,CAN,RS232

Table 1. MDC Objects

The specific parameters for all of the objects are de-
scribed in XML files that may be easily changed.

Fuzzy logic was used as a control mechanism. This al-
lows the creation of rules that may be provided by special-
ized medical doctors on how the system should behave [7].



4.2. Supervisor System

The safety and reliability of the system should be guar-
anteed at all times. System failure may come from differ-
ent parts of the system. From the input signals obtained
from the different sensors safety checks of critical mini-
mum and maximum values are checked at all times. At
the same time the control signals are checked to be under
a predefined range.

To verify the correct operation of the MDC program and
the complete system two supervising components were
considered. The first one is based on a software monitoring
system that runs in parallel with the MDC. An open-source
project called SMART (Smart Monitoring and Rebooting
Tool) was adapted to monitor the MDC program. In case a
service is not present or stops working SMART automati-
cally restarts the process. The second supervising compo-
nent consists of an additional micro processor capable of
running independently of the main system. Both systems
communicate periodically sending each other an alive sig-
nal and acknowledgement. A state machine was created to
allow both of the systems to communicate with each other.
If one of the systems stops responding alarms are gener-
ated to inform the user of a system failure.

For the supervising unit a real time operating system
was used. FreeRTOS provided the functionality needed
and was easily ported to the selected hardware.

5. Case Study: Heart-Lung Machine Au-
tomation

This platform was developed as part of a project to auto-
mate a heart-lung machine, in previous work we describe
the process of automation, and simulation in a mathemati-
cal model[8] and tests with a hydraulic model[9]. This em-
bedded platform together with the hydraulic model men-
tioned was used as a case study to analyze the adaptation
and functionality of the system.

An ultrasonic flow probe together with a pressure sen-
sors, were used as analog input signals to the system. The
system was configured to use the analog to digital con-
verter to receive these signals. Target values are intro-
duced by the operator. Two fuzzy controllers were used
for this application. One containing the rules to reach the
target MAP and another for the EFR. The inputs of the
controllers are the difference between the target values and
the current values and the derivative of each input. The
rules determine if the centrifugal pump speed should be
increased or decreased. The output of both controllers are
added to generate one single value. This value is intro-
duced into an analog to digital converter after minimum
and maximum ranges have been verified.

5.1. File configuration

The creation of the configuration files are done by using
predefined templates of the objects needed. These are then
verified for correct notation.

Figure 3 shows the xml file descriptor for our case study.
This generates two input parameters to control Mean Arte-
rial Pressure (MAP) and Extra-corporal Flow Rate (EFR),
for these parameters a safe range of maximum and min-
imum are specified. The controller will try to reach the
normal value of MAP and EFR by adjusting the speed of a
centrifugal pump, given as PumpSpeed. Following this is
the description of the sensor device, in this case using the
TS7300 DAQ board, with 2 analog inputs acquired through
a pressure sensor and a flow probe and an analog output
as a voltage connected to a motor drive of the centrifugal
pump. Two fuzzy controllers are specified, both consid-
ering the current value and the derivative value. For each
input and output the number of sets of the controller are
specified and the type of rules to create for each controller.
In this case the Fuzzy controller acts as a proportional-

<?xml version="1.0" encoding="UTF-8" ?>
<PumpControl>
<Parameters>
<Control NumParam="2">
<Var1 Name="MAP" Units="mmHg"
Min="50" Normal="70" Max="110" ... />
<Var2 Name="EFR" Units="L/min" M
Min="0" Normal="4" Max="5" ... />

</Control>
<Output NumParam="1">
<Var1 Name="PumpSpeed" Units="rpm"
Min="1000" Normal="1000" Max="3900" ... />

</Output>
</Parameters>
<Sensors NumSensors="1">
<Sensor1 Name="DAQ" Type="TS7300" Inputs="3"
Freq="50" Outputs="1" ... >
<Input1 Name="MAP" Units="mmHg" />
<Input2 Name="EFR" Units="L/min" />
<Input3 Name="cPumpSpeed" Units="rpm" />
<Output1 Name="PumpSpeed" Units="rpm" />
</Sensor1>

</Sensors>
<FuzzyControl NumControllers="2" Type="Mamdani" >
<Control1 Name="MAP" Inputs="2" Outputs="1" >
<Input1 Name="eMAP" NumSets="7" Gain= "0.025" .../>
<Input2 Name="deMAP" NumSets="5" Gain= "0.1" ... />
<Output1 Name="dPump0" Gain="0.03" RuleType="PI"/>

