
A Workflow for Runtime Adaptive Task Allocation
on Heterogeneous MPSoCs

Jia Huang, Andreas Raabe, Christian Buckl
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
{huang,raabe,buckl}@fortiss.org

Alois Knoll
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract—Modern Multiprocessor Systems-on-Chips (MP-
SoCs) are ideal platforms for co-hosting multiple applications,
which may have very distinct resource requirements (e.g. data
processing intensive or communication intensive) and may
start/stop execution independently at time instants unknown at
design time. In such systems, the runtime task allocator, which
is responsible for assigning appropriate resources to each task,
is a key component to achieve high system performance. This
paper presents a new task allocation strategy in which self-
adaptability is introduced. By dynamically adjusting a set of
key parameters at runtime, the optimization criteria of the
task allocator adapts itself according to the relative scarcity of
different types of resources, so that resource bottlenecks can be
effectively mitigated. Compared with traditional task allocators
with fixed optimization criteria, experimental results show that
our adaptive task allocator achieves significant improvement both
in terms of hardware efficiency and stability.

I. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoC) are believed to
be the major solution for future embedded systems [1], [2]. In
many emerging utilization scenarios, multiple applications are
executed concurrently on the same platform and they may start
and stop execution at time instants unknown at design time.
For example, in a Software Defined Radio (SDR) system, dif-
ferent communication standards may be activated/deactivated.
Another example would be a car infotainment system, in which
the user may dynamically turn on/off certain services (e.g.
MP3, DVD player, etc). Hence, a dynamically mixed set of
applications are expected in MPSoC systems targeting these
domains. The runtime task allocator is a key component of
such systems, which is responsible for assigning adequate
and appropriate resources (e.g. the processor, memory and
communication channel) to each application.

Many MPSoCs, especially those with heterogeneous pro-
cessing elements (PEs) such as the GENESYS architecture 1,
are designed for cross-domain applications [3], which usually
have very distinct resource requirements. For example, signal
processing applications may have large execution times and
control applications may communicate very often. Moreover,
the set of potential applications to be executed on the platform
may not be entirely known at design time, e.g. new software
modules or add-ons can be downloaded to a consumer device.
This makes static analysis and optimization very difficult.
Moreover, a single task allocation strategy can not be expected

1http://www.genesys-platform.eu/

to fit for all applications and domains. This paper presents a
new approach for solving the problem by introducing self-
adaptability to the runtime task allocation algorithm. This is
achieved by dynamically adjusting a set of key parameters
according to the current resource utilization. Experimental
results from different application sets show that our self-
adaptive scheme improves the performance significantly in
terms of hardware efficiency and the stability with respect to
different characteristics of the applications.

The rest of this paper is organized as follows. In section II,
we review relevant existing work tackling the task allocation
problem. In section III we first introduce the application and
architecture models and then present the details of our adaptive
runtime task allocator. Experimental results are presented in
section IV. Section V concludes this paper.

II. RELATED WORK

Existing task allocation approaches can be roughly classi-
fied into two branches, namely static (offline) and dynamic
(online) approaches. Examples of static approaches include
[4], [5], [6], in which task allocation is formulated as a static
optimization problem and solved using standard techniques
such as Integer Linear Programming and Genetic Algorithms,
while SymTA/S [7] and DOL [3] frameworks are based on
evolutionary algorithms. Although static algorithms enable
thorough exploration of design space, they lack flexibility:
the entire set of applications needs to be known and fixed
at design time; and a major re-computation is necessary if the
applications or platform change.

