
Automated Model-to-Metamodel

Transformations Based on the Concepts of Deep
Instantiation

Gerd Kainz1, Christian Buckl1, and Alois Knoll2

1 fortiss, Cyber-Physical Systems
Guerickestr. 25, 80805 Munich, Germany

{kainz,buckl}@fortiss.org
2 Faculty of Informatics, Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract. Numerous systems, especially component-based systems, are
based on a multi-phase development process where an ontological hierar-
chy is established. Solutions based on modeling / metamodeling can be
used for such systems, but all of them are afflicted with different draw-
backs. The main problem is that elements representing both CLAsses
and oBJECTs (clabjects), which are needed to specify an ontological hi-
erarchy, are not supported by standard metamodeling frameworks. This
paper presents the combination of two approaches, namely deep instanti-
ation and model-to-metamodel transformations. The resulting approach
combines the clean and compact specification of deep instantiation with
the easy applicability of model-to-metamodel transformations in an au-
tomated way. Along with this a set of generic operators to specify these
transformations is identified.

Keywords: Model-to-Metamodel (M2MM), Model-to-Model (M2M),
Model Transformation, Deep Instantiation, Transformation Operator,
Clabject, Model-Driven Software Development (MDSD).

1 Introduction

Nowadays model-driven software development (MDSD) is widely used for the
development of applications. Relevant tools are in general based on the modeling
hierarchy as defined by the Object Management Group (OMG)1. The modeling
hierarchy is shown in figure 1. It consists of four layers: M3 represents the meta-
metamodel layer and describes the concepts used to define application specific
metamodels. M3 contains very basic concepts such as classes and attributes.
Hence, M3 is generic enough to describe itself and to terminate the modeling
hierarchy. M2 defines application specific metamodels defining the application
concepts and their related data. Based on the metamodels of M2, the application

1 OMG: http://www.omg.org/

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 17–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.omg.org/

18 G. Kainz, C. Buckl, and A. Knoll

developer can define models in M1, which conform to metamodels of M2 and are
used to specify the application. M0 can be interpreted as the real world, which
is represented by the models of M1.

Fig. 1. Model Hierarchy [1] as Specified by OMG

The model hierarchy is well suited if an application can be described by us-
ing only the two modeling levels M2 and M1. However, for many systems, this
assumption is not true. Examples are the UML specification [2] and the de-
scription of hardware components [3]. Here, some system elements have a dual
role: in their first role they represent instances of a metamodel element; in their
second role they constitute metamodel elements for other system objects. Ele-
ments with this dual role have been named clabjects (CLAsses and oBJECTs)
by Atkinson [4].

Clabjects have been investigated intensively under various circumstances. The
research resulted in many different solutions. Most of them try to find an ad-
equate mapping of the problem to the existing modeling hierarchy. A totally
different approach has been proposed by Atkinson and Kühne. In [2] they sug-
gested to change the current instantiation model from shallow instantiation to
deep instantiation. Deep instantiation allows that elements of a modeling level
have an object and a class facet at the same time. Such a realization requires a
fundamental change of the underlying modeling theory, leading to a clean way
of describing this and other problems. Another approach based on model-to-
metamodel (M2MM) transformations was presented in our previous work [3].
M2MM transformations are based on an iterative development process, where
models of one phase (object facet) are transformed into metamodels (class facet)
describing the models of the next phase. In our previous work, these M2MM
transformations had to be implemented manually without any further support.
The implementation complexity and therefore the effort increases drastically
with each additional M2MM transformation phase.

This paper presents a combination of deep instantiation and M2MM transfor-
mations. The resulting approach combines the clean and compact description of
deep instantiation with the easy applicability of M2MM transformations without
having to change the underlying metamodeling framework. The automation of
the M2MM transformations approach helps in applying this approach to similar

Automated Model-to-Metamodel Transformations 19

problems and reduces the time and effort for implementation. In addition, a set
of generic M2MM transformation operators has been identified.