</Control1>
<Control2 Name="EFR" Inputs="2" Outputs="1" >
<Input1 Name="eEFR" NumSets="7" Gain= "0.25" ... />
<Input2 Name="deEFR" NumSets="5" Gain= "0.1" ... />
<Output1 Name="dPump1" Gain="0.03" RuleType="PI"/>

</Control2>
</FuzzyControl>
<Operators NumOperators="1">
<Operator1 Name="dPumpSpeed" Type="SUM" Inputs="2">
<Input1 Name="dPump0" WeightName="wMAP"/>
<Input2 Name="dPump1" WeightName="wEFR"/>

<Operator1>
</Operators>
</PumpControl>

Figure 3. MDC Configuration File



Figure 4. HLM Pump Controller in MDC

integral (PI) controller. At the end a sum operator is used to
add the result of both controllers and increase or decrease
the pump speed within its upper and lower limits.

5.2. Results

Figure 5 shows the response of the embedded system
loaded with the previous configuration file. The controller
was set to reach different targets of EFR. A reference sig-
nal was used to tell the controller how fast these targets
should be reached. The current value was obtained as an
analog signal from a ultrasonic flow sensor. The graph in
the bottom shows the actual output of the controller. This
was converted to an analog signal that was introduced into
the pump driver.

 1

 2

 3

 4

 5

E
F

R
 [
L
/m

]

Target
Reference

Current

 1000

 2000

 3000

0 100 200 300 400 500 600

time (s)

P
u
m

p
 [
rp

m
]

Figure 5. Pump speed control at different flow rates.

6. Discussion and Conclusion

Additional methods for testing the embedded platform
are important, One of the tests considered is Hardware-
in-the-loop (HIL). This test requires specific models that
represent the system to control. For the case study men-
tioned a simulation model of the cardiovascular system has
already been implemented, capable of generating pressure
and flow signals and responding depending on changes to
pump speeds [7].

The use of an already available embedded solution and
an open source operating system reduced significantly the

time required for the development of this work. The high
speed at which technology advances may bring more op-
timal options by the time this work has been presented,
however by using general components and an independent
software layer it is possible to easily port the software to
a faster system, using the same configuration files and just
adapting the required drivers. The use of Qt brings the pos-
sibility of easily porting the software layer to a more robust
RTOS. The results of the case study show that the embed-
ded platform can be easily configured and was capable of
controlling flow and pressure as expected. Further tests are
considered to test for robustness and reliability.

Acknowledgements

This work has been supported by an unrestricted educa-
tional grant from the Bayerische Forschungsstiftung.

References

[1] Freescale. MCF51QE128 evaluation board. URL
http://www.freescale.com.

[2] Keil. MCB2300 evaluation board. URL
http://www.keil.com/mcb2300/.

[3] IAR. STR912FA development board. URL
http://www.iar.com.

[4] Technologic Systems. TS-7300. URL
http://www.embeddedarm.com.

[5] Qt. Embedded linux. URL http://qt.nokia.com.
[6] Mendoza G A, Baumgartner B, Schreiber U, Krane M, Knoll

A, Bauernschmitt R. Automedic: Fuzzy control development
platform for a mobile heart-lung machine. volume 25/7 of
IFMBE Proceedings. 2009; 685–688.

[7] Mendoza G A, Baumgartner B, Schreiber U, Eichhorn S,
Krane M, Bauernschmitt R, Knoll A. Design of a fuzzy con-
troller for the automation of an extracorporeal support sys-
tem with the use of a simulation environment 2010;6698 –
6701.

[8] Mendoza G A, Baumgartner B, Schreiber U, Krane M,
Bauernschmitt R, Knoll A. Simulation of extracorporeal cir-
culation for the design of a fuzzy controlled perfusion. In
IASTED Biomedical Engineering, volume 1,2. 2010; .

[9] Schreiber U, Eichhorn S, Mendoza A, Baumgartner B,
Bauernschmitt R, Lange R, Knoll A, Krane M. A new fuzzy
controlled extracorporeal circulation system. first results of
an in-vitro investigation. CINC 2009;36:497–500.

Address for correspondence:

Alejandro Mendoza Garcia
Technische Universität München
Informatics 6
Boltzmannstrasse 3
85748 Garching
Germany
mendozag@in.tum.de