One possible improvement of pure static approaches is to
use semi-static scenario-based algorithms [8], [9], [10], [11],
[12]. The basic idea is to compute a separate schedule for
each possibly coexisting application combination and store
all configuration data in a table. When the application-set
changes at runtime, the pre-defined configurations are looked
up and applied. These approaches achieve good tradeoff be-
tween performance and flexibility but still come with some
drawbacks. Firstly, the scalability is bad, since the number
of configurations may grow exponentially with the number of
total applications. Secondly, the flexibility is still limited, since
1) all potential applications must be entirely known at design
time; 2) a major recomputation and update is needed when
the application set changes. Thirdly, storing configuration data
introduces additional overhead. Last but not least, since the

978-3-9810801-7-9/DATE11/ c©2011 EDAA



same task might be mapped to different PEs in different
schedules, task migration is needed during reconfiguration,
which makes it very difficult to provide constant quality of
service. Kumar et al. introduce an alternative approach [13],
in which the task-to-PE mapping is determined at design time
and fixed during execution. At runtime, a resource manager
coordinates the temporal resource assignment such that all
applications meet their performance requirements. However,
this approach considers only the PE resources and works only
on non-preemptive systems. Also, the scalability and flexibility
issues mentioned above still exist. In contrast to the previously
discussed work, our approach handles an arbitrary number of
tasks with much lower computational complexity. This results
in high scalability at maximum flexibility.

Due to the high complexity of the problem, pure runtime
strategies mostly rely on fast heuristics [14]. Moreira et al.[15]
proposed a runtime resource allocator that is able to allo-
cate multiple real-time jobs on homogeneous multiprocessor
systems with a round-robin local scheduler. Compared to
[15], our work considers a more generic system architecture,
i.e. heterogeneous MPSoCs with any deterministic local task
scheduling policy. Another key improvement of this work is
the introduction of runtime self-adaptability. The key param-
eters of the task allocator are dynamically adapted based on
the resource utilization, so that higher hardware efficiency can
be achieved.

III. ADAPTIVE RUNTIME TASK ALLOCATION

The objective of the task allocator can differ depending on
the use cases. In this paper, we focus on maximum hardware
efficiency, i.e. we want to allocate as many applications to the
platform as possible while keeping the utilization of resources
low. Nevertheless, the proposed task allocation flow is generic
enough to be configured with other optimization goals, e.g.
minimum energy. To achieve maximum hardware efficiency,
one important issue is to map tasks to their preferred PEs
where the resource usage can be reduced, e.g. map data pro-
cessing tasks to DSPs instead of RISCs. Another issue is that
the hardware resource utilization should be kept in a balanced
way, since the amount of tasks that a PE can accommodate is
always limited by the most scarce resource. The task allocator
must also guarantee that no more resources are allocated than
are available (e.g. processor time and network interface (NI)
buffer) and no deadlines are violated.

A. Application and Architecture Models

We assume applications are represented in task graphs
(TGs) (figure 1a), whose vertices represent tasks (computation
kernels) and edges E capture data dependencies between
tasks. For each task tli of application l, the WCET (cli,x) and
memory consumption (ml

i,x) on the PE x can be measured and
annotated in the model. The WCET (cli,x) in the entire paper
refers to the stand-alone WCET of tli on PE x. The Worst-Case
Response Time (WCRT) (wl

i,x) refers to maximum response
time taking the waiting time caused by resource contention
into account. Naturally, wl

i,x is in any case no less than cli,x.

Fig. 1. Task and Architecture Models

Our target hardware platforms are tiled multiprocessor
systems with heterogeneous processing elements (figure 1b).
A tile in such systems typically consists of a Processing
Element (PE), a local memory element (MEM), and a Network
Interface (NI). As pointed out in [16], many existing multipro-
cessor platforms fit into this model. To achieve deterministic
behavior for hard real-time applications, a predictable on-chip
communication scheme is needed. As this work is based on the
architecture suggested in GENESYS, we assume that the tile-
to-tile communication is via TDMA-arbitrated Network-on-
Chip (NoC). The time slices of the shared NoC are distributed
among all tiles at design time, resulting in an equivalent local
bandwidth for each tile. This bandwidth can then be assigned
to different tile-to-tile communication channels. Note that a
channel only consumes the local bandwidth of the sender,
since the communication messages are broadcasted to all
receivers. We also take the data buffer limitation at the NI
into account by setting a maximum number of channels that
a NI could support. Naturally, no communication channel is
needed if the two communicating tasks are mapped to the same
PE.