The remainder is structured as follows: Section 2 gives an overview of the
problem. Related work is discussed in section 3. Section 4 contains a small moti-
vating example. A detailed description of the suggested approach and the set of
generic operators is the content of section 5. Details about the implementation
and an evaluated based on a real-world use case is given in section 6. The content
of the paper is summarized in section 7.

2 Problem Statement

Modeling languages are described in two orthogonal dimensions: a linguistic and
an ontological dimension. The linguistic dimension specifies how a language is
constructed and is typically represented by the different modeling levels (meta-
class ← class ← object). The ontological dimension represents elements and
their instance-of-relationship of a certain domain (e.g. Component ← C : Com-
ponent ← CI : C), the so-called ontological hierarchy [5]. Since state-of-the-
art modeling frameworks are based on the one-dimensional modeling hierarchy,
these two dimensions cannot be represented adequately. This problem becomes
obvious as soon as the ontological hierarchy spans more than two levels or can
be changed / extended by the user [2]. Examples, where this problem arises,
are component based systems where the user is able to define components and
store them in a generic library. By doing so the user specifies a new component
type which can be instantiated / copied later for use. Ptolemy II [6] and MAT-
LAB/Simulink2 include for example a library mechanism as described. Since
they have no direct support for an ontological hierarchy integrated into their
underlying programming model, it requires an enormous effort to emulate on-
tological support on top of their underlying programming model. Many other
examples exist. A simple instance of that kind of problem is presented in figure 2.

Fig. 2. Ontological Hierarchy Example Based on Components and Nodes [2]

The fundamental problem of expressing ontological hierarchies with current
modeling systems is based on the duality of model elements, which is not sup-
ported by most metamodeling frameworks. Duality means that model elements
2 MATLAB/Simulink: http://www.mathworks.com/

http://www.mathworks.com/

20 G. Kainz, C. Buckl, and A. Knoll

represent objects and classes at the same time. For example: in figure 2 C is an
object of type Component, furthermore it represents the type of CI. This duality
of model elements has been named clabject by Atkinson.

As model elements can represent types of other model elements, they con-
struct their own ontological hierarchy introducing additional levels to the model
hierarchy. Since these additional levels are not supported by standard metamod-
eling frameworks, the ontological hierarchy has to be folded into one level of the
linguistic hierarchy. This leads to the problems of ambiguous classification and
replication of concepts [2].

– Ambiguous classification: Model elements can be seen as both instances of
their linguistic and ontological type, e.g. C has the linguistic type Class and
the ontological type Component.

– Replication of concepts: As it is not possible to propagate attributes and
associations over instantiation relations of the ontological hierarchy, the
workaround is to replicate concepts, e.g. define class Component to repre-
sent C, ComponentInstance to represent CI and for both of them a separate
residesOn association.

The goal of this paper is to propose an approach for a clean and compact de-
scription, which can easily be applied using state-of-the-art metamodeling frame-
works. We start with a survey of existing solutions for the above mentioned
problems and discuss of their strengths and weaknesses.

3 Related Work

The most promising approach in the context of the problem statement is deep
instantiation introduced by Atkinson and Kühne [2, 7–9]. As the name says, the
approach is based on a deep instead of a shallow instantiation mechanism, which
is used in classical metamodeling frameworks. This enables the specification of
model elements (classes, attributes, associations ...), which cannot only affect the
direct underlying model level, but also other model levels underneath. To control
the behavior of the deep instantiation mechanism, the concepts of level and po-
tency are added to every model element. Level defines for each element at which
model level in the hierarchy it resides. Potency on the other hand determines the
number of times a model element can be instantiated. These extensions allow
a compact specification of multi-level metamodeling. A first implementation of
the deep instantiation mechanism called DeepJava3 is available in the context
of Java programming [7]. One major drawback of DeepJava is the missing
support by integrated development environments (IDEs) supporting it. Further-
more, the definition of new ontological types requires that Java code has to be
written by the developer. Therefore, this approach is only suited for software
developers and cannot be directly applied by application users themselves. An
advantage is that the whole ontological hierarchy is available and can be accessed
at any time in the runtime system.
3 DeepJava: http://homepages.mcs.vuw.ac.nz/~tk/dj/