Fig. 2. Runtime Task Allocation Flow

Using a divide and conquer strategy, the task allocation flow
is split into two major parts (figure 2). The first part includes
Slack Assignment and Task-to-tile Mapping which are done in
the system scope. Real-time applications typically have global
end-to-end deadlines. The slack assignment step computes a
local relative deadline (denoted using dli) for each task. The
end-to-end deadlines are guaranteed if all local deadlines are
met. The next step maps each task to exactly one tile with
enough resources. With the local deadlines, schedulability
tests can be performed to make sure that the task-set on
each tile is schedulable. The second part of the workflow is
performed at local scope, including Local Scheduling analysis
and Bandwidth Allocation. The classical theory on single pro-
cessor scheduling is reused in local scheduling. The bandwidth
allocation is done in the last step to enable a flexible slack
borrowing strategy (section III-F).



B. Speculative Slack Assignment

The goal of slack assignment is to distribute the global
deadline to individual tasks in a way that the schedulability
is maximized. A classical approach is the normalized pro-
portional deadline algorithm [17], which assigns deadlines
according to the tasks’ execution time and the utilization of
the PEs that the tasks are mapped to. This approach can not be
directly used in heterogeneous MPSoCs, since the execution
time may differ for the same task on different PEs. Moreover,
the task-to-PE mapping is not yet known, so we need to
rely on the estimated execution time. In [18], the author
evaluates three estimation approaches, namely the optimistic,
pessimistic and average strategy, which use respectively the
minimum execution time on all possible PEs, the maximum
execution time on all possible PEs and the average execution
time as the estimation. However, task allocators may have
different optimization goals and a fixed estimation scheme is
not expected to be optimal in all cases [18]. Another drawback
of these approaches is that the run time system’s utilization
information is not considered, which can actually give a good
hint where a task shall be mapped to. Hence, this paper
proposes a speculative approach, which tries to predict the task
mapping in advance and uses the execution time on predicted
PEs as a basis for the slack assignment.

Naturally, the best prediction is actually to directly call the
task-to-tile mapping algorithm used in later steps. However the
local schedulability test requires the knowledge of the local
deadlines, which is not decided at this point. In this case,
we implement a reduced version of the task-to-tile mapping
algorithm in the slack assignment step, which only checks
resource availability. A prediction error occurs if the task turns
out to be non-schedulable on the predicted PE.

Let’s assume that a task tli is predicted to be mapped to
PEx. We calculate the average WCRT-to-WCET ratio Rx of
all tasks mapped to PEx. With Rx, we have a computational
inexpensive estimator to take into account the current load on
PEx, since it reflects how largely a task is influenced by other
tasks on the same PE. Then the speculative response time vli
of tli is computed as:

vli = cli,x ∗Rx (1)

This step is done for all tasks of the application, and the
slack time is distributed proportionally to the speculative
execution time. In this step, slack time is also reserved for
the Token Transfer (TT), which can also introduce significant
latency. However, the exact TT time depends on the bandwidth
allocated to the corresponding channel, which is not known
during the slack assignment step. We estimate the TT time for
a new channel using the average bandwidth allocated to all
existing channels on the same tile.

To minimize the side effect of prediction errors, we intro-
duce a slack borrowing strategy. The key idea is to lend the
slack time allocated to TT firstly to its source task. The local
deadlines computed in the slack assignment step are then the
maximum time to execute the task and transfer the token to

the destination. If the WCRT of the task is too large, the task
can borrow slack time from TT. On the other hand, if the
WCRT is relatively small, all the remaining slack time is used
for TT so that the bandwidth consumption can be reduced.
Hence, the overall schedulability is improved.

C. Adaptive Task Mapping

With the local deadlines, the next step is to map tasks to
PEs. The proposed approach is a modified first-fit decreasing
bin-packing heuristic, which works as follows. When a new
application is activated, its tasks are sorted in decreasing order
with respect to the resource usage, which is calculated as the
weighted sum of all the three types of resources we consider:

uli,x = αc̄li,x + βm̄l
i,x + γb̄li,x (2)