http://homepages.mcs.vuw.ac.nz/~tk/dj/

Automated Model-to-Metamodel Transformations 21

To avoid the problem of missing IDE and metamodeling framework sup-
port, we previously suggested an approach based on M2MM transformations [3].
M2MM transformations are based on multi-phase metamodeling, where models
of one phase are transformed into the metamodels of the next phase. This allows
users to define new types, e.g. ControlMotor : Component, in a model. The sub-
sequent M2MM transformation takes care that the corresponding type is created
in the metamodel of the next phase. Each phase constitutes a modeling tool on
its own. This means that by generating the metamodel of the next phase also
the modeling tool of the next phase is altered to reflect the change of the under-
lying metamodel. As M2MM transformations are used to regenerate parts of the
metamodels of the system based on the input data of the previous model, they do
not need additional levels in the metamodeling hierarchy. This is both a strength
and a weakness: on the one hand the metamodel only contains the information
required in the specific phase, but on the other hand it is hard to determine the
relationship between classes / objects at the different levels. Another drawback is
the manual specification of M2MM transformations. The transformations must
be encoded by the developer, who has to take care that all needed data is trans-
formed according to the requirements of the succeeding phases. This can also
imply that data has to be copied to guarantee that it is available in the follow-
ing phases. If more than one M2MM transformations are executed in a row, it is
very hard for the developers to implement those. With each additional M2MM
transformation step, it gets harder to deal with the arising complexity of the
transformations. The reason for the increasing complexity originates from the
additional variability introduced with each new M2MM transformation. While
the first M2MM transformation is based completely on a static metamodel, the
dynamic part of the subsequent metamodels increases. The increasing complex-
ity and the time consuming implementation of M2MM transformations make
this approach very hard to apply. Furthermore, the transformation descriptions
are encoded using a program language. This makes it hard to identify how the
input model is transformed into the succeeding metamodel.

The power types concept of Odell [10, 11] constitutes another solution to
integrate ontological hierarchies into the modeling hierarchy. A power type is
defined to be a type whose instances are subtypes of another type. The relation
between the power type and its instances is defined by a normal association.
When working with power types this fact has to be considered. Furthermore,
power types merely describe how to model an ontological hierarchy but offer no
additional support for their handling.

Like power types, the prototypical concept pattern presented by Atkinson
and Kühne [8] tries to solve the problem of ontological hierarchies within the
modeling hierarchy by combining inheritance and instantiation. Compared to
power types the prototypical concept pattern uses no normal association to con-
nect the power type with the other type. Instead of the association, the instan-
tiation mechanism of the modeling hierarchy is used. By doing so the number
of levels in the modeling hierarchy is extended, which results in the already

22 G. Kainz, C. Buckl, and A. Knoll

mentioned problems regarding implementation using current metamodeling
frameworks. Moreover the prototypical concept pattern offers no support for
the handling of the introduced ontological hierarchy. Hence, it possesses no ad-
vantage compared to the deep instantiation approach and can be neglected.

Bragança and Machado [12] describe a similar approach to M2MM transfor-
mations supporting multi-phase modeling. In their work they use the term model
promotion instead of M2MM transformation. Compared to the M2MM transfor-
mations approach where flexibility is provided in each transformation step, they
can only specialize their initial metamodel by annotating models with informa-
tion utilized for M2MM transformations. This restricts the power of their M2MM
transformations to the predefined set of transformations offered through anno-
tations. It also limits the usable domain concepts to the concepts introduced in
their first metamodel and requires the specification of metamodel information in
the model. An advantage is that the number of possible M2MM transformations
is unbounded.

4 Motivating Example

As outlined in the previous section each of the presented solutions has different
strengths and weaknesses. Therefore, we propose an approach combining the
clean and compact description of deep instantiation with the easy applicability
of M2MM transformations.

In this section we give a small motivating example based on figure 2. This
shall help to better understand the automated M2MM transformations approach.
The example is concerned with the definition of components residing on nodes
containing various devices. Figure 3 shows the metamodel of the example at
M24. The superscript of the model elements presents the value of potency. The
level is depicted at the model elements as subscript. The metamodel defines
three classes Component, Node and Device and two associations between them.
Additionally three instantiation operators (notes attached to classes) and one
split field operator (note attached to association) are specified.

Fig. 3. Model Level 2 of Components-Nodes Example

Based on the metamodel shown in figure 3 the user is able to define the
model presented on the upper part of figure 4. Applying an automated M2MM
4 When we talk about metamodel, we mean the class facet of a clabject. We refer to

the object facet by talking about the model.

Automated Model-to-Metamodel Transformations 23

transformation to the model results in the metamodel that is shown at the
bottom of figure 4. As is visible in the metamodel the ReadSensor, PC, CPU and
Sensor objects are transformed into classes. Furthermore, the devices association
has been refined into a devCPU and devSensor association for the PC class.

⇓ M2MM

Fig. 4. Model Level 1 of Components-Nodes Example

The user can afterwards use the generated metamodel of figure 4 to define a
model at modeling level 0. Such a model is displayed in figure 5, defining the
component instance ReadSensor1 and the node instance Node1 with its CPU
and Sensor devices.

Fig. 5. Model Level 0 of Components-Nodes Example

5 Approach

The idea of this work is to integrate the concepts of deep instantiation in current
metamodeling frameworks. To avoid a reimplementation of the metamodeling
frameworks for a full support of deep instantiation automated M2MM transfor-
mations are used.

24 G. Kainz, C. Buckl, and A. Knoll

For simplification reasons, we will focus on classes, attributes, references (rep-
resenting associations) and operations of the Essential Meta Object Facility
(EMOF) [13]. As these are the main concepts, this presents no serious restriction.

Deep instantiation uses level and potency to define at which level a model el-
ement exists and how many times it can be instantiated. As this is a very clean
and compact description to establish an ontological hierarchy, we adopted these
concepts and extended the linguistic metamodel elements classes, attributes, ref-
erences and operations with these attributes. This allows the definition of the
basic properties to semi-automatically establish an ontological hierarchy. Addi-
tional to level and potency, operations are specified, which are applied during
transformation. This information is used by the automated M2MM transforma-
tion to generate a metamodel out of an input model. During a M2MM trans-
formation the model data is converted into a new metamodel predominantly by
transforming objects into classes. Additional operations allow to steer the au-
tomated M2MM transformation and provide the missing information, e.g. the
name of a new created class. All the available modification operators are defined
later in this section.

Fig. 6. Principle of the Automated M2MM Transformations Approach (All the Gray
Metamodels are Generated)

Figure 6 shows how automated M2MM transformations work. The developer
specifies the metamodel of the first phase including all the information needed for
the automatic application of all following M2MM transformations. Afterwards
a fully automated extraction step is conducted. During the extraction all model
elements, which have no effect on the current model level, are eliminated. In
short, these are all model elements with a level different to the current model
level. This step is only included to ensure that existing metamodeling tools with

Automated Model-to-Metamodel Transformations 25

no support of level, potency and the additional specified operations are still able
to handle the new kind of metamodels. If eventually all used metamodeling tools
are able to cope with the additional information this step can be skipped. The
models can then be defined based on a reduced metamodel of the current phase.
Based on the specified model and the complete metamodel (not the reduced
metamodel) the M2MM transformation is executed resulting in the complete
metamodel of the next phase. A M2MM transformation affects mainly the model
elements of the current model level with a potency value greater than 1. These
model elements are converted into their corresponding model elements with level
and potency reduced by 15.