The c̄li, m̄
l
i and b̄li are respectively normalized execute time,

memory consumption and bandwidth consumption of task tli.
The normalization is performed with respect to the total system
resources. The weighting factor α, β, γ are key parameters
in the algorithm, since they determine how the task allocator
trade-off between the three types of resources. Starting from
the biggest one, the allocator tries to map each task onto the
tile of the most preferred type, which minimizes the resource
consumption computed using equation 2. The task allocator
checks resource availability and also the schedulability of the
new task-set (using algorithms presented in section III-E). If
a task fails to be mapped to the most preferred tile, other
tiles with increased resource consumption are sequentially
examined. If multiple tiles of the same type exist, the tile
with the least resource utilization is chosen. The resource
utilization of a tile is computed with respect to the local
available resources and weighted by the same factors as in
equation 2:

Ux = α
Px,used

Px,available
+ β

Mx,used

Mx,available
+ γ

Bx,used

Bx,available
(3)

The resource consumption caused by the current task to be
mapped is also summed up to Ux. This procedure is continued
until all tasks are mapped. If at least one task can not
be mapped on any tile, the application is not accepted for
execution.

Applications usually have very distinct resource require-
ments and it can be suboptimal ot use a set of fixed weighting
factors. For example, all types of resources may be equally
important in an empty system, but after mapping several
control applications, the NoC bandwidth becomes the most
scarce resource. This implies that reducing the bandwidth
consumption becomes critical, otherwise a bandwidth bot-
tleneck will occur, which prevents any future applications
from being allocated. To solve this problem, we propose to
dynamically adapt the weighting factors based on the current
system utilization. Let α0, β0, γ0 denote the default weighting
factors. After allocating a task, the weighting factors are



updated to:

α = α0 ∗
∑
x

Px,used

Px,available

β = β0 ∗
∑
x

Mx,used

Mx,available

γ = γ0 ∗
∑
x

Bx,used

Bx,available

In the example case mentioned above, as bandwidth utilization
increases faster than the other resources, the factor γ also
increases faster, meaning that the importance of the bandwidth
resource now becomes higher. By dynamically weighting
different types of resources, the preferred tile of a task changes
at runtime. In this way, equation 2 emphasizes the optimization
of inadequate resources and equation 3 contributes to balanc-
ing the usage of inadequate resources. As shown in section
IV, improved resource management and hardware efficiency
are achieved using the proposed technique.

D. Adaptive Runtime Task Clustering

Since communication is one of the most critical issues in
many MPSoC platforms, clustering approaches are developed
in existing studies to reduce the bandwidth consumption. For
example, a Clustering Before Packing (CBP) algorithm is
proposed in [15], which attempts to contract a certain amount
(e.g. 50%) of channels before submitting the application to
the allocator. The basic idea is to group two communicating
tasks into a single larger task, forcing them to be mapped
to the same tile so that no tile-to-tile communication is
needed. A major drawback of the clustering approach is that
it may produce large tasks that make it more difficult to
schedule and also more difficult to optimize the usage of other
resources. In [15], the results show that CBP can improve
the performance in communication-intensive cases (compared
with non-clustering) but can also have negative effect when
the communication load is relatively low.

To address this problem, we propose an adaptive clustering
approach. Instead of grouping a certain amount of tasks
statically, we make the clustering decision online based on
the current system status. Assume a task t1 is already mapped
to tile x and we are now going to map an communicating task
t2, whose favorite tile is y. If x and y are of the same type,
clustering is taken as the natural optimum solution. When x
and y are of different types, a trade-off needs to be evaluated.
For that, we compute the difference between the resource
consumption of t2 on tile x and that on tile y:

Cdiff = (αc̄2,x + βm̄2,x)− (αc̄2,y + βm̄2,y) (4)

We also compute the bandwidth resource that can be saved
from clustering: Csave = γb̄1,2. Then, the clustering is taken
if Csave > Cdiff , i.e. when the saved resources overcome
the side effect of clustering. It can be seen that the weighting
factors are used to compute Cdiff and Csave, which makes
the algorithm self-adaptive at runtime, in way that the strength
of clustering is changing dynamically according to the relative

scarcity of the bandwidth resource. The performance of this
algorithm is verified to be very stable under various commu-
nication loads (Section IV).