Before going into details on how the algorithm of the automated M2MM trans-
formation works, we will explain all available operators, which can be applied to
model elements during a M2MM transformation.

5.1 M2MM Transformation Operators

To reuse common functionality between M2MM transformations we identified a
set of various operators by analyzing the use case described in section 6. Since this
use case is rather complex, we are quite confident that additional operators are
not required. The set of M2MM transformation operators currently supported
is: instantiation, change property, split field, generate enumeration and execute.
Typically the operators work on model elements of the current model level with
a potency greater than 1. These model elements are converted according to the
operator specification into their corresponding model elements with level and
potency reduced by 1.

To incorporate the user input during the application of the operators, the
operators have access to the model data. By providing the operators with de-
scriptions of how to process the model data to extract needed information, each
operator can be adapted to concrete use cases. This makes the operators more
flexible and generic. The descriptions are needed to automate the execution of
the M2MM transformations.

In the following a comprehensive description of all operators is given. To
facilitate the understanding of the M2MM transformation operators, examples
for their application are given according to the motivating example of section 4.

Instantiation. The instantiation operator constitutes the main M2MM trans-
formation operator. It is responsible for the transformation of objects into their
own classes. Hence it implements the connection between the two facets of clab-
jects. Since M2MM transformations are based on an iterative definition process
of the ontological hierarchy, which means that in each phase only one specific
level of the hierarchy can be defined / manipulated, during the application of
the instantiation operator the old class is transformed into the new metamodel

5 Decrementing of level and potency logically happens when instantiating new model
elements. As level and potency are not directly present during modeling this is done
in the M2MM transformation afterwards.

26 G. Kainz, C. Buckl, and A. Knoll

representing the super class of its newly created sub classes. To prevent further
manipulation of the super class it is automatically converted into an abstract
class. For the fully automatic application of the instantiation operator a descrip-
tion of how to construct the names of the new sub classes out of the object data
is needed. For example the component object ReadSensor is transformed into a
component type ReadSensor, which is sub class of an abstract Component class.

Additionally the instantiation operator takes care of the transformation of
all attributes, references and operations of the class. In cases where sub classes
define different values for properties of a contained model element, the model
element is moved into the sub classes. To prevent unnecessary type casts to access
these elements when working directly with the object model an additional access
operation is added to the super class.

Following is the operator definition. It takes as input a class specification, all
instances of that class and a description for the calculation of the new sub class
names and returns the transformed class and all new created sub classes.

instantiation (in class: Class, in instances: Set<Object>,
in name: Description): Set<Class>

Change Property. The change property operator allows the adaption of model
element properties. For example a new default value for the attribute name of
class PC can be specified with ”PC” + Counter.getNextID(), where the function
returns the number of a running counter. Even the refinement of the data type of
an attribute is possible. This operator is very generic and allows to adapt the next
metamodel in a flexible way. As already mentioned at the instantiation operator,
special attention has to be taken when properties of elements in sub classes
are set to different values. In such cases the elements have to be dragged from
the super class into all sub classes. To further support access to those elements
based on the super type, access operations must be installed. Sometimes it makes
sense to apply this operator on model elements which are not transformed by
the M2MM transformation but are coming into life for the first time, e.g. if the
value of an attribute can be changed depends on previous model data.

As can be seen from the definition below, the operator takes an identification
of the property which shall be changed and a calculation description for the
new value as input. To consider the model data for the new property value
the corresponding object is given to the operator. The result of the operator is
the adaption of the given model element according to the specification.

changeProperty (in property: PropertyKind, in value: Description,
in instance: Object, inout element: ModelElement)

Split Field. A very interesting operator is the split field operator. Its task
is to allow the refinement of associations between super class and sub classes.
Imagine the following example: after specifying that nodes of type PC can have
the devices CPU and Sensor, it should only be allowed to link nodes of type
PC with devices of type CPU and Sensor but nothing else. As can be seen

Automated Model-to-Metamodel Transformations 27

from the example, this operator can establish very strong constraints on sub
types. The additional constrains help preventing a lot of careless mistakes during
model handling. Access to referenced object via the previous relation can still be
ensured trough the definition of an access operation instead of the relation in the
base type. The M2MM transformation can additionally take care of providing
an appropriate realization for the access operation for each sub type.

The split field operator is realized in two separate parts. The first part is
responsible for transforming the original reference of the super class into an
appropriate operation. The second part takes as input the reference, a description
of how to define the names of the new references, and a list of all the objects
referenced by the object, which is going to be transformed in a sub class. A list
containing all new references and the access operation including an appropriate
implementation is returned.

splitFieldSuperClass (in reference: Reference): Operation

splitFieldSubClass (in reference: Reference, in name: Description,
in referencedObjects: List<Object>)
: List<ModelElement>

Backtrack. Since M2MM transformations introduce a cut between two suc-
ceeding phases, a backtrack operator is offered to get full access to the model
data of previous phases. This operator is able to return the object belonging
to a class, so it can be used to traverse the M2MM transformations in reverse
order. It is not only available during M2MM transformations but can also be
used when working directly with the object model of a phase. In the context
of our example the backtrack operator applied to the type PC of Node1 at M0
would result in the object defining PC at M1.

The definition of the backtrack operator takes a class as input and returns the
related object in the model of the previous phase. The operator is only defined in
the context of classes representing the class facet of a clabject with both object
and class facet. The behavior for clabjects without any object facet or any other
object is undefined.

backtrack (in class: Class): Object

Generate Enumeration. Generate enumeration is used to create new enumer-
ations. It has been shown during the application of automated M2MM transfor-
mations that sometimes the user defines a list of allowed values for a type in one
phase and wants to use the generated enumeration for an attribute in the next
phase. This helps to assure that only valid values are assigned to the attribute.
For example at M1 it could be possible to specify the valid operating systems
for the node type PC in an additional field os. This list is then transformed into
a new enumeration. The operating system running on node instance Node1 can
then be only selected among those values.

28 G. Kainz, C. Buckl, and A. Knoll

To create a new enumeration the operator takes a description of the enumer-
ation name and all literals as input and returns the generated enumeration. The
literals of the enumeration consist of a name value pair.

generateEnumeration (in name: Description,
in literals: Description): Enumeration

Execute. There will always be special cases, which are not foreseen. To support
such situations an execute operator is available in automated M2MM transfor-
mations. This operator offers the highest flexibility to transform data according
to special needs. In general all presented operators can be emulated using the
execute operator. Through its high flexibility this operator can be used to im-
plement highly specialized transformations in a M2MM transformation.

To offer its high degree of flexibility the execute operator gets as input the
current class, the complete model and a description of the transformation to
execute.

execute (in class: Class, in model: Object,
in modification: Description,
inout metamodel: List<Object>)

Operator Application Specification. The MOF has been designed with ex-
pandability in mind. For extensions annotations exists. They can be attached to
all model elements. We make extensive use of annotations to specify all the op-
erators with their corresponding data. The operator specifications are attached
to the model elements, on which they shall be applied. As it is important to
apply the operator during the right M2MM transformation, all the annotations
specify the transformation to which they belong.

5.2 Automated M2MM Transformations Algorithm

After the introduction of the different transformation operators the M2MM
transformation algorithm is explained in detail. The algorithm is parameter-
ized with the metamodel containing all operator specifications and the model of
a phase and returns the metamodel of the next phase. To simplify the transfor-
mation the algorithm consists of two parts.