E. Local Scheduling Analysis

After computing the task-to-tile mapping, the next step
is to perform local scheduling of the task system on each
tile. As mentioned before, the workflow allows for reuse
of single processor scheduling techniques. In principle, any
deterministic scheduling policy can be used, e.g. TDMA and
static-priority preemptive scheduling. For TDMA arbitration,
the WCRT can be found as:

wi,j =

⌈
ci,j
τi,j

⌉
(T − τi,j) + ci,j (5)

Where T is the TDMA time wheel, ci,j is the stand-alone
WCET of task ti on pj and τi,j is the time slot allocated
for ti. For static priority scheduling, the WCRT can be found
using standard techniques [19]. We also implemented some
of the techniques from [20] that take intra-task and inter-task
correlations into account to achieve tighter analysis bounds.

F. Bandwidth Allocation

The final step in our workflow is to assign bandwidth to all
channels such that all end-to-end deadlines are enforced with
TT time taken into account. As introduced in section III-B,
the slack time allocated to TT is first added to its source task
to allow a flexible slack borrowing strategy. After the local
scheduling analysis, the WCRT of the source task is known.
Then, the remaining time for token transfer from source task
tli to target task tlj can be calculated as:

t(i,j) = (dli + dli,j)− wl
i,x

where dli is the slack time allocated to tli, d
l
ij denotes the

slack time reserved for TT of channel (i, j) and wl
i denotes the

WCRT of source task tli. In the TDMA based NoC, the local
time slice for a specific tile is further divided into a set of meta
time slots, which can be allocated to all outgoing channels on
that tile. Let B0 denote the equivalent bandwidth (in terms
of unit token size per unit time) of each meta time slot. The
bandwidth allocated to channel (i, j) is the minimum integer
number of B0 such that the token transfer can be finished
within the remaining slack time:

bi,j =

⌈
Si,j

t(i,j)B0

⌉
∗B0

where Si,j is the token size of channel (i, j). If the allocated
bandwidth exceeds available one, the task is considered non-
schedulable on the tile and a feedback is generated for the
task allocator to examine other possible tiles.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the approach, we generate 4
sets of syntactic task graphs (TGs) [21], each containing 100
graphs with 15± 5 tasks. Among the 4 sets, the TGs in set1
are PE-usage intensive, those in set2 are memory consumption



Fig. 3. Comparison of Slack Assignment Approaches

PES PES-TT OPT OPT-TT AVG AVG-TT Speculative

Average (%) 89.3 91.1 85.5 90.7 96.4 97.3 99.4
Std. Dev. 1.48 1.42 1.52 1.25 1.26 1.24 1.20

TABLE I
AVERAGE/STANDARD DEVIATION OF SLACK ASSIGNMENT APPROACHES

intensive, those in set3 are communication intensive and the
TGs in set4 have balanced requirements on all resources.
A MPSoC consisting of 9 tiles of 3 types is used as the
architecture model. On each tile, a Deadline Monotonic (DM)
scheduler is used. The performance metric we considered is
the number of graphs that can be mapped to the architecture
model. Starting from an empty system, we randomly pick a
TG and try to map it on the architecture model. This procedure
ends when the first allocation failure occurs. We run such
experiments for 1000 rounds and take the average results.

The first set of experiments focuses on the performance of
several slack assignment schemes. The first three algorithms
to be compared are the pessimistic (labeled PES ), optimistic
(OPT ) and average (AVG) estimation approaches discussed in
section III-B. In these three schemes, no slack time is reserved
for the token transfer. The PES-TT, OPT-TT and AVG-TT
approaches extend the original algorithms by considering the
token transfer time. To make the comparison fair, the same
task-to-tile mapping scheme is used in all approaches and
runtime clustering is turned off. During the experiments,
we observe that the performance of the slack assignment
algorithms is close to each other. This is because the deadline
constraint is relatively loose and the system bottleneck is
resource availability. We proceed with increasing the workload
in all TGs to come to a more difficult slack assignment
problem. Figure 3 presents the results if the execution times are
set to twice the original values. As it can be seen, the proposed
speculative approach achieves the best results in the majority
of scenarios. Table I summarizes the normalized performance
averaging over results of all 5 TG-sets. The normalization
is done with respect to the best result for each set using
any of the slack assignment algorithms. Among all algo-
rithms, the speculative approach achieves the highest average
performance(99.4%). A special case is set3 (communication
intentive), for which reserving more slack time for TT can
actually improve the performance significantly. For example
the OPT-TT outperforms OPT by 47.3%. For this task set,
the speculative approach maps less TGs than AVG-TT since

Fig. 4. Performance Comparison of Weighting Functions

(1,0,0) (0,1,0) (0,0,1) (1,1,1) adaptive
Average (%) 92.5 91.3 83.2 95.6 99.1

Std. Dev. 3.64 2.73 3.41 3.25 2.71

TABLE II
AVERAGE/STANDARD DEVIATION OF TASK MAPPING APPROACHES

more slack time is assigned for task processing according
to equation 1. In different usage scenarios, the activation
sequences of applications may be totally different. Hence the
stability of the algorithms becomes another critical issue. Table
I also compares the standard deviation of all slack assignment
algorithms. With a standard deviation of 1.20, our speculative
algorithm achieves the highest stability and is more preferable
for arbitrary TGs. This point is also verified by the results of
set5, in which TGs are randomly selected from set1 to set4.

In the next step, we fix the slack assignment algorithm to
speculative and evaluate the task mapping strategies. Figure
4 shows the performance of five algorithms. In the first four,
fixed weighting factors are used. The weighting factor (1, 0, 0)
focuses on optimizing the PE consumption. Similarly, the
weighting factor (0, 1, 0) and (0, 0, 1) optimize respectively
the memory and bandwidth consumption. The fourth weight-
ing factor (1, 1, 1) has a balanced weight and the fifth case is
the proposed adaptive algorithm. As expected, the weighting
factor (0, 1, 0) that focuses on the memory resource performs
best on set2. The results for set1 and set3 are slightly different
to the expectation. The reason is that the PE usage and
bandwidth usage have intrinsic correlation in our setup. When
the execution time is optimized and WCRT is reduced, more
slack time can be used for token transfer, resulting in reduced
bandwidth consumption. For this reason, optimizing PE and
bandwidth usage simultaneously achieves better results, e.g.
the weighting factor (1, 1, 1) performs better than (1, 0, 0) and
(0, 0, 1) for set3. From the results of set1 to set3, we observe
that our algorithm exhibits good self-adaptability, achieving
results close or equal to the best result. If set4 and set5 are
used, which have balanced or mixed resource requirements,
our adaptive algorithm outperforms all the other algorithms.
We can again compare the normalized performance and the
standard deviation (table II). With normalized performance
99.1% and standard deviation 2.71, the adaptive algorithm
achieves the highest performance and stability.

In previous steps, no clustering is considered during
task mapping. Now, we introduce runtime clustering to



Fig. 5. Evaluation of Clustering Approaches

the task allocator so that the complete workflow is imple-
mented. In figure 5, four approaches are compared: No-
Clustering, Clustering-20, Clustering-50 and Adaptive clus-
tering. Clustering-20 and Clustering-50 are two instances of
the CBP approach presented originally in [15], which tries
to eliminate 20% and 50% of the communication channels.
We use set4 as the input and gradually increase the commu-
nication load by dividing the network speed by a constant
factor. Figure 5 summarizes the results with different scaling
factors. Comparing the first three approaches, we see that
no one performs the best in all cases. When the network
load is low (scaling factor less than 0.8) No-Clustering is
actually preferable. With medium scaling factor (between 1
and 1.6) the Clustering-20 approach is the best, since the
non-aggressive clustering introduces a good tradeoff between
bandwidth and other resources. When the communication load
is high (factor greater than 1.6), aggressive Clustering-50 can
enable allocating more TGs. The proposed adaptive algorithm
can solve the problem by changing the strength of clustering at
runtime. With low communication load, the bandwidth usage
increases slowly and the save factor becomes relatively small,
resulting in a less aggressive clustering method. For high
communication load, this is vice verse. The results in figure
5 clearly show that the proposed clustering approach shows
very good adaptability and achieves the best results for all
considered scenarios.