During the first part all types are created. Therefore the instantiation, gener-
ate enumeration and execute operators are executed for model elements, whose
level is equal to the model level of the next phase plus 1 and have a potency
greater than 1. Additionally, all types belonging to a model level lower than or
equals to the model level of the next phase are copied. In this process the effect
of change property operators are incorporated. This part is only responsible for
defining all types, but does not take care of their internal structure. By doing so
problems of referencing not yet created types is effectively prevented.

The second part is responsible for the completion of the created and copied
types. This includes the transformation and copy of all attributes, references and

Automated Model-to-Metamodel Transformations 29

operations. While transforming those model elements special cares have to be
taken if for a model element different values are assigned to properties of sub
classes created by the instantiation operator. In those cases the model elements
are moved into the sub classes and an additional access operation is added to
the super class. Additionally, the execute operators are processed again to finish
their tasks.

After the completion of both steps the metamodel of the next phase is com-
pletely constructed. It contains a complete definition of the structure of the cur-
rent and all following model levels. Model elements and specifications belonging
to the previous model levels are completely removed.

5.3 Differences between Automated M2MM Transformations and
the Two Original Approaches

Beside the transformation of models into metamodels, the specification of addi-
tional operations to provide the missing information for the automated M2MM
transformations is a big difference compared to deep instantiation. In contrast
to the deep instantiation approach, automated M2MM transformations rely on
fully automatic creation of new types. Therefore the model data is taken and
all needed information is extracted through specified operations. Thus the user
does not need to know how to define new types in the metamodel or program-
ming language. The only knowledge needed is how to insert correct model data.
The creation of new types is then automatically conducted during M2MM trans-
formations. This relieves the user from knowing how to modify a metamodel or
program and helps him to concentrate on the ontology specification via modeling.

Compared to deep instantiation, potency has a slightly different meaning in
the context of automated M2MM transformations. In the context of deep in-
stantiation, potency specifies how many times a model element can be instan-
tiated. This fact can be utilized to define abstract elements at the metamodel
level with a potency value of 0, which makes the abstract flag obsolete. For auto-
mated M2MM transformations this additional utilization is not allowed, because
M2MM transformations rely on potency for defining how many times a model
element can be instantiated or copied, if it is abstract. Copying model elements
is necessary as in contrast to deep instantiation not the complete ontological
hierarchy is available for direct access at a specific model level. This requires
that parts of the ontological hierarchy are copied to succeeding model levels as
needed.

Deep instantiation also defines the concept of simple and dual fields. Field is
the generalized term unifying attributes and references on the metamodel level
and slots on the model level. A simple field is defined to be a field, which takes
only a value when its potency is 0. In contrast a dual field can have a value for
each model level. In the context of M2MM transformations it has been shown
that the explicit distinction between simple and dual field makes no sense. The
distinction is implicitly achieved through the specification of level and potency.
Level defines the model level in which the field exits. In cases where the level

30 G. Kainz, C. Buckl, and A. Knoll

number is lower than the number of the current model level, the field can be
treated as nonexistent. Potency on the other hand specifies how many times the
field shall get a value. Through the assumption that an existing field can get
a value, the distinction between simple and dual fields is no longer needed. In
cases where the assignment of values shall be delayed to a later model level the
level can be set accordingly.

As automated M2MM transformations can be seen as an improvement of
the M2MM transformations approach the only difference between those two ap-
proaches lies in the automation of the transformations. Through the definition
of transformation operators the developer is relieved from programming the
whole transformation. By using automated M2MM transformations large parts
of the transformation can be executed automatically based on the specification
of level, potency and the operators to apply.

6 Implementation and Evaluation

A first implementation of the presented approach is available based on the Eclipse
Modeling Framework (EMF) [14]. This implementation has been used to demon-
strate the usefulness of the approach on the example presented in our previous
work [3]6. The application of the automated M2MM transformations approach
on this example resulted in a much simpler and more compact system descrip-
tion. Furthermore, the original three phase approach could be enhanced with an
additional fourth phase, to define the different capability types. It also turned
out that the new approach simplified the M2MM transformations. Most of the
M2MM transformations are described using 43 standard operators (instantia-
tion 9, change property 29, split field 2, backtrack 1 and generate enumeration 2).
Only a special transformation had to be implemented with an execute operator.

7 Conclusion

In this paper we presented a combination of the deep instantiation and the
M2MM transformations approach. The resulting approach uses the clean and
compact description of the deep instantiation to automate the M2MM trans-
formations approach. By combining these approaches main drawbacks of the
original approaches are eliminated. The automated M2MM transformations ap-
proach does not require a fundamental change of the underlying metamodeling
framework. All known and used modeling tools are further utilizable. In addi-
tion, the time consuming manual implementation of M2MM transformations is
replaced by a clean and compact specification of transformation operators. The
M2MM transformation operators support the developer in all transformation
cases. For unsupported transformations a generic execute operator exists.

6 Due to space limitations it is not possible to go into details about the example.
Interested readers can refer to [3] for more information.

Automated Model-to-Metamodel Transformations 31

Furthermore, we introduced and presented a set of generic M2MM transforma-
tion operators. The operators are used to guide the M2MM transformations and
provide the transformation with all needed information to ensure an automatic
execution.

Finally a prototype of the automated M2MM transformations approach has
been implemented for EMF and its usefulness has been demonstrated in the
context of a real world example.

References

1. Bézivin, J.: In search of a basic principle for model driven engineering. UPGRADE-
The European Journal for the Informatics Professional 5(2), 21–24 (2004)

2. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

3. Kainz, G., Buckl, C., Sommer, S., Knoll, A.: Model-to-metamodel transformation
for the development of component-based systems. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 391–405. Springer,
Heidelberg (2010)

4. Atkinson, C.: Meta-modeling for distributed object environments. In: Proceedings
of the 1st International Conference on Enterprise Distributed Object Computing,
EDOC 1997, Washington, USA, pp. 90–101 (1997)

5. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

6. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Sachs, S., Xiong,
Y.: Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1),
127–144 (2003)

7. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style:
multi-level programming with deepjava. In: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems and Applica-
tions. OOPSLA 2007, Montreal, Canada, pp. 229–244 (2007)

8. Atkinson, C., Kühne, T.: Processes and products in a multi-level metamodeling
architecture. International Journal of Software Engineering and Knowledge Engi-
neering 11(6), 761–783 (2001)

9. Gutheil, M., Kennel, B., Atkinson, C.: A systematic approach to connectors in
a multi-level modeling environment. In: Busch, C., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 843–857. Springer,
Heidelberg (2008)

10. Odell, J.: Power types. Journal of Object-Oriented Programming 7(2), 8–12 (1994)
11. Martin, J., Odell, J.J.: Object-oriented methods: a foundation, UMLed, 2nd edn.

Prentice-Hall, Englewood Cliffs (1998)
12. Bragança, A., Machado, R.J.: Transformation patterns for multi-staged model

driven software development. In: Proceedings of the 12th International Software
Product Line Conference, SPLC 2008, Washington, USA, pp. 329–338 (2008)

13. Object Management Group (OMG): Meta Object Facility (MOF) Core Specifica-
tion Version 2.0 (January 2006)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley, Reading (2009)

	Automated Model-to-Metamodel Transformations Based on the Concepts of Deep Instantiation
	Introduction
	Problem Statement
	Related Work
	Motivating Example
	Approach
	M2MM Transformation Operators
	Instantiation.
	Change Property.
	Split Field.
	Backtrack.
	Generate Enumeration.
	Execute.
	Operator Application Specification.

	Automated M2MM Transformations Algorithm
	Differences between Automated M2MM Transformations and the Two Original Approaches

	Implementation and Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