We measured the execution time of the algorithm on a
workstation with 3GHz Intel Processor and 4GB memory.
With an average allocation time of 6.6ms for one TG, the
algorithm is considered to be online capable.

V. CONCLUSION AND FUTURE WORK

This paper presents a runtime task allocator that can map
and schedule multiple hard real-time tasks on MPSoC plat-
forms. To enable cross-domain application of the MPSoC,
we introduce runtime self-adaptability to the task allocation
algorithm by dynamically weighting different resources based
on their scarcity. We also proposed an adaptive clustering
approach for efficient reduction of the communication load.
Experimental results verify that the task allocator achieves
more balanced and efficient use of the hardware resources.
Moreover,the proposed approach works more stable than tra-
ditional task allocators with fixed configurations, making it

a better strategy for mapping cross-domain real-time appli-
cations. The next step will be the investigation of adaptive
algorithms for task systems with mixed criticality. Within the
scope of our current research, a GENESYS MPSoC will be
developed, on which real world experiments with the proposed
task allocation flow can be conducted.

ACKNOWLEDGMENT

This work has been supported in part by the Euro-
pean research project ACROSS under the Grant Agreement
ARTEMIS-2009-1-100208.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips.” in DAC,
2004.

[2] J. Ceng, J. Castrillón, W. Sheng, H. Scharwächter, R. Leupers, G. As-
cheid, H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: an integrated
framework for MPSoC application parallelization,” in DAC, 2008.

[3] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications
to tiled multiprocessor embedded systems,” in ACSD, July 2007.

[4] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha,
and F. Zhao, “Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems,” in DAC, 2008.

[5] D. Shin and J. Kim, “Power-aware communication optimization for
networks-on-chips with voltage scalable links,” in CODES+ISSS, 2004.

[6] R. Xu, R. G. Melhem, and D. Mossé, “Energy-aware scheduling for
streaming applications on chip multiprocessors,” in RTSS, 2007.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[8] M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and G.-J. van
Rootselaar, “Heterogeneous multiprocessor for the management of real-
time video and graphics streams,” in IEEE journal of solid-state circuits,
Nov 2000.

[9] L. Benini, D. Bertozzi, and M. Milano, “Resource management policy
handling multiple use-cases in mpsoc platforms using constraint pro-
gramming,” in ICLP, 2008.

[10] C. Yang and A. Orailoglu, “Towards no-cost adaptive mpsoc static
schedules through exploitation of logical-to-physical core mapping lat-
itude,” in DATE, 2009.

[11] A. Schranzhofer, J.-J. Chen, L. Santinelli, and L. Thiele, “Dynamic and
adaptive allocation of applications on mpsoc platforms,” in ASPDAC,
2010.

[12] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria, “An industrial design space
exploration framework for supporting run-time resource management
on multi-core systems,” in DATE, 2010.

[13] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Yajun,
“Resource manager for non-preemptive heterogeneous multiprocessor
system-on-chip,” in ESTMED, Washington, DC, USA, 2006.

[14] P. K. F. Hölzenspies, J. Hurink, J. Kuper, and G. J. M. Smit, “Run-
time spatial mapping of streaming applications to a heterogeneous multi-
processor system-on-chip (MPSOC),” in DATE, 2008.

[15] O. Moreira, J.-D. Mol, M. Bekooij, and J. v. Meerbergen, “Multipro-
cessor resource allocation for hard-real-time streaming with a dynamic
job-mix,” in RTAS, Washington, DC, USA, 2005.

[16] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs,” in DAC, 2007.

[17] J. Sun, “Fixed priority scheduling of end-to-end periodic task,” Ph.D.
thesis, University of Illinois at Urbana-Champaign, 1997.

[18] J. Jonsson, “A robust adaptive metric for deadline assignment in hetero-
geneous distributed real-time systems,” Parallel Processing Symposium,
International.

[19] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” RTSS, 1990.

[20] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” in IEE
Proceedings Computers and Digital Techniques, March 2005.

[21] http://ziyang.eecs.umich.edu/ dickrp/tgff/, “TGFF.”


